2016年春人教版七年级数学下册名校课堂教案5.3.2命题、定理、证明.doc
【人教版】七年级数学下册第五章相交线与平行线5.3.2命题定理证明教案
第五章 5.3.2命题、定理、证明知识点1:命题判断一件事情的语句,叫命题.它必须对某件事情作出判断,要么肯定,要么否定,而像“你回家了吗”“画AB∥CD”等等就不是命题.知识点2:命题的组成命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.它通常可以写成“如果……那么……”的形式,“如果”后面接的是题设,“那么”后面接的是结论.如果一个命题是正确的,那么它就是真命题,反之就是假命题.知识点3:定理经过推理证实而得到的真命题叫做定理.注意:理解命题的概念时要注意两点:(1)命题必须是一个完整的句子;(2)这个句子必须对某件事情给出明确的判断(如肯定或否定的判断).知识点4:证明一个命题的正确性需要经过推理,才能作出判断,这个推理的过程叫做证明.考点1:如果……那么……【例1】把下列命题改写成“如果……那么……”的形式.(1)同位角相等;(2)等角的补角相等.解:(1)如果两个角是同位角,那么这两个角相等.(2)如果两个角是相等的角,那么这两个角的补角相等.考点2:举反例【例2】请判断命题“若a,b互为相反数,则a≠b”是真命题还是假命题?如果是假命题,举出反例说明.解:假命题.因为0的相反数是0,而0=0,所以此命题是假命题.点拨举反例是说明一个命题是假命题常用的方法,所列举的反例满足命题的题设部分,不满足命题的结论即可.考点3:利用辅助线进行证明【例3】如图,AB∥CD.AF、CF分别是∠EAB、∠ECD的角平分线,F是两条角平分线的交点.求证:∠F=∠AEC.解:如图,过点E作EM∥AB,过点F作FN∥AB,∵AB∥CD,∴EM∥CD.∴∠MEA=∠BAE,∠MEC=∠DCE.∴∠MEA+∠MEC=∠BAE+∠DCE,即∠AEC=∠BAE+∠DCE.同理可得∠AFC=∠BAF+∠DCF.∵AF、CF分别是∠EAB、∠ECD的平分线,∴∠BAF=∠BAE,∠DCF=∠DCE.∴∠AFC=∠BAE+∠DCE.∴∠AFC=∠AEC,即∠F=∠AEC.点拨:作辅助线,可以探究:∠AEC与∠BAE及∠DCE之间的关系,结合角的平分线的性质,可以探究出∠F与∠AEC之间的关系.。
七年级数学人教版下册命题、定理、证明
直线的基本事实:两点确定一条直线.
作用
线段的基本事实:两点间线段最短.
平行线的判定-基本事实:同位角相等,两直线平行.
平行线的基本事实:经过直线外的一点有且仅有 一条直线与已知直线平行.
定理:有些真命题它们的正确性是经过推理证实的, 也可以作为继续推理的依据.
作用 学过的定理: (1)补角的性质:同角或等角的补角相等.
例如,要判定命题“相等的角是对顶角”是假命题,可以举出如下 反例:图中,OC是∠AOB的平分线,∠1=∠2,但它们不是对顶角.
A
O
1 2
C
B
例题讲解
例2 如图,已知直线b//c,a⊥b. 求证a⊥c.
证明: ∵a⊥b (已知),
b
c
∴∠1 = 90°(垂直的定义).
a
1
2
又b//c(已知),
∴∠1 = ∠2(两直线平行,同位角相等).
(2)余角的性质:同角或等角的余角相等.
(3)对顶角的性质:对顶角相等.
(4)平行线的判定:内错角相等,两直线平行; 同旁内角互补,两直线平行
在很多情况下,一个命题的正确性需要经过推理才能作出判断, 这个推理过程叫做证明.
判断一个命题是假命题,只要举出一个例子(反例),它符合命题 的题设,但不满足结论就可以了.
6.如图,已知AB∥CD,直线AB,CD被直线MN所截,
交点分别为P,Q,PG平分∠BPQ,QH平分∠CQP.
求证:PG∥HQ.
M P
A
证明:∵AB∥CD(已知),
H C
∴∠BPQ=∠CQP(两直线平行,内错角相等).
B G
D Q
N
又∵PG平分∠BPQ,QH平分∠CQP(已知),
七年级数学下册(人教版)配套教学学案:5.3.2命题、定理、证明
全新修订版教学设计
(学案)
七年级数学下册
老师的必备资料
家长的帮教助手
学生的课堂再现
人教版(RJ)
4321F B A E G C H D 5.3.2 命题、定理、证明
【学习目标】
1、知道什么是命题、真命题、假命题、定理;
2、会根据“题设”和“结论”把命题改果……,那么……”的形式,并能正确判定命题的真假。
【学习重点与难点】
1.重点:确定命题的“题设”与“结论”,并会改写成“如果……,
那么……”的形式
2.难点:判断命题的真假
【课前检测】
1.如图,(1)如果∠1=________,那么DE ∥ AC ;
(2) 如果∠1=________,那么EF ∥ BC ;
(3)如果∠FED+ ∠________=180°,那么AC ∥ED ;
(4) 如果∠2+ ∠________=180°,那么AB ∥DF.
2.如图,∠1=120°,∠1=120°,∠3=110°。
求∠4
【课堂活动】
活动一、认识命题的构成
大家一起读一读下列语句:
(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;。
人教版七下数学《5.3.2命题、定理、证明》的说课稿
人教版七下数学《5.3.2命题、定理、证明》的说课稿我说课的内容是人教版九年义务教育七年级教科书数学下册第五章第三节第二课时《5.3.2命题、定理、证明》。
本次讲课从六大方面讲解:一.教材分析1.教材的地位与作用作为总体目标提出了对学生“数学思考”的要求:“经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。
”在学段目标中,进一步指出:在探索图形性质、与他人合作交流等活动中,发展合情推理,进一步学习有条理地思考与表达。
而命题是数学教学的基本依据,经过推理证实的命题如定理可以作为继续推理的依据,所以认识命题的定义、结构、真假是数学学习的重要任务之一。
而正确找出命题的题设和结论,是基础,特别是题设和结论不明显的命题和难以判断真假的命题是学习的重点。
本节课将通过一些具体的例子来了解基本概念,不必深究,不钻难题,所以学习本节课特别重要,是后面学习定理和证明的前提和基础,具有承上启下的作用。
2.教学目标根据上述教材结构与分析,考虑到学生已有的认知结构和心理特征,我制定如下目标:①了解定义、命题的意义。
②会区分命题的条件和结论,会判断命题的真假。
③让学生在学习的过程中感受到数学语言的严谨性和逻辑性,体会合理化思想。
3.教学重点:了解定义、命题的含义。
4.教学难点:会区分命题的条件和结论,会判断命题的真假。
二.学生情况学生在此之前已经学习了平行线的判定等内容,对命题已经有了初步的认识,这位顺利完成本节课的教学任务打下了基础,但对于命题、真假命题的理解,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
《名校课堂》(人教版)七年级(下册)数学
湖北世纪华章文化传播有限公司公司简介湖北世纪华章文化传播有限公司创建于2001年,是一家以中小学教育辅导类图书开发为重点,集内容策划、出版发行于一体的民营股份制企业,是全国一流的基础教育图书供应商。
公司成功研发出版的《名校课堂》、《火线100天》等系列图书已经成为全国中小学教育类图书的一线品牌,每年有2000余万人次中小学生、98万余人次的教师、超过4.8万所学校使用本公司的图书,产品畅销不衰。
目前,公司拥有4项注册商标、一项国家专利,并与广西师范大学出版社、黑龙江教育出版社、北京市海淀区教师进修学校、黄冈市教育科学研究院等全国知名出版社、教育研发机构深度合作,重点研发教育类图书、报刊、网站等项目。
公司宗旨:服务教师、服务教学、服务教育公司使命:以图书出版推动教育进步公司愿景:让每一位学生以较小的成本分享到高品质的教育七年级(下册)数学(人教版)Word 版习题教学资源包导学案第五章相交线与平行线第六章实数第七章平面直角坐标系第八章二元一次方程组第九章不等式与不等式组第十章数据的收集、整理与描述期末复习第五章相交线与平行线5.1 相交线5.2 平行线及其判定周周练(5.1~5.2)5.3 平行线的性质小专题(一)平行线的性质与判定5.4 平移周周练(5.3~5.4)单元测试(一)相交线与平行线第六章实数6.1 平方根6.2 立方根6.3实数单元测试(二)实数第七章平面直角坐标系7.1 平面直角坐标系7.2 坐标方法的简单应用单元测试(三)平面直角坐标系期中测试第八章二元一次方程组8.1 二元一次方程组8.2 消元——解二元一次方程组小专题(二)二元一次方程组的解法8.3 实际问题与二元一次方程组小专题(三)二元一次方程组的实际应用周周练(8.1~8.3)8.4 三元一次方程组的解法单元测试(四)二元一次方程组第九章不等式与不等式组9.1 不等式9.2 一元一次不等式周周练(9.1~9.2)9.3 一元一次不等式组小专题(四)解一元一次不等式(组)单元测试(五) 不等式与不等式组第十章数据的收集、整理与描述10.1 统计调查10.2 直方图小专题(五)从图表中获取信息单元测试(六)数据的收集、整理与描述期末测试期末复习期末复习(一) 相交线与平行线期末复习(二) 实数期末复习(三) 平面直角坐标系期末复习(四) 二元一次方程组期末复习(五) 不等式与不等式组期末复习(六) 数据的收集、整理与描述第五章相交线与平行线5.1 相交线5.1.1相交线5.1.2垂线5.1.3同位角、内错角、同旁内角第五章相交线与平行线5.2 平行线及其判定5.2.1平行线5.2.2平行线的判定第五章相交线与平行线5.3 平行线的性质5.3.1平行线的性质5.3.2命题、定理、证明第六章实数6.1 平方根第1课时算术平方根第2课时平方根第七章平面直角坐标系7.1 平面直角坐标系7.1.1有序数对7.1.2平面直角坐标系第七章平面直角坐标系7.2 坐标方法的简单应用7.2.1用坐标表示地理位置7.2.2用坐标表示平移第八章二元一次方程组8.2 消元——解二元一次方程组第1课时用代入消元法解方程组第2课时用加减消元法解方程组第九章不等式与不等式组9.1 不等式9.1.1不等式及其解集9.1.2不等式的性质第九章不等式与不等式组9.2 一元一次不等式第1课时一元一次不等式的解法第2课时一元一次不等式的应用第十章数据的收集、整理与描述10.1 统计调查第1课时全面调查第2课时抽样调查第五章相交线与平行线第六章实数第七章平面直角坐标系第八章二元一次方程组第九章不等式与不等式组第十章数据的收集、整理与描述第五章相交线与平行线5.1 相交线5.2 平行线及其判定5.3 平行线的性质5.4 平移第六章实数6.1 平方根6.2 立方根6.3实数第七章平面直角坐标系7.1 平面直角坐标系7.2 坐标方法的简单应用第八章二元一次方程组8.1 二元一次方程组8.2 消元——解二元一次方程组8.3 实际问题与二元一次方程组8.4 三元一次方程组的解法第九章不等式与不等式组9.1 不等式9.2 一元一次不等式9.3 一元一次不等式组第十章数据的收集、整理与描述10.1 统计调查10.2 直方图10.3 课题学习从数据谈节水第五章相交线与平行线5.1 相交线5.1.1相交线5.1.2垂线5.1.3同位角、内错角、同旁内角第五章相交线与平行线5.2 平行线及其判定5.2.1平行线5.2.2平行线的判定第五章相交线与平行线5.3 平行线的性质5.3.1平行线的性质5.3.2命题、定理、证明第六章实数6.1 平方根第1课时算术平方根第2课时平方根第六章实数6.3 实数第1课时实数第2课时实数的运算第七章平面直角坐标系7.1 平面直角坐标系7.1.1有序数对7.1.2平面直角坐标系第七章平面直角坐标系7.2 坐标方法的简单应用7.2.1用坐标表示地理位置7.2.2用坐标表示平移第八章二元一次方程组8.2 消元——解二元一次方程组第1课时用代入消元法解方程组第2课时用加减消元法解方程组第八章二元一次方程组8.3 实际问题与二元一次方程组第1课时利用二元一次方程组解决实际问题第2课时利用二元一次方程组的解作决策第九章不等式与不等式组9.1 不等式9.1.1不等式及其解集9.1.2不等式的性质第九章不等式与不等式组9.2 一元一次不等式第1课时一元一次不等式的解法第2课时一元一次不等式的应用第十章数据的收集、整理与描述10.1 统计调查第1课时全面调查第2课时抽样调查第五章相交线与平行线导学案7年级教学资源包导学案Word 版习题第六章实数第七章平面直角坐标系第八章二元一次方程组第九章不等式与不等式组第十章数据的收集、整理与描述第五章相交线与平行线5.1 相交线5.2 平行线及其判定5.3 平行线的性质5.4 平移第六章实数6.1 平方根6.2 立方根6.3实数第七章平面直角坐标系7.1 平面直角坐标系7.2 坐标方法的简单应用第八章二元一次方程组8.1 二元一次方程组8.2 消元——解二元一次方程组8.3 实际问题与二元一次方程组8.4 三元一次方程组的解法第九章不等式与不等式组9.1 不等式9.2 一元一次不等式9.3 一元一次不等式组第十章数据的收集、整理与描述10.1 统计调查10.2 直方图10.3 课题学习从数据谈节水第五章相交线与平行线5.1 相交线5.1.1相交线5.1.2垂线5.1.3同位角、内错角、同旁内角第五章相交线与平行线5.2 平行线及其判定5.2.1平行线5.2.2平行线的判定第五章相交线与平行线5.3 平行线的性质5.3.1平行线的性质5.3.2命题、定理、证明5.3 平行线的性质5.3.1平行线的性质第1课时平行线的性质第2课时平行线的性质与判定的综合运用。
部编人教版七年级下册数学《命题、定理、证明》教案
5.3.2 命题、定理、证明一、教学目标1.了解“证明”的必要性和推理过程中要步步有据.2.了解综合法证明的格式和步骤.3.通过一些简单命题的证明,初步训练学生的逻辑推理能力.4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力.5.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.二、学法引导1.教师教法:尝试指导,引导发现与讨论相结合.2.学生学法:在教师的指导下,积极思维,主动发现.三、重点·难点及解决办法(-)重点证明的步骤和格式是本节重点.(二)难点理解命题,分清其题设和结论,正确对照命题画出图形,写出已知、求证.(三)解决办法通过学生分组讨论,教师归纳得出证明的步骤和格式,再以练习加以巩固,解决重点、难点及疑点.四、课时安排l课时五、教具学具准备投影仪、三角板、自制胶片.六、师生互动活动设计1.通过引例创设情境,点题,引入新课.2.通过情境教学,学生分组讨论,归纳总结及练习巩固等手段完成新授.3.通过提问的形式完成小结.七、教学步骤(-)明确目标使学生严密推理过程,掌握推理格式,提高推理能力。
(二)整体感知以情境设计,引出课题,引导讨论,例题示范讲解新知,以练习巩固新知.(三)教学过程创设情境,引出课题师:上节课我们学习了定理与证明,了解了这两个概念.并以证明“两直线平行,内错角相等”来说明什么是证明.我们再看这一命题的证明(投影出示).例1 已知:如图1,,是截线,求证:.证明:∵(已知),∴(两直线平行,同位角相等).∵(对项角相等),∴(等量代换).这节课我们分析这一命题的证明过程,学习命题证明的步骤和格式.[板书]2.9 定理与证明探究新知1.命题证明步骤学生活动:由学生分组讨论以上命题的证明过程,按自己的理解说出证明一个命题都需要哪几步.【教法说明】根据上一节“两直线平行,内错角相等”这一命题的证明过程让学生讨论、分析、归纳命题证明的一般步骤,一是可以加深对命题证明的理解,二是培养学生归纳总结能力。
最新人教版初中数学七年级下册《5.3.2命题、定理、证明》优质课教案
《5.3.2 命题、定理、证明》教学设计教材分析:本课时主要是命题的概念、命题的构成、真假命题的判断、什么是定理、初步感知证明过程,大部分内容是要求学生有一个初步的了解,不必探究,主要培养学生不同几何语言的转化,是后续学习的基础.教学目标:【知识与技能目标】了解命题的概念以及命题的构成(如果……那么……的形式),并能区分命题的题设和结论;【过程与方法目标】知道什么是真命题和假命题.【情感态度与价值观目标】通过分组讨论,培养学生合作交流的意识和探索精神;教学重难点:【教学重点】命题的构成及命题的真假.【教学难点】理解证明要步步有据.课前准备:多媒体:PPT课件、电子白板教学过程:第一课时一、命题的概念问题1 请同学读出下列语句(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边都加同一个数,结果仍是等式.老师给出定义:像这样判断一件事情的语句,叫做命题.问题2 判断下列语句是不是命题?(1)两点之间,线段最短;()(2)请画出两条互相平行的直线;()(3)过直线外一点作已知直线的垂线;()(4)如果两个角的和是90º,那么这两个角互余.()问题3 你能举出一些命题的例子吗?二、命题的组成问题4 请同学们观察一组命题,并思考命题是由几部分组成的?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)如果两个角的和是90º,那么这两个角互余;(4)等式两边都加同一个数,结果仍是等式.(5)两点之间,线段最短.命题的组成命题由题设和结论两部分组成. 题设是已知事项,结论是由已知事项推出的事项许多数学命题常可以写成“如果……,那么……”的形式.“如果”后面连接的部分是题设,“那么”后面连接的部分就是结论.问题 5 下列语句是命题吗?如果是,请将它们改写成“如果……,那么……”的形式.并指出它的题设和结论。
人教版数学七年级下册5.3.2 命题、定理、证明(导学案)
5.3平行线的性质古之学者必严其师,师严然后道尊。
欧阳修铁山学校何逸春5.3.2命题、定理、证明一、新课导入1.导入课题:歌德是18世纪德国的一位著名文艺大师,一天,他与一位批评家“狭路相逢”,这位文艺批评家生性古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明,边走边大声说道:“我从来不给傻子让路!”面对如此尴尬的局面,歌德笑容可鞠,谦恭的闪在一旁,有礼貌地回答道:“呵呵,我可恰恰相反!”结果故作聪明的批评家,反倒自讨没趣,你知道歌德用的是什么语言技巧吗?你知道其中的数学道理吗?这涉及到我们今天要学习的内容中的一个概念.(板书课题)2.学习目标:(1)知道什么是命题,会把一个命题改写成“如果……那么……”的形式,从而能正确分清它的题设和结论.(2)知道什么是真命题和假命题;能区分一些简单命题的真假.3.学习重、难点:重点:知道什么是命题;能正确区分它的题设和结论.难点:改写命题,会填写一些证明的关键步骤和理由.二、分层学习1.自学指导:(1)自学范围:课本P20至P21练习前的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课本,重要的地方做好圈点,遇到疑难相互研讨.(4)自学参考提纲:①什么叫命题?什么叫真命题?什么叫假命题?②每个命题都由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.③数学中的命题常可以写成“如果……那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.④把课本中命题(2)、(4)改写成“如果……那么……”的形式,并指出它的题设和结论分别是什么.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:根据学情进行相应指导.(2)生助生:小组内同学相互交流研讨,纠错.4.强化:(1)命题的概念与结构.(2)真、假命题的概念(3)练习:①语句“画线段AB=CD”是命题吗?不是②指出下列命题的题设和结论:a.如果AB⊥CD,垂足为O,那么∠AOC=90°题设:如果AB⊥CD,垂足为O,结论:∠AOC=90°.b.如果∠1=∠2,∠2=∠3,那么∠1=∠3.题设:如果∠1=∠2,∠2=∠3,结:∠1=∠3.c.两直线平行,同位角相等.题设:如果两条直线平行,结论:同位角相等.d.同角的余角相等.题设:已知两个角是同一个角的余角,结论:这两个角相等.1.自学指导:(1)自学范围:课本P21“练习”之后至P22“练习”之前的内容.(2)自学时间:8分钟.(3)自学要求:认真阅读课文,在重要和有疑问的地方做好圈点、标记,知道如何判断命题的真假,如何给证明批注理由.(4)自学参考提纲:①什么叫定理?定理和命题有什么关系?②什么叫证明?证明中的每一步推理都要有根据,些根据可以是已知条件,也可以是定义、基本事实、事理等.③在下面的括号内填上推理的根据.a.如图1,AB和CD相交于点O,∠A=∠B,求证:∠C=∠D.证明:∵∠A=∠B(已知),∴AC∥BD(内错角相等,两直线平行),∴∠C=∠D(两直线平行,内错角相等).b.如图2,已知A、O、B三点在一条直线上,OD、OE分别是∠AOC、∠BOC的平分钱,求证:OD⊥OE.证明:∵O是∠AOC的平分线(已知),∴∠1=12∠AOC(角平分线的定).同理:∠2=12∠BOC.∴∠1+∠2=12(∠AOC+∠BOC),∵点A、O、B在同一条直线上,∴∠AOC+∠BOC=180°(平角的定义),∴∠+∠2=90°,∴D⊥OE(垂直的定义).④你知道怎样判断命题的真假吗?试判断下列命题的真假.若a=b,b=c,则a=c.(真)若a>b,b>c,则a>c.(真)若a∥b,b∥c,则a∥c.(真)若a⊥b,b⊥c,则a⊥c.(假)若ac=bc,则a=b.(假)若a2=b2,则a=b.(假)同位角相等.(假)锐角与钝角一定互补.(假)2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:根据学情进行相应指导.(2)生助生:小组内同学相互交流、订正.4.强化:(1)定理与命题的关系.(2)证明中每一步推理都要有根据,不能“想当然”.(3)练习:课本P22“练习”的第1、2小题.三、评价1.学生的自我评价:学生交流学习目标的达成情况和学习的感受等.2.教师对学生的评价:(1)表现性评价:教师对学生在本节课学习中的整体表现进行总结和点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课的学习任务是让学生了解命题的概念,能区分命题的题设和结论,并初步认识真假命题.这节课一开始由教师提出问题,学生自学课本,让学生体验先学后教的理念,同时培养了学生的自学能力.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)下列语句是命题的个数为(B)①画∠AOB的平分线;②直角都相等;③同旁内角互补吗?④若|a|=3,则a=3.A.1个B.2个C.3个D.4个2.(10分)“同一平面内,垂直于同一直线的两条直线互相平行”是真命题,其中题设是同一平面内,有两条直线垂直于同一条直线,结论是这两条直线互相平行.3.(20分)如图,用式子表示下列句子:(1)因为∠1和∠2相等,根据“内错角相等,两直线平行”,所以AB和EF平行;(2)因为DE和BC平行,根据“两直线平行,同位角相等”,所以∠1=∠B,∠3=∠C.解:(1)∵∠1=∠2,∴AB∥EF(内错角相等,两直线平行).(2)∵DE∥BC,∴∠1=∠B,∠3=∠C(两直线平行,同位角相等).4.(20分)判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.(1)两个锐角的和是锐角;(2)邻补角是互补的角;(3)同旁内角互补.解:(1)假命题,反例:两个锐角分别为80°和80°,和为160°,为钝角;(2)真命题;(3)假命题,反例,两相交直线被第三条直线所截时,同旁内角不互补.二、综合运用(30分)5.完成下面的证明.(1)如图(1),AB∥CD,CB∥DE,求证∠B+∠D=180°.证明:∵AB∥CD,∴∠B=∠C(两直线平行,内错角相等).∵CB∥DE,∴∠C+∠D=180°(两直线平行,同旁内角互补).∴∠B+∠D=180°.(2)如图(2),∠ABC=∠A′B′C′,BD,B′D′分别是∠ABC,∠A′B′C′的平分线,求证∠1=∠2.证明:∵BD、B′D′分别是∠ABC,∠A′B′C′的平分线,∴∠1=12∠ABC,∠2=12∠A′B′C′(角平分线的定义).又∠ABC=∠A′B′C′,∴12∠ABC=12∠A′B′C′.∴∠1=∠2(等量代换).三、拓展延伸(10分)6.如图,给出下列论断:(1)AB∥DC,(2)AD∥BC,(3)∠A+∠B=180°,(4)∠B+∠C=180°,以其中一个作为题设,另一个作为结论,写出一个真命题.想一想,若连接BD,你能试着写出一个真命题并写出其推理过程吗?解:题设:AB∥DC,结论:∠ABC+∠C=180°.真命题:若AB∥DC,则∠ABC+∠C=180°.如图,连接BD.真命题:若∠ABD=∠CDB,则AB∥DC.证明:∵∠ABD=∠CDB,∴AB∥CD(内错角相等,两直线平行).【素材积累】1、不求与人相比,但求超越自己,要哭旧哭出激动的泪水,要笑旧笑出成长的性格。
人教版七年级数学(下)—教案:5.3.2命题、定理、证明优秀教学案例
4.针对学生的学习情况,调整教学策略,为下一节课的教学做好准备。
五、案例亮点
1.情境创设:本节课通过生活实例和多媒体展示,有效地激发了学生的学习兴趣,使他们能够主动参与到课堂学习中。情境创设不仅增强了学生对数学知识的理解,还提高了他们的学习积极性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发他们学习数学的内在动力。
2.培养学生的自信心和自尊心,让他们感受到自己在数学学习中的进步和成就。
3.引导学生认识到数学的严谨性和逻辑性,培养他们的思维品质和道德素养。
4.通过对命题、定理和证明的学习,使学生感受到数学的美丽和力量,提高他们对数学价值观的认识。
2.问题导向:教师在教学中提出了具有挑战性和引导性的问题,引导学生进行深入思考和探索。问题导向的教学策略使得学生在解决问题的过程中,能够不断提高自己的数学思维水平和解决问题的能力。
3.小组合作:教师组织学生进行小组讨论和合作,培养了他们的团队协作能力和沟通能力。小组合作使得每个学生都能在课堂上发挥自己的特长,提高了他们的自主学习能力和合作意识。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,培养他们的自我评价和自我调节能力。
2.组织学生进行互评和小组评价,让他们学会倾听他人的意见,提高他们的批判性思维。
3.教师对学生的学习成果进行肯定和鼓励,增强他们的自信心和自尊心。
4.结合学生的学习情况,调整教学策略,为下一节课的教学做好准备。
四、教学内容与过程
(二)问题导向
1.提出具有挑战性和引导性的问题,激发学生的思维活力,培养他们的解决问题的能力。
2.引导学生通过讨论和思考,逐步解决问题,让他们体验到解决问题的过程和成就感。
人教版七年级数学下册教案 5-3-2 命题、定理、证明
5.3.2 命题、定理、证明一、教学目标【知识与技能】1.理解命题,定理及证明的概念,会区分命题的题设和结论.2.会判断真假命题,知道证明的意义及必要性,了解反例的作用.3.理解证明要步步有据,培养学生养成科学严谨的学习态度. 【过程与方法】经历判断命题真假的过程,对命题的真假有一个初步的了解. 【情感态度与价值观】初步培养学生不同几何语言相互转化的能力.二、课型新授课三、课时1课时四、教学重难点【教学重点】命题的概念和区分命题的题设与结论.【教学难点】区分命题的题设和结论.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)让学生阅读课件中的两个例子,讨论句子含义。
(二)探索新知1.出示课件4-5,探究命题的概念教师出示问题:完成下列问题:请同学读出下列语句:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边都加同一个数,结果仍是等式.这些句子有何特点?学生答:都对事情做出了判定.教师问:这样的句子叫做命题.什么叫做命题?学生答:像这样判断一件事情的语句,叫做命题.总结点拨:(出示课件5)教师强调:1.只要对一件事情作出了判断,不管正确与否,都是命题.如:相等的角是对顶角.2.如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.如:画线段AB=CD.考点1:命题的识别判断下列四个语句中,哪个是命题,哪个不是命题?并说明理由:(1)对顶角相等吗?(2)画一条线段AB=2cm;(3)两条直线平行,同位角相等;(4)相等的两个角,一定是对顶角.(出示课件6)师生共同讨论解答如下:解:(3)(4)是命题,(1)(2)不是命题.理由如下:(1)是问句,故不是命题;(2)是做一件事情,也不是命题.总结点拨:①命题必须是一个完整的句子,而且必须做出肯定或否定的判断.疑问句、感叹句、作图过程的叙述都不是命题;②命题常见的关键词有“是”“不是”“相等”“不相等”“如果……那么……”.出示课件7,学生自主练习后口答,教师订正.2.出示课件8-10,命题的构成教师问:观察下列命题,你能发现这些命题有什么共同的结构特征?与同伴交流.(1)如果两个三角形的三条边相等,那么这两个三角形的周长相等;(2)如果两个数的绝对值相等,那么这两个数也相等;(3)如果一个数的平方等于9,那么这个数是3.学生答:都是“如果……那么……”的形式.教师问:命题一般都可以写成“如果……那么……”的形式.1.“如果”后接的部分是题设,2.“那么”后接的部分是结论.如命题:熊猫没有翅膀.改写为:“如果……那么……”的形式.学生答:如果这个动物是熊猫,那么它就没有翅膀.师生一起总结:添加“如果”“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套.总结点拨:(出示课件10)命题的组成:题设——已知事项命题结论——由已知事项推出的事项两直线平行,同位角相等题设(条件)考点2:命题表述形式的变换分别把下列命题写成“如果……那么……”的形式.(1)两点确定一条直线;(2)等角的补角相等;(3)内错角相等. (出示课件11)学生独立思考后,师生共同分析解答.教师依次展示学生解答过程:学生1解:(1)如果有两个定点,那么过这两点有且只有一条直线;学生2解:(2)如果两个角分别是两个等角的补角,那么这两个角相等;学生3解:(3)如果两个角是内错角,那么这两个角相等.总结点拨:把命题写成“如果……那么……”的形式时,应添加适当的词语,使语句通顺.出示课件12,学生自主练习后口答,教师订正.3.出示课件13,探究真假命题的概念.教师问:有些命题如果题设成立,那么结论一定成立;而有些命题题设成立时,结论不一定成立. 如命题:“如果一个数能被4整除,那么它也能被2整除”是条件也成立,结论也成立吗?学生答:如命题:“如果一个数能被4整除,那么它也能被2整除”是条件也成立,结论也成立.教师问:上面的命题:条件也成立,结论也成立.这样的命题是正确命题. 如命题:“如果一个数能被4整除,那么它也能被2整除”是一个正确的命题吗?学生答:是一个正确的命题.教师问:有些命题题设成立时,结论不一定成立.这样的命题是错误的命题.如命题:“如果两个角互补,那么它们是邻补角”就是一个怎样的命题呢?学生答:“如果两个角互补,那么它们是邻补角”就是一个错误的命题.教师问:正确的命题叫真命题,错误的命题叫假命题.则命题“内错角相等,两直线平行”是真命题还是假命题?学生答:是真命题.教师问:怎样确定定一个命题真假呢?师生一起解答:确定一个命题真假的方法:利用已有的知识,通过观察、验证、推理、举反例等方法.考点3:真假命题的识别下列命题哪些命题是正确的,哪些命题是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.学生独立思考后,师生共同解答.解:真命题有(2)、(3)、(5);假命题有(1)、(4).总结点拨:判断一个命题是真命题还是假命题,就是判断一个命题是否正确,即由条件能否得出结论.如果命题正确,就是真命题;如果命题不正确,就是假命题.出示课件15,学生自主练习后口答,教师订正.4.出示课件16-19,探究证明和反证法(举反例)教师出示问题:一天早上,张老汉来到公安局里告状说:王五刚刚在他地里偷了一袋子苹果.公安局长立即派干警将王五传唤到公安局审讯:公安局长问张老汉:“你怎知是王五偷了你的苹果?”“因为早上我发现王五从苹果园那边过来,把一袋东西背回家,还发现我果园的苹果被人偷了,我知道王五家没有苹果树.所以我家苹果肯定是王五偷的.”张老汉想证明什么?他是怎么证明的?学生答:张老汉想证明偷了他的苹果,王五从他家的苹果园那边经过,把一袋东西背回家.教师问:根据张老汉的证明,你能断定苹果是王五偷的吗?你觉得有疑点吗?学生答:根据张老汉的证明,不能断定苹果是王五偷的,有疑点:因为只是经过,张老汉的推断太牵强.总结点拨:(出示课件16)这种从已知条件出发(列出理由),推断出结论的证明方法,叫综合法.综合法是最常用的证明方法.教师出示问题:公安局长一时拿不定主意,就问旁边的梁副局长:“梁局长,你怎么看?”梁局长会如何回答呢?学生答:梁局长说“这事要证明是王五干的,还得弄清那袋子里装的是不是刚摘的苹果,还要看看地里的脚印是不是王五的才行.如果袋子里装的是刚摘的苹果,且地里的脚印是王五的,那就一定是他偷的.”总结点拨:(出示课件17)从结论出发,逆着寻找所需要的条件的思考过程,叫分析.在分析的过程中,如果发现所需要的条件,都已具备或可从已知条件中推得.那么证明就很容易了.总结点拨:(出示课件18)证明的概念在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个推理过程叫作证明.教师强调:证明的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是学过的定义、基本事实、定理等.教师问:如何判定一个命题是假命题呢?学生答:举一个反例即可.教师问:例如,要判定命题“相等的角是对顶角”是假命题如何证明?师生一起解答:可以举出如下反例:如图,OC是∠AOB的平分线,∠1=∠2,但它们不是对顶角.总结点拨:(出示课件19)确定一个命题是假命题的方法:只要举出一个例子(反例):它符合命题的题设,但不满足结论即可.考点4:利用证明推理解决问题如图,∠1=∠2,试说明直线AB,CD平行.(出示课件20)师生共同分析:要证明AB,CD平行,就需要同位角相等的条件,图中∠1与∠3就是同位角.我们只要找到:能说明它们相等的条件就行了.从图中,我们可以发现:∠2与∠3是对顶角,所以∠3=∠2.这样我们就找到了∠1与∠3相等的确切条件了.学生独立思考后,师生共同解答.证明:∵∠2与∠3是对顶角,∴∠3=∠2.又∵∠1=∠2,∴∠1=∠3.∴AB∥CD.出示课件21,学生自主练习,教师给出答案。
人教版数学七年级下册-《命题、定理、证明》教学详案
《命题、定理、证明》教学详案1.掌握命题、定理的概念,并能分清命题的组成.2.了解证明的意义.通过讨论、探究、交流等形式,使学生在质疑、辩论中获得知识体验.培养学生敢于怀疑、大胆探究的品质.【重点】掌握命题、定理的概念,了解证明的意义.【难点】1.分清命题的组成,能说出一个命题的逆命题.2.掌握推理的方法和步骤.导入一:我们学过一些对某一件事情做出判断的语句,例如:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条直线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边加同一个数,结果仍是等式.像这样判断一件事情的句子叫做什么呢?通过教材的举例,直接导入本课时的学习.导入二:在直角三角形中,如果一条直角边长为3,另一条直角边长为4,那么这个直角三角形的斜边长是5.这个结论是否正确呢?如果我们说它是正确的,就要拿出相应的依据,或者去证明你的猜想是正确的.要认识这个问题,就需要我们了解一些命题、定理、证明的相关知识.通过学生可能掌握的常识性问题,引出一些结论只靠猜想和验证还是不够的,必须给予科学的证明.(针对导入一)像对顶角相等这样的句子叫什么呢?一、命题的定义定义:判断一件事情的语句,叫做命题.问题:下列语句,哪些是命题?哪些不是?(1)过直线AB外一点P,作AB的垂线;(2)过直线AB外一点P,可以作几条直线与AB平行?(3)经过直线AB外一点P,有且只有一条直线与这条直线平行;(4)若|a|=-a,则a≤0.处理方式:(1)教师总结:(3)(4)这两个句子的共同特征是对一件事情做出判断;(2)指明概念以后,安排学生举例;(3)教师评价和鼓励学生.(补充)判断下列语句是不是命题.(1)两条直线相交有几个交点?(2)相等的角是对顶角;(3)画∠AOB=30°;(4)如果x2=y2,那么x=y.〔解析〕问句一定不是命题,只有对一件事情做出判断的句子才是命题,而与是否正确无关.解:(1)(3)不是命题,(2)(4)是命题.(1)必须是对某件事情作出判断的句子,才能叫命题,反之不能作出判断的句子,不叫命题,这是辨别一个语句是否是命题的根本原则.(2)命题的形式并非全部是语言叙述的形式,也可以用数学符号表示.(3)命题的内容并非全部为数学语言,还有生活中其他方面更广泛的内涵.二、命题的组成命题的形式多种多样,命题是由哪些部分组成的呢?命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.命题常写成“如果……那么……”的形式,这时,“如果”后接的部分是题设,“那么”后接的部分是结论.1.处理方式.教师直接给出命题的组成包括两部分,题设和结论.并向学生解释命题的常见形式,即以“如果……那么……”的形式展现.强调有些命题的形式不明显,需要先将它写成以上形式.2.例题讲解.(补充)指出下列命题的题设和结论.(1)对顶角相等;(2)不相等的两个角不是对顶角.〔解析〕根据题意,适当增减词语,将原命题改写成“如果……那么……”的形式.用“如果”开始的部分即为题设,用“那么”开始的部分即为结论.解:(1)题设:两个角是对顶角.结论:这两个角相等.(2)题设:两个角不相等.结论:这两个角不是对顶角.(1)任何命题都由“题设”和“结论”构成.已知的事项为题设,在命题的前半部分;由已知事项推出的结果是结论,在命题的后半部分.(2)辨别题设和结论时,通常将命题改写为“如果……那么……”的形式,“如果”以后的内容为题设,“那么”以后的内容为结论.改写时需在不改变原意的情况下,适当补充词语,使语句通顺、完整.三、命题的真假凡是命题都是正确或者是错误的吗?1.判断下列命题是否正确.(1)如果两个数互为相反数,那么这两个数的商为-1;(2)如果两个角是邻补角,那么这两个角互补;(3)如果两个数互为相反数,那么这两个数的和为0;(4)如果两个数的商为-1,那么这两个数互为相反数;(5)如果两个数的和为0,那么这两个数互为相反数;(6)如果两个角互补,那么这两个角是邻补角.2.真命题和假命题.如果题设成立,那么结论一定成立,这样的命题叫真命题;有些命题中,题设成立时,不能保证结论一定成立,这样的命题叫做假命题.3.例题讲解.(补充)“相等的角是对顶角”是真命题吗?如果是,说出理由;如果不是,请举出反例.〔解析〕对事情做出判断,若正确,即为真命题,否则,是假命题.若为真命题,可通过讲道理说明,若为假命题,可通过举一反例说明.解:不是真命题,如下图中∠1=∠2,但∠1与∠2不是对顶角.命题的真假是以对事情所作出判断的正确与否来划分的.四、定理和证明命题有真有假,有的命题不是一目了然就能辨出真假,怎么办呢?这就需要我们用推理的方法来加以证明.1.定理.定理与命题的联系,定理属于命题,而且属于真命题.即定理都叫命题,但命题不一定是定理.2.如果是真命题,可以经推理证明其正确性,若判断为假命题,则需举反例说明或用反证法的思想说明.(教材例2)如图所示,已知直线b∥c,a⊥b.求证a⊥c.〔解析〕要证明a⊥c,只需要证明∠2为90°即可.如果能证明∠1=∠2,问题即可解决.证明:因为a⊥b(已知),所以∠1=90°(垂直的定义).又b∥c(已知),所以∠2=∠1(两直线平行,同位角相等).所以∠1=∠2=90°(等量代换),所以a⊥c(垂直的定义).证明的实质是将命题的题设实现为命题的结论,为原因(题设)与结果(结论)架设一座桥梁,不论采取什么方法,只要用已经学过的知识、有理论依据地推出结论就可以,因此证明同一个命题会有多种方法.1.命题的“题设”和“结论”是就命题的结构而言,任何一个命题都包含这两部分,而且“题设在前,结论在后”.对于这两部分不明显的命题,需挖掘隐含的内容,将它写成“如果……那么……”的形式,再辨别.2.命题的“真”“假”是对命题的内容而言的.任何一个命题非真即假.要说明一个命题的正确性,一般需推理、论证,而说明一个命题的错误性只需举出一个反例即可.3.证明中的每一步推理都要有根据,根据可以是已知条件,也可以是学过的定义、基本事实、定理等.1.下列语句中不是命题的是()A.锐角小于钝角B.作角A的平分线C.对顶角不相等D.股票不是人民币解析:根据命题的定义:对一件事情作出判断的语句叫做命题进行解答.“锐角小于钝角,对顶角不相等,股票不是人民币”都对一件事情作出了判断,而“作角A的平分线”描述的是一种行为,没有作出判断,不是命题.故选B.2.下列命题中,正确的是()A.对顶角相等B.同位角相等C.内错角相等D.同旁内角互补解析:对顶角相等,正确;在两平行线被第三条直线所截的条件下,B,C,D才正确.故选A.3.请给假命题“一个正数永远大于它的倒数”举出一个反例:.解析:判断“一个正数永远大于它的倒数”什么情况下不成立,即找出一个正数小于或等于它的倒数即可.答案不唯一.故填,<=2.5.3.2命题、定理、证明1.命题的定义例12.命题的组成例23.命题的真假例34.定理和证明例4一、教材作业【必做题】教材第21页练习第1题;教材第22页练习第1题.【选做题】教材第24页习题5.2第13题.二、课后作业【基础巩固】1.给出下列语句:①两点之间,直线最短;②不许大声讲话;③连A,B两点;④鸟是动物;⑤不相交的两条直线叫做平行线.其中是命题的有 ()A.2个B.3个C.4个D.5个2.下列命题中真命题是()A.同位角相等B.两点之间,线段最短C.相等的角是对顶角D.互补的角是邻补角3.下面各数中,可以用来证明命题“任何偶数都是8的倍数”是假命题的反例是()A.9B.8C.4D.164.说出下列命题的题设和结论.(1)互为邻补角的两个角的平分线互相垂直;(2)钝角大于它的补角.【能力提升】5.下列说法中正确的是()A.两直线被第三条直线所截得的同位角相等B.两直线被第三条直线所截得的同旁内角互补C.两平行线被第三条直线所截得的同位角的平分线互相垂直D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直6.下列说法错误的是()A.所有的命题都是定理B.定理是真命题C.公理是真命题D.“画线段AB=CD”不是命题7.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=-2B.a=-1C.a=1D.a=28.将下列命题改写成“如果……那么……”的形式.(1)直角都相等;(2)等量代换;(3)末位数是5的整数能被5整除;(4)三角形的内角和是180°.【拓展探究】9.判断下列语句是不是命题,如果是命题,并判断命题是否正确.(1)连接AB;(2)如果两平行线被第三条直线所截,那么内错角相等.10.判断下列命题是真命题还是假命题,如果是假命题,举一个反例.(1)两条直线被第三条直线所截,同位角相等;(2)如果a>b,那么ac>bc;(3)两个锐角的和是钝角.【答案与解析】1.B(解析:判断一件事情的语句是命题,由此可判断出①④⑤是命题.)2.B(解析:根据平行线的性质对A进行判断;根据线段最短的公理对B进行判断;根据对顶角的定义对C进行判断;根据邻补角的定义对D进行判断.A.两直线平行,同位角相等,所以A选项错误;B.两点之间,线段最短,所以B选项正确;C.相等的角不一定是对顶角,所以C选项错误;D.有一条边共线且互补的两个角是邻补角,所以D选项错误.故选B.)3.C(解析:根据偶数与倍数的定义对各选项进行验证即可.A.9不是偶数,故本选项错误;B.8是8的倍数,故本选项错误;C.4是偶数但不是8的倍数,故本选项正确;D.16是8的倍数,故本选项错误.故选C.)4.解:(1)题设:两角互为邻补角,结论:它们的平分线互相垂直. (2)题设:一个角是钝角,结论:这个角大于它的补角.5.D(解析:A.两平行线被第三条直线所截得的同位角相等,原说法错误,故本选项错误;B.两平行线被第三条直线所截得的同旁内角互补,原说法错误,故本选项错误;C.两平行线被第三条直线所截得的同位角的平分线互相平行,原说法错误,故本选项错误;D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直,说法正确,故本选项正确.故选D.)6.A(解析:A.定理是真命题,但假命题不是定理,故错误,本选项符合题意;B.定理是真命题,C.公理是真命题,D.“画线段AB=CD”不是命题,均正确,不符合题意.故选A.)7.A(解析:根据要证明一个结论不成立,可以通过举反例的方法来证明.用来证明命题“若a2>1,则a>1”是假命题的反例可以是a=-2,因为a2>1,但是a=-2<1,所以A正确.故选A.) 8.解:(1)如果几个角是直角,那么它们都相等. (2)如果两个量相等,那么它们可以互相代换. (3)如果一个数的末位数是5,那么它能被5整除. (4)如果一个图形是三角形,那么它的内角和是180°.9.解:(1)“连接AB”不是判断一件事情的语句,所以不是命题. (2)“如果两平行线被第三条直线所截,那么内错角相等”是命题,是正确的命题.10.解:(1)假命题.两直线不平行时不成立,可通过画图说明,图略. (2)假命题.当c≤0时不成立,如3>2,但3×0=2×0. (3)假命题.如α=20°,β=50°,则α+β=70°不是钝角.本课时是学生学习证明的正式开始,理解相关几个概念不是难点,难点是领会证明的基本思路和要领.因此本课时在引导学生准确理解相关定义的基础上,通过较多的例题,给学生做证明问题的示范,突出了课时教学的重点,取得了较好的课堂学习效果.在前面基本定义的教学过程中,老师的讲解过多,出示给学生问题阅读提纲,通过学生交流后老师总结即可.这在一定程度上限制了学生课堂学习的主动性.在课时教学过程中,命题的例子基本都是老师呈现给学生的,可以尝试让学生根据所学知识,按照一定的要求自拟几个命题,这样更有利于理解命题的相关含义.对于为什么要进行证明和证明的意义要加以点拨,对于可以作为证明的依据也要帮助学生归纳和总结一下.练习(教材第21页)1.解:(1)题设:AB⊥CD,垂足为O;结论:∠AOC=90°. (2)题设:∠1=∠2,∠2=∠3;结论:∠1=∠3. (3)题设:两直线平行;结论:同位角相等.2.提示:答案不唯一,如“对顶角相等”“两直线平行,同位角相等”等.练习(教材第22页)1.同旁内角互补,两直线平行两直线平行,同旁内角互补2.解:不是真命题.如图所示,∠1和∠2是同位角,但不相等.习题5.3(教材第22页)1.解:135°.因为转弯后公路方向相同,即平行,而且两次拐弯时的角为内错角,必然相等.2.解:因为AD∥BC,所以∠A+∠B=180°,所以∠B=180°-∠A=120°.因为DC与AB可能平行,也可能不平行,所以∠D的度数不确定.3.解:(1)∠2=110°.两直线平行,内错角相等. (2)∠3=110°.两直线平行,同位角相等.(3)∠4=70°.两直线平行,同旁内角互补.4.解:∠2=80°,∠3=110°,∠4=110°.理由如下:因为a∥b,所以∠2=∠1=80°.因为a∥b,所以∠3+∠5=180°,所以∠3=180°-∠5=110°.因为a∥b,所以∠4=∠3=110°.5.解:应以60°铺设.因为两直线平行,同旁内角互补.6.内错角相等,两直线平行两直线平行,内错角相等7.(1)C(2)C(解析:(1)两直线平行,内错角相等.(2)两直线平行,同旁内角互补.)8.解:∠3=∠1=45°,∠4=∠2=122°,∠5=180°-∠2=58°,∠6=180°-∠4=58°,∠7=180°-∠1=135°,∠8=180°-∠3=135°.9.解:(1)因为∠1=∠2,且∠1和∠2为内错角,所以AB∥EF. (2)因为DE∥BC,∠1和∠B为同位角,∠3和∠C为同位角,所以∠1=∠B,∠3=∠C.12.解:(1)假命题.30°与60°和为直角;70°与80°和为钝角. (2)真命题. (3)假命题.如三角形中任意两角均互为同旁内角,但它们不互补. 13.解:(1)∠C 两直线平行,内错角相等两直线平行,同旁内角互补(2)∠A'B'C' 角平分线定义等量代换14.解:(1)∠DAB=∠B=44°,两直线平行,内错角相等. (2)∠EAC=∠C=57°,两直线平行,内错角相等. (3)∠BAC=180°-∠DAB-∠EAC=79°.通过此题可知∠B+∠C+∠BAC=∠DAB+∠EAC+∠BAC=180°.15.解:因为镜子是平行的,所以∠2=∠3(两镜子被竖直光线所截).又因为∠1=∠2,∠3=∠4,所以∠5=∠6,所以进入潜望镜的光线和离开潜望镜的光线是平行的(内错角相等,两直线平行).求证:如果两条平行线被第三条直线所截,那么同旁内角的平分线互相垂直.〔解析〕首先应读懂题意,画出相应的图形,并写出已知、求证,然后再考虑找出证明的途径.已知AB∥CD,EF交AB于点E,交CD于点F,EM平分∠BEF,FN平分∠EFD,FN交EM于点O,如图所示.求证EM⊥FN.人教版数学七年级下册-打印版证明:因为AB∥CD,所以∠BEF+∠EFD=180°.因为EM平分∠BEF,FN平分∠EFD,所以∠MEF=∠BEF,∠NFE=∠EFD,所以∠MEF+∠NFE=90°,所以∠EOF=90°,所以EM⊥FN.如图所示,已知AB∥CD,直线EF分别交AB,CD于M,N,MP平分∠EMB,NQ平分∠MND,那么MP∥NQ,为什么?〔解析〕本题考查平行线的性质与判定,要说明平行,可寻找满足条件的同位角、内错角、同旁内角的关系,可由条件AB∥CD及角平分线的定义得到平行.解:因为AB∥CD(已知),所以∠EMB=∠MND(两直线平行,同位角相等).因为MP平分∠EMB,NQ平分∠MND(已知),所以∠EMP=∠EMB,∠MNQ=∠MND(角平分线定义),所以∠EMP=∠MNQ(等量代换),所以MP∥NQ(同位角相等,两直线平行).两平行线被第三条直线所截而成的同位角平分线,内错角平分线均互相平行,同旁内角平分线互相垂直.。
人教版七年级数学下册第五章5.3.2命题、定理、证明(教案)
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《命题、定理、证明》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断真假的陈述?”比如,判断广告中的产品宣传是否真实。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索命题的奥秘。
在学生小组讨论环节,大家对于定理在实际生活中的应用提出了很多有趣的观点。但同时我也注意到,部分学生在讨论过程中较为沉默,可能是因为他们对主题不他们积极参与讨论,提高自信心。
首先,关于命题的真假判断,大多数学生能够理解并掌握基本的判断方法,但在遇到一些复杂命题时,仍然会出现判断失误的情况。这说明在今后的教学中,我需要多设计一些具有挑战性的题目,帮助学生提高判断能力。
其次,定理的应用是学生们普遍感到困惑的地方。在讲解定理时,我应该更加注重引导学生理解定理的适用条件,以及如何在实际问题中灵活运用定理。通过案例分析,让学生明白定理并不是孤立的知识点,而是可以解决实际问题的有力工具。
1.教学重点
(1)理解命题的概念:命题是描述性语句,可以判断其真假。本节课重点是让学生掌握命题的基本要素,如何判断一个命题的真假,以及如何书写正确的命题。
举例:判断下列命题的真假:“一个三角形的三个内角和为180度。”
(2)掌握定理的定义:定理是经过证明的命题。重点在于让学生理解定理在几何证明中的重要性,并学会运用定理进行问题的解决。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解命题的基本概念。命题是可以判断真假的陈述句。它是数学逻辑推理的基础,是建立定理和进行证明的前提。
2.案例分析:接下来,我们来看一个具体的案例。通过分析“一个三角形的三个内角和为180度”这个命题,了解它在几何证明中的应用。
人教版数学七年级下册导学案5.3.2命题、定理
课题:5.3.2命题、定理【学习目标】:1、了解命题的概念,并能区分命题的题设和结论。
2、经历判断命题真假的过程,对命题的真假有一个初步的了解。
3、情感态度与价值观:初步培养学生不同几何语言相互转化的能力。
.【学习重点】:命题的概念和区分命题的题设与结论【学法重点】: 区分命题的题设和结论一、【温故知新】1.平行线的判定方法有哪些?平行线的性质有哪些?.二、【自主学习】(一)预习自我检测(阅读课本21-22页,完成下列各题。
)1 命题:2 命题由()和()两部分组成.题设是(),结论是由()推出的事项.3 下列语句是命题吗?如果是,说出它的题设和结论①如果两条直线都与第三条直线平行,那么这条直线也互相平行;②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.⑤画AB∥CD2.、我的疑难问题:三、【合作探究】1 ①如果两个角相等,那么它们是对顶角。
②如果a>b.b>c那么a=b③如果两个角互补,那么它们是邻补角。
你认为这几句话对吗?它们是不是命题?真命题:假命题:2 什么是定理?④【归纳总结】:五、【达标测试】一、填空题.1.命题是 一件事情的句子,命题都是由 和 两部分组成;2.命题“两直线平行,同位角相等”中,“两直线平行”是命题的 ;3.命题“若a ≠b ,则22b a ”的题设是 ,结论是 ;4.命题“邻补角的平分线互相垂直”的题设是_____________, 结论是____________.5命题“两条平行线被第三第直线所截,内错角相等”是( )命题,题设是( ),结论是( )6命题“如果两个角互补,那么它们是邻补角”是( )命题,题设是( ),结论是( ) 7下面四个命题中:①同位角相等;②过一点有且只有一条直线 与已知直线垂直;③如果两个角相等,那么这两个角是对顶角;④过一点有且只有一条直线与已知直线平行;⑤三条直线两两相交,最多只有三个交点.其中正确的命题是 .(填入序号即可)二 写出下列命题的题设和结论,并判断此命题是否正确;1.如果两条直线相交,那么它们只有一个交点;题设: 结论:2.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;题设: 结论:3.相等的角是对顶角;题设: 结论:4.任意两个直角都相等;题设: 结论:5.两条直线不平行就相交。
人教版七年级数学下册教案:5.3.2 命题、定理、证明
课题 5.3.2命题、定理、证明授课人教学目标知识技能掌握命题、定理的概念,并能分清命题的题设和结论,判定真命题和假命题;能根据已知条件对简单问题进行证明.数学思考通过讨论、探究、交流等形式,使学生在辩论中获得知识体验.问题解决用类比的方法,经历自主学习、合作探究,领悟命题的有关概念.情感态度在学习过程中培养学生敢于怀疑、大胆探究的品质,培养合作、交流的能力,从活动中体会学习的快乐.教学重点掌握命题、定理的概念,并能分清命题的组成.教学难点分清命题的组成,并能把一个命题改写成“如果……那么……”的形式.授课类型新授课课时教具教学活动教学步骤师生活动设计意图活动一:创设情境导入新课【课堂引入】以下6个句子,有什么不同?你能对它们进行分类吗?如果你能分类,分类的依据是什么?(1)熊猫没有翅膀;(2)对顶角相等;(3)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(4)你喜欢数学吗?(5)作线段AB=CD;(6)清新的空气;(7)不许讲话.指出像这样判断一件事情的语句,叫做命题.既复习了已学知识,又让学生认识了命题的多种表现形式.活动二:实践探究交流新知【探究1】命题的概念下列句子中,哪些是命题?①直角三角形中的两个锐角互余;②正数都大于0;③如果∠1+∠2=180°,那么∠1与∠2互补;④太阳不是行星;⑤对顶角相等吗?⑥作一个角等于已知角.分析:①②③是命题,它们都对事情作出了肯定回1.通过各类型的语句探究命题的概念.答;④是命题,它对事情作出了否定回答;⑤不是命题,只表示疑问,并未作出判断;⑥不是命题,只是描述了一个作图的过程,设有做出判断.解:①②③④是命题,⑤⑥不是命题.师生共同总结判断命题的依据:对事件做出了肯定或否定的判断的句子为命题,否则不是命题.【探究2】命题的题设和结论命题由题设和结论两部分组成,其中“题设”是已知事项,即命题中的已知条件;“结论”是由已知事项推出的事项,即结论是在已知条件的前提下可得到的结果.命题的表述形式有标准形式:“如果……那么……”,另外还有“若……则……”等,一般地,“如果……”和“若……”是题设部分,“那么……”和“则……”是结论部分.一些命题前面的“附加部分”属题设.要准确找出一个命题的题设和结论,特别是一些没有关联词语、题设和结论不明显的命题.(续表)活动二:实践探究交流新知例2判断下列语句是不是命题,是命题的指出命题的题设和结论,并判断此命题是否是真命题.(1)画射线AC;(2)同位角相等吗?(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;(4)任意两个直角都相等;(5)如果两条直线相交,那么它们只有一个交点;(6)若|x|=|y|,则x=y.解:(1)(2)不是命题;(3)题设是两条直线被第三条直线所截,同旁内角互补,结论是这两条直线平行,是真命题;(4)题设是两个角是直角,结论是这两个角相等,2.师生通过例题共同探究命题的题设和结论的确定方法.3.引导学生区分命题与定理的关系,且体会数学命题证明的必要性.是真命题;(5)题设是两条直线相交,结论是它们只有一个交点,是真命题;(6)题设是|x|=|y|,结论是x=y,是假命题;有些数学命题,如“对顶角相等”,没有写成标准形式,条件和结论不明显,要认真分析是由什么来推断什么,把它恢复成标准形式,这样就容易找到它的条件和结论.如“对顶角相等”恢复成标准形式是“如果两个角是对顶角,那么这两个角相等”.有些命题的条件之前还有条件,那么这两个条件合起来作为命题的条件,如“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”,条件是两条直线被第三条直线所截,同位角相等;结论是这两条直线平行.【探究3】定理与证明我们已经知道下列各命题都是正确的,即都是公认的真命题:(1)两点确定一条直线;(2)两点之间线段最短;(3)过一点有且只有一条直线与已知直线垂直;(4)过直线外一点有且只有一条直线与这条直线平行.有些命题可以从基本事实出发或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理.归纳:定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.探究证明:根据条件、定义以及基本事实、定理等,经过演绎推理,来判断一个命题是否正确,这样的推理过程叫做证明.图5-3-63如图5-3-63,有下列三个条件:①DE∥BC:②∠1=∠2;③∠B=∠C.(1)若从这三个条件中任选两个作为题设,另一个作为结论,组成一个命题,一共能组成几个命题,请你把它们写出来;(2)请你就其中的一个真命题给出推理过程.(续表)活动二:实践探究交流新知解:(1)一共能组成3个命题,它们是:题设:①②,结论:③;题设:①③,结论:②;题设:②③,结论:①.(2)情况一题设:①②,结论:③;证明:∵DE∥BC,∴∠1=∠B,∠2=∠C.又∵∠1=∠2,∴∠B=∠C;情况二题设:①③,结论:②;证明:∵DE∥BC,∴∠1=∠B,∠2=∠C.又∵∠B=∠C,∴∠1=∠2.归纳总结:证明的一般步骤:第一步:根据题意画出图形;第二步:根据命题的题设和结论,结合图形,写出已知、求证;第三步:通过分析,找出证明的方法,写出证明过程.在证明几何命题时,须注意以下几点:1.明确题目的题设和结论;2.证明过程中引用的根据(理由)与“定理的证明相同”;3.证明过程中每一步结果所用的根据必须是得到这一结果的充分理由;4.要防止利用未学过的定理来证明学过的命题,避免循环论证.4.归纳证明的过程有助于培养学生严密的逻辑推理能力,为后续的学习打好基础.活动三:【应用举例】1.利用新知解决问题,根据相开放训练体现应用图5-3-64例1如图5-3-64,已知直线b∥c,a⊥b.求证:a⊥c.证明:∵a⊥b(已知),∴∠1=90°(垂直的定义).又∵b∥c(已知),∴∠1=∠2(两直线平行,同位角相等),∴∠2=∠1=90°(等量代换),∴a⊥c(垂直的定义).变式图5-3-65在下面的括号内填上推理的根据.如图5-3-65,AB和CD相交于点O,∠A=∠B.求证:∠C=∠D.证明:∵∠A=∠B,∴AC∥BD(__内错角相等,两直线平行__),∴∠C=∠D(__两直线平行,内错角相等__).分析:根据已知的条件及图形证明某个数学结论是常见的数学题目,本题以“∵”“∴”的形式将完整的说理过程展现出来,需要同学们根据图形条件及已知条件填上原因.也就是在我们推理过程的每一步必须要有理有据,不关性质进行演绎推理.2.通过变式练习巩固证明过程,训练学生推理证明的能力.能乱写.本题既利用了平行线的判定方法,又运用了平行线的性质.(续表)活动三:开放训练体现应用【拓展提升】例2如图5-3-66,直线DE经过点A,DE∥BC,∠B=44°,∠C=85°.(1)求∠DAB的度数;(2)求∠EAC的度数;(3)求∠BAC的度数;(4)通过这道题你能说明为什么三角形的内角和是180°吗?图5-3-66知识的综合与拓展提高应考能力.活动四:课堂总结反思【当堂训练】课本第21页练习第1,2题;课本第22页练习第1,2题.课后作业:课本第23页习题5.3第7(2),8,9,12,13题.通过练习进一步巩固所学知识,使教师及时了解学生对本课所学知识的掌握情况.【板书设计】5.3命题、定理、证明命题⎩⎪⎨⎪⎧概念:构成分类⎩⎪⎨⎪⎧题设:已知事项结论:由已知事项推出的事项真命题:假命题:定理:证明:通过知识框图浓缩本节知识,易于学生理解.【教学反思】①[授课流程反思]既复习了已学知识,又让学生认识了命题的多种表现形式,从而使学生明白命题我们都学过,只是没有从概念上加以澄清,从而消除学生对新知识的恐惧感,增加亲切感.回顾反思,找出差距与不足,形成知识及教学体系,更进②[讲授效果反思]本节课的教学内容较简单,通过本节课的教学,学生在区分命题的题设和结论的基础上知道命题有真假之分,其中有的真命题又叫做定理.对于假命题只要举出反例加以说明即可,其中推理过程叫做证明.③[师生互动反思]学生小组合作学习的积极性较高,体现出学生愿学乐学的心态,教师要及时性地给予鼓励和表扬.一步提升教师教学能力.。
人教版七年级数学下册 第5章 5.3.2 命题、定理、证明 精编教案
5.3.2命题、定理、证明教学目标【知识与技能】1.知道什么叫做命题,什么叫真命题,什么叫做假命题,什么叫定理.2.理解命题由题设和结论两部分组成,能将命题写成“如果……那么……”的形式或“若……则……”的形式.【过程与方法】通过对若干个命题的分析,了解什么叫命题以及命题的组成,知道什么叫做真命题,什么做假命题,什么叫做定理.【情感态度】通过本节的学习使同学们明白命题在数学上的重要作用,不仅如此,命题在其它许多学科都有重要作用.【教学重点】命题的定义,命题的组成.【教学难点】命题的判断,真假命题的判断,命题的题设和结论的区分.教学过程一、情境导入师:上节课我们学习了定理与证明,了解了这两个概念.并以证明“两直线平行,内错角相等”来说明什么是证明.我们再看这一命题的证明(投影出示).例1 已知:如图1,,是截线,求证:.证明:∵(已知),∴(两直线平行,同位角相等).∵(对项角相等),∴(等量代换).这节课我们分析这一命题的证明过程,学习命题证明的步骤和格式.二、合作探究探究点一:命题的定义与结构【类型一】命题的判断下列语句中,不是命题的是( )A.两点之间线段最短B.对顶角相等C.不是对顶角不相等D.过直线AB外一点P作直线AB的垂线解析:根据命题的定义,看其中哪些选项是判断句,其中只有D选项不是判断句.故选D.方法总结:①命题必须是一个完整的句子,而且必须做出肯定或否定的判断.疑问句、感叹句、作图过程的叙述都不是命题;②命题常见的关键词有“是”“不是”“相等”“不相等”“如果……那么……”.【类型二】把命题写成“如果……那么……”的形式把下列命题写成“如果……那么……”的形式.(1)内错角相等,两直线平行;(2)等角的余角相等.解:(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(2)如果两个角是相等的角,那么它们的余角相等.方法总结:把命题写成“如果……那么……”的形式时,应添加适当的词语,使语句通顺.【类型三】命题的条件和结论写出命题“平行于同一条直线的两条直线平行”的条件和结论.解析:先把命题写成“如果……那么……”的形式,再确定条件和结论.解:把命题写成“如果……那么……”的形式:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.所以命题的条件是“两条直线都与第三条直线平行”,结论是“这两条直线也互相平行”.方法总结:每一个命题都一定能用“如果……那么……”的形式来叙述.在“如果”后面的部分是“条件”,在“那么”后面的部分是“结论”.探究点二:真命题与假命题下列命题中,是真命题的是( )A.若a·b>0,则a>0,b>0B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0且b=0D.若a·b=0,则a=0或b=0解析:选项A中,a·b>0可得a、b同号,可能同为正,也可能同为负,是假命题;选项B 中,a ·b <0可得a 、b 异号,所以错误,是假命题;选项C 中,a ·b =0可得a 、b 中必有一个字母的值为0,但不一定同时为零,是假命题;选项D 中,若a ·b =0,则a =0或b =0或二者同时为0,是真命题.故选D.方法总结:判断一个命题是真命题还是假命题,就是判断一个命题是否正确,即由条件能否得出结论.如果命题正确,就是真命题;如果命题不正确,就是假命题.探究点三:证明与举反例【类型一】 命题的证明求证:两条直线平行,一组内错角的平分线互相平行.解析:按证明与图形有关的命题的一般步骤进行.要证明两条直线平行,可根据平行线的判定方法来证明.解:如图,已知AB ∥CD ,直线AB ,CD 被直线MN 所截,交点分别为P ,Q ,PG 平分∠BPQ ,QH 平分∠CQP ,求证:PG ∥HQ .证明:∵AB ∥CD (已知),∴∠BPQ =∠CQP (两直线平行,内错角相等).又∵PG 平分∠BPQ ,QH 平分∠CQP (已知),∴∠GPQ =12∠BPQ ,∠HQP =12∠CQP (角平分线的定义), ∴∠GPQ =∠HQP (等量代换),∴PG ∥HQ (内错角相等,两直线平行).方法总结:证明与图形有关的命题时,正确分清命题的条件和结论是证明的关键.应先结合题意画出图形,再根据图形写出已知与求证,然后进行证明.【类型二】举反例举反例说明下列命题是假命题.(1)若两个角不是对顶角,则这两个角不相等;(2)若ab=0,则a+b=0.解析:分清题目的条件和结论,所举的例子满足条件但不满足结论即可.解:(1)两条直线平行形成的内错角,这两个角不是对顶角,但是它们相等;(2)当a=5,b=0时,ab=0,但a+b≠0.方法总结:举反例时,所举的例子应当满足题目的条件,但不满足题目的结论.举反例时常见的几种错误:①所举例子满足题目的条件,也满足题目的结论;②所举例子不满足题目的条件,但满足题目的结论;③所举例子不满足题目的条件,也不满足题目的结论.当堂检测判断下列命题是真命题还是假命题,如果是假命题.举出一个反例.(1)若a>b,则a2>b2.(2)两个锐角的和是钝角.(3)同位角相等.(4)两点之间,线段最短.【教学说明】本环节让同学们分组讨论,在合作交流中深刻理解命题的组成和真假命题的判断.【答案】略.三、板书设计命题⎩⎪⎨⎪⎧概念结构真、假命题证明与举反例教学反思本节课通过命题及其证明的学习,让学生感受到要说明一个定理成立,应当证明;要说明一个命题是假命题,可以举反例.同时让学生感受到数学的严谨,初步养成学生言之有理、落笔有据的推理习惯,发展初步的演绎推理能力。
人教版七年级下册数学第五章教案5.3.2命题、定理
人教版七年级下册数学第五章教案5.3.2命题、定理教学目的1.知识与技能:了解命题的概念,并能区分命题的题设和结论.2.经历判断命题真假的过程,对命题的真假有一个初步的了解.3.初步培养学生不同几何语言相互转化的能力.重点命题的概念和区分命题的题设与结论.难点区分命题的题设和结论.教学过程一、创设情境复习导入教师出示下列问题:1.平行线的判定方法有哪些?2.平行线的性质有哪些.学生能积极的思考教师所出示的各个问题复习巩固有关的知识点为本节课的学习打下良好的基础.(注意:平行线的判定方法三种,另外还有平行公理的推论)二、尝试活动探索新知教师给出下列语句:①如果两条直线都与第三条直线平行,那么这条直线也互相平行;②等式两边都加同一个数,结果仍是等式;③对顶角相等;④如果两条直线不平行,那么同位角不相等.学生学生能由教师的引导分析每个语句的特点.思考:你能说一说这4个语句有什么共同点吗?并能耐总结出这些语句都是对某一件事情作出“是”或“不是”的判断.初步感受到有些数学语言是对某件事作出判断的.教师给出命题的定义.判断一件事情的语句,叫做命题.(3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.②命题的形成,可以写成“如果……,那么……”的形式。
真命题与假命题:教师出示问题:如果两个角相等,那么它们是对顶角.如果a>b.b>c那么a=b如果两个角互补,那么它们是邻补角.三、尝试反馈理解新知明确命题有正确与错误之分:命题的正确性是我们经过推理证实的,这样得到的真命题叫做定理,作为真命题,定理也可以作为继续推理的依据.1.“等式两边乘同一个数,结果仍是等式”是命题吗?它们题设和结论分别是什么?2.命题“两条平行线被第三第直线所截,内错角相等”是正确的?命题“如果两个角互补,那么它们是邻补角”是正确吗?再举出一些命题的例子,判断它们是否正确.四、总结拓展:教师引导学生完成本节课的小结,强调重要的知识点.五、布置作业:习题5.3第11题.。
人教版数学七年级下册---导学案-5.3.2命题、定理、证明
课题:5.3.2命题、定理、证明【学习目标】1、掌握命题的概念,并能分清命题的组成部分.2、经历判断命题真假的过程,对命题的真假有一个初步的了解。
3、初步培养不同几何语言相互转化的能力。
【学习重点】命题的概念和区分命题的题设与结论自习自疑文自习(一)命题:1、阅读思考:①如果两条直线都与第三条直线平行,那么这条直线也互相平行;②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些句子都是对某一件事情作出“是”或“不是”的判断2、定义:的语句,叫做命题3、练习:下列语句,哪些是命题?哪些不是?(1)过直线AB外一点P,作AB的平行线.(2)过直线AB外一点P,可以作一条直线与AB平行吗?(3)经过直线AB外一点P, 可以作一条直线与AB平行.(二)命题的构成:1、许多命题都由和两部分组成.是已知事项, 是由已知事项推出的事项.2、命题常写成"如果……那么……"的形式,这时,"如果"后接的部分.....是 ,"那么"后接的的部分......是 .(三)命题的分类真命题:。
(定理:的真命题。
)假命题:。
自主探究文探究一指出下列命题的题设和结论:(1)如果两个数互为相反数,这两个数的商为-1;(2)两直线平行,同旁内角互补;(3)同旁内角互补,两直线平行;(4)等式两边乘同一个数,结果仍是等式;(5)绝对值相等的两个数相等.(6)如果AB⊥CD,垂足是O,那么∠AOC=90°探究二把下列命题改写成"如果……那么……"的形式:(1)互补的两个角不可能都是锐角:。
(2)垂直于同一条直线的两条直线平行:。
(3)对顶角相等:。
探究三判断下列命题是否正确:(1)同位角相等(2)如果两个角是邻补角,这两个角互补;(3)如果两个角互补,这两个角是邻补角.自测自结文自测1、判断下列语句是不是命题(1)延长线段AB()(2)两条直线相交,只有一交点()(3)画线段AB的中点()(4)若|x|=2,则x=2()(5)角平分线是一条射线()2、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。
人教版七年级下册第五章5.3.2命题、定理、证明教案设计
人教版七年级下册第五章 5.3.2 命题、定理、证明教课设计设计课题 5.3.2 命题、定理、证明教知识点:( 1)认识命题的观点以及命题的构成(假如那么的形式).与(2)知道什么是真命题和假命题.学能力点:能判断命题的真假,能够综合运用平行线性质和判断解题的目非智力要素:培育学生的判断能力及逻辑思想能力。
标重点对命题构造的认识难点能用假如、那么的形式表述一个命题及平行线性质和判断灵巧运用教课具多媒体环节教与学的内容一.(一)命题的观点课前问题 1 读出以下语句预习(1)假如两条直线都与第三条直线平行,那么这两条直线也相互平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边都加同一个数,结果还是等式.么”的形式 .(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果还是等式;(3)互为相反数的两个数相加得 0;(4)同旁内角互补;(5)对顶角相等.问题 6请同学们说出一个命题,并说出此命题的题设和结论.问题 7问题5中哪些命题是正确的,哪些命题是错误的?三.( 1)两条直线被第三条直线所截,同旁内角互补;怀疑释疑( 2)等式两边都加同一个数,结果还是等式;像,叫做命题问题 2判断以下语句是否是命题?(1)两点之间,线段最短;()(2)请画出两条相互平行的直线;()二.()(3)过直线外一点作已知直线的垂线;学习)(4)假如两个角的和是 90o,那么这两个角互余.(新知你能举出一些命题的例子吗?问题 3问题 4察看一组命题,并思虑命题是由几部分构成的?(1)假如两条直线都与第三条直线平行,那么这两条直线也相互平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)假如两个角的和是90o,那么这两个角互余;(4)等式两边都加同一个数,结果还是等式.(5)两点之间,线段最短.问题5以下语句是命题吗?假如是,请将它们改写成“假如,那(3)互为相反数的两个数相加得 0;(4)同旁内角互补;(5)对顶角相等.(二)命题的真假真命题:假如题设,那么结论必定,这样的命题叫做真命题.假命题:假如题设时,不可以保证结论必定,这样的命题叫做假命题.问题 8请同学们举例说出一些真命题和假命题问题 9 请同学们判断以下命题哪些是真命题?哪些是假命题?(1)在同一平面内,假如一条直线垂直于两条平行线中的一条,那么也垂直于另一条;(2)假如两个角互补,那么它们是邻补角;1 / 2四.稳固深入人教版七年级下册第五章 5.3.2 命题、定理、证明教课设计设计(3)假如 a b ,那么 a=b;2. 把命题“直角都相等”改写成“假如,那么”形式(4)经过直线外一点有且只有一条直线与这条直线平行;(5)两点确立一条直线.五、__________。
【素养目标】人教版数学七年级下册5.3.2 命题、定理、证明 教案(表格式)
5.3.2 命题、定理、证明探究点3定理与证明我们学过的一些图形的性质,都是真命题.其中有些命题是基本事实,如“两点确定一条直线”“经过直线外一点有且只有一条直线与这条直线平行”等.还有一些命题,如“对顶角相等”“内错角相等,两直线平行”等,它们的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据.问题3根据定理的概念,同学们能说出我们学过的定理有哪些吗?答:平行线的判定定理、性质定理等.(教师可适当补充)概念引入:在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个推理过程叫做证明.例1(教材P21例2)我们以证明命题“在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条”为例,来说明什么是证明.(1)这个命题是真命题还是假命题?答:真命题.(2)请将这个命题所叙述的内容用图形表示出来.解:如图.(3)写出这个命题的题设和结论,并用几何语言表述.解:题设:在同一平面内,一条直线垂直于两条平行线中的一条.结论:这条直线也垂直于两条平行线中的另一条.几何语言:如图,在同一平面内,如果b∥c,a⊥b,那么a⊥c.(4)下面已经给出了该命题的已知和求证,请利用已经学过的定义、定理证明这个结论.如图,已知直线b∥c,a⊥b.求证a⊥c.证明:∵a⊥b(已知),∴∠1=90°(垂直的定义).∵b∥c(已知),∴∠1=∠2(两直线平行,同位角相等).∴∠2=∠1=90°(等量代换).∴a⊥c(垂直的定义).由此,我们归纳出几何证明的一般步骤:①根据题意画出图形;②根据命题的题设和结论,结合图形,写出已知、求证;③通过分析,找出证明的方法,写出证明过程.注意:证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是学过的定义、基本事实、定理等.【对应训练】1.教材P22练习第1题.2.如图,在三角形ABC中,点D在边BC的延长线上,CE平分∠ACD,AB∥CE,求证∠A=∠B.证明:∵CE平分∠ACD(已知),∴∠ACE=∠DCE(角平分线的定义).∵AB∥CE(已知),∴∠A=∠ACE(两直线平行,内错角相等),∠B=∠DCE(两直线平行,同位角相等).∴∠A=∠B(等量代换).活动三:重点突破,提升探究设计意图探索条件开放性问题的证明.例2如图,现有以下三个条件:①AB∥CD;②∠B=∠D;③∠E=∠F.请以其中两个为题设,第三个为结论构造新的命题.(1)请写出所有的命题;(写成“如果……那么……”的形式)(2)请选择其中的一个真命题进行证明.解:(1)命题1:如果AB∥CD,∠B=∠D,那么∠E=∠F;命题2:如果AB∥CD,∠E=∠F,那么∠B=∠D;命题3:如果∠B=∠D,∠E=∠F,那么AB∥CD.(2)选择命题1.(答案不唯一)证明:∵AB∥CD(已知),∴∠B=∠DCF(两直线平行,同位角相等).∵∠B=∠D(已知),∴∠D=∠DCF(等量代换).∴DE∥BF(内错角相等,两直线平行).∴∠E=∠F(两直线平行,内错角相等).【对应训练】如图,直线AB,CD被直线AE所截,直线AM,EN被MN所截.有以下三个条件:①AB∥CD;②AM∥EN;③∠BAM=∠CEN.请以其中两个作为题设,第三个作为结论,构造命题.(1)请按照“如果……那么……”的形式,写出所有的命题;(2)在(1)所写的命题中选择一个加以证明.解:(1)命题1:如果AB∥CD,AM∥EN,那么∠BAM=∠CEN.命题2:如果AB∥CD,∠BAM=∠CEN,那么AM∥EN.命题3:如果AM∥EN,∠BAM=∠CEN,那么AB∥CD.(2)以命题1为例.(答案不唯一)证明:∵AB∥CD(已知),∴∠BAE=∠CEA(两直线平行,内错角相等).∵AM∥EN(已知),∴∠3=∠4(两直线平行,内错角相等).∴∠BAE-∠3=∠CEA-∠4(等式的性质),即∠BAM=∠CEN.【教学建议】学生分组讨论完成,教师统一答案.对于此类问题,开放性比较强,所以答案一般不唯一,可用列举法穷举出所有的命题,判断这些命题的真假,选择合适的真命题并按照要求严格证明.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答:什么叫做命题?请举例说明,并结合例子说明命题的构成.什么是真命题?什么是假命题?什么是定理?你学过哪些定理?谈谈你对证明的理解.1.对命题的判断:结合命题、真命题、假命题的定义判断. 例1下列句子是命题的是( D )A.画∠AOB =45°B.小于直角的角是锐角吗?C.连接CDD.有一个角是60°的等腰三角形是等边三角形 例2下列命题中,真命题的个数是( A )①相等的角是对顶角;②同位角相等;③等角的余角相等;④如果x 2=y 2,那么x =y . A.1 B.2 C.3 D.4解析:①相等的角不一定是对顶角,假命题;②同位角不一定相等,假命题;③等角的余角相等,真命题;④如果x 2=y 2,那么x =±y ,假命题.故选A.2.对命题进行改写:找到命题的题设与结论,然后把命题改写成“如果……那么……”的形式.例3把命题“直角三角形的两个锐角互余”写成“如果……那么……”的形式为 如果两个锐角是一个直角三角形的两个内角,那么这两个角互余.例1如图,点D 在AB 上,直线DG 交AF 于点E .请从①DG ∥AC ,②AF 平分∠BAC ,③∠DAE =∠DEA 中任选两个作为题设,余下一个作为结论,构造一个真命题,并予以证明.题设:①②,结论: ③ .(均填写序号) 证明:∵DG ∥AC ,∴∠DEA =∠EAC .∵AF 平分∠BAC ,∴∠DAE =∠EAC .∴∠DAE =∠DEA .(答案不唯一)例2已知:三条不同的直线a ,b ,c 在同一平面内:①a ∥b ;②a ⊥c ;③b ⊥c ;④a ⊥b .请你用①②③④所给出的其中两个事项作为条件,再选一个事项作为结论(写成“如果……那么……”的形式).(1)写出一个真命题,并证明它的正确性; (2)写出一个假命题,并举出反例. 解:(1)如果a ⊥c ,b ⊥c ,那么a ∥b .【作业布置】1.教材P23习题5.3第6,12,13题.2.相应课时训练.教学步骤师生活动板书设计5.3.2命题、定理、证明1.命题.2.命题的构成:如果……(题设),那么……(结论).3.真命题与假命题.4.定理.5.证明.教学反思本节课通过命题、证明的学习,让学生感受到要说明一个命题成立,应当证明;要说明一个命题是假命题,可以举反例.同时让学生感受到数学的严谨,初步养成言之有理、落笔有据的推理习惯,形成初步的演绎推理能力.证明:∵a⊥c,b⊥c,∴∠1=90°,∠2=90°.∴∠1=∠2.∴a∥b.(2)如果a⊥c,b⊥c,那么a⊥b.反例:如图,a⊥c,b⊥c,但a∥b,a与b不垂直.三种几何并存《原本》(也叫做《几何原本》)是古希腊数学家欧几里得创作的一部数学著作,成书于公元前300年左右.欧几里得在这本书中用公理法对当时的数学知识进行了系统化、理论化的总结,使得《原本》成为用公理法建立演绎的数学体系的最早典范.《原本》共有13卷,其中:第1卷给出了23个定义,提出了5条公设和5条公理.长期以来,数学家们发现第五公设和前四个公设比较起来,显得文字叙述冗长,而且也不那么显而易见.有些数学家还注意到23个定义中的最后一个是平行线的定义,而第五公设直到第29个命题中才用到,而且以后再也没有使用.为此,数学家们针对“平行线理论”经历了长达两千多年的讨论.直到1826年,俄罗斯数学家罗巴切夫斯基在喀山大学发表了《简要论述平行线定理的一个严格证明》的演讲,勇敢地抛弃了第五公设,提出了完全相反的公设:过一点至少可以有两条直线与已知直线平行.后来人们把这个公设叫做“罗氏公理”.由罗氏公理很容易推出以下结论:过一条直线外一点可以引无数条直线与已知直线平行.由于尚未找到新几何在现实世界的原型和类比物,罗巴切夫斯基的理论遭到了大部分数学家的反对.直到1868年,意大利数学家贝尔特拉米找到了一种曲面(人们称之为“伪球面”,如图①),罗巴切夫斯基的理论才开始逐渐被人们所接受.在“伪球面”上,三角形三个内角的和小于180°.之后,德国数学家黎曼在1854年提出了一种与前两种几何完全不同的几何,叫做“黎曼几何”.黎曼几何认为:在同一平面内,任何两条直线都有公共点(交点),也就是过直线外一点不存在直线和已知直线平行.黎曼几何的模型是球面.在黎曼几何中,三角形三个内角的和大于180°(如图②).欧氏几何、罗氏几何、黎曼几何最根本的不同是关于平行公理的认识,这导致了诸多互不相容的结论.虽然如此,这三种几何各自所有的命题都构成了一个严密的公理体系,各公理之间满足和谐性(也称不矛盾性)、完备性和独立性.因此这三种几何都是正确的.在我们的日常生活中,欧氏几何是适用的;在宇宙空间或原子核世界,罗氏几何更符合客观实际;在地球表面研究航海、航空等实际问题中,黎曼几何更准确一些.总之,从逻辑上说,三种几何学有同样的地位.从数学的实现上说,三种几何学都有相应的模型.从现实世界上说,三种几何学各在一定条件下成为现实世界的一种理论的近似.因此,三种几何都是一定条件下的相对真理,并且可以在更高的观点下统一起来.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3.2 命题、定理、证明
1.认识命题与定理的概念,会区分命题的题设与结论,能准确判断命题的真假,能认识到数学证明的必要性,能有条理地表达说理.
2.体会到定理化的数学发展意义.
自学指导:阅读课本第20至22页,完成下列各题.
自学反馈
1.下列各语句中,带有判断语气的句子有(ABCE)
A.我是中国人
B.所有商品八折
C.对顶角相等
D.画两条平行线
E.等角的余角(或补角)相等
2.根据已学过的数学知识,判断下列句子是否正确:
①如果两个角是对顶角,那么这两个角相等.(即对顶角相等)(√)
②同位角相等.(×)
③两直线平行,内错角相等.(√)
④同旁内角相等,两直线平行.(×)
⑤两个直角是相等且互补的关系.(√)
3.[写句子]:如果__________________________,那么__________________________.
你所写的上面这句话是否一定正确?_____________.
知识探究
活动1 认识命题及其构成
看下列句子有什么特点:
1.两直线平行,同位角相等.
2.对顶角相等.
3.3>2.
4.1+1=2.
5.今天是三八妇女节.
6.白马不是马.
7.猪有四条腿.
这些句子都有一个共同点,它们都是判断一件事情的语句,叫做命题.
命题是由题设和结论两部分组成.题设是已知事项(已知条件),结论是由已知事项推出的事项(结论).
活动2 例题解析
例下列语句是命题的是( )
A.你去哪里?
B.画一个圆
C.今天食堂的菜太好吃了!
D.相等的角是内错角
疑问句、祈使句、感叹句不是命题.
活动3 跟踪训练
下列语句在表述形式上,哪些是命题,哪些不是命题?
1.对顶角相等.
2.画一个角等于已知角.
3.两直线平行,同位角相等.
4.a、b两条直线平行吗?
5.若a+c=b+c,则a=b.
6.若a2=4,求a的值.
7.雷锋同志是伟大的共产主义战士!
命题:判断一件事情的语句,要么肯定,要么否定,从语法上来讲它应该是一个陈述句,不能是祈使句、疑问句和感叹句.
活动4 命题的改写
命题是由题设和结论两部分组成的.一般都写成“如果……,那么……”的形式,“如果”后面是题设,“那么”后面是结论.
例“两直线平行,同旁内角互补”改写如下:如果两直线平行,那么同旁内角互补.
1.有些命题题设和结论不明显,要经过分析才能找得出.例:猫有四条腿,即如果这个动物是猫,那么它就有四条腿.
2.添加“如果”、“那么”后,1)命题的意思不能改变,2)句子要完整,语句要通顺.这样可以使命题的题设和结论更明朗,易于分辨.这就相当于语文中的句子扩写.
活动5 跟踪训练
将下列各题改写成“如果……那么……”的形式,并指出下列各命题的题设和结论.
1.同旁内角互补,两直线平行;
2.两条平行线被第三条直线所截,同旁内角互补;
3.邻补角是互补的角;
4.平行于同一直线的两直线平行;
5.等角的补角相等.
活动6 真假命题及定理
观看幻灯片理解真假命题.
如果题设成立时,结论一定成立的命题称为真命题;题设成立时,不能保证结论一定成立的命题称为假命题.
经过推理证实的真命题叫做定理.
公理与定理都是真命题.
例平行线的判定定理、平行线的性质定理、平行公理都是真命题.
活动7 跟踪训练
哪些是真命题,哪些是假命题?
(1)内错角相等.
(2)邻补角一定互补.
(3)垂线段是点到直线的距离.
(4)两个锐角的和是锐角.
(5)互补的角是邻补角.
(6)两点之间线段最短.
(7)如果一个数能被2整除,那么它也能被4整除.
解:(2)、(6)是真命题,其余是假命题.
活动8 课堂小结
1.命题:判断一件事情的语句叫命题.
(1)正确的命题称为真命题,错误的命题称为假命题.
(2)命题的结构:命题由题设和结论两部分构成,常可写成“如果……,那么……”的形式.
2.定理:经过推理论证为正确的命题叫定理.也可作为继续推理的依据.
3.判断一个命题是假命题,只要举出一个例子,说明该命题不成立就可以了,这种方法称为举反例.
教学至此,敬请使用学案当堂训练部分。