二次根式的混合运算
(完整版)二次根式混合运算经典
( 4 )( 5 + 3 2 )2 .
答案: 3 答案:5 3 - 3 答案:1 答案:43+30 2
1、计算:
(1)、3 2 1 33
(2)、7 2 1 5
(3)、7 ( 7)2
(4)(7 2 2 6)(2 6 7 2)
(5)、( 7 7 3)2
(6)、( 2 3 6)2 ( 2 3 6)2
(3)已知 10 的整数部分为a,小数部分为b,求a2-b2的值.
6 解:(1) 2-
18-120=3
2-3
2-1=-1
(2)(-3)2- 4+12-1=9-2+2=9
(3)∵3< 10<4 ∴ 10的整数部分 a=3,小数部分 b= 10-3
∴a2-b2=32-( 10-3)2=9-(10-6 10+9)=-10+6 10
例3 计算:
( 2 )( 2 + 3 2 )( 1 - 2 ).
从例3的第(2)小题看到,二次根式的和相乘, 与多项式的乘法相类似.
我们可以利用多项式的乘法公式,进行某些二 次根式的和相乘的运算.
例4 计算:
( 1 )( 2 + 1 )( 2 - 1 ) ; ( 2 )( 2 - 3 )2 .
动脑筋
解:(1)∵x=2- 3,y=2+ 3 ∴x+y=(2- 3)+(2+ 3)=4,xy=(2- 3)×(2+ 3)=1 ∴x2+xy+y2=(x+y)2-xy=42-1=15
(7)、(7 54 3 21) 3
(8)、18 ( 3 2)
注意:
1、运算顺序 。 2、运用运算律和乘法公式,简化运算。 3、结果为最简二次根式。
二、巧用“分母有理化”进行二次根式混合运算
二次根式的混合运算
注意:有理化因式一般只写最简单的形式,如: x y的有理化因式是 x y.
自主探究
2. 2 3的有理化因式是
;
x y的有理化因式是
总结提高
作业 教材第15页习题16.3第4,6题.
LOGO
9
(2)( a b )( a - b); a-b
(3)( 3 2)2; 7 4 3
(4) (2 5- 2)2. 22-4 10
二次根式的化简求值
已知a 3 2,b 3 2,求下列式子的值 .
(1)a2b ab2; (2)a2 b2.
注:先化简,后求值
总结提高
课堂小结 这节课你学到了哪些知识?你有什么收获?
;
x 1 x 1的有理化因式是 _________ .
自主探究
1.计算:
(1) 2( 3 5);
6 10
(2)( 80 40) 5; 4 2 2
(3)( 5 3)( 5 2); 11 5 5
(4) ( 6 2)( 6 2). 4
自主探究
2.计算:
(1)(4 7)(4- 7);
类比:怎样计算(a 2b)(2a b)?
(2)怎样计算 3 2 2 3 2 2 ?
回顾:(a b)(a b)
.
(3) 3 2 2 2 呢?
自主探究
结论: 在进行二次根式的混合运算时,我 们曾学过的整式的乘法法则和公式仍然 适用.
自主探究
例3 计算: (1)( 8 3) 6; (2)(4 2 3 6) 2 2.
第6讲 二次根式的混合运算与化简求值(解析版)
第06讲二次根式的混合运算与化简求值一.解答题1.(2023秋•新蔡县期中)计算:;【分析】(1)先计算二次根式的除法,再算减法,即可解答;【解答】解:(1)=3﹣2+=3﹣2+2=3;2.(2023秋•和平区校级期中)计算:(1)()﹣1+(1﹣)0+|﹣2|;(2)÷﹣×+.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先计算二次根式的乘除法,再算加减,即可解答.【解答】解:(1)()﹣1+(1﹣)0+|﹣2|=2+1+2﹣=5﹣;(2)÷﹣×+=﹣+4=﹣+4=4﹣2+4=2+4.3.(2023秋•金塔县期中)计算:(1);(2);(3);(4).【分析】(1)把各个二次根式化成最简二次根式,然后合并同类二次根式即可;(2)先把各个二次根式化成最简二次根式,然后利用乘法分配律进行计算即可;(3)先根据二次根式的乘法法则进行计算,再把二次根式化成最简二次根式,进行合并即可;(4)先根据二次根式的除法法则进行计算,再把二次根式化成最简二次根式,进行合并即可;【解答】解:(1)原式==;(2)原式==9+1=10;(3)原式===;(4)原式===4.(2023秋•太原期中)计算下列各题:(1);(2);(3);(4).【分析】(1)先化简,然后合并同二次根式即可;(2)先算乘法,再化简即可;(3)根据完全平方公式将式子展开,然后合并同类二次根式和同类项即可;(4)先化简,然后合并同二次根式即可.【解答】解:(1)=3﹣5+4=2;(2)===;(3)=20﹣4+1+4=21;(4)=﹣3+5=.5.(2023秋•郓城县期中)计算:(1)﹣+;(2)|﹣1|+﹣;(3)+×﹣|2﹣|;(4)﹣(+1)2﹣(+3)×(﹣3).【分析】(1)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先化简各式,然后再进行计算即可解答;(4)利用完全平方公式,平方差公式,进行计算即可解答.【解答】解:(1)﹣+=3﹣2+=2;(2)|﹣1|+﹣=﹣1+3﹣2=;(3)+×﹣|2﹣|=2+5×﹣(﹣2)=2+2﹣+2=3+2;(4)﹣(﹣(+3)×(﹣3)=﹣(4+2)﹣(5﹣9)=﹣4﹣2+4=﹣2.6.(2023秋•太和区期中)计算:(1);(2);(3);(4);(5);(6).【分析】(1)先计算二次根式的乘法,再算加减,即可解答;(2)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答;(3)先计算二次根式的乘除法,再算加减,即可解答;(4)先计算二次根式的乘除法,零指数幂,再算加减,即可解答;(5)先化简各式,然后再进行计算即可解答;(6)利用完全平方公式,平方差公式进行计算,即可解答.【解答】解:(1)=﹣5=6﹣5=1;(2)=+3﹣3=;(3)=(﹣)÷=÷﹣÷=﹣=2﹣;(4)=+1﹣=+1﹣4=﹣3;(5)=﹣3+4﹣+﹣1=0;(6)=3﹣2+2﹣(6﹣1)=3﹣2+2﹣5=﹣2.7.(2022秋•青羊区校级期末)计算:(1);(2)|﹣2|+(2023+π)0+﹣(﹣)﹣2.【分析】(1)先计算二次根式的乘法,再算加减,即可解答;(2)先计算二次根式的乘除法,再算加减,即可解答.【解答】解:(1)=2+﹣3+=3﹣2;(2)|﹣2|+(2023+π)0+﹣(﹣)﹣2=2﹣+1+﹣4=2﹣+1+3﹣4=2﹣.8.(2023秋•锦江区校级期中)计算:(1);(2).【分析】(1)先化简各式,然后再进行计算即可解答;(2)利用平方差公式,完全平方公式进行计算,即可解答.【解答】解:(1)=1+|5﹣5|﹣=1+5﹣5﹣3=5﹣7;(2)=3﹣4+4﹣(3﹣2)=3﹣4+4﹣1=6﹣4.9.(2023秋•汝阳县期中)计算:(1)5;(2)()2﹣(2+3)2024(2﹣3)2023.【分析】(1)先计算二次根式的乘法,再算加减,即可解答;(2)先计算二次根式的乘法,再算加减,即可解答.【解答】解:(1)5=+﹣×﹣×2=+﹣5﹣2=﹣5;(2)()2﹣(2+3)2024(2﹣3)2023.=2﹣2+1﹣[(2+3)2023(2﹣3)2023]×(2+3)=2﹣2+1﹣[(2+3)(2﹣3)]2023×(2+3)=2﹣2+1﹣(8﹣9)2023×(2+3)=2﹣2+1﹣(﹣1)2023×(2+3)=2﹣2+1﹣(﹣1)×(2+3)=2﹣2+1+2+3=6.10.(2023秋•皇姑区校级期中)计算:(1)﹣(+1)2+(+1)(﹣1).(2)﹣(﹣1)2023+(π﹣2021)0﹣|5﹣|﹣()﹣2;【分析】(1)利用平方差公式,完全平方公式进行计算,即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)﹣(+1)2+(+1)(﹣1)=3﹣(2+2+1)+3﹣1=3﹣2﹣2﹣1+3﹣1=﹣1;(2)﹣(﹣1)2023+(π﹣2021)0﹣|5﹣|﹣()﹣2=﹣(﹣1)+1﹣(﹣5)﹣4=1+1﹣3+5﹣4=3﹣3.11.(2023秋•潞城区校级期中)阅读与思考.下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.双层二次根式的化简二次根式的化简是一个难点,稍不留心就会出错,我在上网还发现了一类带双层根号的式子,就是根号内又带根号的式子、它们能通过完全平方公式及二次根式的性质消掉外面的一层根号.例如:要化简,可以先思考(根据1)..通过计算,我还发现设(其中m,n,a,b都为正整数),则有a+b.∴a=m2+2n2,b=2mn.这样,我就找到了一种把部分化简的方法.任务:(1)文中的“根据1”是完全平方式,b=2mn.(2)根据上面的思路,化简:.(3)已知,其中a,x,y均为正整数,求a的值.【分析】(1)根据完全平方公式进行解答即可;(2)根据题干中提供的信息,进行变形计算即可;(3)根据,得出a=x2+3y2,4=2xy,根据x,y为正整数,求出x=2,y=1或x=1,y=2,最后求出a的值即可.【解答】解:(1)的根据是完全平方公式;∵,∴a=m2+2n2,b=2mn.故答案为:完全平方公式;2mn.(2)===.(3)由题意得,∴a=x2+3y2,4=2xy,∵x,y为正整数,∴x=2,y=1或x=1,y=2,∴a=22+3×12=7或a=12+3×22=13.12.(2023秋•龙泉驿区期中)已知x=,y=.(1)求x2+y2+xy的值;(2)若x的小数部分是m,y的小数部分是n,求(m+n)2021﹣的值.【分析】(1)先利用分母有理化化简x和y,从而求出x+y和xy的值,然后再利用完全平方公式进行计算,即可解答;(2)利用(1)的结论可得:m=2﹣,n=﹣1,然后代入式子中进行计算,即可解答.【解答】解:(1)∵x===2﹣,y===2+,∴x+y=2﹣+2+=4,xy=(2﹣)(2+)=4﹣3=1,∴x2+y2+xy=(x+y)2﹣xy=42﹣1=16﹣1=15;(2)∵1<<2,∴﹣2<﹣<﹣1,∴0<2﹣<1,∴2﹣的小数部分是2﹣,∴m=2﹣,∵1<<2,∴3<2+<4,∴2+的小数部分=2+﹣3=﹣1,∴n=﹣1,∴(m+n)2021﹣=(2﹣+﹣1)2021﹣(n﹣m)=12021﹣[﹣1﹣(2﹣)]=1﹣(﹣1﹣2+)=1﹣+1+2﹣=4﹣2.13.(2023秋•双流区校级期中)阅读下列材料,然后回答问题.在进行二次根式运算时,我们有时会碰上这样的式子,其实我们还可以将其进一步化简:﹣1,以上这种化简的步骤叫作分母有理化.(1)化简:;(2)已知的整数部分为a,小数部分为b,求a2+b2的值.(3)计算:+++…++.【分析】(1)利用分母有理化进行计算,即可解答;(2)先利用分母有理化进行化简,然后再估算出的值的范围,从而估算出2+的值的范围,进而可求出a,b的值,最后代入式子中进行计算,即可解答;(3)先利用分母有理化化简各式,然后再进行计算即可解答.【解答】解:(1)===﹣,故答案为:﹣;(2)===2+,∵1<3<4,∴1<<2,∴3<2+<4,∴2+的整数部分是3,小数部分=2+﹣3=﹣1,∴a=3,b=﹣1,∴a2+b2=32+(﹣1)2=9+3﹣2+1=13﹣2;(3)+++…++=+++…++=﹣1+﹣+﹣+…+﹣+﹣=﹣1=10﹣1=9.14.(2023秋•大东区期中)观察下列各式:第一个式子:=1=1+(1﹣);第二个式子:=1=1+();第三个式子:=1=1+();…(1)求第四个式子为:;(2)求第n个式子为:(n为正整数)(用n表示);(3)求+…+的值.【分析】(1)观察题中所给式子各部分的变化规律即可解决问题.(2)利用(1)中的发现即可解决问题.(3)根据(2)中的结论即可解决问题.【解答】解:(1)观察题中所给式子可知,第四个式子为:.故答案为:.(2)由(1)中的发现可知,第n个式子为:.故答案为:(n为正整数).(3)原式==1×2022+=2022+1﹣=.15.(2023秋•晋中期中)阅读与思考:观察下列等式:第1个等式=;第2个等式;第3个等式:;…按照以上规律,解决下列问题:(1)=4﹣;(填计算的结果)(2)计算:.【分析】(1)利用分母有理化进行化简计算,即可解答;(2)利用材料的规律进行计算,即可解答.【解答】解:(1)===4﹣,故答案为:4﹣;(2)=(﹣1+﹣+2﹣+…+﹣)×(+1)=(﹣1)×(+1)=2023﹣1=2022.16.(2023秋•郁南县期中)综合探究:像,…两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如与,2与等都是互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如:;.根据以上信息解答下列问题(1)与+互为有理化因式;(2)请你猜想=﹣;(n为正整数)(3)<(填“>”“<”或“=”);(4)计算:(+++…+)×(+1).【分析】(1)利用互为有理化因式的定义,即可解答;(2)利用分母有理化进行化简计算,即可解答;(3)先求出它们的倒数,然后再进行比较,即可解答;(4)利用分母有理化先化简各数,然后再进行计算即可解答.【解答】解:(1)与+互为有理化因式,(2)==﹣,故答案为:﹣;(3)∵==+,==+,+>+,∴>,∴<,故答案为:<;(4)(+++…+)×(+1)=[+++…+]×(+1)=(+++…+)×(+1)=(﹣1+﹣+﹣+…+﹣)×(+1)=(﹣1)×(+1)=×(2023﹣1)=×2022=1011.17.(2023秋•平阴县期中)阅读下列材料,然后解决问题.在进行二次根式的化简时,我们有时会遇到形如,,的式子,其实我们可以将其进一步化简:,=,如上这种化简的步骤叫做“分母有理化”.(1)化简=,=,=﹣.(2)化简:.【分析】(1)利用例题的解题思路进行计算,即可解答;(2)先进行分母有理化,然后再进行计算即可解答.【解答】解:(1)==,==,===﹣,故答案为:;;﹣;(2)=+++=+++=(﹣1+﹣+﹣+﹣)=.18.(2023春•莱芜区月考)观察下列一组等式,然后解答问题:,,,,…….(1)利用上面的规律,计算:;(2)请利用上面的规律,比较与的大小.【分析】(1)归纳总结得到一般性规律,计算即可求出式子的值;(2)利用得出的规律将与进行转化,再进行比较即可.【解答】解:(1)原式===;(2)由题意得,,,∵,∴.19.(2023春•宁海县期中)已知:a=+2,b=﹣2,求:(1)ab的值;(2)a2+b2﹣3ab的值;(3)若m为a整数部分,n为b小数部分,求的值.【分析】(1)代入求值即可;(2)代入求值,可将(1)的结果代入;(3)根据题意估算出m、n的值,代入分式,化简计算.【解答】解:(1)∵a=+2,b=﹣2,∴ab=(+2)(﹣2)=7﹣4=3;(2)∵a=+2,b=﹣2,ab=3,∴a2+b2﹣3ab=a2+b2﹣2ab﹣ab=(a﹣b)2﹣ab=[(+2)﹣(﹣2)]2﹣3=(+2﹣+2)2﹣3=42﹣3=16﹣3=13;(3)∵m为a整数部分,n为b小数部分,a=+2,b=﹣2,∴m=4,n=b=﹣2∴===,∴的值.20.(2023•沈丘县校级开学)已知a,b,c是△ABC的三边长.(1)若a,b,c满足(a﹣b)(b﹣c)=0,试判断△ABC的形状;(2)化简:﹣.【分析】(1)根据若ab=0,则a=0或b=0,求出a与b,b与c的关系,进行解答即可;(2)先根据三角形三边关系,判断a+b﹣c和a﹣b﹣c的正负,再利用二次根式的性质进行计算化简即可.【解答】解:(1)∵a,b,c满足(a﹣b)(b﹣c)=0,∴a﹣b=0或b﹣c=0,∴a=b或b=c,∴△ABC是等腰三角形;(2)∵a,b,c是△ABC的三边长,∴a+b>c,a﹣b<c,∴a+b﹣c>0,a﹣b﹣c<0,∴=a+b﹣c﹣(﹣a+b+c)=a+b﹣c+a﹣b﹣c=2a﹣2c21.(2023•江北区开学)求值:(1)若,,求的值;(2)若的整数部分为a,小数部分为b,求的值.【分析】(1)先求出ab和a+b的值,然后利用完全平方公式进行计算即可解答;(2)先利用分母有理化进行化简可得=,然后估算出的值的范围,从而求出a,b 的值,然后代入式子中进行计算,即可解答.【解答】解:(1)∵,,∴ab=(﹣1)(+1)=3﹣1=2,a+b=﹣1++1=2,∴=====4,∴的值为4;(2)==,∵4<7<9,∴2<<3,∴5<3+<6,∴<<3,∴的整数部分为2,小数部分为﹣2=,∴a=2,b=,∴=22+(1+)×2×+=4+7﹣1+=10+=,∴的值为.22.(2023春•清江浦区期末)像、、…两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,例如,和、与、与等都是互为有理化因式,在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)计算:①=,②=;(2)计算:.【分析】(1)①分子、分母都乘即可;②分子、分母都乘即可;(2)第一项分子、分母都乘以,第二项分子、分母都乘以,再计算即可.【解答】解:(1)①,故答案为:;②,故答案为:;(2)===2+﹣﹣1=1.23.(2023春•珠海校级期中)观察式子:,反过来:,∴,仿照上面的例子:(1)化简①;②;(2)如果x+y=m,xy=n且x>y>0,化简.【分析】(1)模仿示例将更号里面算式变形为完全平方式的形式进行化简;(2)将算式变形为,再运用二次根式的性质进行化简.【解答】解:(1)①====+1;②====;(2)∵x+y=m,xy=n且x>y>0,∴====+.24.(2023春•濮阳期中)已知,,求下列代数式的值.(1)a2﹣2ab+b2;(2)a2﹣b2.【分析】(1)先计算a+b和a﹣b的值,将原式分解因式,再将a﹣b的值代入计算即可;(2)将原式分解因式,再将a+b和a﹣b的值代入计算即可.【解答】解:(1)∵,,∴,,∴a2﹣2ab+b2=(a﹣b)2=42=16;(2)a2﹣b2=(a+b)(a﹣b)==.25.(2023春•张店区期末)阅读材料,解答下列问题.材料:已知,求的值.小明同学是这样解答的:∵==5﹣x﹣2+x=3,∵,∴,这种方法称为“构造对偶式”.问题:已知.(1)求的值;(2)求x的值.【分析】(1)利用例题的解题思路进行计算,即可解答;(2)利用(1)的结论可得2=5,从而可得=2.5,进而可得9+x=6.25,然后进行计算即可解答.【解答】解:(1)∵(﹣)(+)=()2﹣()2=9+x﹣3﹣x=6,∵,∴=2,∴的值为2;(2)由(1)得:﹣=2,+=3,∴2=5,∴=2.5,∴9+x=6.25,∴x=﹣2.75,∴x的值为﹣2.75.。
二次根式混合运算
1: 先化简,再求值:
(a 1)2 4 (a 1)-2 4
a
a
1 其中a =
,
3
(2)已知 x+1x=-3,求 x-1x的值.
解: (2)∵x-1x2=x+1x2-4=(-3)2-4=5
∴x-1x=± 5
2.注意到(x-1x)2=(x+1x)2-4,可得(x-1x)2=5,x-1x=± 5.
1 已知a,b分别是 36 3的整数部分和小数部分,
那么a – 2b 的值是
2 已知 x2+ 3x-1=0,求
;
x2 1x2 2 的值。
二次根式的混合运算是根据实数的运算律进 行的.
例3 计算:
(
1)
6-
3 8
×
2;
( 2 )( 2 + 3 2 )( 1 - 2 ).
解
(1)
6-
3 8
×
2
=
6×
2-
3× 8
2
=
6× 2 -
3× 8
2
=
3× 2× 2 -
3 4
=
2
3-
ห้องสมุดไป่ตู้
3 2
=
(
2-
1) 2
3
=
3 2
3
;
( 2 ) ( 2 + 3 2 )( 1 - 2 ) = 2- 2 2+ 3 2- 3 2× 2 = 2-2 2+ 3 2 -3× 2 = -4 + 2 .
如何计算
2 +1 2 -1
初中数学八年级二次根式的加减乘除混合运算
二次根式的化简,实际上就是把二次根式化成最简二次根式,然后通过合并同类二次根式的方法进行二次根式的加减运算。
二次根式:一般地,形如√ā(a≥0,a是被开方数)的代数式叫做二次根式,a≥0,√ā≥0 (双重非负性)。
二次根式的加减乘除混合运算实际上就是进行不断地化简的过程,因此突破难点的关键不但是要熟练掌握相关的运算法则,还要搞清楚化简的最后方向是最简二次根式的形式,因此判断是否是最简二次根式应是本节教学另一个关注的内容。
二次根式的加减法法则1、同类二次根式。
一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
2、合并同类二次根式。
把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
3、二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
二次根式的乘除法法则1、积的算数平方根的性质,列如:√ab=√a·√b(a≥0,b≥0)2、乘法法则,列如:√a·√b=√ab(a≥0,b≥0),二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
3、除法法则,√a÷√b=√a÷b(a≥0,b>0),二次根式的除法运算法则,用语言叙述为:两个数的算术平方根的商,等于这两个数商的算术平方根。
4、有理化根式。
如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。
二次根式混合运算解题步骤1、确定运算顺序。
2、灵活运用运算定律。
3、正确使用乘法公式。
4、大多数分母有理化要及时。
5、在有些简便运算中也许可以约分,不要盲目有理化。
6、字母运算时注意隐含条件和末尾括号的注明。
7、提公因式时可以考虑提带根号的公因式。
二次根式化简方法二次根式是中学代数的重要内容之一,而二次根式的化简是二次根式运算的基础,学好二次根式的化简是学好二次根式的关键。
二次根式的混合运算
1 −1
2
应用练习
3.3 计算: − 2 × 6 +
3−2 −
1 −1
2
课 堂 小 结
−
− >0
− =0
绝对值的化简: − = ቐ 0
− − − <0
例题讲解四
4.计算: 12 −
1 −1
2
+
1
3−1
− − 3.14
0
+ 2 3−4
应用练习
4.1 计算:
2012 − 1
− − 2
0
+ −
1 −1
3
+ 3 − 12
课 堂 小 结
1. 完全平方公式: +
2
= 2 + 2 + 2 , (a − b)2 = 2 − 2 + 2
2. 平方差公式: + − = 2 − 2
课堂大总结
1.二次根式的混合运算依据:有理数的运算律(交换律、结合律、分配律)、
3.二次根式的除法法则: ÷ =
4.二次根式除法法则的逆用:
5.完全平方公式: +
2
≥ 0, > 0
= ÷ ≥ 0, > 0
= 2 + 2 + 2 , (a − b)2 = 2 − 2 + 2
6.平方差公式: + − = 2 − 2
应用练习
5.2
2
计算:
3
9 − 6
4
+
1
例题讲解六
6. 计算:
二次根式混合运算题含答案
二次根式混合运算题含答案本文是一份数学题目,需要进行排版和改写以更好地呈现。
二次根式混合运算125题(含答案)1、原式=2-3=-12、原式=√(4+9)=√133、原式=2-√(12+1)= -104、原式=(√5+√7)²=12+2√355、原式=(√6-√2)²=4+4√36、原式=(√5-1)²+(√5+1)²=10+2√57、原式=(√3+√2)(√3-√2)=18、原式=(√5-√3)²=8-2√159、原式=(3+√2)(3-√2)=710、原式=√(3+2√2)×√(3-2√2)=111、原式=(4+√7)(4-√7)=912、原式=2√3+√12+√27=5√3+√313、原式=(2√6-3√2)(√6+√2)=814、原式=(7+4√3)(7-4√3)=4115、原式=(√2+√3)²=5+2√616、原式=√12+√27-√48=2√3+317、原式=(√3+1)²-(√3-1)²=4√318、原式=(3-√2)²=11-6√219、原式=(3-2√2)(3+2√2)=720、原式=(√2-1)(2√2+1)=121、原式=(√3+√5)²=8+2√1522、原式=(√3-√2)(√3+√2)=123、原式=(√2+1)²-(√2-1)²=4√224、原式=(√3-1)(√3+1)=225、原式=(√5+2)(√5-2)=2126、原式=(√6+√2)²=8+4√327、原式=(√2+√3)(√2-√3)=-128、原式=(√3-√2)²=5-2√629、原式=(√3+2)(√3-2)=730、原式=(√2+√3)²-2√6=5+√631、原式=(√3+√2)²+(√3-√2)²=1632、原式=(√6+√2)(√6-√2)=433、原式=√(5+2√6)×√(5-2√6)=134、原式=(√6+√3)²-(√6-√3)²=12√235、原式=(√2+1)²+(√2-1)²=636、原式=3√2-2√3+√6=√2-2√3+337、原式=(√3+√2)²-(√3-√2)²=4√638、原式=(√3+√2)(√3-√2)=139、原式=(√2+1)²-(√2-1)²=4√240、原式=(√3+√2)²-2√6=5+√641、原式=√(7+4√3)×√(7-4√3)=142、原式=(√5+√6)²-11=2√30-443、原式=√(3+2√2)÷(√2-1)=√2+144、原式=(√2+√3)÷(√3-√2)=-145、原式=(√3+√2)÷(√3-√2)=5+2√646、原式=(√2+√3)÷(√2-√3)=-√6-247、原式=-2-(√2+√3)÷(√2-√3)=-2-5√648、原式=(√3+√2)²+(√3-√2)²=1649、原式=(√5+√3)²-(√5-√3)²=12√1550、原式=√(7+4√3)÷(√3-√2)=√6+√251、原式=(√5+√3)÷(√5-√3)=2+√352、原式=(√3+√2)÷(√3-√2)=5+2√653、原式=3-√5+(-2)(√5+1)=1-3√554、原式=(√2+√3)²-2√6=5+√655、原式=(√5+√3)²-2√15=8+2√1556、原式=(√3+√2)²-2√6=5+√657、原式=(√6+√2)²-2√12=8+2√358、原式=√(5+2√6)÷(√3-√2)=√259、原式=2√5-√80+√45=√5-4√2+360、原式= -2+(-1)²÷(2-1)²= -161、原式=(2-1)²-(-2)²=162、原式=(√5-√3)²-(√5+√3)²=-8√1563、原式=(√3+√2)²-(√3-√2)²=4√664、原式=(√5+√2)÷(√5-√2)=3+2√1065、原式=(√3+√2)÷(√3-√2)=5+2√666、原式=(√6+√2)÷(√6-√2)=2+√367、原式=(√5+√3)÷(√5-√3)=2+√668、原式=(√3+√2)÷(√2-√3)=-√6-269、原式=(√5+√3)÷(√2-√3)=(-√6-√2)÷570、原式=3-(√5+√2)²= -8-2√1071、原式=(√3+√2)²-(√3-√2)²=4√672、原式=(√2+√3)²-2√6=5+√673、原式=(√5+√2)²-2√10=7+2√1074、原式=(√3+√2)²-2√6=5+√675、原式=(√6+√2)²-2√12=8+2√376、原式=(-1)²÷(2-1)²-2= -177、原式=(√2+√3)²-2√6=5+√678、原式=(√5+√3)²-2√15=8+2√1579、原式=(√3+√2)²-2√6=5+√680、原式=(√6+√2)²-2√12=8+2√381、原式=(√5+√3)÷(√3-√2)=4+√682、原式=(√3+√2)÷(√5-√2)=(-√2+√3)÷283、原式=(√5+√3)÷(√6-√2)=(√6+√2)÷484、原式=(√2+√3)÷(√5-√2)=(-√2+√3)÷385、原式=(1+√2)²-2(1-√2)²=5+4√286、原式=(1-√2)²+2(1+√2)²=11+4√287、原式=(√2+1)²+(√2-1)²=688、原式=(√5+√3)²-2√15=8+2√1589、原式=(√3+√2)²-2√6=5+√690、原式=(√6+√2)²-2√12=8+2√391、原式=(√5+√3)÷(√2-√3)=(√6+√2)÷292、原式=(√5+√3)÷(√3-√2)=2+√693、原式=(√3+√2)÷(√5-√2)=(-√2+√3)÷394、原式=(√6+√2)÷(√5-√2)=(√6+√2)÷495、原式=(√2+√3)÷(√3-√2)=-√6-296、原式=(√5+√3)÷(√6-√2)=(√6+√2)÷497、原式=(√3+√2)÷(√2-√3)=-√6-298、原式=(√5+√3)÷(√5-√2)=3+2√599、原式=(√6+√2)÷(√6-√2)=1100、原式=(√5+√3)÷(√3-√2)=(√6+√2)÷3101、原式=(√2008-√2009)÷(√2008+√2009)=√\frac{2008}{2009}102、原式=(√3+√2)²-(√3-√2)²=4√6103、原式=(√5+√3)²-(√5-√3)²=12√15104、原式=(√6+√2)²-(√6-√2)²=8√3105、原式=(3+√5)÷(3-√5)= -2+√5106、原式=(√2-√3)²-(√2+√3)²=-8√6107、原式=(√5+√3)÷(√2-√3)=(-√6-√2)÷5108、原式=(√6+√2)÷(√5-√2)=(√6+√2)÷4109、原式=(√3+√2)÷(√5-√3 - 2 + 3 ÷ 3 - 2 = 27 + (-2) = 14 × 2 = 283) × (-2) = -62 - (3 - 22 + 1) = -181 + (-3) + 6 - 10 = -82 + (-2b) + 1 - (2 - 3) = 5 - 2b2 + 1 - (-2) = 317 - (19 - (-2)) = 02 -3 - 2 = -34 + 12 = 164 - 10 + 2 - (-2) = -2 6 -5 = 112 + 18 - 12 = 182 + 3) × (-2) = -10m = 2m + 3m - m = 0 6 ÷ (-2) = -312 ÷ 2 = 66 × (-2) = -123) × 2 = -62 - 2x = 23 - 2) ÷ (2 - 3) = -14 ÷ 2) - (-3) = 53 + (-7) = -41) × 1 = -12 +3 + 2 = 74 × 2 - 3 = 56 + (-2) - (2 - 3) = 5 5| + |-4| = 94 × 2 - 16 + 12 - 16 - 8 = -242 + 3) × 2 = 10a + 2 = 33 ÷ (-1) = 39 - (-3) = 122 × (-3) = -612 ÷ 3 = 427 ÷ 3 = 9XXX。
二次根式混合运算的法则
二次根式混合运算的法则二次根式混合运算,听起来是不是有点高大上?咱们可以把它变得简单又有趣。
咱们要明白,什么是二次根式。
就是那种像√2、√3的东西,乍一看有点神秘,实则就是一种数的表现形式。
想象一下,二次根式就像是数学界的小精灵,它们时不时冒出来,让我们惊讶又无奈。
有些人一看到它们,就像看到鬼一样,心里咯噔一下。
不过别担心,今天咱们就来聊聊这玩意儿,轻松一点儿,嘿嘿。
在处理这些二次根式的时候,有一个很重要的法则,叫做“根式的和与差”。
你可以把它想象成一场数学派对,根式们都在聚会。
有些喜欢一起,像√2和√8,嘿,它们的和是√10。
这就像朋友们在一起,愉快地聊天,不愿意分开。
不过,别搞错了,√2和√3是不能合在一起的,咱们的根式朋友可不是随便交的。
它们各有各的脾气,混在一起就尴尬了。
咱们再聊聊“根式的乘法与除法”。
想象一下,乘法就像二次根式们一起合力打怪,嘿,两个人合力可真强。
比如说,√2乘√3,哎呀,这可是√6!好厉害呀,像打游戏一样,力量翻倍了。
至于除法,那就更简单了,二次根式们相互之间分个清楚。
√6除以√2,结果是√3,这就好比一个人带着包裹,把另一个人的包裹拿走,轻松又简单。
在这场二次根式的游戏中,还有一个超级重要的法则,那就是“根号外的数”。
如果在根号外面有个数字,比如2,那么这就意味着它是个强大的助攻。
√2乘以2,那可真是厉害了,直接变成2√2!就像是给小精灵加了buff,立刻变得强大无比。
看到没,数学其实也是有点魔法的,嘿嘿。
当然了,二次根式的混合运算还有很多小细节要注意。
比如说,根式里的数要尽量简化,就像把一堆杂乱的东西收拾整齐,让它们看起来更漂亮。
√8其实可以简化成2√2,瞬间变得高大上,简直是变魔术一样。
如果你发现有些根式很复杂,别着急,慢慢拆解,找到简单的形式,感觉就像在解开一个谜一样,乐趣无穷。
运算过程中的小错误也很常见,像是走路时绊了一下,嘿,这很正常。
数学这条路,偶尔也会有点崎岖。
二次根式的混合运算
二次根式的混合运算1. 引言在数学中,二次根式是一种形如√a的数,其中a为非负实数。
二次根式可以进行加减乘除等基本运算,也可以与整数、有理数等进行混合运算。
本文将介绍如何进行二次根式的混合运算,包括加减、乘法以及除法。
2. 二次根式的加减运算2.1 加法运算对于两个二次根式的加法运算,我们只需要将它们的根号内的数相加,并保持根号不变。
例如:√a + √b = √(a + b)2.2 减法运算对于两个二次根式的减法运算,我们也只需要将它们的根号内的数相减,并保持根号不变。
例如:√a - √b = √(a - b)3. 二次根式的乘法运算二次根式的乘法运算稍微复杂一些,需要使用到一条性质,即:两个二次根式的乘积等于根号内两个数的乘积。
例如:√a * √b = √(a * b)4. 二次根式的除法运算二次根式的除法运算同样需要使用到一条性质,即:两个二次根式的除法等于根号内两个数的除法。
例如:√a / √b = √(a / b)5. 混合运算的例子为了更好地理解二次根式的混合运算,举个例子:假设有以下的运算:√8 + √2 - √18 * √3 / √4首先,我们可以将各个二次根式的根号内的数进行化简:√8 = √(4 * 2) = 2√2 √18 = √(9 * 2) = 3√2 √4 = 2然后,将化简后的结果带入原表达式中:2√2 + √2 - 3√2 * √3 / 2继续进行混合运算:2√2 + √2 - 3√6 / 2最后,将所有的二次根式及有理数进行合并得到最终结果:2√2 + √2 - (3 / 2)√66. 结论本文介绍了二次根式的混合运算,包括加减、乘法以及除法。
通过理解和应用这些运算规则,我们可以更方便地处理涉及二次根式的数学问题。
希望本文的内容能够帮助读者在学习和应用二次根式时更加得心应手。
二次根式的混合运算
二次根式的混合运算一、混合运算的定义混合运算是指将不同类型的运算在同一个表达式中进行计算的过程。
在数学中,混合运算常常涉及到加法、减法、乘法、除法等基本运算规则。
二、二次根式的定义二次根式是指具有平方根的数学表达式。
一般情况下,二次根式的形式为√(a × b)或√(a / b),其中a和b为实数。
需要注意的是,a和b不能是负数。
三、二次根式的混合运算规则在进行二次根式的混合运算时,需要按照以下规则进行计算:1.二次根式的加法运算:当两个二次根式具有相同的根数和次方数时,可以进行加法运算。
例如:√2 + √3 = √(2 + 3) = √52.二次根式的减法运算:当两个二次根式具有相同的根数和次方数时,可以进行减法运算。
例如:√5 - √3 = √(5 - 3) = √23.二次根式的乘法运算:可以将二次根式的根数和次方数相乘。
例如:√2 × √3 = √(2 × 3) = √64.二次根式的除法运算:可以将二次根式的根数和次方数相除。
例如:√6 ÷ √2 = √(6 ÷ 2) = √35.二次根式的乘方运算:可以将二次根式的根数和次方数进行乘方计算。
例如:(√2)² = √(2²) = √4 = 2四、二次根式混合运算的示例示例一:计算√3 + √5 - √2根据混合运算的规则,我们可以首先进行加法运算,然后再进行减法运算。
即:√3 + √5 - √2 = √(3 + 5) - √2 = √8 - √2由于√8不能继续简化,最后的结果为√8 - √2。
示例二:计算√2 × √3 ÷ √5根据混合运算的规则,我们可以先进行乘法运算,然后再进行除法运算。
即:√2 × √3 ÷ √5 = √(2 × 3) ÷ √5 = √6 ÷ √5由于√6不能被√5整除,所以最后的结果为√6÷ √5。
二次根式的混合运算2
解:(1)原式= a2 ab
(2)原式= x2 y xy xy2 xy x y
2
(3) 原式= 3 12 31 =2 (4)原式= 4x2 4x 1
(5)原式= x2 6xy 9 y2
(3) 3 1 3 1
例题讲析 (我是小老师)
例1.计算
(1) 8 3 6
解:原式= 8 6 3 6
53
2
例3.先化简,再求值
2 a 3 a 3 a a 6 6 ,其中 a 2 1
解:原式= 2 a2 3 a2 6a 6
2a2 6 a2 6a 6
a2 6a
当 a 2 1 时,
2
原式= 2 1 6 2 1
22 2 16 2 6
4 2 3
课堂展示
例3 计算:
( 2 )( 2 + 3 2 )( 1 - 2 ).
从例3的第(2)小题看到,二次根式的和相乘, 与多项式的乘法相类似.
我们可以利用多项式的乘法公式,进行某些二 次根式的和相乘的运算.
例4 计算:
( 1 )( 2 + 1 )( 2 - 1 ) ; ( 2 )( 2 - 3 )2 .
动脑筋
二次根式的混合运算是根据实数的运算律进 行的.
例3 计算:
(
1)
6-
3 8
×
2;
( 2 )( 2 + 3 2 )( 1 - 2 ).
解
(1)
6-
3 8
×
2
=
6×
2-
3× 8
2
=
6× 2 -
3× 8
2
=
3× 2× 2 -
3 4
=
2
3-
8二次根式的混合运算
2、心中有梦,才能看到远方。心中有路,才能走得踏实。
张磊
学习目标 ①能对二次根式进行简单的混合运算.
②提高自己的运算能力.
课堂要求:认真听讲、积极练习、认真总结!
例1、计算
解:原式 = = 8× + 6 83 6 3× 6 解:原式 = = 48 + 18 11 6 =4 = 366 +3 2
你对本节课所学的内容存在疑问吗?
作业
课本 18面 4、6
Байду номын сангаас
= -13 -2 2
= 20 - 3 = 17
③ (2 2 3 )
2
解:原式= (2 2 )2 + 2 ×2 2× 3 + ( 3 )2 = 8 + 4 6+ 3 = 11 + 4 6
例3、计算
1 3 3 2 1 (
6) 8
解:原式= 2 1 + 3 - 3 2 + 2 2 =4
×
①( 8 3) 6
3 2 =24
② (4 2 3 ) 2 2 解:原式= 4 2÷2 2 - 3÷ 2 2
例2、计算
① ( 2 3)( 2 5) ② (2 5 3 )( 2 5 3 )
2 2 解:原式= (2 5) - ( 3)
解:原式= 2 - 5 2 + 3 2 - 15
规则:同学们先在草稿纸上完成题目,之后,随机抽取两名同学进行投影展示, 一题两分!
第一轮 第二轮
课本 课本 17 17面 面 练习: 练习:1 2
规则:同学们先在草稿纸上完成题目,之后,随机抽取两名同学进行投影展示, 一题两分!
二次根式的混合运算
二次根式的混合运算二次根式的混合运算教学建议知识结构重难点分析这节课的重点是二次根的加减乘除乘方混合运算和分母的合理化。
它基于二次根式的概念和性质,同时与代数表达式和分式的运算密切相关。
也可以说是初中作业问题的总结性综合学习;二次根式运算和理性的方法与技巧可以进一步发展学生的思维,提高学生的解题能力。
这一课的难点是把分母有两个二次根的公式的分母合理化。
分母是物理和化学。
其实二次根的除法是结合混合运算的。
一般来说,我们可以根据分数的基本性质,先确定分母的物理化学因子,然后将分子和分母乘以这个物理化学因子,从而得到分母的物理化学。
所以对于初学者来说,这个过程容易出现找错理化因子,计算出错的问题。
教学建议1.在知识的介绍上,可以采用复习介绍的方法,比如复习有理数的混合运算或者代数表达式的运算。
2.在二次根的加、减、乘混合运算中,要注意由浅入深的层次排列,从单项式与多项式的乘法、多项式与多项式的乘法到乘法公式的应用,逐渐从数字到带字母的公式。
3.在理化因素教学中,应要求学生从不同角度识别几组问题,并及时总结。
学生特点:实验班(数学分层教学)A级学生主动学习热情高,基础扎实,思维活跃,具有独立分析问题、探究问题、总结问题的能力,具有良好的思考和提问习惯。
教材特点:本课是在学习二次根(最简单的二次根、相似的二次根、有理分母)三个重要概念以及二次根的相关运算(二次根的乘法、二次根的除法、二次根的加减)的基础上,集加减乘除、乘除、平方根运算于一体的混合运算的学习。
针对学生和教材的特点,本课主要采用“互动式”课堂教学模式和“会话式”教学方法,实现学生、教师和学生之间、学生和教材之间的互动。
具体说明如下:(1)在师生互动方面,教师注重问题设计、引导、启发和总结。
让学生思考,从思考中收获。
在本课开始时,展示书中的示例1:让学生先思考,先回答。
然后学生告诉如何进行。
重点:运算顺序和运算规律和有理数一样。
(二)在学生与学生的互动中,教师注重活动设计,让学生在学习中获得乐趣,并通过音乐实现自己的方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学个性化教学教案
授课时间:年月日备课时间年月日年级八学科数学课时 1 h 学生姓名
授课主题二次根式的混合运算授课教师
教学目标1.掌握二次根式的混合运算.
2.掌握乘法公式在混合运算的应用.
3.通过二次根式的混合运算,培养学生的运算能力.
教学重难点1.重点:二次根式的混合运算.
2.难点:把分母中含有两个二次根式的式子进行分母有理化.
教学过程一、【历次错题讲解】
二、【基础知识梳理】
(一)(复习)
1、计算:(1)8
3
6
4
1
⨯;(2)14
42
5
⨯.
解:(1)3
3
8
6
3
4
1
8
3
6
4
1
=
⨯
⨯
=
⨯(2)
3
15
14
42
5
14
42
5
=
⨯
=
⨯
2、在整式乘法中,单项式与多项式相乘的法则是什么?多项式与多项式的乘法法则是
什么?什么是完全平方式?分别用式子表示出来。
答:单项式与多项式相乘的法则是,用单项式去乘多项式的每一项,再把所得的积
相加。
用式子表示为m(a+b+c)=ma+mb+mc
多项式与多项式相乘的法则是,先用一个多项式的每一项乘以另一个多项式的每
项,再把所得的积相加。
用式子表示为(a+b)(m+n)=am+an+bm+bn,其中a,b,m,n都
是单项式。
平方差公式是:2
2
)
)(
(b
a
b
a
b
a-
=
-
+;完全平方式是:2
2
22
)
(b
ab
a
b
a+
±
=
±
在实数范围内,整式中的乘法法则及乘法公式仍然适用,运用乘法法则及乘法公
式可以进行二次根式的混合运算。
引入新课。
(二)(例题解析)
例1计算:(1)6
)3
5
27
8
(⋅
-;(2))3
2
2
5(
)6
5(-
⋅
+
注:①加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二
是进行加法运算,使难点分散,易于学生理解和掌握.②在运算过程中,对于各个根
学习札记
简.例如6)3527
8
(⋅- ,没有对
278 先进行化简的必要,使计算繁琐,而是应先进行乘法运算6278
6278⨯=⋅,通过约分达到化简的目的.
例2 计算:(1)(2332)(2332)+- ;(2)2(435)+ ;(3)2(633)- .
注:①由学生观察算式,找出特征:两个数的和与这两个数差的积;两个数的和或差的平方,联想乘法公式,与多项式的乘法相类似,二次根式的和相乘,适用乘法公式时,运用乘法公式.
②复习乘法公式,可选做几个小题.如(2)(2)a b a b +- ,2
1(2)2
x y -等. 例3 计算:
(1)(36)(36)+- ;(2)(25)(25)ax by ax by -+ . ③引出有理化因式的概念
例如,a 与a ,36+ 与36- .
注:互为有理化因式是指两个代数式,其乘积不再含有二次根式.
可适当再举例说明,如1a - 与1a + ,23a b - 与23a b + 、a b +与a b + ,但23a b +与23a b - 就不是互为有理化因式.
知识归纳:
1.分母有理化定义:把分母中的根号化去,叫做分母有理化。
2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:
①单项二次根式:利用a a a ⋅=来确定,如:a a 与, a b a b ++与,b a -与b a -等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如a b +与a b -,
a b a b +-与,a x b y a x b y +-与分别互为有理化因式。
3.分母有理化的方法与步骤: ①先将分子、分母化成最简二次根式;
②将分子、分母都乘以分母的有理化因式,使分母中不含根式 ③最后结果必须化成最简二次根式或有理式。
4.二次根式的混合运算
19、已知2323x -=+,23
23
y +=-,求下列各式的值:
(1)x y
x y
+- (2)223x xy y -+
20、把下列各式分母有理化:
(1)()a b a b a b -≠+ (2)
2222a a a a +--++- (3)22
22b a b b a b
-+++
21、同学们,我们以前学过完全平方公式a 2±2ab+b 2=(a±b)2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的非负数都可以看作是一个数的平方,如3=(3)2,5=(5)2,你知道
2-1是谁的二次根式呢?下面我们观察:
(2-1)2=(2)2-2·1·2+12=2-22+1=3-22 反之,3-22=2-22+1=(2-1)2
∴3-22=(2-1)2 ∴322-=2-1
求:(1)322+ (2)423+ (3)412-
(4)若2a b ±=m n ±,则m 、n 与a 、b 的关系是什么?并说明理由.。