2014年全国中考数学试题分类汇编24 多边形与平行四边形
中考数学专题复习之 24 多边形与平行四边形(含解析)2 精编
24 多边形与平行四边形(含解析)一、选择题1.(3分)(2016•攀枝花)下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分【考点】矩形的判定与性质.【分析】根据矩形的性质和判定定理逐个判断即可.【解答】解:A、对角线相等的平行四边形才是矩形,故本选项错误;B、矩形的对角线相等且互相平分,故本选项正确;C、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.【点评】本题考查了矩形的性质和判定的应用,能熟记矩形的性质和判定定理是解此题的关键.2.(3分)(2016•攀枝花)如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6 )A.2B.3C.4D.5【考点】四边形综合题.【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>OG,可得△AGD的面积>△OGD的面积;④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.【解答】解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=12∠ADO=22.5°, 故①正确.∵由折叠的性质可得:AE=EF ,∠EFD=∠EAD=90°,∴AE=EF <BE ,∴AE <12AB , ∴AD AE>2, 故②错误.∵∠AOB=90°,∴AG=FG >OG ,△AGD 与△OGD 同高,∴S △AGD >S △OGD ,故③错误.∵∠EFD=∠AOF=90°,∴EF ∥AC ,∴∠FEG=∠AGE ,∵∠AGE=∠FGE ,∴∠FEG=∠FGE ,∴EF=GF ,∵AE=EF ,∴AE=GF ,故④正确.∵AE=EF=GF ,AG=GF ,∴AE=EF=GF=AG ,∴四边形AEFG 是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=,∴.故⑤正确.∵四边形AEFG 是菱形,∴AB ∥GF ,AB=GF .∵∠BAO=45°,∠GOF=90°,∴△OGF 时等腰直角三角形.∵S △OGF =1,∴12OG 2=1,解得∴,∴AE=GF=2,∴,∴S正方形ABCD=AB2=()2∴其中正确结论的序号是:①④⑤.故选B.【点评】此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.3.(3分)(2016•株洲)已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E 是BC的中点,以下说法错误的是()A.OE=12DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE【考点】平行四边形的性质.【分析】由平行四边形的性质和三角形中位线定理得出选项A、B、C正确;由OB≠OC,得出∠OBE≠∠OCE,选项D错误;即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB∥DC,又∵点E是BC的中点,∴OE是△BCD的中位线,∴OE=12DC,OE∥DC,∴OE∥AB,∴∠BOE=∠OBA,∴选项A、B、C正确;∵OB≠OC,∴∠OBE≠∠OCE,∴选项D错误;故选:D.【点评】此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线定理:三角形的中位线平行且等于三角形第三边的一半.4.(3分)(2016•台湾)如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD 上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?()A.50 B.55 C.70 D.75【分析】由平角的定义求出∠CED的度数,由三角形内角和定理求出∠D的度数,再由平行四边形的对角相等即可得出结果.【解答】解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣15°﹣90°=75°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣75°﹣35°=70°,∵四边形ABCD为平行四边形,∴∠B=∠D=70°(平行四边形对角相等).故选C.【点评】本题考查了正方形的性质、平行四边形的性质、三角形内角和定理等知识;熟练掌握平行四边形和正方形的性质,由三角形内角和定理求出∠D的度数是解决问题的关键.5.6.7.8.(3分)(2016•十堰)如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小明一共走了:15×10=150米.故选B.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.14.(3分)(2016•十堰)如图,在▱ABCD中,AB=,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长4cm.【分析】根据平行四边形的性质得到AB =CD =,AD =BC =4cm ,AO =CO ,BO =DO ,根据勾股定理得到OC =3cm ,BD =10cm ,于是得到结论.【解答】解:在▱ABCD 中,∵AB =CD =,AD =BC =4cm ,AO =CO ,BO =DO , ∵AC ⊥BC ,∴AC cm ,∴OC =3cm ,∴BO cm ,∴BD =10cm ,∴△DBC 的周长﹣△ABC 的周长=BC +CD +BD ﹣(AB +BC +AC )=BD ﹣AC =10﹣6=4cm , 故答案为:4.【点评】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.15.如图,在□ABCD 中,AB >AD ,按以下步骤作图:以点A 为圆心,小于AD 的长为半径画弧,分别交AB 、AD 于点E 、F ;再分别以点E 、F 为圆心,大于21EF 的长为半径画弧,两弧交于点G ;作射线AG 交CD 于点H ,则下列结论中不能由条件推理得出的是( )A .AG 平分∠DAB B .AD=DHC .DH=BCD .CH=DH【分析】根据作图过程可得得AG 平分∠DAB ,再根据角平分线的性质和平行四边形的性质可证明∠DAH=∠DHA ,进而得到AD=DH ,【解答】解:根据作图的方法可得AG 平分∠DAB ,∵AG 平分∠DAB ,∴∠DAH=∠BAH ,∵CD ∥AB ,∴∠DHA=∠BAH ,∴∠DAH=∠DHA,∴AD=DH,∴BC=DH,故选D.【点评】此题主要考查了平行四边形的性质、角平分线的作法、平行线的性质;熟记平行四边形的性质是解决问题的关键关键.16.1.(2016•湘西州)下列说法错误的是()A.对角线互相平分的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形【考点】平行四边形的判定.【分析】根据平行四边形的判定定理进行分析即可.【解答】解:A、两条对角线互相平分的四边形是平行四边形,故本选项说法正确;B、两组对边分别相等的四边形是平行四边形,故本选项说法正确;C、一组对边平行且相等的四边形是平行四边形,故本选项说法正确;D、一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如:等腰梯形,故本选项说法错误;故选:D.【点评】此题主要考查了平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.2.(2016•长沙)六边形的内角和是()A.540°B.720°C.900°D.360°【考点】多边形内角与外角.【专题】计算题;多边形与平行四边形.【分析】利用多边形的内角和定理计算即可得到结果.【解答】解:根据题意得:(6﹣2)×180°=720°,故选B.【点评】此题考查了多边形内角与外角,熟练掌握多边形内角和定理是解本题的关键.1.2.(3分)(2016•大庆)下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形【考点】矩形的性质;平行四边形的判定;菱形的判定.【分析】直接利用菱形的判定定理、矩形的性质与平行四边形的判定定理求解即可求得答案.【解答】解:A、对角线互相垂直且平分的四边形是菱形;故本选项错误;B、矩形的对角线相等,菱形的对角线互相垂直;故本选项错误;C、两组组对边分别平行的四边形是平行四边形;故本选项错误;D、四边相等的四边形是菱形;故本选项正确.故选D.【点评】此题考查了矩形的性质、菱形的判定以及平行四边形的判定.注意掌握各特殊平行四边形对角线的性质是解此题的关键.2.1.1.(3分)(2016•北京)内角和为540°的多边形是()A.B.C.D.【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:C.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.2.(3分)(2016•福州)平面直角坐标系中,已知 ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣1,2)【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B 关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(﹣m,﹣n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,﹣1),∴点D的坐标是(﹣2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.1.(3分)(2016•菏泽)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④【考点】平行四边形的性质.【分析】当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD,根据勾股定理求出AC,即可得出结论.【解答】解:根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形,∴∠A=∠B=∠C=∠D=90°,AC=BD,∴AC,①正确,②正确,④正确;③不正确;故选:B.【点评】本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出▱ABCD的面积最大时,四边形ABCD为矩形是解决问题的关键.2.17.18.19.20.二、填空题1.(4分)(2016•攀枝花)如果一个正六边形的每个外角都是30°,那么这个多边形的内角和为1800°.【考点】多边形内角与外角.【分析】根据正多边形的性质,边数等于360°除以每一个外角的度数,然后利用多边形的内角和公式计算内角和即可.【解答】解:∵一个多边形的每个外角都是30°,∴n=360°÷30°=12,则内角和为:(12﹣2)•180°=1800°.故答案为:1800°.【点评】本题主要考查了利用外角求正多边形的边数的方法以及多边形的内角和公式,解题的关键是掌握任意多边形的外角和都等于360度.2.如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE 交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为36°.【考点】平行四边形的性质.【分析】由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°;故答案为:36°.【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.3.1.1.(4分)(2016•泉州)十边形的外角和是360°.【考点】多边形内角与外角.【专题】常规题型.【分析】根据多边形的外角和等于360°解答.【解答】解:十边形的外角和是360°.故答案为:360.【点评】本题主要考查了多边形的外角和等于360°,多边形的外角和与边数无关,任何多边形的外角和都是360°.2.3.(4分)(2016•泉州)如图,在四边形ABCD中,AB∥DC,E是AD中点,EF⊥BC于点F,BC=5,EF=3.(1)若AB=DC,则四边形ABCD的面积S=15;(2)若AB>DC,则此时四边形ABCD的面积S′=S(用“>”或“=”或“<”填空).【考点】平行四边形的判定与性质.【专题】推理填空题.【分析】(1)若AB=DC,则四边形ABCD是平行四边形,据此求出它的面积是多少即可.(2)连接EC,延长CD、BE交于点P,证△ABE≌△DPE可得S△ABE=S△DPE、BE=PE,由三角形中线性质可知S△BCE=S△PCE,最后结合S四边形ABCD=S△ABE+S△CDE+S△BCE可得答案.【解答】解:(1)∵AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴四边形ABCD的面积S=5×3=15,故答案为:15.(2)如图,连接EC,延长CD、BE交于点P,∵E是AD中点,∴AE=DE,又∵AB∥CD,∴∠ABE=∠P,∠A=∠PDE,在△ABE和△DPE中,∵ABE PA PDE AE DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△DPE(AAS),∴S△ABE=S△DPE,BE=PE,∴S△BCE=S△PCE,则S四边形ABCD=S△ABE+S△CDE+S△BCE =S△PDE+S△CDE+S△BCE=S△PCE+S△BCE=2S△BCE=2×12×BC×EF=15,∴当AB>DC,则此时四边形ABCD的面积S′=S,故答案为:=.【点评】此题主要考查了平行四边形的判定和性质的应用及全等三角形的判定与性质,通过构建全等三角形将梯形面积转化为三角形面积去求是解题的关键.1.(4分)(2016•德州)正六边形的每个外角是60度.【考点】多边形内角与外角.【分析】正多边形的外角和是360度,且每个外角都相等,据此即可求解.【解答】解:正六边形的一个外角度数是:360÷6=60°.故答案为:60.【点评】本题考查了正多边形的外角的计算,理解外角和是360度,且每个外角都相等是关键.2.(3分)(2016•东营)如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角线的平行四边形ADCE中,DE的最小值是4.【考点】平行四边形的性质;垂线段最短;三角形中位线定理.【分析】首先证明BC∥AE,当DE⊥BC时,DE最短,只要证明四边形ABDE是矩形即可解决问题.【解答】解:∵四边形ADCE是平行四边形,∴BC∥AE,∴当DE⊥BC时,DE最短,此时∵∠B=90°,∴AB⊥BC,∴DE∥AB,∴四边形ABDE是平行四边形,∵∠B=90°,∴四边形ABDE是矩形,∴DE=AB=4,∴DE的最小值为4.故答案为4.【点评】本题考查平行四边形的性质、垂线段最短等知识,解题的关键是找到DE的位置,学会利用垂线段最短解决问题,属于中考常考题型.2.4.1.(3分)(2016•陕西)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是8.B.运用科学计算器计算:°52′≈11.9.(结果精确到0.1)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方;多边形内角与外角.【分析】(1)根据多边形内角和为360°进行计算即可;(2)先分别求得和sin73°52′的近似值,再相乘求得计算结果.【解答】解:(1)∵正多边形的外角和为360°∴这个正多边形的边数为:360°÷45°=8(2)sin73°52′≈12.369×0.961≈11.9故答案为:8,11.9【点评】本题主要考查了多边形的外角和以及近似数,解决问题的关键是掌握多边形的外角和定理以及近似数的概念.在取近似值时,需要需要运用四舍五入法求解.2.(3分)(2016•巴中)如图,平行四边形ABCD中,AC=8,BD=6,AD=a,则a的取值范围是1<a<7.【考点】平行四边形的性质;三角形三边关系.【分析】由平行四边形的性质得出OA=4,OD=3,再由三角形的三边关系即可得出结果.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴OA=12AC=4,OD=12BD=3,在△AOD中,由三角形的三边关系得:4﹣3<AD<4+3.即1<a<7;故答案为:1<a<7.【点评】本题考查了平行四边形的性质和三角形的三边关系;熟练掌握平行四边形的性质,由三角形的三边关系得出结果是解决问题的关键.1.(3分)(2016•河南)如图,在▱ABCD中,BE⊥ AB交对角线AC于点E,若∠ 1=20°,则∠ 2的度数为110°.【考点】平行四边形的性质.【分析】首先由在▱ABCD 中,∠ 1=20°,求得∠BAE 的度数,然后由BE ⊥ AB ,利用三角形外角的性质,求得∠ 2的度数.【解答】解:∵ 四边形ABCD 是平行四边形,∴ AB ∥ CD ,∴ ∠ BAE=∠ 1=20°,∵ BE ⊥ AB ,∴ ∠ ABE=90°,∴ ∠ 2=∠ BAE+∠ ABE=110°.故答案为:110°.【点评】此题考查了平行四边形的性质以及三角形外角的性质.注意平行四边形的对边互相平行.2.1.(2016•黑龙江)已知:在平行四边形ABCD 中,点E 在直线AD 上,AE=31AD ,连接CE 交BD 于点F ,则EF :FC 的值是 32或34. . 【考点】相似三角形的判定与性质;平行四边形的性质.【分析】分两种情况:①当点E 在线段AD 上时,由四边形ABCD 是平行四边形,可证得△EFD ∽△CFB ,求出DE :BC=2:3,即可求得EF :FC 的值;②当当点E 在射线DA 上时,同①得:△EFD ∽△CFB ,求出DE :BC=4:3,即可求得EF :FC 的值.【解答】解:∵AE=31AD , ∴分两种情况:①当点E 在线段AD 上时,如图1所示∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴△EFD ∽△CFB ,∴EF :FC=DE :BC ,∵AE=31AD , ∴DE=2AE=32AD=32BC , ∴DE :BC=2:3,∴EF :FC=2:3;②当点E 在线段DA 的延长线上时,如图2所示:同①得:△EFD ∽△CFB ,∴EF :FC=DE :BC ,∵AE=31AD , ∴DE=4AE=34AD=34BC , ∴DE :BC=4:3,∴EF :FC=4:3;综上所述:EF :FC 的值是32或34; 故答案为:32或34.【点评】此题考查了相似三角形的判定与性质与平行四边形的性质.此题难度不大,证明三角形相似是解决问题的关键;注意分情况讨论.2.(3分)(2016•齐齐哈尔)如图,若以平行四边形一边AB 为直径的圆恰好与对边CD 相切于点D ,则∠C= 45 度.【考点】切线的性质;平行四边形的性质.菁优网版权所有【分析】连接OD ,只要证明△AOD 是等腰直角三角形即可推出∠A=45°,再根据平行四边形的对角相等即可解决问题.【解答】解;连接OD .∵CD 是⊙O 切线,∴OD ⊥CD ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴AB ⊥OD ,∴∠AOD=90°,∵OA=OD ,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.【点评】本题考查平行四边形的性质、切线的性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.3.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.三、解答题1.(7分)(2016•呼伦贝尔)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD 及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.【考点】平行四边形的判定;等边三角形的性质.【分析】(1)首先由Rt △ABC 中,由∠BAC=30°可以得到AB=2BC ,又由△ABE 是等边三角形,EF ⊥AB ,由此得到AE=2AF ,并且AB=2AF ,然后证得△AFE ≌△BCA ,继而证得结论;(2)根据(1)知道EF=AC ,而△ACD 是等边三角形,所以EF=AC=AD ,并且AD ⊥AB ,而EF ⊥AB ,由此得到EF ∥AD ,再根据平行四边形的判定定理即可证明四边形ADFE 是平行四边形.【解答】证明:(1)∵Rt △ABC 中,∠BAC=30°,∴AB=2BC ,又∵△ABE 是等边三角形,EF ⊥AB ,∴AB=2AF∴AF=BC ,在Rt △AFE 和Rt △BCA 中,AF BC AE BA=⎧⎨=⎩, ∴Rt △AFE ≌Rt △BCA (HL ),∴AC=EF ;(2)∵△ACD 是等边三角形,∴∠DAC=60°,AC=AD ,∴∠DAB=∠DAC+∠BAC=90°又∵EF ⊥AB ,∴EF ∥AD ,∵AC=EF ,AC=AD ,∴EF=AD ,∴四边形ADFE 是平行四边形.【点评】此题考查了平行四边形的判定、等边三角形的性质以及全等三角形的判定与性质.注意证得Rt △AFE ≌Rt △BCA 是关键.2.(8分)(2016•株洲)平行四边形ABCD 的两个顶点A 、C 在反比例函数y=k x(k ≠0)图象上,点B 、D 在x 轴上,且B 、D 两点关于原点对称,AD 交y 轴于P 点(1)已知点A 的坐标是(2,3),求k 的值及C 点的坐标;(2)若△APO 的面积为2,求点D 到直线AC 的距离.【考点】反比例函数与一次函数的交点问题;平行四边形的性质.【专题】函数及其图象.【分析】(1)根据点A 的坐标是(2,3),平行四边形ABCD 的两个顶点A 、C 在反比例函数y=k x(k ≠0)图象上,点B 、D 在x 轴上,且B 、D 两点关于原点对称,可以求得k 的值和点C 的坐标;(2)根据△APO 的面积为2,可以求得OP 的长,从而可以求得点P 的坐标,进而可以求得直线AP 的解析式,从而可以求得点D 的坐标,再根据等积法可以求得点D 到直线AC 的距离.【解答】解:(1)∵点A 的坐标是(2,3),平行四边形ABCD 的两个顶点A 、C 在反比例函数y=k x(k ≠0)图象上,点B 、D 在x 轴上,且B 、D 两点关于原点对称, ∴3=2k ,点C 与点A 关于原点O 对称, ∴k=6,C (﹣2,﹣3),即k 的值是6,C 点的坐标是(﹣2,﹣3);(2)∵△APO 的面积为2,点A 的坐标是(2,3), ∴222OP ∙=,得OP=2,设过点P (0,2),点A (2,3)的直线解析式为y=ax +b ,223b a b ⎧=⎨+=⎩ 解得,122a b ⎧=⎪⎨⎪=⎩,即直线PC 的解析式为y=122x +,将y=0代入y=122x+,得x═﹣4,∴OP=4,∵A(2,3),C(﹣2,﹣3),∴=,设点D到AC的距离为m,∵S△ACD=S△ODA+S△ODC,解得,,即点D到直线AC.【点评】本题考查反比例函数与一次函数的交点问题、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.3.(10分)(2016•株洲)已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形(1)求证:△DFB是等腰三角形;(2)若,求证:CF⊥AB.【考点】圆周角定理;等腰三角形的判定与性质;垂径定理.【分析】(1)由AB是⊙O直径,得到∠ACB=90°,由于△AEF为等边三角形,得到∠CAB=∠EFA=60°,根据三角形的外角的性质即可得到结论;(2)过点A作AM⊥DF于点M,设AF=2a,根据等边三角形的性质得到FM=EN=a,,在根据已知条件得到AB=AF+BF=8a,根据直角三角形的性质得到AE=EF=AF=CE=2a,推出∠ECF=∠EFC,根据三角形的内角和即可得到结论.【解答】解:(1)∵AB是⊙O直径,∴∠ACB=90°,∵△AEF为等边三角形,∴∠CAB=∠EFA=60°,∴∠B=30°,∵∠EFA=∠B +∠FDB ,∴∠B=∠FDB=30°,∴△DFB 是等腰三角形;(2)过点A 作AM ⊥DF 于点M ,设AF=2a ,∵△AEF 是等边三角形,∴FM=EN=a ,,在Rt △DAM 中,,,∴DM=5a ,∴DF=BF=6a ,∴AB=AF +BF=8a ,在Rt △ABC 中,∠B=30°,∠ACB=90°,∴AC=4a ,∵AE=EF=AF=CE=2a ,∴∠ECF=∠EFC ,∵∠AEF=∠ECF +∠EFC=60°,∴∠CFE=30°,∴∠AFC=∠AFE +∠EFC=60°+30°=90°,∴CF ⊥AB .【点评】本题考查了圆周角定理,等边三角形的性质,等腰三角形的判定和性质,垂径定理,勾股定理,正确的作出辅助线是解题的关键.4.爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AF 、BE 是△ABC 的中线,AF ⊥BE 于点P ,像△ABC 这样的三角形均为“中垂三角形”.设BC =a ,AC =b ,AB =c .【特例探究】(1)如图1,当tan ∠P AB =1,c =24时,a = b =54; 如图2,当∠P AB =30°,c =2时,a【归纳证明】(2)请你观察(1)中的计算结果,猜想a 2、b 2、c 2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,▱ABCD 中,E 、F 分别是AD 、BC 的三等分点,且AD =3AE ,BC =3BF ,连接AF 、BE 、CE ,且BE ⊥CE 于E ,AF 与BE 相交点G ,AD =53,AB =3,求AF 的长.【考点】四边形综合题.【分析】(1)①首先证明△APB ,△PEF 都是等腰直角三角形,求出P A 、PB 、PE 、PF ,再利用勾股定理即可解决问题.②连接EF ,在Rt △P AB ,Rt △PEF 中,利用30°性质求出P A 、PB 、PE 、PF ,再利用勾股定理即可解决问题.(2)结论a 2+b 2=5c 2.设MP =x ,NP =y ,则AP =2x ,BP =2y ,利用勾股定理分别求出a 2、b 2、c 2即可解决问题.(3)取AB 中点H ,连接FH 并且延长交DA 的延长线于P 点,首先证明△ABF 是中垂三角形,利用(2)中结论列出方程即可解决问题.【解答】(1)解:如图1中,∵CE =AE ,CF =BF ,∴EF ∥AB ,EF =21AB =22, ∵tan ∠P AB =1,∴∠P AB =∠PBA =∠PEF =∠PFE =45°,∴PF =PE =2,PB =P A =4, ∴522422=+==BF AE . ∴54,542=====BC a AE AC b . 故答案为54,54. 如图2中,连接EF ,∵CE =AE ,CF =BF ,∴EF ∥AB ,EF =21AB =1, ∵∠P AB =30°,∴PB =1,P A =3, 在Rt △EFP 中,∵∠EFP =∠P AB =30°,∴PE =21,PF =23,∴27,2132222=+==+=PF PB BF PE PA AE , ∴132,72======AE AC b BF BC a ,故答案分别为7,13.(2)结论a 2+b 2=5c 2.证明:如图3中,连接EF .∵AF 、BE 是中线,∴EF ∥AB ,EF =21AB , ∴△FPE ∽△APB ,∴,设FP =x ,EP =y ,则AP =2x ,BP =2y ,∴a 2=BC 2=4BF 2=4(FP 2+BP 2)=4x 2+16y 2,b 2=AC 2=4AE 2=4(PE 2+AP 2)=4y 2+16x 2,c 2=AB 2=AP 2+BP 2=4x 2+4y 2,∴a 2+b 2=20x 2+20y 2=5(4x 2+4y 2)=5c 2.(3)解:如图4中,在△AGE 和△FGB 中,BF AE FBG AEG FGB AGE =∠=∠∠=∠,,∴△AGE ≌△FGB ,∴BG =FG ,取AB 中点H ,连接FH 并且延长交DA 的延长线于P 点,同理可证△APH ≌△BFH ,∴AP =BF ,PE =CF =2BF ,即PE ∥CF ,PE =CF ,∴四边形CEPF 是平行四边形,∴FP ∥CE ,∵BE ⊥CE ,∴FP ⊥BE ,即FH ⊥BG ,∴△ABF 是中垂三角形,由(2)可知AB 2+AF 2=5BF 2,∵AB =3,BF =AD =5,∴9+AF 2=5×(5)2,∴AF =4.【点评】本题考查四边形综合题、三角形中位线定理、平行四边形的判定和性质、勾股定理等知识,解题的关键是理解题意,学会添加常用辅助线构造全等三角形,学会利用新的结论解决问题,属于中考压轴题.2.1.(7分)(2016•青海)如图,在▱ABCD 中,点E ,F 在对角线AC 上,且AE=CF .求证:(1)DE=BF ;(2)四边形DEBF 是平行四边形.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据全等三角形的判定方法,判断出△ADE ≌△CBF ,即可推得DE=BF .(2)首先判断出DE ∥BF ;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF 是平行四边形即可.【解答】证明:(1)∵四边形ABCD 是平行四边形,∴AD ∥CB ,AD=CB ,∴∠DAE=∠BCF ,在△ADE 和△CBF 中,AD CB DAE BCF AE CF ⎧=⎪∠=∠⎨⎪=⎩∴△ADE ≌△CBF ,∴DE=BF .(2)由(1),可得∴△ADE ≌△CBF ,∴∠ADE=∠CBF ,∵∠DEF=∠DAE +∠ADE ,∠BFE=∠BCF +∠CBF ,∴∠DEF=∠BFE ,∴DE ∥BF ,又∵DE=BF ,∴四边形DEBF 是平行四边形.【点评】此题主要考查了平行四边形的判定和性质的应用,以及全等三角形的判定和性质的应用,要熟练掌握1.14分)(2016•安徽)如图1,A ,B 分别在射线OA ,ON 上,且∠MON 为钝角,现以线段OA ,OB 为斜边向∠MON 的外侧作等腰直角三角形,分别是△OAP ,△OBQ ,点C ,D ,E 分别是OA ,OB ,AB 的中点.(1)求证:△PCE ≌△EDQ ;(2)延长PC ,QD 交于点R .①如图1,若∠MON=150°,求证:△ABR 为等边三角形;②如图3,若△ARB ∽△PEQ ,求∠MON 大小和PQAB 的 值.【考点】相似形综合题.【分析】(1)根据三角形中位线的性质得到DE=OC ,DE ∥OC ,CE=OD ,CE ∥OD ,推出四边形ODEC 是平行四边形,于是得到∠OCE=∠ODE ,根据等腰直角三角形的定义得到∠PCO=∠QDO=90°,根据等腰直角三角形的性质得到得到PC=ED ,CE=DQ ,即可得到结论(2)①连接RO ,由于PR 与QR 分别是OA ,OB 的垂直平分线,得到AP=OR=RB ,由等腰三角形的性质得到∠ARC=∠ORC ,∠ORQ=∠BRO ,根据四边形的内角和得到∠CRD=30°,即可得到结论;②由(1)得,EQ=EP ,∠DEQ=∠CPE ,推出∠PEQ=∠ACR=90°,证得△PEQ 是等腰直角三角形,根据相似三角形的性质得到ARB=∠PEQ=90°,根据四边形的内角和得到∠MON=135°,求得∠APB=90°,根据等腰直角三角形的性质得到结论.【解答】(1)证明:∵点C 、D 、E 分别是OA ,OB ,AB 的中点,∴DE=OC ,DE ∥OC ,CE=OD ,CE ∥OD ,∴四边形ODEC 是平行四边形,∴∠OCE=∠ODE ,∵△OAP ,△OBQ 是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO+∠ODE=∠EDQ ,∵PC=21AO=OC=ED ,CE=OD=21OB=DQ , 在△PCE 与△EDQ 中,⎪⎩⎪⎨⎧=∠=∠=DQ CE EDQ PCE DE PC ,∴△PCE ≌△EDQ ;(2)①如图2,连接RO ,∵PR 与QR 分别是OA ,OB 的垂直平分线,∴AP=OR=RB ,∴∠ARC=∠ORC ,∠ORQ=∠BRO ,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB 是等边三角形;②由(1)得,EQ=EP ,∠DEQ=∠CPE ,∴∠PEQ=∠CED ﹣∠CEP ﹣∠DEQ=∠ACE ﹣∠CEP ﹣∠CPE=∠ACE ﹣∠RCE=∠ACR=90°,∴△PEQ 是等腰直角三角形,∵△ARB ∽△PEQ ,∴∠ARB=∠PEQ=90°,∴∠OCR=∠ODR=90°,∠CRD=21∠ARB=45°, ∴∠MON=135°,此时P ,O ,B 在一条直线上,△PAB 为直角三角形,且∠APB=90°,∴AB=2PE=2×22PQ=2PQ ,∴PQ AB =2.【点评】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,全等三角形的判定和性质,平行四边形的判定和性质,等边三角形的判定和性质,线段垂直平分线的性质,熟练掌握等腰直角三角形的性质是解题的关键.2.(5分)(2016•北京)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.【分析】由平行四边形的性质得出AB∥CD,得出内错角相等∠E=∠BAE,再由角平分线证出∠E=∠DAE,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠E=∠BAE,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠E=∠DAE,∴DA=DE.【点评】本题考查了平行四边形的性质、平行线的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出∠E=∠DAE是解决问题的关键.»AC 3.(5分)(2016•北京)如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.。
安徽省2014年中考数学专题复习课件_第21课时_多边形与平行四边形
图 21-1
皖考解读
考点聚焦
皖考探究
当堂检测
第21课时┃ 多边形与平行四边形
由平行四边形的性质得到相等的角和相等的 解 析 线段,然后根据全等三角形的判定方法证明三角形全等.
解
证明:∵四边形 ABCD 是平行四边形, ∴AB=CD,∠B=∠D,AD∥BC,∴∠DAE=∠AEB. 又∵AE∥CF,∴∠DFC=∠DAE,∴∠DFC=∠BEA. 在△ABE 和△CDF 中, ∠BEA=∠DFC, ∠B=∠D, ∴△ABE≌△CDF(AAS). AB=CD,
皖考解读 考点聚焦 皖考探究 当堂检测
第21课时┃ 多边形与平行四边形
两条平 在两条平行线中一条直线上任意一点到另一条 行线间 直线上的距离叫做两条平行线间的距离. 的距离 夹在两条平行线间的平行线段________. 相等
皖考解读
考点聚焦
皖考探究
当堂检测
第21课时┃ 多边形与平行四边形
考点3 平行四边形的判定
由折叠和平行四边形的性质知, ∠D = 解 析 ∠AMN=∠B,所以 MN∥BC,结论①正确;又∠DAN= ∠MAN=∠ANM,∴MN=AM,结论②正确.故选 A.
皖考解读
考点聚焦
皖考探究
当堂检测
第21课时┃ 多边形与平行四边形
3.如图 21-6,点 D、E、F 分别是△ABC 的边 AB、 BC、CA 的中点,连接 DE、EF、FD,则图中平行四边形 的个数为________ . 3
皖考解读 考点聚焦 皖考探究 当堂检测
第21课时┃ 多边形与平行四边形
证明一个四边形是平行四边形,要根据具体条件灵活 选择判别方法, 有时还要结合全等三角形等知识解决问题. 一组对边平行或对角线相等的四边形不一定是平行四 边形,要注意判定条件的完整性.
中考数学《多边形和平行四边形》专题含解析
多边形和平行四边形一、填空题1.如图,□ABCD中,∠B=50°,AB=5cm,BC=7cm,则∠D=度,□ABCD的周长为cm.2.如图:□ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为cm.3.如图,在□ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC的长为.二、选择题4.如图,已知□ABCD的两条对角线AC与BD交于平面直角坐标系的原点,点A的坐标为(﹣2,3),则点C的坐标为()A.(﹣3,2)B.(﹣2,﹣3)C.(3,﹣2)D.(2,﹣3)5.在四边形ABCD中,O是对角线交点,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AD=BC B.AB=DC,AD=BC C.AB∥DC,AD=BC D.OA=OC,OD=OB 6.如图,一个四边形花坛ABCD,被两条线段MN,EF分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S1,S2,S3,S4,若MN∥AB∥DC,EF∥DA∥CB,则有()A.S1=S4B.S1+S4=S2+S3C.S1S4=S2S3D.都不对7.如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A.S△AFD=2S△EFB B.BF=DFC.四边形AECD是等腰梯形D.∠AEB=∠ADC三、解答题8.如图,在□ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.9.已知:□ABCD的对角线交于点O,点P是直线BD上任意一点(异于B、O、D三点),过P点作平行于AC的直线,交直线AD于E,交直线AB于F.(1)若点P在线段BD上(如图所示),试说明:AC=PE+PF;(2)若点P在BD或DB的延长线上,试探究AC、PE、PF满足的等量关系式(只写出结论,不作证明).10.如图,ABCD是矩形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分别是B,D落在AC上的两点,E,G分别是折痕CE,AG与AB,CD的交点.(1)求证:四边形AECG是平行四边形;(2)若AB=4cm,BC=3cm,求线段EF的长.11.如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD.(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;(2)当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动.过Q作直线QN,使QN∥PM.设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD 所得图形的面积为Scm2.①求S关于t的函数关系式;②(附加题)求S的最大值.12.我们给出如下定义:如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.(1)如图2,已知平行四边形ABCD,请你在图2中画出一个只有一对等高点的四边形ABCE(要求:画出必要的辅助线);(2)已知P是四边形ABCD对角线BD上任意一点(不与B、D点重合),请分别探究图3、图4中S1,S2,S3,S4四者之间的等量关系(S1,S2,S3,S4分别表示△ABP,△CBP,△CDP,△ADP的面积):①如图3,当四边形ABCD只有一对等高点A、C时,你得到的一个结论是;②如图4,当四边形ABCD没有等高点时,你得到的一个结论是.13.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图1,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD 的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点.(尺规作图,保留作图痕迹,不要求写作法)(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.试说明点P是四边形ABCD的准等距点.(4)试研究四边形的准等距点个数的情况.(说出相应四边形的特征及此时准等距点的个数,不必证明)14.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).多边形和平行四边形参考答案与试题解析一、填空题1.如图,□ABCD中,∠B=50°,AB=5cm,BC=7cm,则∠D=50度,□ABCD的周长为24cm.【考点】平行四边形的性质.【分析】根据平行边形性质中对角、对边相等可知,∠B=∠D=50°,平行四边形的周长=2(AB+BC).【解答】解:①∵四边形ABCD是平行四边形,∴∠D=∠B∵∠B=50°∴∠D=50°②∵四边形ABCD是平行四边形,∴AD=BC,AB=CD∵AB=5cm,BC=7cm∴□ABCD的周长为:2(AB+BC)=24cm.故答案为50、24.【点评】本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.2.如图:□ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为8cm.【考点】平行四边形的性质.【分析】平行四边形的周长为相邻两边之和的2倍,即2(AB+BC)=28,则AB+BC=14cm,而△ABC的周长=AB+BC+AC=22,所以AC=22﹣14=8cm.【解答】解:∵□ABCD的周长是28 cm∴AB+AD=14cm∵△ABC的周长是22cm∴AC=22﹣(AB+AC)=8cm故答案为8.【点评】在应用平行四边形的性质解题时,要根据具体问题,有选择地使用,避免混淆性质,以致错用性质.3.如图,在□ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC的长为2.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质.【专题】计算题.【分析】作EF∥AB,交AD于F,可证ABEF、CDFE为平行四边形,又AE平分∠BAD,可进一步证明AB=BE,ABEF为菱形,则AF=AB=3,DF=5﹣3=2,则EC=2.【解答】解:过点E作EF∥AB,交AD于F∵在□ABCD,EF∥AB∴AB=EF,AF=BE∵∠FAE=∠BAE∴△AFE≌△ABE∴AB=BE=EF=AF∴ABEF为菱形∴EC=AD﹣AB=2.故答案为:2.【点评】此题综合性较强,考查了平行四边形的判定及性质、菱形的判定、角平分线的定义等知识点.二、选择题(共4小题,每小题4分,满分16分)4.如图,已知□ABCD的两条对角线AC与BD交于平面直角坐标系的原点,点A的坐标为(﹣2,3),则点C的坐标为()A.(﹣3,2)B.(﹣2,﹣3)C.(3,﹣2)D.(2,﹣3)【考点】平行四边形的性质;坐标与图形性质.【分析】根据平行四边形是中心对称的特点可知,点A与点C关于原点对称,所以C的坐标为(2,﹣3).【解答】解:∵在平行四边形ABCD中,A点与C点关于原点对称∴C点坐标为(2,﹣3).故选D.【点评】主要考查了平行四边形的性质和坐标与图形的关系.要会根据平行四边形的性质得到点A与点C关于原点对称的特点,是解题的关键.5.在四边形ABCD中,O是对角线交点,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AD=BC B.AB=DC,AD=BC C.AB∥DC,AD=BC D.OA=OC,OD=OB【考点】平行四边形的判定.【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.不能判定四边形ABCD是平行四边形的是C【解答】解:A、根据一组对边平行且相等的四边形是平行四边形,可以判定,故正确;B、根据平行四边形的定义即可判定,故正确;C、一组对边平行,另一组对边相等的四边形,等腰梯形满足条件.故该选项错误.D、根据对角线互相平分的四边形是平行四边形可以判定.故正确.故选C.【点评】此题主要考查对平行四边形的判定掌握的熟练程度.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.6.如图,一个四边形花坛ABCD,被两条线段MN,EF分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S1,S2,S3,S4,若MN∥AB∥DC,EF∥DA∥CB,则有()A.S1=S4B.S1+S4=S2+S3C.S1S4=S2S3D.都不对【考点】平行四边形的性质.【专题】应用题;压轴题.【分析】由于在平行四边形中,已给出条件MN∥AB∥DC,EF∥DA∥CB,因此,MN、EF把一个平行四边形分割成四个小平行四边形,所以红、紫四边形的高相等,由此可证明S1S4=S2S3.【解答】解:设红、紫四边形的高相等为h1,黄、白四边形的高相等,高为h2,则S1=DE•h1,S2=AF•h2,S3=EC•h1,S4=FB•h2,因为DE=AF,EC=FB,故A错误;S1+S4=DE•h1+FB•h2=AF•h1+FB•h2,S2+S3=AF•h2+EC•h1=AF•h2+FB•h1,故B错误;S1S4=DE•h1•FB•h2=AF•h1•FB•h2,S2S3=AF•h2•EC•h1=AF•h2•FB•h1,所以S1S4=S2S3,故C正确;故选:C.【点评】本题考查的是平行四变形的性质,平行四边形两组对边分别平行且相等,同时充分利用等量相加减原理解题,否则容易从直观上判断B是正确的.7.如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A.S△AFD=2S△EFB B.BF=DFC.四边形AECD是等腰梯形D.∠AEB=∠ADC【考点】平行四边形的性质;相似三角形的判定与性质.【专题】压轴题.【分析】本题要综合分析,但主要依据都是平行四边形的性质.【解答】解:A、∵AD∥BC∴△AFD∽△EFB∴====4S△EFB;故S△AFDB、由A中的相似比可知,BF=DF,正确.C、由∠AEC=∠DCE可知正确.D、利用等腰三角形和平行的性质即可证明.故选:A.【点评】解决本题的关键是利用相似求得各对应线段的比例关系.三、解答题8.如图,在□ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【专题】证明题;探究型.【分析】(1)由已知条件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四边形AFCE是平行四边形.(2)上述结论还成立,可以证明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四边形AFCE是平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三角形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四边形AFCE是平行四边形.(2)解:上述结论还成立.证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.∴∠ADE=∠CBF.∵AE=AD,CF=CB,∴∠AED=∠ADE,∠CFB=∠CBF.∴∠AED=∠CFB.又∵AD=BC,在△ADE和△CBF中.,∴△ADE≌△CBF(AAS).∴∠AED=∠BFC,∠EAD=∠FCB.又∵∠DAB=∠BCD,∴∠EAF=∠FCE.∴四边形EAFC是平行四边形.【点评】本题考查了等边三角形的性质及平行四边形的判定.多种知识综合运用是解题中经常要遇到的.9.已知:□ABCD的对角线交于点O,点P是直线BD上任意一点(异于B、O、D三点),过P点作平行于AC的直线,交直线AD于E,交直线AB于F.(1)若点P在线段BD上(如图所示),试说明:AC=PE+PF;(2)若点P在BD或DB的延长线上,试探究AC、PE、PF满足的等量关系式(只写出结论,不作证明).【考点】平行线分线段成比例;平行四边形的判定与性质.【专题】证明题;探究型.【分析】(1)先判定四边形AFGC是平行四边形,再根据平行四边形的对边相等的性质知AC=FG;然后由被平行线所截的线段对应成比例(==)求出PE与PG的数量关系,解答到此,来证明AC=PE+PF的问题就迎刃而解了.(2)推理类同于(1).【解答】证明:(1)延长FP交DC于点G,∵AB∥CD,AC∥FG,∴四边形AFGC是平行四边形,∴AC=FG(平行四边形的对边相等),∵EG∥AC,∴==(被平行线所截的线段对应成比例);又∵OA=OC,∴PE=PG,∴AC=FG=PF+PG=PE+PF;(2)若点P在BD延长线上,AC=PF﹣PE.如下图所示若点P在DB延长线上,AC=PE﹣PF.如下图所示..【点评】本题主要考查了平行四边形的判定与性质.10.如图,ABCD是矩形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分别是B,D落在AC上的两点,E,G分别是折痕CE,AG与AB,CD的交点.(1)求证:四边形AECG是平行四边形;(2)若AB=4cm,BC=3cm,求线段EF的长.【考点】翻折变换(折叠问题);解一元二次方程﹣公式法;勾股定理;平行四边形的判定;相似三角形的判定与性质.【专题】几何综合题.【分析】(1)根据:两组对边分别平行的四边形是平行四边形,证明AG∥CE,AE∥CG 即可;(2)解法1:在Rt△AEF中,运用勾股定理可将EF的长求出;解法2,通过△AEF∽△ACB,可将线段EF的长求出.【解答】(1)证明:在矩形ABCD中,∵AD∥BC,∴∠DAC=∠BCA.由题意,得∠GAH=∠DAC,∠ECF=∠BCA.∴∠GAH=∠ECF,∴AG∥CE.又∵AE∥CG,∴四边形AECG是平行四边形.(2)解法1:在Rt△ABC中,∵AB=4,BC=3,∴AC=5.∵CF=CB=3,∴AF=2.在Rt△AEF中,设EF=x,则AE=4﹣x.根据勾股定理,得AE2=AF2+EF2,即(4﹣x)2=22+x2.解得x=,即线段EF长为cm.解法2:∵∠AFE=∠B=90°,∠FAE=∠BAC,∴△AEF∽△ACB,∴.∴,解得,即线段EF长为cm.【点评】本题考查图形的折叠变化,关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.11.如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD.(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;(2)当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动.过Q作直线QN,使QN∥PM.设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD 所得图形的面积为Scm2.①求S关于t的函数关系式;②(附加题)求S的最大值.【考点】二次函数综合题;平行四边形的性质.【专题】压轴题.【分析】(1)在三角形AEP中,AP=2,∠A=60°,利用三角函数可求出AE和PE,即可求出面积;(2)①此题应分情况讨论,因为两个动点运动速度不同,所以有点P与点Q都在AB 上运动、点P在BC上运动点Q仍在AB上运动、点P和点Q都在BC上运动三种情况,在每种情况下可利用三角函数分别求出我们所需要的值,进而求解.②在①的基础上,首先①求出函数关系式之后,根据t的取值范围不同函数最大值也不同.【解答】解:(1)当点P运动2秒时,AP=2cm,由∠A=60°,知AE=1,PE=.(2分)=;∴S△APE(2)①当0≤t<6时,点P与点Q都在AB上运动,如图所示:设PM与AD交于点G,QN与AD交于点F,则AQ=t,AF=,QF=t,AP=t+2,AG=1+,PG=+t.∴此时两平行线截平行四边形ABCD的面积为S=t+;②当6≤t<8时,点P在BC上运动,点Q仍在AB上运动.如图所示:设PM与DC交于点G,QN与AD交于点F,则AQ=t,AF=,DF=4﹣,QF=t,BP=t﹣6,CP=10﹣t,PG=(10﹣t),而BD=4,故此时两平行线截平行四边形ABCD的面积为S=﹣t2+10t﹣34,③当8≤t≤10时,点P和点Q都在BC上运动.如图所示:设PM与DC交于点G,QN与DC交于点F,则CQ=20﹣2t,QF=(20﹣2t),CP=10﹣t,PG=(10﹣t).∴此时两平行线截平行四边形ABCD的面积为S=.(14分)故S关于t的函数关系式为;②(附加题)当0≤t<6时,S的最大值为,(1分)当6≤t<8时,S的最大值为6,(舍去),(2分)当8≤t≤10时,S的最大值为6,(3分)所以当t=8时,S有最大值为6.(如正确作出函数图象并根据图象得出最大值,同样给4分)【点评】此题解答需数形结合,把函数知识和几何知识紧密联系在一起,难易程度适中.12.我们给出如下定义:如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.(1)如图2,已知平行四边形ABCD,请你在图2中画出一个只有一对等高点的四边形ABCE(要求:画出必要的辅助线);(2)已知P是四边形ABCD对角线BD上任意一点(不与B、D点重合),请分别探究图3、图4中S1,S2,S3,S4四者之间的等量关系(S1,S2,S3,S4分别表示△ABP,△CBP,△CDP,△ADP的面积):①如图3,当四边形ABCD只有一对等高点A、C时,你得到的一个结论是S1+S4=S2+S3,S1+S3=S2+S4或S1×S3=S2×S4或;②如图4,当四边形ABCD没有等高点时,你得到的一个结论是S1×S3=S2×S4或.【考点】作图—应用与设计作图.【专题】压轴题;新定义;开放型.【分析】(1)在BD上任选一点E(不与B、D重合),连接AE、CE即可;(2)根据等底等高,可得结论:①S1+S4=S2+S3,S1+S3=S2+S4或S1×S3=S2×S4或等.②S1×S3=S2×S4或等.【解答】解:(1)比如:(2)①S1+S4=S2+S3,S1+S3=S2+S4或S1×S3=S2×S4或等.②∵分别作△ABD与△BCD的高,h1,h2,则=,=,∴S1×S3=S2×S4或等.【点评】此题主要考查学生的阅读理解能力和对等底等高知识的灵活应用.13.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图1,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD 的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点.(尺规作图,保留作图痕迹,不要求写作法)(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.试说明点P是四边形ABCD的准等距点.(4)试研究四边形的准等距点个数的情况.(说出相应四边形的特征及此时准等距点的个数,不必证明)【考点】作图—复杂作图;全等三角形的判定.【专题】压轴题;新定义.【分析】(1)根据菱形的对角线互相垂直平分,根据线段垂直平分线的性质,则只需要在其中一条对角线上找到和对角线的交点不重合的点即可;(2)根据到线段两个端点距离相等的点在线段的垂直平分线上,则可作对角线BD的垂直平分线和另一条对角线所在的直线的交点即为所求作;(3)只需说明PD=PB即可.根据已知的条件可以根据AAS证明△DCF≌△BCE,则∠CDB=∠CBD,进而得到∠PDB=∠PBD,证明结论即可;(4)根据上述确定准等距点的方法:即作其中一条对角线的垂直平分线和另一条对角线所在的直线的交点.所以分析讨论的时候,主要是根据两条对角线的位置关系进行分析讨论.【解答】解:(1)如图2,点P即为所画点;(1分)(2)如图3,点P即为所作点(作法不唯一);(2分)(3)连接DB.在△DCF与△BCE中,∠DCF=∠BCE,∠CDF=∠CBE,CF=CE.∴△DCF≌△BCE(AAS),∴CD=CB,∴∠CDB=∠CBD,∴∠PDB=∠PBD,∴PD=PB,∵PA≠PC,∴点P是四边形ABCD的准等距点.(4)①当四边形的对角线互相垂直且任何一条对角线不平分另一对角线或者对角线互相平分且不垂直时,准等距点的个数为0个;②当四边形的对角线不互相垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为1个;③当四边形的对角线既不互相垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为2个;④四边形的对角线互相垂直且至少有一条对角线平分另一对角线时,准等距点有无数个.(7分)【点评】关键是熟悉菱形的性质,能够根据线段垂直平分线的性质的逆定理进行分析作图,能够根据找准等距点的方和四边形中两条对角线的位置关系判断准等距点的个数.14.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).【考点】平行四边形的性质;全等三角形的判定与性质.【专题】压轴题;探究型.【分析】连接BE,根据边角边可证△PAM和△EBM全等,可得EB和PA既平行又相等,而PA和CD既平行且相等,所以DE和BC平行相等,又因为BC⊥AC,所以DE也和AC 垂直.以下几种情况虽然图象有所变化,但是证明方法一致.【解答】解:(1)DE∥BC,DE=BC,DE⊥AC.(2)如图4,如图5.(3)方法一:如图6,连接BE,∵PM=ME,AM=MB,∠PMA=∠EMB,∴△PMA≌△EMB.∵PA=BE,∠MPA=∠MEB,∴PA∥BE.∵平行四边形PADC,∴PA∥DC,PA=DC.∴BE∥DC,BE=DC,∴四边形DEBC是平行四边形.∴DE∥BC,DE=BC.∵∠ACB=90°,∴BC⊥AC,∴DE⊥AC.方法二:如图7,连接BE,PB,AE,∵PM=ME,AM=MB,∴四边形PAEB是平行四边形.∴PA∥BE,PA=BE,余下部分同方法一:方法三:如图8,连接PD,交AC于N,连接MN,∵平行四边形PADC,∴AN=NC,PN=ND.∵AM=BM,AN=NC,∴MN∥BC,MN=BC.又∵PN=ND,PM=ME,∴MN∥DE,MN=DE.∴DE∥BC,DE=BC.∵∠ACB=90°,∴BC⊥AC.∴DE⊥AC.(4)如图9,DE∥BC,DE=BC.【点评】此题主要考查了平行四边形的性质和判定,以及全等的应用,难易程度适中.。
中考数学历年各地市真题 多边形与平行四边形
中考数学历年各地市真题 部分省市中考数学试题分类汇编多边形与平行四边形一、选择题1. (2010年四川眉山市).如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°【答案】C2.(2010福建龙岩)下列图形中,单独选用一种图形不能进行平面镶嵌的图形是( )A. 正三角形B. 正方形C. 正五边形D. 正六边形 【答案】C3.(2010年北京顺义)若一个正多边形的一个内角是120°,则这个正多边形的边数是A .9B .8C .6D .4 【答案】C4. (2010年台湾省) 图(十)为一个平行四边形ABCD ,其中H 、G 两点分别在BC 、 CD 上,AH ⊥BC ,AG ⊥CD ,且AH 、AC 、AG 将∠BAD 分成 ∠1、∠2、∠3、∠4四个角。
若AH =5,AG =6,则下列关系何者正确? (A) ∠1=∠2 (B) ∠3=∠4 (C) BH =GD (D) HC =CG 【关键词】平行四边形【答案】A二、填空题1.(2010年福建福州)14.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,若AC=14,BD=8,AB=10,则△OAB 的周长为 . 【答案】212.(2010年福建宁德)如图,在□ABCD 中,AE =EB ,AF =2, 则FC 等于_____. 【答案43.(2010年山东滨州)如图,平行四边形ABCD 中, ∠ABC=60°,E 、F 分别在CD 、BC 的延长线上,AE ∥BD,EF ⊥BC,DF=2,则EF 的长为ABCEF A B CD G H 123 4图(十)FEDC BA【答案】4.(2010年福建宁德)如图,在△ABC 中,点E 、F 分别为AB 、AC 的中点.若EF 的长为2,则BC 的长为___________. 【答案】4三、解答题1. (2010年福建晋江)如图,请在下列四个关系中,选出两个..恰当..的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明.(写出一种即可)关系:①AD ∥BC ,②CD AB =,③C A ∠=∠,④︒=∠+∠180C B .已知:在四边形ABCD 中, , ; 求证:四边形ABCD 是平行四边形.解:已知:①③,①④,②④,③④均可,其余均不可以. (解法一)已知:在四边形ABCD 中,①AD ∥BC ,③C A ∠=∠.……………………(2分) 求证:四边形ABCD 是平行四边形. 证明:∵ AD ∥BC∴︒=∠+∠180B A ,︒=∠+∠180D C ………………………………………(5分) ∵C A ∠=∠,∴D B ∠=∠∴四边形ABCD 是平行四边形…………………………………………………(8分) (解法二)已知:在四边形ABCD 中,①AD ∥BC ,④︒=∠+∠180C B .………………(2分)ABCD第4题图 F A E BCD求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B ,∴AB ∥CD ……………………………………………………………………(5分) 又∵AD ∥BC∴四边形ABCD 是平行四边形.…………………………………………………(8分) (解法三)已知:在四边形ABCD 中,②CD AB =,④︒=∠+∠180C B .………………(2分) 求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B ,∴AB ∥CD ……………………………………………………………………(5分) 又∵CD AB =∴四边形ABCD 是平行四边形.…………………………………………………(8分) (解法四)已知:在四边形ABCD 中,③C A ∠=∠,④︒=∠+∠180C B .………………(2分) 求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B ,∴AB ∥CD ……………………………………………………………………(4分) ∴︒=∠+∠180D A ………………………………………………………………(6分) 又∵C A ∠=∠ ∴D B ∠=∠∴四边形ABCD 是平行四边形.…………………………………………………(8分)2. (2010年浙江衢州)已知:如图,E ,F 分别是ABCD 的边AD ,BC 的中点.求证:AF =CE .证明:方法1:∵ 四边形ABCD 是平行四边形,且E ,F 分别是AD ,BC的中点,∴ AE = CF . ……2分 又 ∵ 四边形ABCD 是平行四边形, ∴ AD ∥BC ,即AE ∥CF .∴ 四边形AFCE 是平行四边形. ……3分∴ AF =CE .……1分方法2:∵ 四边形ABCD 是平行四边形,且E ,F 分别是AD ,BC 的中点, ∴ BF =DE . ……2分 又 ∵ 四边形ABCD 是平行四边形,A D EBC ADEBC(第19题)∴ ∠B =∠D ,AB =CD . ∴ △ABF ≌△CDE . (3)分∴ AF =CE .……1分3.(2010浙江省嘉兴)如图,在□ABCD 中,已知点E 在AB 上,点F 在CD 上且AE=CF .(1)求证:DE =BF ;(2)连结BD ,并写出图中所有的全等三角形.(不要求证明) 【关键词】平行四边形的判定与性质、全等三角形 【答案】(1)在□ABCD 中,AB //CD ,AB =CD .∵AE =CF ,∴BE =DF ,且BE //DF . ∴四边形BFDE 是平行四边形. ∴BF DE . …5分 (2)连结BD ,如图, 图中有三对全等三角形: △ADE ≌△CBF , △BDE ≌△DBF ,△ABD ≌△CDB . …3分4. (2010年山东滨州)如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.(1)请判断四边形EFGH 的形状?并说明为什么.(2)若使四边形EFGH 为正方形,那么四边形ABCD 的对角线应具有怎样的性质?解:(1) 四边形EFGH 为平行四边形,连接AC ∵E 、F 分别是AB 、BC 的中点,EF ∥AC ,EF=21AC. 同理HG ∥AC ,HG=21AC. ∴EF ∥HG, EF=HG.∴四边形EFGH 是平行四边形(2) 四边形ABCD 的对角线垂直且相等.5.(2010年江苏泰州)如图,四边形ABCD 是矩形,∠EDC =∠CAB ,∠DEC =90°.BE(第3题)AB C(1)求证:AC ∥DE ;(2)过点B 作BF ⊥AC 于点F ,连结EF ,试判断四边形BCEF 的形状,并说明理由.【答案】⑴在矩形ABCD 中,AC ∥DE ,∴∠DCA =∠CAB ,∵∠EDC =∠CAB , ∴∠DCA =∠EDC ,∴AC ∥DE ; ⑵四边形BCEF 是平行四边形.理由:由∠DEC =90°,BF ⊥AC ,可得∠AFB =∠DEC =90°, 又∠EDC =∠CAB ,AB=CD ,∴△DEC ≌△AFB ,∴DE =AF ,由⑴得AC ∥DE ,∴四边形AFED 是平行四边形,∴AD ∥EF 且AD =EF , ∵在矩形ABCD 中,AD ∥BC 且AD =BC , ∴EF ∥BC 且EF =BC ,∴四边形BCEF 是平行四边形.【关键词】矩形的性质 平行四边形的判定 全等三角形的判定6.(2010年福建晋江)如图,请在下列四个关系中,选出两个恰当....的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明.(写出一种即可)关系:①AD ∥BC ,②CD AB =,③C A ∠=∠,④︒=∠+∠180C B . 已知:在四边形ABCD 中, , ; 求证:四边形ABCD 是. 【关键词】平行四边形的判定【答案】已知:①③,①④,②④,③④均可,其余均不可以. (解法一)已知:在四边形ABCD 中,①AD ∥BC ,③C A ∠=∠.……………………(2分) 求证:四边形ABCD 是平行四边形. 证明:∵ AD ∥BC∴︒=∠+∠180B A ,︒=∠+∠180D C ∵C A ∠=∠,∴D B ∠=∠ ∴四边形ABCD 是平行四边形 (解法二)已知:在四边形ABCD 中,①AD ∥BC ,④︒=∠+∠180C B .求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B , ∴AB ∥CD 又∵AD ∥BC∴四边形ABCD 是平行四边形. (解法三)已知:在四边形ABCD 中,②CD AB =,④︒=∠+∠180C B . 求证:四边形ABCD 是平行四边形. 证明:∵︒=∠+∠180C B , ∴AB ∥CD 又 ∵CD AB =∴四边形ABCD 是平行四边形. (解法四)已知:在四边形ABCD 中,③C A ∠=∠,④︒=∠+∠180C B . 求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B , ∴AB ∥CD∴︒=∠+∠180D A 又∵C A ∠=∠ ∴D B ∠=∠∴四边形ABCD 是平行四边形.7.(2010年贵州毕节地区)如图,已知: ABCD 中,BCD ∠的平分线CE 交边AD 于E ,ABC ∠的平分线BG交CE 于F ,交AD 于G .求证:AE DG =.【关键词】平行四边形、角平分线【答案】证明:∵ 四边形ABCD 是平行四边形(已知),AD BC ∴∥,AB CD =(平行四边形的对边平行,对边相等)GBC BGA ∴∠=∠,BCE CED ∠=∠(两直线平行,内错角相等)又∵ BG 平分ABC ∠,CE 平分BCD ∠(已知)ABG GBC ∴∠=∠,BCE ECD ∠=∠(角平分线定义)ABG GBA ∴∠=∠,ECD CED ∠=∠.AB AG ∴=,CE DE =(在同一个三角形中,等角对等边)AG DE ∴=AG EG DE EG ∴-=-,即AE DG =. 分7.(2010年重庆市潼南县)如图,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一点,连结AG ,点E 、F 分别在AG 上,连接BE 、DF ,∠1=∠2 , ∠3=∠4. (1)证明:△ABE ≌△DAF ; A B CEFG(2)若∠AGB=30°,求EF 的长.【关键词】全等三角形 【答案】解:(1)∵四边形ABCD 是正方形∴AB=AD在△ABE 和△DAF 中⎪⎩⎪⎨⎧∠=∠=∠=∠3412DA AB ∴△ABE ≌△DAF-----------------------4分(2)∵四边形ABCD 是正方形∴∠1+∠4=900 ∵∠3=∠4∴∠1+∠3=900∴∠AFD=900----------------------------6分 在正方形ABCD 中, AD ∥BC ∴∠1=∠AGB=300在Rt △ADF 中,∠AFD=900 AD=2∴AF=3 DF =1----------------------------------------8分 由(1)得△ABE ≌△ADF ∴AE=DF=1∴EF=AF-AE=13- -----------------------------------------10分8.(2010年江苏宿迁)如图,在□ABCD 中,点E 、F 是对角线AC 上两点,且AE =CF .求证:∠EBF =∠FDE .【关键词】平行四边形 【答案】证明:连接BD 交AC 于O 点 …… 1分∵四边形ABCD 是平行四边形∴OA=OC ,OB=OD ………………3分 又∵AE=CF ∴OE=OF∴四边形BEDF 是平行四边形 …… 6分 ∴∠EBF=∠EDF …………… 8分9.(2010年浙江宁波)如图1,有一张菱形纸片ABCD ,8=AC ,6=BD . (1)请沿着AC 剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四 边形,在图2中用实数画出你所拼成的平行四边形;若沿着BD 剪开, 请在图3中用实线画出拼成的平行四边形;并直接写出这两个平行四边 形的周长。
2014年中考数学真题专题训练之四边形和多边形
四边形和多边形专题训练1(2014青海西宁)如图,A B是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交A D的延长线于点E,过点D作D F⊥A B于点F,交⊙O于点H,连接D C,A C.(1)求证:∠A E C=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若D C=2,求D H的长.2(2014青海西宁)如图,点G是正方形AB C D 对角线C A的延长线上任意一点,以线段A G为边作一个正方形A E F G,线段E B和G D相交于点H.若,A G=1,则E B=________.3(2014宁夏)在平行四边形A B C D中,将△A B C 沿A C对折,使点B落在B′处,A B′和C D相交于点O.求证:O A =O C.4(2014宁夏)如下图,在四边形A B C D中,A D∥B C,A B=C D=2,B C=5,∠B A D的平分线交B C于点E,且AE∥C D,则四边形A B C D的面积为________.5(2014辽宁盘锦)已知,四边形A B C D是正方形,点P在直线B C上,点G在直线A D上(P、G不与正方形顶点重合,且在C D的同侧),P D=P G,DF⊥P G于点H,交直线A B于点F,将线段P G绕点P逆时针旋转90°得到线段P E,连结E F.(1)如图1,当点P与点G分别在线段BC与线段A D上时.①求证:D G=2P C;②求证:四边形P E FD是菱形;(2)如图2,当点P与点G分别在线段BC与线段A D的延长线上时,请猜想四边形P E F D是怎样的特殊四边形,并证明你的猜想.6(2014广西崇左)下列说法正确的是()A.对角线相等的平行四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线相互垂直的四边形是菱形D.有一个角是直角的平行四边形是菱形7(2014辽宁大连)如图,菱形A B C D中,A C、B D相交于点O,若∠BC O=55°,则∠AD O=________.8(2014辽宁营口)四边形A B C D是正方形,A C与B D相交于点O,点E、F是直线A D上两动点,且A E=D F,C F所在直线与对角线BD所在直线交于点G,连接A G,直线A G交B E于点H.(1)如图①,当点E、F在线段A D上时,①求证:∠D A C=∠D C G;②猜想A G与B E的位置关系,并加以证明;(2)如图②,在(1)条件下,连接H O,试说明H O平分∠B H G;(3)当点E、F运动到如图③所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠B H O的度数.9(2014辽宁营口)如图,在矩形A B C D中,A B=2,A C =3,点E是B C边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△A P B的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A.B.C.D.10(2014辽宁锦州)菱形A B C D的边长为2,∠A B C =60°,E是A D边中点,点P是对角线B D上的动点,当A P+P E的值最小时,P C的长是__________.11(2014江苏宿迁)如图,在△A B C中,点D,E,F分别是A B,B C,C A的中点,A H是边BC上的高.(1)求证:四边形A D E F是平行四边形;(2)求证:∠D H F=∠D E F.12(2014江苏宿迁)如图,在平面直角坐标系x O y中,若菱形A B CD的顶点A,B的坐标分别为(-3,0),(2,0),点D在y轴上,则点C的坐标是________.13(2014福建莆田)如图,在边长为4的正方形A B C D中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿折线B C-C D向点D运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动.设点F的运动时间为t秒.(1)点F在边B C上.①如图1,连接D E,A F,若D E⊥A F,求t的值;②如图2,连结E F,D F,当t为何值时,△E B F与△D C F相似?(2)如图3,若点G是边A D的中点,B G,E F相交于点O,试探究:是否存在某一时刻t,使得?若存在,求出t的值;若不存在,请说明理由.14(2014江苏淮安)如图1,矩形O A B C 顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q 从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,P Q两点同时运动,相遇时停止.在运动过程中,以P Q为斜边在x 轴上方作等腰直角三角形P Q R.设运动时间为t秒.(1)当t=________时,△P Q R的边Q R经过点B;(2)设△P Q R和矩形O A B C重叠部分的面积为S,求S关于t的函数关系式;(3)如图2,过定点E(5,0)作E F⊥B C,垂足为F,当△P Q R的顶点R落在矩形O A B C的内部时,过点R作x轴、y轴的平行线,分别交E F、B C于点M、N,若∠M A N=45°,求t的值.15(2014江苏淮安)如图,在三角形纸片A B C中,A D平分∠B A C,将△A B C折叠,使点A与点D重合,展开后折痕分别交A B、A C于点E、F,连接D E、D F.求证:四边形A E D F是菱形.16(2014江苏淮安)如图,顺次连接边长为1的正方形A B C D四边的中点,得到四边形A1B1C1D1,然后顺次连接四边形A1B1C1D1的中点,得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点,得到四边形A3B3C3D3,…,按此方法得到的四边形A8B8C8D8的周长为________.17(2014贵州六盘水)六盘水市“琼都大剧院”即将完工,现需选用同一种地砖进行装修,以下不能镶嵌的地砖是()A.正五边形地砖B.正三角形地砖C.正六边形地砖D.正四边形地砖18(2014贵州贵阳)如图,在R t△A B C中,∠A C B=90°,D、E分别为A B,A C边上的中点,连接D E,将△AD E绕点E 旋转180°得到△C F E,连接A F,C D.(1)求证:四边形A DC F是菱形;(2)若B C=8,A C=6,求四边形A B C F的周长.19(2014黑龙江绥化)如图,在矩形A B C D中,,∠B A D的平分线交B C于点E,D H⊥A E于点H,连接B H并延长交C D于点F,连接D E交B F于点O,下列结论:①∠A E D=∠C E D;②O E=O D;③B H=H F;④B C-C F=2H E;⑤A B=H F,其中正确的有()A.2个B.3个C.4个D.5个20(2014甘肃天水)如图,在正方形A B C D中,点E、F分别在边A B、B C上,∠A D E=∠C D F.(1)求证:A E=C F;(2)连结D B交E F于点O,延长O B至点G,使O G=O D,连结EG、F G,判断四边形D E G F是否是菱形,并说明理由.21(2014福建龙岩)如图,我们把依次连接任意四边形A B C D各边中点所得四边形E F G H叫中点四边形.(1)若四边形A B C D是菱形,则它的中点四边形E F G H一定是________;(A)菱形(B)矩形(C)正方形(D)梯形(2)若四边形A B C D的面积记为S1,中点四边形E F G H的面积记为S2,则S1与S2的数量关系是S1=________S2;(3)在四边形A B C D中,沿中点四边形E F G H的其中三边剪开,可得三个小三角形,将这三个小三角形与原图中未剪开的小三角形拼接成一个平行四边形,请在答题卡的图形上画出一种拼接示意图,并写出对应全等的三角形.22(2014四川乐山)如图,在平行四边形AB C D 中,对角线A C、B D交于点O.M为A D中点,连结C M交B D于点N,且O N=1.(1)求B D的长;(2)若△D C N的面积为2,求四边形A B C M 的面积.23(2014四川乐山)如图,在梯形A B C D中,A D∥B C,∠A D C=90°,∠B=30°,C E⊥A B,垂足为点E.若A D=1,,求C E的长.24(2014四川乐山)如图,在△A B C中,A B=A C,四边形A D E F是菱形,求证:B E=C E.25(2014湖南永州)在同一平面内,△A B C和△A B D如图①放置,其中A B=B D.小明做了如下操作:将△A B C绕着边A C的中点旋转180°得到△C E A,将△A BD绕着边A D的中点旋转180°得到△D F A,如图②,请完成下列问题:(1)试猜想四边形A BD F是什么特殊四边形,并说明理由;(2)连接E F,C D,如图③,求证:四边形CD F E是平行四边形.26(2014湖北黄石)如图,A,B是⊙O上的两点,∠A O B=120°,C是的中点.(1)求证:A B平分∠O A C;(2)延长O A至P使得O A=A P,连接P C,若⊙O的半径R=1,求P C的长.27(2014湖北黄石)如下图,在等腰梯形A BC D 中,A B∥C D,∠D=45°,A B=1,C D=3,B E∥A D交C D于E,则△B C E 的周长l为________.28(2014湖北黄石)以下命题是真命题的是()A.梯形是轴对称图形B.对角线相等的平行四边形是矩形C.四边相等的四边形是正方形D.有两条相互垂直的对称轴的四边形是菱形29(2014湖北黄石)如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()A.30°B.60°C.90°D.120°30(2014江苏盐城)如图,在矩形A B C D中,,A D=1,把该矩形绕点A顺时针旋转α度得矩形A B′C′D′,点C′落在A B的延长线上,则图中阴影部分的面积是________.31(2014四川资阳)如图,在边长为4的正方形A B C D中,E是A B边上的一点,且A E=3,点Q为对角线A C上的动点,则△B E Q周长的最小值为________.32(2014四川资阳)下列命题中,真命题是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的平行四边形是矩形C.对角线垂直的梯形是等腰梯形D.对角线相等的菱形是正方形33(2014四川攀枝花)如图,正方形A B C D的边C D与正方形C G F E的边C E重合,O是E G的中点,∠E G C的平分线G H过点D,交B E 于H,连接O H、F H、E G与F H交于M,对于下面四个结论:①G H⊥B E;②;③点H不在正方形C G F E的外接圆上;④△G B E∽△G M F.其中正确的结论有()A.1个B.2个C.3个D.4个34(2014湖北宜昌)平行四边形的内角和为()A.180°B.270°C.360°D.640°35(2014山东聊城)如图,四边形A B C D是平行四边形,作A F∥C E,B E∥D F,A F交B E与G点、交D F与F点,C E 交D F于H点、交B E于E点.求证:△E B C≌△F D A.36(2014浙江绍兴)(1)如图1,正方形A B C D中,点E,F分别在边B C,C D上,∠E A F=45°,延长C D到点G,使D G=B E,连结E F,A G.求证:E F=F G.(2)如图2,等腰直角三角形A B C中,∠B A C=90°,A B=A C,点M,N在边B C上,且∠MA N=45°,若B M=1,C N=3,求M N的长.37(2014广西贺州)如图,四边形A B C D是平行四边形,E、F是对角线B D上的点,∠1=∠2.(1)求证:B E=D F;(2)求证:A F∥C E.38(2014山东济南)如图,将边长为12的正方形A B C D是沿其对角线A C剪开,再把△AB C沿着A D方向平移,得到△A′B′C′,当两个三角形重叠的面积为32时,它移动的距离A A′等于________.39(2014山东济南)如图,在□A B C D中,延长A B到E,使B E=A B,连接D E交B C于点F,则下列结论不一定成立的是()A.∠E=∠CDF B.EF=DF C.AD=2BF D.BE=2CF40(2014山东济南)下列命题中,真命题是()A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线相等的四边形是等腰梯形41(2014吉林)如图,菱形A B C D中,对角线A C,B D相交于点O,且A C=6c m,B D=8c m,动点P,Q分别从点B,D同时出发,运动速度均为1c m/s,点P沿B→C→D运动,到点D停止,点Q沿D→O→B运动,到点O停止1s后继续运动,到点B停止,连接A P,A Q,P Q.设△A P Q的面积为y(c m2)(这里规定:线段是面积为0的几何图形),点P的运动时间为x(s).(1)填空:A B=________c m,A B与C D之间的距离为________c m;(2)当4≤x≤10时,求y与x之间的函数解析式;(3)直接写出在整个运动过程中,使P Q与菱形A B C D一边平行的所有x的值.42(2014吉林)如图,四边形A B C D、A E F G都是正方形,点E、G分别在A B,A D上,连接F C,过点E作E H∥F C交B C于点H.若A B=4,A E=1,则B H的长为()A.1B.2C.3D.43(2014福建泉州)如图,在锐角三角形纸片A B C中,A C>B C,点D、E、F分别在边A B、B C、C A上.(1)已知:D E∥A C,D F∥B C.①判断四边形D E C F一定是什么形状;②裁剪当A C=24c m,B C=20c m,∠A C B=45°时,请你探索:如何剪四边形D E C F,能使它的面积最大,并证明你的结论;(2)折叠请你只用两次折叠,确定四边形的顶点D、E、C、F,使它恰好为菱形,并说明你的折法和理由.44(2014福建泉州)已知:如图,在矩形AB C D中,点E、F分别在A B、C D边上,B E=DF,连接C E、A F.求证:A F =C E.45(2014江西)图1中的中国结挂件是由四个相同的菱形在顶点处依次串接而成,每相邻两个菱形均成30°的夹角,示意图如图2所示.在图2中,每个菱形的边长为10c m,锐角为60°.(1)连接C D、E B,猜想它们的位置关系并加以证明;(2)求A、B两点之间的距离(结果取整数,可以使用计算器).(参考数据:,,)46(2014广西玉林)如图,在正方形A B C D中,点M是B C边上的任一点,连接A M并将线段A M绕M顺时针旋转90°得到线段M N,在C D边上取点P使C P=BM,连接N P,B P.(1)求证:四边形B M N P是平行四边形;(2)线段M N与C D交于点Q,连接A Q,若△M C Q∽△A M Q,则B M与M C存在怎样的数量关系?请说明理由.47(2014广西玉林)如图,在直角梯形A B C D中,A D∥B C,∠C=90°,∠A=120°,A D=2,B D平分∠A B C,则梯形A B C D的周长是________.48(2014广西玉林)下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形49(2014山东枣庄)如图,菱形A B C D的边长为4,过点A、C作对角线AC的垂线,分别交C B和A D的延长线于点E、F,A E=3,则四边形A EC F的周长为()A.22B.18C.14D.1150(2014山东威海)猜想与证明:如图1摆放矩形纸片A B C D与矩形纸片E C G F,使B、C、G三点在一条直线上,C E在边C D上,连接A F,若M为A F的中点,连接D M,ME,试猜想D M与M E的关系,并证明你的结论.拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片A B C D与正方形纸片E C G F,其他条件不变,则D M和M E的关系为________.(2)如图2摆放正方形纸片A B C D与正方形纸片E C G F,使点F在边C D上,点M仍为A F的中点,试证明(1)中的结论仍然成立.51(2014广东珠海)如图,在正方形A B C D中,点E在边A D上,点F在边B C的延长线上,连结E F与边C D相交于点G,连结B E与对角线A C相交于点H,A E=C F,B E=E G.(1)求证:E F∥A C;(2)求∠B EF的大小;(3)求证:.52(2014北京)在正方形A B C D外侧作直线A P,点B关于直线A P的对称点为E,连接B E,D E,其中D E交直线A P于点F.(1)依题意补全图1;(2)若∠P A B=20°,求∠A D F的度数;(3)如图2,若45°<∠P A B<90°,用等式表示线段A B,FE,F D之间的数量关系,并证明.53(2014北京)如图,在□A B C D中,A E平分∠B A D,交B C于点E,B F平分∠A B C,交A D于点F,A E与B F交于点P,连接E F,P D.(1)求证:四边形A B E F是菱形;(2)若A B=4,A D =6,∠A B C=60°,求t a n∠A D P的值.54(2014广东广州)如图,梯形A B C D中,A B∥C D,∠A B C=90°,A B=3,B C=4,C D=5,点E为线段C D上一动点(不与点C重合),△B CE关于B E的轴对称图形为△B F E,连接C F,设C E=x,△B C F的面积为S1,△C E F的面积为S2.(1)当点F落在梯形A B C D的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△B F E的外接圆与A D相切时,求的值.55(2014广东广州)如图,四边形A B C D、CE F G 都是正方形,点G在线段C D上,连接B G、D E,D E和F G相交于点O.设A B=a,C G=b(a>b).下列结论:①△BC G≌△D C E;②B G⊥D E;③;④(a-b)2·S△E F O=b2·S△D G O.其中结论正确的个数是()A.4个B.3个C.2个D.1个56(2014广东广州)将四根长度相等的细木条首尾相接,用钉子钉成四边形A B C D,转动这个四边形,使它形状改变.当∠B=90°时,如图①,测得A C=2.当∠B=60°时,如图②,A C =()A.B.2C.D.57(2014广东)如图,在□A B C D中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC58(2014山东滨州)如图,如果将△A B C的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段A C的关系是()A.垂直B.相等C.平分D.平分且垂直59(2014安徽)如图,在□A B C D中,A D=2A B,F是A D的中点,作C E⊥A B,垂足E在线段A B上,连接E F、C F,则下列结论中一定成立的是________.(把所有正确结论的序号都填在横线上)(1),(2)E F=C F;(3)S△B E C=2S△C E F;(4)∠D F E=3∠A E F.60(2014安徽)如图,正方形A B C D的对角线B D长为,若直线l满足:(1)点D到直线l的距离为,(2)A、C两点到直线l的距离相等,则符合题意的直线l的条数为()A.1B.2C.3D.461(2014江苏苏州)如图,在矩形A B C D中,.以点B为圆心,BC长为半径画弧,交边A D于点E,若,则矩形A B C D的面积为________.62(2014江苏苏州)已知正方形A B C D的对角线,则正方形A B C D 的周长为________.63(2014江苏南京)如图,在△A B C中,D,E分别是A B,A C的中点,过点E做E F∥A B,交B C于点F.(1)求证:四边形D B F E是平行四边形;(2)当△A B C满足什么条件时,四边形D B F E是菱形,为什么?64(2014江苏南京)如图,A D是正五边形AB C D E 的一条对角线,则∠B A D=________°.65(2014江苏连云港)如图,矩形A B C D的对角线A C、B D相交于点O,D E∥A C,C E∥B D.(1)求证:四边形O C E D为菱形;(2)连接A E、B E.A E与B E相等吗?请说明理由.66(2014云南)如图,在平行四边形A B C D中,∠C=60°,M、N分别是A D、B C的中点,B C=2C D.(1)求证:四边形M N C D是平行四边形;(2)求证:.67(2014浙江湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.68(2014四川成都)如图,矩形A B C D中,A D=2A B,E是A D边上一点,(n为大于2的整数),连接B E,作B E的垂直平分线分别交A D,B C于点F,G,F G与B E的交点为O,连接B F和E G.(1)试判断四边形B FE G的形状,并说明理由;(2)当A B=a(a为常数),n=3时,求FG的长;(3)记四边形B F E G的面积为S1,矩形A B C D的面积为S2,当时,求n的值.(直接写出结果,不必写出解答过程)69(2014四川巴中)如图,在四边形A B C D中,点H是B C的中点,作射线A H,在线段AH及其延长线上分别取点E,F,连结B E,C F.(1)请你添加一个条件,使得△B E H≌△C F H,你添加的条件是________,并证明.(2)在问题(1)中,当B H与E H满足什么关系时,四边形B F C E是矩形,请说明理由.70(2014四川巴中)在四边形A B C D中,(1)A B∥C D,(2)A D∥B C,(3)A B =C D,(4)A D=B C,在这四个条件中任选两个作为已知条件,能判定四边形A B C D是平行四边形的概率是________.71(2014重庆B)如图,在边长为的正方形A B C D中,E是A B边上一点,G是A D延长线上一点,B E=D G,连接E G,C F⊥E G交E G于点H,交A D于点F,连接C E、B H.若B H=8,则F G=________.72(2014重庆B)如图,菱形A B C D的对角线A C、B D相交于点O,A C=8,B D=6,以A B为直径作一个半圆,则图中阴影部分的面积为()A.25π-6B.C.D.73(2014浙江台州)如图1是某公共汽车前挡风玻璃的雨刮器,其工作原理如图2,雨刷E F⊥A D,垂足为A,A B=C D,且A D=B C.这样能使雨刷E F在运动时.始终垂直于玻璃窗下沿B C.请证明这一结论.74(2014浙江宁波)如图,正方形A B C D和正方形C E F G中,点D在C G上,B C=1,C E=3,H是A F的中点,那么C H的长是()A.2.5B.C.D.275(2014浙江宁波)菱形的两条对角线长分别是6和8,则此菱形的边长是()A.10B.8C.6D.576(2014浙江宁波)用矩形纸片折出直角的平分线,下列折法正确的是()A.B.C.D.77(2014浙江金华)如图,矩形A B C D中,A B=8,点E是A D上一点,有A E=4,B E的垂直平分线交B C的延长线于点F,连结E F交C D 于点G,若G是C D的中点,则B C的长是________.(2014浙江嘉兴)已知:如图,在□A B CD中,O为对角线B D的中点,过点O的直线EF分别交A D,B C于E,F两点,连结B E,D F.(1)求证:△D O E≌△B O F.(2)当∠D O E等于多少度时,四边形B F E D为菱形?请说明理由.79(2014浙江杭州)菱形A B C D的对角线A C,B D相交于点O,,B D=4,动点P在线段B D上从点B向点D运动,P F⊥A B 于点P F,四边形P F B G关于B D对称.四边形Q E D H与四边形P F B G关于A C对称,设菱形A B C D被这两个四边形盖住部分的面积为S1,未盖住部分的面积为S2,B P=x.(1)用含x代数式分别表示S1,S2;(2)若S1=S2,求x.80(2014浙江杭州)下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能互相垂直D.平行四边形的对角线可以互相垂直81如图,菱形O A B C的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为________.。
【2014中考复习方案】(河南专版)中考数学复习权威课件:24多边形与平行四边形
第24课时┃ 多边形与平行四边形
变式题1 和∠CBA. (1)求∠APB的度数; (2)如果AD=5 cm,AP=8 cm,求△APB的周长. [2012· 雅安] 如图24-2,四边形ABCD是
平行四边形,P是CD上一点,且AP和BP分别平分∠DAB
பைடு நூலகம் 第24课时
多边形与平行四边形
第25课时
矩形、菱形、正方形
第26课时
梯形
第24课时 多边形与 平行四边形
第24课时┃ 多边形与平行四边形
考 点 聚 焦
考点1 多边形及其性质 5
条对角线.
1.从八边形的一个顶点出发,可以引 是 数是
2.一个多边形每一个外角都等于 40°,则这个多边形的边数
9 7
. .
3.已知一个多边形的内角和等于 900°,则这个多边形的边
考点聚焦
豫考探究
当堂检测
第24课时┃ 多边形与平行四边形
【归纳总结】
° 1. 多边形的性质:n 边形的内角和为 (n-2)×180;任意多边形的外角 n(n-3) 和为 360° ;对角线条数为 2 .
2. 正多边形的定义及性质: 定义:各个角 形;
中,AB=AC,D,A,E三点都在直线m上,并 且有∠BDA=∠AEC=∠BAC=α,其中α为任 意锐角或钝角.请问结论DE=BD+CE是否成 立?如成立,请你给出证明;若不成立,请说 明理由.
考点聚焦 豫考探究 当堂检测
第24课时┃ 多边形与平行四边形
(3)拓展与应用:如图③,D,E是D,A, E三点所在直线m上的两动点(D,A,E三点互 不重合),点F为∠BAC平分线上的一点,且 △ABF和△ACF均为等边三角形,连接BD, CE,若∠BDA=∠AEC=∠BAC,试判断 △DEF的形状.
2014年中考数学专题复习第20讲:多边形与平行四边形(含详细参考答案)
2014年中考数学专题复习第二十讲多边形与平行四边形【基础知识回顾】一、多边形:1、定义:在平面内,由若干条不在同一直线上的线段相连组成的图形叫做多边形,各边相等也相等的多边形叫做正多边形2、多边形的内外角和:n(n≥3)的内角和事外角和是正几边形的每个外角的度数是,每个内角的度数是3、多边形的对角线:多边形的对角线是连接多边形的两个顶点的线段,从几边形的一个顶点出发有条对角线,将多边形分成个三角形,一个几边形共有条对边线【名师提醒:1、三角形是边数最少的多边形2、所有的正多边形都是轴对称图形,正n边形共有条对称轴,边数为数的正多边形也是中心对称图形】二、平面图形的密铺:1、定义:用、完全相同的一种或几种平面图形进行拼接,彼此之间地铺成一起,这就是平面图形的密铺,称作平面图形的2、密铺的方法:⑴用同一种正多边形密铺,可以用、或⑵用两正多边形密铺,组合方式有:和、和、和合等几种【名师提醒:密铺的图形在一个拼接处的特点:几个图形的内角拼接在一起时,其和等于并使相等的边互相平合】三、平行四边1、定义:两组对边分别的四边形是平行四边形,平行四边形ABCD可写成2、平行四边形的特质:⑴平行四边形的两组对边分别⑵平行四边形的两组对角分别⑶平行四边形的对角线【名师提醒:1、平行四边形是对称图形,对称中心是过对角线交点的任一直线被一组对边的线段该直线将原平行四边形分成全等的两个部分】3、平行四边形的判定:⑴用定义判定⑵两组对边分别的四边形是平行四边形⑶一组对它的四边形是平行四边形⑷两组对角分别的四边形是平行四边形⑸对角线的四边形是平行四边形【名师提醒:特别的:一组对边平行,另一组对边相等的四边形和一组对边相等、一组对角相等的四边形两个命题都不被保证是平行四边形】4、平行四边形的面积:计算公式X同底(等底)同边(等边)的平行四边形面积【名师提醒:夹在两平行线间的平行线段两平行线之间的距离处】【重点考点例析】考点一:多边形内角和、外角和公式例1 (2012•南京)如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4= .思路分析:根据题意先求出∠5的度数,然后根据多边形的外角和为360°即可求出∠1+∠2+∠3+∠4的值.解:由题意得,∠5=180°-∠EAB=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠5=300°.故答案为:300°.点评:本题考查了多边形的外角和等于360°的性质以及邻补角的和等于180°的性质,是基础题,比较简单.对应训练1.(2012•广安)如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2= 度.1.240考点:多边形内角与外角.专题:数形结合.分析:利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.解:∵四边形的内角和为(4-2)×180°=360°,∴∠B+∠C+∠D=360°-60°=300°,∵五边形的内角和为(5-2)×180°=540°,∴∠1+∠2=540°-300°=240°,故答案为240.点评:考查多边形的内角和知识;求得∠B+∠C+∠D的度数是解决本题的突破点.考点二:平面图形的密铺例 2 (2012•贵港)如果仅用一种正多边形进行镶嵌,那么下列正多边形不能够将平面密铺的是()A.正三角形B.正四边形C.正六边形D.正八边形思路分析:分别求出各个正多边形的每个内角的度数,再利用镶嵌应符合一个内角度数能整除360°即可作出判断.解:A、正三角形的一个内角度数为180°-360°÷3=60°,是360°的约数,能镶嵌平面,不符合题意;B、正四边形的一个内角度数为180°-360°÷4=90°,是360°的约数,能镶嵌平面,不符合题意;C、正六边形的一个内角度数为180°-360°÷6=120°,是360°的约数,能镶嵌平面,不符合题意;D、正八边形的一个内角度数为180°-360°÷8=135°,不是360°的约数,不能镶嵌平面,符合题意;故选D.点评:本题考查平面密铺的问题,用到的知识点为:一种正多边形能镶嵌平面,这个正多边形的一个内角的度数是360°的约数;正多边形一个内角的度数=180°-360°÷边数.对应训练考点三:平行四边形的性质例3 (2012•阜新)如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF交于点G.若使EF=14AD,那么平行四边形ABCD应满足的条件是()A.∠ABC=60°B.AB:BC=1:4 C.AB:BC=5:2 D.AB:BC=5:8思路分析:根据四边形ABCD是平行四边形,利用平行四边形的性质得到对边平行且相等,然后根据两直线平行内错角相等,得到∠AEB=∠EBC,再由BE平分∠ABC得到∠ABE=∠EBC,等量代换后根据等角对等边得到AB=AE,同理可得DC=DF,再由AB=DC得到AE=DF,根据等式的基本性质在等式两边都减去EF得到AF=DE,当EF=14AD时,设EF=x,则AD=BC=4x,然后根据设出的量再表示出AF,进而根据AB=AF+EF用含x的式子表示出AB即可得到AB与BC的比值.解答:解:∵四边形ABCD是平行四边形,∴AD ∥BC ,AB=CD ,AD=BC ,∴∠AEB=∠EBC ,又BE 平分∠ABC ,∴∠ABE=∠EBC ,∴∠ABE=∠AEB ,∴AB=AE ,同理可得:DC=DF ,∴AE=DF ,∴AE-EF=DE-EF ,即AF=DE ,当EF=14AD 时,设EF=x ,则AD=BC=4x , ∴AF=DE=12(AD-EF )=1.5x , ∴AE=AB=AF+EF=2.5x ,∴AB :BC=2.5:4=5:8.故选D .点评:此题考查了平行四边形的性质,等腰三角形的性质,角平分性的定义以及等式的基本性质,利用了等量代换的数学思想,要求学生把所学的知识融汇贯穿,灵活运用.例4 (2012•广安)如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,且BE=AD ,点F 在AD 上,AF=AB ,求证:△AEF ≌△DFC .思路分析:由四边形ABCD 是平行四边形,利用平行四边形的性质,即可得AB=CD ,AB ∥CD ,又由平行线的性质,即可得∠D=∠EAF ,然后由BE=AD ,AF=AB ,求得AF=CD ,DF=AE ,继而利用SAS 证得:△AEF ≌△DFC .证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,∴∠D=∠EAF ,∵AF=AB ,BE=AD ,∴AF=CD ,AD-AF=BE-AB ,即DF=AE ,在△AEF 和△DFC 中,AE DF EAF D AF DC =⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△DFC(SAS).点评:此题考查了平行四边形的性质与全等三角的判定.此题难度不大,注意数形结合思想的应用.对应训练3.(2012•永州)如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD 交BC于点E.若△CDE的周长为10,则平行四边形ABCD的周长为.3.20考点:平行四边形的性质;线段垂直平分线的性质.分析:由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分、对边相等,即可得OB=OD,AB=CD,AD=BC,又由OE⊥BD,即可得OE是BD的垂直平分线,然后根据线段垂直平分线的性质,即可得BE=DE,又由△CDE的周长为10,即可求得平行四边形ABCD的周长.解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,即CD+DE+EC=10,∴平行四边形ABCD的周长为:AB+BC+CD+AD=2(BC+CD)=2(BE+EC+CD)=2(DE+EC+CD)=2×10=20.故答案为:20.点评:此题考查了平行四边形的性质与线段垂直平分线的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.4.(2012•大连)如图,▱ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O,求证:OA=OC.4.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:根据ED=BF,可得出AE=CF,结合平行线的性质,可得出∠AEO=∠CFO,∠FCO=∠EAO,继而可判定△AEO≌△CFO,即可得出结论.证明:∵四边形ABCD是平行四边形,∴AD=CB,∠AEO=∠CFO,∠FCO=∠EAO,又∵ED=BF,∴AD-ED=BC-BF,即AE=CF,在△AEO和△CFO中,AE CFAEO CFOFCO EAO=⎧⎪∠=∠⎨⎪∠=∠⎩,∴△AEO≌△CFO,∴OA=OC.点评:此题考查了平行四边形的性质,根据平行四边形的性质得出ED=BF及∠AEO=∠CFO,∠FCO=∠EAO是解答本题的关键.考点四:平行四边形的判定例5 (2012•资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一组对边平行的四边形是梯形C.一组对边相等,一组对角相等的四边形是平行四边形D.对角线相等的四边形是矩形思路分析:已知条件应分析一组边相等,一组角对应相等的四边不是平行四边形,根据全等三角形判定方法得出∠B=∠E,AB=DE,进而得出一组对边相等,一组对角相等的四边形不是平行四边形,得出答案即可.解:A.一组对边平行,另一组对边相等的四边形是平行四边形,根据等腰梯形符合要求,得出故此选项错误;B.有一组对边平行的四边形是梯形,若另一组对边也平行,则此四边形是平行四边形,故此选项错误;C.一组对边相等,一组对角相等的四边形是平行四边形,∵△ABC是等腰三角形,∴AB=AC,∠B=∠C,∵DE=AC,AD=AD,∠ADE=∠DAC,即DE ACADE DAC AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△DAC,∴∠E=∠C,∴∠B=∠E,AB=DE,但是四边形ABDE不是平行四边形,故一组对边相等,一组对角相等的四边形不是平行四边形,因此C符合题意,故此选项正确;D.对角线相等的四边形是矩形,根据等腰梯形符合要求,得出故此选项错误;故选:C.点评:此题主要考查了平行四边形的判定方法以及全等三角形的判定,结合已知选项,得出已知条件应分析一组边相等,一组角对应相等的四边不是平行四边形是解题关键.例6 (2012•湛江)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.思路分析:(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB CDA C AE CF=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(SAS);(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD-AE=BC-CF,即DE=BF,∴四边形BFDE是平行四边形.点评:此题考查了平行四边形的性质与判定以及全等三角形的判定.此题难度不大,注意数形结合思想的应用,注意熟练掌握定理的应用.对应训练5.(2012•泰州)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有()A.1个B.2个C.3个D.4个考点:平行四边形的判定;三角形中位线定理;菱形的判定;正方形的判定;命题与定理;轴对称图形;中心对称图形.分析:根据平行四边形的各种判定方法、正方形的各种判定方法、菱形的各种判定方法以及正多边形的轴对称性逐项分析即可.解:①一组对边平行,且一组对角相等,则可以判定另外一组对边也平行,所以该四边形是平行四边形,故该命题正确;②对角线互相垂直且相等的四边形不一定是正方形,也可以是普通的四边形(例如筝形,如图所示),故该命题错误;③因为矩形的对角线相等,所以连接矩形的中点后都是对角线的中位线,所以四边相等,所以是菱形,故该命题正确;④正五边形只是轴对称图形不是中心对称图形,故该命题错误;所以正确的命题个数为2个,故选B.点评:本题考查菱形的判定,平行四边形的判定以及正方形的判定定理以及真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(2012•沈阳)已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:(1)先根据平行四边形的性质可得出AD ∥BC ,∠DAB=∠BCD ,再根据平行线的性质及补角的性质得出∠E=∠F ,∠EAM=∠FCN ,从而利用ASA 可作出证明;(2)根据平行四边形的性质及(1)的结论可得BM ∥DN ,则由有一组对边平行且相等的四边形是平行四边形即可证明.证明:(1)四边形ABCD 是平行四边形,∴∠DAB=∠BCD ,∴∠EAM=∠FCN ,又∵AD ∥BC ,∴∠E=∠F .在△AEM 与△CFN 中,EAM FCN AE CF E F ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEM ≌△CFN ;(2)∵四边形ABCD 是平行四边形,∴AB ∥= CD ,又由(1)得AM=CN ,∴BM ∥DN ,∴四边形BMDN 是平行四边形.点评:本题考查了平行四边形的判定及性质,全等三角形的判定,属于基础题,比较简单.【聚焦山东中考】1.(2012•烟台)如图为2012年伦敦奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为 度(不取近似值)。
2014中考数学总复习_平行四边形(2010-2013年真题集锦)课件_新人教版
第 二 十 讲 第 二 十 一 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
第 十 九 讲 第 二 十 讲 第 二 十 一 讲
1. 两组对边 2. 对角线 3. 两组对角 4. 一组对边
的四边形是平行四边形. 的四边形是平行四边形. 的四边形是平行四边形. 的四边形是平行四边形.
➡特别提示: 在平行四边形的判定中要注意一组对边平行而另一组对边相等 不仅有平行四边形还有等腰梯形, 因此一组对边平行, 另一组对边相等并不能判 定是平行四边形.
复习目标
知识回顾
重点解析
探究拓展
真题演练
第 十 九 讲 第 二 十 讲 第 二 十 一 讲
【解析】 ( 1) 证明: ( 法一) 如图: ∵四边形 A B C D 是平行四边形, ∴A D = B C , A D ∥B C , ∠3= ∠4. ∵∠1= ∠3+ ∠5, ∠2= ∠4+ ∠6, ∠1= ∠2, ∴∠5= ∠6, ∴△A D E ≌△C B F , ∴A E = C F .
复习目标
知识回顾
重点解析
探究拓展
真题演练
第 十 九 讲 第 二 十 讲 第 二 十 一 讲
例 2 (2012·资阳)如图, △A B C 是等腰三角形, 点 D 是底 边 B C 上异于 B C 中点的一个点, ∠A D E = ∠D A C , D E = A C . 运用这个图( 不添加辅助线) 可以说明 下列哪一个命题是假命题?( )
重点解析
探究拓展
真题演练
第 十 九 讲 第 二 十 讲 第 二 十 一 讲
【答案】 ( 1) 证明: ∵△A B C 是等边三角形, ∴∠B = 60°. ∵∠E F B = 60°, ∴∠B = ∠E F B . ∴E F ∥D C . ∵D C = E F , ∴四边形 E F C D 是平行四边形.
(新课标)2014中考数学总复习第19讲多边形与平行四边形课件(含13年试题)
┃考题自主训练与名师预测┃
1.[2013·雅安] 五边形的内角和为
A.720°
B.540°
C.360°
D.180°
(B )
[解析] 根据多边形内角和公式,所以五边形的内角和为 (5-2)×180=540°.故选B.
第19讲┃ 多边形与平行四边形
2.[2013·黔西南州] 已知□ABCD中,∠A+∠C=200°,
例1 已知一个多边形的内角和是它的外角和的2倍,则 这个多边形的边数为___6_____.
[解析] 本题考查多边形内角和及外角和,由多边形的 内角和公式(n-2)×180°及多边形的外角和为360°,可知(n- 2)×180°=2×360°,解得n=6.故答案为6.
第19讲┃ 多边形与平行四边形
[中考点金] 解决此类问题一般是通过利用多边形内角和公
B.12
C.24
D.28
3.在平行四边形ABCD中,AB=3 cm,BC=5 cm,对角线AC,
BD相交于点O,则OA的取值范围是
( C)
A.3 cm<OA<5 cm
B.2 cm<OA<8 cm
C.1 cm<OA<4 cm
D.3 cm<OA<8 cm
第19讲┃ 多边形与平行四边形
[归纳总结] 1.平行四边对边___平__行__且__相__等_____,对角___相__等___,对角线
边数是____7____.
第19讲┃ 多边形与平行四边形
[归纳总结] 1. 多边形的性质:n边形的内角和为__(n__-__2_)×__1_8_0_°_;
任意多边形的外角和为__3_6_0_°___;对角线条数为 n(n-3)
_______2______.
中考数学真题汇编24 多边形与平行四边形
多边形与平行四边形一.选择题1.(2015,广东)下列所述图形中,既是中心对称图形,又是轴对称图形的是A.矩形B.平行四边形C.正五边形D.正三角形答案:A.分析:平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合。
60,则这个正多边形是2.(2015,湖北孝感)已知一个正多边形的每个外角等于A.正五边形B.正六边形C.正七边形D.正八边形考点:多边形内角与外角..分析:多边形的外角和等于360°,因为所给多边形的每个外角均相等,故又可表示成60°n,列方程可求解.解答:设所求正n边形边数为n,则60°•n=360°,解得n=6.故正多边形的边数是6.故选B.点评:本题考查根据多边形的外角和求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.3.(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④ D.④⑤考点:三角形中位线定理;平行线之间的距离.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解答:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选B.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.4.(2015•山西)如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A.8 B.10 C.12 D.14考点:三角形中位线定理.分析:首先根据点D、E分别是边AB,BC的中点,可得DE是三角形BC的中位线,然后根据三角形中位线定理,可得DE=AC,最后根据三角形周长的含义,判断出△ABC的周长和△DBE的周长的关系,再结合△DBE的周长是6,即可求出△ABC的周长是多少.解答:解:∵点D、E分别是边AB,BC的中点,∴DE是三角形BC的中位线,AB=2BD,BC=2BE,∴DE∥BC且DE=AC,又∵AB=2BD,BC=2BE,∴AB+BC+AC=2(BD+BE+DE),即△ABC的周长是△DBE的周长的2倍,∵△DBE的周长是6,∴△ABC的周长是:6×2=12.故选:C.点评:(1)此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.(2)此题还考查了三角形的周长和含义的求法,要熟练掌握.5.(2015•铁岭)如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.EF=AB C.S△ABD=S△ACD D.AD平分∠BAC考点:三角形中位线定理.分析:根据三角形中位线定理逐项分析即可.解答:解:A、∵点D、E、F分别为△ABC各边中点,∴DE=AC,DF=AB,∵AC≠AB,∴DE≠DF,故该选项错误;B、由A选项的思路可知,B选项错误、C、∵S△ABD=BD•h,S△ACD=CD•h,BD=CD,∴S△ABD=S△ACD,故该选项正确;D、∵BD=CD,AB≠AC,∴AD不平分∠BAC,故选C.点评:本题考查了三角形中位线定理的运用,解题的根据是熟记其定理:三角形的中位线平行于第三边,并且等于第三边的一半.6.(2015•安顺)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2考点:平行四边形的性质;相似三角形的判定与性质.专题:几何图形问题.分析:根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.解答:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.点评:此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.7.(2015•衢州)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm考点:平行四边形的性质.分析:由平行四边形的性质得出BC=AD=12cm,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.解答:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC﹣BE=4cm;故答案为:C.点评:本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.8.(2015•玉林)如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD 的周长是在14,则DM等于()A.1 B. 2 C. 3 D. 4考点:平行四边形的性质.分析:根据BM是∠ABC的平分线和AB∥CD,求出BC=MC=2,根据▱ABCD的周长是14,求出CD=5,得到DM的长.解答:解:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD﹣MC=3,故选:C.点评:本题考查的是平行四边形的性质和角平分线的定义,根据平行四边形的对边相等求出BC+CD是解题的关键,注意等腰三角形的性质的正确运用.9.(2015•绥化)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A.1个B.2个C.3个D.4个考点:平行四边形的性质;等腰三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形.分析:由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE 平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB≠OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.解答:解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选C.点评:本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键.10.(2015•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B. 6 C.8 D.10考点:平行四边形的性质;等腰三角形的判定与性质;勾股定理;作图—基本作图.专题:计算题.分析:由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.解答:解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.点评:本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.11.(2015•本溪)如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm考点:平行四边形的性质.分析:根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,得出方程x+x+2=10,求出方程的解即可.解答:解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,∵▱ABCD的周长为20cm,∴x+x+2=10,解得:x=4,即AB=4cm,故选D.点评:本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB=BE,题目比较好,难度适中.12.(2015•福建)如图,在▱ABCD中,O是对角线AC,BD的交点,下列结论错误的是()A.AB∥CD B.AB=CD C.AC=BD D.OA=OC考点:平行四边形的性质.分析:根据平行四边形的性质推出即可.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,OA=OC,但是AC和BD不一定相等,故选C.点评:本题考查了平行四边形的性质的应用,能熟记平行四边形的性质是解此题的关键,注意:平行四边形的对边相等且平行,平行四边形的对角线互相平分.13.(2015•营口)▱ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()A.61° B.63° C.65° D.67°考点:平行四边形的性质.分析:由平行四边形的性质可知:AD∥BC,进而可得∠DAC=∠BCA,再根据三角形外角和定理即可求出∠COD的度数.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA=42°,∴∠COD=∠CBD+∠BCA=65°,故选C.点评:本题考查了平行四边形的性质以及三角形的外角和定理,题目比较简单,解题的关键是灵活运用平行四边形的性质,将四边形的问题转化为三角形问题.14.(2015•巴彦淖尔)如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1,S2.若S=3,则S1+S2的值为()A.24 B.12 C.6 D.3考点:平行四边形的性质;三角形中位线定理.分析:过P作PQ平行于DC,由DC与AB平行,得到PQ平行于AB,可得出四边形PQCD 与ABQP都为平行四边形,进而确定出△PDC与△PCQ面积相等,△PQB与△ABP面积相等,再由EF为△BPC的中位线,利用中位线定理得到EF为BC的一半,且EF平行于BC,得出△PEF与△PBC相似,相似比为1:2,面积之比为1:4,求出△PBC的面积,而△PBC 面积=△CPQ面积+△PBQ面积,即为△PDC面积+△PAB面积,即为平行四边形面积的一半,即可求出所求的面积.解答:解:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=12.故选:B.点评:此题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.15.(2015•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7 B.4或10 C.5或9 D.6或8考点:平行四边形的性质;勾股定理;正方形的性质.专题:分类讨论.分析:设AE的长为x,根据正方形的性质可得BE=14﹣x,根据勾股定理得到关于x的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为x,根据正方形的性质可得BE=14﹣x,在△ABE中,根据勾股定理可得x2+(14﹣x)2=102,解得x1=6,x2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.16.(2015•常州)如图,▱ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是()A.AO=OD B.AO⊥OD C.AO=OC D.AO⊥AB考点:平行四边形的性质.分析:根据平行四边形的性质:对边平行且相等,对角线互相平分进行判断即可.解答:解:对角线不一定相等,A错误;对角线不一定互相垂直,B错误;对角线互相平分,C正确;对角线与边不一定垂直,D错误.故选:C.点评:本题考查度数平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.17.(2015•淄博)如图,在平行四边形ABCD中,∠B=60°,将△ABC沿对角线AC折叠,点B的对应点落在点E处,且点B,A,E在一条直线上,CE交AD于点F,则图中等边三角形共有()A.4个B.3个C.2个D.1个考点:平行四边形的性质;等边三角形的判定;翻折变换(折叠问题).分析:根据折叠的性质可得∠E=∠B=60°,进而可证明△BEC是等边三角形,再根据平行四边形的性质可得:AD∥BC,所以可得∠EAF=60°,进而可证明△EFA是等边三角形,由等边三角形的性质可得∠EFA=∠DFC=60°,又因为∠D=∠B=60°,进而可证明△DFC是等边三角形,问题得解.解答:解:∵将△ABC沿对角线AC折叠,点B的对应点落在点E处,∴∠E=∠B=60°,∴△BEC是等边三角形,∵四边形ABCD是平行四边形,∴AD∥BC,∠D=∠B=60°,∴∠B=∠EAF=60°,∴△EFA是等边三角形,∵∠EFA=∠DFC=60°,∠D=∠B=60°,∴△DFC是等边三角形,∴图中等边三角形共有3个,故选B.点评:本题考查了平行四边形的性质、折叠的性质以及等边三角形的判定和性质,解题的关键是熟记等边三角形的各种判定方法特别是经常用到的判定方法:三个角都相等的三角形是等边三角形.18.(2015•连云港)已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形考点:分析:由平行四边形的判定方法得出A不正确、B正确;由矩形和正方形的判定方法得出C、D不正确.解答:解:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选:B.点评:本题考查了平行四边形的判定、矩形的判定、正方形的判定;熟练掌握平行四边形、矩形、正方形的判定方法是解决问题的关键.19.(2015•绵阳)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.24考点:平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.分析:根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.解答:解:在Rt△BCE中,由勾股定理,得CE===5.∵BE=DE=3,AE=CE=5,∴四边形ABCD是平行四边形.四边形ABCD的面积为BC•BD=4×(3+3)=24,故选:D.点评:本题考查了平行四边形的判定与性质,利用了勾股定理得出CE的长,又利用对角线互相平分的四边形是平行四边形,最后利用了平行四边形的面积公式.二.填空题1. (2015广东)正五边形的外角和等于(度).【答案】360.【解析】n边形的外角和都等于360度。
2014年中考数学试题分类汇编24 多边形与平行四边形
多边形与平行四边形一、选择题1. (2014•福建泉州,第4题3分)七边形外角和为()A.180°B.360°C.900°D.1260°考点:多边形内角与外角.分析:根据多边形的外角和等于360度即可求解.解答:解:七边形的外角和为360°.故选B.点评:本题考查了多边形的内角和外角的知识,属于基础题,掌握多边形的外角和等于360°是解题的关键.2. (2014•广东,第5题3分)一个多边形的内角和是900°,这个多边形的边数是()A.4B.5C.6D.7考点:多边形内角与外角.分析:根据多边形的外角和公式(n﹣2)•180°,列式求解即可.解答:解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选D.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.3. (2014•广东,第7题3分)如图,▱ABCD中,下列说法一定正确的是()A.A C=BD B.A C⊥BD C.A B=CD D.A B=BC考点:平行四边形的性质.分析:根据平行四边形的性质分别判断各选项即可.解答:解:A、AC≠BD,故此选项错误;B、AC不垂直BD,故此选项错误;C、AB=CD,利用平行四边形的对边相等,故此选项正确;D、AB≠BC,故此选项错误;故选:C.点评:此题主要考查了平行四边形的性质,正确把握其性质是解题关键.4.(2014•新疆,第4题5分)四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()5.(2014•毕节地区,第9题3分)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.16考点:多边形内角与外角分析:根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.解答:解:设新多边形是n边形,由多边形内角和公式得(n﹣2)180°=2340°,解得n=15,原多边形是15﹣1=14,故选:B.点评:本题考查了多边形内角与外角,多边形的内角和公式是解题关键.6.(2014·台湾,第24题3分)下列选项中的四边形只有一个为平行四边形,根据图中所给的边长长度及角度,判断哪一个为平行四边形?()A.B.C.D.分析:利用平行四边形的判定定理、等腰梯形的判定及梯形的判定方法分别对每个选项判断后即可确定答案.x k b 1解:A.上、下这一组对边平行,可能为等腰梯形;B.上、下这一组对边平行,可能为等腰梯形,但此等腰梯形底角为90°,所以为平行四边形;C .上、下这一组对边平行,可能为梯形;D .上、下这一组对边平行,可能为梯形; 故选B .点评:本题考查了平行四边形的判定定理、等腰梯形的判定及梯形的判定方法,掌握这些特殊的四边形的判定方法是解答本题的关键.7.(2014·云南昆明,第7题3分)如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能..判定四边形ABCD 为平行四边形的是A . AB ∥CD ,AD ∥BC B . OA =OC ,OB =OD C . AD =BC ,AB ∥CD D . AB =CD ,AD =BC 考点: 平行四边形的判定.分析: 根据平行四边形的判定定理分别判断得出答案即可.解答: 解:A 、两组对边分别平行的四边形是平行四边形,故此选项正确;B 、对角线互相平分的四边形是平行四边形,故此选项正确;C 、一组对边相等,另一组对边平行,不能判定其为平行四边形,故此选项错误;D 、两组对边分别相等的四边形是平行四边形,故此选项正确. 故选:C .点评: 此题主要考查了平行四边形的判定,正确把握平行四边形的判定定理是解题关键. 8.(2014•浙江湖州,第10题3分)在连接A 地与B 地的线段上有四个不同的点D 、G 、K 、Q ,下列四幅图中的实线分别表示某人从A 地到B 地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是( )A .B .ODCBAC.D.分析:分别构造出平行四边形和三角形,根据平行四边形的性质和全等三角形的性质进行比较,即可判断.解:A选项延长AC、BE交于S,∵∠CAE=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即乙走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B选项延长AF、BH交于S1,作FK∥GH,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB,又∵AS+BS<AS2+BS2,故选D.点评:本题考查了平行线的判定,平行四边形的性质和判定的应用,注意:两组对边分别平行的四边形是平行四边形,平行四边形的对边相等.8. (2014•湘潭,第7题,3分)以下四个命题正确的是()A.任意三点可以确定一个圆B.菱形对角线相等C.直角三角形斜边上的中线等于斜边的一半D.平行四边形的四条边相等考点:命题与定理分析:利用确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质分别对每个选项判断后即可确定答案.解答:解:A、不在同一直线上的三点确定一个圆,故错误;B、菱形的对角线垂直但不一定相等,故错误;C、正确;D、平行四边形的四条边不一定相等.故选C.[来源:Z,xx,]点评:本题考查了命题与定理的知识,解题的关键是了解确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质,难度一般.9. (2014•益阳,第7题,4分)如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件是()(第2题图)A.A E=CF B.B E=FD C.B F=DE D.∠1=∠2考点:平行四边形的性质;全等三角形的判定.w!w!w.!x!k!b!分析:利用平行四边形的性质以及全等三角形的判定分别分得出即可.解答:解:A、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选:A.点评:此题主要考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.10. (2014•株洲,第7题,3分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④考点:正方形的判定;平行四边形的性质.分析:要判定是正方形,则需能判定它既是菱形又是矩形.解答:解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选B.点评:本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.11.(2014•孝感,第8题3分)如图,在▱ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则▱ABCD的面积是()A.absinαB.a bsinαC.a bcosαD.abcosα新*课*标*第*一*网考点:平行四边形的性质;解直角三角形.分析:过点C作CE⊥DO于点E,进而得出EC的长,再利用三角形面积公式求出即可.解答:解:过点C作CE⊥DO于点E,∵在▱ABCD中,对角线AC、BD相交成的锐角为α,AC=a,BD=b,∴sinα=,∴EC=COsinα=as inα,∴S△BCD=CE×BD=×asinα×b=absinα,∴▱ABCD的面积是:absinα×2=absinα.故选;A.点评:此题主要考查了平行四边形的性质以及解直角三角形,得出EC的长是解题关键.二.填空题1. (2014•安徽省,第14题5分)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是①②④.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.考点:平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.分析:分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF (ASA),得出对应线段之间关系进而得出答案.解答:解:①∵F是AD的中点,数学试卷及试题∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDE,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DME是解题关键.2. (2014•广东,第13题4分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=3.考点:三角形中位线定理.分析:由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.解答:解:∵D、E是AB、AC中点,∴DE为△ABC的中位线,∴ED=BC=3.故答案为3.点评:本题用到的知识点为:三角形的中位线等于三角形第三边的一半.3.(2014•毕节地区,第19题5分)将四根木条钉成的长方形木框变形为平行四边形ABCD 的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为30 度.考点:矩形的性质;含30度角的直角三角形;平行四边形的性质.分析:根据矩形以及平行四边形的面积求法得出当AE=AB,则符合要求,进而得出答案.解答:解:过点A作AE⊥BC于点E,∵将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),∴当AE=AB,则符合要求,此时∠B=30°,即这个平行四边形的最小内角为:30度.故答案为:30.点评:此题主要考查了矩形的性质和平行四边形面积求法等知识,得出AE=AB 是解题关键.4.(2014•襄阳,第17题3分)在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD 的周长等于12或20.考点:平行四边形的性质.专题:分类讨论.分析:根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.解答:解:如图1所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴AD=BC=5,∴▱ABCD的周长等于:20,如图2所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴BC=3﹣2=1,∴▱ABCD的周长等于:1+1+5+5=12,则▱ABCD的周长等于12或20.故答案为:12或20.点评:此题主要考查了平行四边形的性质以及勾股定理等知识,利用分类讨论得出是解题关键.5.(2014•四川自贡,第13题4分)一个多边形的内角和比外角和的3倍多180°,则它的边数是9.考点:多边形内角与外角分析:多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是1360度.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.解答:解:根据题意,得(n﹣2)•180=1360,解得:n=9.则这个多边形的边数是9.故答案为:9.点评:考查了多边形内角与外角,此题只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.6. (2014•泰州,第9题,3分)任意五边形的内角和为540°.考点:多边形内角与外角.分析:根据多边形的内角和公式(n﹣2)•180°计算即可.解答:解:(5﹣2)•180°=540°.故答案为:540°.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键,是基础题.7. (2014•扬州,第13题,3分)如图,若该图案是由8个全等的等腰梯形拼成的,则图中的∠1=67.5°.(第2题图)考点:等腰梯形的性质;多边形内角与外角分析:首先求得正八边形的内角的度数,则∠1的度数是正八边形的度数的一半.解答:解:正八边形的内角和是:(8﹣2)×180°=1080°,则正八边形的内角是:1080÷8=135°,则∠1=×135°=67.5°.故答案是:67.5°.点评:本题考查了正多边形的内角和的计算,正确求得正八边形的内角的度数是关键.三.解答题1. (2014•安徽省,第23题14分)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN=60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.考点:四边形综合题.分析:(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN 求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,解答:解:(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HL=BP,PL=PM,NK=ND,∵AM=BP,PC=DN,数学试卷及试题∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3A.(2)如图2,连接OE,∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,又∵∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.点评:本题主要考查了四边形的综合题,解题的关键是恰当的作出辅助线,根据三角形全等找出相等的线段.2. (2014•广西贺州,第21题7分)如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:(1)利用平行四边形的性质得出∠5=∠3,∠AEB=∠4,进而利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出AE=CF,进而得出四边形AECF是平行四边形,即可得出答案.解答:证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF;(2)由(1)得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF是平行四边形,∴AF∥CE.点评:此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质等知识,得出△ABE≌△CDF是解题关键.3.(2014年云南省,第22题7分)如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2C D.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=MN.考点:平行四边形的判定与性质专题:证明题.分析:(1)根据平行四边形的性质,可得AD与BC的关系,根据MD与NC的关系,可得证明结论;(2)根据根据等边三角形的判定与性质,可得∠DNC的度数,根据三角形外角的性质,可得∠DBC的度数,根据正切函数,可得答案.解答:证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC,∵M、N分别是AD、BC的中点,∴MD=NC,MD∥NC,∴MNCD是平行四边形;(2)如图:连接ND,∵MNCD是平行四边形,∴MN=D C.∵N是BC的中点,∴BN=CN,∵BC=2CD,∠C=60°,∴△NVD是等边三角形.∴ND=NC,∠DNC=60°.∵∠DNC是△BND的外角,∴∠NBD+∠NDB=∠DNC,∵DN=NC=NB,∴∠DBN=∠BDN=∠DNC=30°,∴∠BDC=90°.∵tan,∴DB=DC=MN.点评:本题考查了平行四边形的判定与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判定与性质,正切函数.4.(2014•温州,第24题14分)如图,在平面直角坐标系中国,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N 分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.考点:四边形综合题.分析:(1)由C是OB的中点求出时间,再求出点E的坐标,(2)连接CD交OP于点G,由▱PCOD的对角线相等,求四边形ADEC是平行四边形.(3)当点C在BO上时,第一种情况,当点M在CE边上时,由△EMF∽△ECO求解,第二种情况,当点N在DE边上时,由△EFN∽△EPD求解,当点C在BO的延长线上时,第一种情况,当点M在DE边上时,由EMF∽△EDP 求解,第二种情况,当点N在CE边上时,由△EFN∽△EOC求解,②当1≤t<时和当<t≤5时,分别求出S的取值范围,解答:解:(1)∵OB=6,C是OB的中点,∴BC=OB=3,∴2t=3即t=,∴OE=+3=,E(,0)(2)如图,连接CD交OP于点G,在▱PCOD中,CG=DG,OG=PG,∵AO=PO,∴AG=EG,∴四边形ADEC是平行四边形.(3)①(Ⅰ)当点C在BO上时,第一种情况:如图,当点M在CE边上时,∵MF∥OC,∴△EMF∽△ECO,∴=,即=,∴t=1,第二种情况:当点N在DE边∵NF∥PD,∴△EFN∽△EPD,∴==,∴t=,(Ⅱ)当点C在BO的延长线上时,第一种情况:当点M在DE边上时,∵MF∥PD,∴EMF∽△EDP,∴=即=,∴t=,第二种情况:当点N在CE边上时,∵NF∥OC,∴△EFN∽△EOC,∴=即=,∴t=5.②<S≤或<S≤20.当1≤t<时,S=t(6﹣2t)=﹣2(t﹣)2+,∵t=在1≤t<范围内,∴<S≤,当<t≤5时,S=t(2t﹣6)=2(t﹣)2﹣,∴<S≤20.点评:本题主要是考查了四边形的综合题,解题的关键是正确分几种不同种情况求解.5.(2014•舟山,第23题10分)类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形“ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.考点:四边形综合题分析:(1)利用“等对角四边形”这个概念来计算.(2)①利用等边对等角和等角对等边来证明;②举例画图;(3)(Ⅰ)当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,利用勾股定理求解;(Ⅱ)当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,求出线段利用勾股定理求解.解答:解:(1)如图1∵等对角四边形ABCD,∠A≠∠C,∴∠D=∠B=80°,∴∠C=360°﹣70°﹣80°﹣80°=130°;(2)①如图2,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴CB=CD,②不正确,反例:如图3,∠A=∠C=90°,AB=AD,但CB≠CD,(3)(Ⅰ)如图4,当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,∵∠ABC=90°,∠DAB=60°,AB=5,∴AE=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC===2(Ⅱ)如图5,当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,∵DE⊥AB,∠DAB=60°AD=4,∴AE=2,DE=2,∴BE=AB﹣AE=5﹣2=3,∵四边形BFDE是矩形,∴DF=BE=3,BF=DE=2,∵∠BCD=60°,∴CF=,∴BC=CF+BF=+2=3,∴AC===2.点评:本题主要考查了四边形的综合题,解题的关键是理解并能运用“等对角四边形”这个概念.6.(2014年广东汕尾,第20题9分)如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当平行四边形ABCD的面积为8时,求△FED的面积.分析:(1)利用已知得出△ABE≌△DFE(AAS),进而求出即可;(2)首先得出△FED∽△FBC,进而得出=,进而求出即可.(1)证明:∵在平行四边形ABCD中,E是AD边上的中点,∴AE=ED,∠ABE=∠F,在△ABE和△DFE中,∴△ABE≌△DFE(AAS),∴FD=AB;(2)解:∵DE∥BC,∴△FED∽△FBC,∵△ABE≌△DFE,∴BE=EF,S△FDE=S平行四边形ABCD,∴=,∴=,∴=,∴△FED的面积为:2.点评:此题主要考查了全等三角形的判定与性质以及平行四边形的性质以及相似三角形的判定与性质等知识,得出S△FDE=S平行四边形ABCD是解题关键.7.(2014•泰州,第23题,10分)如图,BD是△ABC的角平分线,点E,F分别在BC、AB 上,且DE∥AB,EF∥A C.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.(第1题图)考点:平行四边形的判定与性质;角平分线的性质;等腰三角形的判定与性质;含30度角的直角三角形分析:(1)由DE∥AB,EF∥AC,可证得四边形ADEF是平行四边形,∠ABD=∠BDE,又由BD是△ABC的角平分线,易得△BDE是等腰三角形,即可证得结论;(2)首先过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,易求得DG与DE 的长,继而求得答案.解答:(1)证明:∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形,∠ABD=∠BDE,∴AF=DE,∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∴∠DBE=∠BDE,∴BE=DE,∴BE=AF;(2)解:过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°,∴DG=BD=×6=3,∵BE=DE,∴BH=DH=BD=3,∴BE==2,∴DE=BE=2,∴四边形ADEF的面积为:DE•DG=6.点评:此题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.。
中考数学真题分类汇编第三期专题24多边形与平行四边形试题含解析
多边形与平行四边形一.选择题〔2021·云南省曲靖·4分〕假设一个正多边形的内角和为720°,那么这个正多边形的每一个内角是〔〕A.60°B.90°C.108°D.120°【解答】解:〔n﹣2〕×180°=720°,n﹣2=4,n=6.那么这个正多边形的每一个内角为720°÷6=120°.应选:D.2.〔2021·云南省·4分〕一个五边形的内角和为〔〕A.540° B.450° C.360° D.180°【剖析】直接利用多边形的内角和公式进行计算即可.【解答】解:解:依据正多边形内角和公式:180°×〔 5﹣2〕=540°,答:一个五边形的内角和是540度,4.应选:A.【评论】此题主要考察了正多边形内角和,重点是掌握内角和的计算公式.3.〔2021·浙江省台州·4分〕正十边形的每一个内角的度数为〔〕A.120° B.135° C.140° D.144°【剖析】利用正十边形的外角和是360度,而且每个外角都相等,即可求出每个外角的度数;再依据内角与外角的关系可求出正十边形的每个内角的度数;【解答】解:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°;应选:D.【评论】此题主要考察了多边形的内角与外角的关系.多边形的外角性质:多边形的外角和是360度.多边形的内角与它的外角互为邻补角.〔2021·浙江省台州·4分〕如图,在?ABCD中,AB=2,BC=3.以点C为圆心,适合长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧订交于点N,射线CN交BA的延伸线于点E,那么AE的长是〔〕A.B.1C.D.【剖析】只需证明BE=BC即可解决问题;【解答】解:∵由题意可知CF是∠BCD的均分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,BE=BC=3,∵AB=2,AE=BE﹣AB=1,应选:B.【评论】此题考察的是作图﹣根本作图,熟知角均分线的作法是解答此题的重点.〕5.〔2021?呼和浩特?3分〕一个多边形的内角和为1080°,那么这个多边形是〔A.九边形B.八边形C.七边形D.六边形【解答】解:依据n边形的内角和公式,得〔n﹣2〕?180=1080,解得n=8.∴这个多边形的边数是8.应选:B.6. 〔2021?呼和浩特?3分〕按序连结平面上四点获得一个四边形,从①AB∥CD②BC=AD③∠A=∠C④∠B=∠D四个条件中任取此中两个,能够得出“四边形ABCD是平行四边形〞这一结论的状况共有〔〕A.5种B.4种C.3种D.1种解;当①③时,四边形ABCD为平行四边形;当①④时,四边形ABCD为平行四边形;当③④时,四边形ABCD为平行四边形;应选:C.7.〔2021?广安?3分〕一个n边形的每一个内角等于108°,那么n= 5.【剖析】第一求得外角的度数,而后利用360度除之外角的度数即可求得.【解答】解:外角的度数是:180°﹣108°=72°,那么n==5,故答案为:5.【评论】此题考察依据多边形的内角和计算公式求多边形的边数,解答时要会依据公式进行正确运算、变形和数据办理.二.填空题1.〔2021·湖北江汉·3分〕假设一个多边形的每个外角都等于30°,那么这个多边形的边数为12.【剖析】依据和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是=12,故答案为:12.〔2021·湖北十堰·3分〕如图,?ABCD的对角线AC,BD交于点O,且AC=8,BD=10,AB=5,那么△OCD的周长为14.【剖析】依据平行四边形的性质即可解决问题;【解答】解:∵四边形ABCD是平行四边形,AB=CD=5,OA=OC=4,OB=OD=5,∴△OCD的周长=5+4+5=14,故答案为14.【评论】此题考察平行四边形的性质、三角形的周长等知识,解题的重点是娴熟掌握平行四边形的性质,属于中考根底题.3.〔2021?陕西?3分〕如图,在正五边形ABCDE中,AC与BE订交于点F,那么AFE的度数为________【答案】72°【分析】【剖析】第一依据正五边形的性质获得AB=BC=AE,∠ABC=∠BAE=108°,而后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=〔180°-108°〕÷2=36°,最后利用三角形的外角的性质获得∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE为正五边形,4.AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=〔180°-108°〕÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为:72°.【点睛】此题考察的是正多边形和圆,利用数形联合求解是解答此题的重点〔2021?陕西?3分〕点O是平行四边形ABCD的对称中心,AD>AB,分别是AB边上的点,且EF=AB;G、H分别是BC边上的点,且GH=BC;假设S1,S2分别表示?EOF和?GOH的面积,那S1,S2之间的等量关系是______________么【答案】2S1=3S2【分析】【剖析】过点OM⊥BC,垂足为M,作ON⊥AB,垂足为N,依据点O是平行O分别作四边形ABCD的对称中心以及平行四边形的面积公式可得AB?ON=BC?OM,再依据S1=EF?ON,S2=GH?OM,EF=AB,GH=BC,那么可获得答案.【详解】过点O分别作OM⊥BC,垂足为M,作ON⊥AB,垂足为N,∵点O是平行四边形ABCD的对称中心,∴S平行四边形ABCD=AB?2ON,S平行四边形ABCD=BC?2OM,∴AB?ON=BC?OM,∵S1=E F?ON,S2=GH?OM,EF=AB,GH=BC,∴S1=A B?ON,S2=BC?OM,2S1=3S2,故答案为:2S1=3S2.【点睛】此题考察了平行四边形的面积,中心对称的性质,正确增添协助线、正确表示出图形面积是解题的重点.5.〔2021·江苏常州·2分〕如图,在?ABCD中,∠A=70°,DC=DB,那么∠CDB=40°.【剖析】依据等腰三角形的性质,平行四边形的性质以及三角形内角和定理即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C=70°,∵DC=DB,∴∠C=∠DBC=70°,∴∠CDB=180°﹣70°﹣70°=40°,故答案为40°.【评论】此题考察平行四边形的性质、等腰三角形的性质、三角形内角和定理等知识,的重点是娴熟掌握根本知识,属于中考常考题型.6.〔2021·吉林长春·3分〕如图,在?ABCD中,AD=7,AB=2,∠B=60°.E是边解题BC上随意一点,沿AE剪开,将△ABE沿BC方向平移到△形AEFD周长的最小值为20.DCF的地点,获得四边形AEFD,那么四边【剖析】当AE⊥BC时,四边形AEFD的周长最小,利用直角三角形的性质解答即可.【解答】解:当AE⊥BC时,四边形AEFD的周长最小,∵AE⊥BC,AB=2,∠B=60°.AE=3,BE=,∵△ABE沿BC方向平移到△DCF的地点,EF=BC=AD=7,∴四边形AEFD周长的最小值为:14+6=20,故答案为:20【评论】此题考察平移的性质,重点是依据当AE⊥BC时,四边形AEFD的周长最小进行剖析.三.解答题〔2021·广西梧州·6分〕如图,在?ABCD中,对角线AC,BD订交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.【剖析】利用平行四边形的性质得出AO=CO,AD∥BC,从而得出∠EAC=∠FCO,再利用ASA求出△AOE≌△COF,即可得出答案.【解答】证明:∵?ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,∴△AOE≌△COF〔ASA〕,AE=CF.【评论】此题主要考察了全等三角形的判断与性质以及平行四边形的性质,娴熟掌握全等三角形的判断方法是解题重点.2.〔2021·云南省曲靖〕如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连结EF,点M,N是线段EF上两点,且EM=FN,连结AN,CM.1〕求证:△AFN≌△CEM;2〕假设∠CMF=107°,∠CEM=72°,求∠NAF的度数.【解答】〔1〕证明:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠AFN=∠CEM,∵FN=EM,AF=CE,∴△AFN≌△CEM〔SAS〕.〔2〕解:∵△AFN≌△CEM,∴∠NAF=∠ECM,∵∠CMF=∠CEM+∠ECM,∴107°=72°+∠ECM,∴∠ECM=35°,∴∠NAF=35°.3.〔2021·云南省·12分〕如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由三点确立的圆的周长为t.(1〕假设△ABE的面积为30,直接写出S的值;2〕求证:AE均分∠DAF;3〕假设AE=BE,AB=4,AD=5,求t的值.【剖析】〔1〕作EG⊥AB于点G,由S△ABE=×AB×EG=30得AB?EG=60,即可得出答案;2〕延伸AE交BC延伸线于点H,先证△ADE≌△HCE得AD=HC.AE=HE及AD+FC=HC+FC,结合AF=AD+FC得∠FAE=∠CHE,依据∠DAE=∠CHE即可得证;3〕先证∠ABF=90°得出AF2=AB2+BF2=16+〔5﹣FC〕2=〔FC+CH〕2=〔FC+5〕2,据此求得FC的长,从而得出AF的长度,再由AE=HE.AF=FH知FE⊥AH,即AF是△AEF的外接圆直径,从而得出答案.【解答】解:〔1〕如图,作EG⊥AB于点G,那么S△ABE=×AB×EG=30,那么AB?EG=60,∴平行四边形ABCD的面积为60;〔2〕延伸AE交BC延伸线于点H,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠HCE,∠DAE=∠CHE,∵E为CD的中点,∴CE=ED,∴△ADE≌△HCE,AD=HC.AE=HE,AD+FC=HC+FC,由AF=AD+FC和FH=HC+FC得AF=FH,∴∠FAE=∠CHE,又∵∠DAE=∠CHE,∴∠DAE=∠FAE,∴AE均分∠DAF;3〕连结EF,∵AE=BE.AE=HE,∴AE=BE=HE,∴∠BAE=∠ABE,∠HBE=∠BHE,∵∠DAE=∠CHE,∴∠BAE+∠DAE=∠ABE+∠HBE,即∠DAB=∠CBA,由四边形ABCD是平行四边形得∠DAB+∠CBA=180°,∴∠CBA=90°,AF2=AB2+BF2=16+〔5﹣FC〕2=〔FC+CH〕2=〔FC+5〕2,解得:FC=,AF=FC+CH=,∵AE=HE.AF=FH,∴FE⊥AH,∴AF是△AEF的外接圆直径,∴△AEF的外接圆的周长t=π.【评论】此题主要考察圆的综合问题,解题的重点是掌握平行四边形的性质、矩形的判断与性质、全等三角形的判断与性质及等腰三角形的性质、勾股定理等知识点.。
【名校名卷取精 百师题源】2014年数学中考抢分训练之“小题狂做”:多边形与平行四边形(含解析)
多边形与平行四边形一、选择题(本大题共3小题,每小题4分,共12分)1.如图,在平行四边形ABCD中,AB=3 cm,BC=5 cm,对角线AC,BD相交于点O,则OA的取值范围是()A.3 cm<OA<5 cm B.2 cm<OA<8 cmC.1 cm<OA<4 cm D.3 cm<OA<8 cm2.如图,在▱ABCD中,∠A=70°,将▱ABCD折叠,使点D,C分别落在点F,E处(点F,E都在AB所在的直线上),折痕为MN,则∠AMF等于()A.70°B.40°C.30°D.20°,第2题图),第3题图)3.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2B.3a2C.4a2D.5a2二、填空题(本大题共4小题,每小题4分,共16分)4.如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角,若∠A=120°,则∠1+∠2+∠3+∠4=______.第4题图第6题图5.一个多边形每个外角都等于40°,则这个多边形的边数为______.6.如图,在▱ABCD中,AD=10 cm,CD=6 cm,E为AD上一点,且BE=BC,CE=CD,则DE=______cm.7.如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于______.三、解答题(本大题共3小题,共32分)8.(10分)已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.9.(10分)如果,在▱ABCD中,点E,F分别在AB,CD上,AE=CF.求证:DE=BF. 10.(12分)如图,在▱ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=3,BC=5时,求AEAC的值.参考答案1. C 解析:在△ABC 中,由三边关系可知BC -AB <AC <BC +AB ,所以2 cm <AC <8 cm ,又因为平行四边形的对角线互相平分,故1 cm <OA <4 cm ,选C.2. B 解析:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A +∠D =180°,∴∠D =110°,由折叠的性质知∠MFE =∠D =110°,∴∠AMF =∠MFE -∠A =110°-70°=40°.3. A 解析:由题意可知,正八边形的边长为a ,即原来正方形的每一角上的等腰直角三角形的斜边长为a ,直角边长为22a ,所以阴影部分的面积为中间小正方形面积与四个等腰直角三角形的面积之和,即S 阴影=a 2+12×(22a )2×4=2a 2 4. 300 解析:因为∠A =120°,所以∠A 的外角是60°.因为多边形的外角和是360°,故∠1+∠2+∠3+∠4=360°-60°=300°.5. 9 解析:因为多边形的外角和等于360°,而这个多边形的外角都相等,所以这个多边形的边数为:360°÷40°=9.6. 3.6 解析:因为四边形ABCD 为平行四边形,所以AD ∥BC ,所以∠DEC =∠BCE ,因为CE =CD ,所以∠D =∠DEC ,因为BE =BC ,所以∠BEC =∠BCE ,所以∠D =∠BCE ,∠DEC =∠CEB ,所以△DCE ∽△CBE ,所以DC CB =DE CE ,所以610=DE 6,解得DE =3.6 cm. 7. 8 解析:由平移可知四边形ABED 是平行四边形,且BE =2,因为∠C =90°,所以平行四边形BC 边上的高为AC =4,所以四边形ABED 的面积=2×4=8.8. 证明:(1)∵四边形ABCD 是平行四边形,∴∠DAB =∠BCD ,∴∠EAM =∠FCN .又∵AD∥BC,∴∠E=∠F.∵AE=CF,∴△AEM≌△CFN.(5分) (2)由(1)得AM=CN,又∵四边形ABCD是平行四边形∴AB綊CD,∴BM綊DN,∴四边形BMDN是平行四边形.(10分) 9. 证明:∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD.∵AE=CF,∴AB-AE=CD-CF,即BE=DF,(6分)又BE∥DF,∴四边形DEBF为平行四边形.(8分)∴DE=BF.(10分) 10. (1)证明:如图,在▱ABCD中,AD∥BC,∴∠2=∠3.∵BF是∠ABC的平分线,∴∠1=∠2.∴∠1=∠3,∴AB=AF.(5分)(2)∵∠AEF=∠CEB,∠2=∠3,∴△AEF∽△CEB.(9分)∴AEEC=AFBC=35,∴AEAC=38.(12分)。
2014年全国各地中考数学试卷解析版分类汇编 多边形与平行四边形
多边形与平行四边形一、选择题1. (2014•四川巴中,第11题3分)若一个正多边形的一个内角等于135°,那么这个多边形是正 边形.考点:正多边形的内角和.分析:一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解答:外角是180﹣135=45度,360÷45=8,则这个多边形是八边形.点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.2. (2014山东济南,第8题,3分)下列命题中,真命题是A .两对角线相等的四边形是矩形B .两对角线互相平分的四边形是平行四边形C .两对角线互相垂直的四边形是菱形D .两对角线相等的四边形是等腰梯形 【解析】两对角线相等的四边形不一定是矩形,也不一定是等腰梯形,所以A ,D 都不是真命题.又两对角线互相垂直如果不平分,此时的四边形不是菱形,故选B .3. (2014山东济南,第10题,3分)在□ABCD 中,延长AB 到E ,使BE =AB ,连接DE 交BC 于F ,则下列结论不一定成立的是A .CDF E ∠=∠B .DF EF =C .BF AD 2= D .CF BE 2=【解析】由题意可得FBE FCD ∆≅∆,于是A ,B 都一定成立;又由BE =AB ,可知BF AD 2=,所以C 所给结论一定成立,于是不一定成立的应选D . 4. (2014年贵州黔东南3.(4分))如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )ABCDE F第10题图A.AB∥DC,AD=BC B.A B∥DC,AD∥BC C.AB=DC,AD=BC D.OA=OC,OB=OD考点:平行四边形的判定.分析:根据平行四边形的判定定理分别进行分析即可.解答:解:A、“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;B、根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C、根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;D、根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;故选:A.点评:此题主要考查了平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.5.(2014•十堰6.(3分))如图,在平行四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.7B.10 C.11 D.12考点:平行四边形的性质;线段垂直平分线的性质.分析:根据线段垂直平分线的性质可得AE=EC,再根据平行四边形的性质可得DC=AB=4,AD=BC=6,进而可以算出△CDE的周长.解答:解:∵AC的垂直平分线交AD于E,∴AE=EC,∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=6,∴△CDE的周长为:EC+CD+ED=AD+CD=6+4=10,故选:B.点评:此题主要考查了平行四边形的性质和线段垂直平分线的性质,关键是掌握平行四边形两组对边分别相等.6.(2014•十堰6.(3分))如图,在平行四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.7B.10 C.11 D.12考点:平行四边形的性质;线段垂直平分线的性质.分析:根据线段垂直平分线的性质可得AE=EC,再根据平行四边形的性质可得DC=AB=4,AD=BC=6,进而可以算出△CDE的周长.解答:解:∵AC的垂直平分线交AD于E,∴AE=EC,∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=6,∴△CDE的周长为:EC+CD+ED=AD+CD=6+4=10,故选:B.点评:此题主要考查了平行四边形的性质和线段垂直平分线的性质,关键是掌握平行四边形两组对边分别相等.7. (2014•山东临沂,第7题3分)将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°考点:多边形内角与外角.分析:利用多边形的内角和公式即可求出答案.解答:解:n边形的内角和是(n﹣2)•180°,n+1边形的内角和是(n﹣1)•180°,因而(n+1)边形的内角和比n边形的内角和大(n﹣1)•180°﹣(n﹣2)•180=180°.故选C.点评:本题主要考查了多边形的内角和公式,是需要识记的内容.8.(2014•四川泸州,第5题,3分)如图,等边△ABC中,点D、E分别为边AB、AC的中点,则∠DEC的度数为()A.30°B.60°C.120°D.150°解答:解:由等边△ABC得∠C=60°,由三角形中位线的性质得DE∥BC,∠DEC=180°﹣∠C=180°﹣60°=120°,故选:C.点评:本题考查了三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.9.(2014•广东梅州,第8题3分)下列各数中,最大的是()A.0B.2C.﹣2 D.﹣考点:有理数大小比较.专题:常规题型.分析:用数轴法,将各选项数字标于数轴之上即可解本题.解答:解:画一个数轴,将A=0、B=2、C=﹣2、D=﹣标于数轴之上,可得:∵D点位于数轴最右侧,∴B选项数字最大.故选B.点评:本题考查了数轴法比较有理数大小的方法,牢记数轴法是解题的关键.10.如图,Y ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB =4,AC =6,则BD的长是()(A)8 (B) 9 (C)10 (D)11答案:C解析:根据平行四边形的性质勾股定理可得,Rt△ABO,OA=12AC=12×6=3,AB=4,∴OB=5,又BD=2OA=2×5=10.故C正确。
中考数学历年各地市真题多边形与平行四边形
多边形与平行四边形
一、选择题
1. (2010 年四川眉山市 ).如图,每个小正方形的边长为 1 ,A、 B、 C 是小正方形的顶点,
则∠ ABC 的度数为( )
A .90 °
B .60 °
C.45 °
D. 30 °
【答案】 C
2. ( 2010 福建龙岩) 下列图形中,单独选用一种图形不能进行平面镶嵌的图形是(
【关键词】平行四边形的判定
【答案】已知:①③,①④,②④,③④均可
,其余均不可B以 .
C
(解法一)
已知:在四边形 ABCD 中,① AD ∥ BC ,③ A C .……………………( 2 分)
求证:四边形 ABCD 是平行四边形.
证明:∵ AD ∥ BC
∴ A B 180 , C D 180
∵ A C ,∴ B D
分
B
F
C
(第 19 题 )
又 ∵ 四边形 ABCD 是平行四边形, ∴ AD ∥ BC ,即 AE ∥CF . ∴ 四边形 AFCE 是平行四边形.
∴ AF= CE .
…… 1 分
方法 2 : ∵ 四边形 ABCD 是平行四边形,且 ∴ BF= DE . 又 ∵ 四边形 ABCD 是平行四边形,
E ,F 分别是 AD , BC 的中点,
∴A ∵A
B 180 , C D 180 ………………………………………( C ,∴ B D
5 分)
∴四边形 ABCD 是平行四边形…………………………………………………(
8 分)
(解法二)
已知:在四边形 ABCD 中,① AD ∥ BC ,④ B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多边形与平行四边形一、选择题1. ( 2014•福建泉州,第4题3分)七边形外角和为( ) A .180°B .360°C .900°D .1260°考点:多边形内角与外角.分析:根据多边形的外角和等于360度即可求解.解答:解:七边形的外角和为360°.故选B .点评:本题考查了多边形的内角和外角的知识,属于基础题,掌握多边形的外角和等于360°是解题的关键. 2. ( 2014•广东,第5题3分)一个多边形的内角和是900°,这个多边形的边数是( ) A .4B .5C .6D .7考点:多边形内角与外角.分析:根据多边形的外角和公式(n ﹣2)•180°,列式求解即可.解答:解:设这个多边形是n 边形,根据题意得,(n ﹣2)•180°=900°,解得n =7.故选D .点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键. 3. ( 2014•广东,第7题3分)如图,▱ABCD 中,下列说法一定正确的是( ) A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC考点:平行四边形的性质.分析:根据平行四边形的性质分别判断各选项即可.解答:解:A、AC≠BD,故此选项错误;B、AC不垂直BD,故此选项错误;C、AB=CD,利用平行四边形的对边相等,故此选项正确;D、AB≠BC,故此选项错误;故选:C.点评:此题主要考查了平行四边形的性质,正确把握其性质是解题关键.4.(2014•新疆,第4题5分)四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是( )C.AB=DC,AD=BC D.AB∥DC,AD=BC A.OA=OC,OB=OD B.AD∥BC,AB∥DC考点:平行四边形的判定.分析:根据平行四边形的判定定理求解即可求得答案,注意排除法在解选择题中的应用.解答:解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;B、∵AD∥BC,AB∥DC,∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;C、AB=DC,AD=BC,∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;D、AB∥DC,AD=BC,∴四边形ABCD是平行四边形或等腰梯形.故不能能判定这个四边形是平行四边形.故选D.点评:此题考查了平行四边形的判定.此题比较简单,注意熟记定理是解此题的关键.5.(2014•毕节地区,第9题3分)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A .13B .14C .15D .16 考点:多边形内角与外角分析:根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.解答:解:设新多边形是n 边形,由多边形内角和公式得(n ﹣2)180°=2340°,解得n =15,原多边形是15﹣1=14,故选:B .点评:本题考查了多边形内角与外角,多边形的内角和公式是解题关键.6.(2014·台湾,第24题3分)下列选项中的四边形只有一个为平行四边形,根据图中所给的边长长度及角度,判断哪一个为平行四边形?( )A .B .C .D .分析:利用平行四边形的判定定理、等腰梯形的判定及梯形的判定方法分别对每个选项判断后即可确定答案.解:A .上、下这一组对边平行,可能为等腰梯形;B .上、下这一组对边平行,可能为等腰梯形,但此等腰梯形底角为90°,所以为平行四边形;C .上、下这一组对边平行,可能为梯形;D .上、下这一组对边平行,可能为梯形;故选B .点评:本题考查了平行四边形的判定定理、等腰梯形的判定及梯形的判定方法,掌握这些特殊的四边形的判定方法是解答本题的关键.7.(2014·云南昆明,第7题3分)如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定四边形ABCD 为平行四边形的是 A . AB ∥CD ,AD ∥BC B . OA =OC ,OB =OD C . AD =BC ,AB ∥CD D . AB =CD ,AD =BC 考点:平行四边形的判定.分析:根据平行四边形的判定定理分别判断得出答案即可.解答:解:A 、两组对边分别平行的四边形是平行四边形,故此选项正确;B 、对角线互相平分的四边形是平行四边形,故此选项正确;C 、一组对边相等,另一组对边平行,不能判定其为平行四边形,故此选项错误;D 、两组对边分别相等的四边形是平行四边形,故此选项正确.故选:C .点评:此题主要考查了平行四边形的判定,正确把握平行四边形的判定定理是解题关键.8.(2014•浙江湖州,第10题3分)在连接A 地与B 地的线段上有四个不同的点D 、G 、K 、Q ,下列四幅图中的实线分别表示某人从A 地到B 地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是( )ODCBA A.B.C.D.分析:分别构造出平行四边形和三角形,根据平行四边形的性质和全等三角形的性质进行比较,即可判断.解:A选项延长AC、BE交于S,∵∠CAE=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即乙走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B选项延长AF、BH交于S1,作FK∥GH,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB,又∵AS+BS<AS2+BS2,故选D.点评:本题考查了平行线的判定,平行四边形的性质和判定的应用,注意:两组对边分别平行的四边形是平行四边形,平行四边形的对边相等.8. (2014•湘潭,第7题,3分)以下四个命题正确的是( ) A .任意三点可以确定一个圆 B .菱形对角线相等C .直角三角形斜边上的中线等于斜边的一半D .平行四边形的四条边相等考点:命题与定理分析:利用确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质分别对每个选项判断后即可确定答案.解答:解:A 、不在同一直线上的三点确定一个圆,故错误;B 、菱形的对角线垂直但不一定相等,故错误;C 、正确;D 、平行四边形的四条边不一定相等.故选C .点评:本题考查了命题与定理的知识,解题的关键是了解确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质,难度一般.9. (2014•益阳,第7题,4分)如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件是( )(第2题图) A .AE =CF B .BE =FDC .BF =DED .∠1=∠2考点:平行四边形的性质;全等三角形的判定.分析:利用平行四边形的性质以及全等三角形的判定分别分得出即可.解答:解:A、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选:A.点评:此题主要考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.10. (2014•株洲,第7题,3分)已知四边形ABCD 是平行四边形,再从①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选法,其中错误的是( ) A .选①②B .选②③C .选①③D .选②④考点:正方形的判定;平行四边形的性质.分析:要判定是正方形,则需能判定它既是菱形又是矩形.解答:解:A 、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD 是正方形,正确,故本选项不符合题意;B 、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD 是正方形,错误,故本选项符合题意;C 、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD 是正方形,正确,故本选项不符合题意;D 、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD 是正方形,正确,故本选项不符合题意.故选B .点评:本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.11.(2014•孝感,第8题3分)如图,在▱ABCD 中,对角线AC 、BD 相交成的锐角为α,若AC =a ,BD =b ,则▱ABCD 的面积是( ) A .absinαB.absinαC.abcosαD.abcosα考点:平行四边形的性质;解直角三角形.分析:过点C作CE⊥DO于点E,进而得出EC的长,再利用三角形面积公式求出即可.解答:解:过点C作CE⊥DO于点E,∵在▱ABCD中,对角线AC、BD相交成的锐角为α,AC=a,BD=b,∴sinα=,∴EC=COsinα=asinα,∴S△BCD=CE×BD=×asinα×b=absinα,∴▱ABCD的面积是:absinα×2=absinα.故选;A.点评:此题主要考查了平行四边形的性质以及解直角三角形,得出EC的长是解题关键.二.填空题1. (2014•安徽省,第14题5分)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是 ①②④ .(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.考点:平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.菁优网分析:分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.解答:解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDE,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DME是解题关键.2. (2014•广东,第13题4分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE= 3 .考点:三角形中位线定理.分析:由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.解答:解:∵D、E是AB、AC中点,∴DE为△ABC的中位线,∴ED=BC=3.故答案为3.点评:本题用到的知识点为:三角形的中位线等于三角形第三边的一半.3.(2014•毕节地区,第19题5分)将四根木条钉成的长方形木框变形为平行四边形ABCD 的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为30 度.考点:矩形的性质;含30度角的直角三角形;平行四边形的性质.分析:根据矩形以及平行四边形的面积求法得出当AE=AB,则符合要求,进而得出答案.解答:解:过点A作AE⊥BC于点E,∵将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),∴当AE=AB,则符合要求,此时∠B=30°,即这个平行四边形的最小内角为:30度.故答案为:30.点评:此题主要考查了矩形的性质和平行四边形面积求法等知识,得出AE=AB 是解题关键.4.(2014•襄阳,第17题3分)在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于 12或20 .考点:平行四边形的性质.专题:分类讨论.分析:根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.解答:解:如图1所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴AD=BC=5,∴▱ABCD的周长等于:20,如图2所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴BC=3﹣2=1,∴▱ABCD的周长等于:1+1+5+5=12,则▱ABCD的周长等于12或20.故答案为:12或20.点评:此题主要考查了平行四边形的性质以及勾股定理等知识,利用分类讨论得出是解题关键.5.(2014•四川自贡,第13题4分)一个多边形的内角和比外角和的3倍多180°,则它的边数是 9 .考点:多边形内角与外角分析:多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是1360度.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.解答:解:根据题意,得(n﹣2)•180=1360,解得:n=9.则这个多边形的边数是9.故答案为:9.点评:考查了多边形内角与外角,此题只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.6. (2014•泰州,第9题,3分)任意五边形的内角和为 540° .考点:多边形内角与外角.分析:根据多边形的内角和公式(n﹣2)•180°计算即可.解答:解:(5﹣2)•180°=540°.故答案为:540°.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键,是基础题.7. (2014•扬州,第13题,3分)如图,若该图案是由8个全等的等腰梯形拼成的,则图中的∠1= 67.5° .(第2题图)考点:等腰梯形的性质;多边形内角与外角分析:首先求得正八边形的内角的度数,则∠1的度数是正八边形的度数的一半.解答:解:正八边形的内角和是:(8﹣2)×180°=1080°,则正八边形的内角是:1080÷8=135°,则∠1=×135°=67.5°.故答案是:67.5°.点评:本题考查了正多边形的内角和的计算,正确求得正八边形的内角的度数是关键.三.解答题1. (2014•安徽省,第23题14分)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN= 60° ;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.考点:四边形综合题.菁优网分析:(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,解答:解:(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HL=BP,PL=PM,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3A.(2)如图2,连接OE,∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,又∵∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.点评:本题主要考查了四边形的综合题,解题的关键是恰当的作出辅助线,根据三角形全等找出相等的线段.2. (2014•广西贺州,第21题7分)如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:(1)利用平行四边形的性质得出∠5=∠3,∠AEB=∠4,进而利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出AE=CF,进而得出四边形AECF是平行四边形,即可得出答案.解答:证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF;(2)由(1)得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF是平行四边形,∴AF∥CE.点评:此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质等知识,得出△ABE≌△CDF是解题关键.3.(2014年云南省,第22题7分)如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2C D.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=MN.考点:平行四边形的判定与性质专题:证明题.分析:(1)根据平行四边形的性质,可得AD与BC的关系,根据MD与NC的关系,可得证明结论;(2)根据根据等边三角形的判定与性质,可得∠DNC的度数,根据三角形外角的性质,可得∠DBC的度数,根据正切函数,可得答案.解答:证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC,∵M、N分别是AD、BC的中点,∴MD=NC,MD∥NC,∴MNCD是平行四边形;(2)如图:连接ND,∵MNCD是平行四边形,∴MN=D C.∵N是BC的中点,∴BN=CN,∵BC=2CD,∠C=60°,∴△NVD是等边三角形.∴ND=NC,∠DNC=60°.∵∠DNC是△BND的外角,∴∠NBD+∠NDB=∠DNC,∵DN=NC=NB,∴∠DBN=∠BDN=∠DNC=30°,∴∠BDC=90°.∵tan,∴DB=DC=MN.点评:本题考查了平行四边形的判定与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判定与性质,正切函数.4.(2014•温州,第24题14分)如图,在平面直角坐标系中国,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S 的取值范围.考点:四边形综合题.分析:(1)由C是OB的中点求出时间,再求出点E的坐标,(2)连接CD交OP于点G,由▱PCOD的对角线相等,求四边形ADEC是平行四边形.(3)当点C在BO上时,第一种情况,当点M在CE边上时,由△EMF∽△ECO 求解,第二种情况,当点N在DE边上时,由△EFN∽△EPD求解,当点C在BO的延长线上时,第一种情况,当点M在DE边上时,由EMF∽△EDP 求解,第二种情况,当点N在CE边上时,由△EFN∽△EOC求解,②当1≤t<时和当<t≤5时,分别求出S的取值范围,解答:解:(1)∵OB=6,C是OB的中点,∴BC=OB=3,∴2t=3即t=,∴OE=+3=,E(,0)(2)如图,连接CD交OP于点G,在▱PCOD中,CG=DG,OG=PG,∵AO=PO,∴AG=EG,∴四边形ADEC是平行四边形.(3)①(Ⅰ)当点C在BO上时,第一种情况:如图,当点M在CE边上时,∵MF∥OC,∴△EMF∽△ECO,∴=,即=,∴t=1,第二种情况:当点N在DE边∵NF∥PD,∴△EFN∽△EPD,∴==,∴t=,(Ⅱ)当点C在BO的延长线上时,第一种情况:当点M在DE边上时,∵MF∥PD,∴EMF∽△EDP,∴=即=,∴t=,第二种情况:当点N在CE边上时,∵NF∥OC,∴△EFN∽△EOC,∴=即=,∴t=5.②<S≤或<S≤20.当1≤t<时,S=t(6﹣2t)=﹣2(t﹣)2+,∵t=在1≤t<范围内,∴<S≤,当<t≤5时,S=t(2t﹣6)=2(t﹣)2﹣,∴<S≤20.点评:本题主要是考查了四边形的综合题,解题的关键是正确分几种不同种情况求解.5.(2014•舟山,第23题10分)类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形“ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.考点:四边形综合题分析:(1)利用“等对角四边形”这个概念来计算.(2)①利用等边对等角和等角对等边来证明;②举例画图;(3)(Ⅰ)当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,利用勾股定理求解;(Ⅱ)当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,求出线段利用勾股定理求解.解答:解:(1)如图1∵等对角四边形ABCD,∠A≠∠C,∴∠D=∠B=80°,∴∠C=360°﹣70°﹣80°﹣80°=130°;(2)①如图2,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴CB=CD,②不正确,反例:如图3,∠A=∠C=90°,AB=AD,但CB≠CD,(3)(Ⅰ)如图4,当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,∵∠ABC=90°,∠DAB=60°,AB=5,∴AE=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC===2(Ⅱ)如图5,当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,∵DE⊥AB,∠DAB=60°AD=4,∴AE=2,DE=2,∴BE=AB﹣AE=5﹣2=3,∵四边形BFDE是矩形,∴DF=BE=3,BF=DE=2,∵∠BCD=60°,∴CF=,∴BC=CF+BF=+2=3,∴AC===2.点评:本题主要考查了四边形的综合题,解题的关键是理解并能运用“等对角四边形”这个概念.6.(2014年广东汕尾,第20题9分)如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当平行四边形ABCD的面积为8时,求△FED的面积.分析:(1)利用已知得出△ABE≌△DFE(AAS),进而求出即可;(2)首先得出△FED∽△FBC,进而得出=,进而求出即可.(1)证明:∵在平行四边形ABCD中,E是AD边上的中点,∴AE=ED,∠ABE=∠F,在△ABE和△DFE中,∴△ABE≌△DFE(AAS),∴FD=AB;(2)解:∵DE∥BC,∴△FED∽△FBC,∵△ABE≌△DFE,∴BE=EF,S△FDE=S平行四边形ABCD,∴=,∴=,∴=,∴△FED的面积为:2.点评:此题主要考查了全等三角形的判定与性质以及平行四边形的性质以及相似三角形的判定与性质等知识,得出S△FDE=S平行四边形ABCD是解题关键.7.(2014•泰州,第23题,10分)如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥A C.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.(第1题图)考点:平行四边形的判定与性质;角平分线的性质;等腰三角形的判定与性质;含30度角的直角三角形分析:(1)由DE∥AB,EF∥AC,可证得四边形ADEF是平行四边形,∠ABD=∠BDE,又由BD是△ABC的角平分线,易得△BDE是等腰三角形,即可证得结论;(2)首先过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,易求得DG与DE 的长,继而求得答案.解答:(1)证明:∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形,∠ABD=∠BDE,∴AF=DE,∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∴∠DBE=∠BDE,∴BE=DE,∴BE=AF;(2)解:过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°,∴DG=BD=×6=3,∵BE=DE,∴BH=DH=BD=3,∴BE==2,∴DE=BE=2,∴四边形ADEF的面积为:DE•DG=6.点评:此题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.。