全国高中物理竞赛复赛模拟题
高中生物理竞赛复赛试题及答案
全国中学生物理竞赛复赛试题全卷共六题,总分为140分。
一、(20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。
平衡时气体的总压强是3.0atm ,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm 。
若让其继续作等温膨胀,使体积再次加倍。
试计算此时:1.汽缸中气体的温度;2.汽缸中水蒸气的摩尔数;3.汽缸中气体的总压强。
假定空气和水蒸气均可以当作理想气体处理。
二、(25分)两个焦距分别是1f 和2f 的薄透镜1L 和2L ,相距为d ,被共轴地安置在光具座上。
1. 若要求入射光线和与之对应的出射光线相互平行,问该入射光线应满足什么条件?2. 根据所得结果,分别画出各种可能条件下的光路示意图。
三、(25分)用直径为1mm 的超导材料制成的导线做成一个半径为5cm 的圆环。
圆环处于超导状态,环内电流为100A 。
经过一年,经检测发现,圆环内电流的变化量小于610A -。
试估算该超导材料电阻率数量级的上限。
提示:半径为r 的圆环中通以电流I 后,圆环中心的磁感应强度为02I B rμ= ,式中B 、I 、r 各量均用国际单位,720410N A μπ=⨯⋅--。
四、(20分)经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形势和分布情况有了较深刻的认识。
双星系统由两个星体构成,其中每个星体的线度都远小于两星体之间的距离。
一般双星系统距离其他星体很远,可以当作孤立系统处理。
现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M ,两者相距L 。
他们正绕两者连线的中点作圆周运动。
1. 试计算该双星系统的运动周期T 计算。
2. 若实验上观测到的运动周期为T 观测,且:1:1)T T N =>观测计算。
为了解释T 观测与T 计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质。
全国中学生物理竞赛复赛模拟试题汇编(PDF版 共6套)
M 3m T g (2分) 1 2 T M m g (2分) 2 2
第 29 届复赛模拟赛题
12
其中 M sv0 (
3gl 2l l 2l l ) s ( ) g u1 g u1 2
第三题(20 分) 在光滑平面上放有一个质量为 m 的匀质圆环,内径为 r 。从圆环的三个三等分点上各连出一根轻 质弹簧,原长几乎为 0,劲度系数为 k ,三根弹簧连到一个质量为 m 的质点上。 (1)用一个恒力 F 沿着 x 方向作用于圆环,若质点与圆环保持相对静止,则 m 相对圆心位移为多少? (2)初态圆环和质点保持静止,沿着某根弹簧方向给圆环一个冲量,使得速度为 v0 圆环和质点的运动方程。
A
B k。 t
C B
第 29 届复赛模拟赛题
7
第七题(20 分) 井底之蛙 在一个圆柱形的井底中心有一只青蛙。当水注满整个井的时候,青蛙刚好能看见全部天空,水的 折射为 n 1.33 。 (1)若此时月亮位于天顶,则青蛙看见的月亮和此时地上的人看到的月亮的大小之比为多少? (2)当水漏掉一半的时候,青蛙看到的星星数目和此时地上的人看到的星星数目之比约为多少?(认 为星星很多,均匀的分布在天空中) (3)接上一问,青蛙的视野中, “天空”的边缘与“天空”的中心,星星的密度之比为多少?
度。记下段绳子为 n 方向,上段绳子为 方向。轮子的角加速度为 a0 r a0
M
第 29 届复赛模拟赛题
10
在地面上看 B 的加速度:
aBn a0 2 2 r
2 2 , aB 2 r 2 2
(3 分)
地面上看墙角 M 加速为 aM 0 ,由于下段绳子没有转动,所以下端绳子上靠近滑轮的点沿绳加 速度为 0,所以相对滑轮下段绳子进入绳子的加速度为
全国高中物理竞赛复赛模拟题
全国高中物理竞赛模拟题一1.光子火箭从地球起程时初始静止质量(包括燃料)为M 0,向相距为R=1.8×1061.y.(光年)的远方仙女座星飞行。
要求火箭在25年(火箭时间)后到达目的地。
引力影响不计。
1)、忽略火箭加速和减速所需时间,试问火箭的速度应为多大?2)、设到达目的地时火箭静止质量为M 0ˊ,试问M 0/ M 0ˊ的最小值是多少?分析:光子火箭是一种设想的飞行器,它利用“燃料”物质向后辐射定向光束,使火箭获得向前的动量。
求解第1问,可先将火箭时间a 250=τ(年)变换成地球时间τ,然后由距离R 求出所需的火箭速度。
火箭到达目的地时,比值0M M '是不定的,所谓最小比值是指火箭刚好能到达目的地,亦即火箭的终速度为零,所需“燃料”量最少。
利用上题(本章题11)的结果即可求解第2问。
解:1)火箭加速和减速所需时间可略,故火箭以恒定速度υ飞越全程,走完全程所需火箭时间(本征时间)为a 250=τ(年)。
利用时间膨胀公式,相应的地球时间为221c υττ-=因υτR=故221c Rυτυ-=解出()10220222021096.0111-⨯-=⎪⎪⎭⎫ ⎝⎛-≈+=c R c c Rc c ττυ可见,火箭几乎应以光速飞行。
(2)、火箭从静止开始加速至上述速度υ,火箭的静止质量从M 0变为M ,然后作匀速运动,火箭质量不变。
最后火箭作减速运动,比值0M M '最小时,到达目的地时的终速刚好为零,火箭质量从M 变为最终质量0M '。
加速阶段的质量变化可应用上题(本章题11)的(3)式求出。
因光子火箭喷射的是光子,以光速c 离开火箭,即u=c ,于是有21011⎪⎪⎭⎫⎝⎛+-=ββM M (1) c βυ=为加速阶段的终速度,也是减速阶段性的初速度。
对减速阶段,可应用上题(本章题11)的(4)式,式中的m 0以减速阶段的初质量M 代入。
又因减速时必须向前辐射光子,故u=-c ,即有21011⎪⎪⎭⎫⎝⎛+-=ββM M (2) 由(1)、(2)式,得1020222022010441411⨯=≈-=-+='ττββc R c R M M2.如图52-1所示,地面上的观察者认为在地面上同时发生的两个事件A 和B ,在相对地面以速度u (u平行于x 轴,且与正方向同向)运动的火箭上的观察者的判断正确的是( )A 、A 早于B B 、B 早于AC 、A 、B 同时发生D 、无法判断解:在地面(S 系)上,,A B x x x -=∆0=-=∆A B t t t ,在火箭(S '系)中,⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-='-'='∆22c ux t r c ux t r t t t A A B B A B()()B A AA B x x c ux t t r -+-=2()B A Ax x c ux -=2因0>r ,0>u ,0<-B A x x ,故0<'∆t 。
高中物理竞赛复赛模拟卷参考答案
高中物理竞赛复赛模拟卷(三)参考答案第一题(18分)如图所示时,设小环与重物的速率分别为v 1和v 2;加速度大小分别为a 1和a 2,则 1.由机械能守恒,可得222121212sin Mv mv MgL +⨯=θ ① 而θθsin cos 21v v =②联立①、②可得(考虑到M=2m ) θ31sin 2gL v =θθ22cos sin 2gL v =2.由牛顿第二定律: 对小环:1cos ma T =θ③ 对重物:Ma T Mg =-θsin 2④小环相对重物与绳的结点作圆周运动,以该结点(即重物)为参照物,则有1sin v v =θ(v 为m 相对M 的速度)⑤212cos sin /a a v L θθ-=⑥并考虑到M=2m ,联立各式得 θsin 3mg T = 第二题(20分)1.'q 是q 的球面镜像电荷。
如图所示,可以肯定镜像电荷'q 一定在对称轴上,设其电量为'q ,距球心O 的间距为r ,则考察对称轴与球面的两交点B 、'B 的电势,可得r R q KR d q KU B -+-='① rR q K R d q K U B +++=''② 而球接触,0'==U U B③联立①、②、③得'Rq q d=-dR r 2=2.要使带电小球d 能在圆周上做匀速圆周运动,必须使轨道上各点的电势相等。
然而由两点电荷(A 与'A 处的)在空间产生的电场中等势面若是1个球面,则该等势面的电势一定为零。
由此可知A 与'A 互为镜像电荷。
由1的结论易得:2',''R R q q r r r =-=(其中''OA r =),解出:q rRq R r q d R r -=-=='','2 第三题(18分)取与金属环上一小段孤长一起做加速运动的坐标系,该坐标系与构成金属晶格的离子相连。
高中物理竞赛复赛
高中物理竞赛复赛
题目一:动力学之争
背景:小明和小红参加了一场物理竞赛的复赛,他们将在以下几个问题中展开较量。
问题一:速度的计算(10分)
小明骑着一辆自行车,经过10秒钟,行驶了100米。
请问小明的平均速度是多少?
问题二:斜抛运动(15分)
小红用一个角度为45°的斜抛将一块石头抛出,石块的起始速度为20m/s。
请问石块从抛出到重新着地所用的时间是多少?(忽略空气阻力)
问题三:动量守恒(20分)
小明和小红在光滑水平桌面上进行了一次弹性碰撞实验。
小明的质量是40kg,速度为2m/s;小红的质量是50kg,速度为-1m/s。
请问碰撞后两人的速度分别是多少?
问题四:电磁感应(25分)
小红持续将一根长度为1m的磁铁棒快速入射进小明手中的线圈,变化的磁通量大小为1.5×10^-3 Wb/s。
线圈中的导线电阻为4 Ω。
请问线圈中将产生多大的感应电动势?
问题五:声音传播(30分)
小红正在做一道实验,她发出一个频率为400 Hz的声音,传播在空气中速度为340 m/s。
请问,该声音在空气中的波长是多少?
注意:本竞赛真实性为虚构,其中的人物和情景纯属虚构。
全国高中生物理竞赛复赛试题含答案
全国中学生物理竞赛复赛试卷、参考答案全卷共六题,总分140分。
一、(22分)有一放在空气中的玻璃棒,折射率n= 1.5 ,中心轴线长L= 45cm,一端是半径为R1= 10cm的凸球面.1.要使玻璃棒的作用相当于一架理想的天文望远镜(使主光轴上无限远处物成像于主光轴上无限远处的望远系统),取中心轴线为主光轴,玻璃棒另一端应磨成什么样的球面?2.对于这个玻璃棒,由无限远物点射来的平行入射光束与玻璃棒的主光轴成小角度φ1时,从棒射出的平行光束与主光轴成小角度φ2,求φ2/φ1(此比值等于此玻璃棒望远系统的视角放大率).解:1.对于一个望远系统来说,从主光轴上无限远处的物点发出的入射光为平行于光轴的光线,它经过系统后的出射光线也应与主光轴平行,即像点也在主光轴上无限远处,如图18-2-6所示,图中C1为左端球面的球心.图18-2-6由正弦定理、折射定律和小角度近似得(-R1)/R1=sinr1/sin(i1-r1)≈r1/(i1-r1)=1/((i1/r1)-1)≈1/(n-1),...①即..(/R1)-1=1/(n-1)....②光线PF1射到另一端面时,其折射光线为平行于主光轴的光线,由此可知该端面的球心C2一定在端面顶点B的左方,C2B等于球面的半径R2,如图18-2-6所示.仿照上面对左端球面上折射的关系可得(/R2)-1=1/(n-1),...③又有=L-,④由②、③、④式并代入数值可得R2=5cm.则右端为半径等于5cm的向外凸的球面.图18-2-7.设从无限远处物点射入的平行光线用①、②表示,令①过C1,②过A,如图18-2-7所示,则这两条光线经左端球面折射后的相交点M,即为左端球面对此无限远物点成的像点.现在求M点的位置,在△AC1M中,有/sin(π-φ1)=/sinφ1=R1/sin(φ1-φ1′),又..nsinφ1′=sinφ1,已知φ1、φ1′均为小角度,则有/φ1=R1/φ1(1-(1/n)).与②式比较可知,≈,即M位于过F1垂直于主光轴的平面上.上面已知,玻璃棒为天文望远系统,则凡是过M点的傍轴光线从棒的右端面射出时都将是相互平行的光线.容易看出,从M射出C2的光线将沿原方向射出,这也就是过M点的任意光线(包括光线①、②)从玻璃棒射出的平行光线的方向,此方向与主光轴的夹角即为φ2,由图18-2-7可得/φ1=/=(-R1)/(-R2),由②、③式可得(-R1)/(-R2)=R1/R2,则φ2/φ1=R1/R2=2.二、(22分)正确使用压力锅的方法是:将已盖好密封锅盖的压力锅(如图复18-2-1)加热,当锅内水沸腾时再加盖压力阀S,此时可以认为锅内只有水的饱和蒸气,空气已全部排除.然后继续加热,直到压力阀被锅内的水蒸气顶起时,锅内即已达到预期温度(即设计时希望达到的温度).现有一压力锅,在海平面处加热能达到的预期温度为120℃,某人在海拔5000m的高山上使用此压力锅,锅内有足量的水.1.若不加盖压力阀,锅内水的温度最高可达多少?2.若按正确方法使用压力锅,锅内水的温度最高可达多少?3.若未按正确方法使用压力锅,即盖好密封锅盖一段时间后,在点火前就加上压力阀,此时水温为27℃,那么加热到压力阀刚被顶起时,锅内水的温度是多少?若继续加热,锅内水的温度最高可达多少?假设空气不溶于水.已知:水的饱和蒸气压pW(t)与温度t的关系图线如图18-2-2所示.大气压强p(z)与高度z的关系的简化图线如图18-2-3所示.当t=27℃时,pW(27°)=3.6×103Pa;z= 0处,p(0)= 1.013×105Pa.解:1.由图18-2-8知在海平面处,大气压强p(0)=101.3×103Pa.在z=5000m时,大气压强为p(5000)=53×103Pa.图18-2-8图18-2-9此处水沸腾时的饱和蒸气压pW应等于此值.由图18-2-9可知,对应的温度即沸点为t2=82℃.达到此温度时,锅内水开始沸腾,温度不再升高,故在5000m高山上,若不加盖压力锅,锅内温度最高可达82℃..由图18-2-9可知,在t=120℃时,水的饱和蒸气压pW(120°)=198×103Pa,而在海平面处,大气压强p(0)=101×103Pa.可见压力阀的附加压强为pS=pW(120°)-p(0)=(198×103-101.3×103)Pa=96.7×103Pa.在5000m高山上,大气压强与压力阀的附加压强之和为p′=pS+p(5000)=(96.7×103+53×103)Pa=149.7×103Pa.若在t=t2时阀被顶起,则此时的pW应等于p′,即pW=p′,由图18-2-9可知t2=112℃.此时锅内水开始沸腾,温度不再升高,故按正确方法使用此压力锅,在5000m高山上锅内水的温度最高可达112℃..在未按正确方法使用压力锅时,锅内有空气,设加压力阀时,内部水蒸汽已饱和.由图18-2-9可知,在t=27℃时,题中已给出水的饱和蒸气压pW(27°)=3.6×103Pa,这时锅内空气的压强(用pa表示)为pa(27°)=p(5000)-pW(27°)=(53×103-3.6×103)Pa=49.4×103Pa.当温度升高时,锅内空气的压强也随之升高,设在温度为t(℃)时,锅内空气压强为pa(t),则有pa(t)/(273+t)=pa(27℃)/(273+27),pa(t)=(164.7t+45.0×103)Pa.若在t=t′时压力阀刚好开始被顶起,则有pW(t′)+pa(t′)=p′,由此得pW(t′)=p′-pa(t′)=(105×103-164.7t′)Pa,画出函数p′-pa(t′)的图线,取t=0℃,有..p′-pa(0℃)=105×103Pa,取t=100℃,有.p′-pa(100℃)=88.6×103Pa.由此二点便可在图18-2-9上画出此直线,此直线与图18-2-9中的pW(t)-t曲线的交点为A,A即为所求的满足上式的点,由图可看出与A点对应的温度为t′=97℃.即在压力阀刚开始被顶起时,锅内水的温度是97℃,若继续加热,压力阀被顶起后,锅内空气随水蒸汽一起被排出,最终空气排净,锅内水温仍可达112℃.三、(22分)有两个处于基态的氢原子A、B,A静止,B以速度v0与之发生碰撞.已知:碰撞后二者的速度vA和vB在一条直线上,碰撞过程中部分动能有可能被某一氢原子吸收,从而该原子由基态跃迁到激发态,然后,此原子向低能级态跃迁,并发出光子.如欲碰后发出一个光子,试论证:速度v0至少需要多大(以m/s表示)?已知电子电量e= 1.602×10-19C,质子质量为mp= 1.673×10-27kg,电子质量为me= 0.911×10-31kg,氢原子的基态能量为E1=-13.58eV.解:为使氢原子从基态跃迁到激发态,需要能量最小的激发态是n=2的第一激发态.已知氢原子的能量与其主量子数的平方成反比.即En=k1/n2,...①又知基态(n=1)的能量为-13.58eV,即E1=k1/12=-13.58eV,所以..k=-13.58eV.n=2的第一激发态的能量为E2=k1/22=-13.58×(1/4)=-3.39eV....②为使基态的氢原子激发到第一激发态所需能量为E内=E2-E1=(-3.39+13.58)eV=10.19eV....③这就是氢原子从第一激发态跃迁到基态时发出的光子的能量,即hν=E内=10.19eV=10.19×1.602×10-19J=1.632×10-18J....④式中ν为光子的频率,从开始碰到发射出光子,根据动量和能量守恒定律有mv0=mvA+mvB+光子的动量,...⑤(1/2)mv02=(1/2)m(vA2+vB2)+hν,...⑥光子的动量pν=hν/c.由⑥式可推得mv0>2hν/v0,因为v0<<c,所以mv0>>hν/c,故⑤式中光子的动量与mv0相比较可忽略不计.⑤式变为mv0=mvA+mvB=m(vA+vB),⑦符合⑥、⑦两式的v0的最小值可推求如下:由⑥式及⑦式可推得(1/2)mv02=(1/2)m(vA+vB)2-mvAvB+hν=(1/2)mv02-mvA(v0-vA)+hν,mvA2-mvAv0+hν=0,经配方得m(vA-(1/2)v0)2-(1/4)mv02+hν=0,(1/4)mv02=hν+m(vA-(1/2)v0)2,...⑧由⑧式可看出,当vA=(1/2)v0时,v0达到最小值v0min,此时vA=vB,v0min=2,代入有关数值,得v0min=6.25×104m/s.答:B原子的速度至少应为6.25×104m/s.四、(22分)如图18-4所示,均匀磁场的方向垂直纸面向里,磁感应强度B随时间t变化,B=B0-kt(k为大于零的常数).现有两个完全相同的均匀金属圆环相互交叠并固定在图中所示位置,环面处于图中纸面内.圆环的半径为R,电阻为r,相交点的电接触良好,两个环的接触点A与C间的劣弧对圆心O的张角为60°,求t=t0时,每个环所受的均匀磁场的作用力,不考虑感应电流之间的作用.解:1.求网络各支路的电流.因磁感应强度大小随时间减少,考虑到电路的对称性,可设两环各支路的感应电流I1、I2的方向如图18-2-10所示,对左环电路ADCFA,有图18-2-10.E=I1rCFA+I2rADC,因..rCFA=5r/6,rADC=r/6,E=kπR2,故..kπR2=I1(5r/6)+I2(r/6)....①因回路ADCEA所围的面积为((2π-3)/12)R2,故对该回路有k[2((2π-3)/12)R2]=2I2(r/6),解得..I2=((2π-3)R2/2r)k,代入①式,得.I1=((10π+3)R2/10r)k..求每个圆环所受的力.图18-2-11先求左环所受的力,如图18-2-11所示,将圆环分割成很多小圆弧,由左手定则可知,每段圆弧所受的力的方向均为径向,根据对称性分析,因圆弧PMA与圆弧CNQ中的电流方向相反,所以在磁场中受的安培力相互抵消,而弧PQ与弧AC的电流相对x轴上下是对称的,因而每段载流导体所受的安培力在y方向的合力为零,以载流导体弧PQ上的线段Δl′为例,安培力ΔF为径向,其x分量的大小表示为|ΔFx|=I1BΔl′cosα,因..Δl′cosα=Δl,故..|ΔFx|=I1BΔl,|Fx|=ΣI1BΔl=I1B=I1BR.由于导体弧PQ在y方向的合力为零,所以在t0时刻所受安培力的合力F1仅有x分量,即F1=|Fx|=I1BR=((10π+3)R2/10r)kBR=((10π+3)R2/10r)k(B0-kt0)R,方向向左.同理,载流导体弧AC在t0时刻所受的安培力为F2=I2BR=((2π-3)R2/2r)kBR=((2π-3)R2/2r)k(B0-kt0)R,方向向右.左环所受的合力大小为F=F1-F2=(9/5r)k(B0-kt0)R3.方向向左.五、(25分)如图18-5所示,一薄壁导体球壳(以下简称为球壳)的球心在O点.球壳通过一细导线与端电压U= 90V的电池的正极相连,电池负极接地.在球壳外A点有一电量为q1=10×10-9C的点电荷,B点有一电量为q2=16×10-9C的点电荷.点O、A之间的距离d1= 20cm,点O、B之间的距离d2= 40cm.现设想球壳的半径从a= 10cm开始缓慢地增大到50cm,问:在此过程中的不同阶段,大地流向球壳的电量各是多少?已知静电力常量k=9×109N·m2/C2.假设点电荷能穿过球壳壁进入导体球壳内而不与导体壁接触..解:分以下几个阶段讨论:.由于球壳外空间点电荷q1、q2的存在,球壳外壁的电荷分布不均匀,用σ表示面电荷密度.设球壳半径a=10cm时球壳外壁带的电量为Q1,因为电荷q1、q2与球壳外壁的电量Q1在球壳内产生的合场强为零,球壳内为电势等于U的等势区,在导体表面上的面元ΔS所带的电量为σΔS,它在球壳的球心O处产生的电势为ΔU1=kσΔS/a,球壳外壁所有电荷在球心O产生的电势U1为U1=ΣΔU1=kΣσΔS/α=kQ1/a.点电荷q1、q2在球壳的球心O处产生的电势分别为kq1/d1与kq2/d2,因球心O处的电势等于球壳的电势,按电势叠加原理,即有(kq1/d1)+(kq2/d2)+(kQ1/a)=U,代入数值后可解得球壳外壁的电量Q1为Q1=(aU/k)-a((q1/d1)+(q2/d2))=-8×10-9C.因球壳内壁无电荷,所以球壳的电量QⅠ等于球壳外壁的电量Q1,即QⅠ=Q1=-8×10-9C..当球壳半径趋于d1时(点电荷仍在球壳外),设球壳外壁的电量变为Q2,球壳外的电荷q1、q2与球壳外壁的电量Q2在壳内产生的合场强仍为零,因球壳内仍无电荷,球壳内仍保持电势值为U的等势区,则有(kq1/d1)+(kq2/d2)+(kQ2/d1)=U,解得球壳外壁的电量Q2=(d1U/k)-(d1(q1/d1+q2/d2))=-16×10-9C.因为此时球壳内壁的电量仍为零,所以球壳的电量就等于球壳外壁的电量,即QⅡ=Q2=-16×10-9C,在a=10cm到趋于d1的过程中,大地流向球壳的电量为ΔQⅠ=QⅡ-Q1=-8×10-9C..当点电荷q1穿过球壳,刚进入球壳内(导体半径仍为d1),点电荷q1在球壳内壁感应出电量-q1,因球壳的静电屏蔽,球壳内电荷q1与球壳内壁电荷-q1在球壳外产生的合电场为零,表明球壳外电场仅由球壳外电荷q2与球壳外壁的电荷Q3所决定.由于球壳的静电屏蔽,球壳外电荷q2与球壳外壁的电荷Q3在球壳内产生的合电场为零,表明对电荷q2与Q3产生的合电场而言,球壳内空间是电势值为U的等势区.q2与Q3在球心O处产生的电势等于球壳的电势,即(kq2/d2)+(kQ3/d1)=U,解得球壳外壁电量Q3=(d1U/k)-(d1q2/d2)=-6×10-9C,球壳外壁和内壁带的总电量应为QⅢ=Q3+(-q1)=-16×10-9C,在这过程中,大地流向球壳的电量为ΔQⅡ=QⅢ-QⅡ=0.这个结果表明:电荷q1由球壳外极近处的位置进入壳内,只是将它在球壳外壁感应的电荷转至球壳内壁,整个球壳与大地没有电荷交换..当球壳半径趋于d2时(点电荷q2仍在球壳外),令Q4表示此时球壳外壁的电量,类似前面第3阶段中的分析,可得(kq2/d2)+(kQ4/d2)=U,由此得Q4=(d2U/k)-(d2(q2/d2))=-12×10-9C,球壳的电量QⅣ等于球壳内外壁电量的和,即QⅣ=Q4+(-q1)=-22×10-9C,大地流向球壳的电量为ΔQⅢ=QⅣ-QⅢ=-6×10-9C..当点电荷q2穿过球壳,刚进入球壳内时(球壳半径仍为d2),球壳内壁的感应电荷变为-(q1+q2),由于球壳的静电屏蔽,类似前面的分析可知,球壳外电场仅由球壳外壁的电量Q5决定,即kQ5/d2=U,可得..Q5=d2U/k=4×10-9C,球壳的总电量是QⅤ=Q5-(q1+q2)=-22×10-9C,..(15)在这个过程中,大地流向球壳的电量是ΔQⅣ=QⅤ-QⅣ=0...(16).当球壳的半径由d2增至a1=50cm时,令Q6表示此时球壳外壁的电量,有k(Q6/a1)=U,..(17)可得..Q6=a1(U/k)=5×10-9C,球壳的总电量为QⅥ=Q6-(q1+q2)=-21×10-9C,大地流向球壳的电量为ΔQⅤ=QⅥ-QⅤ=1×10-9C.六、(27分)一玩具“火箭”由上下两部分和一短而硬(即劲度系数很大)的轻质弹簧构成.上部分G1的质量为m1,下部分G2的质量为m2,弹簧夹在G1与G2之间,与二者接触而不固连.让G1、G2压紧弹簧,并将它们锁定,此时弹簧的弹性势能为已知的定值E0.通过遥控可解除锁定,让弹簧恢复至原长并释放其弹性势能,设这一释放过程的时间极短.第一种方案是让玩具位于一枯井的井口处并处于静止状态时解除锁定,从而使上部分G1升空.第二种方案是让玩具在井口处从静止开始自由下落,撞击井底(井足够深)后以原速率反弹,反弹后当玩具垂直向上运动到离井口深度为某值h的时刻解除锁定.1.在第一种方案中,玩具的上部分G1升空到达的最大高度(从井口算起)为多少?其能量是从何种形式的能量转化而来的?2.在第二种方案中,玩具的上部分G1升空可能达到的最大高度(亦从井口算起)为多少?并定量讨论其能量可能是从何种形式的能量转化而来的.解:.1.在弹簧刚伸长至原长的时刻,设G1的速度的大小为v,方向向上,G2的速度大小为v1,方向向下,则有m1v1-m2v2=0,...①(1/2)m1v12+(1/2)m2v22=E0,...②解①、②两式,得v1=,...③v2=....④设G1升空到达的最高点到井口的距离为H1,则H1=v12/2g=((m2/m1g(m1+m2))E0,...⑤G1上升到最高点的重力势能为Ep1=m1gH1=(m2/(m1+m2))E0....⑥它来自弹簧的弹性势能,且仅为弹性势能的一部分..在玩具自井底反弹向上运动至离井口的深度为h时,玩具向上的速度为u=....⑦设解除锁定后,弹簧刚伸长至原长时,G1的速度大小为v1′,方向向上,G2的速度大小为v,方向向下,则有m1v1′-m2v2′=(m1+m2)u,...⑧(1/2)m1v1′+(1/2)m2v2′=(1/2)(m1+m2)u2+E0,...⑨消去⑧、⑨两式中的v2′,得v1′的方程式为m1(1+(m1/m2))v1′-2m1(1+(m1/m2))uv1′+m1(1+m1/m2)u2-2E0=0,由此可求得弹簧刚伸长至原长时,G1和G2的速度分别为v1′=u+,v2′=-u+,设G1从解除锁定处向上运动到达的最大高度为H2′,则有H2′=v1′/2g=(1/2g)(u+)2=h+(m2E0/m1g(m1+m2))+2,从井口算起,G1上升的最大高度为H2=H2′-h=(m2E0/m1g(m1+m2))+2.讨论:可以看出,在第二方案中,G1上升的最大高度H2大于第一方案中的最大高度H1,超出的高度与解除锁定处到井口的深度h有关.到达H2时,其重力势能为Ep2=m1gH2=(m2E0/(m1+m2))+2,(i)若Ep2<E0,即..2<m1E0/(m1+m2),这要求..h<E0m1/4m2g(m1+m2).这时,G1升至最高处的重力势能来自压紧的弹性势能,但仅是弹性势能的一部分.在这一条件下上升的最大高度为H2<E0/m1g.(ii)若Ep2=E0,2=m1E0/(m1+m2),这要求..h=E0m1/4m2g(m1+m2).此时G1升至最高处的重力势能来自压紧的弹簧的弹性势能,且等于全部弹性势能.在这一条件下,G1上升的高度为H2=E0/m1g.(iii)若Ep2>E0,2>m1E0/(m1+m2),这要求..h>E0m1/4m2g(m1+m2).此时G1升至最高处的重力势能大于压紧的弹簧的弹性势能,超出部分的能量只能来自G2的机械能.在这个条件下,G1上升的最大高度为H2>E0/m1g.。
高中物理竞赛复赛冲刺模拟卷
1.根据洛伦兹的有效场理论,液体折射率的表达式为,其中N i为液体中第i种电偶极子的个数,V为液体体积、N i/V为第i种电偶极子的数密度,αi为第i种电偶极子的微观极化率。
定义液体的体膨胀系数β=∆V。
V∆t。
(1)根据上式推出液体膨胀系数与折射率、温度之间的关系。
即β=f(n)dndt(2)使用迈克尔逊干涉仪,将盛有液体的容器(长度l=9.0cm)放置于迈克尔逊光路中的一臂。
当温度变化时,折射率也会变化,从而引起光程变化,干涉条纹也会发生显著变化。
已知水的折射率为1.33,从29摄氏度开始观察条纹,到31摄氏度时,条纹移动了68个。
根据上述数据计算水的膨胀系数。
2.电磁炮主要分为轨道炮、线圈炮和重接炮3种类型。
线圈炮模型如图所示。
假设驱动线圈和电枢的自感分别为L d和L p,互感为M(很明显,在运动过程中,互感在变化),电流分别为I d和I p。
电阻分别为R d和R p。
顺着电枢运动方向建立x坐标轴。
(1)计算电枢处于x p时,电枢的受力。
(2)已知驱动线圈的半径为a,匝数为N,通过电流为I。
把电枢换为磁矩为m的小磁棒(方向时刻沿x轴)。
求小磁棒和驱动线圈相距为d时的受力。
3. 已知火星轨道半径为1.5个天文单位。
某飞船在地球轨道上绕太阳做匀速圆周运动(周期为365天),现在试图使用火星作为引力弹弓飞出太阳系。
假设飞船能瞬间获得一个沿轨道切向的速度增加量。
(1)求飞离太阳系所需的最小速度增加量。
(2)在第一问的情况下,求船能到达火星,加速时火星-太阳和飞船-太阳连线之间的夹角。
(提示:∫b 42(a−cosθ)2dθ=ab tan−1[a+cbtanθ2]+C其中a2=b2+c2)4.近代物理5.在一个以Ω(方向竖直向上)匀速旋转的水平台子上,放置一个球形小球。
如果小球时刻在台子上做纯滚动,则可能会观察到小球在地面系中做匀速圆周运动。
(1)定量计算出时刻纯滚的小球所受到摩擦力的表达式,并计算以初速度v运动的小球的轨道半径。
第全国高中物理竞赛复赛题试卷及参考解答
额份市来比阳光实验学校本卷共七题,总分值140分.一、(20分)薄膜材料气密性能的优劣常用其透气系数来加以评判.对于均匀薄膜材料,在一温度下,某种气体通过薄膜渗透时间,过的气体分子数dPSt k N ∆=,其中t 为渗透持续S 为薄膜的面积,d 为薄膜的厚度,P ∆为薄膜两侧气体的压强差.k 称为该薄膜材料在该温度下对该气体的透气系数.透气系数愈小,材料的气密性能愈好.图为测薄膜材料对空气的透气系数的一种装置示意图.EFGI 为渗透室,U 形管左管上端与渗透室相通,右管上端封闭;U 形管内横截面积A =0.150cm 2.中,首先测得薄膜的厚度d =0.66mm ,再将薄膜固于图中C C '处,从而把渗透室分为上下两,上面的容积30cm 00.25=V ,下面连同U 形管左管水面以上的总容积为V 1,薄膜能够透气的面积S =1.00cm 2.翻开开关K 1、K 2与大气相通,大气的压强P 1=1.00atm ,此时U 形管右管中气柱长度cm 00.20=H ,31cm 00.5=V .关闭K 1、K 2后,翻开开关K 3,对渗透室上迅速充气至气体压强atm 00.20=P ,关闭K 3并开始计时.两小时后, U 形管左管中的水面高度下降了cm 00.2=∆H .过程中,始终保持温度为C 0 .求该薄膜材料在C 0 时对空气的透气系数.〔本中由于薄膜两侧的压强差在过程中不能保持恒,在压强差变化不太大的情况下,可用计时开始时的压强差和计时结束时的压强差的平均值P ∆来代替公式中的P ∆.普适气体常量R = 1Jmol -1K -1,1.00atm = 1.013×105Pa 〕.二、(20分) 两颗人造卫星绕地球沿同一椭圆轨道同向运动,它们通过轨道上同一点的时间相差半个周期.轨道近地点离地心的距离是地球半径R 的2倍,卫星通过近地点时的速度RGM 43=v ,式中M 为地球质量,G 为引力常量.卫星上装有同样的角度测量仪,可测出卫星与任意两点的两条连线之间的夹角.试设计一种测量方案,利用这两个测量仪测太空中某星体与地心在某时刻的距离.〔最后结果要求用测得量和地球半径R 表示〕 三、(15分)子在相对自身静止的惯性参考系中的平均寿命v =s 100.260-⨯≈τ.宇宙射线与大气在高空某处发生核反产生一批子,以0.99c 的速度〔c 为真空中的光速〕向下运动并衰变.根据放射性衰变律,相对给惯性参考系,假设t = 0时刻的粒子数为N (0), t 时刻剩余的的粒子数为N (t ),那么有()()τt N t N -=e 0,式中为相对该惯性系粒子平均寿命.假设能到达地面的子数为原来的5%,试估算子产生处相对于地面的高度h .不考虑重力和地磁场对子运动的影响.四、(20分)目前,大功率半导体激光器的主要结构形式是由许多发光区距离地排列在一条直线上的长条状,通常称为激光二极管条.但这样的半导体激光器发出的是很多束发散光束,光能分布很不集中,不利于传输和用.为了解决这个问题,需要根据具体用的要求,对光束进行必需的变换〔或称整形〕.如果能把一个半导体激光二极管条发出的光变换成一束很细的平行光束,对半导体激光的传输和用将是非常有意义的.为此,有人提出了先把多束发散光会聚到一点,再变换为平行光的方案,其根本原理可通过如下所述的简化了的情况来说明.第21届生物理竞赛复赛题试卷K 3K 2P 1 V 1CC ΄P 0 V 0K 1如图,S 1、S 2、S 3 是距离〔h 〕地排列在一直线上的三个点光源,各自向垂直于它们的连线的同一方向发出半顶角为束.请使=arctan ()41的圆锥形光用三个完全相同的、焦距为f = 0h 、半径为r =0.75 h 的圆形薄凸透镜,经加工、组装成一个三者在同一平面内的组合透镜,使三束光都能投射到这个组合透镜上,且经透镜折射后的光线能会聚于z 轴〔以S 2为起点,垂直于三个点光源连线,与光束中心线方向相同的射线〕上距离S 2为 L = 12.0 h 处的P 点.〔加工时可对透镜进行外形的改变,但不能改变透镜焦距.〕 1.求出组合透镜中每个透镜光心的位置.2.说明对三个透镜如何加工和组装,并求出有关数据.五、(20分)如下图,接地的空心导体球壳内半径为R ,在空腔内一直径上的P 1和P 2处,放置电量分别为q 1和q 2的点电荷,q 1=q 2=q ,两点电荷到球心的距离均为a .由静电感与静电屏蔽可知:导体空腔内外表将出现感电荷分布,感电荷电量于-2q .空腔内部的电场是由q 1、q 2和两者在空腔内外表上的感电荷共同产生的.由于我们尚不知道这些感电荷是怎样分布的,所以很难用场强叠加原理直接求得腔内的电势或场强.但理论上可以证明,感电荷对腔内电场的奉献,可用假想的位于腔外的〔效〕点电荷来代替〔在此题中假想(效)点电荷为两个〕,只要假想的〔效〕点电荷的位置和电量能满足这样的条件,即:设想将整个导体壳去掉,由q 1在原空腔内外表的感电荷的假想〔效〕点电荷1q '与q 1共同产生的电场在原空腔内外表所在位置处各点的电势皆为0;由q 2在原空腔内外表的感电荷的假想〔效〕点电荷2q '与q 2共同产生的电场在原空腔内外表所在位置处各点的电势皆为0.这样确的假想电荷叫做感电荷的效电荷,而且这样确的效电荷是唯一的.效电荷取代感电荷后,可用效电荷1q '、2q '和q 1、q 2来计算原来导体存在时空腔内部任意点的电势或场强.1.试根据上述条件,确假想效电荷1q '、2q '的位置及电量. 2.求空腔内部任意点A 的电势U A .A 点到球心O 的距离为r ,OA 与1OP 的夹角为.六、(20分)如下图,三个质量都是m 的刚性小球A 、B 、C 位于光滑的水平桌面上〔图中纸面〕,A 、B 之间,B 、C 之间分别用刚性轻杆相连,杆与A 、B 、C 的各连接处皆为“铰链式〞的〔不能对小球产生垂直于杆方向的作用力〕.杆AB 与BC 的夹角为 ,</2.DE 为固在桌面上一块挡板,它与AB 连线方向垂直.现令A 、B 、C 一起以共同的速度v 沿平行于AB 连线方向向DE 运动,在C 与挡板碰撞过程中C 与挡板之间无摩擦力作用,求碰撞时当C 沿垂直于DE 方向的速度由v 变为0这一极短时间内挡板对C 的冲量的大小.七、〔25分〕如下图,有二平行金属导轨,相距l ,位于同一水ABCπ-αDxO yv 0c a bydLS 1 3αα2 h h zrP 2P 1 θRaa平面内〔图中纸面〕,处在磁感强度为B 的匀强磁场中,磁场方向竖直向下〔垂直纸面向里〕.质量均为m 的两金属杆ab 和cd 放在导轨上,与导轨垂直.初始时刻, 金属杆ab 和cd 分别位于x = x 0和x = 0处.假设导轨及金属杆的电阻都为零,由两金属杆与导轨构成的回路的自感系数为L .今对金属杆ab 施以沿导轨向右的瞬时冲量,使它获得初速0v .设导轨足够长,0x 也足够大,在运动过程中,两金属杆之间距离的变化远小于两金属杆的初始间距0x ,因而可以认为在杆运动过程中由两金属杆与导轨构成的回路的自感系数L 是恒不变的.杆与导轨之间摩擦可不计.求任意时刻两杆的位置x ab 和x cd 以及由两杆和导轨构成的回路中的电流i 三者各自随时间t 的变化关系.第21届生物理竞赛复赛题参考解答一、开始时U 形管右管中空气的体积和压强分别为 V 2 = HA 〔1〕p 2= p 1经过2小时,U 形管右管中空气的体积和压强分别为A H H V )(2∆-='〔2〕2222V V p p '='〔3〕渗透室下部连同U 形管左管水面以上气体的总体积和压强分别为HAV V ∆+='11 〔4〕H g p p Δ221ρ+'=〔5〕式中为水的密度,g 为重力加速度.由理想气体状态方程nRT pV =可知,经过2小时,薄膜下部增加的空气的摩尔数RTV p RT V p n 1111-''=∆ 〔6〕在2个小时内,通过薄膜渗透过去的分子数 A nN N ∆=〔7〕式中N A 为阿伏伽德罗常量.渗透室上部空气的摩尔数减少,压强下降.下降了p0V ΔnRTp =∆ 〔8〕经过2小时渗透室上中空气的压强为p p p ∆-='00〔9〕测试过程的平均压强差[])(211010p p ()p p p '-'+-=∆ 〔10〕根据义,由以上各式和有关数据,可求得该薄膜材料在0℃时对空气的透气系数11111s m Pa 104.2---⨯=∆=tSp Nd k 〔11〕评分: 此题20分.(1)、(2)、(3)、(4)、(5)式各1分,(6)式3分,(7)、(8)、(9)、(10) 式各2分,(11) 式4分.二、如图,卫星绕地球运动的轨道为一椭圆,地心位于轨道椭圆的一个焦点O处,设待测量星体位于C 处.根据题意,当一个卫星运动到轨道的近地点A 时,另一个卫星恰好到达远地点B 处,只要位于A 点的卫星用角度测量仪测出AO和AC 的夹角1,位于B 点的卫星用角度测量仪测出BO 和BC 的夹角2,就可以计算出此时星体C 与地心的距离OC .因卫星椭圆轨道长轴的长度远近+r r AB =(1)式中r 近、与r 远分别表示轨道近地点和远地点到地心的距离.由角动量守恒远远近近=r m r v mv (2)式中m 为卫星的质量.由机械能守恒远远近近--r GMm m r GMm m 222121v v = (3) R r 2=近, RGM 43=近v得 R r 6=远(4) 所以R R R AB 862=+=(5)在△ABC 中用正弦理 ()ABBC 211πsin sin ααα--=(6) 所以()AB BC 211sin sin ααα+=(7)地心与星体之间的距离为OC ,在△BOC 中用余弦理2222cos 2αBC r BC r OC ⋅-+=远远(8)由式(4)、(5)、(7)得 ()()212121212sin cos sin 24sin sin 1692ααααααα+-++=R OC (9)评分:此题20分.(1)式2分,(2)、(3)式各3分,(6) 、(8)式各3分, (9) 式6分.三、因子在相对自身静止的惯性系中的平均寿命根据时间膨胀效,在地球上观测到的子平均寿命为,()21c v -=ττ (1)代入数据得= ×10-5s(2) 相对地面,假设子到达地面所需时间为t ,那么在t 时刻剩余的子数为()()τt N t N -=e 0(3)根据题意有()()%5e 0==-τt N t N(4)对上式号两边取e 为底的对数得1005lnτ-=t (5)代入数据得s 1019.45-⨯=t (6)根据题意,可以把子的运动看作匀速直线运动,有t h v =(7)代入数据得 m 1024.14⨯=h(8)评分:此题15分. (1)式或(2)式6分,(4)式或(5)式4分,(7) 式2分,(8) 式3分.四、1.考虑到使3个点光源的3束光分αLS 1 α2h h 1S ' S 3’O 1 O 2(S 2’) O 3M ’u别通过3个透镜都成实像于P 点的要求,组合透镜所在的平面垂直于z 轴,三个光心O 1、O 2、O 3的连线平行于3个光源的连线,O 2位于z 轴上,如图1所示.图中M M '表示组合透镜的平面,1S '、2S '、3S '为三个光束中心光线与该平面的交点. 22O S = u 就是物距.根据透镜成像公式 fu L u111=-+(1)可解得因为要保证经透镜折射后的光线都能会聚于P 点,来自各光源的光线在投射到透镜之前不能交叉,必须有2u tan ≤h 即u ≤2h .在上式中取“-〞号,代入f 和L 的值,算得 h u )236(-=≈57h (2) 此解满足上面的条件.分别作3个点光源与P 点的连线.为使3个点光源都能同时成像于P 点,3个透镜的光心O 1、O 2、O 3分别位于这3条连线上〔如图1〕.由几何关系知,有h h h L u L O O O O 854.0)24121(3221≈+=-==(3)即光心O 1的位置在1S '之下与1S '的距离为h O O h O S 146.02111=-=' (4) 同理,O 3的位置在3S '之上与3S '的距离为0.146h 处.由(3)式可知组合透镜中相邻薄透镜中心之间距离必须于0.854h ,才能使S 1、S 2、S 3都能成像于P 点. 2.现在讨论如何把三个透镜L 1、L 2、L 3加工组装成组合透镜.因为三个透镜的半径r = 0.75h ,将它们的光心分别放置到O 1、O 2、O 3处时,由于21O O =32O O =0.854h <2r ,透镜必然发生相互重叠,必须对透镜进行加工,各切去一,然后再将它们粘起来,才能满足(3)式的要求.由于对称关系,我们只需讨论上半的情况.图2画出了L 1、L 2放在M M '平面内时相互交叠的情况〔纸面为M M '平面〕.图中C 1、C 2表示L 1、L 2的边缘,1S '、2S '为光束中心光线与透镜的交点,W 1、W 2分别为C 1、C 2与O 1O 2的交点.1S '为圆心的圆1和以2S '〔与O 2重合〕为圆心的圆2分别是光源S 1和S 2投射到L 1和L 2时产生的光斑的边缘,其半径均为 h u 439.0tan ==αρ (5) 根据题意,圆1和圆2内的光线必须能进入透镜.首先,圆1的K 点〔见图2〕是否落在L 1上?由几何关系可知()h r h h S O K O 75.0585.0146.0439.0111=<=+='+=ρ (6) 故从S 1发出的光束能进入L 1.为了保证光束能进入透镜组合,对L 1和L 2进行加工时必须保存圆1和圆2内的透镜.下面举出一种对透镜进行加工、组装的方法.在O 1和O 2之间作垂直于O 1O 2且分别与圆1和圆2相切的切线Q Q '和N N '.假设沿位于Q Q '和N N '之间且与它们平行的任意直线T T '对透镜L 1和L 2进行切割,去掉两透镜的弓形,然后把它们沿此线粘合就得到符合所需组合透镜的上半部.同理,对L 2的下半部和L 3进行切割,然后将L 2的下半部和L 3粘合起来,就得到符合需要的整个组合透镜.这个组合透镜可以将S 1、S 2、S 3发出的光线都会聚到P 点.0.146h 0.854h 0.439h0.439h h S 1’O 2 (S 2’)O 1W 1W 2 Q Q ’ N N ’TT ’ C 1 C 2’圆1 圆2图2 xx K现在计算Q Q '和N N '的位置以及对各个透镜切去的大小符合的条件.设透镜L 1被切去沿O 1O 2方向的长度为x 1,透镜L 2被切去沿O 1O 2方向的长度为x 2,如图2所示,那么对任意一条切割线T T ', x 1、x 2之和为h O O r x x d 646.022121=-=+=〔7〕由于T T '必须在Q Q '和N N '之间,从图2可看出,沿Q Q '切割时,x 1达最大值(x 1M ),x 2达最小值(x 2m ),代入r ,和11O S '的值,得h x M 457.01=(8)代入(7)式,得h x d x M m 189.012=-=(9)由图2可看出,沿N N '切割时,x 2达最大值(x 2M ),x 1达最小值(x 1m ), 代入r 和的值,得h x M 311.02= (10)h x d x M m 335.021=-=〔11〕由对称性,对L 3的加工与对L 1相同,对L 2下半部的加工与对上半部的加工相同. 评分:此题20分.第1问10分,其中〔2〕式5分,〔3〕式5分,第2问10分,其中(5)式3分,(6)式3分,(7)式2分,(8)式、(9)式共1分,(10)式、(11)式共1分.如果学生解答中没有(7)—(11)式,但说了“将图2中三个圆锥光束照射到透镜保存,透镜其它可根据需要磨去〔或切割掉〕〞给3分,再说明将加工后的透镜组装成透镜组合时必须保证O 1O 2=O 1O 2=0.854h ,再给1分,即给(7)—(11)式的全分〔4分〕. 五、1.解法Ⅰ:如图1所示,S 为原空腔内外表所在位置,1q '的位置位于1OP 的线上的某点B 1处,2q '的位置位于2OP 的线上的某点B 2处.设A 1为S 面上的任意一点,根据题意有0111111='+B A q kP A q k(1)0212212='+B A q kP A q k (2)怎样才能使 (1) 式成立呢?下面分析图1中11A OP ∆与11B OA ∆的关系.假设效电荷1q '的位置B 1使下式成立,即211R OB OP =⋅ (3) 即 1111OB OA OA OP =(4)那么 1111B OA A OP ∽△△有RaOA OP B A P A ==111111 (5)由 (1)式和 (5)式便可求得效电荷1q '11q aRq -=' (6)由 (3) 式知,效电荷1q '的位置B 1到原球壳中心位置O 的距离aR OB 21=(7)同理,B 2的位置使2112B OA A OP ∽△△,用类似的方法可求得效电荷22q aRq -=' (8)B 2B 1P 2 P 1O Ra a θ图1SA 1效电荷2q '的位置B 2到原球壳中心O 位置的距离 aR OB 22=(9)解法Ⅱ:在图1中,设111r P A =,111r B A '=,d OB =1.根据题意,1q 和1q '两者在A 1点产生的电势和为零.有01111=''+r q k r q k 〔1'〕 式中1221)cos 2(θRa a R r -+= 〔2'〕1221)cos 2(θRd d R r -+=' 〔3'〕 由〔1'〕、〔2'〕、〔3'〕式得)cos 2()cos 2(22212221θθRa a R q Rd d R q -+'=-+ 〔4'〕 〔4'〕式是以θcos 为变量的一次多项式,要使〔4'〕式对任意θ均成立,号两边的相系数相,即)()(22212221a R q d R q +'=+ 〔5'〕a q d q 2121'=〔6'〕由〔5'〕、〔6'〕式得0)(2222=++-aR d R a ad 〔7'〕 解得aR a R a d 2)()(2222-±+=〔8'〕由于效电荷位于空腔外部,由〔8'〕式求得aR d 2=〔9'〕由〔6'〕、〔9'〕式有212221q aR q =' 〔10'〕考虑到〔1'〕式,有11q aRq -=' 〔11'〕 同理可求得aR OB 22=〔12'〕22q aR q -=' 〔13'〕2.A 点的位置如图2所示.A 的电势由q 1、1q '、q 2、2q '共同产生,即 ⎪⎪⎭⎫ ⎝⎛-+-=A B a R A P A B a R A P kq U A 22111111 (10)因22221cos 2⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-=a R aR r r A B θ代入 (10) 式得图2⎪⎪⎭⎫++-+++422222cos 2cos 21R raR r a Ra ra r θθ (11)评分:此题20分.第1问18分,解法Ⅰ中(1)、(2)、(6)、(7)、(8)、(9) 式各3分.解法Ⅱ的评分可参考解法Ⅰ. 第2问2分,即(11)式2分.六、令I 表示题述极短时间t 内挡板对C 冲量的大小,因为挡板对C 无摩擦力作用,可知冲量的方向垂直于DE ,如下图;I '表示B 、C 间的杆对B 或C 冲量的大小,其方向沿杆方向,对B 和C 皆为推力;C v 表示t 末了时刻C 沿平行于DE方向速度的大小,B v 表示t 末了时刻B 沿平行于DE 方向速度的大小,⊥B v 表示t 末了时刻B 沿垂直于DE 方向速度的大小.由动量理, 对C 有Cm I v ='αsin (1) v m I I ='-αcos(2)对B 有B m I v ='αsin(3)对AB 有()⊥-='B m I v v 2cos α(4)因为B 、C 之间的杆不能伸、缩,因此B 、C 沿杆的方向的分速度必相.故有αααsin cos sin B B C v v v -=⊥(5)由以上五式,可解得v m I αα22sin 31sin 3++= (6)评分:此题20分. (1)、(2)、(3)、(4)式各2分. (5)式7分,(6)式5分. 七、解法Ⅰ:当金属杆ab 获得沿x 轴正方向的初速v 0时,因切割磁力线而产生感电动势,由两金属杆与导轨构成的回路中会出现感电流.由于回路具有自感系数,感电流的出现,又会在回路中产生自感电动势,自感电动势将阻碍电流的增大,所以,虽然回路的电阻为零,但回路的电流并不会趋向无限大,当回路中一旦有了电流,磁场作用于杆ab 的安培力将使ab 杆减速,作用于cd 杆的安培力使cd 杆运动.设在任意时刻t ,ab 杆和cd 杆的速度分别为v 1和v 2〔相对地面参考系S 〕,当v 1、v 2为正时,表示速度沿x 轴正方向;假设规逆时针方向为回路中电流和电动势的正方向,那么因两杆作切割磁力线的运动而产生的感电动势()21v v -=Bl E(1)当回路中的电流i 随时间的变化率为t i ∆∆时,回路中的自感电动势tiLL ∆∆-=E (2)根据欧姆律,注意到回路没有电阻,有0=+L E E(3)金属杆在导轨上运动过程中,两杆构成的系统受到的水平方向的合外力为零,系统的质心作匀速直线运动.设系统质心的速度为V C ,有 C mV m 20=v(4)得B ACπ-αD20v =C V (5)V C 方向与v 0相同,沿x 轴的正方向.现取一的参考系S ',它与质心固连在一起,并把质心作为坐标原点O ',取坐标轴x O ''与x 轴平行.设相对S '系,金属杆ab 的速度为u ,cd 杆的速度为u ',那么有 u V C +=1v (6)u V C '+=2v(7)因相对S '系,两杆的总动量为零,即有0='+u m mu(8) 由(1)、(2)、(3)、(5)、(6) 、(7) 、(8)各式,得ti LBlu ∆∆=2 (9)在S '系中,在t 时刻,金属杆ab 坐标为x ',在t +t 时刻,它的坐标为x x '∆+',那么由速度的义tx u ∆'∆=(10)代入 (9) 式得i L x Bl ∆='∆2(11)假设将x '视为i 的函数,由〔11〕式知i x ∆'∆为常数,所以x '与i 的关系可用一直线方程表示b i BlLx +='2 (12)式中b 为常数,其值待.现在t =时刻,金属杆ab 在S '系中的坐标x '=021x ,这时i = 0,故得0212x i Bl L x +=' (13)或⎪⎭⎫⎝⎛-'=0212x x L Bl i (14)021x 表示t =时刻金属杆ab 的位置.x '表示在任意时刻t ,杆ab 的位置,故⎪⎭⎫⎝⎛-'021x x 就是杆ab 在t 时刻相对初始位置的位移,用X 表示,021x x X -'= (15)当X >0时,ab 杆位于其初始位置的右侧;当X <0时,ab 杆位于其初始位置的左侧.代入(14)式,得X LBli 2= (16)这时作用于ab 杆的安培力XLl B iBl F 222-=-= (17)ab 杆在初始位置右侧时,安培力的方向指向左侧;ab 杆在初始位置左侧时,安培力的方向指向右侧,可知该安培力具有弹性力的性质.金属杆ab 的运动是简谐振动,振动的周期()Ll B m T 222π2= (18)在任意时刻t , ab 杆离开其初始位置的位移⎪⎭⎫⎝⎛+=ϕt T A X π2cos(19)A 为简谐振动的振幅,为初相位,都是待的常量.通过参考圆可求得ab 杆的振动速度⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-=ϕt TT A u π2sin π2(20)(19)、(20)式分别表示任意时刻ab 杆离开初始位置的位移和运动速度.现在t =0时刻,ab 杆位于初始位置,即X = 0速度故有解这两式,并注意到(18)式得2π3=ϕ(21)22400mLBlT A vv ==π (22)由此得ab 杆的位移t TmL Bl t TmL BlX π2sin 222π3π2cos 2200v v =⎪⎭⎫ ⎝⎛+=〔23〕由 (15) 式可求得ab 杆在S '系中的位置t TmL Blx x π2sin 222100abv +=' (24)因相对质心,任意时刻ab 杆和cd 杆都在质心两侧,到质心的距离相,故在S '系中,cd 杆的位置t TmL Blx x π2sin 222100cdv --='(25) 相对地面参考系S ,质心以021v =C V 的速度向右运动,并注意到〔18〕式,得ab杆在地面参考系中的位置t mL Bl mL Blt x x ⎪⎪⎭⎫ ⎝⎛++=2sin 2221000ab v v (26)cd 杆在S 系中的位置t mL Bl mL Blt x ⎪⎪⎭⎫ ⎝⎛-=2sin 222100cd v v 〔27〕回路中的电流由 (16) 式得t mL Bl L m t T mL BlL Bl i ⎪⎪⎭⎫ ⎝⎛==2sin 2π2sin 22200v v (28)解法Ⅱ:当金属杆在磁场中运动时,因切割磁力线而产生感电动势,回路中出现电流时,两金属杆都要受到安培力的作用,安培力使ab 杆的速度改变,使cd 杆运动.设任意时刻t ,两杆的速度分别为v 1和v 2〔相对地面参考系S 〕,假设规逆时针方向为回路电动势和电流的正方向,那么由两金属杆与导轨构成的回路中,因杆在磁场中运动而出现的感电动势为()21v v -=Bl E(1’)令u 表示ab 杆相对于cd 杆的速度,有Blu L =E(2’)当回路中的电流i 变化时,回路中有自感电动势E L ,其大小与电流的变化率成正比,即有tiLL ∆∆-=E (3’)根据欧姆律,注意到回路没有电阻,有由式(2’)、(3’)两式得tiLBlu ∆∆= (4’)设在t 时刻,金属杆ab 相对于cd 杆的距离为x ',在t +t 时刻,ab 相对于cd 杆的距离为x '+x '∆,那么由速度的义,有tx u ∆'∆=(5’)代入 4' 式得i L x Bl ∆='∆(6’)假设将x '视为i 的函数,由(6’)式可知,i x ∆'∆为常量,所以x '与i 的关系可以用一直线方程表示,即b i BlLx +=' (7’)式中b 为常数,其值待.现在t =时刻,金属杆ab 相对于cd 杆的距离为0x ,这时i = 0,故得 0x i Bl Lx +=' (8’) 或()0x x L Bli -'= (9’)0x 表示t =时刻金属杆ab 相对于cd 杆的位置.x '表示在任意时刻t 时ab杆相对于cd 杆的位置,故()0x x -'就是杆ab 在t 时刻相对于cd 杆的相对位置相对于它们在t =时刻的相对位置的位移,即从t =到t =t 时间内ab 杆相对于cd 杆的位移0x x X -'=(10')于是有X L Bli = (11’)任意时刻t ,ab 杆和cd 杆因受安培力作用而分别有加速度a ab 和a cd ,由牛顿律有 ab ma iBl =- (12’)cd ma iBl =(13’)两式相减并注意到9'式得()XLl B iBl a a m 22cd ab22-=-=- (14’)式中()cd ab a a -为金属杆ab 相对于cd 杆的加速度,而X 是ab 杆相对cd 杆相对位置的位移.Ll B 222是常数,说明这个相对运动是简谐振动,它的振动的周期()Ll B m T 222π2= (15’)在任意时刻t ,ab 杆相对cd 杆相对位置相对它们初始位置的位移⎪⎭⎫⎝⎛+=ϕt T A X π2cos(16’)A 为简谐振动的振幅,为初相位,都是待的常量.通过参考圆可求得X 随时间的变化率即速度⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=ϕT T A V π2sin π2(17’)现在t =0时刻,杆位于初始位置,即X = 0,速度0v =V 故有解这两式,并注意到(15’) 式得由此得t mL Bl mL Bl t TmL BlX ⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=2sin 22π3π2cos 200v v (18’)因t = 0时刻,cd 杆位于x = 0 处,ab 杆位于x = x 0 处,两者的相对位置由x 0表示;设t 时刻,cd 杆位于x = x cd 处,ab 杆位于x = x ab 处,两者的相对位置由x ab -x cd 表示,故两杆的相对位置的位移又可表示为X = x ab -x cd -x 0(19’)所以t mL Bl mL Blx x x ⎪⎪⎭⎫ ⎝⎛+=-2sin 200cd ab v (20’)(12’)和(13’)式相加, 得由此可知,两杆速度之和为一常数即v 0,所以两杆的位置x ab 和x cd 之和为x ab +x cd = x 0+v 0t (21’)由(20’)和(21’)式相加和相减,注意到(15’)式,得 t mL BlmL Bl t x x ⎪⎪⎭⎫ ⎝⎛++=2sin 2221000ab v v 〔22’〕t mL Bl mL Blt x ⎪⎪⎭⎫ ⎝⎛-=2sin 222100cd v v 〔23’〕由(11’)、〔19’〕(22’)、(23’)式得回路中电流t mL Bl L m i ⎪⎪⎭⎫ ⎝⎛=2sin 20v 〔24’〕评分:此题25分.解法Ⅰ 求得(16)式8分,(17)、(18)、(19)三式各2分. (23)式4分,(24)、(25)二式各2分,(26)、(27)、(28)三式各1分.解法Ⅱ的评分可参照解法Ⅰ评分中的相式子给分.。
第32届全国中学生物理竞赛复赛模考训练第01套
题三
简易的高斯炮的原理是通过释放存储的磁能加速钢球。制作高斯炮需要若干弹性很好的钢球,一
个水平光滑的导轨,一些强磁铁,质量和钢球相当,均为 m ,球的直径和磁铁宽度均为 2r 。磁铁和
钢球之间的吸引力近似写为
uBz
);
Ez ' (Ez uBx )
By
Bx ' Bx ' (By uEz
/
c2 ) ,其中
Bz ' (Bz uEx / c2 )
1 1 v2 / c2
(1) 在地面参照系中,一个原子以速度 u 向 x 轴正向运动,在地面参照系中有匀强电场 E (Ex , Ey , Ez ) 。 请计算在原子自身参照系中的极化的电偶极大小 p ' 。
0 e 1 ,角动量大小为 L 。 a) 通过特殊情境先计算出万有引力的具体形式 f (r) 。可以利用 r, L,e, m 表达。 b) 如图对于任意给定的 ,把物体到中心星体距离记为 r ,物体到另一个焦点距离为 r ' 。
计算在经过一小段时间 t 后,物体与两个焦点的连线转过的角度 , ' ,用瞬时速度 v, , ',r ,t 表达。 c) 计算出在间 t 内物体速度方向的角度变化 (用 v, t,l, ( ') / 2 表达),由此计算物体 的法向加速度,并计算说明在(a)中得到的万有引力形式正确。
b) 初态导线距离圆心距离 0 ,初速度 v0 垂直于导线和圆心的连线,要求导线不会运动到圆柱形区域
内,写下 v0 应当满足的方程。
c) 初态导线在圆柱边缘 (r,0) ,初速度大小 v1 ,向圆柱内运动,恰好能从 (0, r) 离开圆柱。求 v1 方向
高中物理竞赛复赛模拟试题(有答案)
高中物理竞赛模拟试题〔复赛〕一、某一构件由两个菱形组成,AB 和DE 是两根硬杆,各焦点都用铰链连接,大菱形的边长是2l ,小菱形的边长是l ,现设法使顶点F 以加速度a 水平向右运动,求: 〔1〕C 点的加速度多大?〔2〕当两个菱形都是正方形,F 点的速度为ν时,A 点的加速度的大小和方向。
二、长为L 的杆AO 用铰链固定在O 点,以角速度ω围绕O 点转动,在O 点的正上方有一个定滑轮B ,一轻绳绕过B 滑轮的一端固定在杆的A 端,另一端悬挂一质量为M 的重物C ,O 、B 之间的距离为h ,求:〔1〕当AB 绳与竖直方向成θ角时,重物的运动速度; 〔2〕此时绳上的张力为多少?三、一对半径为r 的轻轮安装在一根细轴上它们共同以某一速度ν沿图示的平面向右滚动。
斜面与平面接触的顶角A 处足够粗糙〔即轮不会产生滑动〕,斜面与水平面成α角,要求轮从平面滚动到斜面时不要离开顶角,问ν的最大值为多少?四、一架大型民航飞机在降落到机场前撞上一只正在飞行的天鹅,试估算,天鹅转击飞机的力为多少〔只要数量级正确即可〕?五、有一汽缸,除底部外都是绝热的。
上面是一个不计重量的活塞,中间是固定的导热隔板,把汽缸分成相等的两局部A 和B ,上下各有1mol 氮气,现从底部将350J 的热量传送给气体,求:〔1〕A 、B 内的气体温度各改变了多少? 〔2〕它们各吸收了多少热量?假设是将中间的隔板变成一个导热的活塞其他条件不变,如此A 、B 的温度又是多少?〔不计一切摩擦〕A六、两个绝缘的相距较远的球形导体,半径分别为r 1、r 2,带电后电势分别为ν1和ν2,假设用细导线将两个球连接起来,求在导线上放出的电量。
七、一个正方形的导线框ABCD ,边长为l ,每边的电阻为R ,在它中点处内接一个小一些的正方形线框EFGH ,然后在各边中点在内接一个更小的正方形导线框 一直下去,直至无穷。
如果所有正方形导线框用的导线都是一样的,所有接触点接触良好。
第36届物理竞赛复赛模拟题(第11套)
1. 在一根长度为L 轻织针的两端各系上一个相同的小金属球。
把织针放在长度为l L 的台座上,使得二者的中点相接触,并以小角度01rad ϕ进行扰动。
如果织针从一侧振动到另一侧时不损失能量,不会从台座上掉下来,也不会发生滑动,求织针的小幅振动的周期。
2. 均匀细杆AOB 的A 端、B 端和中央位置O 处各有1个光滑小孔,先让杆在光滑的水平大桌面上绕O 孔以角速度0ω做顺时针方向旋转,如图所示(图平面为大桌面)。
今将一光滑细棍迅速的竖直插入A 孔,棍在插入前后无任何水平方向移动。
稳定后,在迅速拔去A 端细棍的同时,将另一光滑细棍如前所述插入B 孔;再次稳定后,又在迅速拔去B 端细棍的同时,将另一光滑细棍如前所述插入O 孔,试求最终稳定后细杆AOB 绕O 孔的旋转方向和旋转角速度ω的大小。
考试时间:180分钟 满分:320分,每题40分全国中学生物理竞赛复赛模拟试题第十一套3. 球状水滴在静止的雾气中下落,下落过程中吸附了全部遇到的水汽分子。
设水滴始终保持球状,雾气密度均匀,略去空气的粘力,重力加速度g 视为不变,试证经过足够长的时间后,水滴下落加速度趋于稳定值,并求出此值。
4. 长l 、电阻R 的均匀金属细杆,其A 端约束在竖直光滑金属导轨上运动,B 端约束在水平金属导轨上运动,导轨电阻可忽略。
设空间有图示方向的水平匀强磁场B ,开始时细杆方位角0ϕ=,从静止状态自由释放后,方位角达到ϕ时,A 端朝下速度大小记为A v(1)试求细杆内从A 端到B 端的电动势AB ε;(2)导出安培力提供的负功率大小的计算式,进而验证此负功率大小恰好等于细杆电阻消耗的电功率大小;(3)计算45ϕ=︒时,细杆旋转角加速度β(本问答案中不可出现A v )5. 惯性系S 中有两静质量同为0m 的粒子A B 、,它们的速度分别沿,x y 方向,速度大小分别为0.6c 、0.8c 。
某时刻粒子A 位于xy 平面上,如图所示。
高中物理竞赛复赛模拟试题四(有答案)
初始的中子 对应动能 ,碰撞 次后的动能取为 ,则有
两边取对数解得
取整数后为
3.半径为R、质量为M1的均匀圆球与一质量为M2的重物分别用细绳,AD和ACE悬挂于同一点A,并处于平衡,如图11-205所示,已知悬点A到球心O的距离为L,不考虑绳的质量和绳与球的摩擦,试求悬挂圆球的绳AD与竖直方向AB的夹角θ。
2. 热中子能有效地使铀235裂变,但裂变时放出的中子能量代谢较高,因此在核反应堆中石墨作减速剂。若裂变放出的中子动能为2.2MeV,欲使该中子慢化为热中子(动能约为0.025eV),问需经过多少次对撞?
解:运动的中子与石墨中静止的碳原子碰撞可作为弹性碰撞处理。设第 次碰拼音字母前中子速度大小为 ,碰后速度 大小为 ,由动量守恒和能量守恒可得
分析:利用时间膨胀公式可将地球上观测到的 子的寿命 与静止系中的寿命 建立联系。对地球上的观察者而言, 子为能达到地面,所具速度必须保证它在 时间内走完全程。利用质能公式可得 子的相应能量。由于 子的动能比重力势能大得多,重力影响可忽略。又因地磁场引起的偏转较小,计算第1问时可不考虑洛伦兹力,因此,可把 子近似看成作匀速直线运动。
可得
所以右管内气体压强为
再对右管内被封气体,根据玻意耳定律得:
整理得:
解得:
在根据以上假设列的方程中,有满足题设的实数解,故所做假设成立,即左管内水银先抽干,且此时右管内剩余水银柱高度为5cm。
8.如图24-57(a)所示,水平固定的圆筒由足够长粗筒和细筒相接而成,筒中有直径不同的两个活塞A、B用一根细绳相连,活塞B通过水平细绳、定滑轮与一个质量为m=2.0kg的重物C连接,A、B两活塞的横截面积分别为S1=20cm2,S2=10cm2。当两活塞封闭的空气柱温度为t=327℃时,两活塞保持静止,此时两活塞分别与大小圆筒的相接面的距离均为L,已知大气压强p0=1.0×105Pa,活塞与筒壁、滑轮与轮轴间的摩擦均可忽略不计,取g=10m/s2,求:
第36届物理竞赛复赛模拟题(第11套)_解析
【题号】1【解析】织针与台座中点相接触,则一侧向下偏转时,该侧距离支点较近,向上偏转的另一侧距离支点较远,形成回复力矩。
但此回复力矩与角位移未必成线性关系,不能直接简单认为织针做简谐运动。
事实上,从能量角度也可以看出,以织针水平为势能零点,则有一定角位移时,系统总重力势能与角位移一次关系,而不是简谐运动中常见的二次关系。
因此,织针并非做简谐运动。
需要考察其具体运动情况。
当系统如图偏转时,易见左、右质点到支点的距离分别为 12L l d -=,22L ld +=, 以支点为转轴,系统由重力造成的合力矩为20100cos cos cos M mgd mgd mgl ϕϕϕ=-=, 系统的转动惯量为2222121()2I md md m L l =+=+, 根据转动定理可得,系统的角加速度为 0222cos 2=()2gl M gl I L l Lϕβ=≈+. 近似是个定值,即系统在单侧做匀角加速转动,在如图的偏离角从静止下的0ϕ变为0的过程中,总共历时全国中学生物理竞赛复赛模拟试题第十一套(解析与评分标准)满分320t 满足类似由静止开始的匀加速直线运动位移公式:2012t βϕ=, 解得t =而整个振动过程由四个这样的过程(及逆过程)组成,故总的振动周期为44T t ==【题号】2 【解析】设细杆长1,质量为m ,则相对O 、A 、B 的转动惯量分别为20112I ml =(1分) 213A B I I ml == (1分)开始时,细杆相对A 轴(几何轴)的角动量为0002A l L I mu ω=+ 式中0u 为细杆质心(位于0位)速度。
因00u =故有00A L I ω= (1分)A 孔插入细杆前后,细杆相对A 轴角动量守恒。
设稳定后角速度为A ω,则有A A A L I ω= 即得00014A AI I ωωω== (1分)此时细杆质心速度 00128A Al u l ωω== (1分)在拔出A 端细棍和将细棍插入B 孔前瞬间,细杆相对B 轴(几何轴)的角动量为 20001224B A Al L I mu ml ωω=-=- 拔出A 端细棍和将细棍插入B 孔前后, 细杆相对B 轴角动量守恒。
高中试卷试题复习模拟高考第全国物理竞赛复赛模拟试题1
然顿市安民阳光实验学校第27届全国中学生物理竞赛复赛模拟试题一、填空(问答)题(共25分)1.(5分)星系的旋转。
19,在知道有一些很远的星云(星系)以前,报道过旋涡星云M101像刚体一样以85000年的周期在旋转,所观测到的角直径为22’。
如果上述周期是正确的话,那么这个星云离地球的最大可能的距离为。
假定星云边缘的运动不快于c。
2.(5分)均匀带电的立方体角上一点的电势是中心的倍3.(5分)电磁船试用适用于高速潜航,其构造关键是电磁推进器,如图所示(俯视图),推进器中装有超导强磁体(超导线圈),用以在船体外的海水中产生强大的磁场,海水中磁感线为图中实线所示。
推进器两侧装有的正、负电极,在船体外的海水中形成电场,电场线为图中虚线所示。
试定性分析海水中被电离的正、负离子在如图所示的电磁场中的运动趋势,进而说明电磁船被海水推向前进的原理。
(注:图中推进器的头部指向读者。
)4.(5分)两种电场能量的表达式⎰=Qe udqW0和⎰⎰⎰⋅=VedVEDW)(21的物理意义有何不同?是否在任何情况下两式均等效?5.(5分)湖面上方h=0.50m处放一电磁波接收器,当某射电星从地面渐渐升起时,接收器可测到一系列极大值。
已知射电星所发射的电磁波的波长为20cm,如图所示。
那么出现第一级极大值时射电星的射线与铅直线间的夹角为。
(湖水可看作是电磁波的波密反射体)。
二、(15分)图中所示为用三角形刚性细杆AB、BC、CD连成的平面连杆结构图。
AB 和CD杆可分别绕过A、D的垂直于纸面的固定轴转动,A、D两点位于同一水平线上。
BC杆的两端分别与AB杆和CD杆相连,可绕连接处转动(类似铰链)。
当AB杆绕A轴以恒定的角速度ω转到图中所示的位置时,AB杆处于竖直位置。
BC杆与CD杆都与水平方向成45°角,已知AB杆的长度为l,BC杆和CD杆的长度由图给定。
求此时C点加速度ca的大小和方向(用与CD杆之间的夹角表示)三、(20分)一均匀细棒质量为M,置于光滑的水平面上,在棒的两个端点各蹲着一只质量为m的青蛙,若青蛙以相同的速率,相同对地的仰角,各向不同一侧同时起跳,以使细棒在水平面上旋转,而当青蛙下落时刚好能各落在棒的另一端,求Mm的取值范围四、(20分)图示为低温工程中常用的一种气体、蒸气压联合温度计的原理示意图,M为指针压力表,以V M表示其中可以容纳气体的容积;B为测温饱,处在待测温度的环境中,以V B表示其体积;E为贮气容器,以V E表示其体积;F 为阀门。
(完整版)高中物理竞赛复赛选拔考试
新高二物理竞赛复赛选拔考试姓名得分第一题(40分)一物体质量为m=1。
0kg,置于水平面上,物体与水平面间的静摩擦系数和滑动摩擦系数均为μ,如图所示,在原点有一完全弹性的墙,且物体始终受到F=-20x(N)的水平力,x的单4.0==1.1m处静止释放,(g取10m/s2)求:位为米(m)。
现将物体于x(1)物体从静止释放到停止运动,共用了多少时间?(2)物体最后停在什么位置?(3)物体克服摩擦力做了多少功?第二题(40分)如图所示,1根长为2L的细绳,两端各系1个质量为m的小滑环,滑环套在固定的水平杆上,细绳的中点挂1个质量为M=2m的重物。
不计细绳质量和一切摩擦,从细线与滑杆平行位置由静止释放到水平杆与绳夹角为 的位置时:(1)两滑环与重物的速度为多大?(2)连接滑环与重物的细绳中的张力为多大?第三题(40分)右图为一无限多立方“格子”的电阻丝网络电路,每两节点之间电阻丝的电阻均为R,其中A、B两节点位于网络中部。
左图电路中的电源电动势(内阻为0)均为 ,电阻均为r。
若其中的a、b两节点分别与左图所示的电路中的A、B两节点相连结,试求流入电阻丝无限网络的电流.第四题(40分)1、已知接地金属导体球附近存在1个点电荷时,该系统在球外空间产生的电场可以等效地看成是由原来的点电荷与另1个位于球内适当位置具有适当电量的点电荷q共同产生。
设接地导体球半径为R,球外点电荷q距球心距离为d,如左图所示,试确定另一电荷q′的位置和电量?2、1个由绝缘细线做成的刚性圆形轨道,如右图所示,半径为R,置于水平面上,圆心在O 点.1个小球P穿在此轨道上,并可沿轨道无摩擦地滑动,小球带电量为Q.已知在轨道平面内A 点(OA=r〈R)放有1个点电荷q,若在OA连线上某一点A′放1个点电荷q′。
则给小球P一个初速度,它便沿轨道作匀速圆运动。
求A′点位置及电荷q′的值。
第五题(40分)如图所示,为一个英国作家提出的一个登天缆绳的设想:用一根足够长的缆绳,竖在赤道上空,这根绳不会飞离地球,因此可以通过这根缆绳向地球卫星运送物品,甚至沿绳爬到太空去游览。
高中物理竞赛复赛模拟试题一
高中物理竞赛复赛模拟卷(一)姓名 分数 (本试卷与模拟试卷沈晨卷相同)1.(20分)设想宇宙中有1个由质量分别为m 1、m 2……m N 的星体1、2……N 构成的孤立星团,各星体空间位置间距离均为a ,系统总质量为M ,由于万有引力的作用,N 个星体将同时由静止开始运动。
试问经过多长时间各星体将会相遇? 2.(25分)(1)在两端开口的竖直放置的U 型管中注入水银,水银柱的全长为h 。
若把管的右端封闭,被封闭的空气柱长L ,然后使水银柱作微小的振荡,设空气为理想气体,且认为水银振荡时右管内封闭气体经历的是准静态绝热过程,大气压强相当于h 0水银柱产生的压强,空气的绝热指数为γ。
试求水银振动的周期T 2。
已知对于理想气体的绝热过程有γPV =常数。
(2)在大气压下用电流加热1个绝热金属片,使其以恒定的功率P 获取电热,发现在一定的温度范围内金属绝对温度T 随时间t 的增长关系为4/100)](1[)(t t a T t T -+=。
其中T 0、a 、t 0均为常量。
求该金属片的热容量C P 随温度T 变化的关系。
3.(20分)如图所示,当船舶抛锚时,要把缆绳在系锚桩上绕好几圈(N 圈),这样做时,锚桩抓住缆绳必须的力,经船作用于缆绳的力小得多,以避免在船舶遭到突然冲击时拉断缆绳,这两力比F 1:F 2,与缆绳绕系锚桩的圈数有关,设泊船时将缆绳在系锚桩上绕了5圈,计算比值F 1:F 2,设缆绳与锚桩间的摩擦因数2.0=μ。
4.(25分)速调管用于甚高频信号的放大,速调管主要由两个相距为b 的腔组成,每个腔有1对平行板,如图所示,初始速度为v 0的一束电子通过板上的小孔横穿整个系统。
要放大的高频信号以一定的相位差(1个周期对应于2π相位)分别加在两对电极板上,从而在每个腔中产生交变水平电场。
当输入腔中的电场方向向右时,进入腔中的电子被减速;反之,电场方向向左时,电子被加速。
这样,从输入腔中射出的电子经过一定的距离后将叠加成短电子束。
全国高中生物理竞赛复赛试题
全国中学生物理竞赛复赛试卷一、(23分)有一竖直放置、两端封闭的长玻璃管,管内为真空,管内有一小球自某处自由下落(初速度为零),落到玻璃管底部时与底部发生弹性碰撞.以后小球将在玻璃管内不停地上下跳动。
现用支架固定一照相机,用以拍摄小球在空间的位置。
每隔一相等的确定的时间间隔T 拍摄一张照片,照相机的曝光时间极短,可忽略不计。
从所拍到的照片发现,每张照片上小球都处于同一位置。
求小球开始下落处离玻璃管底部距离(用H 表示)的可能值以及与各H 值相应的照片中小球位置离玻璃管底部距离的可能值。
二、(25分)如图所示,一根质量可以忽略的细杆,长为2l ,两端和中心处分别固连着质量为m 的小球B 、D 和C ,开始时静止在光滑的水平桌面上。
桌面上另有一质量为M 的小球A ,以一给定速度0v 沿垂直于杆DB 的方间与右端小球B 作弹性碰撞。
求刚碰后小球A,B,C,D的速度,并详细讨论以后可能发生的运动情况。
三、(23分)有一带活塞的气缸,如图1所示。
缸内盛有一定质量的气体。
缸内还有一可随轴转动的叶片,转轴伸到气缸外,外界可使轴和叶片一起转动,叶片和轴以及气缸壁和活塞都是绝热的,它们的热容量都不计。
轴穿过气缸处不漏气。
如果叶片和轴不转动,而令活塞缓慢移动,则在这种过程中,由实验测得,气体的压强p 和体积V 遵从以下的过程方程式 图1k pV a =其中a ,k 均为常量, a >1(其值已知)。
可以由上式导出,在此过程中外界对气体做的功为⎥⎦⎤⎢⎣⎡--=--1112111a a V V a k W 式中2V 和1V ,分别表示末态和初态的体积。
如果保持活塞固定不动,而使叶片以角速度ω做匀角速转动,已知在这种过程中,气体的压强的改变量p ∆和经过的时间t ∆遵从以 图2 下的关系式ω⋅-=∆∆L Va t p 1 式中V 为气体的体积,L 表示气体对叶片阻力的力矩的大小。
上面并没有说气体是理想气体,现要求你不用理想气体的状态方程和理想气体的内能只与温度有关的知识,求出图2中气体原来所处的状态A 与另一已知状态B 之间的内能之差(结果要用状态A 、B 的压强A p 、B p 和体积A V 、B V 及常量a 表示)四、(25分)图1所示的电路具有把输人的交变电压变成直流电压并加以升压、输出的功能,称为整流倍压电路。
全国中学生物理竞赛——复赛模拟卷
物理竞赛模拟试题1.试证明:物体的相对论能量E 与相对论动量P 的量值之间有如下关系:20222E c p E +=2.在用质子)(11P 轰击固定锂)(73Li 靶的核反应中,(1)计算放出α粒子的反应能。
(2)如果质子能量为1兆电子伏特,问在垂直质子束的方向观测到α粒子的能量有多大?有关原子核的质量如下:H 11,1.007825;He 42,4.002603;Li 73,7.015999.3. 一个处于基态的氢原子与另一个静止的基态氢原子碰撞。
问可能发生非弹性碰撞的最小速度为多少?如果速度较大而产生光反射,且在原速度方向和反方向可以观察到光。
问这种光的频率与简正频率相差多少?氢原子的质量为1.67×10-27kg ,电离能J eV E 181018.26.13-⨯==。
4.如图11-136所示,光滑无底圆筒重W ,内放两个重量均为G 的光滑球,圆筒半径为R ,球半径为r ,且r<R<2r ,试求圆筒发生倾倒的条件。
5. 两个完全相同的木板,长均为L ,重力均为G ,彼此以光滑铰链A 相连,并通过光滑铰力?所施加的最小外力为多大?6.如图11-505所示,屋架由同在竖直面内的多根无重杆绞接而成,各绞接点依次为1、2……9,其中绞接点8、2、5、7、9位于同一水平直线上,且9可以无摩擦地水平滑动。
各绞接点间沿水平方向上的间距和沿竖直方向上的间距如图所示,绞接点3承受有竖直向下的压力P/2,点1承受有竖直向下的压力P ,求绞接点3和4间杆的内力。
1p 图51-21图11-136 图11-505(甲)7.一平直的传送带以速度v=2m/s 匀速运行,传送带把A 点处的零件运送到B 点处,A 、B 两点之间相距L=10m ,从A 点把零件轻轻地放到传送带上,经过时间t=6s ,能送到B 点,如果提高传送带的运动速率,零件能较快地传送到B 点,要让零件用最短的时间从A 点传送到B 点处,说明并计算传送带的运动速率至少应多大?如要把求得的速率再提高一倍,则零件传送时间为多少(2/10s m g )?8.一物体以某一初速度v 0开始做匀减速直线运动直至停止,其总位移为s ,当其位移为2/3s 时,所用时间为t 1;当其速度为1/3v 0时,所用时间为t 2,则t 1、t 2有什么样的关系? 9.一根长为1m 具有小内截面的玻璃管,两端开口,一半埋在水中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国高中物理竞赛模拟题一1.光子火箭从地球起程时初始静止质量(包括燃料)为M 0,向相距为R=1.8×1061.y.(光年)的远方仙女座星飞行。
要求火箭在25年(火箭时间)后到达目的地。
引力影响不计。
1)、忽略火箭加速和减速所需时间,试问火箭的速度应为多大?2)、设到达目的地时火箭静止质量为M 0ˊ,试问M 0/ M 0ˊ的最小值是多少?分析:光子火箭是一种设想的飞行器,它利用“燃料”物质向后辐射定向光束,使火箭获得向前的动量。
求解第1问,可先将火箭时间a 250=τ(年)变换成地球时间τ,然后由距离R 求出所需的火箭速度。
火箭到达目的地时,比值0M M '是不定的,所谓最小比值是指火箭刚好能到达目的地,亦即火箭的终速度为零,所需“燃料”量最少。
利用上题(本章题11)的结果即可求解第2问。
解:1)火箭加速和减速所需时间可略,故火箭以恒定速度υ飞越全程,走完全程所需火箭时间(本征时间)为a 250=τ(年)。
利用时间膨胀公式,相应的地球时间为221c υττ-=因υτR=故221c Rυτυ-=解出()10220222021096.0111-⨯-=⎪⎪⎭⎫ ⎝⎛-≈+=c R c c Rc c ττυ可见,火箭几乎应以光速飞行。
(2)、火箭从静止开始加速至上述速度υ,火箭的静止质量从M 0变为M ,然后作匀速运动,火箭质量不变。
最后火箭作减速运动,比值0M M '最小时,到达目的地时的终速刚好为零,火箭质量从M 变为最终质量0M '。
加速阶段的质量变化可应用上题(本章题11)的(3)式求出。
因光子火箭喷射的是光子,以光速c 离开火箭,即u=c ,于是有21011⎪⎪⎭⎫⎝⎛+-=ββM M (1) c βυ=为加速阶段的终速度,也是减速阶段性的初速度。
对减速阶段,可应用上题(本章题11)的(4)式,式中的m 0以减速阶段的初质量M 代入。
又因减速时必须向前辐射光子,故u=-c ,即有21011⎪⎪⎭⎫⎝⎛+-=ββM M (2) 由(1)、(2)式,得1020222022010441411⨯=≈-=-+='ττββc R c R M M2.如图52-1所示,地面上的观察者认为在地面上同时发生的两个事件A 和B ,在相对地面以速度u (u平行于x 轴,且与正方向同向)运动的火箭上的观察者的判断正确的是( )A 、A 早于B B 、B 早于AC 、A 、B 同时发生D 、无法判断解:在地面(S 系)上,,A B x x x -=∆0=-=∆A B t t t ,在火箭(S '系)中,⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-='-'='∆22c ux t r c ux t r t t t A A B B A B()()B A AA B x x c ux t t r -+-=2()B A Ax x c ux -=2因0>r ,0>u ,0<-B A x x ,故0<'∆t 。
即从火箭上观察,B 事件在前,A 事件在后,选B 。
3. 如图11-195所示,正方形均质板重G ,用4根轻质杆铰链水平悬挂,外形构成边长为a 的立方体,现将方板绕铅垂对称轴旋转θ角度,再用一细绳围绕四杆的中点捆住,使板平衡于θ角位置。
试求绳内的张力。
分析:初看此题,一般都会觉的比较复杂,因为题中铰链就有8个,加上4根轻质杆与绳子有4个接触点,一共有12个受力点,而且初看甚至想象不出木板旋转θ角度以后整个系统是什么样子,即使把各个受力点的力逐个画出来也无济于事。
应该先想一想哪些点都是对称的(等价图52-1图11-195的),找出最基本的部分,再把空间方向确定下来,然后好画出各个力点的受力情况。
解:把木板绕铅垂对称轴旋转θ角度以后,系统虽然不是一个很对称的立方体,但把系统绕铅直轴旋转90度的整数倍,系统的与自身重合,说明四根轻杆的受力情况是完全一样的。
系统处于平衡状态,把四根轻杆,木板,绳组成的部分看成刚体,则刚体受四个铰接部分的力而平衡,重力方向的平衡可以得出,竖直方向对每根轻杆的拉力T 上为:G T =上4 (1)而铰接处是否对轻杆有水平方向的作用力,暂时还不好确定,不过可以为N //,从俯图来看四根轻杆的受力情况(如图11-196所示):图中虚线表示正方形对角线的外延部分,如果N //不在对角线方向上,则四个N //对O 点有一个力偶矩,将使得下面的部分旋转,与平衡假设相矛盾,因此水平弹力必然在对角线方向,要么都向外,要么都向里(设向外为正,这种设法不会影响结果)。
同样的道理,把木板隔离开来,可知木板对轻杆往下的拉力下T 为: G T =下4 (2) 而水平方向的作用力必沿对角线方向(否则木板旋转),木板对杆的作用力向里向外的性质与上端铰链的方向相同,否则以绳对杆的作用点为支点,力矩无法平衡。
图11-196y//下面再看整个系统的俯视图(如图11-197所示),把轻杆隔离出来作为平衡的刚性杆,利用力的平衡条件和力矩的平衡条件可求出拉力T 的大小。
绳作用在每根转杆的中点,在俯视图上不难看出,绳子构成一个正方形,且在水平面内,因而可以知道绳对轻杆仅有水平面内,因而可以知道绳对轻杆仅有水平面内的拉力,轻杆在竖直方向上力的平衡是满足的:下上T T = (3)取一根轻杆为研究对象不难求出//N 与//N '的关系,以及//N 与//T 的关系,设绳的张力为T ,则水平合力T T 2//=。
x 方向水平力平衡:2s i n 2s i n ////θθN N =' (4) y 方向水平力平衡:T T N N 22c o s 2c o s //////==+'θθ (5)在过轻杆的竖直面内来分析力矩平衡(只研究平面内转矩),如图11-198。
对于A 点,力矩平衡2s i n2c o s 2s i n //θθθa T a N ⋅=⋅'下 (6) 联合(2)、(4)、(5)、(6)式可得θθc o s 22c o s⋅=G T2θ图11-1984. 如图12-30所示,一小车对地以加速度a 1=1m/s 2向左由静止开始作匀加速运动,车上一人又以加速度a 2=2m/s 2相对于车向右同时由静止开始作匀加速运动。
求:(1)人对地的加速度;(2)经历时间t 1=1s ,人对地的瞬时速度;(3)经历时间t 2=2s ,人对地的位移。
解:(1)车地人车人地a a a +=a 1与a 2方向相反选a 2为正方向则22/2s m s m a -=人地 2/1s m =(2)t=1s 时, 2/m s υ=人车 s m /1-=车地υ ∴ s m s m /1/2-=人地υ s m /1=(3) 2/1s m a =人地∴ ms t a 221212122=⨯⨯==⨯⨯5.有一小直径为d 的试管,管内装有理想气体,其中有一段质量m=2g 的水银将理想气体和空气隔开。
当试管口向上时,气体在试管中的长为L 1(图24-30(a )中的(a )),当将管口向下时,气体在试管中长为L 2(图24-30(b )中的(b )),试求L 2/L 1为多少?解:如果是等温过程,可得理想气体的状态方程 常数=PV图12-30对于上述两种情况,可有2211V P V P= 现在考虑在每一情况作用中在气体上的压强,如图24-30(b )所示,可得S W P S W P P P V V -+==大气大气2112式中S 为试管内部的截面积,W 为水银的重量,W=m g ,则S mg P S mg P SL SL V V -+==大气大气1212消去S 得221244d mg P d mg P L L ππ-+=大气大气6.有一个两端开口、粗细均匀的U 型玻璃细管,放置在竖直平面内,处在压强为0p 的大气中,两个竖直支管的高度均为h ,水平管的长度为2h ,玻璃细管的半径为r,r«h ,今将水平管内灌满密度为ρ的水银,如图24-54(a )所示。
1.如将U 型管两个竖直支管的开口分别封闭起来,使其管内空气压强均等于大气压强,问当U 型管向右作匀加速移动时,加速度应多大才能使水平管内水银柱长度稳定为h 35。
2.如将其中一个竖直支管的开口封闭起来,使其管内气体压强为1atm ,问当U 型管绕以另一个竖直支管(开口的)为轴作匀速转动时,转数n 应为多大才能使PP 图24-30(b )图24-54(a )水平管内水银柱长度稳定为h 35。
(U 型管作以上运动时,均不考虑管内水银液面的倾斜)解:1、当U 型管向右加速移动时,水平管内的水银柱将向左边的竖直支管中移动,其稳定的位置是留在水平管内的水银柱所受的水平方向的合力等于使其以恒定加速度a 向右运动时所需的力。
由于竖直支管内空气在膨胀或压缩前后的温度相等,根据气态方程有右管: hS p hS p 1034=左管:hS p hS p 2032=S 为管的截面积,图24-54(b )中,A 、B 两处压强分别为:gh p p A ρ312+=1p p B = 而留在水平管内的水银柱质量hS m ρ35=其运动方程为 a m S p p B A ⋅=-)( 由以上各式可得)20/()49(0h gh p a ρρ+=2.当U 型管以开口的竖直支管为轴转动时,水平管内的水银柱将向封闭的图24-54(b )竖直支管中移动,其稳定位置是水平管内的水银柱所受的水平方向的合力,正好等于这段水银柱作匀速圆周运动所需的向心力。
由于封闭竖直支管内空气在压缩前后的温度相等,根据气态方程有hS hS p ρ320=S 为管的截面积。
图24-54(c )中A 、B 两处的压强分别为gh p p A ρ31+=0p p B = 留在水平管内的水银柱的质量hS m ρ35=其运动方程为mR n R m S p p B A 2224)(πω==-其中h R 67=由以上各式可得[]21220)140/()69(h gh p n ρπρ+= 7. 有一块透明光学材料,由折射率略有不同的许多相互平行的,厚度d=0.1mm 的薄层紧密连接构成,图33-40表示各薄层互相垂直的一个截面,若最下面一层的折射率为n 0,从它往上数第K 层的折射率为n K =n 0-K v ,其中n 0=1.4,v=0.025,今有一光线以入射角i=60°4n n 5n 图33-40射向O 点,求此光线在这块材料内能达到的最大深度?解:设光线进入材料后的折射角为r ,则根据折射定律有r n i sin sin 0∙=,此光线从最下面一层进入向上数第一层时,入射角为2φπ-=r ,折射角为12φπ-=r ,同样根据折射定律有⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-∙11002sin 2sin φπφπn n ,也即 1100c o s c o s φφn n =∙ 光线从第一层进入第二层时,同样可得1201c o s c o s φφn n =∙ 综合以上分析可得:K K n n n n φφφφc o s c o s c o s c o s 221100∙====∙ 因为0025.00⨯-=K n n K ,所以K φcos 随着K 的增大而增大,K φ则随着K 的增大而减小,即光线在顺序变化的介质中传播时将偏向折射率变大的方向。