电磁场与电磁波 第1章矢量分析
电动力学电磁场与电磁波课件第1章矢量分析
矢量分析
本课程约定
? 物理量符号上方用“ ? ”或粗斜? 印刷体代表矢量 ,例如电场强度矢量E
? 物理量符号上方用“ ? ”代表单
位矢量,例如e?x,e?y,e?z 分别代表 x,
y,z 方?向的单位矢量, r? 代表位置 矢量 r 的单位矢量
第一章 矢量分析
e??
?
单位圆
x
?e??
??
?
? e?xcos?
? e?ysin?
?
? e?ρ
xy 平面上的投影图
?
矢量表示: A ? e?? A? ? e?? A? ? e?z Az
z
e?z
位置矢
r ? e?? ? ? e??? ? e?z z ???
?
位置矢量 : r ? e?? ? ? e?zz
? P(?, ?, z) r
场物理量随时间变化。本课程主要讨论随 时间正弦或余弦变化的时变场,称时谐场
标量场( Scalar Field )
场物理量是标量,如温度场,电位场等
场矢物量理场量(是矢Ve量c,to如r F电ie场ldE??)r?,t?
2. 三种常用的坐标系
直角坐标系 基本变量: x, y, z
z
? P(x,y,z) r
e?x ? e?x ? e?y ? e?y ? e?z ? e?z ? 0
e?z e?y
e?x ?e?y ? e?y ?e?z ? e?z ?e?x ? 0
e?x
e?x ?e?x ? e?y ?e?y ? e?z ?e?z ? 1
??
? ? e?x e?x e?x
A?B ? AxBx ? AyBy ? Az Bz A ? B ? Ax Ay Az
《电磁场与电磁波》第一章 矢量分析
ey Ay By
ez Az Bz
显然,矢量的矢积不满足交换律。 两个矢量的矢积仍是矢量。
矢积的几何意义 设 则
A A ex
B Bxex By ey
z
A B y B
A B ez A B sin
A
可见,矢积A×B的方向与矢量A及 矢量B构成的平面垂直,由A旋转到B成 右手螺旋关系;大小为 A B sin 。
S
E dS
0
可见,当闭合面中存在正电荷时,通量为正。当闭合面中存在负电 荷时,通量为负。在电荷不存在的无源区中,穿过任一闭合面的通 量为零。
㊀
㊉
二、散度(divergence)
通量仅能表示闭合面中源的总量,不能显示源的分布特性。为 此需要研究矢量场的散度。
如果包围点P的闭合面S所围区域V以任意方式缩小为点P 时, 矢量A通过 该闭合面的通量与该闭合面包围的体积之比的极限称为矢量场A在该点的散度, 以divA表示,即
结合律: ( A B) C A ( B C )
标量乘矢量:
A Ax ex Ay e y Az ez
§1-3 矢量的标积和矢积
一、矢量的标积
A Axex Ay e y Az ez
矢量A与矢量B的标积定义为:
B Bxex By ey Bz ez
则: A A ea ex A cos ey A cos ez A cos 标积的几何意义
y B
设 其中
A A ex
B Bxex By ey
Bx B cos By B cos( ) B sin 2
A
x
所以
A B A B cos
精品课件-电磁场与电磁波-第1章
第1章 矢量分析基础
1.1 矢量分析 1.2 场论 1.3 标量场的方向导数和梯度 1.4 矢量场的通量及散度 1.5 矢量场的环量和旋度 1.6 亥姆霍兹定理 1.7 圆柱坐标系和球坐标系
第1章 矢量分析基础 1.1 矢量分析 矢量分析讨论矢性函数的求导、积分等内容,它是矢量代 数的继续,也是场论的基础。在物理学和工程实际中,许多物 理量本身就是矢量,如电场强度、磁场强度、流体的流动速度、 物质的质量扩散速度及引力等。采用矢量分析研究这些量是很 方便的。有些物理量本身是标量,但是描述它们的空间变化特 性用矢量较为方便。如物体的引力势,描述它的空间变化就需 要用引力。再比如,空间的电位分布,描述其变化采用电场强 度较为方便。
记为
,u 即
l M0
u lim u(M ) u(M0 )
l M0 M M0
M0M
(1-7)
第1章 矢量分析基础 图1-6 梯度和方向导数
第1章 矢量分析基础
2. 方向导数的计算公式
设有向线段l的单位矢量为l°=l/l,这个单位矢量的方
向余弦为(cosα, cosβ, cosγ),则标量场在某点的方向导
第1章 矢量分析基础
例1-1 若两个点电荷产生的电位 u(x, y, z) kq kAq r r1
为 r x2 y2 z2 r1 ,其(x a)2 y2 z2
中
,
,A、q和k是常数。求
电位等于零的等位面方程。
解 令u=0,则有1/r=A/r1,即Ar=r1, 左右同时平方, 得
(xA2(x2a+y2+)z22)=(yx2+a)z22+y2+z2A2a 2
若问题的本身就是两个变量的函数,这种情形叫做平面标 量场。此时,标量场一般可以写为u(x,y)。标量场具有相同 数值的点,就组成标量场的等值线,等值线方程为
第一章矢量分析
P0 z0
r eˆ zeˆz
O ψ0
矢量表示:
x
A r
(
rv)eˆ
A (rv)eˆ
A (rv)eˆ
z
z
2020/4/29
第一章 矢量分析
P(p0,ψ0,z0)
evz
y
ev
e
26
3、球面坐标系 ( r, , )
方向单位矢量:
eˆr , eˆ , eˆ
位置矢量:
r reˆr
x
矢量表示:
2020/4/29
8
第一章 矢量分析
4.电磁场与电磁波的应用
当今世界,电子信息系统,不论是通 信、雷达、广播、电视,还是导航、遥控 遥测,都是通过电磁波传递信息来进行工 作的。因此以宏观电磁理论为基础,电磁 信息的传输和转换为核心的电磁场与电磁 波工程技术将充分发挥其重要作用。下面 我们来看一下一些常见的天线和馈线。
本课程将在“大学物理(电磁学)”的基础 上,进一步研究宏观电磁现象和电磁过程的基 本规律及其分析计算方法。通过课程的学习, 掌握基本的宏观电磁理论,具备分析和解决基 本的电磁场工程问题的能力.
2020/4/29
3
第一章 矢量分析
2.电磁场与电磁波的概念
• 电场 • 磁场 • 电磁场 • 电磁波
2020/4/29
物理意义:表示穿入和穿出闭合 面S的矢量通量的代数和。
讨论:1)面元 d定Sv义;
矢量场的通量
2) A(r) cos (r)ds s
3) 通过闭合面S的通量的物理意义:
a) 若 ,0闭合面内有产生矢量线的正源;
b) 若 ,0闭合面内有吸收矢量线的负源;
2020/4/29
矢量分析【电磁场与波+电子科技大学】
面元矢量与此矢量相合时,极限值为最大值,也就是
该矢量的模。这个矢量称为 的旋度(curl),记为
或
,故有
其中 是 在面元矢量 (用 表示其方向)上的投影。
第47页
电磁场与电磁波 第一章__矢量分析
旋度:若在矢量场 中的一点M 处存在矢量 , 的方向
是 在该点环流面密度最大的方向,它的模就是这个最大
的环流面密度。矢量 称为矢量场 在点M 的旋度,记
为
或
。
说明:
① 在流体力学中,旋度表示了旋转的强弱即大小;在电磁场中,
不存在旋转强弱的意义;
② 旋度与环流中C 的形状、取向无关,只与场在M 点的量 本身有关;
③ 旋度场: 与矢量场 中的点一一对应得到的新的矢量场
第48页
电磁场与电磁波 第一章__矢量分析
第23页
电磁场与电磁波 第一章__矢量分析 1.3.2/3 方向导数和梯度 方向导数意义:表示场沿某方向的空间变化率
梯度的意义:描述标量场在某点的最大变化率及其 变化最大的方向
第24页
电磁场与电磁波 第一章__矢量分析
定义算符:
←哈密顿算符
数量场u 的梯度是矢量(是空间坐标点的函数) 梯度的大小为该点标量函数u 的最大变化率,即最大方向导数 梯度的方向为该点最大方向导数的方向 梯度场:数量场u 中每点都有一个梯度而形成的矢量场
第25页
电磁场与电磁波 第一章__矢量分析 直角坐标梯度: 圆柱坐标梯度: 球 坐 标 梯度:
第26页
电磁场与电磁波 第一章__矢量分析
梯度运算公式:
k为常数
第27页
电磁场与电磁波 第一章__矢量分析
{例} 考虑一个二维标量场 求此标量场的等值面,求u 的梯度 任取一闭合的积分回路,证明
《电磁场与电磁波》矢量分析
梯度:增加最快的方向
l M0 g el
方向导数=梯度在该方向上的投影
小结 等值面:只能反映标量分布的总体趋势 梯度:场中每点变化最快的方向和最大的变化率
求场
解:
在点(0,0.5,1) 处的梯度。
矢量场的通量和散度
矢量线:描述矢量场的线 形象直观地描述矢量场
大小:疏密 方向:切线方向
矢量线的疏密可定性表征矢量场的大小 实际需定量描述,故引入通量
A dS
V 0 V S
对散度作体积分,就得到通量
高斯公式 通量=散度的体积积分 矢量函数的面积分与体积分的相互转换
S A dS 面
divA lim 1
A dS 点
V 0 V S
体
实现了“面-点-体 ”的转化
矢量场的环量和旋度
通量: 有向曲面上的面积分值,表示体积内 的通量源,分布强度用散度来描述
A B AB cos =Ax Bx Ay By Az Bz
Bcosθ:B在A方向上的投影 B
A ex 2ey 3ez
B 4ex 5ey 6ez
A
B cos
A B 14 25 36 32
矢量标量积满足交换律和结合律
AB B A
kA pB kpA B AB+C A B AC
l M0 =0, 沿l方向不变
l M0
几个问题:
1)方向导数是标量?矢量? 标量 2)不同方向的变化快慢是一样的? 不是
l 方向改变,方向导数值也变 3)方向导数能反映哪方向的变化率最大? 不能 4)标量能准确刻画标量场的空间变化率?不能
3 梯度
l M0 g el | g | cos(g, el )
场中的每一点只与一等值面/线对应 等值面的稀密程度反映场量的空间分布
电磁场与电磁波矢量分析亥姆霍兹定理
电磁场与电磁波
第一章 矢量分析
§1 .2 通量与散度, 散度定理
一、通量
面元:
ˆ ds ds n
ˆ 是面元的法线方向单位矢量 其中: n ˆ 的取向问题: n
对开曲面上的面元, 设这个开曲面是由封闭曲线l所围成的, 则当选定绕行l的方向后, 沿绕行方向按右手螺旋的姆指方 ˆ 的方向 向就是n ˆ 取为封闭面的外法线方向。 对封闭曲面上的面元, n
ˆ (gradient)为 grad n n
grad lˆ l
在直角坐标系中梯度的计算公式
ˆ grad x
ˆ ˆ y z x y z
电磁场与电磁波
第一章 矢量分析
例1 .6
在点电荷q的静电场中, P(x, y, z)点的电位为
注意:x ˆx ˆ
ˆ y ˆz ˆ z ˆ0 y ˆ y ˆz ˆz ˆ, z ˆy ˆ ˆ, y ˆx ˆ x x
直角坐标系中的计算公式:
ˆ x yA ˆ y zA ˆ x yB ˆ y zB ˆ z ) ( xB ˆ z) A B ( xA ˆ ( Ay Bz Az By ) y ˆ ( Az Bx Ax Bz ) z ˆ( Ax By Ay Bx ) x
散度计算公式: divA A
Ax Ay Az ˆ y ˆ z ˆAx y ˆAy z ˆ ˆAz ) A (x x y z x y z x
电磁场与电磁波
第一章 矢量分析
三、散度定理
n2
q ˆds e D ds r r 3 s 4r s q q 2 ds 4 r q 2 s 2 4r 4r
第一章 矢量分析(电磁场与电磁波)
例:已知一矢量场F=axxy-ayzx, 试求: (1) 该矢量场的旋度; (2) 该矢量沿半径为3的四分 之一圆盘的线积分, 如图所 示, 验证斯托克斯定理.
y B r=3
O
A x
四分之一圆盘
第 7,8 学时 , 1.4 标量的方向导数和梯度
1.4.1标量的方向导数和梯度 标量的方向导数和梯度 一个标量场u可以用一个标量函数来表示.在直角坐标 系中, 可将u表示为 u=u(x, y, z) 令 u(x, y, z)=C, C为任意常数.该式在几何上一般表示 一个曲面,在这个曲面上的各点,虽然坐标(x, y, z)不同, 但函数值相等,称此曲面为标量场u的等值面 等值面. 随着C 等值面 的取值不同,得到一系列不同的等值面,如下图所示. 同理,对于由二维函数v=v(x, y)所给定的平面标量场, 可按v(x, y)=C得到一系列不同值的等值线.
S → P
∫ lim
l
A dl
S
称固定矢量R为矢量A 的旋度 旋度,记作 旋度 rotA=R 上式为旋度矢量在n方 向的投影,如图所示, 即
rotA 旋旋旋
n
P l
S → P
∫ lim
l
A dl
S
= rotn A
旋度及其投影
矢量场的旋度 旋度仍为矢量 矢量.在直角坐标系中,旋度的表达式为 旋度 矢量
C C=A× B an aA A (a)
图 1 - 3 矢量积的图示及右手螺旋 (a) 矢量积 (b) 右手螺旋
O
aB B
B A
θ
(b)
矢量积又称为叉积 叉积(Cross Product),如果两个不为零的 叉积 矢量的叉积等于零,则这两个矢量必然相互平行,或者 说,两个相互平行矢量的叉积一定等于零.矢量的叉积 不服从交换律,但服从分配律,即 A×B= -B×A × × A×(B+C)=A×B+A×C × × ×
《电磁场与电磁波》复习纲要(含答案)
S
第二类边值问题(纽曼问题) 已知场域边界面上的位函数的法向导数值,即 第三类边值问题(混合边值问题) 知位函数的法向导数值,即
|S f 2 ( S ) n
已知场域一部分边界面上的位函数值,而其余边界面上则已
|S1 f1 ( S1 )、 | f (S ) S 2 2 n 2
线处有无限长的线电流 I,圆柱外是空气(µ0 ),试求圆柱内 外的 B 、 H 和 M 的分布。 解:应用安培环路定理,得 H C dl 2 H I I H e 0 磁场强度 2π I e 0 a 2 π 磁感应强度 B I e 0 a 2 π 0 I B e 2π M H 磁化强度 0 0 0
C
F dl F dS
S
5、无旋场和无散场概念。 旋度表示场中各点的场量与旋涡源的关系。 矢量场所在空间里的场量的旋度处处等于零,称该场为无旋场(或保守场) 散度表示场中各点的场量与通量源的关系。 矢量场所在空间里的场量的散度处处等于零,称该场为无散场(或管形场) 。 6、理解格林定理和亥姆霍兹定理的物理意义 格林定理反映了两种标量场 (区域 V 中的场与边界 S 上的场之间的关系) 之间满足的关系。 因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布 在无界空间,矢量场由其散度及旋度唯一确定 在有界空间,矢量场由其散度、旋度及其边界条件唯一确定。 第二章 电磁现象的普遍规律 1、 电流连续性方程的微分形式。
D H J t B E t B 0 D
D ) dS C H dl S ( J t B E dl dS S t C SB dS 0 D dS ρdV V S
电磁场与电磁波-第1章矢量分析
的平行六面体的体积 。
B
电磁场与电磁波
第1章 矢量分析
V A ( B C ) C ( A B ) B ( C A ) hBC
注意:先后轮换次序。
A
C
推论:三个非零矢量共面的条件。
A(BC)0
B
在直角坐标系中:
aˆx aˆy aˆz
A(BC)(AxaˆxAyaˆyAzaˆz)Bx By Bz
d dn
aˆ n
aˆ l
P1
dgraddl
dn dl
在直角坐标系中:
P
ddxdydz
0
x y z
P2
0 d
dldxa ˆxdya ˆydza ˆz
所以:gradxaˆxyaˆyzaˆz
梯度也可表示: grad
电磁场与电磁波
第1章 矢量分析
2.减法:换成加法运算
DABA(B )
逆矢量:B 和 ( B ) 的模相等,方向相反,互为逆矢量。
D
A
A
D
B
B
B
C
推论:
B
ABC 0
A
任意多个矢量首尾相连组成闭合多边形,其矢量和必为零。
在直角坐标系中两矢量的减法运算:
A B ( A x B x ) a ˆ x ( A y B y ) a ˆ y ( A z B z ) a ˆ z
则: 2 a b 2 c 3 a 3b c 2 a 2b 3c 5
a 2 b 1 c 3
电磁场与电磁波
第1章 矢量分析
例3: 已知 A2aˆx6aˆy3aˆz B4a ˆx3a ˆya ˆz
电磁场与电磁波—矢量分析
两个矢量的点积:写成
A B
其值为: A B AB cos
A
点积的性质:
θ
交换律 分配律 按乘数比例
A B C A B A C k A B kA B A kB
A B B A
若该物理量为矢量,则称矢量场, 可用矢性函数表示F(x,y,z); F(x,y,z,t) f(x,y,z,t)
若该物理量与时间无关,则该场称为静态场; 若该物理量与时间有关,则该场称为动态场或称为时变场。
第一章
矢量分析
笛卡尔坐标系
我们的标量函数(标量场)通常用笛卡 尔坐标系表示,我们的矢性函数也可以 用笛卡尔坐标系来表示 根据矢量的运算规则,多个矢量可以进 行矢量相加,反过来,一个矢量以可以 分解为多个矢量的和
B
第一章
矢量分析
两个矢量的叉积:写成 r F M 其值为: r F rF sin e n
M
r
F
第一章
矢量分析
叉积的性质:
不服从交换律 但服从分配 按乘数比例
A B C A B A C kA B k A B A kB
0
第一章
矢量分析
△z
z
若函数φ=φ(x, y, z)在点M0(x0, y0, z0)处可 微, cosα 、 cosβ 、 cosγ 为 l 方向的方向余弦, 则函数 φ在点M0处沿l方向的方向导数必定存 在,且为
γ M0 α
△x
ρ
β
M
电磁场与电磁波第一章矢量分析
(Cf ) C f
有关散度的公式:
(kF ) k F (k为常量)
( f F ) f F F f
(F G) F G
电磁场与电磁波
第1章 矢量分析
26
4. 散度定理(高斯公式)
矢量场对于空间任意 闭合曲面的通量,等于矢 量场的散度在该闭合曲面 所包围体积中的体积分。
4. 各坐标系单位矢量之间的关系
直角坐标与 圆柱坐标系
eeez
ex
cos sin
0
ey
sin cos
0
ez 0 0
1
直角坐标与 球坐标系
er
ex
sin cos
e cosθ cos
e sin
ey
ez
sin sin cos
cos sin sin
cos
0
15
zy e
eeyz
eer
度规系数 hr 1, h r, h r sin
电磁场与电磁波
第1章 矢量分析
14
面元矢量
dSr
er dl dl
er r 2sin dd
dS
e dlrdl
ez
rsin
drd
dS
e dlr dl
e rdrd
球坐标系中的线元、面元和体积元
体积元
dV r2sindrdd
电磁场与电磁波
第1章 矢量分析
如果表示“场”的物理量是标量,则称为标量场。
例如:温度场、电位场、高度场等。 如果表示“场”的物理量是矢量,则称为矢量场。
例如:流速场、重力场、电场、磁场等。 如果场与时间无关,称为静态场,反之为时变场。
从数学上看,“场”是定义在空间区域上的函数:
电子科技大学电磁场与电磁波课件第一章+矢量分析1
思考:计算圆柱、球的表面积、体积?
球坐标系中的线元、面元和体积元
14
线元矢量 d l e d r e r d e r sin d r
面元矢量 2 d S e d l d l e r d d r r rsin
d S e d l d l e r d r d r
A B Ax Bx ex ey Ay By ez Az Bz
A A 矢量 与B 的叉积
叉积仅服从分配律。
9
混合运算: —— 标量三重积 A ( B C ) B ( C A ) C ( A B ) A ( B C ) ( A C ) B ( A B ) C —— 矢量三重积
( A B ) C A C B C —— 分配律 ( A B ) C A C B C —— 分配律
10
1.2 三种常用的正交坐标系
三维空间点的位置可通过三条相互正交曲线的交点来确定。 正交曲线坐标系:三条正交曲线组成的确定三维空间任意点 位置的体系;
e
ey
ez 0 0 1 ez cos sin 0
e
ey
e
ex
圆柱坐标与 球坐标系
e
sin cos 0
ex
e
o
单位圆
x
直角坐标系与柱坐标系之间 坐标单位矢量的关系
0 0 1
ey
z
ez
er
e
直角坐标与 球坐标系
电磁场与电磁波理论第1章
1-2
《电磁场与电磁波理论》
基本要求
第1章 矢量分析与场论
◘ 掌握矢量和场的基本概念; ◘ 掌握矢量的代数运算和场量的梯度、散度、旋度
以及拉普拉斯运算; ◘ 了解矢量分析过程中所需的恒等式和基本定理.
1-3
《电磁场与电磁波理论》
三种常用的正交坐标系
第1章 矢量分析与场论
直角坐标系 圆柱坐标系 球面坐标系 几点说明
第1章 矢量分析与场论
矢量与矢量的表示法 矢量的代数运算
1-10
《电磁场与电磁波理论》
矢量与矢量的表示法
第1章 矢量分析与场论
1. 矢量与单位矢量 2. 矢量表示法 3. 位置矢量与距离矢量
1-11
《电磁场与电磁波理论》
1.矢量与单位矢量
第1章 矢量分析与场论
♥ 矢量——在三维空间中的一根有方向的线段. ♥ 该线段的长度 代表该矢量的模, ♥ 该线段的方向 代表该矢量的方向
《电磁场与电磁波理论》
第1章 矢量分析与场论
第1章 矢量分析与场论
主要内容
基本要求
三种常用的正交坐标系
物理量的分类
1.1 矢量的代数运算 1.2 场的微分运算 1.3 矢量的恒等式和基本定理 1.4 常用正交曲线坐标系
1-1
《电磁场与电磁波理论》
主要内容
第1章 矢量分析与场论
电磁理论的一个重要的概念就是关于场的概念.此外, 有很多物理量都是矢量,一些用来描述电磁现象基本规律 的方程也都是矢量函数的微分方程或积分方程.因此,矢 量分析和场论是电磁理论的重要的数学基础.本章仅讨论 在电磁理论中所需要的矢量分析与场论中的基本内容,包 括矢量的基本代数运算和场量的梯度、散度、旋度和拉 普拉斯运算以及矢量场的恒等式和基本定理.最后,还给 出了三种常用坐标系及其梯度、散度、旋度等算子在这 三种坐标系中的表示式.
电磁场与电磁波第1章矢量分析
例:已知一矢量场F=axxy-ayzx, 试求:
(1) 该矢量场的旋度;
(2) 该矢量沿半径为3的四分 之一圆盘的线积分, 如图所 示, 验证斯托克斯定理。
y B
r= 3
O
Ax
四分之一圆盘
第 7、8 学时 1.4 标量的方向导数和梯度
1.4.1标量的方向导数和梯度
一个标量场u可以用一个标量函数来表示。在直角坐标 系中, 可将u表示为
lim l A dl
SP S
称固定矢量R为矢量A的 旋度,记作
rotA=R
上式为旋度矢量在n方 向的投影,如图所示, 即
A dl
lim l
SP S
rotn A
ro tA
n
旋涡面
P l
旋度及其投影
矢量场的旋度仍为矢量。在直角坐标系中,旋度的表达式为
rotA
ax
Az y
Ay z
a
y
Ax z
Az x
z
l
式 中 , 当 Δl→0 时 δ→0 。 将 上 式 两 边 同 除 以 Δl 并 取 极限得到方向导数的计算公式:
u u cos u cos u cos
l x
y
z
ห้องสมุดไป่ตู้
其中,cosα, cosβ, cosγ为l方向的方向余弦。
1.4.4 标量场的梯度
1. 梯度的定义
方向导数为我们解决了函数u(P)在给定点处沿某个方向的 变化率问题。然而从场中的给定点P出发,标量场u在不 同方向上的变化率一般说来是不同的,那么,可以设想,
▽ ·(▽ ×A)≡0
即如果有一个矢量场B的散度等于零,则该矢量B就可 以用另一个矢量A的旋度来表示,即当 ▽ ·B=0 则有
电磁场电磁波-第一章 矢量分析(1.4-5)
环流面密度矢量→旋涡源密度矢量 旋涡源密度矢量。 物理意义 ◇ 环流面密度矢量 旋涡源密度矢量。
电磁场与电磁波
第1章 矢量分析
•
直角坐标系中 rot x F、rot y F 、rot z F 的表达式 的示意图如图所示。 推导 rot x F 的示意图如图所示
电磁场与电磁波
第1章 矢量分析
1.5.2. 矢量场的旋度(∇× F) 矢量场的旋度( 矢量场的环流给出了矢量场与积分回路所围曲面内旋涡源 宏观联系。为了给出空间任意点矢量场与旋涡源的关系, 宏观联系。为了给出空间任意点矢量场与旋涡源的关系,引入 矢量场的旋度。 矢量场的旋度。 (1)环流面密度 ) 过点M 作一微小曲面∆ 它的边界曲线记为C, 过点 作一微小曲面∆S ,它的边界曲线记为 ,曲面的法 与曲线的绕向成右手螺旋法则。 线方向 n与曲线的绕向成右手螺旋法则。当∆S→0 时,极限 →
闭合曲面的通量从宏观上建立了矢量场通过闭合曲面的通 闭合曲面的通量从宏观上建立了矢量场通过闭合曲面的通 宏观上 量与曲面内产生矢量场的源的关系。 量与曲面内产生矢量场的源的关系。
电磁场与电磁波
第1章 矢量分析
1.4.3. 矢量场的散度 散度: 向某点无限收缩时, 散度:当闭合面 S 向某点无限收缩时,矢量 F 通过该闭合面S 的 通量与该闭合面包围的体积之比的极限称为矢量场 F 在该 点的散度, 表示, 点的散度,以 div F 表示,即
环流的概念 矢量场对于闭合曲线C 的环流定义为该矢量对闭合 矢量场对于闭合曲线 环流定义为该矢量对闭合 曲线C 的线积分, 曲线 的线积分,即
Γ = ∫C F(x, y, z) ⋅ dl
如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无 如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无 旋场,又称为保守场。 旋场,又称为保守场。 保守场 如果矢量场对于任何闭合曲线的环流不为零, 如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为 有旋矢量场,能够激发有旋矢量场的源称为旋涡源。电流是 有旋矢量场,能够激发有旋矢量场的源称为旋涡源。 旋涡源 磁场的旋涡源。 磁场的旋涡源。
电磁场与电磁波-1、2、3章矢量分析与场论基础
位置矢量的微分元是
dR
它在
d 、
(
和e ) dBiblioteka (zez ) e d e d ezdz
z 增加方向的微分元分别为d 、d和dz,如
图1.6所示。与单位坐标矢量相垂直的三个面积元分别为
dS ddz
dS d dz
体积元可表示为
dSz d d
dV dddz
r 3.球坐标系
A aA A ,其中是与同方向的单位矢量,为矢量的模值。
其中 aA 是 与 A同方向的单位矢量,A为矢量A模值。 一个矢量在三个相互垂直的坐标轴上的分量已知,则
这个矢量就确定了。如在直角坐标系中,若矢量A的坐标
分量为( Ax,Ay, Az),则可表示为则 A可表示为
A ex Αx ey Αy ez Αz
矢量A和B矢量的平面,方向满足右手螺旋法则,即
当右手四指从矢量A到B旋转 角时大拇指所指的方 向,其大小为 ABsin ,即
A B en AB sin
是叉积方向的单位矢量。 在直角坐标系中,各单位坐标矢量的叉积满足如下关系
ex ey ez ,ey ez ex ,ez ex ey
ex ex ey ey ez ez 0
y
x
图1.4 直角坐标系 在直角坐标系中,以坐标原点为起点,指向M (x, y, z点) 的矢 量R称为M点的位置矢量,可表示为
R xex yey zez 位置矢量的微分元是
dR exdx e ydy ezdz
它在x、y和z增加方向的微分元分别为 dx、dy和 dz ,
而与单位坐标矢量相垂直的三个面积元分别为
【提示】A B的模就是A与B所形成的平行四边形的面 积,因此C ( A B)是平行六面体的体积。
考研《电磁场与电磁波》考研重要考点归纳
考研《电磁场与电磁波》考研重要考点归纳第1章矢量分析1.1考点归纳一、场1.场的定义数学角度:场是给定区域内各点数值的集合,这些数值规定了该区域内一个特定量的特性。
物理角度:场是一个被界定的或无限扩展的空间内能够产生某种物理效应的特殊物质,且具有能量。
2.场的分类(1)按物理量的性质分标量场:描述场的物理量为标量。
矢量场:描述场的物理量为矢量。
(2)按场量与时间关系分静态场:是指场量不随时间发生变化的场。
动态场:又称时变场,是指场量随时间的变化而变化的场。
二、矢量和标量1.概念标量:只有大小,没有方向。
矢量:既有大小又有方向。
2.矢量的表示几何表示:一条有方向的线段。
代数表示:。
矢量的模:。
矢量的单位矢量:。
常矢量:大小方向均不变的矢量,单位矢量不一定是常矢量。
3.矢量的代数运算(1)矢量的加减法矢量的加减法则遵循平行四边形法则。
交换律:结合律:(2)标量与矢量的乘积(3)矢量的乘法表1-1(4)矢量的混合运算①标量三重积定义:含义:结果为三矢量构成的平行六面体的体积。
推论:三个非零矢量共面的条件②矢量三重积定义:4.三种常用的正交曲线坐标系(1)直角坐标系①坐标元素图1-1坐标单位矢量:,,位置矢量:线元矢量:面元矢量:,,体积元:②坐标表示模计算:单位矢量:方向角与方向余弦:加法:减法:点积:叉积:标量三重积:(2)圆柱坐标系图1-2①元素坐标单位矢量:,,线元矢量:面元矢量:,,体积元:②圆柱坐标系与直角坐标系的关系,,(3)球坐标系图1-3①元素坐标单位矢量:,,线元矢量:面元矢量:,,体积元:②球坐标与直角坐标转化,,三、标量场的梯度1.标量场的等值面(1)定义标量场取得同一数值的点在空间形成的曲面。
(2)方程(3)特点①常数C取不同的值,得到一系列等值面,形成等势面族;②标量场的等势面充满整个空间;③标量场的等值面互不相交。
2.方向导数(1)方向导数计算公式式中,是方向l的方向余弦。
电磁场与电磁波之矢量运算法则
vv A B (Axaˆx Ayaˆy Azaˆz ) (Bxaˆx Byaˆy Bzaˆz )
Ax Bx Ay By Az Bz •结论: 两矢量点积等于对应分量的乘积之和。
电磁场与电磁波
第1章 矢量分析
b.矢量积(叉积):
aˆc
vv v v
B
A B | A | | B | sin aˆc
两矢量的叉积又可表示为:
v v aˆx aˆy aˆz A B Ax Ay Az
Bx By Bz
电磁场与电磁波
第1章 矢量分析
(3)三重积:
三个矢量相乘有以下几种形式:
v vv (A B)C
矢量,标量与矢量相乘。
vvv A (B C)
标量,标量三重积。
v vv A (B C)
矢量,矢量三重积。
(
v A
v B)
v (C
v D)
v (A
v C)
v (B
v D)
电磁场与电磁波
第1章 矢量分析
在直角坐标系下的矢量表示: 三个方向的单位矢量用 aˆx , aˆy , aˆz 表示。
z
v Az
v A
根据矢量加法运算:
vv v v A Ax Ay Az
vo
Ax
x
其中:
v
v
v
Ax Axaˆx , Ay Ayaˆy , Az Azaˆz
其结果是一标量。
电磁场与电磁波
第1章 矢量分析
推论1:满足交换律
vv vv A B B A
推论2:满足分配律
v v v vv vv A(B C) A B AC
推论3:当两个非零矢量点积为零,则这两个矢量必正交。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v
v
B
C
v
v vv C AB
C v B
v A
v A
a.满足交换律:
vv vv AB B A
vv vv vv vv
b.满足结合律: (A B) (C D) (A C) (B D)
电磁场与电磁波
第1章 矢量分析
在直角坐标系下的矢量表示: 三个方向的单位矢量用 avx , avy , avz 表示。
Az avz
模的计算:
v | A |
Ax2 Ay2 Az2
单位矢量: v
av
|
Av A
|
Avx |A
|
avx
Avy | A|
avy
|
Avz A|
avz
cos avx cos avy cos avz
方向角与方向余弦: , ,
z
v Az
v A
v
v Ax
电磁场与电磁波
第1章 矢量分析
(3)三重积:
三个矢量相乘有以下几种形式:
v vv (A B)C
矢量,标量与矢量相乘。
vvv A (B C)
标量,标量三重积。
v vv A (B C)
矢量,矢量三重积。
a. 标量三重积
法则:在矢量运算中,先算叉积,后算点积。
定义:Av
vv (B C)
( Ax avx
Ayavy
Az avz
)
(Bxavx
Byavy
Bz avz
)
Ax Bx Ay By Az Bz
•结论: 两矢量点积等于对应分量的乘积之和。
电磁场与电磁波
第1章 矢量分析
b.矢量积(叉积):
avc
v A
v B
|
v A||
v B|
sin
avc
B
• 8. 1825年,德国科学家欧姆得出了第一个电路定律:欧姆 定律。
• 9. 1831年,英国实验物理学家法拉第发现了电磁感应定律 并设计了世界上第一台感应发电机。
电磁场与电磁波
第1章 矢量分析
• 10. 1840年,英国科学家焦耳提出了焦耳定律,揭示了电 磁现象的能量特性。
• 11. 1848年 ,德国科学家基尔霍夫提出了基尔霍夫电路理 论,使电路理论趋于完善。
电磁场与电磁波
第1章 矢量分析
五、场的基本概念
• 1.什么是场?
• a.从数学角度:场是给定区域内各点数值的集合,这 些数值规定了该区域内一个特定量的特性。
• b.从物理角度:场是遍及一个被界定的或无限扩展的空 间内的,能够产生某种物理效应的特殊的物质,场是具 有能量的。
温度场 T,重力场、电磁场、……
• 2. 大约在春秋末期(约公元前四、五世纪)成书的《管子·地数篇》, 战国时期的《鬼谷子》,战国末期的《吕氏春秋》等,都留记述了天 然磁石及其吸铁现象,并且出现世界上最古老的指南针“司南”。
• 3. 1638年,我国建筑学书籍中对避雷的记载:屋顶的四角都被雕饰 成龙头的形状,仰头、张口,在它们的舌头上有一根金属芯子,其末 端伸到地下,如有雷电击中房顶,会顺着龙舌引入地下,不会对房屋 造成危险。
•含义:
A
两矢量叉积,结果得一新矢量,其大小为这两个矢量组
成的平行四边形的面积,方向为该面的法线方向,且三者
符合右手螺旋法则。
vv vv vv vv 推论1:不服从交换律: A B B A, A B B A
推论2:服从分配律:
v v v vvvv A(B C) A B AC
o
Ay
y
x
cos Ax , cos Ay , cos Az
| A|
| A|
| A|
在直角坐标系中三个矢量加法运算:
v A
v B
v C
( Ax
Bx
Cx
)avx
( Ay
By
Cy
)avy
( Az
Bz
Cz
)
avz
电磁场与电磁波
第1章 矢量分析
2.减法:换成加法运算
b.矢量三重积:
v v v vv v vv v A(BC) B(AC) C(A B)
电磁场与电磁波
第1章 矢量分析
例2:设 rv1 2aˆx aˆy aˆz , rv2 aˆx 3aˆy 2aˆz rv3 2aˆx aˆy 3aˆz , rv4 3aˆx 2aˆy 5aˆz
• 1866年,德国的西门子发明了使用电磁铁的发电机, 为电力工业开辟了道路。
• 1876年,美国贝尔发明了电话,实现了电声通信。
• 1879年,美国发明家爱迪生发明了电灯,使电进入了 人们的日常生活。
• 1887年,德国的物理学家赫兹首次用人工的方法产生 了电磁波。随后,俄国的波波夫和意大利的马可尼,利 用电磁波通信获得成功,开创了人类无线通信的新时代。
v vvv v
D A B A (B)
逆矢量:Bv
和
v (B)
的模相等,方向相反,互为逆矢量。
Hale Waihona Puke vvvD v
A
AD
v
v
v
B
B
B
v
v C
Bv v v
v
ABC 0
A
推论:
任意多个矢量首尾相连组成闭合多边形,其矢量和必为零。
在直角坐标系中两矢量的减法运算:
v A
v B
( Ax
推论3:不服从结合律:
v vv vv v A(BC) (A B)C
推论4:当两个非零矢量叉积为零,则这两个矢量必平行。
电磁场与电磁波
第1章 矢量分析
在直角坐标系中,两矢量的叉积运算如下:
z
v A
v B
(
Ax
avx
Ayavy
Azavz
)
(Bx
avx
Byavy
Bz
avz
)
oy x
• 12.奥斯特的电生磁和法拉第的磁生电实验奠定了电磁学 的基础。
电磁学理论的完成者——英国的物理学家麦克斯韦(18311879)。麦克斯韦方程组——用最完美的数学形式表达了宏 观电磁学的全部内容 ,从理论上预言了电磁波的存在。
电磁场与电磁波
第1章 矢量分析
三、电磁学应用突飞猛进(2nd工业革命,19世纪中至今)
电磁场与电磁波
第1章 矢量分析
2.场的分类
a. 按物理量的性质分:
标量场:描述场的物理量是标量。 矢量场:描述场的物理量是矢量。
b. 按场量与时间的关系分:
静态场:场量不随时间发生变化的场。 动态场:场量随时间的变化而变化的场。
动态场也称为时变场。
电磁场与电磁波
第1章 矢量分析
第1章 矢量分析
一、矢量和标量的定义 二、矢量的运算法则 三、矢量微分元:线元,面元,体元 四、标量场的梯度 五、矢量场的散度 六、矢量场的旋度 七、重要的场论公式
vvv A(BC) 0
v vv
h BC v
A
v C
v B
在直角坐标系中:
vvv A(BC)
( Axavx
Ay avy
Az avz
)
avx Bx
avy By
avz Bz
v v v Ax Ay Az A (B C) Bx By Bz
Cx Cy Cz
Cx Cy Cz
电磁场与电磁波
第1章 矢量分析
四、课程内容
• 第一章:电磁学的数学基础 ——矢量运算 • 第二章:电磁学的理论基础 ——麦克斯韦方程组 • 第三、四、五章:麦克斯韦方程组的应用
(媒质与边界,静态场,电路) • 第六章:(平面)电磁波的传输特性 • 第七章:电磁波在波导中的传播(光纤通信) • 第八章:电磁波的辐射
(AyBz AzBy )avx (AzBx AxBz )avy (AxBy AyBx )avz
两矢量的叉积又可表示为:
v v avx A B Ax
Bx
avy Ay By
avz Az Bz
Ay By
Az Bz
avx
Ax Bx
Az Bz
avy
Ax Bx
Ay By
avz
电磁场与电磁波
第1章 矢量分析
一、矢量和标量的定义
1.标量:只有大小,没有方向的物理量。 如:温度 T、长度 L 等
2.矢量:不仅有大小,而且有方向的物理量。
如:力Fv、速度 vv、电场 Ev等
矢量表示为:
v A
|
v A
|
av
其中:|
v A
|
为矢量的模,表示该矢量的大小。
av 为单位矢量,表示矢量的方向,其大小为1。
z
v Az
v A
根据矢量加法运算:
vv v v A Ax Ay Az
vo
Ax
x
其中:
v Ax
Axavx ,
v Ay
Ayavy ,
v Az
Az avz
v Ay
y
所以:
v A
Axavx
Ay avy
Az avz
电磁场与电磁波