2015-2016年江苏省扬州市宝应县九年级上学期期中数学试卷及参考答案

合集下载

2015—2016学年度第一学期期中调考

2015—2016学年度第一学期期中调考

2015—2016学年度第一学期期中调考九年级数学参考答案一、选择题(共10小题,每小题3分,共30分)C B CD A B C D B A二、填空题(共6小题,每小题3分,共18分)11、-3; 12、1000; 13、k>34且k ≠1; 14、80°或120°; 15、2(+2)2y x =+ ; 16、2441三、解答题(共8小题,共72分) 17题(本题8分)解:∵1,2,1a b c ==-=-,………………3分∴2480b ac ∆=-=>………………5分∴22=22x ±±=……………………7分1x =2x =………8分18题(本题8分)(1)(4,4)(2)(-2,-2),(3,112) 19题(本题8分)解:设正中央的矩形长为2xm ,则其宽为xm ,-------1分 依题意得2x ×x=20×10×(1-1625),-------4分 解得x 1=6 ,x 2=-6(不符合题意,舍去) -------6分∴正中央的矩形宽为6m ∴左、右边衬的宽为10-62=2m -------8分 20题(本题8分)⑴由已知条件可得:其对称轴为:x=1, ∵AB=4∴A(-1,0) ,B(3,0) ∵ OC=OB, ∴C (0,3) ------2分代之得:a=-1 c=3 ------3分∴此二次函数的解析式为y=223x x -++----------4分(2)(1, 4);(3,0)和(-1,0)------6分(3)(4,-5)------------------8分21、(本题8分)(1)画图………………2′ (0,-3)…………………3′(2)画图………5′(-3,-2)……………6′ (3)53………………8′ 22(本题10分)解:(1)如图所示:△ABE ′即为所求;………2′(2)作∠EAE ′的平分线交BC 于点F ,则△CFE 的周长等于正方形ABCD 的周长的一半, 在△AEF 和△AE ′F 中:∵AE=AE′ ∠EAF=∠E′AF AF=AF ,∴△AEF ≌△AE ′F (SAS ),∴EF=E ′F=BF+DE ,∴EF+EC+FC=BC+CD .………6′(3)作BM ⊥BD,BM=PD,连AM,易证△ADP ≌△ABM (SAS )∴AM=AP ∠BAM =∠DAP ∵∠PAQ=45°∴∠DAP+∠BAQ=∠BAM+∠BAQ =45°即∠MAQ=45°易证△MAQ ≌△PAQ (SAS )∴MQ=PQ∴MQ 2= BM 2 +BQ 2∴PQ 2= PD 2 +BQ 2………10′23、(本题10分)(1)=y ()()22501202215030452++-=--+x x x x (1≤x <40且为整数)=y ()()825011021503085+-=--x x (40≤x ≤70且为整数)……… 4分(2)当1≤x <40 x=30 y max =4050元当40≤x ≤70时,x=40 y max =3850元∴ 第30天时,y max =4050元………8分(3)共有36天………10分24. (本题12分)解:(1)21)4y a x =-+(可得其顶点D 坐标为(1,4),C(0,a+4) ∴CE=1, 由勾股定理得DE=1DE=DM-EM=4-(a+4)=1 ∴a=-1∴抛物线的解析式; 223y x x =-++………3分 (2)设P (x ,-x+3),则M (x ,-x 2+2x+3),∴PM=(-x 2+2x+3)-(-x+3)=-x 2+3x ,M Q P E D C A∴S △BCM =S △PMC +S △PMB =12PM •NO+12PM •NB=12PM (NO+BN )=12PM •BO =32PM , ∴S △BCM =32(-x 2+3x )=-32(x-32)2+278, ∴当x=32时,△BCM 的面积最大, ∴N (32,0);………7分解法2:因为BC 长为定值,所以BC 上高要最大,将BC 平移至与抛物线相切时高最大 BC 的解析式y=-x+3,设ME 的解析式y=-x+b代入223y x x =-++得2330x x b -+-=∴24940b ac ∆=-=-=(b-3),b=214 当b=214时,代入2330x x b -+-=得唯一交点横坐标为32 ∴N (32,0) (3)作抛物线的对称轴EP , CN ⊥EP 于N, HM ⊥EP 于M,由(1)中得△DNC 为等腰直角三角形,∴△DHE 也为等腰直角三角形∴EM=DM=HM=12m ∴H(1+12m,4+ 12m ) ∵点H 在抛物线21)4+y x m =--+(上 ∴4+12m 21+1)4+2m m =--+(1 ∴21142m m = ∴m=2或m=0(舍去)∴m 的值为m=2. ………12分。

2015-2016-1初三数学期中试卷

2015-2016-1初三数学期中试卷

江苏省邗江中学(集团)2015-2016学年度第一学期初三年级数学学科期中检测试卷(全卷满分150分,考试时间120分钟)一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,将每题答案选项代号填在答卷纸表格相应位置上)1、下列关于x 的方程中,一定是一元二次方程的是( ▲ )。

A .x 2-2xy+y 2=0B .x(x+3)=x 2-1C .x 2-2x=3D .x+1x =0 2、关于x 的一元二次方程x 2-4x+5=0的根的情况是( ▲ )A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法确定3、已知⊙O 的直径为8cm ,点P 到圆心O 的距离为4.5cm ,则点P 与⊙O 的位置关系为( ▲ )A .点P 在圆外B .点P 在圆上C .点P 在圆内D . 无法确定点P 的位置4、本学期的五次数学测试中,甲、乙两同学的平均成绩一样,方差分别为1.2、0.5,由 此可知,( ▲ )A .甲比乙的成绩稳定B .乙比甲的成绩稳定C .甲乙两人的成绩一样稳定D .无法确定谁的成绩更稳定5、如图,□ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC=54°,连接AE ,则∠AEB 的度数为( ▲ )A .36°B .46°C .27°D .63°6、 如图,在⊙O 中,AB 为直径,BC 为弦,CD 为切线,连接OC .若∠BCD=60°,则∠AOC 的度数为( ▲ )A .40°B .50°C .80°D .60°7、已知实数m ,n 满足m ﹣n 2=2,则代数式m 2+2n 2+4m ﹣1的最小值等于( ▲ )A .-14B .-6C .8D .118、如图,一段抛物线:y=-x(x-3)(0≤x ≤3),记为1C ,它与x 轴交于点O 、1A ;将1C 绕(第8题)点1A 旋转180°得2C ,交x 轴于点A 2;将2C 绕点2A 旋转180°得3C ,交x 轴于点3A ;…如此进行下去,直至得13C .若P (38,m )在第13段抛物线13C 上,则m 的值为( ▲ )A .5B .4C .3D .2二、填空题(本大题共10小题,每小题3分,共30分.请把答案填在答题纸相应横线上)9、一组数据11,8,6,9,12,则极差是 ▲ 。

2015~2016学年第一学期期中考试九年级数学试题卷附答案

2015~2016学年第一学期期中考试九年级数学试题卷附答案

2015〜2016学年度第一学期期中考试九年级数学试题卷2015.11・选择题(本大题共8小题,每小题3分,共24分.)1.下列方程是一元二次方程的是2,若关于x 的一元二次方程kx 2—2x —1=0有两个不相等的实数根,则3 .如图,/ADE=/ACD=/ABC,图中相似三角形共有(▲)A.1对B.2对C.3对D.4对4 .如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D 、E 、F 分别是OA 、OB 、OC 的中点,则4DEF 与4ABC 的面积比是(▲)A.1:2B,1:4■C.1:5D.1:65 .如图,在Rt^ABC 中,/C=90°,D 是AC 边上一点,AB=5,AC=4,若△ABCs^BDC,则CD 的值为6 .下列命题:①圆周角的度数等于圆心角度数的一半;② 个圆;④同圆或等圆中,同弧所对的圆周角相等.其中正确的是(▲)A.①②B.②③C.②④D.①④7 .如图,AB 是。

的直径,AB 垂直于弦CD,/BOC=70°,则/ABD 的度数为(▲)A.20°B,46°C.55°D,70°8 .9,若关于x 的方程x 2+3x+a=0有一个本是—1,则a=▲10 .若x :y=2:3,刃B 么x:(x+y )=-▲11 .若关于x 的方程(m —3)x |m |—1+2x —7=0是一元二次方程,则m=▲A.x+2y=1B.x 2+5=0C.x 2+3=8 xD.3x+8=6x+2B.k>—1且kw0C.k<1D.kv1且kwo3B.2C. D. 二.填空题(本大题共 10小题,每小题 2分,共20分.)90。

的圆周角所对的弦是直径;③三个点确定 PQ 的最小值为C.4D.5(第3题) (第4题) (第5题) (第8题)(第7题) A,电 如图,OO 的半径为3,点O 到直线l 的距离为4,点P 是直线l 上的一个动点,PQ 切。

2015---2016学年度第一学期九年级上数学期中试卷

2015---2016学年度第一学期九年级上数学期中试卷

2015---2016学年度第一学期九年级上数学期中试卷中卫四中2015----2016学年度第一学期九年级数学上册期中试卷命题人:秦永侠审核人:(满分120分时间120分钟)同学们,展示自己的时候又到啦!只要做到心境平静,细心审题,认真思考,你就会感到这套试题并不难。

一切都在你的掌握之中,请相信自己!一、仔细选一选:(3×8=24分)1、下面的图形中既是轴对称图形又是中心对称图形的是()2、一元二次方程的根是( )A.B.C.D.3、如果x:(x+y)=3:5,那么x:y=()A. B. C.D.4、如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD 的长是()A.1B.C.2D.25、如图,在△ABC中,D、E分别是AB、AC的中点,那么△ADE 与四边形DBCE的面积之比是()A.B.C.D.第4题图第7题图第8题图第5题图6、一元二次方程(m-2)x2-4m x+2m-6=0只有一个实数根,则m等于()A.1或-6 B.-6 C.1 D.27、如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC 为直角三角形的概率是( D )A.B. C. D.8、如图所示,一般书本的纸张是在原纸张多次对开得到。

矩形沿对开后,再把矩形沿对开,依此类推,若各种开好矩形都相的似,那么等于(C )A.B.C.D.二、认真填一填:(3×8=24分)9、一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是白色球的概率是.10、如果等腰三角形的两边长分别是方程x2﹣10x+21=0的两根,那么它的周长为11、已知正方形ABCD的对角线AC =,则正方形ABCD的周长为.12、如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2cm,则AB的长是13、如图,在Rt△ABC中,CD是斜边AB上的高,若BD=4cm,CD=6cm,则AD的长为12题图 13题图 14题图 16题图14、如图,要使△ABC∽△ACD,需补充的条件是.(只要写出一种)15、在实数范围内定义运算“★”,其规则为a★22b a b=-,则方程(2★3)★x=9的根为。

江苏省扬州市 九年级(上)期中数学试卷-(含答案)

江苏省扬州市  九年级(上)期中数学试卷-(含答案)

九年级(上)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.一个不透明的袋中装有除颜色外完全相同的4个白球和2个黑球,摸一次,摸到黑球的概率为()A. B. C. D. 12.数据102,104,106,108,110的方差是()A. 2B. 4C. 6D. 83.若a+b+c=0,则关于x的一元二次方程ax2+bx+c=0(a≠0)有一根是()A. 1B.C. 0D. 无法判断4.有一人患了流感,经过两轮传染后共有64人患了流感.则每轮传染中平均一个人传染了几个人?()A. 5人B. 6人C. 7人D. 8人5.半径为2的⊙O中,弦AB=2,弦AB所对的圆周角的度数为()A. B. 或 C. 或 D. 或6.如图,AB是⊙O的切线,B为切点,AO的延长线交⊙O于C点,连接BC,若∠A=30°,AB=2,则AC等于()A. 4B. 6C.D.7.一元钱硬币的直径约为24mm,则用它能完全覆盖住的正六边形的边长最大不能超过()A. 12mmB.C. 6mmD.8.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A. B. C.D.二、填空题(本大题共10小题,共30.0分)9.方程x(x+2)=x的解是______.10.设x1,x2是方程2x2-3x-3=0的两个实数根,则的值为______.11.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是______分.12.已知⊙O的半径为2,直线l上有一点P满足OP=2,则直线l与⊙O的位置关系是______ .13.圆锥的底面半径为2,母线长为6,则它的侧面积为______.14.圆内接四边形ABCD中,∠A:∠B:∠C=1:2:3,则∠D= ______ °.15.数据10,10,x,8的众数与平均数相同,那么这组数据的中位数是______ .16.在一个不透明的袋子中装有红,绿,蓝3种颜色的球共10个,这些球除颜色外都相同,其中红球3个,绿球5个.任意摸出2个球恰好为同色球的概率是______ .17.如图,一块长宽不等的矩形木板,连接对角线后被分成4个区域,分别涂上红、黄、蓝、绿四色,木板中间装有指针,指针转动停止后,下面两个结论:(1)指针指向红、蓝区域的概率与指向黄、绿区域的概率相等;(2)指针指向红、黄区域的概率与指向蓝、绿区域的概率相等.其中说法正确的是______.18.如图,在半圆中AB为直径,弦AC=CD=6,DE=EB=2,弧CDE的长度为______ .三、计算题(本大题共2小题,共16.0分)19.解下列方程(1)x2-4x=-3(2)2x2-5x+1=0.20.化简(-4)÷并求值,其中x满足x2-2x-8=0.四、解答题(本大题共8小题,共80.0分)21.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.22.如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2.(1)求线段EC的长;(2)求图中阴影部分的面积.23.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组):(1)报名参加课外活动小组的学生共有______人,将条形图补充完整;(2)扇形图中m=______,n=______;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.24.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加______件,每件商品盈利______元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?25.已知等边△ABC内接于⊙O,AD为O的直径交线段BC于点M,DE∥BC,交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若等边△ABC的边长为6,求BE的长.26.如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A,B,C请在网格图中进行下列操作:(1)请在图中确定该圆弧所在圆的圆心D的位置,D点坐标为______;(2)连接AD,CD,则⊙D的半径为______(结果保留根号),扇形DAC的圆心角度数为______;(3)若扇形DAC是某一个圆锥的侧面展开图,则该圆锥的底面半径为______(结果保留根号).27.已知关于x的方程x2-(2k+1)x+4(k-)=0.(1)求证:无论k取什么实数值,这个方程总有实数根;(2)能否找到一个实数k,使方程的两实数根互为相反数?若能找到,求出k的值;若不能,请说明理由.(3)当等腰三角形ABC的边长a=4,另两边的长b、c恰好是这个方程的两根时,求△ABC的周长.28.如图,以点P(-1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.答案和解析1.【答案】C【解析】解:∵一个不透明的袋中装有除颜色外完全相同的4个白球和2个黑球,∴摸一次,摸到黑球的概率为:=.故选C.由一个不透明的袋中装有除颜色外完全相同的4个白球和2个黑球,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.2.【答案】D【解析】解:数据的平均数==106,所以数据的方差=[(102-106)2+(104-106)2+(106-106)2+(108-106)2+(110-106)2]=8.故选D.先计算出数据的平均数,然后利用方差公式求解.本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.记住方差公式s2=[(x 1-)2+(x2-)2+…+(x n-)2].3.【答案】A【解析】解:∵a+b+c=0,∴b=-(a+c)①把①代入一元二次方程ax2+bx+c=0(a≠0)中,得:ax2-(a+c)x+c=0,ax2-ax-cx+c=0,ax(x-1)-c(x-1)=0,(x-1)(ax-c)=0,∴x1=1,x2=.故本题选A.把a+b+c=0转化为b=-(a+c)代入一元二次方程,再用因式分解法求出方程的根.本题考查的是一元二次方程的解,把已知条件代入方程求出方程的解.4.【答案】C【解析】解:设每轮传染中平均一个人传染了x人,则1+x+x(x+1)=64,解得x1=7,x2=-9(舍去).答:每轮传染中平均一个人传染了7个人.故选:C.设每轮传染中平均一个人传染了x人,根据经过两轮传染后共有64人患了流感,可求出x,从而求解.本题考查了一元二次方程的应用,先求出每轮传染中平均每人传染了多少人数是解题关键.5.【答案】B【解析】解:如图,作直径BC,则∠A=90°,∵BC=2×2=4,弦AB=2,∴tan∠C==,∴∠C=60°,∴∠D=180°-∠C=120°,∴弦AB所对的圆周角的度数为:60°或120°.故选B.首先根据题意画出图形,然后作直径BC,则∠A=90°,由半径为2的⊙O中,弦AB=2,即可求得∠C与∠D的度数.此题考查了圆周角定理以及特殊角的三角函数值.注意根据题意作图,结合图形求解是关键.6.【答案】B【解析】解:连接OB.∵AB是⊙O的切线,B为切点,∴OB⊥AB,在直角△OAB中,OB=AB•tanA=2×=2,则OA=2OB=4,∴AC=4+2=6.故选:B.连接OB,则△AOB是直角三角形,利用三角函数即可求得OA的长,则AC 即可求解.本题考查了三角函数以及切线的性质,正确判断△OAB是直角三角形是关键.7.【答案】A【解析】解:已知圆内接半径r为12mm,则OB=12,∴BD=OB•sin30°=12×=6,则BC=2×6=12,可知边长为12mm,就是完全覆盖住的正六边形的边长最大.故选A.理解清楚题意,此题实际考查的是一个直径为24mm的圆内接正六边形的边长.此题所求结果比较新颖,要注意题目问题的真正含义,即求圆内接正六边形的边长.8.【答案】B【解析】解:作OD⊥BC交BC与点D,∵∠COA=60°,∴∠COB=120°,则∠COD=60°.∴S=;扇形AOC=.S扇形BOC在三角形OCD中,∠OCD=30°,∴OD=,CD=,BC=R,∴S△OBC=,S==,弓形>>,∴S2<S1<S3.故选:B.设出半径,作出△COB底边BC上的高,利用扇形的面积公式和三角形的面积公式表示出三个图形面积,比较即可求解.此题考查扇形面积公式及弓形面积公式,解题的关键是算出三个图形的面积,首先利用扇形公式计算出第一个扇形的面积,再利用弓形等于扇形-三角形的关系求出弓形的面积,进行比较得出它们的面积关系.9.【答案】x=0或x=-1【解析】解:∵x2+2x=x,即x2+x=0,∴x(x+1)=0,则x=0或x+1=0,解得:x=0或x=-1,故答案为:x=0或x=-1.因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.10.【答案】-【解析】解:∵x1,x2是方程2x2-3x-3=0的两个实数根,∴x1+x2=,x1x2=-,则原式=====-.故答案为:-利用根与系数的关系求出两根之和与两根之积,所求式子通分并利用同分母分式的加法法则计算,变形后将各自的值代入计算即可求出值.此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.11.【答案】88【解析】解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88分,故答案为:88.根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.12.【答案】相切或相交【解析】解:当OP垂直于直线l时,即圆心O到直线l的距离d=2=r,⊙O与l相切;当OP不垂直于直线l时,即圆心O到直线l的距离d<2=r,⊙O与直线l相交.故直线l与⊙O的位置关系是相切或相交.故答案为:相切或相交.根据直线与圆的位置关系来判定.判断直线和圆的位置关系:①直线l和⊙O 相交⇔d<r;②直线l和⊙O相切⇔d=r;③直线l和⊙O相离⇔d>r.分OP垂直于直线l,OP不垂直直线l两种情况讨论.本题考查直线与圆的位置关系.解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.13.【答案】12π【解析】解:根据圆锥的侧面积公式:πrl=π×2×6=12π,故答案为:12π.根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.此题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.14.【答案】90【解析】解:设∠A为x,则∠B为2x,∠C为3x,∵四边形ABCD是圆内接四边形,∴∠A+∠C=∠B+∠D=180°,则x+3x=180°,解得,x=45°,∴∠B=2x=90°,∴∠D=90°,故答案为:90.设∠A为x,根据圆内接四边形的性质列出方程,解方程即可.本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.15.【答案】10【解析】解:数据10,10,x,8的众数与平均数相同,可知众数为10,则平均数也为10,(10+10+x+8)÷4=10,求得x=12.将这组数据从小到大重新排列后为:8,10,10,12;最中间的那两个数的平均数即中位数是10.故填10.根据平均数的定义先求出x.求中位数可将一组数据从小到大依次排列,中间数据(或中间两数据的平均数)即为所求.本题考查了众数和中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.16.【答案】【解析】由表格可知,共有90种等可能结果,其中任意摸出2个球恰好为同色球的有28种可能结果,∴P(摸出2个球恰好为同色球)==,故答案为:.列表得出所有等可能结果,根据概率公式计算可得.此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.【答案】(1)【解析】解:∵红和蓝颜色与黄和绿颜色的面积相等,∴指针指向红、蓝区域的概率与指向黄、绿区域的概率相等;故答案为(1).根据矩形的性质和题意得出红和蓝颜色与黄和绿颜色的面积相等,再根据几何概率即可得出答案.本题考查了几何概率,用到的知识点为:矩形的性质和概率公式,概率=相应的面积与总面积之比,求出蓝颜色和红颜色的面积相等是本题的关键18.【答案】【解析】解:过点E作EH⊥CD于H,连接OC、OE、AE,如图所示.∵AC=CD,DE=EB,∴,,∴∠COE=∠AOB=90°,∴∠CAE=45°.∵∠CDE+∠CAE=180°,∠CDE+∠HDE=180°,∴∠HDE=∠CAE=45°.在Rt△DHE中,HE=DE•sin∠HDE=2×=,DH=DE•cos∠HDE=2×=.在Rt△CHE中,CE===10.在Rt△COE中,CO=CE=5,∴弧CDE的长度为=.故答案为.过点E作EH⊥CD于H,连接OC、OE、AE,如图所示.根据弧、弦和圆周角的关系可得∠COE=90°,根据圆周角定理可得∠CAE=45°,再根据圆内接四边形对角互补及同角的补角相等可得∠HDE=45°,然后运用勾股定理可依次求出CE,CO,然后运用圆弧长公式就可解决问题.本题主要考查了等弧与等弦及等圆心角之间的关系、圆周角定理、圆内接四边形的对角互补、特殊角的三角函数值、勾股定理、圆弧长公式等知识,通过解三角形CDE求出CE,进而求出半径,是解决本题的关键.19.【答案】解:(1)x2-4x+3=0,(x-1)(x-3)=0,x-1=0或x-3=0,所以x1=1,x2=3;(2)△=(-5)2-4×2×1=17,x=所以x1=,x2=.【解析】(1)先移项得到x2-4x+3=0,然后利用因式分解法解方程;(2)利用求根公式法解方程.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了公式法解一元二次方程.20.【答案】解:原式=÷=•=x-2,由x2-2x-8=0,即(x-4)(x+2)=0,得到x=4或x=-2(舍去),则x=4时,原式=4-2=2.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出已知方程的解得到x的值,代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.【答案】85;85;80【解析】解:(1)填表:初中平均数为:(75+80+85+85+100)=85(分),众数85(分);高中部中位数80(分).(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)∵=[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,=[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160.∴<,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答;(2)根据平均数和中位数的统计意义分析得出即可;(3)分别求出初中、高中部的方差即可.此题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.22.【答案】解:(1)∵在矩形ABCD中,AB=2DA,DA=2,∴AB=AE=4,∴DE==2,∴EC=CD-DE=4-2;(2)∵sin∠DEA==,∴∠DEA=30°,∴∠EAF=60°,∴图中阴影部分的面积为:S扇形FAE-S△DAE==-2.【解析】(1)根据扇形的性质得出AB=AE=4,进而利用勾股定理得出DE的长,即可得出答案;(2)利用锐角三角函数关系得出∠DEA=30°,进而求出图中阴影部分的面积为:S-S△DAE求出即可.扇形FAE此题主要考查了扇形的面积计算以及勾股定理和锐角三角函数关系等知识,根据已知得出DE的长是解题关键.23.【答案】100;25;108【解析】解:(1)∵根据两种统计图知地方戏曲的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100人,参加民族乐器的有100-32-25-13=30人,统计图为:(2)∵m%=×100%=25%,∴m=25,n=×360=108,故答案为:25,108;(3)树状图分析如下:∵共有12种情况,恰好选中甲、乙的有2种,∴P(选中甲、乙)==.(1)用地方戏曲的人数除以其所占的百分比即可求得总人数,减去其它小组的频数即可求得民族乐器的人数,从而补全统计图;(2)根据各小组的频数和总数分别求得m和n的值即可;(3)列树状图将所有等可能的结果列举出来,然后利用概率公式求解即可.本题考查了扇形统计图、条形统计图及列表与树状图法求概率的知识,解题的关键是能够列树状图将所有等可能的结果列举出来,难度不大.24.【答案】2x;(50-x)【解析】解:(1)降价1元,可多售出2件,降价x元,可多售出2x件,盈利的钱数=50-x,故答案为2x;50-x;(2)由题意得:(50-x)(30+2x)=2100(0≤x<50)化简得:x2-35x+300=0,即(x-15)(x-20)=0,解得:x1=15,x2=20∵该商场为了尽快减少库存,∴降的越多,越吸引顾客,∴选x=20,答:每件商品降价20元,商场日盈利可达2100元.(1)降价1元,可多售出2件,降价x元,可多售出2x件,盈利的钱数=原来的盈利-降低的钱数;(2)等量关系为:每件商品的盈利×可卖出商品的件数=2100,把相关数值代入计算得到合适的解即可.考查一元二次方程的应用;得到可卖出商品数量是解决本题的易错点;得到总盈利2100的等量关系是解决本题的关键.25.【答案】(1)证明:∵等边△ABC内接于⊙O,∴∠ABC=60°,O即是△ABC的外心,又是△ABC的内心,∴∠BAM=∠CAM=30°,∴∠AMB=90°,∵DE∥BC,∴∠EDA=∠AMB=90°,∵AD为⊙O的直径,∴DE是⊙O的切线;(2)解:∵△ABC是等边三角形,∴BM=AB=3,连接OB,如图所示:则∠OBM=30°,∴OM=OB,由勾股定理得:OB2-OM2=BM2,即OB2-(OB)2=32,解得:OB=2,∴OM=,AM=3,AD=4,∵DE∥BC,∴=,即=,解得:AE=8,∴BE=AE-AB=8-6=2.【解析】(1)由等边三角形的性质得出O即是△ABC的外心,又是△ABC的内心,得出∠BAM=∠CAM=30°,因此∠AMB=90°,由平行线的性质得出∠EDA=90°,即可得出结论;(2)由等边三角形的性质得出BM=AB=3,连接OB,则∠OBM=30°,得出OM=OB,由勾股定理求出OB,由平行线的性质得出=,求出AE,即可得出BE的长.本题考查了切线的判定、等边三角形的性质、平行线的性质、勾股定理等知识;熟练掌握切线的判定和等边三角形的性质,由勾股定理求出半径是解决问题的突破口.26.【答案】;;;【解析】解:(1)D点坐标为(2,0);(2)半径为=2,∵OD=CE=2,OA=DE=4,∠AOD=∠CEO=90°,∴△AOD≌△CDE,∴∠OAD=∠CDE,∴∠ADO+∠CDE=∠ADO+∠OAD=90°,∴∠ADC=90°.∴扇形DAC的圆心角度数为90°;(3)设圆锥的底面半径是r,则2πr=,∴r=.即该圆锥的底面半径为.(1)根据垂径定理的推论:弦的垂直平分线必过圆心,即可作出弦AB,BC的垂直平分线,交点即为圆心;(2)根据勾股定理进行计算,连接DA,DC,根据SAS得到两个三角形全等△AOD≌△DCE,则∠ADC=90°;(3)根据圆锥的底面周长等于弧长,进行计算.能够根据垂径定理作出圆的圆心,根据全等三角形的性质确定角之间的关系,掌握圆锥的底面半径的计算方法.27.【答案】证明:(1)∵△=(2k+1)2-16(k-)=(2k-3)2≥0,∴方程总有实根;解:(2)∵两实数根互为相反数,∴x1+x2=2k+1=0,解得k=-0.5;(3)①当b=c时,则△=0,即(2k-3)2=0,∴k=,方程可化为x2-4x+4=0,∴x1=x2=2,而b=c=2,∴b+c=4=a不适合题意舍去;②当b=a=4,则42-4(2k+1)+4(k-)=0,∴k=,方程化为x2-6x+8=0,解得x1=4,x2=2,∴c=2,C△ABC=10,当c=a=4时,同理得b=2,∴C△ABC=10,综上所述,△ABC的周长为10.【解析】(1)整理根的判别式,得到它是非负数即可.(2)两实数根互为相反数,让-=0即可求得k的值.(3)分b=c,b=a两种情况做.一元二次方程总有实数根应根据判别式来做,两根互为相反数应根据根与系数的关系做,等腰三角形的周长应注意两种情况,以及两种情况的取舍.28.【答案】解:(1)连接PA,如图1所示.∵PO⊥AD,∴AO=DO.∵AD=2,∴OA=.∵点P坐标为(-1,0),∴OP=1.∴PA==2.∴BP=CP=2.∴B(-3,0),C(1,0).(2)连接AP,延长AP交⊙P于点M,连接MB、MC.如图2所示,线段MB、MC即为所求作.四边形ACMB是矩形.理由如下:∵△MCB由△ABC绕点P旋转180°所得,∴四边形ACMB是平行四边形.∵BC是⊙P的直径,∴∠CAB=90°.∴平行四边形ACMB是矩形.过点M作MH⊥BC,垂足为H,如图2所示.在△MHP和△AOP中,∵∠MHP=∠AOP,∠HPM=∠OPA,MP=AP,∴△MHP≌△AOP.∴MH=OA=,PH=PO=1.∴OH=2.∴点M的坐标为(-2,).(3)在旋转过程中∠MQG的大小不变.∵四边形ACMB是矩形,∴∠BMC=90°.∵EG⊥BO,∴∠BGE=90°.∴∠BMC=∠BGE=90°.∵点Q是BE的中点,∴QM=QE=QB=QG.∴点E、M、B、G在以点Q为圆心,QB为半径的圆上,如图3所示.∴∠MQG=2∠MBG.∵∠COA=90°,OC=1,OA=,∴tan∠OCA==.∴∠OCA=60°.∴∠MBC=∠BCA=60°.∴∠MQG=120°.∴在旋转过程中∠MQG的大小不变,始终等于120°.【解析】(1)连接PA,运用垂径定理及勾股定理即可求出圆的半径,从而可以求出B、C两点的坐标.(2)由于圆P是中心对称图形,显然射线AP与圆P的交点就是所需画的点M,连接MB、MC即可;易证四边形ACMB是矩形;过点M作MH⊥BC,垂足为H,易证△MHP≌△AOP,从而求出MH、OH的长,进而得到点M的坐标.(3)易证点E、M、B、G在以点Q为圆心,QB为半径的圆上,从而得到∠MQG=2∠MBG.易得∠OCA=60°,从而得到∠MBG=60°,进而得到∠MQG=120°,所以∠MQG是定值.本题考查了垂径定理、勾股定理、全等三角形的判定与性质、矩形的判定与性质、圆周角定理、特殊角的三角函数、图形的旋转等知识,综合性比较强.证明点E、M、B、G在以点Q为圆心,QB为半径的圆上是解决第三小题的关键.。

2015-2016学年江苏省扬州市江都区七校联考九年级(上)期中数学试卷参考答案与试题解析

2015-2016学年江苏省扬州市江都区七校联考九年级(上)期中数学试卷参考答案与试题解析

第 3 页 共 19 页
A.8
B.12
C.

D.
【考点】圆的综合题. 【分析】求出 A、B 的坐标,根据勾股定理求出 AB,求出点 C 到 AB 的距离,即可求出圆 C 上点到 AB 的最大距离,根据面积公式求出即可. 【解答】解:∵直线 y= x﹣3 与 x 轴、y 轴分别交于 A、B 两点, ,B 点的坐标为(0,﹣3) ,3x﹣4y﹣12=0, ∴A 点的坐标为(4,0)
即 OA=4,OB=3,由勾股定理得:AB=5,
过 C 作 CM⊥AB 于 M,连接 AC, 则由三角形面积公式得: ×AB×CM= ×OA×OC+ ×OA×OB, ∴5×CM=4×1+3×4, ∴CM= , = ,
∴圆 C 上点到直线 y= x﹣3 的最大距离是 1+ ∴△PAB 面积的最大值是 ×5× 故选:C. = ,
【考点】正多边形和圆. 【分析】求得边长是 1 的等边三角形的面积,正六边形的面积是等边三角形的面积的 6 倍, 据此即可求解. 【解答】解:边长是 1 的等边三角形的面积是: 则正六边形的面积是: 故答案是: . ×6= cm2. ,
15.直径为 10cm 的⊙O 中,弦 AB=5cm,则弦 AB 所对的圆周角是 【考点】圆周角定理;含 30 度角的直角三角形;垂径定理.
故选 A. 4.甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均环数 及方差 S2 如下表所示: 甲 8 S2 1 乙 9 1.1 丙 9 1.2 丁 8 1.3
若要选出一个成绩较好且状态稳定的运动员去参赛,那么应选运动员( ) A.甲 B.乙 C.丙 D.丁 【考点】方差. 【分析】先比较平均数,乙丙的平均成绩好且相等,再比较方差即可解答. 【解答】解:由图可知,乙、丙的平均成绩好, 由于 S2 乙<S2 丙,故丙的方差大,波动大. 故选 B. 5.如图,△ABC 内接于⊙O,OD⊥BC 于 D,∠A=50°,则∠OCD 的度数是(

苏科版2015九年级上期中考试数学试题(含答案)

苏科版2015九年级上期中考试数学试题(含答案)

第一学期初三数学期中考试试卷注意事项:1.本试卷共6页,全卷满分130分,考试时间为120分钟. 2.考生答题全部答在答题卷上,答在本试卷上无效.一、选择题(本大题共10小题,每小题3分,共30分.四个选项中,只有一项是正确的)1.若等腰三角形的两边长为3、6,则它的周长为 ( ) A .12 B .15 C .12或15 D .以上都不对 2.下列说法正确的是 ( ) A .形状相同的两个三角形是全等三角形 B .面积相等的两个三角形是全等三角形 C .三个角对应相等的两个三角形是全等三角形 D .三条边对应相等的两个三角形是全等三角形3.下列四种说法:① 矩形的两条对角线相等且互相垂直;② 菱形的对角线相等且互相平分; ③ 有两边相等的平行四边形是菱形; ④ 有一组邻边相等的菱形是正方形.其中正确的有 ( ) A. 0个 B. 1个 C. 2个 D. 3个 4. 已知一组数据:15,13,16,17,14,则这组数据的极差与方差分别是 ( ) A .4,3 B .3,3C .3,2D .4,25.若1-x 有意义,则x 的取值范围是( )A .x >1B .x ≥1C .x ≤1D .1≠x6. 下列方程是一元二次方程的是 ( )A .2)1(x x x =- B .02=++c bx ax C .01122=++xx D .012=+x 7.下列一元二次方程中,有实数根的是 ( )A .x 2-x +1=0B .x 2-2x+3= 0C .x 2+x -1=0D . x 2+4=0 8.在一幅长为80cm 、宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩 形挂图.如右图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是 ( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --= D .2653500x x --=9.如图,在正方形ABCD 中,AB=3,点P 在BC 上,点Q 在CD 上,若∠PAQ=450,那么△PCQ 的周长为 ( ) A .8 B .7C .6D .510.如图,平行四边形ABCD 中,AB ∶BC =3∶2,∠DAB =60°,E 在AB 上,且AE ∶EB =1∶2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP ∶DQ 等于 ( )二、填空题(本大题共8小题,每小题2分共16分)11.若等腰三角形的一个角为1000,则其余两个角为_____________.12.如图,AD =AC ,BD =BC ,O 为AB 上一点,那么图中共有 对全等三角形.13.在平行四边形ABCD 中,对角线AC 和BD 相交于O .如果090=∠+∠ADO ABO ,那么平行四边形ABCD 一定是_____形.14.如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8, E 是CD 的中点,则OE 的长等于 .15.如图,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC = °. 16.若一等腰梯形的对角线互相垂直,且它的高为5,则该梯形的面积为________. 17.若关于x 的方程042=+-mx x 有两个相等的实数根,则m =________.18.已知A 、B 、C 三点的坐标分别是(0,0),(5,0),(5,3),且这3点是一个平行四边形的顶点,请写出第四点D 的坐标为 .三、解答题(本大题共10小题,共84分)19.(本题满分8分)计算:(1)21)1(320-++-π (2) 22523352-33)()(+20. (本题满分8分) 解方程:(1)0232=-+x x (用公式法) (2) 01432=-+x x (用配方法)21.(本题满分10分)如图,四边形ABCD 中,对角线AC 与BD 相交于O ,在①AB ∥CD ;②AO =CO ;③AD=BC 中任意选取两个作为条件,“四边形ABCD 是平行四边形”为结论构成命题.(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例; (2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)OD BA22.(本题满分9分)甲、乙两支仪仗队队员的身高(单位:厘米)如下: 甲队:178,177,179,178,177,178,177,179,178,179; 乙队:178,179,176,178,180,178,176,178,177,180; (1)将下表填完整:(2)甲队队员身高的平均数为______厘米,乙队队员身高的平均数为______厘米;(3)你认为哪支仪仗队更为整齐?简要说明理由.23.(本题满分8分)如果一元二次方程ax 2+bx+c=0(a≠0)的两根是x 1、x 2,那么利用公式法写出两个根x 1、x 2,通过计算可以得出:x 1+x 2=ab -,x 1x 2=a c.由此可见,一元二次方程两个根的和与积是由方程的系数决定的.这就是一元二次方程根与系数的关系.请利用上述知识解决下列问题: (1)若方程2x 2-4x-1=0的两根是x 1、x 2,则x 1+x 2=_____,x 1x 2=______.(2)已知方程x 2-4x+c=0的一个根是32+,请求出该方程的另一个根和c 的值.24.(本题满分8分)如图,将矩形ABCD 沿着对角线BD 折叠,使点C 落在C ’,BC 交AD 于E , (1)试判断△BDE 的形状,并说明理由; (2)若AB=3,BC=5,试求△BDE 的面积.25.(本题满分6分)已知关于x 的方程0)21(4)12(2=-++-k x k x 。

扬州市宝应县中西片2016届九年级上月考数学试卷含答案解析

扬州市宝应县中西片2016届九年级上月考数学试卷含答案解析

word版数学江苏省扬州市宝应县中西片2016 届九年级上学期月考数学试卷(12月份)一、选择题(本大题共8 小题,每小题3 分,共24 分,在每小题给出的四个选项中,只有一个选项是正确的,请把答案写在答题纸相应的位置)1.数据﹣1,0,1,2,3 的极差是()A.2 B.3 C.4 D.52.若方程:x2﹣2x+m=0 有两个不相等的实数根,则m 的取值范围是()A.m>1 B.m<1C.m≤1 D.m≥13.二次函数y=﹣2(x﹣1)2+3 的图象的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)4.若⊙O 的半径为5cm,点A 到圆心O 的距离为4cm,那么点A 与⊙O 的位置关系是()A.点A 在圆外B.点A 在圆上C.点A 在圆内D.不能确定5.盒子中装有2 个红球和4 个绿球,每个球除颜色外都相同,从盒子中任意摸出一个球,是绿球的概率是()A. B. C. D.6.在二次函数y=﹣x2+2x+1 的图象中,若y 随x 的增大而增大,则x 的取值范围是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣17.如图,AB 为⊙O 的直径,点C 在⊙O 上,∠A=40°,则∠B 的度数为()A.20°B.40°C.50°D.60°8.如图,抛物线y=﹣2x2+8x﹣6 与x 轴交于点A、B,把抛物线在x 轴及其上方的部分记作C1,将C1 向右平移得C2,C2 与x 轴交于点B,D.若直线y=x+m 与C1、C2 共有3 个不同的交点,则m 的取值范围是()A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2 D.﹣3<m<﹣二、填空题(本大题共10 小题,每小题3 分,共30 分,把答案填写在答题纸相应位置上)9.在比例尺为1:5000 的地图上,量得甲、乙两地的距离为25cm,则甲、乙两地间的实际距离是km.10.一元二次方程x2=4x 的根是.11.母线长为2cm,底面圆的半径为1cm 的圆锥的侧面积是cm2.12.若a=1,b=4,则a 和b 的比例中项c= .13.正多边形的一个外角等于20°,则这个正多边形的边数是.14.抛物线y=x2+4x+3 在x 轴上截得的线段的长度是.15.如果二次函数y=x2﹣3x+1 的图象开口向上,那么常数k 的取值范围是.16.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、B,并使AB 与车轮内圆相切于点D,做CD⊥AB 交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为cm.17.如图所示,抛物线y=ax2+bx+c(a≠0)与x 轴的两个交点分别为A(﹣1,0)和B,当y<0 时,x 的取值范围是.18.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为,若抛物线y=x2+k 与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是.三、解答题(192 题,每题8 分,236 每题10 分,278 每题12 分,计96 分)19.解下列方程:(1)x2﹣4x+1=0x2﹣2x=0.20.已知关于x 的方程x2﹣(m+2)x+=0.(1)求证:方程恒有两个不相等的实数根;若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.21.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000 元,第三天收到捐款12 100 元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?22.如图,AC 是⊙O 的直径,点B,D 在⊙O 上,点E 在⊙O 外,∠EAB=∠D=30°.(1)∠C 的度数为;求证:AE 是⊙O 的切线;(3)当AB=3 时,求图中阴影部分的面积(结果保留根号和π).23.甲、乙两名学生进行射击练习,两人在相同条件下各射靶10 次,将射击结果作统计分析如下:命中环数 5 6 7 8 9 10 平均数众数方差甲命中环数的次数 1 4 2 1 1 1 7 6 2.2乙命中环数的次数 1 2 4 2 1 0(1)请你完成上表中乙进行射击练习的相关数据;根据你所学的统计知识,利用上面提供的数据评价甲、乙两人的射击水平.24.已知:如图,矩形ABCD 中,CD=2,AD=3,以C 点为圆心,作一个动圆,与线段AD 交于点P(P 和A、D 不重合),过P 作⊙C 的切线交线段AB 于F 点.(1)求证:△CDP∽△PAF;设DP=x,AF=y,求y 关于x 的函数关系式,及自变量x 的取值范围;(3)是否存在这样的点P,使△APF 沿PF 翻折后,点A 落在BC 上,请说明理由.25.如图所示,可以自由转动的转盘被3 等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向1 的概率为;小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.26.某校2015~2016 学年度八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8 元/千克,下面是他们在活动结束后的对话.小丽:如果以10 元/千克的价格销售,那么每天可售出300 千克.小强:如果每千克的利润为3 元,那么每天可售出250 千克.小红:如果以13 元/千克的价格销售,那么每天可获取利润750 元.【利润=(销售价﹣进价)×销售量】(1)请根据他们的对话填写下表:销售单价x(元/kg)10 11 13销售量y(kg)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;(3)设该超市销售这种水果每天获取的利润为W 元,求W 与x 的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?27.如图,四边形ABCD 中,AC 平分∠DAB,∠ADC=∠ACB=90°,E 为AB 的中点,(1)求证:AC2=AB•AD;求证:CE∥AD;(3)若AD=4,AB=6,求的值.28.如图,已知二次函数y=x2+bx+4 与x 轴交于点B(4,0),与y 轴交于点A,O 为坐标原点,P 是二次函数y=x2+bx+4 的图象上一个动点,点P 的横坐标是m,且m>4,过点P 作PM⊥x 轴,PM 交直线AB 于M.(1)求二次函数的解析式;若以AB 为直径的⊙N 恰好与直线PM 相切,求此时点P 的坐标;(3)在点P 的运动过程中,△APM 能否为等腰三角形?若能,求出点M 的坐标;若不能,请说明理由.江苏省扬州市宝应县中西片2016 届九年级上学期月考数学试卷(12 月份)参考答案与试题解析一、选择题(本大题共8 小题,每小题3 分,共24 分,在每小题给出的四个选项中,只有一个选项是正确的,请把答案写在答题纸相应的位置)1.数据﹣1,0,1,2,3 的极差是()A.2 B.3 C.4 D.5【考点】极差.【分析】极差是指一组数据中最大数据与最小数据的差.【解答】解:这组数据的极差=3﹣(﹣1)=4.故选C.【点评】本题考查了极差的知识,解答本题的关键是掌握极差的定义.2.若方程:x2﹣2x+m=0 有两个不相等的实数根,则m 的取值范围是()A.m>1 B.m<1C.m≤1 D.m≥1【考点】根的判别式.【分析】利用方程有两个不相等的实数根,则△>0,建立关于m 的不等式,求出m 的取值范围.【解答】解:∵△=b2﹣4ac=4﹣4m>0,∴m<1.故选B.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.二次函数y=﹣2(x﹣1)2+3 的图象的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)【考点】二次函数的性质.【分析】根据二次函数顶点式解析式写出顶点坐标即可.【解答】解:二次函数y=﹣2(x﹣1)2+3 的图象的顶点坐标为(1,3).故选A.【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.4.若⊙O 的半径为5cm,点A 到圆心O 的距离为4cm,那么点A 与⊙O 的位置关系是()A.点A 在圆外B.点A 在圆上C.点A 在圆内D.不能确定【考点】点与圆的位置关系.【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r 时,点在圆外;当d=r 时,点在圆上;当d<r 时,点在圆内判断出即可.【解答】解:∵⊙O 的半径为5cm,点A 到圆心O 的距离为4cm,∴d<r,∴点A 与⊙O 的位置关系是:点A 在圆内,故选:C.【点评】此题主要考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r 时,点在圆外;当d=r 时,点在圆上,当d<r 时,点在圆内.5.盒子中装有2 个红球和4 个绿球,每个球除颜色外都相同,从盒子中任意摸出一个球,是绿球的概率是()A. B. C. D.【考点】概率公式.【分析】任意摸出一个球有6 种情况,其中绿球有四种情况.根据概率公式进行求解.【解答】解:从盒子中任意摸出一个球,是绿球的概率是.故选C.【点评】本题考查的是古典型概率.如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)=.6.在二次函数y=﹣x2+2x+1 的图象中,若y 随x 的增大而增大,则x 的取值范围是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣1【考点】二次函数的性质.【专题】压轴题.【分析】抛物线y=﹣x2+2x+1 中的对称轴是直线x=1,开口向下,x<1 时,y 随x 的增大而增大.【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又对称轴是直线x=1,∴当x<1 时,函数图象在对称轴的左边,y 随x 的增大增大.故选A.【点评】本题考查了二次函数y=ax2+bx+c(a≠0)的性质:当a<0,抛物线开口向下,对称轴为直线x=﹣,在对称轴左边,y 随x 的增大而增大.7.如图,AB 为⊙O 的直径,点C 在⊙O 上,∠A=40°,则∠B 的度数为()A.20°B.40°C.50°D.60°【考点】圆周角定理;直角三角形的性质.【分析】根据圆周角定理:直径所对的圆周角为直角,可以得到△ABC 是直角三角形,根据直角三角形的两锐角互余即可求解.【解答】解:∵AB 是⊙O 的直径,∴∠C=90°,∵∠A=40°,∴∠B=50°,故选C.【点评】本题主要考查了圆周角定理,正确确定△ABC 是直角三角形是解题的关键.8.如图,抛物线y=﹣2x2+8x﹣6 与x 轴交于点A、B,把抛物线在x 轴及其上方的部分记作C1,将C1 向右平移得C2,C2 与x 轴交于点B,D.若直线y=x+m 与C1、C2 共有3 个不同的交点,则m 的取值范围是()A.﹣2<m< B.﹣3<m<﹣C.﹣3<m<﹣2 D.﹣3<m<﹣【考点】抛物线与x 轴的交点;二次函数图象与几何变换.【专题】压轴题.【分析】首先求出点A 和点B 的坐标,然后求出C2 解析式,分别求出直线y=x+m 与抛物线C2 相切时m 的值以及直线y=x+m 过点B 时m 的值,结合图形即可得到答案.【解答】解:令y=﹣2x2+8x﹣6=0,即x2﹣4x+3=0,解得x=1 或3,则点A(1,0),B(3,0),由于将C1 向右平移2 个长度单位得C2,则C2 解析式为y=﹣2(x﹣4)2+2(3≤x≤5),当y=x+m1 与C2 相切时,令y=x+m1=y=﹣2(x﹣4)2+2,即2x2﹣15x+30+m1=0,△=﹣8m1﹣15=0,解得m1=﹣,当y=x+m2 过点B 时,即0=3+m2,m2=﹣3,当﹣3<m<﹣时直线y=x+m 与C1、C2 共有3 个不同的交点,故选:D.【点评】本题主要考查抛物线与x 轴交点以及二次函数图象与几何变换的知识,解答本题的关键是正确地画出图形,利用数形结合进行解题,此题有一定的难度.二、填空题(本大题共10 小题,每小题3 分,共30 分,把答案填写在答题纸相应位置上)9.在比例尺为1:5000 的地图上,量得甲、乙两地的距离为25cm,则甲、乙两地间的实际距离是1.25 km.【考点】比例线段.【分析】根据比例尺=图上距离:实际距离,列比例式直接求得甲、乙两地间的实际距离.【解答】解:设甲、乙两地间的实际距离为xcm,则:= ,解得:x=125000cm=1.25km.故答案为:1.25.【点评】本题考查了比例尺的概念、比例的性质;根据比例尺进行计算,注意单位的转换问题.10.一元二次方程x2=4x 的根是x1=0,x2=4..【考点】解一元二次方程-因式分解法.【专题】因式分解.【分析】先移项得,x2﹣4x=0,再利用因式分解法求解.【解答】解:移项得,x2﹣4x=0,∵x(x﹣4)=0,∴x=0 或x﹣4=0,所以x1=0,x2=4.故答案为x1=0,x2=4.【点评】本题考查了利用因式分解法把一元二次方程转化为两个一元一次方程求解的能力.要熟练掌握因式分解的方法.11.母线长为2cm,底面圆的半径为1cm 的圆锥的侧面积是 2πcm2.【考点】圆锥的计算.【分析】根据圆锥的底面半径求得圆锥的底面周长,在根据圆锥的侧面展开扇形的弧长等于圆锥的周长求得圆锥的侧面积即可.【解答】解:∵圆锥的底面半径为1cm,∴圆锥的底面周长为:2πr=2πcm,∵圆锥的侧面展开扇形的弧长等于圆锥的周长,∴圆锥的侧面积为:lr= ×2×2π=2πcm2,故答案为:2π.【点评】本题考查了圆锥的计算,解题的关键是正确地进行圆锥与扇形的转化.12.若a=1,b=4,则a 和b 的比例中项c= 2 或﹣2 .【考点】比例线段.【分析】根据比例中项的概念,得c2=ab,再利用平方根的意义计算得到c 的值即可.【解答】解:∵c 是a,b 的比例中项,∴c2=ab,又∵a=1,b=4,∴c2=ab=4,解得:c=±2;故答案为:2或﹣2.【点评】本题考查了比例中项的概念、平方根的求法;熟练掌握比例中项的概念得出c2=ab 是解决问题的关键.13.正多边形的一个外角等于20°,则这个正多边形的边数是18 .【考点】多边形内角与外角.【分析】根据任何多边形的外角和都是360 度,利用360 除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:因为外角是20 度,360÷20=18,则这个多边形是18 边形.故答案为:18【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.14.抛物线y=x2+4x+3 在x 轴上截得的线段的长度是 2 .【考点】抛物线与x 轴的交点.【分析】先设出抛物线与x 轴的交点,再根据根与系数的关系求出x1+x2 及x1•x2 的值,再由完全平方公式求解即可.【解答】解:设抛物线与x 轴的交点为:(x1,0),(x2,0),∵x1+x2=﹣4,x1•x2=3,∴|x1﹣x2|= = =2,∴抛物线y=x2+4x+3 在x 轴上截得的线段的长度是2.故答案为:2.【点评】本题考查的是抛物线与x 轴的交点问题,能由根与系数的关系得到x1+x2 及x1•x2 的值是解答此题的关键.15.如果二次函数y=x2﹣3x+1 的图象开口向上,那么常数k 的取值范围是 k>.【考点】二次函数的性质.【分析】根据二次函数的开口向上列出关于k 的不等式,求出k 的取值范围即可.【解答】解:∵二次函数y=x2﹣3x+1 的图象开口向上,∴2k﹣1>0,解得k>.故答案为:k>.【点评】本题考查的是二次函数的性质,熟知二次函数y=ax2+bx+c(a≠0),当a>0 时,抛物线的开口向上是解答此题的关键.16.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、B,并使AB 与车轮内圆相切于点D,做CD⊥AB 交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为 50 cm.【考点】垂径定理的应用;勾股定理;切线的性质.【专题】几何图形问题.【分析】设点O 为外圆的圆心,连接OA 和OC,根据CD=10cm,AB=60cm,设半径为r,则OD=r ﹣10,根据垂径定理得:r2=(r﹣10)2+302,求得r 的值即可.【解答】解:如图,设点O 为外圆的圆心,连接OA 和OC,∵CD=10cm,AB=60cm,∴设半径为r,则OD=r﹣10,根据题意得:r2=(r﹣10)2+302,解得:r=50,故答案为:50.【点评】本题考查了垂径定理的应用,解题的关键是正确构造直角三角形.17.如图所示,抛物线y=ax2+bx+c(a≠0)与x 轴的两个交点分别为A(﹣1,0)和B,当y<0 时,x 的取值范围是 x<﹣1 或x>2 .【考点】二次函数的图象.【分析】直接从图上可以分析:y<0 时,图象在x 轴的下方,共有2 部分:一是A 的左边,即x<﹣1;二是B 的右边,即x>2.【解答】解:观察图象可知,抛物线与x 轴两交点为(﹣1,0),,y<0,图象在x 轴的下方,所以答案是x<﹣1 或x>2.【点评】考查了二次函数的图象与函数值之间的联系,函数图象所表现的位置与y 值对应的关系,典型的数形结合题型.18.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为,若抛物线y=x2+k 与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是﹣2<k<.【考点】二次函数的性质.【专题】压轴题.【分析】根据∠AOB=45°求出直线OA 的解析式,然后与抛物线解析式联立求出有一个公共点时的k 值,即为一个交点时的最大值,再求出抛物线经过点B 时的k 的值,即为一个交点时的最小值,然后写出k 的取值范围即可.【解答】解:由图可知,∠AOB=45°,∴直线OA 的解析式为y=x,联立消掉y 得,x2﹣2x+2k=0,△=b2﹣4ac=(﹣2)2﹣4×1×2k=0,即k=时,抛物线与OA 有一个交点,此交点的横坐标为1,∵点B 的坐标为,∴OA=2,∴点A 的坐标为(,),∴交点在线段AO 上;当抛物线经过点B 时,×4+k=0,解得k=﹣2,∴要使抛物线y=x2+k 与扇形OAB 的边界总有两个公共点,实数k 的取值范围是﹣2<k<.故答案为:﹣2<k<.【点评】本题考查了二次函数的性质,主要利用了联立两函数解析式确定交点个数的方法,根据图形求出有一个交点时的最大值与最小值是解题的关键.三、解答题(192 题,每题8 分,236 每题10 分,278 每题12 分,计96 分)19.解下列方程:(1)x2﹣4x+1=0x2﹣2x=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【专题】计算题;一次方程(组)及应用.【分析】(1)方程利用配方法求出解即可;方程利用因式分解法求出解即可.【解答】解:(1)方程整理得:x2﹣4x=﹣1,配方得:x2﹣4x+4=3,即(x﹣2)2=3,开方得:x﹣2=± ,解得:x1=2+ ,x2=2﹣;分解因式得:x(x﹣2)=0,解得:x1=0,x2=2.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.20.已知关于x 的方程x2﹣(m+2)x+=0.(1)求证:方程恒有两个不相等的实数根;若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.【考点】根的判别式;一元二次方程的解;勾股定理.【分析】(1)根据关于x 的方程x2﹣(m+2)x+=0 的根的判别式的符号来证明结论;根据一元二次方程的解的定义求得m 值,然后由根与系数的关系求得方程的另一根.分类讨论:①当该直角三角形的两直角边是2、3 时,由勾股定理得斜边的长度为:;②当该直角三角形的直角边和斜边分别是2、3 时,由勾股定理得该直角三角形的另一直角边为;再根据三角形的周长公式进行计算.【解答】(1)证明:∵△=(m+2)2﹣4=(m﹣2)2+4,∴在实数范围内,m 无论取何值,(m﹣2)2+4>0,即△>0,∴关于x 的方程x2﹣(m+2)x+=0 恒有两个不相等的实数根;解:根据题意,得12﹣1×(m+2)+=0,解得,m=2,则方程的另一根为:m+2﹣1=2+1=3;①当该直角三角形的两直角边是1、3 时,由勾股定理得斜边的长度为:;该直角三角形的周长为1+3+=4+ ;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2;则该直角三角形的周长为1+3+2 =4+2 .【点评】本题综合考查了勾股定理、根的判别式、一元二次方程解的定义.解答时,采用了“分类讨论”的数学思想.21.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000 元,第三天收到捐款12 100 元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)解答此题利用的数量关系是:第一天收到捐款钱数×(1+每次增长的百分率)2=第三天收到捐款钱数,设出未知数,列方程解答即可;第三天收到捐款钱数×(1+每次增长的百分率)=第四天收到捐款钱数,依此列式子解答即可.【解答】解:(1)设捐款增长率为x,根据题意列方程得,10000×(1+x)2=12100,解得x1=0.1,x2=﹣2.1(不合题意,舍去);答:捐款增长率为10%.12100×(1+10%)=13310 元.答:第四天该单位能收到13310 元捐款.【点评】本题考查了一元二次方程的应用,列方程的依据是:第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数.22.如图,AC 是⊙O 的直径,点B,D 在⊙O 上,点E 在⊙O 外,∠EAB=∠D=30°.(1)∠C 的度数为 30°;求证:AE 是⊙O 的切线;(3)当AB=3 时,求图中阴影部分的面积(结果保留根号和π).【考点】切线的判定;扇形面积的计算.【专题】计算题.【分析】(1)直接根据圆周角定理得到∠C=∠D=30°;先根据圆周角定理由AC 是⊙O 的直径得∠ABC=90°,则∠BAC=60°,所以∠EAC=∠EAB+∠BAC=90°,于是可根据切线的判定定理得到AE 是⊙O 的切线;(3)连结OB,先判断△OAB 为等边三角形,则OA=3,∠AOB=60°,所以∠BOC=120°,然后利用图中阴影部分的面积=S△AOB+S 扇形BOC 和扇形的面积公式、等边三角形的面积公式计算即可.【解答】(1)解:∠C=∠D=30°;故答案为30°;证明:∵AC 是⊙O 的直径,∴∠ABC=90°,∴∠BAC=60°,而∠EAB=30°,∴∠EAC=∠EAB+∠BAC=90°,∴CA ⊥AE ,∴AE 是⊙O 的切线;(3)解:连结 OB ,如图,∵∠BAC=60°,AB=3,∴△OAB 为等边三角形,∴OA=3,∠AOB=60°,∴∠BOC=120°, ∴图中阴影部分的面积=S △AOB +S 扇形 BOC【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考 查了圆周角定理和扇形面积的计算.23.甲、乙两名学生进行射击练习,两人在相同条件下各射靶 10 次,将射击结果作统计分析如下: 命 中 环 数 5 6 7 8 9 10 平均数众数 方差 甲命中环数的次数 1 4 2 1 1 1 7 6 2.2乙命中环数的次数 1 2 4 2 1 0 7 7 1.2(1)请你完成上表中乙进行射击练习的相关数据;根据你所学的统计知识,利用上面提供的数据评价甲、乙两人的射击水平.【考点】方差;加权平均数;众数.【分析】(1)根据平均数、众数和方差的定义分别求出乙的三个量; 从集中趋势和稳定性两个方面来考查两人的成绩.【解答】解:(1)乙学生相关的数据为: 平均数为:(5×1+6×2+7×4+8×2+9×1)=7;∵7 出现的次数最多,故众数为 7; 方差为:[(5﹣7)2+(6﹣7)2+(6﹣7)2+…+(9﹣7)2=1.2.从平均水平看,甲、乙两名学生射击的环数平均数均为 7 环,水平相当;= ×32+= +3π.从集中趋势看,乙的众数比甲大,乙的成绩比甲的好些;从稳定性看,s 乙2<s 甲2,所以乙的成绩比甲稳定.【点评】此题主要考查了学生对平均数,众数,方差的理解及运用能力,正确求出方差是解题关键.24.已知:如图,矩形ABCD 中,CD=2,AD=3,以C 点为圆心,作一个动圆,与线段AD 交于点P(P 和A、D 不重合),过P 作⊙C 的切线交线段AB 于F 点.(1)求证:△CDP∽△PAF;设DP=x,AF=y,求y 关于x 的函数关系式,及自变量x 的取值范围;(3)是否存在这样的点P,使△APF 沿PF 翻折后,点A 落在BC 上,请说明理由.【考点】圆的综合题.【分析】(1)利用切线的性质得出∠1+∠2=90°,进而利用矩形的性质求得出∠2=∠3,进而得出△CDP∽△PAF;利用△CDP∽△PAF,得出= ,进而得出y 与x 之间的函数关系;(3)设△AFP 下翻后落在BC 边上的点为Q,利用已知首先判定△QPC 为等腰三角形,再利用QC=QP=AP=3﹣x,利用勾股定理求出关于x 的一元二次方程进而得出答案.【解答】(1)证明:∵过P 作⊙C 的切线交线段AB 于F 点,∴CP⊥FP,∴∠1+∠2=90°,∵在矩形ABCD 中,∴∠D=∠A=90°,∴∠1+∠3=90°,∴∠2=∠3,∴△CDP∽△PAF;解:∵△CDP∽△PAF,∴= ,∵DP=x,AF=y,∴= ,∴y=﹣x2+x(0<x<3),(3)证明:设△AFP 下翻后落在BC 边上的点为Q,∵△AFP≌△QFP,∴QF=AF=y,∠QPF=∠APF.由PF 是圆的切线可知:∠QPF+∠DPC=90°,∠QPF+∠QPC=90°.∴∠QPC=∠DPC.又∵∠DPC=∠PCQ,∴△QPC 为等腰三角形,∴QC=QP=AP=3﹣x,则BQ=x.在△FBQ 中,FB=2﹣y,BQ=x,FQ=yx2+2=y2 整理得:x2﹣4y+4=0,由y=﹣x2+ x 得3x2﹣6x+4=0 因为(﹣6)2﹣4×3×4<0,所以此方程无实根,所以这样的点就不存在.【点评】此题主要考查了切线的性质以及勾股定理和相似三角形的性质和判定等知识,利用反证法得出A 点不在BC 上是解题关键.25.如图所示,可以自由转动的转盘被3 等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向1 的概率为;小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.【考点】游戏公平性;列表法与树状图法.【专题】计算题.【分析】(1)三个等可能的情况中出现1 的情况有一种,求出概率即可;列表得出所有等可能的情况数,求出两人获胜的概率,比较即可得到结果.【解答】解:(1)根据题意得:随机转动转盘一次,停止后,指针指向1 的概率为;故答案为:;列表得:1 2 31 (1,1)(3,1)2 (1,2)(3,2)3 (1,3)(3,3)所有等可能的情况有9 种,其中两数之积为偶数的情况有5 种,之积为奇数的情况有4 种,∴P(小明获胜)= ,P(小华获胜)= ,∵>,∴该游戏不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.26.某校2015~2016 学年度八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8 元/千克,下面是他们在活动结束后的对话.小丽:如果以10 元/千克的价格销售,那么每天可售出300 千克.小强:如果每千克的利润为3 元,那么每天可售出250 千克.小红:如果以13 元/千克的价格销售,那么每天可获取利润750 元.【利润=(销售价﹣进价)×销售量】(1)请根据他们的对话填写下表:销售单价x(元/kg)10 11 13销售量y(kg)300 250 150请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;(3)设该超市销售这种水果每天获取的利润为W 元,求W 与x 的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?【考点】二次函数的应用;一次函数的应用.【专题】应用题.【分析】(1)根据题意得到每涨一元就少50 千克,则以13 元/千克的价格销售,那么每天售出150千克;先判断y 是x 的一次函数.利用待定系数法求解析式,设y=kx+b,把x=10,y=300;x=11,y=250代入即可得到y(千克)与x(元)(x>0)的函数关系式;根据每天获取的利润=每千克的利润×每天的销售量得到W=(x﹣8)y=(x﹣8)(﹣50x+800),然后配成顶点式得y=﹣50(x﹣12)2+800,最后根据二次函数的最值问题进行回答即可.【解答】解:(1)∵以11 元/千克的价格销售,可售出250 千克,∴每涨一元就少50 千克,∴以13 元/千克的价格销售,那么每天售出150 千克.故答案为300,250,150;y 是x 的一次函数.设y=kx+b,∵x=10,y=300;x=11,y=250,∴,解得,∴y=﹣50x+800,经检验:x=13,y=150 也适合上述关系式,∴y=﹣50x+800.(3)W=(x﹣8)y=(x﹣8)(﹣50x+800)=﹣50x2+1200x﹣6400=﹣50(x﹣12)2+800,∵a=﹣50<0,∴当x=12 时,W 的最大值为800,即当销售单价为12 元时,每天可获得的利润最大,最大利润是800 元.【点评】本题考查了二次函数的应用:先得到二次函数的顶点式y=a(x﹣h)2+k,当a<0,x=h 时,y 有最大值k;当a<0,x=h 时,y 有最小值k.也考查了利用待定系数法求函数的解析式.27.如图,四边形ABCD 中,AC 平分∠DAB,∠ADC=∠ACB=90°,E 为AB 的中点,(1)求证:AC2=AB•AD;求证:CE∥AD;(3)若AD=4,AB=6,求的值.【考点】相似三角形的判定与性质;直角三角形斜边上的中线.【分析】(1)由AC 平分∠DAB,∠ADC=∠ACB=90°,可证得△ADC∽△ACB,然后由相似三角形的对应边成比例,证得AC2=AB•AD;由E 为AB 的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=AB=AE,继而可证得∠DAC=∠ECA,得到CE∥AD;。

九年级上学期数学期中考试卷及答案精选全文

九年级上学期数学期中考试卷及答案精选全文

可编辑修改精选全文完整版第一学期期中考试九年级数学试题1. 计算()23-的结果是()A.3B.3- C.3±2. 若P(x;-3)与点Q(4;y)关于原点对称;则x+y=()A、7B、-7C、1D、-13. 下列二次根式是最简二次根式的是()4. 一元二次方程22350xx++=的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断5. 用配方法解方程0142=++xx;则配方正确的是()A、3)2(2=+x B、5)2(2-=+xC、3)2(2-=+x D、3)4(2=+x6. 如图;AB、AC都是圆O的弦;OM⊥AB;ON⊥AC;垂足分别为M、N;如果MN=3;那么BC=(). A. 4 B.5 C. 6 D.7二、填空题(共8小题;每小题3分;满分24分)7. 2-x在实数范围内有意义;则x的取值范围是.8. 221x-=的二次项系数是 ;一次项系数是 ;常数项是 .9. 一只蚂蚁沿图中所示的折线由A点爬到了C点;则蚂蚁一共爬行了______cm.(图中小方格边长代表1cm)NMOCBA10. 关于x 的一元二次方程04)2(22=-+-+m mx x m 有一根为0;则m= . 11. 对于任意不相等的两个数a;b;定义一种运算*如下:ba b a b a -+=*;如523232*3=-+=;那么)5(*3-= .12. 有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是通过圆心的弦;④在同圆或等圆中;相等的两条弦所对的弧是等弧;其中真命题是_________。

13. 有两个完全重合的矩形;将其中一个始终保持不动;另一个矩形绕其对称中心O 按逆时针方向进行旋转;每次均旋转22.5︒;第.2.次.旋转后得到图①;第.4.次.旋转后得到图②…;则第20次旋转后得到的图形与图①~图④中相同的是____. (填写序号)14. 等腰三角形两边的长分别为方程02092=+-x x 的两根;则三角形的周长是 .三、解答题(共4小题;每小题6分;共24分) 15. 解方程:x(x-2)+x-2=016. 计算:0)15(282218-+--图① 图② 图③ 图④ OOOO17. 下面两个网格图均是4×4正方形网格;请分别在两个网格图中选取两个白色的单位正方形并涂黑;使整个网格图满足下列要求. 18. 如图;大正方形的边长515+;小正为方形的边长为515-;求图中的阴影部分的面积.四、(本大题共2小题;每小题8分;共16分)19. 数学课上;小军把一个菱形通过旋转且每次旋转120°后得到甲的图案。

2015~2016九年级第一学期期中考试数学试卷

2015~2016九年级第一学期期中考试数学试卷

九年级数学期中试卷说明:全卷共4页,22题,总分120分,考试时间为120分钟。

一、精心选一选:(本大题共10小题,每小题3分,共30分。

每小题给出四个答案,其中只有一个是正确的,请把正确的答案代号填入相应空格内。

)1. 下列方程是关于x 的一元二次方程的是( )A. 02=+x x B. 05323=--x xC. 2114x x += D. 0432=-+y x2. 一元二次方程x x =2的根为A 、1=xB 、0=xC 、1,021==x xD 、1,121=-=x x已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的面积是A .12cm 2B . 24cm 2C . 48cm 2D . 96cm 24. 菱形具有而矩形不一定具有的性质是 ( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补5. 已知x =1是一元二次方程x 2-2mx +1=0的一个解,则m 的值是( )A .1B .0C .0或1D .0或-16. 如果一元二次方程3x 2-2x =0的两根为x 1,x 2,则x 1·x 2的值等于( ) A.2 B.0 C.32 D.32 7. 某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是A .200(1+a%)2=148B .200(1-a%)2=148C .200(1-2a%)=148D .200(1-a 2%)=1488、两个相似三角形对应边之比是1:5,那么它们的周长比是( )。

(A );(B )1:25;(C )1:5;(D )。

9、下列各组线段的长度成比例的为 ( )A. 2 cm ,3 cm ,4 cm ,5 cmB. 2.5 cm ,3.5 cm ,4.5 cm ,6.5 cmC. 1 cm ,3 cm ,4 cm ,6 cm D 1.1 cm ,2.2 cm ,4.4 cm ,8.8 cm10. 如图是小明一天上学、放学时看到的一根电线杆的影子的府视图,按时间先后顺序进行排列正确的是 ( )(A )(1)(2)(3)(4) (B )(4)(3)(1)(2) (C )(4)(3)(2)(1) (D )(2)(3)(4)(1)二、耐心填一填(每空3分,共21分。

苏科版九年级数学上册年级期中试卷答案.doc

苏科版九年级数学上册年级期中试卷答案.doc

初中数学试卷 桑水出品2014-2015第一学期九年级期中数学试卷参考答案及评分标准一、选择题(每题3分,共30分)1.C . 2.A . 3.D . 4.B . 5.C . 6.B . 7.C . 8.D . 9.A . 10.D .二、填空题(每空2分,共16分)11.―1. 12.-2. 13.111. 14.20º. 15.(5,2). 16.6.25π 17.10 . 18. 3 .三、解答题(本大题共10小题,共84分)19.(本题满分16分,每小题4分)(1)x 1=11,x 2=-9 4分 (2)x 1=363+,x 2=363- 4分 (3)x 1=-2,x 2=5 4分 (4) x 1=31-,x 2=-5 4分 20.(本题满分6分)(1).(2分) (2)1:2 (2分) (3) (2分)21.(本题满分6分)解: (1)证明:∵平行四边形ABCD ,∴AB ∥CD ,AD ∥BC ,∴∠C+∠B=180°,∠ADF=∠DEC .(1分)∵∠AFD+∠AFE=180°,∠AFE=∠B ,∴∠AFD=∠C . (2分)在△ADF 与△DEC 中,∴△ADF ∽△DEC .(3分)(2)解:∵平行四边形ABCD ,∴CD=AB=8.由(1)知△ADF ∽△DEC ,∴,∴DE===12.(5分)在Rt △ADE 中,由勾股定理得:AE===6.(6分)22.(本题满分8分) 证明:(1)∵弧CB=弧CD ∴CB=CD ,∠CAE=∠CAB又∵CF ⊥AB ,CE ⊥AD ∴CE=CF (2分)∴Rt △CED ≌Rt △CFB∴DE=BF ;(4分)(2)∵CE=CF ,∠CAE=∠CAB ∴△CAE ≌△CAF∵AB 是⊙O 的直径 ∴∠ACB=90°∵∠DAB=60° ∴∠CAB=30°,AB=8 ∴BC=4(6分)∵CF ⊥AB 于点F ∴∠FCB=30°∴CF=32,BF=2∴S △ACD =S △ACE -S △CDE =S △ACF -S △CFB=34(8分)23.(本题满分8分)解:(1) ∵AB=AC, ∠A=36°∴∠ABC=∠C=72°∵BD 平分∠ABC∴∠DBC=∠ABD=36°∴△ABC ∽△BDC(3分)∴AC BC =BC DC∴BC 2=AC •DC又∵BC=BD=AD∴AC 2=AC •DC∴点D 是线段AC 的黄金分割点(5分)(2)设AD=x∵AC 2=AC •DC∴x 2=x(1-x)又∵x>0∴AD=x= 5-12(8分) 24.(本题满分8分)(1)( 每空1分) ……………… ……………… ………………(4分)(2)存在 ……………… ……………… ………………(5分) 据题意得:n 2-2n=5×2n ……………… ……………… ………………(7分) 解得:n 1=12 n 2=0(舍去) ……………… ……………… ………………(8分)25.(本题满分9分)解:(1)200+50x (2分)(2)由题意得出:200×(10-6)+(10-x -6)(200+50x )+[(4-6)(600-200-(200+50x )]=1250,(5分)即800+(4-x )(200+50x )-2(200-50x )=1250,整理得:x 2-2x +1=0,(7分)解得:x 1=x 2=1,(8分),第二周销售的价格为9元.(9分)26.(本题满分11分)解:(1)∵∠AOB=90°,∴AB 为⊙M 的直径,∵A (8,0),B (0,6),∴OA=8,OB=6,∴AB==10,(1分)∴⊙M 的半径为5;圆心M 的坐标为((4,3);(3分)(2)点B 作⊙M 的切线l 交x 轴于C ,如图,∵BC 与⊙M 相切,AB 为直径,∴AB ⊥BC ,∴∠ABC=90°,∴∠CBO+∠ABO=90°,而∠BAO=∠ABO=90°,∴∠BAO=∠CBO ,∴Rt △ABO ∽Rt △BCO ,∴=,即=,解得OC=,∴C 点坐标为(﹣,0), 设直线BC 的解析式为y=kx+b ,把B (0,6)、C 点(﹣,0)分别代入,解得,∴直线l 的解析式为y=x+6;(6分)正方形边长 1 2 3 4 5 6 7 8 … 黑色小正方形个数 1 4 5 8 9 12 13 16 …(3)作ND ⊥x 轴,连结AE ,如图,∵∠BOA 的平分线交AB 于点N ,∴△NOD 为等腰直角三角形, ∴ND=OD ,∴ND ∥OB ,∴△ADN ∽△AOB ,∴ND :OB=AD :AO ,∴ND :6=(8﹣ND ):8,解得ND=,∴OD=,ON=ND=,∴N 点坐标为(,);(8分) ∵△ADN ∽△AOB ,∴ND :OB=AN :AB ,即:6=AN :10,解得AN=, ∴BN=10﹣=,∵∠OBA=OEA ,∠BOE=∠BAE ,∴△BON ∽△EAN ,∴BN :NE=ON :AN ,即:NE=:,解得NE=, ∴OE=ON+NE=+=7.(11分)27.(本题满分12分)解:(1)∵△APQ ∽△ABC ∴AP AQ AB AC =, 即 335t t -=解得98t = 3分 (2)①如图①,线段PQ 的垂直平分线为l 经过点A ,则AP=AQ ,即3-t=t ,∴t=1.5,∴AP=AQ=1.5,过点Q 作QO ∥AD 交AC 于点O ,则,BCQO AB AQ AC AO ==∴52AQ AO AC AB =⋅=, 2=⋅=BC ABAQ OQ ,∴PO=AO -AP=1. 由△APE ∽△OPQ ,得3,=⋅=∴=OQ OP AP AE OP AP OQ AE . 6分 ②(ⅰ)如图②,当点Q 从B 向A 运动时l 经过点B ,BQ =BP =AP =t ,∠QBP =∠QAP∵∠QBP +∠PBC =90°,∠QAP +∠PCB =90°∴∠PBC =∠PCB CP =BP =AP =t∴CP =AP =21AC =21×5=2.5∴t =2.59分(ⅱ)如图③,当点Q 从A 向B 运动时l 经过点B , BP =BQ =3-(t -3)=6-t ,AP =t ,PC =5-t , 过点P 作PG ⊥CB 于点G ,由△PGC ∽△ABC , 得()t AB AC PC PG BC GC AB PG AC PC -=⋅=∴==553, ()t BC AC PC CG -=⋅=554,BG =4-()t -554=t 54 由勾股定理得222PG BG BP +=,即()222553)54()6(⎥⎦⎤⎢⎣⎡-+=-t t t ,解得4514t =.12分 Q P O E D C B A Q PDCB A G Q P DC B A (图①) (图②)(图③)。

江苏省扬州市九年级上学期期中数学试卷

江苏省扬州市九年级上学期期中数学试卷

江苏省扬州市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)将一元二次方程化为一般形式后,常数项为1,那么二次项和一次项系数分别为()A . 2,-3B . 2,3C . 2,1D .2. (2分)方程x2﹣2=0的解为()A . 2B .C . 2与﹣2D . 与﹣3. (2分)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是()A . ①B . ②C . ③D . ④4. (2分)在平面直角坐标系中,如果点P1(a,﹣3)与点P2(4,b)关于原点O对称,那么式子(a+b)2018的值为()A . 1B . ﹣1C . 2018D . ﹣20185. (2分)下列一元二次方程两实数根和为﹣4的是()A . x2+2x﹣4=0B . x2﹣4x+4=0C . x2+4x+10=0D . x2+4x﹣5=06. (2分)下列哪个是一元二次方程x2﹣6x+8=0的解()A . ﹣2或﹣4B . 2C . 2或4D . 无解7. (2分)(2018·拱墅模拟) 已知抛物线y=-x2+mx的对称轴为直线x=2,若关于x的一元二次方程-x2+mx-t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A . t>-5B . -5<t<3C . 3<t≤4D . -5<t≤48. (2分) (2018九上·金华月考) 已知抛物线过、、、四点,则与的大小关系是()A . >B . =C . <D . 不能确定9. (2分)如图,将Rt△ABC(其中∠B=34°,∠C=90°)绕A点按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角最小等于()A . 56°B . 68°C . 124°D . 180°10. (2分)如图为抛物线y=ax2+bx+c的图像,A、B、C为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是()A . a+b=-1B . a-b=-1C . b<2aD . ac<011. (2分)某厂通过改进工艺降低了某种产品的成本,两个月内从每件产品250元降低到每件160元,则平均每月降低的百分率为()A . 10%B . 5%C . 15%D . 20%12. (2分)抛物线y=ax2+bx+c的图角如图,则下列结论:①abc>0;②a+b+c=2;③a>;④b<1.其中正确的结论是()A . ①②B . ②③C . ②④D . ③④二、填空题 (共6题;共6分)13. (1分) (2018九上·安定期末) 若二次函数y=-x2-4x+k的最大值是9,则k=________.14. (1分) (2016九上·鄞州期末) 如图,如果边长为1的等边△PQR沿着边长为1的正方形ABCD的外部的边如图位置开始顺时针连续滚动,当它滚动4次时,点P所经过的路程是________.15. (1分) (2019九上·清江浦月考) 关于x的方程有解,则b的取值范围是________16. (1分) (2017九上·红山期末) 如图所示,二次函数y=ax2+bx+c(a≠0)的图象,有下列4个结论:①abc >0;②b>a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正确的是________17. (1分)将一段长为120m的铁栅栏截成两段,再将每段分别围成正方形场地,如果两个正方形场地的面积之和是500m2 ,那么这两个正方形场地的边长分别是________ .18. (1分)(2017·朝阳模拟) 如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B 在y轴正半轴上,顶点D在x轴负半轴上.若抛物线y=﹣x2﹣5x+c经过点B、C,则菱形ABCD的面积为________.三、解答题 (共8题;共82分)19. (10分)解方程:(1) x(x﹣1)=1﹣x(2)(x﹣3)2=(2x﹣1)(x+3)20. (10分)已知是方程的两个根,利用根与系数的关系,求下列各式的值:(1);(2)21. (5分) (2018七上·大庆期中) 已知a2+2a+b2-4b+5=0,求a,b的值.22. (10分)在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(﹣2,﹣4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是二次函数y=﹣ax2+ax﹣2图象上的“理想点”,求这个二次函数的表达式;(2)函数y=ax2+ax﹣1(a为常数,a≠0)的图象上存在“理想点”吗?请说明理由.23. (12分) (2018九上·翁牛特旗期末) 如图,在直角坐标系xOy中,△ABC的三个顶点坐标分别为A(-4,1)、B(-1,1)、C(-4,3).(1)画出Rt△ABC关于原点O成中心对称的图形Rt△A1B1C1;(2)若Rt△ABC与Rt△A2BC2关于点B中心对称,则点A2的坐标为________、C2的坐标为________.(3)求点A绕点B旋转180°到点A2时,点A在运动过程中经过的路程.24. (10分) (2016九上·淅川期中) 某商店销售甲、乙两种商品,现有如下信息:请结合以上信息,解答下列问题:(1)求甲、乙两种商品的进货单价;(2)已知甲、乙两种商品的零售单价分别为2元、3元,该商店平均每天卖出甲商品500件和乙商品1300件,经市场调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元,在不考虑其他因素的条件下,求当m为何值时,商店每天销售甲、乙两种商品获取的总利润为1800元(注:单件利润=零售单价﹣进货单价)25. (15分) (2018八下·青岛期中) 如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形;(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形;(3)若将△A1B1C绕某一点旋转180°可得到△A1B2C2,请直接写出旋转中心的坐标。

2015-2016学年度第一学期期中质量检测九年级《数学》试题及答案

2015-2016学年度第一学期期中质量检测九年级《数学》试题及答案

2015—2016学年度第一学期期中质量检测九年级数学试题(时间:120分钟,总分120分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.).2.如图,反比例函数y =x(x <0)的图象经过点P , 若矩形的面积是6,则k的值为( )A . -6 B . -5C . 6D . 53.如图所示的几何体是由一个圆柱体和一个长方体组成的,则这个几何体的俯视图是( )A .B .C .D .4.若线段AB=1,点C 是AB 的黄金分割点,且AC>BC,则AC=( )A .012=+)(x B .012=-)(x C .212=+)(x D .212=-)(x 6.从2,3,4,中任意选两个数,记作a 和b ,那么点(a ,b )在函数12y x =图象上的概率是( ) A .12B .13C .14D .167.顺次连接矩形ABCD 各边中点,所得四边形必定是( ) A .邻边不等的平行四边形B . 矩形C .菱形D .正方形8.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x ,下面所列的方程中正确的是( ) A .560(1+x )2=315 B .560(1﹣x )2=315C .560(1﹣2x )2=315D .560(1﹣x 2)=3159.某一时刻甲、乙两木杆的影子长分别是2米和3米,已知乙杆的高度是1.5米,则甲杆的高度是( )第2题图BCAE 1 E 2 E 3D 4D 1D 2 D 315题图DCBAM第12题图第14题图A .1B . 2C .3D .410.若点()()(),,,,,112233x y x y x y 都是反比例函数1y x=-图象上的点,并且123y 0y y <<<,则下列各式正确的是 ( )A .123x x x <<B .132x x x <<C .213x x x <<D .231x x x <<11.如图边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1和S 2,比较S 1与S 2的大小( ). A .S 1> S 2 B .S 1< S 2 C .S 1= S 2 D .不能确定12.如图,平行四边形ABCD 中,M 是BC 的中点,且AM =9,BD =12,AD =10,则□ABCD 的面积是( )A .30B .36C .54D .7213. 如图,在△ABC 中,AB=6,AC=8,BC=10,P 为边BC 上一动点(且点P 不与点B 、C 重合),PE⊥AB于E ,PF⊥AC 于F .则EF 的最小值为( ) A. 4B. 4.8C. 5.2D. 614.如图,已知A 、B 是反比例函数y = kx(k >0,x >0)图象上的两点,BC∥x 轴,交y 轴于点C .动点P 从坐标原点O 出发,沿O→A→B→C 匀速运动,终点为C .过点P 作PM⊥x 轴,PN⊥y 轴,垂足分别为M 、N .设四边形OMPN 的面积为S ,点P 运动的时间为t ,则S 关于t 的函数图象大致为( )15.已知:如图,在Rt△ABC 中,点D1是斜边AB的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作第11题图22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E ,,,△△△…,n n BD E △的面积为123S S S ,,,…n S .设△ABC 的面积为1,则n S 为( ).A .14n B .141n +C .21(2)n +D .21(1)n +二、填空题(本大题共6个小题,每小题3分,共的横线上.)16.在平面直角坐标系中,反比例函数 y =3x- 图象的两支分别在 象限17.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有 颗.18.菱形的两条对角线的长是方程x 2-14x+48=0的两根,则菱形的面积是 .19.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好到古城墙CD 的顶端C 处,已知AB⊥BD,CD⊥BD,测得AB=1米,BP=2米,PD=10米,那么该古城墙的高度CD 是 米.20. 如图,△ABC 中,CD⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于 . 21.如图,在菱形ABCD 和菱形BEFG 中,点A 、B 、E 在同一直线上,P 是线段DF 的中点,连接PG ,P C .若∠ABC =60°,AB=3,BE=1,则PG 的长度= .三、解答题第19题图第20题图第21题图22.解下列一元二次方程(7分):(1) 3x 2x 2=- (3)x 2=2x+1 23.(7分)如图,四边形ABCD 是矩形,把矩形沿对角线AC 折叠,点B 落在点E 处,CE 与AD 相交于点O,(1) 求证:EO=DO ; (2)若∠OCD=30°,求△ACO 的面积;AEOCD第23题24.(8分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m 2?25.(8分)用4张相同的小纸条做成甲、乙、丙、丁4支签,放在一个盒子中,搅匀后先从盒子中任意抽出1支签(不放回),再从剩下的3支签中任意抽出1支签。

江苏省宝应县2015届初三上学期期中考试数学试题及答案

江苏省宝应县2015届初三上学期期中考试数学试题及答案

期中学业水平检测九年级数学试卷(满分:150分 考试时间:120分钟)友情提醒:本卷中的所有题目均在答题卷上作答,在本卷中作答无效。

一、选择题(本大题共8小题,每小题3分,共24分。

每题所给的四个选项,只有一个符合题意,请将正确答案的序号填入答题纸的相应表格中) 1.下列方程为一元二次方程的是A .20-+=ax bx c (a 、b 、c 为常数) B .()231x x x +=-C .(2)3x x -=D .10x x+= 2.用配方法解方程2250x x --=时,原方程应变形为 A .2(1)6x +=B .2(2)9x +=C .2(1)6x -=D .2(2)9x -=3.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是A .k >14-B .k >14-且0k ≠ C .k <14- D .k ≥14-且0k ≠4.一位卖“运动鞋”的经销商抽样调查了9位七年级学生的鞋号,号码分别为(单位:cm ):24,22,21,24,23,25,24,23,24,经销商最感兴趣的是这组数据的 A .中位数B .众数C .平均数D .方差5.如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,那么该班40名同学一周体育锻炼时间的众数、中位数分别是A .16、10.5B .8、9C .16、8.5D .8、8.56.如图,⊙O 的半径为5,弦AB =8, M 是线段AB 上一个动点,则OM 的取值范围是 A .3≤OM ≤5 B .3≤OM <5 C .4≤OM ≤5 D .4≤OM <5 7. 如图,△ABC 内接于⊙O ,OD ⊥BC 于D ,∠A =50°,则∠COD 的度数是A .40°B .45°C .50°D .60°(小时)(第5题图)(第5题)(第6题)(第7题)8二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题纸相应位置上)9.若关于x 的方程()2320k x x -+=是一元二次方程,则k 的取值范围是 . 11.若n (n ≠0)是关于x 的方程x 2+mx +2n =0的根,则m +n 的值为 .12.在一个不透明的口袋中,装有若干个颜色不同其余都相同的球.如果口袋中装有3个红球且摸到红球的概率为51,那么口袋中球的总个数为 . 13.小明等五位同学的年龄分别为:14、14、15、13、14,计算出这组数据的方差是0.4,则20年后小明等五位同学年龄的方差为 .14.如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =25°,则∠CAD 的度数为 . 15.如图,当半径为30cm 的传送带转动轮转过120︒角时,传送带上的物体A 平移的距离为 cm (结果保留π).16.如图,△ABC 内接于⊙O ,CB =a ,CA =b ,∠A -∠B =90°,则⊙O 的半径为 . 17.若圆锥的轴截面是一个边长为2的等边三角形,则这个圆锥的侧面积是.18.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD =70°, AO ∥DC,则∠B 的度数为 .(第14题) (第15题)(第16题)(第8题)(第18题)三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明或演算步骤) 19.(本题满分8分) 解方程:(1)(2)20x x x -+-= (2)263910x x +-=20.(本题满分8分)如图,学校打算用16 m 的篱笆围成一个长方形的生物园饲养小兔,生物园的一面靠墙(如下图),面积是30 m 2.求生物园的长和宽.21.(本题满分8分)一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、-2、3、-4,搅匀后先从中摸出一个球(不放回),再从余下的3个球中摸出1个球.(1)用树状图列出所有可能出现的结果;(2)求2次摸出的乒乓球球面上数字的积为偶数的概率.22.(本题满分8分)操作题: 如图,⊙O 是△ABC 的外接圆,AB =AC ,P 是⊙O上一点.(1)请你只用无刻度的直尺........,分别画出图①和图②中∠P 的平分线; (2)结合图②,说明你这样画的理由.生物园23.(本题满分10分)如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB、CD的上方,求AB和CD间的距离.24.(本题满分10分)如图,已知P A、PB切⊙O于A、B两点,PO=4cm,∠APB=60°,求阴影部分的周长.25.(本题满分10分)某农户在山上种脐橙果树44株,现进入第三年收获。

扬州市宝应县2015届九年级上期末统考数学试题及答案

扬州市宝应县2015届九年级上期末统考数学试题及答案

2015学年度第一学期期末学业水平测试九年级数学答案及评分说明一、选择题 1-4 B、B、C、A 5-8 B、A、D、B二、填空题 9. (0,4) 10. 变小 11. 12. 6+33 13. 2 214. 15. 16. 17. 18.22. ⑴列表(画树状图)如下:∴共有四个等可能的结果,其中积为奇数的有1个,∴P(奇数)=;………6分⑵P=…………………………………………………… 8分23.解:设原两位数的个位数字为,那么十位数字为。

(1)分根据题意,得: (5)分化简得:解之得:, (8)a·b 1 22 2 43 3 66423a•bba213221开始分 当时,这个两位数是81;当时,这个两位数是18。

(9)分答:原两位数是81或18。

…………………………………………………………10分24.(1)图(略),……2分; D(-2,0); ……4分 (2)25, ……6分; 90°……8分(3)设圆锥底面半径为r ,根据题意,得90π×25180=2πr , ∴r =52. ……10分25.(1)证出△ADC 与△ACB 相似 ………………… 3分 由比例式得到AC 2=AB •AD ………………… 4分(2)由直角三角形斜边直线是斜边的一半,得到AE=CE ………………… 5分证出CE ∥AD ………………… 7分(3)证出△ADF 与△CEF 相似………………… 8分………………… 10分26.(1)证明:连接OC ,如图∵∠A=30°, ∴∠BOC=60° 又∵∠BDC=30° ∴∠DCO=90°∴CD 是⊙的切线; ………………… 4分 (2) 证明: ∵AC ∥BD , ∴∠ABO=∠BAC=30°, 而∠BDC=30°,∴∠ABO=∠BDC , ∴AB ∥CD ,∴四边形ABDC 是平行四边形; ………………………… 7分 在Rt △CDO 中, ∵∠BDC=30°,OC= ∴OD=2OC=,CD=OC=,∴DB=OD -OB=,∴ABDC 的周长=2(DB+DC )=2(+)=+; ………………10分 27.(1)设抛物线为:y=a(x-4)2+3,……3分代入(10,0),得a=-112, ……5分∴y=-112(x-4)2+3, ……6分当x=0时,y=- 112(0-4)2+3=53, ∵53<2.44, ∴此球能进球门. (8)分(2)当x=2时,y=-112(2-4)2+3=83, ∵83>2.52,∴守门员乙不能阻止甲此次射门. (10)分当y=2.52时,-112(x-4)2+3=2.52,解得x 1=1.6,x 2=6.4(舍去),∴2-1.6=0.4(m),答:他至少后退0.4m 才能阻止球员甲的射门. (12)分 28.(1)∵B(4,4),∴AB=BC=4, ∵四边形ABCO 是正方形,∴OA=4,∴A(0,4),……2分将A(0,4)、B(4,4)代入y=-1/6 x 2+ b x+c ,GB A y得b=2/3,c=4. ……3分y=-1/6x2+2/3x+4.……4分(2)如图,∵P(t,0),∴PO=t,PC=4-t,OC=4,由∠AOP=∠APG=∠PCG=90°,得∠GPC=∠OAP,∴△AO P∽△PCG,……6分∴AO:PC=OP:GC,∴4:(4-t)=t:GC.∴GC=-1/4(t-2)2+1(0<t<4), ……7分∴当t=2时,GC有最大值1.即P(2,0)时,GC的最大值为1.……8分(3)结论:存在点Q,使得以P、C、Q、D为顶点的四边形是平行四边形.……9分理由:如图,易证:△AOP≌△OCD,∴OP=CD.由PC为边的平行四边形,得DQ∥PC,且DQ=PC;若P(t,0)、D(4,t),则PC=DQ=|t-4|,Q(t,t)或(8-t,t);①当Q(t,t)时,t=-1/6t2+2/3t+4,即:t 2+2t-24=0,解得t 1=4(舍去),t 2=-6; ……10分②当Q(8-t,t)时,t=-1/6(8-t)2+2/3(8-t)+4,即:t 2-6t+8=0,解得t 1=4(舍去),t 2=2.……11分综上可知,t 1=-6,t 2=2.∴存在点Q,使得四边形PCQD为平行四边形.……12分DPO CBAx yQQ DP O CBAxy。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江苏省扬州市宝应县九年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请在答题卡上填涂)1.(3分)下列方程是一元二次方程的是()A.3x2﹣6x+2 B.x2﹣y+1=0 C.x2=0 D.+x=22.(3分)方程3x2+4x﹣2=0的根的情况是()A.两个不相等的实数根B.两个相等的实数根C.没有实数根D.无法确定3.(3分)如图,⊙O是△ABC的外接圆,∠BOC=100°,则∠A的度数等于()A.60°B.50°C.40°D.30°4.(3分)有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④长度相等的弧的度数相等.其中正确的有()A.1个 B.2个 C.3个 D.4个5.(3分)某校为了丰富校园文化,举行初中生书法大赛,决赛设置了6个获奖名额,共有11名选手进入决赛,选手决赛得分均不相同.若知道某位选手的决赛得分,要判断她能否获奖,只需知道这11名选手得分的()A.中位数B.平均数C.众数D.方差6.(3分)如图,⊙O的半径OA=10cm,弦AB=16cm,P为AB上一动点,则点P到圆心O的最短距离为()A.4cm B.5cm C.6cm D.7cm7.(3分)股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2= B.(1+x)2=C.1+2x=D.1+2x=8.(3分)如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22 B.24 C.10D.12二.填空题(本大题共10小题,每小题3分,共30分.请将答案填在答题卡上)9.(3分)一元二次方程x2+4x=0的两个根是.10.(3分)小明等五名同学四月份参加某次数学测验的成绩如下:100、100、x、x、80.已知这组数据的中位数和平均数相等,那么整数x的值为.11.(3分)如图,两边平行的刻度尺在圆上移动,当刻度尺的一边与直径为6.5cm 的圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm),则刻度尺的宽为cm.12.(3分)如图,点A、B、C在⊙O上,若∠BAC=24°,则∠OBC=°.13.(3分)某市2014年投入教育经费2500万元,预计2016年要投入教育经费3600万元,已知2014年至2016年的教育经费投入以相同的百分率逐年增长,则增长率为.14.(3分)如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=.15.(3分)已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是.16.(3分)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D、E,过劣弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为4cm,则Rt△MBN的周长为.17.(3分)如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;…;则从第(n)个图中随机取出一个球,是黑球的概率是.18.(3分)如图,⊙O的半径为2,AB,CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A,B,C,D不重合),过点P作PM⊥AB于点M,PN⊥CD 于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为.三.解答题(本大题共10小题,共96分.请在答题卡上作答)19.(8分)解下列方程:(1)(x﹣1)2=8(2)x2﹣5x﹣6=0.20.(8分)八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.21.(8分)如图,△ABC是⊙O的内接三角形,∠CAD=∠ABC,判断直线AD与⊙O的位置关系,并说明理由.22.(8分)在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数.23.(10分)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.24.(10分)今年圣诞节前夕,小明、小丽两位同学到某超市调研一种袜子的销售情况,这种袜子的进价为每双1元,请根据小丽提供的信息解决小明提出的问题.小丽:每双定价2元,每天能卖出500双,而且这种袜子的售价每上涨0.1元,其每天的销售量将减少10双.小明:照你所说,如果要实现每天800元的销售利润,那该如何定价?别忘了,物价局有规定,售价不能超过进价的300%呦.25.(10分)如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为;(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.26.(10分)如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F.(1)若∠E=∠F时,求证:∠ADC=∠ABC;(2)若∠E=∠F=42°时,求∠A的度数;(3)若∠E=α,∠F=β,且α≠β.请你用含有α、β的代数式表示∠A的大小.27.(12分)已知:关于x的一元二次方程mx2﹣(2m+2)x+m﹣1=0(1)若此方程有实根,求m的取值范围;(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根;(3)若A、B是平面直角坐标系中x轴上的两个点,点B在点A的左侧,且点A、B的横坐l标分别是(2)中方程的两个根,以线段AB为直径在x轴的上方作半圆P,设直线的解析l式为y=x+b,若直线与半圆P只有两个交点时,求出b的取值范围.28.(12分)已知一次函数y=x+2的图象分别交x轴,y轴于A、B两点,⊙O1过以OB为边长的正方形OBCD的四个顶点,两动点P、Q同时从点A出发在四边形ABCD上运动,其中动点P以每秒个单位长度的速度沿A→B→A运动后停止;动点Q以每秒2个单位长度的速度沿A→O→D→C→B运动,AO1交y轴于E 点,P、Q运动的时间为t(秒).的值;(1)求E点的坐标和S△ABE(2)试探究点P、Q从开始运动到停止,直线PQ与⊙O1有哪几种位置关系,并求出对应的运动时间t的范围.2015-2016学年江苏省扬州市宝应县九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请在答题卡上填涂)1.(3分)下列方程是一元二次方程的是()A.3x2﹣6x+2 B.x2﹣y+1=0 C.x2=0 D.+x=2【解答】解:A、它不是方程,故本选项错误;B、该方程中含有2个未知数,故本选项错误;C、该方程符合一元二次方程的定义,故本选项正确;D、该方程是分式方程,故本选项错误;故选:C.2.(3分)方程3x2+4x﹣2=0的根的情况是()A.两个不相等的实数根B.两个相等的实数根C.没有实数根D.无法确定【解答】解:∵方程3x2+4x﹣2=0中,△=42﹣4×3×(﹣2)=40>0,∴方程有两个不相等的实数根.故选:A.3.(3分)如图,⊙O是△ABC的外接圆,∠BOC=100°,则∠A的度数等于()A.60°B.50°C.40°D.30°【解答】解:∵,⊙O是△ABC的外接圆,∠BOC=100°,∴∠A=∠BOC=50°.故选:B.4.(3分)有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④长度相等的弧的度数相等.其中正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:①直径是弦,正确;②经过不在同一直线上的三个点一定可以作圆,故原命题错误;③三角形的外心到三角形各顶点的距离都相等,正确;④长度相等的弧的度数不一定相等,故原命题错误;其中正确的有2个,故选:B.5.(3分)某校为了丰富校园文化,举行初中生书法大赛,决赛设置了6个获奖名额,共有11名选手进入决赛,选手决赛得分均不相同.若知道某位选手的决赛得分,要判断她能否获奖,只需知道这11名选手得分的()A.中位数B.平均数C.众数D.方差【解答】解:11个不同的分数按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:A.6.(3分)如图,⊙O的半径OA=10cm,弦AB=16cm,P为AB上一动点,则点P到圆心O的最短距离为()A.4cm B.5cm C.6cm D.7cm【解答】解:当OP垂直于AB时,P到圆心O的距离最短,由垂径定理得到P为AB的中点,即AP=AB=8cm,在Rt△AOP中,OA=10cm,AP=8cm,根据勾股定理得:OP==6cm.故选:C.7.(3分)股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2= B.(1+x)2=C.1+2x=D.1+2x=【解答】解:假设股票的原价是1,设平均每天涨x.则90%(1+x)2=1,即(1+x)2=,故选:B.8.(3分)如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22 B.24 C.10D.12【解答】解:对于直线y=kx﹣3k+4=k(x﹣3)+4,当x=3时,y=4,故直线y=kx﹣3k+4恒经过点(3,4),记为点D.过点D作DH⊥x轴于点H,则有OH=3,DH=4,OD==5.∵点A(13,0),∴OA=13,∴OB=OA=13.由于过圆内定点D的所有弦中,与OD垂直的弦最短,如图所示,因此运用垂径定理及勾股定理可得:BC的最小值为2BD=2=2×=2×12=24.故选:B.二.填空题(本大题共10小题,每小题3分,共30分.请将答案填在答题卡上)9.(3分)一元二次方程x2+4x=0的两个根是x1=0,x2=﹣4.【解答】解:方程整理得:x(x+4)=0,解得:x1=0,x2=﹣4.故答案为:x1=0,x2=﹣410.(3分)小明等五名同学四月份参加某次数学测验的成绩如下:100、100、x、x、80.已知这组数据的中位数和平均数相等,那么整数x的值为60或110.【解答】解:①x最小时,这组数据为x,x,80,100,100;中位数是80,∴(100+100+x+x+80)÷5=80,∴x=60;②x最大时,这组数据为80,100,100,x,x;中位数是100,∴(100+100+x+x+80)÷5=100,∴x=110.③当80≤x≤100,这组数据为80,x,x,100,100;中位数是x.∴(100+100+x+x+80)÷5=x,∴x=,x不是整数,舍去.故答案为:60或110.11.(3分)如图,两边平行的刻度尺在圆上移动,当刻度尺的一边与直径为6.5cm 的圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm),则刻度尺的宽为2cm.【解答】解:作OE垂直AB于E交⊙O与D,设OB=r,根据垂径定理,BE=AB=3,根据题意列方程得:(3.25﹣DE)2+9=3.252,解得:DE=2,∴该直尺的宽度为2cm.故答案为:2.12.(3分)如图,点A、B、C在⊙O上,若∠BAC=24°,则∠OBC=66°.【解答】解:∵∠BAC=24°,∴∠BOC=2∠BAC=48°,∵OB=OC,∴∠OBC=∠OCB==66°.故答案为:66.13.(3分)某市2014年投入教育经费2500万元,预计2016年要投入教育经费3600万元,已知2014年至2016年的教育经费投入以相同的百分率逐年增长,则增长率为20%.【解答】解:设增长率为x,根据题意2014年为2500(1+x)万元,2015年为2500(1+x)(1+x)万元.则2500(1+x)(1+x)=3600,解得x=0.2=20%,或x=﹣2.2(不合题意舍去).答:这两年投入教育经费的平均增长率为20%.故答案为20%.14.(3分)如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=140°.【解答】解:∵四边形ABCD内接于⊙O,∴∠A=∠DCE=70°,∴∠BOD=2∠A=140°.故答案为140°.15.(3分)已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是﹣2.【解答】解:∵x=1是方程x2+bx﹣2=0的一个根,∴x1x2==﹣2,∴1×x2=﹣2,则方程的另一个根是:﹣2,故答案为﹣2.16.(3分)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D、E,过劣弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为4cm,则Rt△MBN的周长为8cm.【解答】解:连接OD、OE,∵⊙O是Rt△ABC的内切圆,∴OD⊥AB,OE⊥BC,∵∠ABC=90°,∴∠ODB=∠DBE=∠OEB=90°,∴四边形ODBE是矩形,∵OD=OE,∴矩形ODBE是正方形,∴BD=BE=OD=OE=4cm,∵⊙O切AB于D,切BC于E,切MN于P,NP与NE是从一点出发的圆的两条切线,∴MP=DM,NP=NE,∴Rt△MBN的周长为:MB+NB+MN=MB+BN+NE+DM=BD+BE=4cm+4cm=8cm,故答案为:8cm.17.(3分)如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;…;则从第(n)个图中随机取出一个球,是黑球的概率是.【解答】解:根据图示规律,第n个图中,黑球有n个,球的总数有1+2+3+4+5+…+n=,则从第(n)个图中随机取出一个球,是黑球的概率是=.故答案为:.18.(3分)如图,⊙O的半径为2,AB,CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A,B,C,D不重合),过点P作PM⊥AB于点M,PN⊥CD 于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为.【解答】解:∵PM⊥AB于点M,PN⊥CD于点N,∴四边形ONPM是矩形,又∵点Q为MN的中点,∴点Q为OP的中点,又OP=2,则OQ=1,点Q走过的路径长==.故答案为:.三.解答题(本大题共10小题,共96分.请在答题卡上作答)19.(8分)解下列方程:(1)(x﹣1)2=8(2)x2﹣5x﹣6=0.【解答】解:(1)开方得:x﹣1=±2,解得:x1=1+2,x2=1﹣2;(2)分解因式得:(x﹣6)(x+1)=0,解得:x1=﹣1,x2=6.20.(8分)八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)甲队成绩的中位数是9.5分,乙队成绩的众数是10分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是乙队.【解答】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.21.(8分)如图,△ABC是⊙O的内接三角形,∠CAD=∠ABC,判断直线AD与⊙O的位置关系,并说明理由.【解答】解:直线AD是⊙O的切线;理由:连接AO,并延长交⊙O于E,连接CE,∵∠CAD=∠ABC,∠E=∠ABC,∴∠E=∠CAD,∵AE是直径,∴∠ACE=90°,∴∠E+∠CAE=90°,∴∠CAE+∠CAD=90°,即EA⊥AD,∴直线AD与⊙O相切.22.(8分)在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数.【解答】解:(1)∵共10个球,有2个黄球,∴P(黄球)==;(2)设有x个红球,根据题意得:=,解得:x=5.故后来放入袋中的红球有5个.23.(10分)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.【解答】(1)解:如图,连接OD,∵CD是⊙O切线,∴OD⊥CD,∵OA=CD=2,OA=OD,∴OD=CD=2,∴△OCD为等腰直角三角形,∴∠DOC=∠C=45°,∴S阴影=S△OCD﹣S扇OBD=﹣=4﹣π;(2)证明:如图,连接AD,∵AB是⊙O直径,∴∠ADB=∠ADM=90°,又∵=,∴ED=BD,∠MAD=∠BAD,在△AMD和△ABD中,,∴△AMD≌△ABD,∴DM=BD,∴DE=DM.24.(10分)今年圣诞节前夕,小明、小丽两位同学到某超市调研一种袜子的销售情况,这种袜子的进价为每双1元,请根据小丽提供的信息解决小明提出的问题.小丽:每双定价2元,每天能卖出500双,而且这种袜子的售价每上涨0.1元,其每天的销售量将减少10双.小明:照你所说,如果要实现每天800元的销售利润,那该如何定价?别忘了,物价局有规定,售价不能超过进价的300%呦.【解答】解:设每双袜子的定价为x元时,每天的利润为800元.根据题意,得(x﹣1)(500﹣10×)=800,解得x1=3,x2=5.∵售价不能超过进价的300%,∴x≤1×300%.即x≤3.∴x=3.答:每双袜子的定价为3元时,每天的利润为800元.25.(10分)如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为(2,0);(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.【解答】解:(1)如图;D(2,0)(4分)(2)如图;;作CE⊥x轴,垂足为E.∵△AOD≌△DEC,∴∠OAD=∠CDE,又∵∠OAD+∠ADO=90°,∴∠CDE+∠ADO=90°,∴扇形DAC的圆心角为90度;=,(3)∵弧AC的长度即为圆锥底面圆的周长.l弧设圆锥底面圆半径为r,则,∴.26.(10分)如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F.(1)若∠E=∠F时,求证:∠ADC=∠ABC;(2)若∠E=∠F=42°时,求∠A的度数;(3)若∠E=α,∠F=β,且α≠β.请你用含有α、β的代数式表示∠A的大小.【解答】解:(1)∠E=∠F,∵∠DCE=∠BCF,∠ADC=∠E+∠DCE,∠ABC=∠F+∠BCF,∴∠ADC=∠ABC;(2)由(1)知∠ADC=∠ABC,∵∠EDC=∠ABC,∴∠EDC=∠ADC,∴∠ADC=90°,∴∠A=90°﹣42°=48°;(3)连结EF,如图,∵四边形ABCD为圆的内接四边形,∴∠ECD=∠A,∵∠ECD=∠1+∠2,∴∠A=∠1+∠2,∵∠A+∠1+∠2+∠AEB+∠AFD=180°,∴2∠A+α+β=180°,∴∠A=90°﹣.27.(12分)已知:关于x的一元二次方程mx2﹣(2m+2)x+m﹣1=0(1)若此方程有实根,求m的取值范围;(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根;(3)若A、B是平面直角坐标系中x轴上的两个点,点B在点A的左侧,且点A、B的横坐l标分别是(2)中方程的两个根,以线段AB为直径在x轴的上方作半圆P,设直线的解析l式为y=x+b,若直线与半圆P只有两个交点时,求出b的取值范围.【解答】解:(1)∵关于x的一元二次方程,m≠0,∵关于x的一元二次方程有实根,∴△=(2m+2)2﹣4m(m﹣1)=12m+4≥0,解得m≥,∴当m≥且m≠0时此方程有实根;(2)∵在(1)的条件下,当m取最小的整数∴m=1,∴原方程化为:x2﹣4x=0,x(x﹣4)=0,解得:x1=0,x2=4;(3)解:如图所示:①当直线l经过原点O时与半圆P有两个交点,即b=0,②当直线l与半圆P相切于D点时有一个交点,∵y=x+b,当b=0则y=x,故可得Rt△EDP、Rt△ECO是等腰直角三角形,∵DP=2,∴EP==.∴OC=,即b=,∴当0≤b<时,直线l与半圆P只有两个交点.28.(12分)已知一次函数y=x+2的图象分别交x轴,y轴于A、B两点,⊙O1过以OB为边长的正方形OBCD的四个顶点,两动点P、Q同时从点A出发在四边形ABCD上运动,其中动点P以每秒个单位长度的速度沿A→B→A运动后停止;动点Q以每秒2个单位长度的速度沿A→O→D→C→B运动,AO1交y轴于E 点,P、Q运动的时间为t(秒).的值;(1)求E点的坐标和S△ABE(2)试探究点P、Q从开始运动到停止,直线PQ与⊙O1有哪几种位置关系,并求出对应的运动时间t的范围.【解答】解:(1)由题意知,A(﹣2,0),B(0,2),∴OB=OD=2,∴O1(1,1),设AO1的直线的解析式为y=kx+b,则有0=﹣2k+b,1=k+b,解得:b=,k=,∴y=x+,∴E(0,),∴BE=,=OA•BE=;∴S△ABE(2)直线PQ与⊙O1有三种位置关系,分别是相离,相切,相交;∵动点P沿A→B→A运动后停止;动点Q沿A→O→D→C→B运动,∴根据切线的定义,如果PQ与⊙O1相切,切点只能是O、D、C、B中的一个.分两种情况:①当点P从A点移到B点时,由于OA=OB=2,∴AB=2,∴t=2=2,当t=2时,点Q从A点运动到D点,当到达D点时,点P在B点处,显然不合题意,舍去,当点Q在O点时,如图①,此时t=2÷2=1,连结O1Q、PQ,∴PA==AB,∵QA=QB,∴∠PQB=AQB=45°,∵O1是正方形ODCB的中心,∴∠O1QB=45°,∴∠PQO1=90°,∴PQ为⊙O1的切线,此时t=1;②当点P从B点移到A点时,点Q从D点经过C点到达B点,显然,当点Q在点C处时,PQ与⊙O1相交,当点Q运动到B点时,点P回到了点A,如图②,同理可证此时PQ与⊙O1相切,易得t=4综上,当t=1或t=4时,PQ与⊙O1相切;故由题意可知:当PQ与⊙O1相离,0<t<1;当PQ与⊙O1相切时,t=1或t=4;当PQ与⊙O1相交时,1<t<4.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

相关文档
最新文档