八年级上学期数学9月月考试卷第5套真题
八年级(上)第五次月考数学试卷(带答案)
八年级(上)月考数学试卷(五)一、选择题(共10小題,计30分)1.(3分)在实数0.3,0,,﹣,,,0.2121121112…(相邻的两个2之间的1的个数逐次增加1)中,无理数的个数是()A.2B.3C.4D.52.(3分)下列满足条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:53.(3分)平面直角坐标系中,点P的坐标为(3,﹣2),若点Q与点P关于x 轴对称,则线段PQ的长度为()A.2个单位B.3个单位C.4个单位D.6个单位4.(3分)下列说法正确的是()A.点P(1,﹣3)在笫二象限B.已知点A(﹣3,4),点B(﹣3,2),则AB∥x轴C.点M(3,﹣2)到y轴的距离为2个单位D.已知点A(1,2),点B(﹣2.﹣1),则AB=35.(3分)函数y=﹣x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)与的关系是()A.互为相反数B.互为倒数C.相等D.不能确定7.(3分)若正比例函数y=2x的图象经过点A(m,3m+1),则m的值为()A.1B.﹣1C.D.﹣8.(3分)甲、乙两艘客轮同时离开港口,航行的速度都是40m/min,甲客轮15min 到达点A,乙客轮用20min到达B点,若A、B两点的直线距离为1000m.甲客轮沿北偏东30°的方向航行,则乙客轮的航行方向可能是()A.南偏东60°B.南偏西30°C.北偏西30°D.南偏西60°9.(3分)如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则以下说法错误的是()A.若通话时间少于120分,则A方案比B方案便宜20元B.若通话时间超过200分,则B方案比A方案便宜12元C.若通讯费用为60元,则B方案比A方案的通话时间多D.若两种方案通讯费用相差10元,则通话时间是145分或185分10.(3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16B.17C.18D.19二、填空题(共6小题,计18分)11.(3分)如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A 的对称点为C,则点C所表示的数为.12.(3分)如图,有一段楼梯AC长为15米,由于这段楼梯较陡,为了方便行人通行,现准备新修一条楼梯AD.已知AD=20米,CD=7米,则楼梯的高度AB为米.13.(3分)在平面直角坐标系中,点A(3,m)关于x轴的对称点B在直线y=﹣x+1上,则m的值为.14.(3分)如果点A(m,n)、B(m+1,n﹣3)均在一次函数y=kx+b(k≠0)的图象上,那么k的值为.15.(3分)如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A2015的坐标为.16.(3分)如图,在平面直角坐标系中,已知点A(﹣1,3)和点B(2,2),若四边ABCD是正方形,则点C的坐标为.三、解答题(共6小题,计52分)17.(12分)计算:(1)2+3﹣(2)(﹣)÷(3)+6﹣2x(4)(1﹣2)(1+2)﹣(1+2)2.18.(5分)已知a+b=﹣3,ab=2,求代数式+的值.19.(6分)在平面直角坐标系中,△ABC的顶点A(2,4),B(﹣3,﹣2),C (3,﹣1)(1)在图中画出△ABC;(2)在图中画出△ABC关于y轴对称的△DEF(A与D对应,B与E对应,C与F对应);并写出D、E、F的坐标.20.(7分)小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数关系式;(2)已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是多少元?21.(10分)如图,在平面直角坐标系中,点P的坐标为(3,2),若直线y=﹣2x﹣4与x轴、y轴分别交于A、B两点,连接PA、PB.(1)求点A、点B的坐标;(2)求△PAB的面积.22.(12分)如图,在平面直角坐标系中,长方形OABC的顶点A,C分别在x 轴、y轴的正半轴上,点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E.(1)证明:EO=EB;(2)求点E的坐标;(3)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P 的坐标;(4)点M是OB上任意一点,点N是OA上任意一点,是否存在点M、N,使得AM+MN最小?若存在,求出其最小值;若不存在,请说明理由.参考答案与试题解析一、选择题(共10小題,计30分)1.【解答】解:,﹣,0.2121121112…(相邻的两个2之间的1的个数逐次增加1)是无理数,故选:B.2.【解答】解:A、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形,故正确;B、因为其符合勾股定理的逆定理,所以是直角三角形,故正确;C、因为其符合勾股定理的逆定理,所以是直角三角形,故正确;D、因为根据三角形内角和公式得三个角中没有90°角,所以不是直角三角形,故不正确.故选:D.3.【解答】解:如图所示:线段PQ的长度为:4个单位.故选:C.4.【解答】解:A、点P(1,﹣3)在笫二象限,说法错误,应在第四象限,故此选项错误;B、已知点A(﹣3,4),点B(﹣3,2),則AB∥x轴,说法错误,应该是AB∥y轴,故此选项错误;C、点M(3,﹣2)到y轴的距离为2个单位,说法错误,应该是到y轴的距离为3个单位,故此选项错误;D、已知点A(1,2),点B(﹣2.﹣1),如图所示:则AB=3,正确.故选:D.5.【解答】解:由已知得,k=﹣1<0,b=2>0,∴函数y=﹣x+2的图象经过一、二、四象限,不过第三象限.故选:C.6.【解答】解:∵(2+)(2﹣)=1,∴2+与的关系是互为倒数,故选B.7.【解答】解:∵正比例函数y=2x的图象经过点A(m,3m+1),∴3m+1=2m,解得:m=﹣1.故选:B.8.【解答】解:如图:∵甲乙两艘客轮同时离开港口,航行的速度都是每分钟40m,甲客轮用15分钟到达点A,乙客轮用20分钟到达点B,∴甲客轮走了40×15=600(m),乙客轮走了40×20=800(m),∵A、B两点的直线距离为1000m,∴6002+8002=10002,∴∠AOB=90°,∵甲客轮沿着北偏东30°的方向航行,∴乙客轮的航行方向可能是南偏东60°,故选:A.9.【解答】解:A方案的函数解析式为:y A=;B方案的函数解析式为:y B=;当B方案为50元,A方案是40元或者60元时,两种方案通讯费用相差10元,将y A=40或60代入,得x=145分或195分,故D错误;观察函数图象可知A、B、C正确.故选:D.10.【解答】解:如图,设正方形S1的边长为x,∵△ABC和△CDE都为等腰直角三角形,∴AB=BC,DE=DC,∠ABC=∠D=90°,∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD,∴AC=BC=2CD,又∵AD=AC+CD=6,∴CD==2,∴EC2=22+22,即EC=2;∴S1的面积为EC2=2×2=8;∵∠MAO=∠MOA=45°,∴AM=MO,∵MO=MN,∴AM=MN,∴M为AN的中点,∴S2的边长为3,∴S2的面积为3×3=9,∴S1+S2=8+9=17.故选:B.二、填空题(共6小题,计18分)11.【解答】解:如图,∵数轴上A,B两点表示的数分别为﹣1和,∴AB=﹣(﹣1)=+1,∵点B关于点A的对称点为C,∴AC=+1,∴点C所表示的数为﹣(+1)﹣1=﹣﹣2.故答案为:﹣﹣2.12.【解答】解:设BC=x,则在Rt△ACB和Rt△ADB中,AB2=AD2﹣BD2,AB2=AC2﹣BC2,故202﹣(7+BC)2=152﹣BC2,解得:BC=9,∴AB2=152﹣92=144,∴AB=12.故答案为:12.13.【解答】解:∵点A的坐标为(3,m),且点A、B关于x轴对称,∴点B的坐标为(3,﹣m),又∵点B在直线y=﹣x+1上,∴﹣m=﹣3+1=﹣2,∴m=2.故答案为:2.14.【解答】解:∵点A(m,n)、B(m+1,n﹣3)均在一次函数y=kx+b(k≠0)的图象上,∴,解得k=﹣3.故答案为:﹣3.15.【解答】解:经过观察可知A2015在第一象限,∵2015÷4=503…3,∴第一个正方形A4(1,﹣1),第二个正方形A8(2,﹣2),第三个正方形A12(3,﹣3),…∴第504个正方形顶点A2016(504,﹣504).∴第503个正方形第三个顶点A2015(504,504).故答案为:(504,504).16.【解答】解:过A、C两点作y轴的平行线与过点B平行于x轴的直线交于点F、E两点,过点B作x轴的垂线交过点C平行于x轴的直线于点M.∵四边形ABCD,四边形ABC′D′是正方形,∴AB=CB,∠ABC=∠FBM,∴∠ABF=∠CBM,在△ABF和△CBM中,∴△ABF≌△CBM,∴CM=AF=1,BF=BM=3,∴点C坐标(1,﹣1),同理可得点C′坐标(3,5).故答案为(1,﹣1)和(3,5).三、解答题(共6小题,计52分)17.【解答】解:(1)原式=2+6﹣4=4;(2)原式=•﹣=﹣=﹣;(3)原式=2+3﹣2=3;(4)原式=1﹣12﹣(1+4+12)=﹣11﹣13﹣4=﹣24﹣4.18.【解答】解:∵a+b=﹣3,ab=2,∴a,b同负,∴+=﹣=.19.【解答】解:(1)如图所示;(2)如图所示,D(﹣2,4),E(﹣3,﹣1),F(3,﹣2).20.【解答】解:(1)由题意,得当0<x≤1时,y=22+6=28;当x>1时y=28+10(x﹣1)=10x+18;∴y=;(2)当x=2.5时,y=10×2.5+18=43.∴这次快寄的费用是43元.21.【解答】解:(1)∵直线y=﹣2x﹣4与x轴、y轴分别交于A、B两点,令y=0,即﹣2x﹣4=0,解得x=﹣2,令x=0即y=﹣4,∴A(﹣2,0),B(0,﹣4).(2)设直线PB为y=kx+b,由题意解得,∴直线PB为y=2x﹣4,∴点C坐标(2,0),=S△PAC+S△ACB=×4×2+×4×4=12.∴S△PAB22.【解答】解:(1)∵将该长方形沿OB翻折,点A的对应点为点D,OD与BC 交于点E.∴∠DOB=∠AOB,∵BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠DOB,∴EO=EB,(2)由(1)有,EO=EB,∵长方形OABC的顶点A,C分别在x轴、y轴的正半轴上,点B的坐标为(8,4),设OE=x,则DE=8﹣x,在Rt△BDE中,BD=4,根据勾股定理得,DB2+DE2=BE2,∴16+(8﹣x)2=x2,∴x=5,∴BE=5,∴CE=3,∴E(3,4),(3)点B的坐标为(8,4),∴直线OB解析式为y=x,∵点P是直线OB上的任意一点,∴设P(a,a),∵O(0,0),C(0,4),∴OC=4,PO2=a2+(a)2=a2,PC2=a2+(4﹣a)2,∵△OPC是等腰三角形①当PO=PC时,∴PO2=PC2,∴a2=a2+(4﹣a)2,∴a=4,∴P(4,2),②当PO=OC时,∴PO2=OC2,∴a2=16,∴a=±,∴P(,)或P(﹣,﹣),③当PC=OC时,∴PC2=OC2,∴a2+(4﹣a)2=16,∴a=0(舍)或a=,∴P(,);∴满足条件的点P的坐标为(4,2)或(,)或(,)或(﹣,﹣),(4)如图,过点D作OA的垂线交OB于M,交OA于N,此时的M,N是AM+MN的最小值的位置,求出DN就是AM+MN的最小值,由(2)有,DE=3,BE=5,BD=4,∴根据面积有DE×BD=BE×DG,∴DG==,由题意有,GN=OC=4,∴DN=DG+GN=+4=.即:AM+MN的最小值为.。
八年级上册数学9月份月考试题(含解析)
八年级(上)月考数学试卷(9月份)一、选择题(3分×8=24分)1.下列图形是轴对称图形的是()A.B.C.D.2.下列说法正确的是()A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.已知△ABC≌△DEF,且AB=4,BC=5,AC=6,则DE的长为()A.4 B.5 C.6 D.不能确定4.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙5.下列条件中,能判定两个三角形全等的是()A.有三个角对应相等B.有两条边对应相等C.有两边及一角对应相等D.有两角及一边对应相等6.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD7.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个二、填空题(3分×10=30分)9.正方形是轴对称图形,它共有条对称轴.10.小明照镜子的时候,发现T恤上的英文单词在镜子中呈现“”的样子,请你判断这个英文单词是.11.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是.12.把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为米.13.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.14.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.15.如图,AB∥CD,AD∥BC,CE=AF,则图中全等三角形有对.16.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.17.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC=°.18.如图,AD是△ABC的角平分线,DF⊥AB,垂足为点F,DE=DG.若△ADG 和△AED的面积分别为50和30,则△EDF的面积为.三、简答题19.请你在所给的网格中画出四边形A'B'C'D',使四边形A'B'C'D'和四边形ABCD 关于直线l对称.20.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.21.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.22.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.23.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.24.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l 异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.25.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:EC=BF.26.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE ⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,AD=5,BE=2,求线段DE的长.27.如图,在正方形ABCD中,AB=BC=CD=AD,∠BAD=∠B=∠C=∠D=90°,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF且AG=AB,垂足为G,则:(1)△ABF与△AGF全等吗?说明理由;(2)求∠EAF的度数;(3)若AG=4,△AEF的面积是6,求△CEF的面积.参考答案与试题解析一、选择题(3分×8=24分)1.下列图形是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选A.2.下列说法正确的是()A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【考点】全等三角形的判定;等边三角形的性质.【分析】根据全等三角形的判定方法,此题应采用排除法,对选项逐个进行分析从而确定正确答案.【解答】解:A、全等三角形的周长相等,但周长相等的两个三角形不一定全等,故本选项错误;B、全等三角形的面积相等,但面积相等的两个三角形不一定全等,故本选项错误;C、正确,符合全等三角形的定义;D、边长不相等的等边三角形不全等,故本选项错误.故选C.3.已知△ABC≌△DEF,且AB=4,BC=5,AC=6,则DE的长为()A.4 B.5 C.6 D.不能确定【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等求解即可.【解答】解:∵△ABC≌△DEF,∴DE=AB=4.故选A.4.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选B.5.下列条件中,能判定两个三角形全等的是()A.有三个角对应相等B.有两条边对应相等C.有两边及一角对应相等D.有两角及一边对应相等【考点】全等三角形的判定.【分析】熟练运用判定方法判断.做题时要按判定全等的方法逐个验证.【解答】解:有三个角对应相等,不能判定全等,A错误;有两条边对应相等,缺少条件不能判定全等,B错误;有两边及一角对应相等不能判定全等,C错误;有两角及一边对应相等可判断全等,符合AAS或ASA,是正确的.故选D.6.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD【考点】全等三角形的性质.【分析】根据全等三角形的性质得出DF=AC,∠E=∠B,∠EDF=∠ACB,FD=AC,推出EF∥AB,AC∥DF,EC=BD,即可得出答案.【解答】解:∵△ABC≌△EFD,∴DF=AC,∠E=∠B,∠EDF=∠ACB,ED=BC;∴EF∥AB,AC∥DF,FD﹣CD=BC﹣DC,∴EC=BD,故选项A、B、D正确,选项C错误;故选C.7.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°【考点】全等三角形的性质.【分析】本题根据全等三角形的性质并找清全等三角形的对应角即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB 的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C二、填空题(3分×10=30分)9.正方形是轴对称图形,它共有4条对称轴.【考点】轴对称图形.【分析】根据对称轴的定义,直接作出图形的对称轴即可.【解答】解:∵如图所示,正方形是轴对称图形,它共有4条对称轴.故答案为:4.10.小明照镜子的时候,发现T恤上的英文单词在镜子中呈现“”的样子,请你判断这个英文单词是APPLE.【考点】镜面对称.【分析】注意观察,照镜子看到的字母是左右颠倒,问题可求.【解答】解:小明照镜子实际上看到的是APPLE.故答案为:APPLE.11.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是三角形稳定性.【考点】三角形的稳定性.【分析】将其固定,显然是运用了三角形的稳定性.【解答】解:一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.12.把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为0.05米.【考点】全等三角形的应用.【分析】连接AB,A′B′,根据O为AB′和BA′的中点,且∠A′OB′=∠AOB即可判定△OA′B′≌△OAB,即可求得A′B′的长度.【解答】解:连接AB,A′B′,O为AB′和BA′的中点,∴OA′=OB,OA=OB′,∵∠A′OB′=∠AOB∴△OA′B′≌△OAB,即A′B′=AB,故A′B′=5cm,5cm=0.05m.故答案为0.05.13.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=11.【考点】全等三角形的性质.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.14.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=120°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠C的度数,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠C=120°,故答案为:120°.15.如图,AB∥CD,AD∥BC,CE=AF,则图中全等三角形有3对.【考点】全等三角形的判定.【分析】根据两组对边分别平行的四边形是平行四边形可得四边形ABCD是平行四边形,进而可得AD=BC,DC=AB,然后根据平行线的性质可得∠DAF=∠BCE,再证明△ADF≌△CBE,从而可得DF=BE,然后再证明△DFC≌△BEA,△ADC≌△CBA.【解答】解:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴AD=BC,DC=AB,∵AD∥BC,在△ADF和△CBE中,∴△ADF≌△CBE(SAS),∴DF=BE,∵CE=AF,∴AE=CF,在△DFC和△BEA中,∴△DFC≌△BEA(SSS),在△ADC和△CBA中,∴△ADC≌△CBA(SSS),全等三角形共3对,故答案为:3,.16.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.17.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC=59°.【考点】全等三角形的判定与性质.【分析】先由条件可以得出△ACE≌△ADE,就可以得出∠CAE=∠DAE,再根据直角三角形的性质就可以求出∠CAE的值,从而得出结论.【解答】解:∵DE⊥AB,∴∠ADE=90°.∵∠C=90°,∴∠C=∠ADE.在Rt△ACE和Rt△ADE中,,∴Rt△ACE≌Rt△ADE(HL).∴∠CAE=∠DAE.∵∠B=28°,∴∠BAC=62°,∴∠AEC=59°故答案为:59°.18.如图,AD是△ABC的角平分线,DF⊥AB,垂足为点F,DE=DG.若△ADG 和△AED的面积分别为50和30,则△EDF的面积为7.5.【考点】角平分线的性质.【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.等可得S△EDF【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),=S△GDH,设面积为S,∴S△EDF同理Rt△ADF≌Rt△ADH,=S△ADH,∴S△ADF即30+S=50﹣S,解得S=7.5.故答案为7.5.三、简答题19.请你在所给的网格中画出四边形A'B'C'D',使四边形A'B'C'D'和四边形ABCD 关于直线l对称.【考点】作图-轴对称变换.【分析】由作出已知点关于直线l的对称点,再顺次连接这些对称点,就得到原图形的轴对称图形.【解答】解:如图所示,四边形A'B'C'D'和四边形ABCD关于直线l对称.∴四边形A'B'C'D'即为所求.20.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【考点】全等三角形的判定与性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.21.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【考点】全等三角形的判定与性质.【分析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.22.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.【考点】全等三角形的判定与性质.【分析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB 全等,从而可以证得结论.【解答】证明;∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.23.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.【考点】全等三角形的判定与性质;平行线的性质.【分析】根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出△ADE≌△CFE,根据全等三角形的性质,得出AD=CF,根据AB=6,FC=4,即可求线段DB的长.【解答】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中∴△ADE≌△CFE(AAS),∴AD=CF=4,∵AB=6,∴DB=AB﹣AD=6﹣4=2.24.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l 异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.【考点】全等三角形的判定与性质.【分析】(1)先证明BC=EF,再根据SSS即可证明.(2)结论AB∥DE,AC∥DF,根据全等三角形的性质即可证明.【解答】(1)证明:∵BF=CE,∴BF+FC=FC+CE,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).(2)结论:AB∥DE,AC∥DF.理由:∵△ABC≌△DEF,∴∠ABC=∠DEF,∠ACB=∠DFE,∴AB∥DE,AC∥DF.25.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:EC=BF.【考点】全等三角形的判定与性质.【分析】首先根据角间的关系推出∠EAC=∠BAF.再根据边角边定理,证明△EAC ≌△BAF.最后根据全等三角形的性质定理,得知EC=BF.【解答】证明:∵AE⊥AB,AF⊥AC⇒∠EAB=90°=∠FAC⇒∠EAB+∠BAC=∠FAC+∠BAC又∵∠EAC=∠EAB+∠BAC,∠BAF=∠FAC+∠BAC∴∠EAC=∠BAF在△EAC与△BAF中,⇒△EAC≌△BAF(SAS)∴EC=BF26.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE ⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,AD=5,BE=2,求线段DE的长.【考点】旋转的性质;全等三角形的判定与性质;勾股定理.【分析】(1)①由已知推出∠ADC=∠BEC=90°,因为∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根据AAS即可得到答案;②由①得到AD=CE,CD=BE,即可求出答案;(2)与(1)证法类似可证出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案.【解答】(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);②证明:由(1)知:△ADC≌△CEB,∴AD=CE,CD=BE,∵DC+CE=DE,∴AD+BE=DE;(2)证明:∵BE⊥EC,AD⊥CE,∴∠ADC=∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=EC﹣CD=AD﹣BE=5﹣2=3.27.如图,在正方形ABCD中,AB=BC=CD=AD,∠BAD=∠B=∠C=∠D=90°,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF且AG=AB,垂足为G,则:(1)△ABF与△AGF全等吗?说明理由;(2)求∠EAF的度数;(3)若AG=4,△AEF的面积是6,求△CEF的面积.【考点】正方形的性质;全等三角形的判定;等腰三角形的性质.【分析】(1)根据HL可得出△ABF≌△AGF.(2)只要证明∠BAF=∠GAF,∠GAE=∠DAE;所以可求∠EAF=45°.(3)设FC=x,EC=y,则BF=4﹣y,DE=4﹣y,构建方程组,求出xy即可解决问题.【解答】解:(1)结论:△ABF≌△AGF.理由:在Rt△ABF与Rt△AGF中,,∴△ABF≌△AGF,(2)∵△ABF≌△AGF∴∠BAF=∠GAF,同理易得:△AGE≌△ADE,有∠GAE=∠DAE;即∠EAF=∠EAD+∠FAG=∠BAD=45°,故∠EAF=45°.=×EF×AG,AG=4(3)∵S△AEF∴6=×EF×AG,∴EF=3,∵BF=FG,EG=DE,AG=AB=BC=CD=4,设FC=x,EC=y,则BF=4﹣y,DE=4﹣y,∵BF+DE=FG+EG=EF=3,∴4﹣x+4﹣y=3,∴x+y=5 ①在Rt△EFC中,∵EF2=EC2+FC2,∴x2+y2=32②①2﹣②得到,2xy=16,=xy=4.∴S△CEF。
2024-2025学年初中八年级上学期9月月考数学试题及答案(人教版)
人教版数学2024-2025学年八年级上学期数学9月月考模拟试卷(全国通用)一.选择题(共10小题,满分30分,每小题3分)1. 下列各组图形中,属于全等图形的是( )A. B.C. D.2. 以下列数据为三边长能构成三角形的是( )A. 1,2,3B. 2,3,4C. 14,4,9D. 7,2,4 3. 下列各组图形中,BD 是ABC 的高的图形是( )A B.C. D.4. 已知三角形两边的长分别是3和5,则这个三角形第三边的长可能为( )A. 1B. 2C. 7D. 95. 两个同样大小的直角三角板按如图所示摆放,其中两条一样长的直角边交于点M ,另一直角边BE ,CD 分别落在PAQ ∠的边AP 和AQ 上,且AB AC =,连接AM ,则在说明AM 为PAQ ∠的平分线的过程中,理由正确的是( )A. SASB. SSAC. HLD. SSS.6. 一个多边形的内角和是720°,这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形7. 如图,已知ABC 六个元素,则下面甲、乙、丙三个三角形中,和ABC 全等的图形是( )A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙8. 如图在BCD △中,A 为BD 边上一点,AE CD ∥,AC 平分BCD ∠,235∠=°,60D ∠=°,则B ∠=( )A 50° B. 45° C. 40° D. 25°9. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形10. 如图所示,△ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD 、BE 、CF 交于一点G ,BD =2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是( )A. 25B. .30C. 35D. 40二.填空题(共6小题,满分18分,每小题3分)11. 如图,已知AB ∥CF ,E 为AC 的中点,若FC =6cm ,DB =3cm ,则AB =________.12. 如图,A B C D E F ∠+∠+∠+∠+∠+∠=______.的.13. 一个n 边形内角和等于1620°,则边数n 为______.14. 如图,在ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC 的面积等于24cm ,则阴影部分图形面积等于_____2cm .15. 已知,如图ABC ,点D 是ABC 内一点,连接BD CD ,,则BDC ∠与12A ∠∠∠,,之间的数量关系为______.16. △ABC 中,AD 是BC 边上的高,∠BAD=50°,∠CAD=20°,则∠BAC=___________.三.解答题(共9小题,满分72分)17. 如果一个三角形一边长为9cm ,另一边长为2cm ,若第三边长为x cm .(1)求第三边x 的范围;(2)当第三边长为奇数时,求三角形周长.18. 已知:如图,点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,BF EC =.求证:ABC DEF ≌△△.的的19. 如图,CE 是ABC 外角ACD ∠的平分线,且CE 交BA 的延长线于点E ,42B ∠=°,25E ∠=°,(1)求ECD ∠的度数;(2)求BAC ∠的度数.20. 将两个三角形纸板ABC 和DBE 按如图所示的方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,ACDE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=°,求∠21. 如图,在44×的正方形网格中,点A ,B ,C 均为小正方形的顶点,用无刻度的直尺作图,不写作法,保留作图痕迹;(1)在图1中,作ABD △与ABC 全等(点D 与点C 不重合);(2)在图2中,作ABC 的高BE ;(3)在图3中,作AFC ABC ∠=∠(点F 为小正方形的顶点,且不与点B 重合); (4)在图3中,在线段AC 上找点P ,使得BPC ABC ∠=∠.22. (1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:在ABC 中,9AB =,5AC =,求BC 边上的中线AD 的的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD 到Q ,使得DQ AD =;②再连接BQ ,把2AB AC AD 、、集中在ABQ 中;根据小明的方法,请直接写出图1中AD 的取值范围是 .(2)写出图1中AC 与BQ 的位置关系并证明.(3)如图2,在ABC 中,AD 为中线,E 为AB 上一点,AD 、CE 交于点F ,且AE EF =.求证:AB CF =.23. 如图,在四边形ABCD 中,60120AD AB DC BC DAB DCB ==∠=°∠=°,,,,E 是AD 上一点,F 是AB 延长线上一点,且DE BF =.(1)求D ∠的度数;(2)求证:CE CF =;(3)若G 在AB 上且60ECG ∠=°,试猜想DE EG BG ,,之间的数量关系,并证明.24. 在ABC 中,90ACB ∠=°,分别过点A 、B 两点作过点C 的直线m 的垂线,垂足分别为点D 、E . (1)如图,当AC CB =,点A 、B 在直线m 的同侧时,猜想线段DE ,AD 和BE 三条线段有怎样的数量关系?请直接写出你的结论:__________;(2)如图,当AC CB =,点A 、B 在直线m 的异侧时,请问(1)中有关于线段DE 、AD 和BE 三条线段的数量关系的结论还成立吗?若成立,请你给出证明;若不成立,请给出正确的结论,并说明理由.(3)当16cm AC =,30cm CB =,点A 、B 在直线m 的同侧时,一动点M 以每秒2cm 的速度从A 点出发沿A →C →B 路径向终点B 运动,同时另一动点N 以每秒3cm 的速度从B 点出发沿B →C →A 路径向终点A 运动,两点都要到达相应的终点时才能停止运动.在运动过程中,分别过点M 和点N 作MP m ⊥于P ,NQ m ⊥于Q .设运动时间为t 秒,当t 为何值时,MPC 与NQC 全等?25. 在平面直角坐标系中,点A (0,5),B (12,0),在y 轴负半轴上取点E ,使OA =EO ,作∠CEF =∠AEB ,直线CO 交BA D .(1)根据题意,可求得OE = ;(2)求证:△ADO ≌△ECO ;(3)动点P 从E 出发沿E ﹣O ﹣B 路线运动速度为每秒1个单位,到B 点处停止运动;动点Q 从B 出发沿B ﹣O ﹣E 运动速度为每秒3个单位,到E 点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM ⊥CD 于点M ,QN ⊥CD 于点N .问两动点运动多长时间△OPM 与△OQN 全等?人教版数学2024-2025学年八年级上学期数学9月月考模拟试卷(全国通用)一.选择题(共10小题,满分30分,每小题3分)1. 下列各组图形中,属于全等图形的是( )A. B.C. D.【答案】C【解析】【分析】本题考查了全等图形.根据全等图形的定义(能够完全重合的两个图形叫做全等形)逐项判断即可得.【详解】解:A 、两个图形的大小不相同,不能够完全重合,不是全等图形,则此项不符合题意; B 、两个图形的大小不相同,不能够完全重合,不是全等图形,则此项不符合题意;C 、两个图形能够完全重合,是全等图形,则此项符合题意;D 、两个图形的形状不相同,不能够完全重合,不是全等图形,则此项不符合题意;故选:C .2. 以下列数据为三边长能构成三角形的是( )A 1,2,3B. 2,3,4C. 14,4,9D. 7,2,4【答案】B【解析】【分析】利用三角形三边关系进行判定即可.【详解】解:A 、123+=,不符合三角形三边关系,错误,不符合题意;B 、234+>,成立,符合题意;C 、4913+<,不符合三角形三边关系,错误,不符合题意;D 、247+<,不符合三角形三边关系,错误,不符合题意;故选B .【点睛】本题考查三角形三边关系,判定形成三角形的标准是两小边之和大于最大边,熟练掌握运用三角形.三边关系是解题关键.3. 下列各组图形中,BD 是ABC 的高的图形是( )A. B.C. D.【答案】B【解析】【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念即可得到答案.【详解】解:根据三角形高的定义可知,只有选项B 中的线段BD 是△ABC 的高,故选:B .【点睛】考查了三角形的高的概念,掌握高的作法是解题的关键.4. 已知三角形两边的长分别是3和5,则这个三角形第三边的长可能为( )A. 1B. 2C. 7D. 9 【答案】C【解析】【分析】先根据三角形的三边关系求出x 的取值范围,再求出符合条件的x 的值即可.【详解】解:设三角形第三边的长为x ,则5-3<x <5+3,即2<x <8,只有选项C 符合题意.故选C .【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边. 5. 两个同样大小的直角三角板按如图所示摆放,其中两条一样长的直角边交于点M ,另一直角边BE ,CD 分别落在PAQ ∠的边AP 和AQ 上,且AB AC =,连接AM ,则在说明AM 为PAQ ∠的平分线的过程中,理由正确的是( )A. SASB. SSAC. HLD. SSS【答案】C【解析】 【分析】根据全等三角形的判定和性质定理以及角平分线的定义即可得结论,从而作出判断.【详解】解:根据题意可得:90ABM ACM ∠=∠=°,∴ABM 和ACM △都是直角三角形,在Rt ABM 和Rt ACM 中,AB AC AM AM = =∴()Rt Rt HL ABM ACM ≌,∴BAM CAM ∠=∠,∴AM 为PAQ ∠的平分线,故选:C .【点睛】本题考查角平分线的判定和全等三角形的判定和性质的应用,解题的关键是掌握全等三角形的判定方法.6. 一个多边形的内角和是720°,这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形【答案】B【解析】【分析】本题考查了多边形的内角和公式,根据多边形的内角和公式解答即可.【详解】设边数为n ,根据题意,得 ()2180720n −⋅°=°,解得6n =. ∴这个多边形为六边形,故选:B .7. 如图,已知ABC 的六个元素,则下面甲、乙、丙三个三角形中,和ABC 全等的图形是( )A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙【答案】B【解析】 【分析】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,分别利用全等三角形的判定方法逐个判断即可.【详解】解:在ABC 中,边a 、c 的夹角为50°,∴与乙图中的三角形满足SAS ,可知两三角形全等,在丙图中,由三角形内角和可求得另一个角为58°,且58°角和50°角的夹边为a ,ABC ∴ 和丙图中的三角形满足ASA ,可知两三角形全等,在甲图中,和ABC 满足的是SSA ,可知两三角形不全等,综上可知能和ABC 全等的是乙、丙,故选:B .8. 如图在BCD △中,A 为BD 边上一点,AE CD ∥,AC 平分BCD ∠,235∠=°,60D ∠=°,则B ∠=( )A. 50°B. 45°C. 40°D. 25°【答案】A【解析】 【分析】本题主要考查了平行线的性质,三角形内角和定理,角平分线的定义,根据平行线的性质和角平分线的定义,可以求得BCD ∠的度数,再根据三角形内角和.即可求得B ∠的度数.【详解】解:∵AE CD ∥,235∠=°,∴1235∠=∠=°,∵AC 平分BCD ∠,∴2170BCD ∠=∠=°,∵60D ∠=°,∴180180607050B D BCD ∠=°−∠−∠=°−°−°=°,故选:A .9. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形【答案】C【解析】【分析】一个多边形的镶嵌应该符合其内角度数可以整除360°【详解】A 、三角形内角和为180°,能整除360°,能密铺,故此选项不合题意;B 、四边形内角和为360°,能整除360°,能密铺,故此选项不合题意;C 、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺,故此选项合题意;D 、正六边形每个内角为180°﹣360°÷6=120°,能整除360°,能密铺,故此选项不合题意; 故选C .【点睛】本题主要考查图形的镶嵌问题,重点是掌握多边形镶嵌的原理.10. 如图所示,△ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD 、BE 、CF 交于一点G ,BD =2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是( )A. 25B. .30C. 35D. 40【答案】B【解析】 【分析】由于BD=2DC ,那么结合三角形面积公式可得S △ABD =2S △ACD ,而S △ABC =S △ABD +S △ACD ,可得出S △ABC =3S △ACD ,而E 是AC 中点,故有S △AGE =S △CGE ,于是可求S △ACD ,从而易求S △ABC . 【详解】.解:BD =2DC ,∴S △ABD =2S △ACD , ∴S △ABC =3S △ACD ,∵E 是AC 的中点,∴S△AGE=S△CGE,又∵S△GEC=3,S△GDC=4,∴S△ACD=S△AGE+S△CGE+S△CGD=3+3+4=10,∴S△ABC=3S△ACD=3×10=30.故选B.【点睛】此题考查三角形的面积公式、三角形之间的面积加减计算.解题关键在于注意同底等高的三角形面积相等,面积相等、同高的三角形底相等.二.填空题(共6小题,满分18分,每小题3分)11. 如图,已知AB∥CF,E为AC的中点,若FC=6cm,DB=3cm,则AB=________.【答案】9cm【解析】【详解】试题解析:AB∥CF,∴∠=∠∠=∠A FCE ADE CFE..E为AC的中点,∴=AE CE.△ADE≌△CFE,∴==DA FC6.AB AD DB cm∴=+=+=639.cm故答案为9.∠+∠+∠+∠+∠+∠=______.12. 如图,A B C D E F【答案】180°##180度【解析】【分析】本题主要考查三角形的外角的性质,三角形的内角和为180°,将所求角的度数转化为某些三角形的内角和是解题的关键;将所求的角的度数转化为HNG △的内角和,即可得到答案.【详解】解:,,A B GHN C D GNH E F HGN ∠+∠=∠∠+∠=∠∠+∠=∠ ,∴180A B C D E F GNH GHN HGN ∠+∠+∠+∠+∠+∠=∠+∠+∠=°,故答案为:180°.13. 一个n 边形内角和等于1620°,则边数n 为______.【答案】11【解析】【分析】根据多边形内角和公式,列方程求解即可.【详解】解:由题意,得()18021620n −=,解得:11n =,故答案为:11.【点睛】本题考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.14. 如图,在ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC 的面积等于24cm ,则阴影部分图形面积等于_____2cm .【答案】1【解析】【分析】此题考查了三角形中线的性质,根据三角形的中线分得的两个三角形的面积相等,就可证得12BEF BEC S S = ,12BDE ABD S S = ,12DE CD S S =△C △A ,12ABD ABC S S = ,再由ABC 的面积为4,就可得到BEF △的面积,解题的关键是熟练掌握三角形中线的性质及其应用.【详解】解:∵点F 是CE 的中点, ∴12BEF BEC S S = , ∵点E 是AD 的中点, ∴12BDE ABD S S = , 同理可证12DE CD S S =△C △A , ∵点D 是BC 的中点, ∴114222ABD ABC S S ==×= , ∴1212BDE CDE S S ==×= , ∴112BEC S =+= , ∴1212BEF S =×=△, 故答案为:1.15. 已知,如图ABC ,点D 是ABC 内一点,连接BD CD ,,则BDC ∠与12A ∠∠∠,,之间的数量关系为______.【答案】12BDC A ∠=∠+∠+∠【解析】【分析】本题考查了三角形的外角性质,延长BBBB 交AC 于点E ,由三角形外角性质可得1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,进而即可求解,正确作出辅助线是解题的关键.【详解】解:延长BBBB 交AC 于点E ,如图,∵BEC ∠是ABE 的外角,∴1BEC A ∠=∠+∠,∵BDC ∠是CDE 的外角,∴2BDC BEC ∠=∠+∠,即12BDC A ∠=∠+∠+∠,故答案为:12BDC A ∠=∠+∠+∠.16. △ABC 中,AD 是BC 边上的高,∠BAD=50°,∠CAD=20°,则∠BAC=___________.【答案】70°或30°【解析】【分析】根据AD 的不同位置,分两种情况进行讨论:AD 在△ABC 的内部,AD 在△ABC 的外部,分别求得∠BAC 的度数.【详解】①如图,当AD 在△ABC 的内部时,∠BAC=∠BAD+∠CAD=50°+20°=70°.②如图,当AD 在△ABC 的外部时,∠BAC=∠BAD -∠CAD=50°-20°=30°.故答案为:70°或30°.【点睛】本题主要考查了三角形高的位置情况,充分考虑三角形的高在三角形的内部或外部进行分类讨论是解题的关键.三.解答题(共9小题,满分72分)17. 如果一个三角形的一边长为9cm ,另一边长为2cm ,若第三边长为x cm .(1)求第三边x 的范围;(2)当第三边长为奇数时,求三角形的周长.【答案】(1)7<x <11(2)20cm【解析】【分析】(1)根据三角形的三边关系得到有关第三边的取值范围即可;(2)根据(1)得到的取值范围确定第三边的值,从而确定三角形的周长.【小问1详解】由三角形的三边关系得:9292x −<<+,即711x <<;【小问2详解】∵第三边长的范围为711x <<,且第三边长为奇数,∴第三边长为9,则三角形的周长为:99220cm ++=【点睛】本题考查了三角形的三边关系,解题的关键是能够根据三角形的三边关系列出有关x 的取值范围,难度不大.18. 已知:如图,点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,BF EC =.求证:ABC DEF ≌△△.【答案】证明见解析【解析】【分析】根据两直线平行,内错角相等,得出ABC DEF ∠=∠,再根据线段之间的数量关系,得出BC EF =,再根据“边角边”,即可得出结论.【详解】证明:∵AB DE ∥,∴ABC DEF ∠=∠,∵BF EC =,∴BF FC EC FC +=+,∴BC EF =,在ABC 和DEF 中,AB DE ABC DEF BC EF = ∠=∠ =, ∴()ABC DEF SAS ≌.【点睛】本题考查了平行线的性质、全等三角形的判定定理,解本题的关键在熟练掌握全等三角形的判定方法.19. 如图,CE 是ABC 外角ACD ∠的平分线,且CE 交BA 的延长线于点E ,42B ∠=°,25E ∠=°,(1)求ECD ∠的度数;(2)求BAC ∠的度数.【答案】(1)67°(2)92°【解析】【分析】本题考查角平分线定义及三角形外角性质.(1)根据三角形外角性质求出ECD ∠;(2)由已知可求出ACE ∠,根据三角形外角性质求出BAC ∠即可.【小问1详解】解:ECD ∠ 是BCE 的外角,ECD B E ∴∠=∠+∠,42B ∠=° ,25E ∠=°,∴67ECD ∠=°;【小问2详解】解:EC 平分ACD ∠,67ACE ECD ∠=∠=°∴,BAC ∠ 是ACE △的外角,BAC ACE E ∴∠=∠+∠,672592BAC ∴∠=°+°=°.20. 将两个三角形纸板ABC 和DBE 按如图所示方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,AC DE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=°,求BED ∠的度数.【答案】(1)见解析 (2)36BED ∠=°【解析】【分析】(1)利用AAS 证明三角形全等即可;(2)全等三角形的性质,得到BED BCA ∠=∠,证明()SSS DBC ABC ≌,得到1362BCD BCA ACD ∠=∠=∠=°,即可得解.【小问1详解】解:因为DBA CBE ∠=∠,所以DBA ABE CBE ABE ∠+∠=∠+∠,即DBE ABC ∠=∠.在ABC 和DBE 中,ABC DBEBAC BDE AC DE∠=∠ ∠=∠ = ,所以()AAS ABC DBE ≌.【小问2详解】因为ABC DBE ≌△△,所以BD BA =,BCA BED ∠=∠.的在DBC △和ABC 中,DC AC CB CB BD BA = = =,所以()SSS DBC ABC ≌, 所以1362BCD BCA ACD ∠=∠=∠=°, 所以36BED BCA ∠=∠=°.【点睛】本题考查全等三角形的判定和性质.解题的关键是证明三角形全等.21. 如图,在44×的正方形网格中,点A ,B ,C 均为小正方形的顶点,用无刻度的直尺作图,不写作法,保留作图痕迹;(1)在图1中,作ABD △与ABC 全等(点D 与点C 不重合);(2)在图2中,作ABC 的高(3)在图3中,作AFC ABC ∠=∠(点F 为小正方形的顶点,且不与点B 重合); (4)在图3中,在线段AC 上找点P ,使得BPC ABC ∠=∠.【答案】(1)见解析 (2)见解析(3)见解析 (4)见解析【解析】【分析】本题考查作图-应用与设计作图,全等三角形的判定与性质等知识,作三角形的高,三角形内角和,勾股定理,解题的关键是学会利用数形结合的思想解决问题.(1)利用全等三角形的判定方法,构造全等三角形即可;(2)取格点T ,连接BT 交AC 于点E ,线段BE 即为所求;(3)构造全等三角形即可;(4)利用勾股定理可知45A ∠=°,根据三角形内角和定理,作45QBC A ∠=∠=°,QB 交AC 点P 即可.【小问1详解】如图1,ABD △即为所求;【小问2详解】如图,BE 即为所求;【小问3详解】如图,AFC ∠即为所求;【小问4详解】如图,点P 即为所求.22. (1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:在ABC 中,9AB =,5AC =,求BC 边上的中线AD 的的取值范围. 小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD 到Q ,使得DQ AD =;②再连接BQ ,把2AB AC AD 、、集中在ABQ 中;根据小明的方法,请直接写出图1中AD 的取值范围是 .(2)写出图1中AC 与BQ 的位置关系并证明.(3)如图2,在ABC 中,AD 为中线,E 为AB 上一点,AD 、CE 交于点F ,且AE EF =.求证:AB CF =.【答案】(1)27AD <<;(2)AC BQ ∥,证明见解析;(3)见解析 【解析】【分析】(1)先证()SAS BDQ CDA ≌ ,推出5BQCA ==,再利用三角形三边关系求解; (2)根据BDQ CDA ≌可得BQD CAD ∠=∠,即可证明AC BQ ∥; (3)(3)延长AD 至点G ,使GD AD =,连接CG ,先证明()SAS ≌ADB GDC ,即可得出AB GC G BAD =∠=∠,,再根据AE EF =,得出AFE FAE ∠=∠,最后根据等角对等边,即可求证AB CF =.【详解】解:(1)延长AD 到Q ,使得DQ AD =,再连接BQ ,∵AD 是ABC 的中线,∴BD CD =,又∵DQ AD =,BDQ CDA ∠=∠, ∴()SAS BDQ CDA ≌ ,∴5BQCA ==, 在ABQ 中,AB BQ AQ AB BQ −<<+,∴9595AQ −<<+,即414AQ <<,∴27AD <<,故答案为:27AD <<;(2)AC BQ ∥,证明如下:由(1)知BDQ CDA ≌,∴BQD CAD ∠=∠, ∴AC BQ ∥;(3)延长AD 至点G ,使GD AD =,连接CG ,∵AD 为BC 边上中线,∴BD CD =,在ADB 和GDC 中,的BD CD ADB GDC AD GD = ∠=∠ =, ∴()SAS ≌ADB GDC ,∴AB GC G BAD =∠=∠,,∵AE EF =,∴AFE FAE ∠=∠,∴DAB AFE CFG ∠=∠=∠,∴∠=∠G CFG ,∴CG CF =,∴AB CF =.【点睛】本题考查全等三角形的判定和性质,平行线的判定和性质,三角形三边关系的应用等,解题的关键是通过倍长中线构造全等三角形.23. 如图,在四边形ABCD 中,60120AD AB DC BC DAB DCB ==∠=°∠=°,,,,E 是AD 上一点,F 是AB 延长线上一点,且DE BF =.(1)求D ∠的度数;(2)求证:CE CF =;(3)若G 在AB 上且60ECG ∠=°,试猜想DE EG BG ,,之间的数量关系,并证明.【答案】(1)见解析 (2)见解析(3)EG BG DE =+,证明见解析【解析】【分析】本题考查了全等三角形的判定与性质、四边形内角和定理以及角的计算;根据全等三角形的性质找出相等的边角关系是关键.(1)结合AD AB DC BC ==、即可证出ABC ADC △△≌,由此即可得出30DAC ∠=°,60DCA ∠=°,即可求解;(2)通过角的计算得出D CBF ∠=∠,证出()CDE CBF SAS ≌,由此即可得出CE CF =; (3)结合AD AB DC BC ==、即可证出ABC ADC △△≌,由此即可得出60BCA DCA ∠=∠=°,再根据60ECG ∠=°即可得出DCE ACG ∠=∠,ACE BCG ∠=∠,由(2)可知CDE CBF △△≌,进而得知DCE BCF ∠=∠,根据角的计算即可得出ECG FCG ∠=∠,结合DE DF =即可证出CEG CFG ≌ ,即得出EG FG =,由相等的边与边之间的关系即可证出DE BG EG +=.【小问1详解】解:ABC 和ADC △中,AB AD AC AC BC DC = = =, ()ABC ADC SSS ∴ ≌,BCA DCA ∴∠=∠,DAC BAC ∠=∠,60120DAB DCB ∠=°∠=° ,,1302DAC DAB ∴∠=∠=°,1602DCA DCB ∠=∠=°, 180D DAC DCA ∠+∠+∠=° ,180306090D ∴∠=°−°−°=°;【小问2详解】证明:36060120D DAB ABC DCBDAB DCB ∠+∠+∠+∠=°∠=°∠=°,, , 36060120180D ABC ∴∠+∠=°−°−°=°.180CBF ABC ∠+∠=° ,D CBF ∴∠=∠.在CDE 和CBF 中,DC BC D CBF DE BF = ∠=∠ =, ()CDE CBF SAS ∴ ≌.CE CF ∴=.【小问3详解】解:猜想DE EG BG 、、之间的数量关系为:DE BG EG +=.理由如下:在在ABC 和ADC △中,AB AD AC AC BC DC = = =, ()ABC ADC SSS ∴ ≌,111206022BCA DCA DCB °=°∴∠=∠=∠=×. 60ECG ∠=° ,DCE ACG ACE BCG ∴∠=∠∠=∠,.由(2)可得:CDE CBF △△≌,DCE BCF ∴∠=∠.60BCG BCF ∴∠+∠=°,即60FCG ∠=°.ECG FCG ∴∠=∠.在CEG 和CFG △中,CE CF ECG FCG CG CG = ∠=∠ =, ()CEG CFG SAS ∴ ≌,EG FG ∴=.DE BF FG BF BG ==+, ,DE BG EG ∴+=.24. 在ABC 中,90ACB ∠=°,分别过点A 、B 两点作过点C 的直线m 的垂线,垂足分别为点D 、E . (1)如图,当AC CB =,点A 、B 在直线m 的同侧时,猜想线段DE ,AD 和BE 三条线段有怎样的数量关系?请直接写出你的结论:__________;(2)如图,当AC CB =,点A 、B 在直线m 的异侧时,请问(1)中有关于线段DE 、AD 和BE 三条线段的数量关系的结论还成立吗?若成立,请你给出证明;若不成立,请给出正确的结论,并说明理由.(3)当16cm AC =,30cm CB =,点A 、B 在直线m 的同侧时,一动点M 以每秒2cm 的速度从A 点出发沿A →C →B 路径向终点B 运动,同时另一动点N 以每秒3cm 的速度从B 点出发沿B →C →A 路径向终点A 运动,两点都要到达相应的终点时才能停止运动.在运动过程中,分别过点M 和点N 作MP m ⊥于P ,NQ m ⊥于Q .设运动时间为t 秒,当t 为何值时,MPC 与NQC 全等?【答案】(1)DE AD BE =+;(2)不成立,理由见解析;(3)当9.2t =或14或16秒时,MPC 与NQC 全等【解析】【分析】(1)根据AD m ⊥,BE m ⊥,得90ADC CEB ∠=∠=°,而90ACB ∠=°,根据等角的余角相等得CAD BCE ∠=∠,然后根据“AAS”可判断()ACD CBE AAS ∆∆≌,则=AD CE ,CD BE =,于是DE CE CD AD BE =+=+;(2)同(1)易证()ACD CBE AAS ∆∆≌,则=AD CE ,CD BE =,于是DE CE CD AD BE =−=−;(3)只需根据点M 和点N 的不同位置进行分类讨论即可解决问题.【详解】(1)猜想:DE AD BE =+(2)不成立;理由:∵AD m ⊥,BE m ⊥,∴90ADC CEB ∠=∠=°,∵90ACB ∠=°,∴90ACD CAD ACD BCE ∠+∠=∠+∠=°,∴CAD BCE ∠=∠,在ACD 和CBE △中,ADC CEB CAD BCE AC CB ∠=∠ ∠=∠ =∴()ACD CBE AAS ∆∆≌,∴=AD CE ,CD BE =,∴DE CE CD AD BE =−=−;(3)①当08t ≤<时,点M 在AC 上,点N 在BC 上,如图,此时2AM t =,3BN t =,16AC =,30CB =,则MC AC AM =−,NC BC BN =−,当MC NC =,即162303t t −=−,解得:14t =,不合题意;②当810t ≤<时,点M 在BC 上,点N 也在BC 上,此时相当于两点相遇,如图,∵MC NC =,点M 与点N 216303t t −=−,解得:9.2t =; ③当46103t ≤<时,点M 在BC 上,点N 在AC 上,如图,∵MC NC =,∴216330t t −=−,解得:14t =; ④当46233t ≤≤时,点N 停在点A 处,点M 在BC 上,如图,∵MC NC =,∴21616t −=,解得:16t =;综上所述:当9.2t =或14或16秒时,MPC ∆与NQC ∆全等.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,同角的余角相等,判断出ACD CBE ∆∆≌是解本题的关键,还用到了分类讨论的思想.25. 在平面直角坐标系中,点A (0,5),B (12,0),在y 轴负半轴上取点E ,使OA =EO ,作∠CEF =∠AEB ,直线CO 交BA 的延长线于点D .(1)根据题意,可求得OE = ;(2)求证:△ADO ≌△ECO ;(3)动点P 从E 出发沿E ﹣O ﹣B 路线运动速度为每秒1个单位,到B 点处停止运动;动点Q 从B 出发沿B ﹣O ﹣E 运动速度为每秒3个单位,到E 点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM ⊥CD 于点M ,QN ⊥CD 于点N .问两动点运动多长时间△OPM 与△OQN 全等?【答案】(1)5;(2)见解析;(3)当两动点运动时间为72、174、10秒时,△OPM 与△OQN 全等 【解析】【分析】(1)根据OA=OE 即可解决问题.(2)根据ASA 证明三角形全等即可解决问题.(2)设运动的时间为t 秒,分三种情况讨论:当点P 、Q 分别在y 轴、x 轴上时;当点P 、Q 都在y 轴上时;当点P 在x 轴上,Q 在y 轴时若二者都没有提前停止,当点Q 提前停止时;列方程即可得到结论.【详解】(1)∵A (0,5),∴OE =OA =5,故答案为5.(2)如图1中,∵OE =OA ,OB ⊥AE ,∴BA =BE ,∴∠BAO =∠BEO ,∵∠CEF =∠AEB ,∴∠CEF =∠BAO ,∴∠CEO =∠DAO ,在△ADO 与△ECO 中,CE0DA0OA 0ECOE AOD ∠=∠ = ∠=∠, ∴△ADO ≌△ECO (ASA ).(2)设运动的时间为t 秒,当PO =QO 时,易证△OPM ≌△OQN .分三种情况讨论:①当点P 、Q 分别在y 轴、x 轴上时PO =QO 得:5﹣t =12﹣3t ,解得t =72(秒), ②当点P 、Q 都在y 轴上时PO =QO 得:5﹣t =3t ﹣12,解得t =174(秒), ③当点P x 轴上,Q 在y 轴上时,若二者都没有提前停止,则PO =得:t ﹣5=3t ﹣12,解得t =72(秒)不合题意; 当点Q 运动到点E 提前停止时,有t ﹣5=5,解得t =10(秒), 综上所述:当两动点运动时间为72、174、10秒时,△OPM 与△OQN 全等. 【点睛】本题属于三角形综合题,考查了全等三角形的判定,坐标与图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.在。
四川成都八年级上学期数学9月月考试卷附解析版答案
AC=BC,由 SAS 证明△AEC≌△BDC,得出 AE=BD,证出∠BDA=∠BDC+∠ADC=90°,在 Rt△ADB 中.
由勾股定理求得 AD,即可得出结论.
19.【解析】【解答】解:∵ 、 满足
,
∴
且
,
∴
,
,
,
∵ , 是三角形的边长,
∴
,
是斜边,
边长
,
,〔1〕当
,
是两直角边时,斜边长
,〔2〕当
、
.现要将其扩建
成等腰三角形,且扩充局部是以 为一个直角边长的直角三角形,请在下面三张图上分别画出三种不 同的扩建后的图形,并求出扩建后的等腰三角形花圃的面积.
27.:
; ;
.
〔1〕由此可知:
的倒数是________;
〔 为大于 1 的整数〕的倒数是________.
〔2〕求
的值.
28.如图,正方形
∴是直角三角形的有 3 个;
故答案为:C. 【分析】根据直角三角形的定义,勾股定理的逆定理一一判断即可.
9.【解析】【解答】 =1,b=9,c=
,d=2.∴
.故答案为:A.
【分析】根据我们所学知识点我们可知:非零数的 0 次幂都为 1,所以 a=1;非零数的-1 次方就是取其
倒数,所以 d=2;b=9;c 是-9 开立方,所以 c 应为负数;所以 c < a < d < b
二、填空题
11. 的算术平方根是________.
的倒数是________.
12.假设
,那么 x 的取值范围是________.
13.如以下列图,在边长为 1 个单位长度的小正方形组成的网格中,点 A.B 都是格点,那么线段 AB 的长
八年级(上)月考数学试卷(9月份)附答案详解
八年级(上)月考数学试卷(9月份)0.59一、选择题(每小题3分,共30分)1.(3分)3的相反数是()A.﹣3 B.+3 C.0.3 D.2.(3分)下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的数C.一个有理数不是整数就是分数D.0的绝对值是03.(3分)方程2x﹣1=3x+2的解为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣34.(3分)如图,△ABC≌△CDA,若AB=3,BC=4,则四边形ABCD的周长是()A.14 B.11 C.16 D.125.(3分)如图所示,直线a,b被直线c所截,∠1与∠2是()A.同位角B.内错角C.同旁内角D.邻补角6.(3分)如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,则∠BOD的大小为()A.22°B.34°C.56°D.90°7.(3分)如图,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是()A.120°B.125°C.127° D.104°8.(3分)下列几组线段能组成三角形的是()A.3cm、5cm、8cm B.2cm、2cm、6cmC.1.2cm、1.2cm、1.2cm D.8cm、6cm、15cm9.(3分)如图,AD是△ABC的角平分线,AE是△ABC的外角平分线,若∠DAC=10°,则∠EAC=()A.70°B.80°C.85°D.90°10.(3分)已知正n边形的一个内角为135°,则边数n的值是()A.6 B.7 C.8 D.10二、填空题(每题3分共18分)11.(3分)﹣5的倒数是.12.(3分)如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1与∠2的关系是.13.(3分)如图,∠1=∠2,由AAS判定△ABD≌△ACD,则需添加的条件是.14.(3分)如图,在Rt△ABC中,∠A=90°.小华用剪刀沿DE剪去∠A,得到一个四边形.则∠1+∠2=度.15.(3分)如图,已知∠A=50°,∠B=60°,∠C=40°,则∠ADC=.16.(3分)如图,∠A+∠B+∠C+∠D+∠E+∠F=度.三、解答题(共5题,共52分)17.(10分)解方程和方程组.(1).(2).18.(10分)解不等式和不等式组.(1).(2).19.(10分)直线AB、CD相交于O,OE平分∠AOC,∠EOA:∠AOD=1:4,求∠EOB的度数.20.(10分)已知:如图,点E,C在线段BF上,AB=DE,AC=DF,BE=CF.求证:AB∥DE.21.(12分)如图,在△ABC中,∠ABC=90°,AB=CB,点E在边BC上,点F在边AB的延长线上,BE=BF(1)求证:△ABE≌△CBF;(2)若∠CAE=30°,求∠ACF的度数.2017-2018学年广东省广州六中八年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:3的相反数是﹣3,故选:A.2.【解答】解:0既不是正数,也不是负数,A正确;绝对值最小的数是0,B错误;整数和分数统称为有理数,C正确;0的绝对值是0,D正确.故选:B.3.【解答】解:方程2x﹣1=3x+2,移项得:2x﹣3x=2+1,合并得:﹣x=3.解得:x=﹣3,故选:D.4.【解答】解:∵△ABC≌△CDA,∴AB=CD,AD=BC,∵AB=3,BC=4,∴四边形ABCD的周长AB+BC+CD+DA=3+3+4+4=14,故选:A.5.【解答】解:如图所示,∠1和∠2两个角都在两被截直线直线b和a同侧,并且在第三条直线c(截线)的同旁,故∠1和∠2是直线b、a被c所截而成的同位角.故选:A.6.【解答】解:∵∠COE是直角,∠COF=34°,∴∠EOF=90°﹣34°=56°,∵OF平分∠AOE,∴∠AOF=∠EOF=56°,∴∠AOC=56°﹣34°=22°,∴∠BOD=∠AOC=22°.故选:A.7.【解答】解:∵在△ABC和△ADC中∴△ABC≌△ADC,∴∠B=∠D=30°,∠BAC=∠DAC=∠BAD=×46°=23°,∴∠ACD=180°﹣∠D﹣∠DAC=180°﹣30°﹣23°=127°,故选:C.8.【解答】解:A、3+5=8,不能组成三角形;B、2+2=4<6,不能组成三角形;C、组成等边三角形;D、8+6=14<15,不能组成三角形;故选:C.9.【解答】解:如图延长BA到F,∵AD是△ABC的角平分线,∠DAC=10°,∴∠BAC=2∠DAC=20°,∴∠B+∠ACD=160°,∴∠EAC=∠FAC=(∠B+∠ACD)=80°.故选:B.10.【解答】解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,n=360°÷45°=8.故选:C.二、填空题(每题3分共18分)11.【解答】解:因为﹣5×()=1,所以﹣5的倒数是.12.【解答】解:∵直线AB、EF相交于O点,∴∠1=∠3,又∵AB⊥CD,∴∠2+∠3=90°,∴∠1+∠2=90°.13.【解答】解:由图可知,只能是∠B=∠C,才能组成“AAS”.故填∠B=∠C.14.【解答】解:∵∠A=90°,∴∠B+∠C=90°.∵∠B+∠C+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故答案为:270.15.【解答】解:延长AD交BC于E,∵∠A=50°,∠B=60°,∴∠AEC=∠A+∠B=110°,∵∠C=40°,∴∠ADC=∠C+∠AEC=150°,故答案为:150°.16.【解答】解:如右图所示,∵∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,∴∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,又∵∠AHG、∠DNG、∠EGN是△GHN的三个不同的外角,∴∠AHG+∠DNG+∠EGN=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.三、解答题(共5题,共52分)17.【解答】解:(1)2+3(x﹣1)=6,2+3x﹣3=6,3x=6﹣2+3,3x=7,x=;(2),①+②,得:3x=9,x=3,将x=3代入②,得:3+y=5,解得:y=2,则方程组的解为.18.【解答】解:(1)去分母得:2(x+1)+3(x﹣1)>6,2x+2+3x﹣3>6,5x>7,x>;(2)∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2.19.【解答】解:∵OE平分∠AOC,∴∠AOC=2x,∵∠EOA:∠AOD=1:4,∴∠AOD=4x,∵∠COA+∠AOD=180°,∴2x+4x=180°,解得x=30°,∴∠EOB=180°﹣30=150°.故∠EOB的度数是150°.20.【解答】证明:∵BE=CF,∴BC=EF.在△ABC和△DEF中,∴△ABC≌△DEF(SSS).∴∠ABC=∠DEF,∴AB∥DE.21.【解答】(1)证明:在△ABE和△CBF中,,∴△ABE≌△CBF.(2)解:∵BA=BC,∠ABC=90°,∴∠CAB=∠ACB=45°,∵∠CAE=30°,∴∠EAB=15°,∵△ABE≌△CBF,∴∠FCB=∠EAB=15°,∴∠ACF=15°+45°=60°.。
八年级上学期数学9月月考试卷真题
八年级上学期数学9月月考试卷一、单选题1. 如果一个多边形的每个内角的度数都是108°,那么这个多边形的边数是()A . 3B . 4C . 5D . 62. 若(a﹣2)2+|b﹣3|=0,则以a、b为边长的等腰三角形的周长为()A . 6B . 7C . 8D . 7或83. 如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是()A . 15°B . 20°C . 25°D . 30°4. 下列说法:①能够完全重合的图形叫做全等形;②全等三角形的对应边相等、对应角相等;③全等三角形的周长相等、面积相等;④所有的等边三角形都全等;⑤面积相等的三角形全等.其中正确的说法有()A . 5个B . 4个C . 3个D . 2个5. 如图,AB∥CD,BC∥AD,AB=CD,BE=DF,图中全等的三角形的对数是()A . 3B . 4C . 5D . 66. 如图,△ABC的顶点A、B、C都在小正方形的顶点上,在格点F、G、H、I中选出一个点与点D、点E构成的三角形与△ABC全等,则符合条件的点共有()A . 1个B . 2个C . 3个D . 4个二、填空题7. 若正n边形的内角和等于它的外角和,则边数n为________.8. 如图所示,请将用“>”排列________.9. 将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=________.10. 三角形三边长分别为3,1﹣2a,8,则a 的取值范围是________.11. 如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=________.12. 如图,△ABC中,D,E,F分别是AB,BC,AC上的点,已知DF∥BC,EF∥AB,请补充一个条件:________,使△ADF≌△FEC.13. 如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,有以下结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的结论有________个.14. 如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD 的角平分线,CA2是∠A1CD的角平分线,BA3是∠A2BD的角平分线,CA3是∠A2CD 的角平分线,若∠A1=α,则∠A2018为________.三、解答题15. 如图:(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________;(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.16. 已知,如图,A、D、C、B在同一条直线上AD=BC,AE=BF,CE=DF,求证:DF∥CE17. 如图,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连结DE.(1)当∠BAD=60°,求∠CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试写出∠BAD与∠CDE的数量关系,并说明理由.18. 如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为13cm,求AC的长.19. 已知:BE⊥CD于E,BE=DE,BC=DA,(1)求证:△BEC≌△DEA;(2)求证:BC⊥FD.20. 如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.21. 如图1△ABC为等边三角形,点D为AB边上的一点,∠DCE=30°,∠DCF=60°且CF=CD(1)求∠EAF的度数;(2)DE与EF相等吗?请说明理由22. 已知在四边形ABCD中,∠A=∠C=90°.(1)∠ABC+∠ADC=________°;(2)如图①,若DE平分∠ADC,BF平分∠ABC的外角,请写出DE与BF的位置关系,并证明;(3)如图②,若BE,DE分别四等分∠ABC、∠ADC的外角(即∠CDE=∠CDN,∠CBE=∠CBM),试求∠E的度数.。
八年级上月考数学试卷(9月)含解析
八年级(上)月考数学试卷(9月份)一、精心选一选(本大题共10小题,每小题3分,共30分)1.下图中的轴对称图形有()A.(1),(2)B.(1),(4)C.(2),(3)D.(3),(4)2.不能使两个直角三角形全等的条件()A.一条直角边及其对角对应相等B.斜边和一条直角边对应相等C.斜边和一锐角对应相等D.两个锐角对应相等3.若与|x﹣y﹣3|互为相反数,则x+y的值为()A.27 B.9 C.12 D.34.在下列条件中,△ABC不是直角三角形的是()A.b2=a2﹣c2 B.a2:b2:c2=1:3:2C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:55.如图,已知AB=AC,AD=AE,若要得到“△ABD≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是()A.BD=CE B.∠ABD=∠ACE C.∠BAD=∠CAE D.∠BAC=∠DAE6.如图1所示为三角形纸片ABC,上有一点P.已知将A,B,C往内折至P时,出现折线,,,其中Q、R、S、T四点会分别在,,,上,如图2所示.若△ABC、四边形PTQR的面积分别为16、5,则△PRS面积为()A.1 B.2 C.3 D.47.若等腰三角形的腰长为5cm,底长为8cm,那么腰上的高为()A.12 cm B.10 cm C.4.8 cm D.6 cm8.已知P是△ABC内一点,连接PA、PB、PC,把△ABC的面积三等分,则P点一定是()A.△ABC的三边的中垂线的交点B.△ABC的三条内角平分线的交点C.△ABC的三条高的交点D.△ABC的三条中线的交点9.如图,在△ABC中AD是∠A的外角平分线,P是AD上一动点且不与点A,D重合,记PB+PC=a,AB+AC=b,则a,b的大小关系是()A.a>b B.a=b C.a<b D.不能确定10.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.B.C.D.不能确定二、仔细填一填(本大题共8小题,每空2分,共计18分):11.49的平方根是.12.(1)若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为;(2)在等腰△ABC中,∠A=40°,则∠B=.13.如图,文文把一张长方形的纸沿着DE、DF折了两次,使A、B都落在DA′上,则∠EDF 的度数为.14.如图,从电线杆离地面6m处向地面拉一条长10m的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有m.15.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是cm.16.如图,阴影部分是一个半圆,则阴影部分的面积为.(结果保留π)17.如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE 折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为cm.18.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(1,1)的点共有个.三、解答题(本大题共9小题,共计52分.)19.计算题:(1)()﹣1﹣﹣(2)(x﹣1)2=25.20.画出△ABC关于直线L的对称图形△A′B′C′.21.如图:某通信公司要修建一座信号发射塔,要求发射塔到两城镇P、Q的距离相等,同时到两条高速公路l1、l2的距离也相等.在图上画出发射塔的位置.22.请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)23.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC 面积是28cm2,AB=20cm,AC=8cm,求DE的长.24.如图,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=75°,将△ADE绕着点A旋转一个锐角后与△ABC重合,求这个旋转角的大小.25.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于E、F.(1)若BC=10,求△AEF周长.(2)若∠BAC=128°,求∠FAE的度数.26.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.27.如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=;(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=.(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=.(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.2015-2016学年江苏省无锡市惠山区八年级(上)月考数学试卷(9月份)参考答案与试题解析一、精心选一选(本大题共10小题,每小题3分,共30分)1.下图中的轴对称图形有()A.(1),(2)B.(1),(4)C.(2),(3)D.(3),(4)【考点】轴对称图形.【分析】根据轴对称图形的概念求解,看图形是不是关于直线对称.【解答】解:(1)是轴对称图形;(2)、(3)是中心对称图形;(4)是轴对称图形.故选B.2.不能使两个直角三角形全等的条件()A.一条直角边及其对角对应相等B.斜边和一条直角边对应相等C.斜边和一锐角对应相等D.两个锐角对应相等【考点】直角三角形全等的判定.【分析】根据各选项提供的已知条件,结合直角三角形全等的判定方法,对选项逐一验证,选项D只有两个锐角对应相等是不符合直角三角形判定方法的,所以不能判定三角形全等.【解答】解:A、符合AAS,正确;B、符合HL,正确;C、符合ASA,正确;D、因为判定三角形全等必须有边的参与,错误.故选D.3.若与|x﹣y﹣3|互为相反数,则x+y的值为()A.27 B.9 C.12 D.3【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】先根据相反数的定义列出关于x、y的方程,求出x、y的值即可.【解答】解:∵与|x﹣y﹣3|互为相反数,∴+|x﹣y﹣3|=0,∴,,∴x+y=27.故选A.4.在下列条件中,△ABC不是直角三角形的是()A.b2=a2﹣c2 B.a2:b2:c2=1:3:2C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】别根据三角形内角和定理、勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A、∵b2=a2﹣c2,∴△ABC是直角三角形,B、∵a2:b2:c2=1:3:2,∴a2+c2=b2,∴△ABC是直角三角形,C、∵∠A+∠B=∠C,∴∠C=180°=90°,∴△ABC是直角三角形,D、∵∠A:∠B:∠C=3:4:5,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故选D.5.如图,已知AB=AC,AD=AE,若要得到“△ABD≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是()A.BD=CE B.∠ABD=∠ACE C.∠BAD=∠CAE D.∠BAC=∠DAE【考点】全等三角形的判定.【分析】根据已知两组对应边对应相等,结合全等三角形的判定方法对各选项分析判断后利用排除法求解.【解答】解:AB=AC,AD=AE,A、若BD=CE,则根据“SSS”,△ABD≌△ACE,恰当,故本选项错误;B、若∠ABD=∠ACE,则符合“SSA”,不能判定△ABD≌△ACE,不恰当,故本选项正确;C、若∠BAD=∠CAE,则符合“SAS”,△ABD≌△ACE,恰当,故本选项错误;D、若∠BAC=∠DAE,则∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,符合“SAS”,△ABD≌△ACE,恰当,故本选项错误.故选B.6.如图1所示为三角形纸片ABC,上有一点P.已知将A,B,C往内折至P时,出现折线,,,其中Q、R、S、T四点会分别在,,,上,如图2所示.若△ABC、四边形PTQR的面积分别为16、5,则△PRS面积为()A.1 B.2 C.3 D.4【考点】翻折变换(折叠问题).【分析】根据折叠,知△BTQ的面积和△PTQ的面积相等,△CQR和△PQR的面积相等,△ASR的面积和△PSR的面积相等,结合已知△ABC、四边形PTQR的面积分别为16、5,即可求解.【解答】解:根据题意,得△BTQ的面积和△PTQ的面积相等,△CQR和△PQR的面积相等,△ASR的面积和△PSR 的面积相等.又△ABC、四边形PTQR的面积分别为16、5,∴△PRS面积等于(16﹣5×2)÷2=3.故选C.7.若等腰三角形的腰长为5cm,底长为8cm,那么腰上的高为()A.12 cm B.10 cm C.4.8 cm D.6 cm【考点】勾股定理;等腰三角形的性质.【分析】可以作出底边上的高,且易求出底边上的高为3cm,再利用等积法可求得腰上的高.【解答】解:如图,△ABC中,AB=AC=5cm,BC=8cm,过点A作AD⊥BC,交BC于点D,则BD=BC=4cm,在Rt△ABD中,由勾股定理可求得AD=3cm,设腰上的高为h,则BC•AD=AB•h,即×8×3=×5•h,解得h=4.8cm.故选C.8.已知P是△ABC内一点,连接PA、PB、PC,把△ABC的面积三等分,则P点一定是()A.△ABC的三边的中垂线的交点B.△ABC的三条内角平分线的交点C.△ABC的三条高的交点D.△ABC的三条中线的交点【考点】三角形的面积.【分析】根据三角形的面积公式,知点B和点C到AP的距离相等,利用全等三角形就可证明AP的延长线和BC的交点即为BC的中点,同理可证明BP、CP也是三角形的中线的一部分.【解答】解:延长AP交BC于O,作BE⊥AP于E,作CF⊥AP于F.∵△ABP的面积=△ACP的面积,∴BE=CF.根据AAS可以证明BO=CO.同理可以证明点P即为三角形的三条中线的交点.故选D.9.如图,在△ABC中AD是∠A的外角平分线,P是AD上一动点且不与点A,D重合,记PB+PC=a,AB+AC=b,则a,b的大小关系是()A.a>b B.a=b C.a<b D.不能确定【考点】全等三角形的判定与性质;三角形三边关系.【分析】可在BA的延长线上取一点E,使AE=AC,得出△ACP≌△AEP,从而将四条不同的线段转化到一个三角形中进行求解,即可得出结论.【解答】解:如图,在BA的延长线上取一点E,使AE=AC,连接EP.由AD是∠BAC的外角平分线,可知∠CAP=∠EAP,在△ACP和△AEP中,∴△ACP≌△AEP(SAS)∴PC=PE,在△BPE中,PB+PE>BE,而BE=AB+AE=AB+AC,故PB+PE>AB+AC,所以PB+PC>AB+AC,∵PB+PC=a,AB+AC=b,∴a>b.故选:A.10.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.B.C.D.不能确定【考点】等边三角形的性质;平行线的性质;全等三角形的判定与性质.【分析】过P作BC的平行线,交AC于M;则△APM也是等边三角形,在等边三角形APM 中,PE是AM上的高,根据等边三角形三线合一的性质知AE=EM;易证得△PMD≌△QCD,则DM=CD;此时发现DE的长正好是AC的一半,由此得解.【解答】解:过P作PM∥BC,交AC于M;∵△ABC是等边三角形,且PM∥BC,∴△APM是等边三角形;又∵PE⊥AM,∴AE=EM=AM;(等边三角形三线合一)∵PM∥CQ,∴∠PMD=∠QCD,∠MPD=∠Q;又∵PA=PM=CQ,在△PMD和△QCD中∴△PMD≌△QCD(AAS);∴CD=DM=CM;∴DE=DM+ME=(AM+MC)=AC=,故选B.二、仔细填一填(本大题共8小题,每空2分,共计18分):11.49的平方根是±7.【考点】平方根.【分析】根据平方根的定义解答.【解答】解:49的平方根是±7.故答案为:±7.12.(1)若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为7;(2)在等腰△ABC中,∠A=40°,则∠B=40°或70°或100°.【考点】等腰三角形的性质;三角形三边关系.【分析】(1)显然长度为3的边只能是腰,可得出答案;(2)分∠B为底角、顶角和∠A为顶角三种情况,再利用三角形内角和定理求解即可.【解答】解:(1)当长度为3的边为底时,此时三边为3、1、1,不满足三角形三边关系,此种情况不存在,当长度为3的边为腰时,此时三边为3、3、1,满足三角形的三边关系,此时周长为7,故答案为:7;(2)当∠A,∠B都为底角时,则∠B=∠A=40°,当∠A为顶角时,此时∠B==×140°=70°,当∠B为顶角时,此时∠B=180°﹣2∠A=180°﹣80°=100°,故答案为:40°或70°或100°.13.如图,文文把一张长方形的纸沿着DE、DF折了两次,使A、B都落在DA′上,则∠EDF 的度数为90°.【考点】翻折变换(折叠问题).【分析】根据折叠的性质可得:∠BDF=∠A′DF,∠ADE=∠A′DE,又由平角的定义可得:∠BDF+∠A′DF+∠ADE+∠A′DE=180°,则可求得∠EDF的度数.【解答】解:∵把一张长方形的纸沿着DE、DF折了两次,使A、B都落在DA′上,∴根据折叠的性质可得:∠BDF=∠A′DF,∠ADE=∠A′DE,∵∠BDF+∠A′DF+∠ADE+∠A′DE=180°,∴2∠A′DF+2∠A′DE=180°,∴∠A′DF+∠A′DE=90°,即∠EDF=90°.故答案为:90°.14.如图,从电线杆离地面6m处向地面拉一条长10m的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有8m.【考点】勾股定理的应用.【分析】因为电线杆,地面,缆绳正好构成直角三角形,所以利用勾股定理解答即可.【解答】解:如图所示,AB=6m,AC=10m,根据勾股定理可得:BC===8m.故这条缆绳在地面的固定点距离电线杆底部8m.15.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是3cm.【考点】角平分线的性质.【分析】求D点到线段AB的距离,由于D在∠BAC的平分线上,只要求出D到AC的距离CD即可,由已知可用BC减去BD可得答案.【解答】解:CD=BC﹣BD,=8cm﹣5cm=3cm,∵∠C=90°,∴D到AC的距离为CD=3cm,∵AD平分∠CAB,∴D点到线段AB的距离为3cm.故答案为:3.16.如图,阴影部分是一个半圆,则阴影部分的面积为72π.(结果保留π)【考点】勾股定理.【分析】利用勾股定理求出另一直角边,再由圆的面积公式计算即可.【解答】解:如图所示:a==24,故阴影部分的面积=π×122=72π.故答案为:72π.17.如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE 折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为3cm.【考点】翻折变换(折叠问题);轴对称的性质.【分析】由题意得AE=A′E,AD=A′D,故阴影部分的周长可以转化为三角形ABC的周长.【解答】解:将△ADE沿直线DE折叠,点A落在点A′处,所以AD=A′D,AE=A′E.则阴影部分图形的周长等于BC+BD+CE+A′D+A′E,=BC+BD+CE+AD+AE,=BC+AB+AC,=3cm.故答案为:3.18.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(1,1)的点共有4个.【考点】角平分线的性质;点的坐标.【分析】根据到直线l1的距离是1的直线有两条,到l2的距离是1的直线有两条,这四条直线的交点有4个解答.【解答】解:到l1的距离是1的点,在与l1平行且与l1的距离是1的两条直线上;到l2的距离是1的点,在与l2平行且与l2的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(1,1)的点共有4个.故答案为:4.三、解答题(本大题共9小题,共计52分.)19.计算题:(1)()﹣1﹣﹣(2)(x﹣1)2=25.【考点】实数的运算;负整数指数幂.【分析】(1)原式利用负整数指数幂法则,算术平方根、立方根定义计算即可得到结果;(2)方程利用平方根定义开方即可求出解.【解答】解:(1)原式=3﹣4﹣3=﹣4;(2)方程开方得:x﹣1=5或x﹣1=﹣5,解得:x=6或x=﹣4.20.画出△ABC关于直线L的对称图形△A′B′C′.【考点】作图-轴对称变换.【分析】分别作出点A、B、C关于直线MN的对称点A′、B′、C′,再连接各点得出即可.【解答】解:如图所示,△A′B′C′即为所求三角形.21.如图:某通信公司要修建一座信号发射塔,要求发射塔到两城镇P、Q的距离相等,同时到两条高速公路l1、l2的距离也相等.在图上画出发射塔的位置.【考点】作图—应用与设计作图.【分析】由角的平分线的性质:在角的平分线上的点到两边距离的相等,中垂线的性质:中垂线上的点到线段两个端点的距离相等知,把工厂建在∠AOB的平分线与PQ的中垂线的交点上就能满足本题的要求.【解答】解:如图.它在∠AOB的平分线与线段PQ的垂直平分线的交点处(如图中的E、E′两个点).要到角两边的距离相等,它在该角的平分线上.因为角平分线上的点到角两边的距离相等;要到P,Q的距离相等,它应在该线段的垂直平分线上.因为线段垂直平分线上的点到线段两个端点的距离相等.所以它在∠AOB的平分线与线段PQ的垂直平分线的交点处.如图,满足条件的点有两个,即E、E′.22.请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)【考点】利用轴对称设计图案.【分析】可分别选择不同的直线当对称轴,得到相关图形即可.【解答】解:23.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC 面积是28cm2,AB=20cm,AC=8cm,求DE的长.【考点】全等三角形的判定与性质;三角形的面积;角平分线的性质.【分析】利用角平分线的性质,得出DE=DF,再利用△ABC面积是28cm2可求DE.【解答】解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵△ABC面积是28cm2,AB=20cm,AC=8cm,=AB•DE+AC•DF=28,∴S△ABC即×20×DE+×8×DF=28,解得DE=2cm.24.如图,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=75°,将△ADE绕着点A旋转一个锐角后与△ABC重合,求这个旋转角的大小.【考点】旋转的性质;全等三角形的判定与性质.【分析】(1)根据“ASA”可判断△ABC≌△ADE;(2)先根据全等的性质得到AC=AE,则∠C=∠AEC=75°,再利用三角形内角和定理计算出∠CAE=30°,根据旋转的定义,把△ADE绕着点A逆时针旋转30°后与△ABC重合,于是得到这个旋转角为30°.【解答】(1)证明:在△ABC和△ADE中,∴△ABC≌△ADE;(2)解:∵△ABC≌△ADE,∴AC=AE,∴∠C=∠AEC=75°,∴∠CAE=180°﹣∠C﹣∠AEC=30°,∴△ADE绕着点A逆时针旋转30°后与△ABC重合,∴这个旋转角为30°.25.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于E、F.(1)若BC=10,求△AEF周长.(2)若∠BAC=128°,求∠FAE的度数.【考点】线段垂直平分线的性质.【分析】(1)由在△ABC中,边AB、AC的垂直平分线分别交BC于E、F,易得AE=BE,AF=CF,即可得△AEF周长=BC;(2)由∠BAC=128°,可求得∠B+∠C的值,即可得∠BAE+∠CAF的值,继而求得答案.【解答】解:(1)∵在△ABC中,边AB、AC的垂直平分线分别交BC于E、F,∴AE=BE,AF=CF,∵BC=10,∴△AEF周长为:AE+EF+AF=BE+EF+CF=BC=10;(2)∵AE=BE,AF=CF,∴∠B=∠BAE,∠C=∠CAF,∵∠BAC=128°,∴∠B+∠C=180°﹣∠BAC=52°,∴∠BAE+∠CAF=∠B+∠C=52°,∴∠FAE=∠BAC﹣(∠BAE+∠CAF)=76°.26.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.【考点】勾股定理的应用.【分析】(1)由题意得,我渔政船与不明船只行驶距离相等,即在OA上找到一点,使其到A点与B点的距离相等,所以连接AB,作AB的垂直平分线即可.(2)利用第(1)题中的BC=AC设BC=x海里,则AC=x海里.在直角三角形BOC中,BC=x海里、OC=(45﹣x)海里,利用勾股定理列出方程152+(45﹣x)2=x2,解得即可.【解答】解:(1)作AB的垂直平分线与OA交于点C;(2)设BC为x海里,则CA也为x海里,∵∠O=90°,∴在Rt△OBC中,BO2+OC2=BC2,即:152+(45﹣x)2=x2,解得:x=25,答:我国渔政船行驶的航程BC的长为25海里.27.如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=;(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=15cm.(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=3:1.(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.【考点】含30度角的直角三角形;等腰三角形的性质;等边三角形的性质.【分析】(1)根据三角形内角和定理推知∠A=30,∠C=90°.(2)根据线段垂直平分线的性质知CD=BD,则△ACD的周长等于AC+AB;(3)如图3,连接AD.利用等腰三角形的性质、垂直的定义推知∠B=∠ADE=30°,然后由”30度角所对的直角边是斜边的一半“分别求得BE、AE的值;(4)如图4,根据全等三角形的判定定理SAS可判断两个三角形全等;根据全等三角形的对应角相等,以及三角形外角的性质,可以得到∠PBQ=30°,根据直角三角形的性质即可得到.【解答】解:(1)∵∠A:∠B:∠C=1:2:3,且∠A+∠B+∠C=180°,∴∠A=30,∠C=90°,∴BC=AB=.故填:;(2)如图2,∵DE是线段BC的垂直平分线,∠ACB=90°,∴CD=BD,AD=BD.又∵在△ABC中,∠ACB=90°,∠B=30°,∴AC=AB,∴△ACD的周长=AC+AB=3BD=15cm.故填:15cm;(3)如图3,连接AD.∵在△ABC中,AB=AC,∠A=120°,D是BC的中点,∴∠BAD=60°.又∵DE⊥AB,∴∠B=∠ADE=30°,∴BE=BD,AE=AD,∴BE:EA=BD:AD,又∵BD=AD,∴BE:AE=3:1.故填:3:1.(4)BP=2PQ.理由如下:∵△ABC为等边三角形.∴AB=AC,∠BAC=∠ACB=60°,在△BAE和△ACD中,,∴△BAE≌△ACD(SAS),∴∠ABE=∠CAD.∵∠BPQ为△ABP外角,∴∠BPQ=∠ABE+∠BAD.∴∠BPQ=∠CAD+∠BAD=∠BAC=60°∵BQ⊥AD,∴∠PBQ=30°,∴BP=2PQ.2016年11月4日第21页共21页。
八年级上月考数学试卷(9月)含解析
2016-2017学年北京市房山区八年级(上)月考数学试卷(9月份)一、选择题1.下列式子是分式的是()A.B. C. +y D.2.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣13.如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍 B.扩大2倍 C.不变 D.缩小2倍4.已知分式的值是零,那么x的值是()A.﹣1 B.0 C.1 D.±15.化简的结果为()A.B.C. D.6.计算a÷a×的结果是()A.a B.1 C.D.a27.等式中的未知的分母是()A.a2+1 B.a2+a+1 C.a2+2a+1 D.a﹣18.下列约分中,正确的是()A. =x3B. =0C.D.9.分式,,,中,最简分式有()A.1个B.2个C.3个D.4个10.对于分式,总有()A. B.(a≠﹣1)C.D.11.计算()•()÷(﹣)的结果是()A.B.﹣C.D.﹣12.下列计算正确的是()A.B.C.D.二、填空题13.若x2﹣ax+25是完全平方式,则a= .14.分解因式:4x2﹣9= .15.当x 时,分式有意义.16.不改变分式的值,把它的分子和分母中的各项系数化为整数: = .17.当x=2时,分式的值是.18.当a 时,分式有意义;当时,分式无意义.19.若x2+ax+b=(x+3)(x﹣4),则a= ,b= .20.计算(1)﹣= .(2)﹣= .21.①=;②=.三、简答题22.约分:(1);(2).23.把下列各式化为最简分式:(1)= ;(2)= .24.计算①﹣;②+;③﹣;④1+.25.计算①÷.②÷.26.先化简,后求值:①(﹣)•,其中x=1;②÷,其中x=﹣.四、附加题27.已知两个分式:A=,B=+,其中x≠±2,下面有三个结论:①A=B;②A﹣B=0;③A+B=0.请问哪个正确?为什么?28.已知=3,求分式的值.2016-2017学年北京市房山区八年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题1.下列式子是分式的是()A.B. C. +y D.【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:A、的分母中不含有字母,不是分式,故本选项错误;B、的分母中含有字母,是分式,故本选项正确;C、+y的分母中不含有字母,不是分式,故本选项错误;D、+1的分母中不含有字母,不是分式,故本选项错误;故选:B.【点评】此题主要考查了分式定义,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.2.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣1【考点】分式有意义的条件.【分析】根据分式有意义的条件是分母不等于零,可得出x的取值范围.【解答】解:∵分式有意义,∴x﹣1≠0,解得:x≠1.故选A.【点评】本题考查了分式有意义的条件,属于基础题,注意掌握分式有意义分母不为零.3.如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍 B.扩大2倍 C.不变 D.缩小2倍【考点】分式的基本性质.【分析】把分式中的x和y都扩大2倍,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可.【解答】解:把分式中的x和y都扩大2倍后得:==2•,即分式的值扩大2倍.故选:B.【点评】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项.4.已知分式的值是零,那么x的值是()A.﹣1 B.0 C.1 D.±1【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值为0的条件是:(1)分子等于0;(2)分母不等于0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:若=0,则x﹣1=0且x+1≠0,故x=1,故选C.【点评】命题立意:考查分式值为零的条件.关键是要注意分母不能为零.5.化简的结果为()A.B.C. D.【考点】约分.【专题】计算题.【分析】找出原式分子分母的公因式,约分即可得到结果.【解答】解:原式==.故选B【点评】此题考查了约分,约分的关键是找出分子分母的公因式.6.计算a÷a×的结果是()A.a B.1 C.D.a2【考点】分式的乘除法;同底数幂的除法.【分析】根据分式的乘除法,可得答案.【解答】解:原式=a××=,故选:C.【点评】本题考查了分式的乘除法,利用分式的乘除法是解题关键.7.等式中的未知的分母是()A.a2+1 B.a2+a+1 C.a2+2a+1 D.a﹣1【考点】分式的基本性质.【分析】根据分式的基本性质即可求出答案.【解答】解:原式==故选(D)【点评】本题考查分式的基本性质,涉及因式分解.8.下列约分中,正确的是()A. =x3B. =0C.D.【考点】约分.【分析】根据分式的基本性质,分别对每一项进行解答,即可得出答案.【解答】解:A、=x4,故本选项错误;B、=1,故本选项错误;C、==,故本选项正确;D、=,故本选项错误;故选C.【点评】本题考查了约分,约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.9.分式,,,中,最简分式有()A.1个B.2个C.3个D.4个【考点】最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:分子分母有公因式x2﹣1,;;这三个是最简分式.故选C.【点评】最简分式就是分子和分母没有可以约分的公因式.10.对于分式,总有()A. B.(a≠﹣1)C.D.【考点】分式的基本性质.【分析】根据分式的基本性质即可求出答案.【解答】解:(B)==,(a≠﹣1)故选(B)【点评】本题考查分式的基本性质,属于基础题型.11.计算()•()÷(﹣)的结果是()A.B.﹣C.D.﹣【考点】分式的乘除法.【分析】先将除法转化为乘法,再根据分式的乘法法则计算即可.【解答】解:()•()÷(﹣)=()•()•(﹣)=﹣.故选B.【点评】本题考查了分式的乘除混合运算,做分式乘除混合运算时,一般是先统一为乘法运算,所以分式乘除法的运算,归根到底是乘法的运算,熟练掌握运算法则是解题的关键.12.下列计算正确的是()A.B.C.D.【考点】分式的加减法.【分析】直接根据分母不变,分子相加运算出结果即可.【解答】解:A、+=,此选项错误;B、+=0,此选项正确;C、﹣=﹣,此选项错误;D、+=,此选项错误;故选B.【点评】本题主要考查了分式的加减法,解题的关键是掌握运算法则,此题基础题,比较简单.二、填空题13.若x2﹣ax+25是完全平方式,则a= ±10 .【考点】完全平方式.【分析】本题考查完全平方公式的灵活应用,这里首末两项是x和5的平方,那么中间项为加上或减去x 和5的乘积的2倍.【解答】解:∵x2﹣ax+25是完全平方式,∴﹣ax=±2×5x,解得a=±10.故答案为:±10.【点评】本题主要考查完全平方公式,根据两平方项确定出这两个数,再根据乘积二倍项求解.14.分解因式:4x2﹣9= (2x﹣3)(2x+3).【考点】因式分解-运用公式法.【专题】因式分解.【分析】先整理成平方差公式的形式.再利用平方差公式进行分解因式.【解答】解:4x2﹣9=(2x﹣3)(2x+3).故答案为:(2x﹣3)(2x+3).【点评】本题主要考查平方差公式分解因式,熟记公式结构是解题的关键.15.当x 时,分式有意义.【考点】分式有意义的条件.【分析】分式有意义时,分母不等于零.【解答】解:依题意得:2x﹣5≠0,解得x.故答案是:.【点评】本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.16.不改变分式的值,把它的分子和分母中的各项系数化为整数: = .【考点】分式的基本性质.【分析】根据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.【解答】解:分子分母都乘以10,分式的值不变,得,故答案为:.【点评】本题考查了分式的基本性质.在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.17.当x=2时,分式的值是 1 .【考点】分式的值.【专题】计算题.【分析】将x=2代入分式,即可求得分式的值.【解答】解:当x=2时,原式==1.故答案为:1.【点评】本题是一个基础题,考查了分式的值,要熟练掌握.18.当a ≠﹣2 时,分式有意义;当x=3 时,分式无意义.【考点】分式有意义的条件.【分析】根据分式有意义的条件是分母不等于零列出不等式,解不等式即可.【解答】解:由有意义,得a+2≠0,解得a≠﹣2;由无意义,得3﹣x=0,解得x=3;故答案为:a≠﹣2;x=3.【点评】本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.19.若x2+ax+b=(x+3)(x﹣4),则a= ﹣1 ,b= ﹣12 .【考点】因式分解的意义.【专题】计算题.【分析】将右式展开,与左式对应项相等,即可求得啊a、b的值.【解答】解:∵(x+3)(x﹣4),=x2﹣x﹣12,=x2+ax+b,∴a=﹣1,b=﹣12.【点评】本题考查了多项式的因式分解,要求学生熟练掌握并能灵活运用.20.计算(1)﹣= .(2)﹣= ﹣1 .【考点】分式的加减法.【分析】(1)根据同分母的分式进行加减即可;(2)根据同分母的分式进行加减,再约分即可.【解答】解:(1)原式==;(2)原式==﹣1;故答案为,﹣1.【点评】本题考查了分式的加减运算,掌握同分母的分式加减的原则是解题的关键.21.①=;②=.【考点】分式的基本性质.【分析】根据分式的基本性质即可求出答案.【解答】解:故答案为:①a2+ab②7m﹣6n【点评】本题考查分式的基本性质,属于基础题型.三、简答题22.约分:(1);(2).【考点】约分.【分析】(1)约去分式中的分子与分母的公因式,即可得出答案.(2)先将分子与分母进行因式分解,再根据分式的基本性质,将分子与分母的公因式约去,即可求解.【解答】解:(1)=﹣;(2)==x﹣2.【点评】此题考查了约分,约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.23.把下列各式化为最简分式:(1)= ;(2)= .【考点】最简分式;分式的基本性质.【分析】(1)先把分子和分母分解因式,再约分即可;(2)先把分子和分母分解因式,再约分即可.【解答】解:(1)==,故答案为:;(2)==,故答案为:.【点评】本题考查了最简分式,分式的基本性质的应用,能正确根据分式的基本性质进行约分是解此题的关键.24.计算①﹣;②+;③﹣;④1+.【考点】分式的加减法.【专题】计算题;分式.【分析】①原式利用同分母分式的减法法则计算即可得到结果;②原式变形后,利用同分母分式的减法法则计算即可得到结果;③原式利用同分母分式的减法法则计算即可得到结果;④原式通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:①原式==﹣=﹣1;②原式==1;③原式==m﹣n;④原式==.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.25.计算①÷.②÷.【考点】分式的乘除法.【分析】①先对分子分母因式分解,再约分即可;②先对分子分母因式分解,再约分即可.【解答】解:①原式=•=;②原式=•==.【点评】本题考查了分式的乘除法,掌握因式分解是解题的关键.26.先化简,后求值:①(﹣)•,其中x=1;②÷,其中x=﹣.【考点】分式的化简求值.【分析】①先算括号里面的,再算乘法,最后把x=1代入进行计算即可;②根据分式的除法法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:①原式=•=•=x+9,当x=1时原式=9+1=10;②原式=•=﹣,当x=﹣时,原式=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.四、附加题27.已知两个分式:A=,B=+,其中x≠±2,下面有三个结论:①A=B;②A﹣B=0;③A+B=0.请问哪个正确?为什么?【考点】分式的加减法.【专题】计算题.【分析】将A与B代入A+B与A﹣B中计算得到结果,即可做出判断.【解答】解:∵A=,B=+=﹣==﹣,∴A+B=﹣=0,即A=﹣B,则③正确.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.28.已知=3,求分式的值.【考点】分式的基本性质.【专题】计算题.【分析】由已知可知x﹣y=﹣3xy,然后代入所求的式子,进行约分就可求出结果.【解答】解:∵∴y﹣x=3xy∴x﹣y=﹣3xy∴====.【点评】正确对已知式子进行化简,约分.正确进行变形是关键.。
人教版八年级数学上9月份月考试卷.docx
初中数学试卷 马鸣风萧萧 八年级数学9月份月考试卷 满分150分,时间120分钟) 一、选择(每小题3分,共45分)。
1.若ABC ∆是直角三角形,且有222a b c =-则直角是( ) A A ∠ B B ∠ C C ∠ D D ∠ 2.若ABC ∆的边长为,,,c b a 满足0))((222=-+-c b a b a ,则ABC ∆是( ) A 等腰三角形 B 直角三角形 C 等腰直角三角形 D 等腰三角形或直角三角形 3.三角形三边的长分别为5,12,13,则最短边上的高为( ) A 5 B 13 C 10 D 12 4.在ABC ∆中=∠∠∠C B A ::2:1:1,c b a ,,是C B A ∠∠∠,,的对边,则下列各式中成立的是( ) A 222b a = B 222b c a =+ C 222c b = D 222a c = 5.如图所示,四边形ABCD 的面积为( ) A 36米2 B 24米2 C 72米2 D 48米2 6.下列各数中是无理数的是( ) A 0.565656…… B π C 722 D 732.1 7.一个自然数的算术平方根是a ,那么比这个数大2的自然数的算术平方根( ) A 22+a B 2+a C 2+a D 22+a 8.若055=-+-x x ,则( ) A 5≥x B 5=x C 5≤x D 以上都不对 9.2442-=+-x x x ,则( ) A 2->x B 2>x C 2-<x D 2-≥x 10. b a -1化简为( ) D C B A 12 13 4 3 ------------------------密-----------------------封---------------------线-----------------------内----------------不----------------------要------------------答--------------------题------------------------A b a -B b a +C b a b a --D ba b a -+ 11.实数b a ,在数轴上的位置如图所示,那么化简2a b a --的结果是( ) A 2+a B 22+aC 2+aD 22+a12.在式子82+x 中,则x 的取值范围( )A 22≥xB 22≤xC 22-≥xD 全体实数13.下列各式中正确的是( )A 1-21-21= B 52501= C 5101000= D27142-9-= 14. 347-的算术平方根为( )A 32+B 32- C23- D 23+15. 64的平方根为( ) A 8 B —8 C 22 D 22±二、填空(每小题3分,共30分)。
最新人教版八年级数学上册9月月考试题.doc
八年级上学期月考试题一、选择题(每小题3分,共30分)1、下面各组中的三条线段能组成三角形的是()A、3cm,4cm,8cmB、8cm,7cm,15cmC、13cm,12cm,20cmD、5cm,5cm,11cm2、等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为( )A、7cmB、3cmC、9cmD、5cm3、一个三角形的两边长分别为3和7,且第三边的边长为整数,这样的三角形的周长的最小值是( )A、14B、15C、16D、174、一个多边形内角和是1080°,则这个多边形的边数为( )A、6 B 、7 C、8 D、95、如图(1)所示,在△ABC中,D在AC上,连结BD,且∠ABC=∠C=∠1,∠A=∠3,则∠A 的度数为().A.30°B.36°C.45°D.72°6、如图,已知那么添加下列一个条件后,仍无法判定的是()A.B.C.D.7. 如图所示, 将两根钢条AA’、BB’的中点O连在一起, 使AA’、BB’可以绕着点O自由旋转, 就做成了一个测量工件, 则A’B’的长等于内槽宽AB, 那么判定△OAB≌△OA’B’的理由是()A. 边角边B. 角边角C. 边边边D. 角角边8、如图,△ABC中,∠C=90º,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且CD=6cm,则DE的长为()A、4cm B、6cm C、8cm D、10cm 9.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A.①和②B.②和③C.①和③D.①②③10、如图,中,,平分,过点作于,测得,,则的周长是()A.B.C.D.二、填空题(每空3分,共30分)11、如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点有_____•条对角线.12、等腰三角形的周长为20cm,一边长为6cm,则底边长为___________13、等腰三角形的一个内角是100°,则另外两个角的度数分别是________14、如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为度.15、如图,△ABC中,∠C=75°,若沿图中虚线截去∠C,则∠1+∠2=_______16、如图,已知AC=BD,,那么△ABC≌,其判定根据是_______。
八年级(上)月考数学试卷(9月份).docx
八年级(上)月考数学试卷(9月份)一、选择题:(每小题3分,共30分)(A卷)在0.458 , 4.2,二,顼U3,-福1. 顽,牛这几个数中无理数有()个.A.2.A.B.B. 3 )C. 23.A.4.A.4下列说法正确的是(-81的平方根是±9任何数的平方是非负数,非负等腰三角形的腰长为10,底长为12,则其底边上的高为(13 B. 8下列各式中,正确的是()B•(-插)勺C.因而任何数的平方根也是 D.D. 1任何一个非负数的平方根都不大于这个数2是4的平方根C. 25D. 64寸(-2)W-2C.折=±3D. ±79=±3五根小木棒,其长度分别为7, 15,20, 24, 25, 现将它们摆成两个直角三角形,如图,其中正确的是(5.A.7.A.8.A.9.A.AC=13,高AD=12,则ZiABC 的周长为( )B. 32C. 42 或32)B. 60cm2C. 90cm2c,且满足等式:(a+b) 2-c2:直角三角形 C.42斜边长为17cm, 一条直角边为15cm的直角三角形的面积为( 30cm2三角形的三边长分别为a、b、锐角三角形 B.D.D.37 或33要使二次根式J航有意义,字母x必须满足的条件是(x>l B. x> - 1 C.=2ab,则此二角形是(钝角三角形)x> - 1D.D.10. 若寸(a - 3)二③- 3,则a的取值范围是()A.二、填空题:(每小题4分,共20分)11.36的平方根是, /函的立方根是.12.如图,正方形A的面积是 _____________ .a>3 B. a>3 C. a<3 D.120cm2)等腰三角形x>la<3,-桓的绝对值是一如图,在梯形ABCD 中,DC〃AB, ZD=90°, AD=4cm, AC=5cm, S 梯形A BCD=18cm2,那么AB=15.cm.三、16.计算或化简:(每小题24分,共24分)⑴(2+扼)(2-膜);(2) 324- ( - 3) 2+1 - A|x (- 6) +V49;6(3)已知(x+1) 2 - 1=24,求x 的值;(4)已知(a+b-1) (a+b+1) =8,求a+b 的值.四、解答题:(共26分)17.小文房间的面积为10.8m2,房间地面恰巧由120块相同的正方形地砖铺成,每块地砖的边长是多少?18.有一块土地形状如图所示,ZB=ZD=90°, AB=20米,BC=15米,CD=7米,请计算这块地的面积.19.已知2a - 1的平方根是±3, 4是3a+b - 1的算术平方根,求a+2b的值.20.把长方形ABCD沿AE折叠后,D点恰与BC边上的F重合,如图,已知AB=8, BC=10,求EC的长.填空:(每小题4分,共20分)(B卷)21.若l<x<4,则化简寸(X — 4)2 -寸(X —]) 2=.22.如图,一圆柱高8cm,底面的半径2cm, 一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是cm. 4始23.等边ZiABC的高为3cm,以AB为边的正方形面积为.24.若实数a、b 满足(a - 2 )2+7b T2a=0> 则b - 2a=.25.观察下列各式:而¥=哉,饵序即』12咤=7借'寸]6寿建,请你将猜想到的规律用含自然数n (n>l)的代数式表示出来是.二.解答题:(每小题10分,共30分)梯子,架在树干上,梯子底端离树干2米远,另一位同学爬上梯子去拿羽毛球.问这位同学能拿到球吗?27.如图,E是正方形ABCD的边BC延长线上的点,且CE=AC(1)求ZACE> ZCAE 的度数;(2)若AB=3cm,请求出Z^ACE的面积;(3)以AE为边的正方形的面积是多少?28.(2008*江西)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B'处,点A落在点A'处;(1)求证:B' E=BF;(2)设AE=a, AB=b, BF=c,试猜想a, b, c之间的一种关系,并给予证明.八年级(上)月考数学试卷(9月份)答案17.解:设每块地砖的边长是x,则120x2=10.8, 解得x=0.3,即每块地砖的边长是0.3m.18.解:连接AC,将四边形分割成两个三角形,其面积为两个三角形的面积之和,在直角△ ABC中,AC为斜边,则AC^2Q2+152=25米,在直角AACD中,AC为斜边则新? - 72=24 米,四边形ABCD 面积S=^ABxBC+l-ADxCD=234 平方米.2 219.解:..Wa- 1的平方根是±3, /.2a- 1=9,•. a=5,又..F是3a+b- 1的算术平方根,3a+b - 1=16, b=2,「・a+2b=5+2x2=9.20.解:・.•四边形ABCD是长方形,.\ZB=ZC=90°, AD=BC=10, CD=AB=8, •.・A ADE折叠后得到△ AFE, A AF=AD=10, DE=EF,设EC=x,贝ij DE=EF=CD - EC=8 - x, 在RtAABF 中,AB2+BF2=AF2,.・. 82+BF2=102, ・.・BF=6,・.・CF=BC- BF=10-6=4,・「在RtAEFC 中,EC2+CF2=EF2, X2+42= (8 - x) 2, 解得:x=3,即EC的长度为3.(B 卷)一.21.解:Vl<x<4Ax-4<0, x- l>022.解:底面圆周长为2TU,底面半圆弧长为nr,即半圆弧长为:—X2RX2=2RCHI,2 则/ (x-4)2 - 7(x-1) 2=lx - 41 - lx - 11=4 - x -x+l=5 - 2x.根据勾股定理得:AB=7(2K)2 + 82=2V^2+16cm•AB=AD-?sinB=3-rsin60°=2V3 (cm),以AB为边的正方形面积为:2扼x 2龙=12 (cm2), 故答案为:12cm2.一、CDBDC二、11. +6;三、16. (1)四、解答题:CBBCB2; V2.1;(2) 7;(共26分)12. 36 13. 6,8(3) x= - 6 或4; (4)14.直角三角形15. 6±3答:此块地的面积为234平方米.展开得:又因为bc=8cm, AC=2ncm, 23.解:如图所示:..•等边ZXABC的高为3cm, 二AD=3cm,故 b - 2a=4 - 2x2=0. 故答案为0.25.分别观察前面的几组数据,先观察根号下的整数可得依次是4, 8、12, 16...,分数依次是【,A,【...,结果部2 3 4分根号外面的数依次是3、5、7、9...从而可得出规律.观察下列各式:艰,饵4=戒’J12+|=7出,解:观察各式可得出规律:J 4n ^l_= (2n+l)二.26.解:由题意得,梯子顶端距离地面的距离为:这位同学能拿到球.27. 解:(1) ...▲(:是正方形ABCD 的对角线, .•.ZACB=45°,A ZACE=18O° - ZACB=180° - 45。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上学期数学9月月考试卷
一、单选题
1. 11的平方根是()
A .
B . -
C .
D . 121
2. 下列各数:﹣2,,0,,0.020020002,π,
,其中无理数的个数是()
A . 4
B . 3
C . 2
D . 1
3. 若有意义,则的取值范围是()
A .
B .
C .
D . 且
4. 直角三角形的两直角边均扩大到原来的3倍,则斜边扩大到原来的
倍.
A . 3
B . 6
C . 9
D . 12
5. 估算的值
A . 在6 和7 之间
B . 在5 和6 之间
C . 在4 和5 之间
D . 在7 和8 之间
6. 数轴上表示1,的点分别为A,B,点A 是BC 的中点,则点C 所表示的数是()
A . ﹣1
B . 1﹣
C . 2﹣
D . ﹣2
7. 的三边长分别为,下列条件:①
;② ;③
;④ .其中能判断是直角三角形的个数有()
A . 1个
B . 2个
C . 3个
D . 4个
8. 下列说法正确的是()
A . 无限小数都是无理数
B . 9的立方根是3
C . 数轴上的每一个点都对应一个有理数
D . 平方根等于本身的数是0
9. 如图,学校有一块长方形草地,有极少数人为了避开拐角走“捷径”,在草地内走出了一条“路”,他们仅仅少走了()米路,却伤害了花草。
A . 1
B . 2
C . 5
D . 12
10. 如图,在中,,,
,将折叠,使点与的中点重合,折痕交于点,交于点
,则线段的长为
A . 3
B . 4
C . 5
D . 6
二、填空题
11. 的算术平方根是________,的立方根是________.
12. 的倒数是________.相反数是________.
13. 如图,三角形ABC中,∠ACB=90°,AC=3,BC=4,AB=5,P为直线AB 上一动点,连PC,则线段PC的最小值是________.
14. 如图,在△ABC中,∠ABC=90°,AB =2BC=2,在AC上截取CD =CB.在AB上截取AP =AD,则AP =________.
15. 比较大小:________ (填“>”或“<”)
16. 定义[ x] 为不大于x 的最大整数,如[2] = 2 ,[ ] = 1 ,[4.1] = 4 ,则满足[ ] = 70 的n 共有________个(n 为正整数)
17. 如图所示,15 只空油桶堆在一起,每只油桶的底面直径均为50cm.现在要给它们盖一个遮雨棚,遮雨棚的最低高度为________cm
18. 师大一中准备办自己的农场,如果设计成等腰三角形的样子,要求等腰三角形的一边长为20,面积为160,则该等腰三角形的周长为________
19. 如图,∠AOB=120°,∠MPN = 60°,OP平分∠AOB,点M、N 分别在射线OA,OB 上(都不与点O 重合),∠MPN 绕着点P 转动,OP 与MN 交于点
G,OP=10,当MN取得最小值时,DOGN 的面积为________
三、解答题
20. 计算:
(1).
(2)
21. 已知2a-1的算术平方根是3,3a+b+4的立方根是2,求a-b的平方根。
22. 已知a,b,c 都是实数,且满足+
=0,且,求代数式的值.
23. 如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.
(1)判断∠ADC是否是直角,并说明理由;
(2)试求四边形草坪ABCD的面积.
24. 如图,方格纸中小正方形的边长为1,△ABC 的三个顶点都在小正方形的格点上,求:
(1)边AC、AB、BC 的长;
(2)判断△ABC的形状并求出面积;
(3)点C 到AB 边的距离.
25. 如图,△ABC 中,∠C=90°,AB=10cm,BC=6cm,若动点P 从点C开始,按C→A→B→C 的路径运动,且速度为每秒1cm,设出发的时间为t 秒.
(1)出发2 秒后,求△ABP 的周长.
(2)当t 为几秒时,BP 平分∠ABC?
(3)另有一点Q,从点C 开始,按C→B→A→C 的路径运动,且速度为每秒2cm,若P、Q 两点同时出发,当P、Q 中有一点到达终点时,另一点也停止运动.当t 为何值时,直线PQ 把△ABC 的周长分成相等的两部分?
26.
(1)若的小数部分为a,5 的小数部分为b,求ab (2)己知a、b、c 在数轴上的位置如图所示,化简
27. 阅读下列材料,然后回答问题.
①在进行二次根式的化简与运算时,我们有时会碰上如一样的式
子,其实我们还可以将其进一步化简:
以上这种化简的步骤叫做分母有理化.
②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知a+b=2,ab = -3 ,求a2 + b2 .我们可以把a+b和ab看成是一个整体,令x=a+b ,y = ab ,则a 2 + b2 = 2 - 2ab = x2- 2y = 4+ 6=10.这样,我们不用求出a,b,就可以得到最后的结果.
(1)计算:
(2)已知m 是正整数,a = ,b = 且2a2+ 1823ab + 2b2 = 2019 .求m.
(3)已知,则的值为________
28. 等腰直角三角形ABC 中,∠BAC = 90° ,AB = AC = 6 ,D,E 是线段BC 上的动点,且∠DAE = 45°
(1)如图1,请直接写出BD,DE,EC 满足的关系式为________,
(2)①如图1,CE = 3 ,请求出DADE 的面积(写出过程);
②如图2,∠EAC = 30° ,请求出CE 的长度(写出过程);
(3)如图3,D,E 运动到了线段的延长线上,且满足∠DAE = 135°,CE=8,
直接写出BD的长为________。