实数培优训练含答案
七年级初一数学数学第六章实数的专项培优练习题(及答案
七年级初一数学数学第六章实数的专项培优练习题(及答案一、选择题1.下列说法错误的是( )A.是16的平方根 C.丄的平方根是丄D.履=516 42. 有四个有理数1, 2, 3, -5,把它们平均分成两组,假设1, 3分为一组,2, -5分为另一组,规泄:A=|l+3| + |2-5|,已知,数轴上原点右侧从左到右有两个有理数m 、 n,再取这两个数的相反数,那么,所有&的和为()A.4m B. 4m+4门 C. 4门 D. 4m - 4n 3. 已知Jx-2 + Jy+8=0,则x + y 的值为()8.如图,若实数J7+1,则数轴上表示m 的点应落在( )r # G * 0「… -4 -3-2-1012345 A.线段上B.线段BC 上C.线段CD 上9.若\a\ = 4 ,丽=3,且a 十b<0,则a-b 的值是() A. 1.或 7 B.或 7C. 1 或-710・2的平方根为()B.皿的算术平方根是2 A. 10B ・-104. 在下列结论中,正确的是()・C.平方根是它本身的数为0, ±1 5. 下列计算正确的是()C. -6D.不能确定B. x2的算术平方根是XD. 屈的立方根是2C ・百=±2D. (_1)6.下列说法中:①0是最小的整数:②有理数不是正数就是负数:®- |不仅是有理数,而且是分数:④〒是无限不循环小数.所以不是有理数:⑤无限小数不一左都是有理 数:⑥正数中没有最小的数,负数中没有最大的数:⑦非负数就是正数:⑧正整数、负整 数、正分数.负分数统称为有理数:其中错误的说法的个数为(A. 7个 B ・6个C. 5个)D. 4个7._____ /\2O12已知如y 为实数且H+1I+J 戸=0,则- \y )的值为(A. 0B. 1 D. 2012D ・线段DE 上D.或-7A・4 B. ±4c・V2 D・±^2二填空题11.如图,按照程序图计算,当输入正整数X时,输出的结果是161,则输入的工的值可能是 ___________ .是—A输出结果&+b+ I 爲—I〉I12・用“☆〃左义一种新运算:对于任意有理数a和b,规立aWfb ・『A_3 + 2 + |-3_2|例如:卜3)承2二------- ! ------ =2・2从・8 , - 7 f -6, - 5 f・4, - 3 # -2, -1,0,1,2,3M, 5,6^, 8,中任选两个有理数做a , b(a^b)的值,并计算a^b,那么所有运算结果中的最大值是 _________________________ •13.已知M是满足不等式—y/3<a<>/6的所有整数的和,N是满足不等式二的最大整数,则M + N的平方根为____________ .14.某校数学课外小组利用数轴为学校门口的一条马路设汁植树方案如下:第斤棵树种植£-1 £-2在点无处「其中^=1 ,当k>2时,^=^1+T(—)-7(—f T@)表示非负实J数。
浙教版七上数学第三章:实数培优训练试题(附答案)
浙教版七上数学第三章:实数培优训练试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.一个正数的算术平方根是8,则这个数的相反数的立方根是( )A .4B .-4C .±4D .±8 2.16的平方根为( )A. 4±B. 4C. 2D. 2± 3.一个正方形的面积是15,估计它的边长大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间 4.下列说法中不正确的是( ) ①.-1的立方根是-1,-1的平方是1;②.两个有理数之间必定存在着无数个无理数,③.在1和2之间的有理数有无数个,但无理数却没有;④.如果x 2=6,则x 一定不是有理数 A.②③ B.①④ C.③ D.③④ 5.如果b a ,表示两个实数,那么下列式子正确的是( )A .若b a =,则b a =B .若b a <,则22b a <C .若33b a =,则b a =D .若b a >,则33b a >6.如果642=x ,那么=3x ( )A. 4±B. 2±C.2D. 2-7.一个正奇数的算术平方根是a ,那么与这个正奇数相邻的下一个正奇数的算术平方根是( ) A .2+aB .22+a C.22+aD .2+±a8.已知35.703.54=,则005403.0的算术平方根是( ) A .0.735B .0.0735C .0.00735D .0.0007359.已知实数139-的整数部分为a ,小数部分为b ,则=-b a 32( )A. 39343-B.3937-C.39343+D.3937+10.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2018次后,数轴上数2018所对应的点是( )A .点CB .点DC .点AD .点B二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.已知一个正数的两个平方根分别为62-m 和m +3,则()2018m -的值为_________12.如果15=3.873,5.1=1.225,那么______00015.0= 13.在一次数字竞猜游戏中,大屏幕上出现的一列有规律的数是,21,52,103,174,265,376,507…则第100个数为14.按如图所示的程序计算:若开始输入的x 值为64时,输出的y 值是_______15.如图所示的方格中,每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是_______________16.在草稿纸上计算:①31;②3321+;③333321++;④33334321+++......观察你计算的结果,用你发现的规律直接写出下面式子的值:________2018...432133333=+++++三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)计算下列各式:(1)()()()33332312521442--⎪⎭⎫⎝⎛-⨯-+-⨯-(2)()()[]3233253831512812116912-⨯++⨯⎪⎭⎫⎝⎛-÷+-⨯-18(本题8分)请将图中数轴上的各点与下列实数对应起来,并把它们按从小到大的顺序排列,用“<”连接:0.3,3-,2,3.14,π-,0,27.19.(本题8分)已知实数a ,b ,c 在数轴上的对应点如图所示,化简:()()233c a c b b a --+--.20(本题10分)如图1.纸上有5个边长为1的小正方形组成的纸片,可把它剪拼成一个正方形(图2)(图3)(1)拼成的正方体的面积与边长分别是多少?(2)你能把这十个小正方体组成的图形纸(图3),剪拼成一个大正方形吗?若能,则请画出剪拼成的大正方形,并求出其边长为多少?21(本题10分).若实数a ,b ,c 在数轴上所对应点分别为A ,B ,C ,a 为2的算术平方根,b=3,C 点是A 点关于B 点的对称点, (1)求C 点所对应的数;(2)a 的整数部分为x ,c 的小数部分为y ,求2x 3+2y 的值.22(本题12分)(1)已知43=x ,且()212+-z y 与3-z 互为相反数,求333z y x ++的值.(2)现用篱笆材料在空地上围成一个绿化场地,使面积为48 m 2,现有两种设计方案:一种是围成正方形场地;另一种是围成圆形场地,试问选用哪一种方案围成的场地所需的材料少,并说明理由.(π取3)23(本题12分)有一台单一功能的计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x 1,只显示不运算,接着再输入整数x 2后则显示|x 1﹣x 2|的结果,比如依次输入1,2,则输出的结果是|1﹣2|=1.此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.(1)若小明依次输入3,4,5,则最后输出的结果是(2)若小明将1到2018这2018个整数随意地一个一个地输入,全部输入完毕后显示的最后结果设为m ,求m 的最大值试题答案一.选择题:1.答案:B解析:∵一个正数的算术平方根是8,∴这个正数为64, ∴64的相反数的立方根为4643-=-,故选择B2.答案:D解析:∵416=,∴16的平方根为2±,故选择D3.答案:B解析:∵正方形的面积是15,∴边长为15, ∵4153<<,故选择B4.答案:C解析:∵-1的立方根是-1,-1的平方是1,故①正确; ∵两个有理数之间必定存在着无数个无理数,故②正确;∵在1和2之间的有理数有无数个,无理数也有无数个,故③错误; ∵x 2=6,∴x 一定不是有理数,故④正确,故选择C5.答案:D解析:如果b a =,则a 不一定等于b ,故A 选项错误; 如果b a <,例如1,5=-=b a 时,22b a >,故B 选项错误; 如果33b a =,当b a ,为负数时,负数没有平方根,故C 选项错误; 若b a >,则33b a >,故D 选项正确,故选择D6.答案:B解析:∵642=x ,∴8±=x ,∴283±=±,故选择B7.答案:C解析:∵一个正奇数的算术平方根是a ,∴这个正奇数是2a , ∴与这个正奇数相邻的下一个正奇数为22+a , ∴算术平方根是22+a ,故选择C8.答案:B解析:∵35.703.54=,∴0735.0005403.0= 故选择B9.答案:A 解析:∵61395<-<,∴639,5-==b a ,∴()39343183932563932532-=+-=--=-b a故选择A10.答案:D解析:当正方形在转动第一周的过程中,1所对应的点是A ,2所对应的点是B ,3所对应的点是C ,4所对应的点是D , ∴四次一循环, ∵2018÷4=504…2, ∴2018所对应的点是B . 故选:D .二.填空题:11.答案:1解析:∵一个正数的两个平方根分别为62-m 和m +3, ∴0362=++-m m ,解得:1=m ,∴()()1120182018=-=-m12.答案:01225.0解析:∵15=3.873,5.1=1.225,∴01225.000015.0=13.答案:10001100解析:∵111212+=,122522+=,1331032+=,1441742+=,…∴第100个数为1000110011001002=+14.答案:2解析:输入64,取算术平方根为8,是有理数,取立方根为2,是有理数,取算术平方根为2, 是无理数,输出2,15.答案:6 解析:∵624222122212=+=⨯⨯+⨯⨯⨯=阴影S , ∴把阴影部分剪拼成一个正方形的边长为616.答案:2036162解析:∵113=,32133=+,6321333=++,1043213333=+++,......∴20361622201920182018...43212018...432133333=⨯=+++++=+++++三.解答题:17.解析:(1)原式25352132581448-=++-=+⨯+⨯-=(2)原式=()()13601352829182141318-=-+=⨯-+⨯⨯+-⨯-18.解:各实数对应数轴上的点为:A :π-, B :3-, C :0, D :0.3, E :2, F :3.14, G :27, 从小到大排列为:π-<3-<0<0.3<2<3.14<2719.解析:根据数轴上点的位置得:a <b <0<c ,且|b|<|c|, ∴b+c >0,a ﹣c <0,则原式=a ﹣b ﹣b ﹣c+a ﹣c=2a ﹣2b ﹣2c .20.解析:(1)由图2得,正方形的面积为5,边长为5; (2)能,如图4所示:∵正方形的面积为10,∴边长为1021.解析:(1)设点A 关于点B 的对称点为点C , 则322=+m,解得26-=m ; 故C 点所对应的数为:26-;(2)∵1<2<2,∴a 的整数部分为x=1,4<26-<5,所以26-的整数部分是4,小数部分y=6﹣2﹣4=2﹣2, ∴2x 3+2y=2×13+2×(2﹣2)=6﹣22.22.解析:(1)∵43=x ,∴64=x ,∵()212+-z y 与3-z 互为相反数,∴()212+-z y 03=-+z∴⎩⎨⎧=-=+-03012z z y 解得:⎩⎨⎧==35z y∴6216271256433333==++=++z y x(2)方案1:设正方形的边长为x m ,则482=x ,解得,48±=x∵48-=x 不符合题意,舍去.∴正方形周长为484m .方案2:设圆的半径为x m ,则482=x π,解得4±=x ,4-=x 不符合题意,舍去.∴圆周长为8π≈24(m ),又∵24<484,故选用方案2围成圆形场地所需的篱笆材料较少.23.解析:(1)根据题意可以得出:||3﹣4|﹣5|=|1﹣5|=4; 故答案为:4.(2)对于任意两个正整数x 1,x 2,|x 1﹣x 2|一定不超过x 1和x 2中较大的一个,对于任意三个正整数x 1,x 2,x 3,||x 1﹣x 2|﹣x 3|一定不超过x 1,x 2和x 3中最大的一个,以此类推,设小明输入的n 个数的顺序为x 1,x 2,…x n ,则m=|||…|x 1﹣x 2|﹣x 3|﹣…|﹣x n |, m 一定不超过x 1,x 2,…x n ,中的最大数,所以0≤m ≤n ,易知m 与1+2+…+n 的奇偶性相同; 1,2,3可以通过这种方式得到0:||3﹣2|﹣1|=0;任意四个连续的正整数可以通过这种方式得到0:|||a ﹣(a+1)|﹣(a+3)|﹣(a+2)|=0(*);下面根据前面分析的奇偶性进行构造,其中k为非负整数,连续四个正整数结合指的是按(*)式结构计算.当n=4k时,1+2+…+n为偶数,则m为偶数,连续四个正整数结合可得到0,则最小值为0,前三个结合得到0,接下来连续四个结合得到0,仅剩下n,则最大值为n;当n=4k+1时,1+2+…+n为奇数,则m为奇数,除1外,连续四个正整数结合得到0,则最小值为1,从1开始连续四个正整数结合得到0,仅剩下n,则最大值为n;当n=4k+2时,1+2+…+n为奇数,则m为奇数,从1开始连续四个正整数结合得到0,仅剩下n和n ﹣1,则最小值为1,从2开始连续四个正整数结合得到0,仅剩下1和n,最大值为n﹣1;当n=4k+3时,1+2+…+n为偶数,则m为偶数,前三个结合得到0,接下来连续四个正整数结合得到0,则最小值为0,从3开始连续四个正整数结合得到0,仅剩下1,2和n,则最大值为n﹣1.∴当n=2018时,m的最大值为2017,最小值为0,故答案为:2017.。
初中数学数学第六章 实数的专项培优练习题(含答案
初中数学数学第六章 实数的专项培优练习题(含答案一、选择题1.在有理数中,一个数的立方等于这个数本身,这种数的个数为( )A .1B .2C .3D .42.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边 3.现定义一种新运算:a ★b=ab+a-b ,如:1★3=1×3+1-3=1,那么(-2)★5的值为( ) A .17B .3C .13D .-17 4.280x y -+=,则x y +的值为( ) A .10 B .-10 C .-6 D .不能确定5.下列各组数中,互为相反数的是( )A .22B .2-与12-C .()23-与23-D 38-38-6.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个7.设n 为正整数,且n 65n+1,则n 的值为( ) A .5 B .6 C .7D .8 8.下列命题中,是真命题的有( )①两条直线被第三条直线所截,同位角的角平分线互相平行;②立方根等于它本身的数只有0;③两条边分别平行的两个角相等;④互为邻补角的两个角的平分线互相垂直A .4个B .3个C .2个D .1个9.下列各数中3.145,0.1010010001…,﹣17,2π38有理数的个数有( ) A .1个 B .2个 C .3个 D .4个10.下列运算正确的是( ) A 42=± B 222()-=- C 382-=-D .|2|2--= 二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.64的立方根是___________. 13.a 是10的整数部分,b 的立方根为-2,则a+b 的值为________.14.估计512-与0.5的大小关系是:512-_____0.5.(填“>”、“=”、“<”) 15.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___16.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.17.31.35 1.105≈3135 5.130≈30.000135-≈________.18.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.19.若x <0323x x ____________.20.若x 、y 分别是811-2x -y 的值为________.三、解答题21.观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为 ,又由203<19000<303,猜想19683的立方根十位数为 ,验证得19683的立方根是(2)请你根据(1)中小明的方法,猜想 ; .请选择其中一个立方根写出猜想、验证过程。
《实数》单元培优测试卷(含答案)
第六章实数(满分:150分时间:120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1【】A.±3B.C.3D2.下列说法中正确的是…………………………………………………………………【】A.任何数都有平方根B.-4的平方根是±2C.1的算术平方根是±1D.平方根和算术平方根都为本身的数是03.下列四个说法:①0没有算术平方根;②-18的立方根是-12;-64没有立方根;互为相反数的两个数的立方根也互为相反数.其中正确的是……………………………【】A. ①③B. ②④C. ①②D. ③④4.立方根为本身的数有…………………………………………………………………【】A.1个B.2个C.3个D.4个5.下列说法正确的是……………………………………………………………………【】A.无理数是带根号的数B.无理数是开方开不尽的数C.无理数是无限不循环小数D.π既是有理数也是无理数6的整数部分与小数部分的差是…………………………………………………【】A.2B. 2C-1 D.17.如图,在数轴上点P表示的数可能为………………………………………………【】A B C D8.x的值是……………………………………………………【】A. -1B.0C.12D.-129.若a,b均为正整数,且a,b则a+b的最小值是………………………【】A.1B.2C.3D.410.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,….若m3“分裂”后,其中有一个奇数是2013,则m的值是…………………………………………………………………………【】A.43B.44C.45D.55二、填空题(本大题共4小题,每小题5分,满分20分)11.1,2,3,…,100这100个自然数的算术平方根与立方根中,无理数的个数有______________.12.1=1,则a的取值范围是_____________________.13.设[x)表示大于x的最小整数,如[3)=4,[-1.2)=-1,则下列结论中正确的是_______________(填写所有正确结论的序号).①[0)=0. ②[x)-x的最小值是0.③[x)-x的最大值是0. ④存在实数x,使[x)-x=0.5成立.14.请你规定一种合适任意非零实数a,b的新运算“a□b”,使得下列算式成立:1□2=2□1=3,(-3)□(-4)=(-4)□(-3)=-76,(-3)□5=5□(-3)=-415,….你规定的新运算a□b=____________(用a,b的一个代数式表示).三、(本大题共两小题,每小题8分,满分16分)15.求下列各式中x的值:(1)(2x-5)2=64;(2)3(x-1)3+19=0.16.计算:(-2)21.四、(本大题共两小题,每小题8分,满分16分)17.把下列各数填入相应的括号内:-5, 0.23, 12, 0, , π, 0.1010010001…(相邻两个1之间依次多一个0).(1)负数: { …};(2)有理数: { …};(3)无理数: { …};(4)非负实数:{ …}.18.已知m 的两个平方根是方程3x +2y =1的一组解,求-(-m )3的立方根.五、(本大题共两小题,每小题10分,满分20分)19.0.20. 要比较两个无理数的大小,在不借助计算器的情况下,有一种简便的估算方法:先找出一个中间量分别与要比较的两个数作比较,再利用“若a >b ,b >c ,则a >c ”这一性质比较大小.请根据这种思路,比较与的大小.六、(本题满分12分)21.请在如图所示的3×3的网格中画出一个边长为无理数的格点正方形,并求出它的边长和面积.七、(本题满分12分)22.如图,在一个正方形纸板的四个角剪下同样大小的四个小正方形纸板.(1)若剩下的纸板恰好能折叠成一个无盖的正方体纸盒,如图①,且大正方形纸板的边长为2cm,请你求出正方体纸盒的体积;(2)如图②,若剩下的纸板折叠成一个无盖的长方体纸盒,而剪下的四个小正方形纸板正好拼成一个大正方形纸板作为长方体纸盒的盖.若长方体纸盒的体积是108cm3,求原大正方形纸板的边长.图①图②八、(本题满分14分)23.观察下列一组数:,….(1)写出第5个数,第2015个数;(2)写出第n个数;(3与.并猜想这一组数的大小规律.参考答案18. -(-m )3的立方根是1. 19. 3()x y --=-1.20.∵17>16=4,364=4>362,∴17>362.21.答案不唯一,如:,边长为5,面积为5.。
第六章实数培优资料带答案
第六章实数培优训练班级:姓名:1.在实数,,中,分数的个数是.2.若√x−13=x-1,则x= ;若一个数的算术平方根等于它的立方根,则这个数是 .3.﹣8的立方根与的平方根之和是.4.已知一个正数的两个平方根分别为3x-5和x-7,则这个正数为 .5.若2m﹣4与3m﹣1是同一个数的平方根,则m为.6.已知a为实数,若√−(2a−4)2有意义,则a= .8.若代数式√xx−1有意义,则实数x的取值范围是 .9.若式子√1−x有意义,则化简√(x−1)2−√(2−x)2= .10.当x= 时,√2x+7+6有最小值,最小值为.11.已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是 .12.是整数,则正整数n的最小值为;若√200a3是一个整数,那么最大的负整数a等于 .13.若√(a−1)2=1−a,则a的取值范围为;若m+√m−8=8,则m= .14.已知5+√11的小数部分为m,5-√11的小数部分为n,则m+n= .15.对于X,Y定义一种新的运算*:X*Y=aX+bY,其中a,b为常数,等式右边是通常的加法和乘法.若b=8成立,则1*3= .16.设a、h为正数,已知(a+ℎ2a)2=a2+h+(ℎ2a)2,当ℎa很小(此处约定ℎa<0.1)时,(ℎ2a )2≈0,所以(a+ ℎ2a)2≈a2+h,于是√a2+ℎ≈a+ ℎ2a(*).利用公式(*)可求某些数的平方根的近似值.如√10005=√1002+5≈100+ 52×100=100.025.计算√32409的近似值为 .17.设[x)表示大于x 的最小整数,如[3)=4,[-1.2)=-1,则下列结论中正确的是 . ①[)00=;②[)x x -的最小值是0;③[)x x -的最大值是0;④存在实数x ,使[)5.0=-x x 成立.18.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:3=,=3.(1)仿照以上方法计算:= .= .(2)若1=,写出满足题意的x 的整数值 .如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次3=→=1,这时候结果为1.(3)对100连续求根整数, 次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是 . 19.设a ,b 都是有理数,规定a*b=√a +√b 3,求(4*8)*[25*(—64)]的值.20. 我们知道,无限循环小数都可以转化为分数.例如,将0..3.转化为分数时,可设0..3=x ,则x =0.3+ 110x ,解得x =13,即0..3=13.仿此方法,将..0.45化成分数.1.1;2.0或1或2、0或1;3.1或-5;4.16;5.1或-3;6.27.√13-6;8.x≥0且x≠1;9.-1;10.6;11.√a2+1;12.5、-5;13.a≤1、8;14.1;15.11;16.180.025;17.④;18.(1)2、5;(2)1,2,3;(3)3;(4)255;19.3;20.511。
(完整版)新人教版七年级数学下册《实数》培优测试卷及答案
新人教版七年级《实数》培优测试卷、选择题(每小题 3分,共33分) 1、若x 是9的算术平方根,则 x 是( )A 、3B 、一 3C 、92、下列说法不正确的是( )A 、1_的平方根是1255C 、0.2的算术平方根是 0.043、若4a 的算术平方根有意义,则 a 的取值范围是()4、在下列各式中正确的是()A 、J ( 2)2 = - 2B 、百=3C 、716=8 5、估计V76的值在哪两个整数之间()C 、7 和 8D 、8和 96、下列各组数中,互为相反数的组是()------ 2Q1 , , 一A 、一2与也 2)2B 、一2 和3/ 8 C 、一一与 2D 、1 — 21 和 227、在一2, J4,五,3.14,3:—27,—,这6个数中,无理数共有( )8、计算 卜’27| | J T6] <4 V8的值是()。
A 、1B 、± 1C9、以下不能构成三角形边长的数组是()A 、1, J 5, 2B 、 73, V 4, V 5C 、3, 4, 510、若有理数a 和b 在数轴上所表示的点分别在原点的右边和左边,则Vb2 — | a-b|等于(A 、aB 、- aC 、2b+a11已知(a 3)2b 4 0,则齿_的值是()。
bA 、1B 、—工C 、辿 DA 、一切数B 、正数C 、非负数D 、非零数D 、81B 、- 9是81的一个平方根 D 、一27的立方根是一3D 、2 22=2A 、75 和 77A 、4个B 、3个C 、2个D 、1个D 、32, 42, 52D 、2b —a4 4 4二、填空题(每小题4分,共3 2分)12、81的平方根是 ,。
两 的平方根是 , 3164的立方根是 13已知一个正数x 的两个平方根是 a 1和a 3,则2=, x=.14、比较大小:2H 4 J2。
若 <25.36 =5.036, J253.6 = 15.906,则 J 253600 = 15、若J10的整数部分为a,小数部分为 b,则a=, b = 16 若m n 互为相反数,则 m J 5 n =。
北师大版数学八上第1、2章实数培优练习(含答案)
八年级上册第一、二章培优题一、填空题1、(1)81的算术平方根是 ,平方根是 。
(2)平方根等于本身的数是 。
(3)已知322=-a ,则a= 。
2)32(-= 。
(4)某正数的两个平方根之差为8,则这个正数是 。
(5)4的立方根是 。
-8的立方根是 。
64-的立方根是 。
2、直角三角形的面积为2,斜边为4,则这个直角三角形的周长是 。
3、已知数轴上点A 表示的数是2-,点B 表示的数是1,那么数轴上到点A 、点B 的距离相等的点C 表示的数是 。
4、已知a 为实数,则代数式21-+-+a a a 的最小值是 。
5、如图:在△ABC 中,∠BAC=90°,AB=AC=7cm ,点F 在边AC 上,且AF=3 cm ,过点F 作DF ⊥BC 于点D ,交BA 的延长线于点E ,则△AEF 与△CFD 的周长之和 cm 。
(结果保留根号)。
6、观察下列各等式:(1)33722722⨯=+ ; (2)3326332633⨯=+; (3)3363446344⨯=+; (4)331245512455⨯=+; ……, 根据你找到的规律写出第5个等式: 。
二、选择题1、大于-25,且不大于32的整数的个数是( )A. 9B. 8C. 7D. 52、小明同学估算一个无理数的大小时,不慎将墨水瓶打翻,现只知道被开方数是260,估算的结果约等于6或7,则根指数应为( )A. 2B. 3C. 4D. 5 3、下列几种说法:(1)无理数都是无限小数;(2)带根号的数是无理数;(3)实数分为正实数和负实数;(4)无理数包括正无理数、零和负无理数。
其中正确的有( ) A.(1)(2)(3)(4) B.(2)(3) C.(1)(4) D. 只有(1) 4、下列四个命题中,正确的是( )A. 数轴上任意一点都表示唯一的一个有理数B. 数轴上任意一点都表示唯一的一个无理数C. 两个无理数之和一定是无理数D. 数轴上任意两个点之间还有无数个点 5、a ,b 的位置如图,则下列各式有意义的是( )A. b a +B. b a -C. abD. a b - 6、△ABC 中,∠A:∠B:∠C=1:2:3,则BC:AC:AB 为( ) A. 1:2:3 B. 1:2:3 C. 1:3:2 D. 3:1:2 三、计算题 (1)12+271-31 (2)5352045-+(3)1(312248)233-+÷ (4)20)21()23(36318-+-++-A第5题 BD FE四、解答题1、在数轴上作出-8所表示的点A 。
实数的混合运算(培优)含答案
2017.10.08实数1、一组按一定规律排列的式子如下:2a -,52a ,83a -,114a ,…,(0)a ≠,则第n 个式子是________。
2、已知数a ,b ,c 在数轴上的位置如图所示,化简|2||2|a b c b +--的结果是________。
答案:a+c3、观察下面一列数,1,2,3,4,5,6,7----将这列数排成下列形式,按照上述规律排下去,那么第11行从左边第7个数是_____________。
答案:-1074、下列说法错误的是( )A 28是的立方根B 464±是的立方根C 1139-是的平方根 D 4256是的算术平方根 答案:B 52(8)-的立方根是( ) A 、-2 B 、2± C 、4 D 、4± 答案:C6b a -是的立方根,那么下面结论正确的是( )A b a --也是 的立方根B 、b a 是 的立方根C b a -也是 的立方根D b a ±都是 的立方根答案:C7、点A 、B 3-、12-在数轴上对应的点,把线段AB 沿数轴向右移动到A'B',且线段A'B'的中点对应的数是3,则点A'对应的数是( )A 、0B 12C 、314D 144答案:C8、已知1101101,,,,mn m n m n n m n n m<->->>+++且那么的大小关系是( ) A 、11m n n n m <<+< B 、11m n n m n <+<< C 、11n m n m n +<<< D 、11m n n m n<+<<9、16的算术平方根是_____________,327的平方根是_____________。
10、已知一个正数x 的平方根是3225a a +-与,则a =_______,x 的立方根为_______。
北京101中学七年级数学下册第六单元《实数》经典练习(培优)
一、选择题1.在实数:20192020,π2π,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),52- ) A .4B .5C .6D .7A 解析:A【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:20192020,52-2332,是整数,属于有理数;0.36是有限小数,属于有理数;无理数有:π2π,0.3737737773…(相邻两个3之间7的个数逐次加1)共4个.故选:A .【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.有下列说法:①在1和2②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②D解析:D【分析】根据无理数的定义与运算、实数与数轴逐个判断即可得.【详解】①在1和2之间的无理数有无限个,此说法错误;②实数与数轴上的点一一对应,此说法正确;③两个无理数的积不一定是无理数,如2=-,此说法错误; ④2π是无理数,不是分数,此说法错误; 综上,说法正确的为②,故选:D .【点睛】本题考查了无理数的定义与运算、实数与数轴,熟练掌握运算法则和定义是解题关键. 3.下列说法中,正确的是( )A .正数的算术平方根一定是正数B .如果a 表示一个实数,那么-a 一定是负数C .和数轴上的点一一对应的数是有理数D .1的平方根是1A 解析:A【分析】根据算术平方根、实数与数轴上的点是一一对应关系、实数、平方根,即可解答.【详解】A 、正数的算术平方根一定是正数,故选项正确;B 、如果a 表示一个实数,那么-a 不一定是负数,例如a=0,故选项错误;C 、和数轴上的点一一对应的数是实数,故选项错误;D 、1的平方根是±1,故选项错误;故选:A .【点睛】本题主要考查了实数,实数与数轴,解决本题的关键是熟记实数的有关性质.4.在一列数:1a ,2a ,3a ,…,n a 中,1=7a ,2=1a 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这列数中的第2020个数是( )A .1B .3C .7D .9C 解析:C【分析】根据题意可以写出这列数的前几个数,从而可以发现数字的变化特点,进而可以得到这一列数中的第2020个数.【详解】解:由题意可得:a 1=7,a 2=1,a 3=7,a 4=7,a 5=9,a 6=3,a 7=7,a 8=1,…,∵2020÷6=336…4,∴这一列数中的第2020个数是7.故选:C .【点睛】本题考查数字的变化类、尾数特征,解答本题的关键是明确题意,发现数字的变化的特点,求出相应的数据.5.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ B解析:B【分析】根据是数的运算,A 点表示的数加两个圆周,可得B 点,根据数轴上的点与实数一一对应,可得B 点表示的数.【详解】解:A 点表示的数加两个圆周,可得B 点,所以,21π-,故选:B .【点睛】本题考查了实数与数轴,直径为1个单位长度的圆从A 点沿数轴向右滚动,A 点表示的数加两个圆周.6.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间B解析:B【分析】借助O 、A 、B 、C 的位置以及绝对值的定义解答即可.【详解】解:-5<c<0,b=5,|d ﹣5|=|d ﹣c |∴BD=CD ,∴D 点介于O 、B 之间.故答案为B .【点睛】本题考查了实数、绝对值和数轴等相关知识,掌握实数和数轴上的点一一对应是解答本题的关键.7.下列实数中,属于无理数的是( )A .3.14B .227C .4D .πD 解析:D 【分析】 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、3.14是小数,是有理数,故A 选项错误;B 、227是有限小数,是有理数,故B 选项错误; C 、4=2是整数,是有理数,故C 选项错误.D 、π是无理数,故D 选项正确故选:D .【点睛】本题考查了无理数的定义,无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.若1a >,则a ,a -,1a 的大小关系正确的是( ) A .1a a a >->B .1a a a >->C .1a a a >>-D .1a a a ->> C 解析:C【分析】可以用取特殊值的方法,因为a >1,所以可设a=2,然后分别计算|a|,-a ,1a ,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a =, ∵2>12>-2, ∴|a|>1a>-a ; 故选:C .【点睛】 此类问题运用取特殊值的方法做比较简单.9.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±9C解析:C【分析】 根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x -=,∴29x =,∵2(39)±=,∴3x =±,故选:C.【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键.10.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π;C ,π;D .0.1010101……101,π解析:C【分析】根据无理数的定义,依次判断即可.【详解】解:A. 0.07,23是有理数,故该选项错误; B .0.7 是有理数,故该选项错误;C ,π都是无理数,故该选项正确;D .0.1010101……101是有理数,故该选项错误.故选:C .【点睛】本题主要考查了无理数的定义.其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题11.计算:(1)132322⎛⎫⨯-⨯- ⎪⎝⎭(2)2291|11232⎛⎫-+-⨯- ⎪⎝⎭(1);(2)-7+【分析】(1)直接利用有理数混合运算法则计算得出答案;(2)原式先计算乘方再计算乘法运算进而算加减运算即可求出值【详解】(1)原式=6-3×=6-=;(2)原式=-1+-1-×=解析:(1)32;(2). 【分析】 (1)直接利用有理数混合运算法则计算得出答案;(2)原式先计算乘方,再计算乘法运算,进而算加减运算即可求出值.【详解】(1)原式=6-3×32=6-92=32;(2)原式=-1-23×152. 【点睛】本题主要考查了有理数和实数的混合运算,正确掌握运算法则是解题关键.12.求下列各式中x 的值:(1)()214x -=;(2)3381x =-.(1)x=3或x=-1;(2)x=-3【分析】(1)利用直接开平方法求解即可;(2)利用立方根的定义求解即可【详解】(1)直接开平方得:解得:(2)两边同时除以3得:开立方得:【点睛】本题考查了平方解析:(1)x=3或x=-1;(2)x=-3.【分析】(1)利用直接开平方法求解即可;(2)利用立方根的定义求解即可.【详解】(1)()214x -=直接开平方得:12x -=±,解得:13x =,21x =-(2)3381x =-两边同时除以3得:327x =-,开立方得:3x =-.【点睛】本题考查了平方根和立方根的性质,解题的关键是利用平方根和立方根的性质求解方程. 13.对于有理数,a b ,我们规定*a b b ab =-(1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.(1)3;(2)【分析】(1)由新定义的运算法则进行计算即可得到答案;(2)由新定义列出方程解方程即可得到答案【详解】解:∵∴;(2)由题意则∵∴解得:【点睛】本题考查了一元一次方程新定义的运算法则解析:(1)3;(2)1x =.【分析】(1)由新定义的运算法则进行计算,即可得到答案;(2)由新定义列出方程,解方程即可得到答案.【详解】解:∵*a b b ab =-,∴(2)*11(2)1123-=--⨯=+=;(2)由题意,则∵(2)*36x -=,∴(2)*333(2)6x x -=--=,解得:1x =.【点睛】本题考查了一元一次方程,新定义的运算法则,解题的关键是掌握运算法则进行解题.14.比较大小:12π-________1【分析】利用估值比较法再利用不等式的性质3不等式两边都乘以-1不等式方向改变最后利用不等式性质1不等式两边都加1不等号方向不变即可确定大小【详解】∵∴∴∴故答案为:【点睛】本题考查无理数的比较大小问解析:<【分析】利用估值比较法322π>>,再利用不等式的性质3,不等式两边都乘以-1,不等式方向改变2π-<,最后利用不等式性质1,不等式两边都加1,不等号方向不变即可确定大小. 【详解】∵322π>32<,∴2π>,∴2π-<, ∴12π-<1. 故答案为:<.【点睛】本题考查无理数的比较大小问题,掌握不等式的性质,会用不等式的性质比较大小,用估值法比较大小是解题关键.15.若|2|0a -=,则a b +=_________.5【分析】根据非负数的性质列式求出ab 的值然后相加即可【详解】解:根据题意得解得∴故答案为:5【点睛】本题考查了非负数的性质:有限个非负数的和为零那么每一个加数也必为零解析:5【分析】根据非负数的性质列式求出a 、b 的值,然后相加即可.【详解】解:根据题意得,20a -=,30b -=,解得2a =,3b =,∴235a b +=+=.故答案为:5.【点睛】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.16.若a ,b 的整数部分和小数部分,则a-b 的值为__.【分析】先估算出的整数部分再用减去整数部分得出小数部分从而确定出a 和b 的值然后代入要求的式子进行计算即可得出答案【详解】解:的整数部分是3即的小数部分是即故答案为:【点睛】本题考查了估算无理数大小的解析:6【分析】减去整数部分得出小数部分,从而确定出a 和b 的值,然后代入要求的式子进行计算即可得出答案.【详解】 解:3114<<, ∴的整数部分是3,即3a =, ∴3-,即3b =,33)6a b ∴-=-=-.故答案为:6【点睛】本题考查了估算无理数大小的知识,难度不大,解题的关键是找到3<4. 17.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.(1)8888;(2)1134【分析】(1)根据进步数的定义分别求出四位正整数中的最大进步数与最小进步数即可得解;(2)根据进步数的定义可以推得所求数为1114112411341144中的某一个再根解析:(1)8888;(2)1134 .【分析】(1)根据进步数的定义分别求出四位正整数中的最大“进步数”与最小“进步数”即可得解;(2)根据进步数的定义可以推得所求数为1114、1124、1134、1144中的某一个,再根据这个四位正整数能被7整除逐一对4个数进行验证可以得解.【详解】解:(1)由进步数的定义可知四位正整数中最大的“进步数”应该是9999,又最高位不能为0,所以四位正整数中的千位最小为0,所以四位正整数中最小的“进步数”应该是1111,∴9999-1111=8888,∴四位正整数中的最大的“进步数”与最小的“进步数”的差为8888;(2)由已知可得所求数的千位为1,十位为1-4中的某个数字,∴所求数为1114、1124、1134、1144中的某一个,∵这个四位正整数能被7整除,∴由1114=159×7+1,1124=160×7+4,1134=162×7,1144=163×7+3可知所求数为1134 .【点睛】本题考查新定义下的实数规律探索,由材料归纳出新定义并应用于具体问题求解是解题关键.18.(12;(2)求 (x-1)2-36=0中x的值.(1);(2)x的值为7或﹣5【分析】(1)分别进行算术平方根运算立方根运算算术平方根的定义即可解答;(2)利用平方根解方程的方法求解即可【详解】解:(1)=4﹣﹣3=1﹣=;(2)(x-1)2-3解析:(1)12;(2)x的值为7或﹣5【分析】(1)分别进行算术平方根运算、立方根运算、算术平方根的定义即可解答;(2)利用平方根解方程的方法求解即可.【详解】解:(12=4﹣12﹣3=1﹣12 =12; (2)(x -1)2-36=0,移项得:(x -1)2=36,开平方得:x -1=±6,解得:x 1=7,x 2=﹣5,即(x -1)2-36=0中的x 值为7或﹣5.【点睛】本题考查算术平方根、立方根、利用平方根解方程,熟练掌握运算法则,会运用平方根解方程是解答的关键.19.若3109,b a =-且b 的算术平方根为4,则a =__________.5【分析】先求出b=16再代入根据立方根的定义即可解答【详解】解:∵的算术平方根为∴b=16∴∴∴a=5故答案为5【点睛】本题考查算术平方根的定义和立方根的定义熟知定义是解题关键解析:5【分析】先求出b=16,再代入3109b a =-,根据立方根的定义即可解答.【详解】解:∵b 的算术平方根为4,∴b=16,∴316109a =-,∴3125a =,∴a =5.故答案为5.【点睛】本题考查算术平方根的定义和立方根的定义,熟知定义是解题关键.20.已知3y =,则y x 的平方根是____.±3【分析】根据二次根式的非负性和平方根的定义即可求出【详解】∵二次根式的被开方数是非负数∴且∴∴y=3∴yx=32=9∴yx 的平方根是±3故答案是:±3【点睛】本题主要考查了二次根式非负性和平方根解析:±3【分析】根据二次根式的非负性和平方根的定义即可求出.【详解】∵二次根式的被开方数是非负数∴20x -≥且20x -≥∴=2x∴y=3∴y x =32=9∴y x 的平方根是±3故答案是:±3.【点睛】本题主要考查了二次根式非负性和平方根知识点,准确理解记住它们的基本性质是解题关键.三、解答题21.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-,38,0,13-,4-解析:数轴见解析,13-< 1.5-<0<38<4-.【分析】根据用数轴表示数的方法,在数轴上先表示出各数,再由“数轴上右边的数总比左边的数大”把这些数用“<”连接即可.【详解】解:在数轴上表示各数如图:∴13 1.5-<0384-.【点睛】本题主要考查了实数的大小比较的方法,掌握利用数轴比较实数的大小是解题的关键. 22.已知31a +的算数平方根是4,421c b +-的立方根是3,c 1322a b c +-的平方根.解析:3±.【分析】根据算术平方根的定义得到3a+1=16,可解得a 值,根据3134,可得c=3,再根据立方根的定义可得34213c b +-=,可解得b ,然后将a 、b 、c 的值代入计算即可.【详解】解:根据题意可得:2314a +=,∴5a =,3134<<,3c ∴=,∵34213c b +-=,∴8b =,3==±,即22a b c +-的平方根为3±.【点睛】本题考查了代数式的求值、算术平方根、立方根、无理数的估算,理解(算术)平方根的定义,立方根的定义,会利用完全平方数和算术平方根估算无理数的大小是解答的关键. 23.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.解析:(1)93,34;(2)这个数用十进制表示为51或102.【分析】(1)根据进制的规则列式计算即可;(2)根据题意列得227755a b c c b a ++=++,化简成24a+b=12c ,根据a 、b 、c 的取值范围分别将a 从1开始取值验证,即可得到答案.【详解】(1)()253333535393=⨯+⨯+=,7(46)47634=⨯+=,故答案为:93,34;(2)根据题意得:227755a b c c b a ++=++,∴24a+b=12c , ∴212b c a =+, ∵a 、b 、c 均为整数,且04b ≤≤,∴b=0,c=2a ,∵04a <≤,04c <≤,∴12a c =⎧⎨=⎩或24a c =⎧⎨=⎩, ∵27(102)170251=⨯++=,27(204)2704102=⨯++=.∴这个数用十进制表示为51或102.【点睛】此题考查新定义运算,有理数的混合运算,列代数式,正确理解题意是解题的关键.24.计算:(12)-+(2解析:(1)-2;(2)【分析】(1)原式去括号合并即可得到结果;(2)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解:(1)原式=2-2=-(2)原式22=+=【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.25.(12;(2)求 (x-1)2-36=0中x的值.解析:(1)12;(2)x的值为7或﹣5【分析】(1)分别进行算术平方根运算、立方根运算、算术平方根的定义即可解答;(2)利用平方根解方程的方法求解即可.【详解】解:(12=4﹣12﹣3=1﹣1 2=12;(2)(x-1)2-36=0,移项得:(x-1)2=36,开平方得:x-1=±6,解得:x1=7,x2=﹣5,即(x-1)2-36=0中的x值为7或﹣5.本题考查算术平方根、立方根、利用平方根解方程,熟练掌握运算法则,会运用平方根解方程是解答的关键.26.计算:(1)132322⎛⎫⨯-⨯-⎪⎝⎭ (2)2291|11232⎛⎫-+-⨯- ⎪⎝⎭解析:(1)32;(2). 【分析】(1)直接利用有理数混合运算法则计算得出答案;(2)原式先计算乘方,再计算乘法运算,进而算加减运算即可求出值.【详解】(1)原式=6-3×32=6-92=32;(2)原式=-1-23×152. 【点睛】本题主要考查了有理数和实数的混合运算,正确掌握运算法则是解题关键.27.求下列x 的值.(1) 27x 3=-8 (2) (3x -1)2=9解析:(1)x =23-;(2)x =43或x =23- 【分析】(1)利用立方根的定义求解;(2)利用平方根的定义求解.【详解】(1)解:3827x =, 23x =; (2)解:313x -=±,34x =或32x =-,43x =或23x =-. 【点睛】本题考查解方程,熟练掌握立方根、平方根的定义是关键.28.求满足下列条件的x 的值:(1)3(3)27x +=-;(2)2(1)218x -+=.解析:(1)6x =-;(2)3x =-或5(1)根据立方根,即可解答; (2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.。
数学数学第六章 实数的专项培优练习题(及解析
数学数学第六章 实数的专项培优练习题(及解析一、选择题1.设n 为正整数,且1n n <<+,则n 的值为( )A .42B .43C .44D .45 2.下列式子正确的是( )A±5B 9C 10D .3 3.若()2320m n -++=,则m n +的值为( )A .5-B .1-C .1D .54.(b ﹣3)2=0,则(a +b )2019等于( )A .1B .﹣1C .﹣2019D .20195.是2的算术平方根;④12.正确的是( )A .①④B .②④C .①③④D .①②③④6.让我们轻松一下,做一个数字游戏.第一步:取一个自然数n 1=5,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2;第三步:算出a 2的各位数字之和得n 3,计算n 32+1得a 3;……依此类推,则a 2018的值为( )A .26B .65C .122D .1237.有下列说法:①在1和2一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②8.在实数227,0中,是无理数的是( )A .227B .0CD 9.若一个数的平方根与它的立方根完全相同.则这个数是() A .1B .1-C .0D .10±, 10.估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间 二、填空题11.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.12.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示).13.观察下面两行数:2,4,8,16,32,64…①5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).14.若x +1是125的立方根,则x 的平方根是_________.15.如果一个有理数a 的平方等于9,那么a 的立方等于_____.16.一个数的立方等于它本身,这个数是__.17.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.18.若x <0,则323x x +等于____________.19.已知a 、b 为两个连续的整数,且a <19<b ,则a +b =_____.20.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点'O ,则点'O 对应的数是_______.三、解答题21.观察下列等式:①111122=-⨯, ②1112323=-⨯, ③1113434=-⨯. 将以上三个等式两边分别相加,得1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)请写出第④个式子(2)猜想并写出:1n(n 1)+= . (3)探究并计算:111244668+++⨯⨯⨯ (1100102)⨯. 22.请回答下列问题:(1)17介于连续的两个整数a 和b 之间,且a b <,那么a = ,b = ; (2)x 是172+的小数部分,y 是171-的整数部分,求x = ,y = ; (3)求()17yx -的平方根. 23.我们在学习“实数”时画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O 为圆心,正方形的对角线长为半径画弧交数轴于点A”,请根据图形回答下列问题:(1)线段OA 的长度是多少?(要求写出求解过程)(2)这个图形的目的是为了说明什么? (3)这种研究和解决问题的方式体现了 的数学思想方法.(将下列符合的选项序号填在横线上)A .数形结合B .代入C .换元D .归纳24.你会求(a ﹣1)(a 2012+a 2011+a 2010+…+a 2+a+1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:()()2111a a a -+=-,()()23111a a a a -++=-,()()324111a a a a a -+++=-,(1)由上面的规律我们可以大胆猜想,得到(a ﹣1)(a 2014+a 2013+a 2012+…+a 2+a+1)= 利用上面的结论,求:(2)22014+22013+22012+…+22+2+1的值是 .(3)求52014+52013+52012+…+52+5+1的值.25.定义:若两个有理数a ,b 满足a +b =ab ,则称a ,b 互为特征数.(1)3与 互为特征数;(2)正整数n (n >1)的特征数为 ;(用含n 的式子表示)(3)若m ,n 互为特征数,且m +mn =-2,n +mn =3,求m +n 的值.26.已知a 是最大的负整数,b 是多项式2m 2n ﹣m 3n 2﹣m ﹣2的次数,c 是单项式﹣2xy 2的系数,且a 、b 、c 分别是点A 、B 、C 在数轴上对应的数.(1)求a 、b 、c 的值,并在数轴上标出点A 、B 、C .(2)若M 点在此数轴上运动,请求出M 点到AB 两点距离之和的最小值;(3)若动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒12个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,点Q 能追上点P ?(4)在数轴上找一点N ,使点M 到A 、B 、C 三点的距离之和等于10,请直接写出所有的N 对应的数.(不必说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先确定2019介于1936、2025这两个平方数之间,从而可以得到44201945<<,再根据已知条件即可求得答案.【详解】解:∵193620192025<<∴2244201945<<. 2244201945<∴44201945<<∵n 为正整数,且20191n n <<+ ∴44n =.故选:C【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与2019临界的两个完全平方数是解决问题的关键.2.B解析:B【分析】根据平方根、算术平方根的定义求出每个式子的值,再进行判断即可.【详解】A 255,故选项A 错误;B9,故选项B正确;C=10,故选项C错误;D、=±3,故选项D错误.故选:B.【点睛】本题主要考查平方根和算术平方根,解题的关键是掌握平方根和算术平方根的定义与性质.3.C解析:C【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m-3=0,n+2=0,解得m=3,n=-2,所以,m+n=3+(-2)=1.故选:C.【点睛】此题考查非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.4.B解析:B【分析】根据非负数的性质,非负数的和为0,即每个数都为0,可求得a、b的值,代入所求式子即可.【详解】根据题意得,a+4=0,b﹣3=0,解得a=﹣4,b=3,∴(a+b)2019=(﹣4+3)2019=﹣1,故选:B.【点睛】本题考查了非负数的性质,以及-1的奇次方是-1,理解非负数的性质是解题关键.5.D解析:D【分析】根据实数、无理数,算术平方根的意义和实数的大小比较方法逐一进行判断即可得到答案.【详解】是无理数,正确;是实数,正确;是2的算术平方根,正确;④12,正确.故选:D【点睛】本题考查了实数、无理数,算术平方根的意义和实数的大小比较方法等知识点,是常考题型.6.B解析:B【分析】依照题意分别求出a l =26,n 2=8,a 2=65,n 3=11,a 3=122,n 4=5,a 4=26…然后依次循环,从而求出结果.【详解】解:∵n 1=5,a l =52+1=26,n 2=8,a 2=82+1=65,n 3=11,a 3=112+1=122,n 4=5,…,a 4=52+1=26…∵20183=6722÷∴20182=65=a a .故选:B .【点睛】此题考查数字的变化规律,找出数字之间的联系,得出数字之间的运算规律,利用规律解决问题. 7.D解析:D【分析】根据无理数的定义与运算、实数与数轴逐个判断即可得.【详解】①在1和2之间的无理数有无限个,此说法错误;②实数与数轴上的点一一对应,此说法正确;③两个无理数的积不一定是无理数,如2=-,此说法错误; ④2π是无理数,不是分数,此说法错误; 综上,说法正确的为②,故选:D .【点睛】 本题考查了无理数的定义与运算、实数与数轴,熟练掌握运算法则和定义是解题关键.8.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:227是分数,属于有理数,故选项A不合题意;0是整数,属于有理数,故选项B不合题意;2=-,是整数,属于有理数,故选项C不合题意;是无理数,故选项D符合题意.故选:D.【点睛】本题考查了无理数的定义,掌握无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数是关键.9.C解析:C【详解】任何实数的立方根都只有一个,而正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根,所以这个数是0,故选C.10.C解析:C【解析】试题分析:∵16<20<25,∴∴4<5.故选C.考点:估算无理数的大小.二、填空题11.、、、.【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【解析】解:∵y =3x +2,如果直接输出结果,则3x +2=161,解得:x =53;如果两次才输出结果:则x =(53-2)÷3=17; 如果三次才输出结果:则x =(17-2)÷3=5; 如果四次才输出结果:则x =(5-2)÷3=1; 则满足条件的整数值是:53、17、5、1.故答案为:53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.12..【解析】【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=.“ 解析:12++n n . 【解析】【详解】 根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =12++n n . 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=12++n n . “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.13.515【分析】由已知条件可得:①中各数都符合2n 的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8解析:515【分析】由已知条件可得:①中各数都符合2n 的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8个数为28+3=259,故它们的和为256+259=515,故答案为:515.【点睛】考查了要求学生通过观察,分析、归纳发现其中的规律,解题关键是找出①②中各数间的规律.14.±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.15.±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了解析:±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了平方根及有理数的乘方.解题的关键是掌握平方根的概念及有理数乘方的法则. 16.0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的解析:0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的定义,熟练掌握立方的定义是解题关键,注意本题要分类讨论,不要漏数.17.π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π解析:π圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.18.0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,∴,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是解析:0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,=-+=,x x故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是非负数;立方根的符号与被开方的数的符号相同;解题的关键是正确判断符号.19.9【分析】首先根据的值确定a、b的值,然后可得a+b的值.【详解】∵<,∴4<<5,∵a<<b,∴a=4,b =5,∴a+b=9,故答案为:9.【点睛】本题主要考查了估算无理数的解析:9【分析】a 、b 的值,然后可得a +b 的值.【详解】<∴45,∵a b ,∴a =4,b =5,∴a +b =9,故答案为:9.【点睛】本题主要考查了估算无理数的大小,关键是正确确定a 、b 的值. 20.【分析】点对应的数为该半圆的周长.【详解】解:半圆周长为直径半圆弧周长即故答案为:.【点睛】本题考查数轴上的点与实数的关系.明确的长即为半圆周长是解答的关键. 解析:12π+【分析】点O '对应的数为该半圆的周长.【详解】解:半圆周长为直径+半圆弧周长 即12π+ 故答案为:12π+.【点睛】 本题考查数轴上的点与实数的关系.明确OO '的长即为半圆周长是解答的关键.三、解答题21.(1)1114545=-⨯;(2)111(1)1n n n n =-++;(3)2551. 【解析】试题分析:(1)规律:相邻的两个数的积的倒数等于它们的倒数的差,故第四个式子为:1114545=-⨯; (2)根据以上规律直接写出即可;(3)各项提出12之后即可应用(1)中的方法进行计算. 解:(1)答案为:1114545=-⨯; (2)答案为:()11111n n n n =-++; (3)111244668+++⨯⨯⨯ (1100102)⨯ =12×(111122334++⨯⨯⨯+…+15051⨯) =12×5051=2551. 点睛:本题是一道找规律问题.解题的重点要根据所给式子中的数字变化归纳出规律,而难点在于第(3)问中要灵活应用所总结出来的公式.22.(1)4;b =(2−4;3(3)±8【分析】((1)由16<17<25a ,b 的值; (2)根据(1)的结论即可确定x 与y 的值;(3)把(2)的结论代入计算即可.【详解】解:(1)∵16<17<25,∴4<5,∴a =4,b =5,故答案为:4;5;(2)∵4<5,∴6+2<7,由此整数部分为6,∴x −4,∵4<5,∴3-1<4,∴y =3;;3(3)当x ,y =3时,)y x =)3=64, ∴64的平方根为±8.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“逐步逼近”是估算的一般方法,也是常用方法.23.;(2)数轴上的点和实数是一一对应关系;(3)A.【分析】(1)首先根据勾股定理求出线段OB 的长度,然后结合数轴的知识即可求解; (2)根据数轴上的点与实数的对应关系即可求解;(3)本题利用实数与数轴的对应关系即可解答.【详解】解:(1)OB 2=12+12=2,∴OB ,∴OA =(2)数轴上的点和实数是一一对应关系(3) 这种研究和解决问题的方式,体现的数学思想方法是数形结合.故选A.【点睛】本题主要考查了实数与数轴之间的关系,此题综合性较强,不仅要结合图形,还需要熟悉平方根的定义.也要求学生了解数形结合的数学思想.24.(1)a2015﹣1;(2)22015﹣1;(3)2015514-. 【分析】(1)根据已知算式得出规律,即可得出答案.(2)先变形,再根据规律得出答案即可.(3)先变形,再根据规律得出答案即可.【详解】(1)由上面的规律我们可以大胆猜想,(a ﹣1)(a 2012+a 2011+a 2010+…+a 2+a+1)=a 2015﹣1,故答案为:a 2015﹣1;(2)22014+22013+22012+…+22+2+1=(2﹣1)×(22014+22013+22012+…+22+2+1)=22015﹣1,故答案为:22015﹣1;(3)52014+52013+52012+…+52+5+1 =14×(5﹣1)×(52014+52013+52012+…+52+5+1) =2015514-. 【点睛】本题考查了实数运算的规律题,掌握算式的规律是解题的关键.25.(1)32;(2)1n n -;(3)13 【分析】(1)设3的特征数为b ,根据特征数的定义列式求解即可;(2)设n 的特征数为m ,根据特征数的定义列式求解即可;(3)根据m ,n 互为特征数得出m +n =mn ,结合已知的两个等式进行求解即可.【详解】解:(1)设3的特征数为b ,由题意知,33b b +=, 解得,32b =, ∴3与32互为特征数, 故答案为:32 (2)设n 的特征数为m ,由题意知,n +m =nm , 解得,1n m n =-, ∴正整数n (n >1)的特征数为1n n -, 故答案为:1n n - (3)∵ m ,n 互为特征数,∴ m +n =mn ,又m +mn =-2 ①,n +mn =3 ②,①+②得,m +n +2mn =1,∴m+n+2(m+n)=1,∴m+n=13.【点睛】本题考查了新定义的运算,正确理解特征数的定义是解题的关键.26.(1)a=﹣1,b=5,c=﹣2,数轴详见解析;(2)6;(3)运动4秒后,点Q可以追上点P;(4)M对应的数为2或﹣223.【解析】【分析】(1)根据题意易得a,b,c的值,然后在数轴上表示出来即可;(2)当M点在线段AB上时,M点到AB两点距离之和的最小值为AB的长;(3)用AB的长度除以点Q与点P的速度差即可得解;(4)分析M点在不同的位置时,所得到的M的值即可.【详解】(1)∵a是最大的负整数,∴a=﹣1,∵b是多项式2m2n﹣m3n2﹣m﹣2的次数,∴b=3+2=5,∵c是单项式﹣2xy2的系数,∴c=﹣2,如图所示:(2)当M点在线段AB上时,M点到AB两点距离之和的最小值为5﹣(﹣1)=6;(3)∵动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒12个单位长度,点Q的速度是每秒2个单位长度,∴AB=6,两点速度差为:2﹣12,∴6÷(2﹣12)=4,答:运动4秒后,点Q可以追上点P;(4)存在点M,使P到A、B、C的距离和等于10,当M在AB之间,则M对应的数是2,当M在C点左侧,则M对应的数是:﹣22 3 .综上所述,M对应的数为2或﹣223.【点睛】本题主要考查实数与数轴,数轴上两点之间的距离.解此题的关键在于根据题意准确画出数轴上各点所表示的数.。
【学生卷】初中数学七年级数学下册第六单元《实数》经典练习(培优)
一、选择题1.下列各式计算正确的是( )A B = ±2 C = ±2 D . A 解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A 计算正确;故选:A .【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.2.下列各组数中,互为相反数的是( )A .B .2-与12-C .()23-与23-D 解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、=不是相反数,此项不符题意;B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=-=-故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.3.在实数,-3.14,0,π中,无理数有( )A .1个B .2个C .3个D .4个B解析:B【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.【详解】=4,所给数据中无理数有:π,共2个.故选:B.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式.4)A.2 B.4 C.2±D.-4A解析:A【分析】【详解】解:∵,∴=2.故选:A.【点睛】.5.下列说法正确的是()A.2-是4-的平方根B.2是()22-的算术平方根C.()22-的平方根是2D.8的平方根是4B解析:B【分析】根据平方根、算术平方根,即可解答.【详解】A选项:4-没有平方根,故A错误;B选项:()224-=,4的算术平方根为2,故B正确;C选项:()224-=,4的平方根为2±,故C错误;D选项:8的平方根为±,故D错误故选B.【点睛】本题考查了平方根、算术平方根,解决本题的关键是熟记平方根、算术平方根的概念.6.定义运算:132x y xy y=-※,若211a=-※,则a的值为()A.12-B.12C.2-D.2C解析:C【分析】根据新定义的运算得到关于a 的方程,求解即可.【详解】解:因为211a =-※, 所以132112a a ⨯-=-, 解得 2a =-.故选:C【点睛】本题考查了新定义的运算与一元一次方程,根据新定义运算得到一元一次方程是解题关键.7.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间B 解析:B【分析】借助O 、A 、B 、C 的位置以及绝对值的定义解答即可.【详解】解:-5<c<0,b=5,|d ﹣5|=|d ﹣c |∴BD=CD ,∴D 点介于O 、B 之间.故答案为B .【点睛】本题考查了实数、绝对值和数轴等相关知识,掌握实数和数轴上的点一一对应是解答本题的关键.8.若53a =,则a 在( ) A .3-和2-之间B .2-和1-之间C .1-和0之间D .0和1之间C 解析:C【分析】5案.【详解】解:∵4<5<9,∴253.∴-1<0.故选:C .【点睛】9.设,A B 均为实数,且A B ==,A B 的大小关系是( ) A .A B >B .A B =C .A B <D .A B ≥ D 解析:D【分析】根据算术平方根的定义得出A 是一个非负数,且m-3≥0,推出3-m≤0,得出B≤0,即可得出答案,【详解】解:∵A =∴A 是一个非负数,且m-3≥0, ∴m≥3, ∵B =∵3-m≤0,即B≤0,∴A≥B ,故选:D .【点睛】本题考查了算术平方根的定义,平方根和立方根,实数的大小比较等知识点,题目比较好,但有一定的难度.10. )A .5和6B .6和7C .7和8D .8和9A 解析:A【分析】【详解】解:∵∴56,∴在两个相邻整数5和6之间.故选:A .【点睛】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.二、填空题11.已知31a +的算数平方根是4,421c b +-的立方根是3,c 是13的整数部分.求22a b c +-的平方根.【分析】根据算术平方根的定义得到3a+1=16可解得a 值根据3<<4可得c=3再根据立方根的定义可得可解得b 然后将abc 的值代入计算即可【详解】解:根据题意可得:∴∵∴即的平方根为【点睛】本题考查了 解析:3±.【分析】根据算术平方根的定义得到3a+1=16,可解得a 值,根据3<13<4,可得c=3,再根据立方根的定义可得34213c b +-=,可解得b ,然后将a 、b 、c 的值代入计算即可.【详解】解:根据题意可得:2314a +=,∴5a =,3134<<,3c ∴=,∵34213c b +-=,∴8b =,22225833a b c ∴±+-=±⨯+-=±,即22a b c +-的平方根为3±.【点睛】本题考查了代数式的求值、算术平方根、立方根、无理数的估算,理解(算术)平方根的定义,立方根的定义,会利用完全平方数和算术平方根估算无理数的大小是解答的关键. 12.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-的点,并比较它们的大小.(1);(2)①见解析;②见解析【分析】(1)设正方形边长为a 根据正方形面积公式结合平方根的运算求出a 值则知结果;(2)①根据面积相等利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正 解析:(1)2,2-;(2)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.13.计算.(1)()113122⎛⎫⎛⎫---++ ⎪ ⎪⎝⎭⎝⎭;(2)()328--(1)4;(2)【分析】(1)变减号为加号同时省略括号和加号先两个分数相加再和最后一个数相加;(2)先算乘方和开方再算乘除最后算加减【详解】(1)原式;(2)原式【点睛】此题考查有理数混合运算其关键解析:(1)4;(2)6-.【分析】(1)变减号为加号同时省略括号和加号,先两个分数相加,再和最后一个数相加; (2)先算乘方和开方,再算乘除,最后算加减.【详解】(1)原式111322=-++ 13=+4=;(2)原式()()8288=-+-÷-⨯82=-+6=-.【点睛】此题考查有理数混合运算,其关键是熟练掌握每种运算和按运算顺序运算,注意用运算律改变运算顺序以使运算简便.14.求x 的值:(1)2(3)40x +-=(2)33(21)240x ++=(1)或;(2)【分析】(1)整理后利用平方根的定义得到然后解两个一元一次方程即可;(2)整理后利用立方根的定义得到然后解一元一次方程即可【详解】(1)移项得:∴∴或;(2)整理得:∴∴【点睛】本题解析:(1)1x =-或5x =-;(2)32x =-. 【分析】(1)整理后,利用平方根的定义得到32x +=±,然后解两个一元一次方程即可; (2)整理后,利用立方根的定义得到212x +=-,然后解一元一次方程即可.【详解】(1)2(3)40x +-=,移项得:2(3)4x +=,∴32x +=±,∴1x =-或5x =-;(2)33(21)240x ++=,整理得:3(21)8x +=-,∴212x +=-, ∴32x =-. 【点睛】 本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,如果x 3=a ,那么x 叫做a 的立方根.也考查了平方根.15.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________.10202550【分析】①由魔术数的定义分别对345三个数进行判断即可得到5为魔术数;②由题意根据魔术数的定义通过分析即可得到答案【详解】解:根据题意①把3写在1的右边得13由于13不能被3整除故3 解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”; ②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x n x x+=+, ∴100n x为整数, ∵n 为整数,∴100x为整数, ∴x 的可能值为:10、20、25、50; 故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题.16. 1.414≈,于是我们说:的整数部分为1,小数部分则可记为1”.则:(11的整数部分是__________,小数部分可以表示为__________;(22的小数部分是a ,7-b ,那么a b +=__________;(3x 的小数部分为y ,求1(x y --的平方根.(1)2;(2)1;(3)【分析】(1)先估算出的取值范围再确定的整数部分和小数部分;(2)先估算出和的取值范围再确定a 与b 的值最后代入代数式计算即可;(3)先估算出的取值范围再确定xy 的值最后代入解析:(1)21;(2)1;(3)3±.【分析】(11的整数部分和小数部分;(22和7-a 与b 的值,最后代入代数式计算即可;(3的取值范围,再确定x 、y 的值,最后代入代数式计算即可.【详解】解:(1)∵1<2<4∴1<2 ∴1, ∴1的整数部分为212+-1故答案为21;(2)∵1<3<4∴12∴1,∴2的整数部分为3,小数部分为21-;7-的整数部分为5,小数部分为b=75--=2∴1+2=1故答案为1;(3)∵9<11<16∴3<4 ∴x=3,小数部分为-3∴()3211(3==3=9x y --- ∵3±.故答案为3±.【点睛】本题主要考查了估算无理数的大小,掌握运用逼近法比较无理数的大小成为解答本题的关键.17.已知21a -的平方根是31a b +-的算术平方根是6,求4a b +的平方根.【分析】根据算术平方根和平方根的定义列式求出ab 的值然后代入代数式求出的值再根据平方根的定义解答即可【详解】解:根据题意得解得所以∵∴的平方根是【点睛】本题考查了算术平方根和平方根的定义能够熟记概念 解析:7±【分析】根据算术平方根和平方根的定义列式求出a 、b 的值,然后代入代数式求出4a b +的值,再根据平方根的定义解答即可.【详解】解:根据题意,得2117a -=,2316a b +-=,解得9a =,10b =,所以,4941094049a b +=+⨯=+=,∵()2749±=, ∴4a b +的平方根是7±.【点睛】本题考查了算术平方根和平方根的定义,能够熟记概念并列式求出a 、b 的值是解题的关键.18.定义一种新运算“”规则如下:对于两个有理数a ,b ,a b ab b =-,若()()521x -=-,则x =______【分析】根据给定新运算的运算法则可以得到关于x 的方程解方程即可得到解答【详解】解:由题意得:(5x-x )⊙(−2)=−1∴-2(5x-x )-(-2)=-1∴-8x+2=-1解之得:故答案为【点睛】本 解析:38【分析】根据给定新运算的运算法则可以得到关于x 的方程,解方程即可得到解答.【详解】解:由题意得:(5x-x )⊙(−2)=−1,∴-2(5x-x)-(-2)=-1,∴-8x+2=-1,解之得:38x=,故答案为38.【点睛】本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键.19.比较大小:3-(用“>”,“<”或“=”填空).>【分析】正实数都大于0负实数都小于0正实数大于一切负实数两个负实数绝对值大的反而小据此判断即可【详解】解:因为<<所以2<<3所以-3<-<-2故答案为:>【点睛】此题主要考查了实数大小比较的方法解析:>【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】所以2<3所以,-3<-2故答案为:>【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.20.已知1a-的平方根是2±,则a的值为_______.5【分析】根据平方根的定义求解即可【详解】的平方根是a-1=4a=5故答案为:5【点睛】此题考查了平方根的定义一个整数的平方根有两个它们互为相反数解析:5【分析】根据平方根的定义求解即可.【详解】1a-的平方根是2±,∴a-1=4,∴a=5.故答案为:5【点睛】此题考查了平方根的定义,一个整数的平方根有两个,它们互为相反数.三、解答题21.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-∴点B 表示2+2∴2+2m =-.(2)∵2+2m =-∴1221230m +=-+=->,1221210m -=--=-< ∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +4d + ∴240c d d ++=∴2040c d d +=⎧⎨+=⎩ ∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-=∴23164c d -==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.22.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值;(2)猜想:a b =★________;(3)若12162a +=-★,求a 的值. 解析:(1)0;(2)22ab ab +;(3)5a =-【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程,再进一步解方程即可.【详解】解:(1)∵212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;∴()()()232322320-=⨯-+⨯⨯-=★;(2)由(1)可得:22a b ab ab =+★.故答案为:22ab ab +.(3)2111222216222a a a +++=⨯+⨯⨯=-★, 解得:5a =-.【点睛】此题考查有理数的混合运算以及解一元一次方程,理解运算方法是解决问题的关键. 23.计算(1)22234x +=;(2)38130125x +=(3)2|12|(2)---;(4)(x +2)2=25.解析:(1)12x x ==-2)x=35;(3)12;(4)123,7x x ==-. 【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)先求出x 3的值,再根据立方根的定义解答;(3)直接利用绝对值的性质、平方根定义和负指数幂的性质分别化简得出答案; (4)依据平方根的定义求解即可.【详解】(1)22234x +=,2x²=32,x²=18,,∴12x x ==-(2)38130125x +=, 327125x =-, x=35;(3)2|12|(2)--- =1-1144-=311442-= (4)(x +2)2=25,(x+2)=±5,x+2=5,x+2=-5,∴123,7x x ==-.【点睛】本题考查了利用平方根和立方根解方程,绝对值的性质和负指数幂的性质,掌握有关性质是解题的关键.24.求出x 的值:()23227x += 解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.25.计算:3011(2)(200422-+-- 解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.26.把下列各数的序号填入相应的括号内①-3,②π,,④-3.14,,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …},正有理数集合{ …},无理数集合{ …}.解析:见解析.【分析】先求出立方根,再根据整数、负分数、正有理数、无理数的定义即可得.【详解】3=-,27.把下列各数填在相应的横线上1.4,2020,,32-,0.31,0π-,1.3030030003…(每相邻两个3之间0的个数依次加1)(1)整数:______(2)分数:______(3)无理数:______解析:(1)2020,02)1.4,32-,0.31;(3),π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【分析】根据实数的分类进行填空即可.【详解】,(1)整数:2020,0(2)分数:1.4,32-,0.31(3)无理数:π-,1.3030030003…(每相邻两个3之间0的个数依次加1)故答案为:2020,0 1.4,32-,0.31;π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【点睛】本题考查了实数的分类,掌握实数的分类是解题的关键. 28.观察下列各式:112⨯=1-12,123⨯=12-13,134⨯=13-14. (1)请根据以上式子填空: ①189⨯= ,②1(1)n n ⨯+= (n 是正整数) (2)由以上几个式子及你找到的规律计算:112⨯+123⨯+134⨯+............+120152016⨯ 解析:(1)①1189-,②111n n -+;(2)20152016 【分析】(1)仔细观察所给式子的结构,发现规律111=(1)1n n n n -⨯++,即可解答; (2)根据发现的规律变形原式,进行合并化简即可解答.【详解】(1)仔细观察,发现111=(1)1n n n n -⨯++,则1118989=-⨯, 故答案为:①1189-,②111n n -+; (2)根据111=(1)1n n n n -⨯++, 则112⨯+123⨯+134⨯+............+120152016⨯=1111111 (1)()()()2233420152016 -+-+-++-=1 12016 -=2015 2016.【点睛】本题考查数字规律的探索、有理数的混合运算,解答的关键是发现式子的变化规律,根据规律变形原式,从而使计算简单化.。
中考数学数学第六章 实数的专项培优练习题(含答案
中考数学数学第六章 实数的专项培优练习题(含答案一、选择题1.下列说法中正确的是( ) A .4的算术平方根是±2 B .平方根等于本身的数有0、1 C .﹣27的立方根是﹣3 D .﹣a 一定没有平方根 2.下列说法正确的个数有( )①过一点有且只有一条直线与已知直线平行; ②垂线段最短;③坐标平面内的点与有序实数对是一一对应的; ④算术平方根和立方根都等于它本身的数是0和1;1. A .1B .2C .3D .43.下列说法错误的是( )A .﹣4是16的平方根B 2C .116的平方根是14D 54.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A =|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m 、n ,再取这两个数的相反数,那么,所有A 的和为( ) A .4m B .4m +4n C .4n D .4m ﹣4n 5.下列各数中,比-2小的数是( )A .-1B .C .0D .1630b -= ) A .0B .±2C .2D .47.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1; ③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直 A .0个B .1个C .2个D .3个8.下列说法正确的个数是( ). (1)无理数不能在数轴上表示(2)两条直线被第三条直线所截,那么内错角相等 (3)经过一点有且只有一条直线与已知直线平行 (4)两点之间线段最短 A .0个B .1个C .2个D .3个9.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-10.已知一个正数的两个平方根分别是3a +1和a +11,这个数的立方根为( ) A .4B .3C .2D .0二、填空题11.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.12.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…; (2)f (12)=2,f (13)=3,f (14)=4,f (15)=5,… 利用以上规律计算:1(2019)()2019f f ____. 13.m 的平方根是n +1和n ﹣5;那么m +n =_____.14.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______.15.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数. 例如:[]2.32=,[]1.52-=-. 则下列结论:①[][]2.112-+=-;②[][]0x x +-=;③若[]13x +=,则x 的取值范围是23x ≤<;④当11x -≤<时,[][]11x x ++-+的值为0、1、2.其中正确的结论有_____(写出所有正确结论的序号). 16.写出一个大于3且小于4的无理数:___________. 17.27的立方根为 .18.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.19.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+++=_____. 20.若实数x ,y 满足()2230x y +++=,则()22xy --的值______.三、解答题21.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<,请确定332768是______位数;(2)由32768的个位上的数是8,请确定332768的个位上的数是________,划去32768后面的三位数768得到32,因为333=27,4=64,请确定332768的十位上的数是_____________(3)已知13824和110592-分别是两个数的立方,仿照上面的计算过程,请计算:332768=____;3-110592________=22.规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈 3 次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈 4 次方”.一般地,把个记作 a ⓝ,读作 “a 的圈 n 次方” (初步探究)(1)直接写出计算结果:2③,(﹣12)③. (深入思考)2④21111112222222⎛⎫=⨯⨯⨯=⨯= ⎪⎝⎭我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣12)⑩. (3)猜想:有理数 a (a ≠0)的圈n (n ≥3)次方写成幂的形式等于多少. (4)应用:求(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧ 23.对于有理数a ,b ,定义运算:a ⊕b =ab -2a -2b +1. (1)计算5⊕4的值; (2)计算[(-2)⊕6]⊕3的值;(3)定义的新运算“⊕”交换律是否还成立?请写出你的探究过程. 24.观察下列各式的计算结果2113131-1-24422===⨯ 2118241-1-39933===⨯ 21115351-1-4161644===⨯ 21124461-1-5252555===⨯ (1)用你发现的规律填写下列式子的结果:211-6= × ; 211-10= × ; (2)用你发现的规律计算: 22222111111-1-1-1-1-23420162017⨯⨯⨯⋯⨯⨯()()()()() (3)计算()2222211111111112341n n ⎡⎤⎛⎫-⨯-⨯-⨯⨯-⨯-⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦()()()(直接写出结果) 25.阅读材料,回答问题:(1)对于任意实数x ,符号[]x 表示“不超过x 的最大整数”,在数轴上,当x 是整数,[]x 就是x ,当x 不是整数时,[]x 是点x 左侧的第一个整数点,如[]33=,[]22-=-,[]2.52=,[]1.52-=-,则[]3.4=________,[]5.7-=________.(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下: 里程范围 4公里以内(含4公里) 4-12公里以内(含12公里) 12-24公里以内(含24公里) 24公里以上 收费标准2元4公里/元6公里/元8公里/元①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元;②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?26.已知a 是最大的负整数,b 是多项式2m 2n ﹣m 3n 2﹣m ﹣2的次数,c 是单项式﹣2xy 2的系数,且a 、b 、c 分别是点A 、B 、C 在数轴上对应的数.(1)求a 、b 、c 的值,并在数轴上标出点A 、B 、C .(2)若M 点在此数轴上运动,请求出M 点到AB 两点距离之和的最小值; (3)若动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒12个单位长度,点Q的速度是每秒2个单位长度,求运动几秒后,点Q能追上点P?(4)在数轴上找一点N,使点M到A、B、C三点的距离之和等于10,请直接写出所有的N对应的数.(不必说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A、4的算术平方根是2,故A错误;B、平方根等于本身的数是0,故B错误;C、(-3)3=-27,所以-27的立方根是-3,故C正确;D、﹣a大于或等于0时,可以有平方根,故D错误.故选:C.【点睛】本题考查了算术平方根、平方根、立方根的定义,熟记定义是解决此题的关键.注意平方根和算术平方根的异同.2.C解析:C【分析】根据平行公理的推论,垂线的性质,估算无理数的大小,算术平方根和立方根逐个判断即可.【详解】①过直线外一点有且只有一条直线与已知直线平行,故①错误;②垂线段最短,故②正确;③坐标平面内的点与有序实数对是一一对应的,故③正确;④算术平方根和立方根都等于它本身的数是0和1,故④正确;2,故⑤错误;即正确的个数是3个,故答案为:C.【点睛】本题考查了平行公理的推论,垂线的性质,估算无理数的大小,算术平方根和立方根等知识点,能熟记知识点的内容是解此题的关键.解析:C【分析】分别根据平方根的定义,算术平方根的定义判断即可得出正确选项.【详解】A.﹣4是16的平方根,说法正确;B.2,说法正确;C.116的平方根是±14,故原说法错误;D.,说法正确.故选:C.【点睛】此题考查了平方根以及算术平方根的定义,熟记相关定义是解题的关键.4.C解析:C【分析】根据题意得到m,n的相反数,分成三种情况⑴m,n;-m,-n ⑵m,-m;n,-n ⑶m,-n;n,-m 分别计算,最后相加即可.【详解】解:依题意,m,n(m<n)的相反数为﹣m,﹣n,则有如下情况:m,n为一组,﹣m,﹣n为一组,有A=|m+n|+|(﹣m)+(﹣n)|=2m+2nm,﹣m为一组,n,﹣n为一组,有A=|m+(﹣m)|+|n+(﹣n)|=0m,﹣n为一组,n,﹣m为一组,有A=|m+(﹣n)|+|n+(﹣m)|=2n﹣2m所以,所有A的和为2m+2n+0+2n﹣2m=4n故选:C.【点睛】本题主要考查了新定义的理解,注意分类讨论是解题的关键.5.B解析:B【分析】根据正数大于零,零大于一切负数,两个负数比大小,绝对值越大负数反而小,可得答案【详解】解:1>0>-1,|>|-2|>-1,∴-2<-1,故选:B.【点睛】本题考查了实数大小比较,利用负数的绝对值越大负数反而小是解题关键.6.C【分析】由算术平方根和绝对值的非负性,求出a、b的值,然后进行计算即可.【详解】解:根据题意,得a﹣1=0,b﹣3=0,解得:a=1,b=3,∴a+b=1+3=4,∴2.故选:C.【点睛】本题考查了算术平方根和绝对值的非负性,解题的关键是正确求出a、b的值.7.A解析:A【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;0.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.8.B解析:B【分析】根据数轴与实数,平行线的性质与判定以及两点之间线段最短对每个说法逐一判断后即可得到答案.【详解】(1)实数与数轴上的点一一对应,故无理数能在数轴上表示出来,故原说法错误;(2)两条平行直线被第三条直线所截,那么内错角相等,故原说法错误;(3)经过直线外一点有且只有一条直线与已知直线平行,故原说法错误;(4)两点之间线段最短,正确.故选B.【点睛】本题考查了命题与定理的知识,解题的关键是熟知课本上的一些定义与定理.解析:B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B.考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.10.A解析:A【分析】根据一个正数的两个平方根互为相反数,可知3a+1+a+11=0,a=-3,继而得出答案.【详解】∵一个正数的两个平方根互为相反数,∴3a+1+a+11=0,a=-3,∴3a+1=-8,a+11=8∴这个数为64,所以,这个数的立方根为:4.故答案为:4.【点睛】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.二、填空题11.、、、.【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为:53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.12.-1【分析】根据新定义中的运算方法求解即可.【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,∴f(2019)=2018.∵f()=2,f()=3,f()=4,f()解析:-1【分析】根据新定义中的运算方法求解即可.【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,∴f(2019)=2018.∵f(12)=2,f(13)=3,f(14)=4,f(15)=5,…,∴1()2019f2019,∴1(2019)()2019f f2018-2019=-1.故答案为:-1.【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键.13.11【分析】直接利用平方根的定义得出n的值,进而求出m的值,即可得出答案.【详解】解:由题意得,n+1+n﹣5=0,解得n=2,∴m=(2+1)2=9,∴m+n=9+2=11.故答解析:11【分析】直接利用平方根的定义得出n的值,进而求出m的值,即可得出答案.【详解】解:由题意得,n+1+n﹣5=0,解得n=2,∴m=(2+1)2=9,∴m+n=9+2=11.故答案为11.【点睛】此题主要考查了平方根,正确利用平方根的定义得出n的值是解题关键.14.或【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}= min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.15.①③.【分析】根据[x]表示不超过x的最大整数,即可解答.【详解】由题意可知[-2.1]=-3,[1]=1,-3+1=-2,故①正确;②中,当x取小数时,显然不成立,例如x取2.6,[x]解析:①③.【分析】根据[x]表示不超过x 的最大整数,即可解答.【详解】由题意可知[-2.1]=-3,[1]=1,-3+1=-2,故①正确;②中,当x 取小数时,显然不成立,例如x 取2.6,[x]+[-x]=2-3=-1,故②错误; ③中,若[x+1]=3,则x+1要满足x+1≥3,且x+1<4,解得x≥2,且x<3,故③正确;④中,当-1≤x<1时,在取值范围内验证此式的值为1,2.故④错误;所以正确的结论是①③.16.如等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.解析:π等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16,15都是无理数. 17.3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算 解析:3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算18.-2【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定.【详解】解:=……所以数列以,,三个数循环,所以==故答案为:.【解析:-2【分析】根据1与它前面的那个数的差的倒数,即111n n a a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a .【详解】解:1a =13 2131213a ==-312312a ==--411123a ==+ …… 所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2-故答案为:2-.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.19.【分析】根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c+d =0,然后代入求值即可.【详解】∵a、b 互为倒数,∴ab=1,∵c、d 互为相反数,∴c+d=0,∴=﹣1+0+1=0.解析:【分析】根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c +d =0,然后代入求值即可.【详解】∵a 、b 互为倒数,∴ab =1,∵c 、d 互为相反数,∴c +d =0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.20.【分析】利用非负数的性质求出x ,y 的值,代入原式计算即可得到结果【详解】解:∵∴∴∴故答案为:-1【点睛】本题考查了平方和二次根式的非负性,解题的关键是掌握计算的方法,准确地进解析:1-【分析】利用非负数的性质求出x ,y 的值,代入原式计算即可得到结果【详解】(20y +=∴x 20y 0+=⎧⎪⎨+=⎪⎩∴x -2=⎧⎪⎨⎪⎩∴(2222-=-=2-3=-1y故答案为:-1【点睛】本题考查了平方和二次根式的非负性,解题的关键是掌握计算的方法,准确地进行化简求值.三、解答题21.(1)两;(2)2,3;(3)24,-48.【分析】(1)根据题中所给的分析方法先求出这32768的立方根都是两位数;(2)继续分析求出个位数和十位数即可;(3)利用(1)(2)中材料中的过程进行分析可得结论.【详解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10100,故答案为:两;(2)∵只有个位数是2的立方数是个位数是8,2划去32768后面的三位数768得到32,因为33=27,43=64,∵27<32<64,∴3040.3.故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10100,∵只有个位数是4的立方数是个位数是4,4划去13824后面的三位数824得到13,因为23=8,33=27,∵8<13<27,∴2030.;由103=1000,1003=1000000,1000<110592<1000000,∴10100,∵只有个位数是8的立方数是个位数是2,8,划去110592后面的三位数592得到110,因为43=64,53=125,∵64<110<125,∴4050.;故答案为:24,-48.【点睛】此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数.22.(1)12,-2;(2)(15)4,(﹣2)8;(3)n-21a⎛⎫⎪⎝⎭;(4)7-28.【分析】(1)分别按公式进行计算即可;(2)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(3)结果前两个数相除为1,第三个数及后面的数变为1a,则aⓝ=a×(1a)n-1;(4)将第二问的规律代入计算,注意运算顺序.【详解】解:(1)2③=2÷2÷2=12,(﹣12)③=﹣12÷(﹣12)÷(﹣12)=﹣2;(2)5⑥=5×15×15×15×15×15=(15)4,同理得;(﹣12)⑩=(﹣2)8;(3)aⓝ=a×1a×1a×…×n-211a a⎛⎫= ⎪⎝⎭;(4)(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧=(-3)8×(1-3)7 -(﹣12)9×(-2)6=-3-(-1 2 )3=-3+1 8=7 -28.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.23.(1)3;(2)-24;(3)成立.【解析】【分析】(1)按照给定的运算程序,一步一步计算即可;(2)先按新定义运算,先计算(-2)⊕6、再将所得结果-19与3计算规定运算可得;(3)成立,按新定义分别运算即可说明理由.【详解】(1)5⊕4=5×4-2×5-2×4+1=20-10-8+1=2+1=3.(2)原式=[-2×6-2×(-2)-2×6+1]⊕3=(-12+4-12+1)⊕3=-19⊕3=-19×3-2×(-19)-2×3+1=-24.(3)成立.∵a⊕b=ab-2a-2b+1,b⊕a=ab-2b-2a+1,∴a⊕b=b⊕a,∴定义的新运算“⊕”交换律还成立.【点睛】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.24.(1)5766⨯;9111010⨯(2)10092017(3)12nn+【解析】试题分析:(1)根据题目中所给的规律直接写出答案;(2)根据所得的规律进行计算即可;(3)根据所得的规律进行计算即可德结论.试题解析:(1)5766⨯ , 9111010⨯; (2)原式=1324352016201822334420172017⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯⨯⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭() =1201822017⨯ =10092017; (3)12n n +. 点睛:本题是一个数字规律探究题,解决这类问题的基本方法为:通过观察,分析、归纳发现其中的规律,并应用规律解决问题.25.(1)3;6-;(2)①2;3;6.②这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)①根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得;②根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得.【详解】(1)∵3 3.44<<∴[]3.43=∵6 5.75-<-<-∴[]5.76-=-故答案为:3;6-.(2)①∵3.074<∴3.07公里需要2元∵47.9312<<∴7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元∴7.93公里所需费用为:2+1=3(元)∵19.212174<<∴19.17公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元;∴19.17公里所需费用为:2226++=(元)故答案为:2;3;6.②由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需费用为:2226++=(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地铁最大里程为:24+8=32(公里)∴这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键.26.(1)a=﹣1,b=5,c=﹣2,数轴详见解析;(2)6;(3)运动4秒后,点Q可以追上点P;(4)M对应的数为2或﹣223.【解析】【分析】(1)根据题意易得a,b,c的值,然后在数轴上表示出来即可;(2)当M点在线段AB上时,M点到AB两点距离之和的最小值为AB的长;(3)用AB的长度除以点Q与点P的速度差即可得解;(4)分析M点在不同的位置时,所得到的M的值即可.【详解】(1)∵a是最大的负整数,∴a=﹣1,∵b是多项式2m2n﹣m3n2﹣m﹣2的次数,∴b=3+2=5,∵c是单项式﹣2xy2的系数,∴c=﹣2,如图所示:(2)当M点在线段AB上时,M点到AB两点距离之和的最小值为5﹣(﹣1)=6;(3)∵动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒12个单位长度,点Q的速度是每秒2个单位长度,∴AB=6,两点速度差为:2﹣12,∴6÷(2﹣12)=4,答:运动4秒后,点Q可以追上点P;(4)存在点M,使P到A、B、C的距离和等于10,当M在AB之间,则M对应的数是2,当M在C点左侧,则M对应的数是:﹣22 3 .综上所述,M对应的数为2或﹣223.【点睛】本题主要考查实数与数轴,数轴上两点之间的距离.解此题的关键在于根据题意准确画出数轴上各点所表示的数.。
完整版)实数培优专题
完整版)实数培优专题实数培优拓展1、利用概念解题:例1.已知:$M=b^{-1}a+8$是$a+8$的算术数平方根,$N=2a-b+4b-3$是$b-3$的立方根,求$M+N$的平方根。
练:1.若一个数的立方根等于它的算术平方根,则这个数是多少?34x-3y=-2,求$x+y$的算术平方根与立方根。
2.已知$x+2y=3$,求$(x+y)x$的值。
3.若$2a+1$的平方根为$\pm3$,$a-b+5$的平方根为$\pm2$,求$a+3b$的算术平方根。
例2、解方程$(x+1)^2=36$.练:(1)$(x-1)^2=9$(2)$(x+1)^2=25$2、利用性质解题:例1已知一个数的平方根是$2a-1$和$a-11$,求这个数.变式:①已知$2a-1$和$a-11$是一个数的平方根,则这个数是多少;②若$2m-4$与$3m-1$是同一个数的两个平方根,则$m$为多少。
例2.若$y=3-x+x-3+1$,求$(x+y)x$的值。
例3.$x$取何值时,下列各式在实数范围内有意义:⑴⑵⑶⑷例4.已知$31-2x$与$33y-2$互为相反数,求$\frac{1+2x}{y}$的值。
例5.若$(a+3)^2=3+a$,则$a$的取值范围是多少?例6.对于每个非零有理数$a,b,c$,式子$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}$的所有可能的值是什么?练:1.若一个正数$a$的两个平方根分别为$x+1$和$x+3$,求$a$。
2.若$(x-3)^2+\frac{2005abcabc}{abcabc}$的值为$y-1=0$,求$x+y$的平方根。
3.已知$y=1-2x+4x^{-2}+2$,求$x$的值。
4.当$x$满足下列条件时,求$x$的范围:①$(2-x)^2=x-2$;②$3-x=x-3$;③$x=x^7$。
5.若$-3a=3y+2$,求$a$与$y$的大小关系。
3、利用取值范围解题:例1.已知$2\leq x\leq 5$,$3\leq y\leq 6$,求$\frac{(x+y)^3-20}{7}$的取值范围。
初中数学数学第六章 实数的专项培优练习题(及答案
初中数学数学第六章 实数的专项培优练习题(及答案一、选择题1.表面积为12dm 2的正方体的棱长为( )A dmB .dmC .1dmD .2dm2.下列说法错误的是( )A .﹣4是16的平方根B 2C .116的平方根是14D 5 3.下列说法正确的是( )A .有理数是整数和分数的统称B .立方等于本身的数是0,1C .a -一定是负数D .若a b =,则a b =4.下列选项中的计算,不正确的是( )A 2=±B 2=-C .3=±D 4=5.实数 )A 3<<B .3<C 3<<D 3<<6.下列说法正确的个数是( ).(1)无理数不能在数轴上表示(2)两条直线被第三条直线所截,那么内错角相等(3)经过一点有且只有一条直线与已知直线平行(4)两点之间线段最短A .0个B .1个C .2个D .3个7.若m 、n 满足()210m -+=的平方根是( )A .4±B .2±C .4D .2 8.下列各组数的大小比较正确的是( )A B C .5.3 D . 3.1->﹣3.1 9.比较552、443、334的大小( )A .554433234<<B .334455432<<C .553344243<<D .443355342<<10.已知实数x ,y y 2﹣9|=0 )A .±3B .3C .﹣3D .3二、填空题11.若已知()2120a b -++=,则a b c -+=_____.12.符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…;(2)f (12)=2,f(13)=3,f(14)=4,f(15)=5,…利用以上规律计算:1(2019)()2019f f____.13.若实数a、b满足240a b++-=,则ab=_____.14.若|x|=3,y2=4,且x>y,则x﹣y=_____.15.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k棵树种植在点k x处,其中11x=,当2k≥时,112()()55k kk kx x T T---=+-,()T a表示非负实数a的整数部分,例如(26)2T.=,(02)0T.=. 按此方案,第6棵树种植点6x为________;第2011棵树种植点2011x________.16.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O'点,那么O'点对应的数是______.你的理由是______.17.已知2(21)10a b++-=,则22004a b+=________.18.11133+=112344+=113455+=,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.19.若一个正数的平方根是21a+和2a+,则这个正数是____________.20.如果36a=b7的整数部分,那么ab=_______.三、解答题21.观察以下一系列等式:①21﹣20=2﹣1=20;②22﹣21=4﹣2=21;③23﹣22=8﹣4=22;④_____:…(1)请按这个顺序仿照前面的等式写出第④个等式:_____;(2)根据你上面所发现的规律,用含字母n的式子表示第n个等式:_____;(3)请利用上述规律计算:20+21+22+23+ (2100)22.探究:()()()211132432222122222222-=⨯-⨯=-==-==……(1)请仔细观察,写出第5个等式;(2)请你找规律,写出第n 个等式;(3)计算:22018201920202222-2++⋅⋅⋅++.23.观察下列各式,回答问题21131222-=⨯, 21241333-=⨯ 21351444-=⨯ ….按上述规律填空:(1)211100-= × ,2112005-= × , (2)计算:21(1)2-⨯21(1)...3-⨯21(1)2004-⨯21(1)2005-= . 24.(1的一系列不足近似值和过剩近似值来估计它的大小的过程如下:因为2211,24==,所以12,<<因为21.4 1.96=,21.5 2.25=,所以1.4 1.5,<< 因为221.41 1.9881,1.42 2.0164==,所以1.41 1.42<< 因为221.414 1.999396,1.415 2.002225==,所以1.414 1.415,<<1.41≈(精确到百分位),(精确到百分位).(2)我们规定用符号[]x 表示数x 的整数部分,例如[]0,2.42,34=⎤⎢⎥⎦=⎡⎣①按此规定2⎤⎦= ;a ,b 求a b -的值.25.“比差法”是数学中常用的比较两个数大小的方法,即:0,?0,?0,?a b a b a b a b a b a b ->>⎧⎪-==⎨⎪-<<⎩则则则;2与2的大小∵224-= << 则45<< ∴2240-=> ∴22>请根据上述方法解答以下问题:比较2-与3-的大小.26.观察下列解题过程:计算231001555...5+++++解:设231001555...5S =+++++①则23410155555....5S =+++++②由-②①得101451S =-101514S -∴= 即10123100511555 (54)-+++++= 用学到的方法计算:2320191222...2+++++【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据正方体的表面积公式:S =6a 2,解答即可.【详解】解:根据正方体的表面积公式:S =6a 2,可得:6a 2=12,解得:a .dm .故选:A .【点睛】此题主要考查正方体的表面积公式的灵活运用,解题的关键是根据公式进行计算.2.C解析:C【分析】分别根据平方根的定义,算术平方根的定义判断即可得出正确选项.【详解】A .﹣4是16的平方根,说法正确;B .2,说法正确;C . 116的平方根是±14,故原说法错误;D .,说法正确.故选:C .【点睛】此题考查了平方根以及算术平方根的定义,熟记相关定义是解题的关键.3.A解析:A【分析】根据有理数的定义、立方的性质、负数的性质、绝对值的性质对各项进行分析即可.【详解】A. 有理数是整数和分数的统称,正确;B. 立方等于本身的数是-1,0,1,错误;C. a -不一定是负数,错误;D. 若a b =,则a b =或=-a b ,错误;故答案为:A .【点睛】本题考查了判断说法是否正确的问题,掌握有理数的定义、立方的性质、负数的性质、绝对值的性质是解题的关键.4.A解析:A【分析】根据平方根与立方根的意义判断即可.【详解】解:2=2=±错误,本选项符合题意;2=-,本选项不符合题意;C. 3=±,本选项不符合题意;D. 4=,本选项不符合题意.故选:A.【点睛】本题考查了平方根与立方根,正确理解平方根与立方根的意义是解题的关键.5.D解析:D【分析】先把3化成二次根式和三次根式的形式,再把3做比较即可得到答案.【详解】解:∵3==∴3=<3=><<,3故D为答案.【点睛】本题主要考查了实数的大小比较,能熟练化简二次根式和三次根式是解题的关键,当二次根式和三次根式无法再化简时,可把整数化成二次根式或者三次根式的形式再做比较. 6.B解析:B【分析】根据数轴与实数,平行线的性质与判定以及两点之间线段最短对每个说法逐一判断后即可得到答案.【详解】(1)实数与数轴上的点一一对应,故无理数能在数轴上表示出来,故原说法错误;(2)两条平行直线被第三条直线所截,那么内错角相等,故原说法错误;(3)经过直线外一点有且只有一条直线与已知直线平行,故原说法错误;(4)两点之间线段最短,正确.故选B.【点睛】本题考查了命题与定理的知识,解题的关键是熟知课本上的一些定义与定理.7.B解析:B【分析】根据非负数的性质列式求出m、n,根据平方根的概念计算即可.【详解】由题意得,m-1=0,n-15=0,解得,m=1,n=15,=4,4的平方根的±2,故选B.【点睛】考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键.8.A解析:A【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】,∴选项A符合题意;,∴选项B不符合题意;∵5.3∴选项C不符合题意;-<﹣3.1,∵ 3.1∴选项D不符合题意.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.9.C解析:C【分析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可【详解】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C.【点睛】本题考查了幂的乘方的性质,解题的关键在于都转化成以11为指数的幂的形式.10.D解析:D【分析】由非负数的性质可得y2=9,4x-y2+1=0,分别求出x与y的值,代入所求式子即可.【详解】2﹣9|=0,∴y2=9,4x﹣y2+1=0,∴y =±3,x =2,∴y+6=9或y+6=3,3=故选:D .【点睛】本题考查绝对值、二次根式的性质;熟练掌握绝对值和二次根式的性质,能够准确计算是解题的关键.二、填空题11.6【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可.【详解】解:因为,所以,解得,故,故答案为:6.【点睛】本题考查非负数的性质,主要考查绝对值、平方解析:6【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可.【详解】解:因为()2120a b -+++=,所以10,20,30a b c -=+=-=,解得1,2,3a b c ==-=,故1(2)36a b c -+=--+=,故答案为:6.【点睛】本题考查非负数的性质,主要考查绝对值、平方和算术平方根的非负性.理解几个非负数(式)的和为0,那么这几个数或(式)都为0是解题关键. 12.-1【分析】根据新定义中的运算方法求解即可.【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,∴f(2019)=2018.∵f()=2,f()=3,f()=4,f()解析:-1【分析】根据新定义中的运算方法求解即可.【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,∴f(2019)=2018.∵f(12)=2,f(13)=3,f(14)=4,f(15)=5,…,∴1()2019f2019,∴1(2019)()2019f f2018-2019=-1.故答案为:-1.【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键.13.﹣【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则=﹣.故答案是﹣.解析:﹣12【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则ab=﹣12.故答案是﹣12.14.1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2,则x ﹣y =1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.403【解析】当k=6时,x6=T (1)+1=1+1=2,当k=2011时,=T()+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达解析:403【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011x =T(20105)+1=403. 故答案是:2,403. 【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达式并写出用T 表示出的表达式是解题的关键.16.π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π解析:π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.17.【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵,∴2a+1=0,b −1=0,∴a=,b =1,∴,故答案为:.【点睛】本题考查了非负数 解析:54【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵2(21)0a +=,∴2a +1=0,b−1=0,∴a =12-,b =1, ∴222004200411511244a b ⎛⎫+=-+=+= ⎪⎝⎭, 故答案为:54. 【点睛】本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.18.【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找(1)n n =+≥ 【分析】=(2=+(3=+n(n ≥1)的等式表示出来是(1)n n =+≥ 【详解】由分析可知,发现的规律用含自然数n(n ≥1)的等式表示出来是(1)n n =+≥(1)n n =+≥ 【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.19.1【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0,解得a=-1,∴a+2=1解析:1【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0,解得a=-1,∴a+2=1,∴这个正数是22(2)11a +==,故答案为:1.【点睛】此题考查平方根的性质:一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根. 20.12【分析】先根据算术平方根的定义求出a的值,再根据无理数的估算得出b的值,然后计算有理数的乘法即可.【详解】,即的整数部分是2,即则故答案为:.【点睛】本题考查了算术平方根的解析:12【分析】先根据算术平方根的定义求出a的值,再根据无理数的估算得出b的值,然后计算有理数的乘法即可.【详解】6a==<<479<<<<23∴的整数部分是2,即2b=ab=⨯=则6212故答案为:12.【点睛】本题考查了算术平方根的定义、无理数的估算,根据无理数的估算方法得出b的值是解题关键.三、解答题21.24-23=16-8=23 24﹣23=16﹣8=23 2n﹣2(n﹣1)═2(n﹣1)【解析】试题分析:(1)根据已知规律写出④即可.(2)根据已知规律写出n个等式,利用提公因式法即可证明规律的正确性.(3)写出前101个等式,将这些等式相加,整理即可得出答案.试题解析:(1)根据已知等式:①21-20=2-1=20;②22-21=4-2=21;③23-22=8-4=22;得出以下:④24-23=16-8=23,(2)①21-20=2-1=20;②22-21=4-2=21;③23-22=8-4=22;④24-23=16-8=23;得出第n 个等式:2n -2(n-1)=2(n-1);证明:2n -2(n-1), =2(n-1)×(2-1), =2(n-1);(3)根据规律:21-20=2-1=20;22-21=4-2=21;23-22=8-4=22;24-23=16-8=23;…2101-2100=2100;将这些等式相加得:20+21+22+23+ (2100)=2101-20,=2101-1.∴20+21+22+23+…+2100=2101-1.22.(1)655552222122-=⨯-⨯=;(2)12222122n n n n n +--=⨯⨯=;(3)-2【分析】(1)直接根据规律即可得出答案;(2)根据前3个式子总结出来的规律即可求解;(3)利用规律进行计算即可.【详解】解(1)26﹣25=2×25﹣1×25=25 ,(2)2n +1﹣2n =2×2n ﹣1×2n =2n ,(3)21+22+…+22018+22019﹣22020=21+22+…+22018+(22019﹣22020)=21+22+…+22018﹣22019=21+22+…+22017+(22018﹣22019)=…=21﹣22=-2.【点睛】本题主要考查有理数的运算与规律探究,找到规律是解题的关键.23.(1)99101100100⨯,2004200620052005⨯;(2)10032005. 【分析】(1)观察已知等式可知等式右边为两个分数的积,其分母相等且与等式左边分母的底数相等,分子一个比分母小1,一个比分母大1,由此填空(2)根据(1)发现的规律将每个括号部分分解为两个分数的积再寻找约分规律.【详解】解:(1)211100-=99101100100⨯,2112005-=2004200620052005⨯. (2)2112⎛⎫-⨯ ⎪⎝⎭ 211...3⎛⎫-⨯ ⎪⎝⎭ 2112004⎛⎫-⨯ ⎪⎝⎭ 2112005⎛⎫- ⎪⎝⎭ =1322⨯ ×2433⨯ ×…×2003200520042004⨯×2004200620052005⨯ =12×20062005. =10032005.. 【点睛】本题考查的是有理数的运算能力,关键是根据已知等式由特殊到一般得出分数的拆分规律和约分规律.24.(1)2.24;(2)①5,②3-【分析】(1近似值的方法解答即可;(22的范围,再根据规定解答即可;的整数部分a b 的值,再代入所求式子化简计算即可.【详解】解:(1)因为2224,39==,所以23,<<因为222.2 4.84,2.3 5.29==,所以2.2 2.3<<,因为222.23 4.9729,2.24 5.0176==,所以2.23 2.24,<< 因为222.236 4.999696,2.237 5.004169==,所以2.236 2.237<<,2.24≈.(2)①因为3.12=9.61,3.22=10.24,所以3.1 3.2<<,所以5.12 5.2<<,所以2⎤⎦=5;故答案为:5;②因为12,23<<<,所以1,2a b ==,所以原式12=)12123=-== 【点睛】本题考查了利用夹逼法求算术平方根的近似值、对算术平方根的整数和小数部分的认识以及实数的简单计算,属于常考题型,正确理解题意、熟练掌握算术平方根的相关知识是解题关键.25.23>-【分析】根据例题得到2(3)5--=-5.【详解】解:2(3)5--=- ∵<,∴45<<,∴2(3)50-=->, ∴23>-.【点睛】此题考查实数的大小比较方法,两个实数可以利用做差法比较大小.26.22020−1【分析】根据题目提供的求解方法进行计算即可得解.【详解】设S =2320191222...2+++++①则2S =2+22+23+…+22019+22020,②②−①得,S =(2+22+23+…+22019+22020)-(2320191222...2+++++)=22020−1 即2320191222...2+++++=22020−1.【点睛】本题考查了规律型:数字的变化类,有理数的混合运算,读懂题目信息,理解并掌握求解方法是解题的关键.。
浙教版七年级上册数学第三章实数培优提高练习题(含答案)
13.1 平方根(一)1.(1)求下列各数的算术平方根:① 64; ② 0.0001; ③ 125.(2)求下列各式的值:① 4√225; ② √49144⋅√1449; ③ √(−3)2(3)下列各式中正确的是( ).A .√25=±5 B.±√25=5C.±√25=±5D.±√(−5)2=-5课后练习1.求下列各数的算术平方根:(1)104; (2)√16; (3)10000.2.求下列各式的值:(1)√214+√0.25; (2)√(−2)2−√1.21.3下列说法:① 0.09是0.81的平方根;② -9的平方根是±3;③ (-5)2的算术平方根是-5;④ √−2是一个负数;⑤ 0的相反数和绝对值都是0;⑥ √4=±2;⑦ 全体实数和数轴上的点一一对应.其中正确的是_________.(填序号)24.已知√a −17+√17−a =b +8. (1)求a 的值.(2)求a 2−b 2的平方根.5.已知一个正数的平方根是3x-2和5x+6,则这个数是____________.6.已知(x −3)2+√y 2+2y +1=0,求x+y 的平方根.7.已知√23.5=a ,√2.35=b ,求下列各式的值(用含a 或b 的代数式表示): (1)√2350; (2)√235; (3)√0.000235.3.2平方根(二)1.(1)试估计√5的大小(精确到0.01); (2)试比较3√2与2√3的大小;(3)若0<x <1,则x,1x,√x,x 2的大小关系为( ).A .x <1x <√x <x 2 B.x 2<x <√x <1x C .1x <x <x 2<√x D .√x <1x <x <x 2 2.(1)设a =√15−1,a 在两个相邻整数之间,则这两个整数是( ). A.1和2 B.2和3 C.3和4 D.4和5(2)若√10在两个连续整数a 和b 之间,即a <√10<b ,则a+b =______.3.(1)比较大小:① √3−√2与√2−1,② √4−√3与√3−√2,③ √5−√4与√4−√3;(2)由(1)中比较的结果,猜想√(n +1)−√n 与√(n )−√(n −1)的大小关系.4.已知2a−1的算数平方根是3,3a+b−1的平方根是±4,c是√13的整数部分,求a+2b−c的平方根.5.若实数x满足|1-x|=1+|x|,则√(x−1)2=_______.36.求满足√x+√y=√99的正整数x、y的值.7.对于有理数a、b,定义min{a,b}的含义为:当a<b时,min{a,b}=a,当a>b时,min{a,b}=b.例如:min{1,-2}=-2,min{3,-1}=-1.已知min{√21,a}=√21,min{√21,b}=b,且a和b为两个连续正整数,则a+b的平方根为______.43.3 平方根(三)1.求下列各数的平方根:(1)64; (2)425; (3)0.0001.2.填空.(1)如果x 的一个平方根是7.12,那么它的另一个平方根是______;(2)一个正数的两个平方根的和是______.一个正数的两个平方根的商是______;(3)要使√(3x −5)有意义,则x 可以取的最小整数是______.3.若实数x 满足√(x −2)·|x+1|≤0,则x 的值为( ).A.2或-1B.2≥x ≥-1C.2D. -14.(1)如果b 是a 的一个平方根,那么a 的平方根是________,a 算术平方根是_______.(2).若一个正数的平方根是2a −1和−a +2,求a 的值.5.已知a 、b 、c 、x 、y 、z 都是非零实数,且满足a 2+b 2+c 2+x 2+y 2+z 2=2ax+2by+2cz,求√xa +yb +zc 的值.6.已知y =1+√2x −1+√1−2x ,则2x+3y 的平方根为_____.7.先观察下列等式,再回答下列问题: ① √1+112+122=1+11−11+1=112② √1+122+132=1+12−12+1=116 ③ √1+132+142=1+13−13+1=1112(1)请你根据上面三个等式提供的信息,猜想√1+142+152的结果,并验证;(2)请你将上面各等式反映的规律用含n 的等式表示(n 为正整数).53.4 立方根1.(1)求下列各数的立方根:① -64; ② 127; ③ -0.001.(2)计算:① √16+√0.25−√273 ② √144−√−83+√1692.计算:(1)√0.1253−√116+√(1−78)23; (2)√641253−√83+√1100−(−2)3×√0.0643.3.求下列各式中,x 的值.(1)(x+1)3=8; (2)√(x +3)33=|x +2|.4.(1)在实数范围内定义运算“⊕”,其法则为:a ⊕b =a 2-b 2,求方程(4⊕3)⊕x =24的解.(2)已知2a 的平方根是±2,3是3a+b 的立方根,求a-2b 的值.5.如果A=√a +3b a−2b+3为a +3b 的算数平方根,B=√1−a 22a−b−1为1−a 2的立方根,求A+B 的立方根.66.一个正方体的表面积是2400cm 2. (1)求这个正方体的体积;(2)若该正方体的表面积变为原来的一半,则体积变为原来的多少? 7.若√a 3+633=2|a |,求a 的值.8.先观察下列各式:√1=1;√1+3=√4=2;√1+3+5=√9=3; √1+3+5+7=√16=4;(1)计算:√1+3+5+7+9+11=__________________;(2)已知n 为正整数,通过观察并归纳,请计算√1+3+5+7+9+11+⋯+(2n −1)=_________________;(3)应用上述结论,请计算√4+12+20+28+36+44+⋯+204的值.73.5 实数1.(1)下列各数中,是分数的有哪些?−23,√3 ,13,π3,√4 3,√22,227.(2)求下列各数的相反数与绝对值: ① √5−√6; ②√−643; ③ √3−1.73.2.把下列各数填在相应的大括号里:-|-2|, 0, -1.04, −23,−√54, -(-3), π2,√2,√36,√93, 0.1010010001…(小数点后面每两个1之间依次多一个0).分数:{______________________}整数:{______________________}负有理数:{_____________________}无理数:{______________________}3.实数a 、b 、c 在数轴上对应点的位置如图所示,以下结论中正确的是( ).A.ac <0B. |a+b|=a-bC. | c-a| =a - cD. | a |>|b |4.实数a 在数轴上的位置如图,则a 、-a 、1a、√a 3的大小关系是( ).A .a <−a <1a <√a 3B .−a <1a <a <√a 3C .1a <a <√a 3<-a D .1a <√a 3<a <−a 5.求证√2是无理数.86.已知a √33√2b √23+m √3+m c √33+m√2+m,其中m >0,那么a 、b 、c 的大小关系是( ).A.a >b >cB.c >a >bC.a >c >bD.b >c >a7.将下列循环小数化成分数:(1)0. 7 (2)3.13(3)0.238.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B,点A 表示−√2. 设点B 所表示的数为m.(1)实数m 的值是_______;(2)求|m+1|+|m-1|的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d,且有|2c+d|与√d 2−16互为相反数,求2c-3d 的平方根.3.6实数(二) 1.化简:(1)√5−√5×(√5−2+2√5); (2)|1−√2|+|√2−√3|-|2−√3|2.化简:(1)|√10−3|+|√10−4|; (2)|√2+√3−2|-|4−√2−√3|.93.计算:(1)|√2−3|+√(−3)2-(-1)2019+√−273, (2)14√16+√25−√−273-|√5−3|.4.已知a −1a=√10,则a +1a的值是_______.5.设x 、y 是有理数,并且x 、y 满足等式x 2+2y +√2y =17−4√2,求x+y 的值.6.如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长:(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长;(3)把正方形ABCD 放到数轴上,如图2,使得A 与一1重合,求D 在数轴上表示的数.6.正方形网格中的每个小正方形边长都为1,每个小格的顶点称为格点,如图1中正方形的面积为5,则此正方形的边长为√5,我们通过画正方形可求出无理数的线段长度.(1)请在图2中画出一个面积为10的正方形,此正方形的边长为______; (2)求出图3中A 、B 、C 点为顶点的三角形的面积和AB 的长度.CBA图3图2图110 7.若a、b满足3√a+5|b|=7,求s=2√a−3|b|的取值范围.3.7 实数复习(一)1.解答下列各题(1)分别求下列各数的平方根、算术平方根和立方根.① 3; ② 16; ③ 8; ④√4.(2)把下列各数分别填入相应的集合里:2,π3, 1.414, −√5,−34,√43,54√3,76, 1.3.有理数集合:{________________________};无理数集合:{_______________________};实数集合:{________________________}.2.填空:(1)√−73的相反数是______;绝对值等于√3的数是_____;(2)当x_____时,√2x−3有意义,当x_____时,√1−x有意义;(3)当0≤x≤1时,化简√x2+|x-1|=________.3.选择题:(1)a、b的位置如图所示,则下列各式中有意义的是().A.√a+bB.√a−bC.√abD.√b−a11(2)下列运算中,错误的有( ). ① √125144=1512 . ② √(−4)2=±4. ③ √−22=−√22=−2; ④ √116+14=14+12=34.A.1个B.2个C.3个D.4个(3)下列命题中正确的是( ).A.两个无理数的和一定是无理数B.正数的平方根一定是正数C.开立方等于它本身的实数只有1D.负数的立方根是负数(4)已知a =2−√5,b =√5−2,c =5−2√5,则a 、b 、c 的大小关系是( ). A.a <c <b B.b <a <c C.c <a <b D.a <b <c4.(1)已知:10+√3=x +y ,其中x 是整数,且0<y <1,求x-y 的相反数;(2)已知y =√3x −1−√1−3x +9x ,求√3x +2y −3的平方根.5.细心观察图,认真分析各式,然后解答问题.(√1)2+1=2, S 1=√12;(√2)2+1=3.S 2=√22,(√3)2+1=4, S 3=√32;… …(1)请用含有n(n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出s 12+S 22+S 3+22…+S 102的值.12A 1126.已知|2015-a|+√a −2016=a,求a-20152的值.7.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数“,如:4=22-02,12=42-22,20=62-42,因此,4、12、20都是”神秘数“. (1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k 取非负整数),由这两个连续偶数构成的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方和是神秘数吗?为什么?8.某同学在解答题目:“化简并求值1a+√1a2+a 2−2,其中a =15.”时,解答过程是: 1a +√1a 2+a 2−2=1a +√(a −1a )2=1a +a −1a =15. (1)请判断他的解答是否正确;如果不正确,请写出正确的解答过程; (2)设S =√12+112+122+√12+122+132+√12+132+142+…+ √12+1n 2+1(n+1)2(n 为正整数).考察所求式子的结构特征: ① 先化简通项公式√1+1n 2+1(n+1)2;② 求出与S 最接近的整数是多少133.8 实数复习(二) 1.计算:(1√32−2√50+4√12−4√18(2)|√2+√3−2|+|−4+√2+√3|;(3)[5-2×(√3−2)]-3×(√2+1).2.计算:(1)−√425−√−81253; (2)√5−√5×(√5−2×√5);(3)√−8273−(−12)3×√(−4)2+√(−4)33×(12)2−√9② 设a 、b 都是实数,且满是b =√a 2−1+√1−a 2+4a+1,求√2a −b 的值.3.已知实数a 、b 、c 在数轴上的位置如图所示,化简|-a|+|a+c|-|b-2a|+|b-c|的结果为( ).A.-2bB. -bC. -2aD.a144.已知√m +n +5+√(m −2n )2=m-2n,且√2m −n −2=0,求m-n 的值.5. 观察下列两个等式:2−13=2×13+1,5−23=5×23+1,给出定义如下:我们称使等式a-b =ab+1成立的一对有理数a 、b 为“共生有理数对”,记为(a, b),如:数对(2,13),(5,23),都是“共生有理数对”.(1)判断数对(-2,1),(3,12)是不是“共生有理数对”,写出过程;(2)若(a,3)是“共生有理数对”,求a 的值;(3)若(m,n)是“共生有理数对”,则(-n,-m)_____“共生有理数对”(填“是”或“不是”);说明理由;(4)请再写出一对符合条件的“共生有理数对”_________________.(注意:不能与题目中已有的“共生有理数对”重复)6.已知整数a 0,a 1,a 2,a 3,a 4,…满足下列条件:a 0=0,a 1=-|a 0+1|,a 2=-|a 1+2|,a 3=-|a 2+3|,…,以此类推,则a 2018的值为( ).A.-1007B.-1008C.-1009D.-20167.设a 、b 是两个不相等的有理数,求证:+√2b +√2必为无理数.153.1 平方根(一)1.(1)求下列各数的算术平方根:① 64;=8 ② 0.0001;=0.01 ③ 125.=15 (2)求下列各式的值: ① 4√225;=60 ② √49144⋅√1449; =73 ③ √(−3)2=3(3)下列各式中正确的是( C ).A .√25=±5 B.±√25=5C.±√25=±5D.±√(−5)2=-5课后练习1.求下列各数的算术平方根:(1)104;=100 (2)√16;=4 (3)10000.=100 2.求下列各式的值:(1)√214+√0.25;=2 (2)√(−2)2−√1.21.=0.93下列说法:① 0.09是0.81的平方根;② -9的平方根是±3;③ (-5)2的算术平方根是-5;④ √−2是一个负数;⑤ 0的相反数和绝对值都是0;⑥ √4=±2;⑦ 全体实数和数轴上的点一一对应.其中正确的是⑤⑦(填序号4.已知√a −17+√17−a =b +8. (1)求a 的值.(2)求a 2−b 2的平方根.(1)a 的值为17.b 的值为-8.(2)a 2−b 2=225,所以±√225=±15.5.已知一个正数的平方根是3x-2和5x+6,则这个数是494. 6.已知(x −3)2+√y 2+2y +1=0,求x+y 的平方根.x=3,y=-1,x+y=2,±√2=±√27.已知√23.5=a ,√2.35=b ,求下列各式的值(用含a 或b 的代数式表示): (1)√2350;=10a (2)√235;=10b (3)√0.000235.=b 1003.2平方根(二)1.(1)试估计√5的大小(精确到0.01);√5≈2.24 (2)试比较3√2与2√3的大小;3√3>2√3(3)若0<x <1,则x,1x,√x,x 2的大小关系为( B ).A .x <1x <√x <x 2 B.x 2<x <√x <1xC .1x <x <x 2<√x D .√x <1x <x <x 22.(1)设a =√15−1,a 在两个相邻整数之间,则这两个整数是( B ). A.1和2 B.2和3 C.3和4 D.4和(2)若√10在两个连续整数a 和b 之间,即a <√10<b ,则a+b =7.3.(1)比较大小:① √3−√2与√2−1,② √4−√3与√3−√2,③ √5−√4与√4−√3;(2)由(1)中比较的结果,猜想√(n +1)−√n 与√(n )−√(n −1)的大小关系.√(n +1)−√n <√(n )−√(n −1)164.已知2a −1的算数平方根是3,3a +b −1的平方根是±4,c 是√13的整数部分,求a +2b −c 的平方根.a =5,b =2,c =3,a +2b −c =6,∴±√a +2b −c =±√65.若实数x 满足|1-x|=1+|x|,则√(x −1)2=1−x .6.求满足√x +√y =√99的正整数x 、y 的值.{x =11y =44 {x =44y =117.对于有理数a 、b,定义min{a,b}的含义为:当a <b 时,min{a,b}=a,当a >b 时,min{a,b}=b.例如:min{1,-2}=-2,min{3,-1}=-1.已知min{√21,a}=√21,min{√21,b}=b,且a 和b 为两个连续正整数,则a+b 的平方根为±3.a =5,b =4,a +b =9,±√9=±33.3 平方根(三)1.求下列各数的平方根:(1)64;±√64=±8 (2)425;±√425=±25 (3)0.0001.±√0.0001=±0.01 2.填空.(1)如果x 的一个平方根是7.12,那么它的另一个平方根是-7.12;(2)一个正数的两个平方根的和是0.一个正数的两个平方根的商是-1; (3)要使√(3x −5)有意义,则x 可以取的最小整数是2.3.若实数x 满足√(x −2)·|x+1|≤0,则x 的值为( C ).A.2或-1B.2≥x ≥-1C.2D. -1 4.(1)如果b 是a 的一个平方根,那么a 的平方根是±b ,a 算术平方根是|b |. (2).若一个正数的平方根是2a −1和−a +2,求a 的值.a =−15.已知a 、b 、c 、x 、y 、z 都是非零实数,且满足a 2+b 2+c 2+x 2+y 2+z 2=2ax+2by+2cz,求√xa +yb +zc 的值.a =x,b =y,c =z,∴√x a +√y b +√zc=√36.已知y =1+√2x −1+√1−2x ,则2x+3y 的平方根为±2.7.先观察下列等式,再回答下列问题: ① √1+112+122=1+11−11+1=112② √1+122+132=1+12−12+1=116 ③ √1+132+142=1+13−13+1=1112 (1)请你根据上面三个等式提供的信息,猜想√1+142+152的结果,并验证;(2)请你将上面各等式反映的规律用含n 的等式表示(n 为正整数).(1) √1+142+152=1+14−14+1=1+14−15=1120(2)√1+1n 2+1(n+1)2=1+1n×(n+1)173.4 立方根1.(1)求下列各数的立方根:① -64;=-4 ② 127;=13 ③ -0.001.=-0.1(2)计算:① √16+√0.25−√273=1.5 ② √144−√−83+√169=27 2.计算:(1)√0.1253−√116+√(1−78)23;=0.5 (2)√641253−√83+√1100−(−2)3×√0.0643.=2.13.求下列各式中,x 的值.(1)(x+1)3=8; (2)√(x +3)33=|x +2|.x =1 x +3=|x +2|,解得x =−524.(1)在实数范围内定义运算“⊕”,其法则为:a ⊕b =a 2-b 2,求方程(4⊕3)⊕x =24的解. 72−x 2=24,x =±5(2)已知2a 的平方根是±2,3是3a+b 的立方根,求a-2b 的值.a =2,b =21,a −2b =−405.如果A=√a +3b a−2b+3为a +3b 的算数平方根,B=√1−a 22a−b−1为1−a 2的立方根,求A+B 的立方根.{a −2b +3=22a −b −1=3,解得{a =3b =2.∴A =3,B =−2,∴√A +B 3=√3−23=1.6.一个正方体的表面积是2400cm 2.(1)求这个正方体的体积; 6a 2=2400,a =20(2)若该正方体的表面积变为原来的一半,则体积变为原来的多少? 6a 2=1200,a =10√2.体积:10√2×10√2×10√2=2000√2 原体积 20×20×20=8000 体积变为原来的2000√28000=√247.若√a 3+633=2|a |,求a 的值.分a ≥0,a =√93. 当a <0,a =−√73.8.先观察下列各式:√1=1;√1+3=√4=2;√1+3+5=√9=3; √1+3+5+7=√16=4;(1)计算:√1+3+5+7+9+11=√62=6;(2)已知n 为正整数,通过观察并归纳,请计算 √1+3+5+7+9+11+⋯+(2n −1)=√n 2=n ;(3)应用上述结论,请计算√4+12+20+28+36+44+⋯+204.的值.√4×(1+3+5+7+⋯+51)=√4×262=2×26=52.181.(1)下列各数中,是分数的有哪些?(2)求下列各数的相反数与① √5−√6; ②√−643; ③ √3−1.73.相反数√6−√5 4 1.73−√3 绝对值√6−√5 4 √3−1.732.把下列各数填在相应的大括号里:-|-2|, 0, -1.04, −23,−√54, -(-3), π2,√2,√36,√93, 0.1010010001…(小数点后面每两个1之间依次多一个0).分数:{−23,−1.04}整数:{−|−2|,0,−(−3),√36}负有理数:{ −23,−1.04,−|−2|} 无理数:{−√54,π2,√2,√93,0.1010010001……} 3.实数a 、b 、c 在数轴上对应点的位置如图所示,以下结论中正确的是( C ).A.ac <0B. |a+b|=a-bC. | c-a| =a - cD. | a |>|b |4.实数a 在数轴上的位置如图,则a 、-a 、1a、√a 3的大小关系是( D ).A .a <−a <1a <√a 3B .−a <1a <a <√a 3C .1a <a <√a 3<-a D .1a <√a 3<a <−a 5.求证√2是无理数.假设√2不是无理数,则它一定可以用最简分数表示出来,则设√2=q p,所以(√2)2=q 2p 2,∴q 2=2p 2.∴p 2为偶数,q 2也为偶数,令q =2k,所以4k 2=2p 2,∴p 2=2k 2,∴P 2为偶数,则P 为偶数,q 也为偶数,所以q p可以化简,不是最简分数,所以假设不成立.6.已知a √33√2b √23+m √3+m c √33+m√2+m,其中m >0,那么a 、b 、c 的大小关系是( C ).A.a >b >cB.c >a >bC.a >c >bD.b >c >a 7.将下列循环小数化成分数:(1)0. 7 =79 (2)3.13 =4715 (3)0.23=2399 3.13 ×100−3.13 ×10=3.13 ×908.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B,点A 表示−√2. 设点B 所表示的数为m.(1)实数m 的值是2−√2; (2)求|m+1|+|m-1|的值;=4-2√2.(3)在数轴上还有C 、D 两点分别表示实数c 和d,且有|2c+d|与√d 2−16互为相反数,求2c-3d 的平方根.±4 解得d =±4,c =±2.191.化简:(1)√5−√5×(√5−2+2√5); (2)|1−√2|+|√2−√3|-|2−√3| =3√5−15 =2√3−3 2.化简:(1)|√10−3|+|√10−4|; (2)|√2+√3−2|-|4−√2−√3|. =1 =2√2+2√3−6 3.计算:(1)|√2−3|+√(−3)2-(-1)2019+√−273, (2)14√16+√25−√−273-|√5−3|.=4−√2 =6+√54.已知a −1a =√10,则a +1a的值是±√14.(a −1a )2=10,(a +1a)2−4=105.设x 、y 是有理数,并且x 、y 满足等式x 2+2y +√2y =17−4√2,求x+y 的值.{x 2+2y −17=0−(y +4)=0解得{y =−4x =5或{y =−4x =−5∴x +y 的值为1或-9.6.如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长:√643=4(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长;2√2 (3)把正方形ABCD 放到数轴上,如图2,使得A 与一1重合,求D 在数轴上表示的数.AD =2√2,点D 表示的数为−1−2√2.6.正方形网格中的每个小正方形边长都为1,每个小格的顶点称为格点,如图1中正方形的面积为5,则此正方形的边长为√5,我们通过画正方形可求出无理数的线段长度.(1)请在图2中画出一个面积为10的正方形,此正方形的边长为√10;(2)求出图3中A 、B 、C 点为顶点的三角形的面积和AB 的长度.AB =√57.若a 、b 满足3√a +5|b|=7,求s =2√a −3|b|的取值范围.联立{3√a +5|b|=7s =2√a −3|b|,可求得√a =21+5s 19,|b |=14−3s 19.从而{21+5s19≥014−3s 19≥0,解得−215≤s ≤143.CBA图3图2图1203.7 实数复习(一) 1.解答下列各题(1)分别求下列各数的平方根、算术平方根和立方根.① 3; ② 16; ③ 8; ④ √4. 平方根±√3 ±4 ±√8 ±√2 算数平方根√3 4 √8 √2立方根√33 √163 (2√23) 2 √2 3(2)把下列各数分别填入相应的集合里: 2, π3, 1.414, −√5,−34,√43,54√3,76, 1.3.有理数集合:{ 2, 1.414, −34,√43, 76, 1.3}; 无理数集合:{ π3,−√5,54√3};实数集合:{ 2, π3, 1.414, −√5,−34,√43,54√3,76, 1.3}2.填空:(1)√−73的相反数是√73;绝对值等于√3的数是±√3; (2)当x ≥32时,√2x −3有意义,当x <1时,√1−x 有意义;(3)当0≤x ≤1时,化简√x 2+|x-1|=1. 3.选择题:(1)a 、b 的位置如图所示,则下列各式中有意义的是( D ).A .√a +bB .√a −bC .√abD .√b −a (2)下列运算中,错误的有( D ). ① √125144=1512 . ② √(−4)2=±4. ③ √−22=−√22=−2; ④ √116+14=14+12=34.A.1个B.2个C.3个D.4个(3)下列命题中正确的是( D ).A.两个无理数的和一定是无理数B.正数的平方根一定是正数C.开立方等于它本身的实数只有1D.负数的立方根是负数(4)已知a =2−√5,b =√5−2,c =5−2√5,则a 、b 、c 的大小关系是( D ). A.a <c <b B.b <a <c C.c <a <b D.a <b <c 4.(1)已知:10+√3=x +y ,其中x 是整数,且0<y <1,求x-y 的相反数;x =11,y =√3−1,x −y =12−√3.∴x −y 的相反数为√3−12.(2)已知y =√3x −1−√1−3x +9x ,求√3x +2y −3的平方根.x =13,y =3,3x +2y −3=2,±√2215.细心观察图,认真分析各式,然后解答问题. (√1)2+1=2, S 1=√12;(√2)2+1=3. S 2=√22, (√3)2+1=4,S 3=√32;… …(1) 请用含有n(n 是正整数)的等式表示上述变化规律; 可推知(√n)2+1=n +1,s n =√n2(2)推算出OA 10的长;OA 10=√10(3)求出s 12+S 22+S 3+22…+S 102的值.(√12)2+(√22)2+(√32)2+⋯+(√102)2=14(1+2+3+⋯+10)=5546.已知|2015-a|+√a −2016=a,求a-20152的值.a −2016≥0,解得a −20152=20167.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数“,如:4=22-02,12=42-22,20=62-42,因此,4、12、20都是”神秘数“. (1)28和2012这两个数是“神秘数”吗?为什么? 28=82−62,2012=5042−5022,都是神秘数.(2)设两个连续偶数为2k+2和2k(其中k 取非负整数),由这两个连续偶数构成的神秘数是4的倍数吗?为什么?(2k +2)2−(2k )2=4(2k +1),是4的倍数.(3)两个连续奇数的平方和是神秘数吗?为什么? 不是,(2k +1)2−(2k −1)2=8k8.某同学在解答题目:“化简并求值1a+√1a2+a 2−2,其中a =15.”时,解答过程是: 1a +√1a 2+a 2−2=1a +√(a −1a )2=1a +a −1a =15. (1) 请判断他的解答是否正确;如果不正确,请写出正确的解答过程;他的解答不正确,原式=1a +√(a −1a )2=1a +|a −1a |,当a =15时,1a −a +1a =10−15=945(2)设S =√12+112+122+√12+122+132+√12+132+142+…+ √12+1n 2+1(n+1)2(n 为正整数).考察所求式子的结构特征: ① 先化简通项公式√1+1n 2+1(n+1)2;√1+1n 2+1(n+1)2=√(n 2+n+1)2[n (n+1)]2=√n (n+1)2+2n (n+1)+1[n (n+1)]2=√(n 2+n+1)2[n (n+1)]2=n 2+n+1n (n+1)=1+1n (n+1)② 求出与S 最接近的整数是多少S =(1+11×2)+(1+12×3)+⋯+(1+1n (n+1)) =n +1−12+12−13+13−14+⋯+1n −1n+1=n +1−1n+1当n =1时,S 最接近的整数是1和2;当n >1时,S 最接近的整数是n +1.2A 1223.8 实数复习(二) 1.计算:(1)√32−2√50+4√12−4√18=−5√2 (2)|√2+√3−2|+|−4+√2+√3|;=(3)[5-2×(√3−2)]-3×(√2+1).=6−2√3−3√22.计算:(1)−√425−√−81253; =0 (2)√5−√5×(√5−2×√5);=√5+5(3)√−8273−(−12)3×√(−4)2+√(−4)33×(12)2−√9=−256 ② 设a 、b 都是实数,且满是b =√a 2−1+√1−a 2+4a+1,求√2a −b 的值.解得a =1,b =2,√2a −b =03.已知实数a 、b 、c 在数轴上的位置如图所示,化简|-a|+|a+c|-|b-2a|+|b-c|的结果为( A ).A.-2bB. -bC. -2aD.a4.已知√m +n +5+√(m −2n )2=m-2n,且√2m −n −2=0,求m-n 的值.{m +n +5=02m −n −2=0解得{m =−1n =−4 m −n =35. 观察下列两个等式:2−13=2×13+1,5−23=5×23+1,给出定义如下:我们称使等式a-b =ab+1成立的一对有理数a 、b 为“共生有理数对”,记为(a, b),如:数对(2,13),(5,23),都是“共生有理数对”.(1)判断数对(-2,1),(3,12)是不是“共生有理数对”,写出过程;−2−1=−3,(−2)×1+1=−1,−3≠−1,故(-2,1)不是共生有理数对. (2)若(a,3)是“共生有理数对”,求a 的值;a −3=3a +1,解得a =−2.(3)若(m,n)是“共生有理数对”,则(-n,-m)是“共生有理数对”(填“是”或“不是”);说明理由;−n—(−m)=−n +m,−n ⋅(−m )+1=mn +1,m −n =mn +1即−n +m =mn +1,所以(-n,-m)是“共生有理数对” (4)请再写出一对符合条件的“共生有理数对”(4,35)(6,57).(注意:不能与题目中已有的“共生有理数对”重复)答案不唯一6.已知整数a 0,a 1,a 2,a 3,a 4,…满足下列条件:a 0=0,a 1=-|a 0+1|,a 2=-|a 1+2|,a 3=-|a 2+3|,…,以此类推,则a 2018的值为( C ).A.-1007B.-1008C.-1009D.-2016 a 0=0,a 1=−1,a 2=−1,a 3=−2,a 4=−2,a 5=−3,a 6=−3,由此可得a 2n−1=−na 2n =−n ,a 2018=−10097.设a 、b 是两个不相等的有理数,求证:+√2b +√2必为无理数.设+√2b +√2=A,若A 为有理数,去分母得(A-1)√2=a −Ab.当A=1时,则a =b.与已知矛盾,所以A≠1,故原式可化为√2=a−Ab A−1,由于a,b,A,1均为有理数,所以上述等式右边为有理数,而左边√2是无理数,故等式不可能成立,所以+√2b +√2是无理数.。
实数的混合运算(培优)含答案
精品文档2017.10.08 实数|a 2b| |c 2b|的结果是答案:a+c111■ 、c03、观察下面一列数,1,2, 3,4, 5,6, 7L将这列数排成下列形式,按照上述规律排下去,那么第从左边第7个数是 _____________ 。
答案:—107-12-3 4-5 6 -7 810 -L1 12 -13 14 -15 1S4、下列说法错误的是()A、2是8的立方根B、4是64的立方根C、1是9的平方根D、4是256的算术平方根3 9答案:B25、( 8)的立方根是()A、一2 B、 2 C、4 D、4答案:C6、若b是a的立方根,那么下面结论正确的是()A、b也是a的立方根B、b是a的立方根C、b也是a的立方根D、b都是a的立方根答案:C7、点A、B分别是数3、1在数轴上对应的点,把线段2AB沿数轴向右移动到A'B',且线段A'B'的中点对应的数是3,则点A'对应的数是()131 A、0B、—C、1-D、4-244答案:C8、已知mn0 且1 m 11 1n 0 m n 1,那么n,m,— ,n 的大小关系是()1、一组按一定规律排列的式子如下:52 aa ,2a8,(a0),则第n个式子是11行2、已知数a,b,c在数轴上的位置如图所示,化简9、/6的算术平方根是 ________________ , 327的平方根是 _________________ 。
(2015秋哂書陵市校级期末)帀的算术平方根杲],护?的平方根是二匹10、已知一个正数 x 的平方根是3a 2与2 5a ,则a = __________ , x 的立方根为 _________鞘絆)・.•一个正数耳的平方根是%亠2与2一%・m 十(2-Sa> =5-• a —?. (2)当尸2时, 3a+2=3x2+2-S , 3C=&^=64-咒这个数的立方根是丄・11、若a,b 均为正整数,且a ,i1,b 3 9,则a b 的最小值是( )A 、6 答案:BC 、 no *血异号,由 l-in>l-ii>O>ii-in-l -可知 mVO ,0<n<H 假设滸舍兼件的m-U ? a-0 2C 、8故迭D ,•二正整麵的蹑小值为4几正整数b的最小值为弗■'■ a^b的最小值是3+4=--魏遥:B ”2 212、已知:x 2的平方根是2, 2x y 7的立方根是3,则x y的算术平方根为______________________v s-2的平方根是二茹:-x-2=4,・"・6,2x-y—7的立方根是3二2x-y+7=27耙兀的值代入解得:y=S,”+让2亠$2的算朮平方根掏:0---------- 413、已知实数x, y满足J2x 16 | x 2y 4| 0,则2x 一v的立方根为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教七上数学第三章:实数培优训练
一.选择题:
1.下列各数中无理有( )
10 π 14159.3 81
3
27 32+
73 169
121
A. 2个
B. 3个
C. 4个
D. 5个
2.①64的立方根是4±;②x x =33;③64的平方根为8±;④()4832
±=±
其中正确的有( )个
A. 0
B. 1
C. 2
D. 3 3. 的值等于则若n m n m --==,3,23( ) A. 31 B. 31- C.
332+ D. 332-
4.计算:=---+-π14.35351( )
A.π+-5286.0
B. π-14.5
C. π+-14.752
D. π+-14.1
的整数有而小于大于53.5-( )
A. 2,1,0,1,2--
B. 3,2,1,0,1-
C. 3,2,1,0,1,2--
D. 2,1,0,1-
则下列各式正确的是若,0.6>a ( )
A. a a >
B.
a a >1 C. a
a 11< D. a a < 的大小关系是则若c
b a
c b a ,,2,3),3(22.72--=-=-⨯+-=( )
A. c a b >>
B. c a b >>
C. c b a >>
D. b c a >>
=-=+
x
x x x 1
,71.8则已知( ) A.
3 B. 3- C. 3± D. 5±
9.一个自然数的算术平方根是a ,则与这个自然数相邻的后续自然数的平方根是( ) A.
1+a B.
12+a C. 1+±a D. 12+±a
10.若1212
=a ,1692
=b ,且0<ab ,则b a -的值为( ) A.24± B.24- C.24 D.2±
二.填空题:
________
,
,
2
5
2
10
.
11的值是
那么
是整数
且
如果x
x
x<
<
-
12.如果32
x-和56
x+是一个数的平方根,那么这个数是____________
13、若225
a=,3
=
b,则b
a+的值是______________
14. 2015
3的未位数字是_____________
15.有一个数值转换器,原理如图所示:当输入错误!未找到引用源。
的值为64时,输出y的值等于______
16.若=
=3
3,
512x
x则______________
3
17.50______,________
的整数部分为小数部分为
_______
,4
9
9
.
18=
+
+
-
+
-
=y
x
x
x
y则
已知
19.已知x是10的整数部分,y是10的小数部分,则()1
10-
-x
y的平方根为_______
()()()
()12
1
2
2
2
3
1
2
1
1
2
2
2
1
1
2
2
2
2
2
3
:
2
2
3
.
20
2
2
2
2
-
=
-
=
-
∴
-
=
+
⨯
⨯
-
=
+
⨯
⨯
-
=
-
-
可以这样来操作
我们化简
7212__________
-=
根据上面的方法化简
三.解答题:
21.将下列各数填入相应的集合
3,-3,0,
1
2
,
3
5
-,3,5
-,16,7
3+,π,
π
5
,257
有理数集合()
无理数集合()
正整数集合()
分数集合()
22.把所有正奇数从小到大排列,并按如下规律分组:
(1),(3,5,7), (9,11,13,15,17), (19,21,23,25,27,29,31),…, 现有等式Am=(i ,j )表示正奇数m 是第i 组第j 个数(从左往右数),如A7=(2,3),求
的值2015A
23计算下列各式:(1)0
2
1(1)()
52
π--+--;
(2)
))
2014
2015
2
2
-
(3)287512+-⨯;
(4)(
)
3
26
32)
23(---.
24.如图,有两个边长是2的正方形.
(1)将这两个正方形适当剪拼成一个正方形,请画出示意图. (2)求拼出的正方形的边长.
25.阅读下列材料:
)210321(31
21⨯⨯-⨯⨯=⨯,
)321432(31
32⨯⨯-⨯⨯=⨯,
)432543(3
1
43⨯⨯-⨯⨯=⨯,
由以上三个等式相加,可得.205433
1
433221=⨯⨯⨯=
⨯+⨯+⨯ 读完以上材料,请你计算下列各题:
(1)1110433221⨯++⨯+⨯+⨯ (写出过程); (2))1(433221+⨯++⨯+⨯+⨯n n = ; (3)987543432321⨯⨯++⨯⨯+⨯⨯+⨯⨯ = .
26. 若[]x 表示不超过的最大整数(如[]23,233
π⎡⎤=-=-⎢⎥⎣
⎦
等),
求...212323201420132014+++⎢⎢⎢-⨯-⨯-⨯⎣⎣⎣的值
浙教七上数学第三章:实数培优训练答案
题号 1 2 3 4 5 6 7 8 9 10 答案 B B A
B
D
A
A
C
C
A
二.填空题: 11. 1±, 0 12. 2
7
13. 2±或8± 14. 7 15. 22
三.解答题:
21.解:有理数集合(3, -3, 0, 12, 3
5
-, 16)
无理数集合(3, 5-, 73+, π, 5
π
, 257)
正整数集合(3, 16 ) 分数集合(
12, 3
5
- )
22.解:2015是第
10082
1
2015=+个数, 设2015在第n 组,则1+3+5+7+…+(2n ﹣1)≥1008,
即
10082
)
121(≥-+n , 解得:1008≥n ,
当n =31时,1+3+5+7+…+61=961; 当n =32时,1+3+5+7+…+63=1024; 故第1008个数在第32组, 第1024个数为:2×
1024﹣1=2047, 第32组的第一个数为:2×962﹣1=1923, 则2015是)12
1923
2015(
+-=47个数.
故A 2015=(32,47).
(
)(
)(
)(
)
()()()
()()(
)
2014
2014
120142
231:1453233
2:32
32
2312323
3353222302362
432
5262653
=+-+-=-⎡⎤=+--=--=-⎢⎥⎣⎦
⨯-+=-⨯=---
=-+-=-解原式解原式解:原式=2
解:原式
24.解:(1)画出的示意图如下:
(2)设拼出的正方形边长为x ,则222
+=x , 即2=x
()()()()25.1:12233 4 (1011)
111
123012234123 (101112910113331)
1011124403⨯+⨯+⨯⨯=
⨯⨯-⨯⨯+⨯⨯-⨯⨯++⨯⨯-⨯⨯=⨯⨯⨯=解 ()()()213
12++n n n
()()
()()1260109874
1
98761098741 (4321543241)
321043214
1987...5434323213=⨯⨯⨯⨯=⨯⨯⨯-⨯⨯⨯++⨯⨯⨯-⨯⨯⨯+
⨯⨯⨯-⨯⨯⨯=⨯⨯++⨯⨯+⨯⨯+⨯⨯
22226.1,122212212+==+∴=⎢⎥-⨯-⨯⎣⎦
解
3661,1323323+==+∴=⎢⎥-⨯-⨯⎣⎦。