Inference in Fuzzy Models of Physical Processes

合集下载

Fuzzy中英对照表

Fuzzy中英对照表
完全規則庫
Composition of fuzzy relations
模糊關係之合成
Compositional rule of inference
推論之合成規則
合成規則推論法
Computing, soft
軟性運算
柔性運算或
柔性解算
Conditional possibility distribution
工業流程控制
Inference, composition based
組合式推論
Inference, individual-rule based
個別規則基礎的推論
個別規則式推論
Inference engine, Dienes-Rescher
Dienes-Rescher推論機制
Inference engine, Lukasiewicz
模糊關係方程式
Equilibrium
均衡
平衡
Extension principle
擴展法則
Feedforward network
前饋網路
Fuzzifier, Gaussian
高斯模糊化
高斯模糊化器
Fuzzifier, singleton
單點模糊化
單點模糊化器
Fuzzifier, triangular
Dombi類型之模糊交集
Intersection, fuzzy Dubois-Prade class
Dubois-Prade類型之模糊交集
Intersection Yager class
Yager類型之交集
Interval analysis
區間分析
Interval-valued function

博士生要做自己的导师

博士生要做自己的导师

博士生要做自己的导师作为一个刚毕业的博士生,体会到学习期间,要努力做自己的导师。

导师很重要,但是现在很多导师都很忙,大方向上可以把关,细节上恐怕只能靠自己了。

正如《怎样获得研究生学位――研究生及导师指南》书中所说:“在博士教育阶段,你必须把握自己的学习,取得博士学位,以此作为自己的责任。

当然,你的周围会有很多人帮助你,但是,决定什么是必须要做的,以及实际的完成这些任务,这一责任最终只能落在你自己的头上。

”我认为有如下几个方面特别要引起注意。

研究方向确定。

现在很多导师会指定一个大方向,比如温室蔬菜病害预警系统,我们要按照大方向来前行。

但是对于一个博士论文来说,还需进一步明确:比如做哪种蔬菜的,采用什么方法来预警,究竟有哪些关键技术,等等。

还得理清自己的创新点。

对于农业工程专业偏软件方向的我来说,模型是核心,有时数据获取方法也可以作为创新点。

这些一般都要自己理出方案之后,再提交导师审阅,双方讨论确定。

文献阅读与偶像论文确定。

在方向确定后,就是开题,这就要以文献阅读为基础。

虽然导师会指定一些文献,但是鉴于很多导师工作繁忙,要在宏观上把握各个研究方向的总体进展,对于某一个方向上的文献,并不一定比专门一心一意做该方向的学生掌握的全、掌握的新。

而且学生有更多的时间来检索和获取文献,因此在文献阅读这块,经过半年到一年左右的积累,应该有信心超过导师。

所谓“偶像论文”,是从导师那里学到的一个概念,我理解就是和自己研究特别相关、可以作为试验设计、结果分析和论文写作模板的论文。

我的很多论文就是参考前人的模式写作的,站在偶像的肩膀上前进,确实受益匪浅。

试验设计与执行。

试验方案通常是学生设计,交由导师审阅,双方讨论之后确定的。

方案执行是个持续奋斗、有时甚至是艰苦卓绝的过程。

有了硕士阶段的基础,博士生的执行力应当有了很大的提升,甚至可以领导一个小组,如几个硕士来执行一个试验。

这种一线工作能力,甚至在毕业后参加工作的头几年,仍然需要,因为我们可能还是一个小兵。

INFERENCE METHOD FOR FUZZY INFERENCE CONSEQUENT PA

INFERENCE METHOD FOR FUZZY INFERENCE CONSEQUENT PA

专利名称:INFERENCE METHOD FOR FUZZYINFERENCE CONSEQUENT PART UNDER PIDCONTROL发明人:HAYASAKA HIROSHI申请号:JP23793289申请日:19890913公开号:JPH03100703A公开日:19910425专利内容由知识产权出版社提供摘要:PURPOSE:To simplify an arithmetic procedure and to shorten an arithmetic time by dividing the membership function of inference consequent part into fixed membership function and floating membership function and performing inference arithmetic processing as to relative parameters together. CONSTITUTION:The membership function of the inference consequent part 14 which performs fuzzy inference processing is divided into the fixed membership function and floating membership function. When variables outputted by the reasoning consequent part 14, e.g. a P(proportional) parameter and an I(integral) parameter are in relation A=P/I, the result obtained by adding a fuzzy evaluated value of the I parameter obtained at the inference antecedent part 13 at an inference consequent part 14 is assigned as a fixed membership function. The result obtained by adding the fuzzy evaluated value of the P parameter, on the other hand, is assigned as a floating membership function. Then the fixed membership function and floating membership function are put together in the relation A=P/I to obtain a new inference value. Consequently, the arithmetic time is shortened and the inference process is simplified.申请人:MITSUBISHI ELECTRIC CORP 更多信息请下载全文后查看。

ieee fuzzy 短文

ieee fuzzy 短文

ieee fuzzy 短文Fuzzy logic is a mathematical tool that allows for approximate reasoning and decision-making in uncertain or ambiguous situations. It originated from the work of Lotfi Zadeh in the 1960s and has since been widely applied in various fields, including engineering, computer science, and artificial intelligence.At its core, fuzzy logic deals with degrees of truth rather than the traditional binary logic of true or false. It acknowledges that many concepts in the real world are not easily defined or categorizable in a strict sense. Fuzzy logic allows for the representation of imprecise or vague information and enables the use of linguistic terms to describe these concepts.The main building blocks of fuzzy logic are fuzzy sets, which are defined by membership functions that assign a degree of membership to each element in a set. Unlike in classical set theory, where an element either belongs to a set or does not, fuzzy sets provide a more flexible approach by allowing for partial membership. This allows for a more nuanced representation of data and facilitates better decision-making in uncertain situations. Fuzzy logic is often employed in control systems, where it enables the modeling of complex, nonlinear relationships between inputs and outputs. By incorporating linguistic rules, fuzzy logic controllers can handle imprecise or incomplete information and adapt to changing conditions. This makes them particularly useful in applications such as temperature and speed control, as well as in intelligent systems like autonomous vehicles.Another area where fuzzy logic has found extensive application is in pattern recognition and image processing. Fuzzy logic algorithms can effectively handle the inherent uncertainty and variability in real-world data, making them suitable for tasks such as object recognition, classification, and clustering. By considering the degree of similarity or dissimilarity between objects, fuzzy logic techniques can provide more robust and reliable results compared to traditional binary methods.Fuzzy logic has also been utilized in decision-making systems, where it allows for the modeling of human-like reasoning processes. By employing fuzzy inference and rule-based systems, decision support systems can analyze complex data and make intelligent decisions based on expert knowledge and subjective criteria. This can be particularly valuable in fields such as medicine, finance, and risk analysis, where decisions often involve multiple factors and uncertainties.Despite its numerous applications and advantages, fuzzy logic does have its limitations. The construction of accurate membership functions and the formulation of appropriate fuzzy rules can be challenging. Additionally, the computational complexity of fuzzy logic algorithms may be higher compared to classical methods, leading to increased processing time and resource requirements.In conclusion, fuzzy logic provides a powerful framework for dealing with uncertainty and imprecision in decision-making. Its ability to handle vague and incomplete information makes it highly applicable in a wide range of fields. By incorporating linguistic terms and membership functions, fuzzy logic enables morerealistic and human-like reasoning processes. However, it is important to carefully consider the appropriate use of fuzzy logic and to address the associated challenges when applying it in practice.。

洗衣机模糊控制原理

洗衣机模糊控制原理

中文摘要洗衣机自问世以来,经过一个多世纪的发展,现正呈现出全自动、多功能、大容量、高智能、省时节能的发展趋势。

近年来,电子技术、控制技术、信息技术的不断完善、成熟,为上述发展趋势提供了坚强的技术保障。

L·A·Zadeh教授最早提出了模糊集合理论,由此产生了模糊控制技术,其突出的优点是:不需要对被控对象建立精确的数学模型。

对于复杂的、非线性的、大滞后的、时变的系统来说,建立数学模型是非常困难的。

全自动滚筒洗衣干衣机的自动化、智能化控制正是一种难以建立精确数学模型的控制问题,采用模糊控制技术,可以很方便的控制洗衣干衣过程。

模糊控制全自动滚筒洗衣干衣机是通过模糊推理找出最佳洗涤烘干方案,以优化洗涤烘干时间、洗净程度、烘干效果,最终达到提高效率,简化操作,、节水节电省时的效果。

模糊控制全自动滚筒洗衣干衣机属于创新项目,填补国内空白,达到国际先进水平。

它的研制成功,必将大大推动我国乃至世界洗衣机行业的发展。

模糊控制是以模糊集理论、模糊语言变量和模糊逻辑推理为基础的一种智能控制方法,它是从行为上模仿人的模糊推理和决策过程的一种智能控制方法。

该方法首先将操作人员或专家经验编成模糊规则,然后将来自传感器的实时信号模糊化,将模糊化后的信号作为模糊规则的输入,完成模糊推理,将推理后得到的输出量加到执行器上。

关键词:洗衣干衣机、家用滚筒式、模糊控制技术、模糊控制器、模糊控制规则ABSTRACTIt has been developed for more than one century since the emergence of washing machine.Now the tendency to develop is fully- automatism,Multifunction,large capacity,high intelligence,time and energy saving.Recently,the tendency has been guaranteed substantially with the perfection and mature of electronic technology,control technology and information technology.Professor L·A·Zadeh first put forward the Theory of Fuzzy Set,from which the technology of Fuzzy Control arise.It is extraordinary virtue is:There is no definite need to establish the exact math model of the controlled object.It is very convenience to establish mathematical models to the systems with very complex,non.1inear,large—lag and timely change characteristic.And it is the very problem incontrol to establish the exact mathematical model in fully-automatic washing—drying machines automatism and optimize.It is very convenient to control the process of washing and drying to use the technology off contr01.The fuzzy control of the fully—automatism front loading washing· drying machine, is through the fuzzy inference to find the best plan of washing-drying,optimize the time of washing and drying,the degree of cleaning and the effect of drying SO to reach the intention of raising the efficiency,predigesting the operate and saving the water and electricity.Fuzzy control fully—- automatism front loading washing drying machine is an innovate project,which padded the blankness in the world and achieve international advanced level.The Success of the research will impel the development of the washing machine industry greatly.Key Words:washing—drying machine,household front loading,fuzzy control technology,fuzzy controller,fuzzy control rule .目录:第一章:简介1.绪言2.简单论述第二章:模糊控制理论和技术基础1. 模糊控制原理2. 模糊控制器的构成3. 模糊控制系统的工作原理4. 模糊控制系统分类5. 模糊控制器的设计6. 模糊控制器设计实例-洗衣机模糊控制第三章:程序实现1.模糊控制理论和技术基础总结2.程序设计及实现1 绪论第一章绪言国际相关产品的发展水平、现状及发展趋势:1965年,美国加里弗尼亚大学控制理论教授L·A·Zadeh(扎德)提出模糊集理论。

数据缺失下的IFCM-Slope One协同过滤推荐算法

数据缺失下的IFCM-Slope One协同过滤推荐算法

D01:10.13546/ki.tjyjc.2020.09.040Ct理送愛]数据缺失下的IFCM-Slope One协同过滤推荐算法张艳菊",陆畅小(辽宁工程技术大学a.工商管理学院;b.管理科学与工程研究院,辽宁葫芦岛125105)摘要:为了提高数据缺失情况下的推荐准确性,保证服务的质量,给用户提供更加准确与实时的个性化信息,文章将直觉模糊C均值聚类(IFCM)和协同过滤推荐算法相结合,构建了IFCM-Slope One协同过滤推荐算法。

通过引入直觉模糊C均值聚类对用户进行分类,减小邻居用户的搜索范围,降低计算的复杂度,再利用Slope One对用户喜好矩阵缺失数据进行填补,避免由于数据缺失导致推荐偏差,最后基于协同过滤推荐算法计算相似邻居集,并将相似邻居集中的用户喜好隶属度进行从大到小的排序,形成Top-n项目推荐集,生成用户推荐结果。

关键词:直觉模糊C均值聚类(IFCM);协同过滤推荐:Slope One中图分类号:0159文献标识码:A文章编号:1002-6487(2020)09-0185-040引言实时准确的个性化推荐是电子商务行业运营管理水平的体现,是大数据时代发展的重要方面。

但现在互联网信息呈指数增长,全世界现存网站已到达10亿以上,我国网民数量也已经超过7亿,庞大的数据量加大了推荐的难度,如何提高推荐的准确性成为亟待解决的问题'“。

国内学者中,邓爱林等'通过对用户评分项目集中的空缺进行填充,并运用领域最近邻方法进行预测推荐%古凌岚°」针对传统的协同过滤推荐算法的稀疏性问题利用基因表达式预测局部用户一项目的缺失评分。

高灵渲网通过对样本用户利用分类策略进行分类,再对目标用户的具体推荐项目进行预测评分。

李小浩E针对协同过滤推荐算法的缺陷,提出了SCFCM推荐算法,提高推荐精度。

国外学者中Xue等冋通过预估缺失数据进行填充,减小稀疏性问题。

Kim等回利用预测模型,对已有评分预估和实际评分比较得预测偏差,进而进行结果修正。

人工智能英汉

人工智能英汉

人工智能英汉Aβα-Pruning, βα-剪枝, (2) Acceleration Coefficient, 加速系数, (8) Activation Function, 激活函数, (4) Adaptive Linear Neuron, 自适应线性神经元,(4)Adenine, 腺嘌呤, (11)Agent, 智能体, (6)Agent Communication Language, 智能体通信语言, (11)Agent-Oriented Programming, 面向智能体的程序设计, (6)Agglomerative Hierarchical Clustering, 凝聚层次聚类, (5)Analogism, 类比推理, (5)And/Or Graph, 与或图, (2)Ant Colony Optimization (ACO), 蚁群优化算法, (8)Ant Colony System (ACS), 蚁群系统, (8) Ant-Cycle Model, 蚁周模型, (8)Ant-Density Model, 蚁密模型, (8)Ant-Quantity Model, 蚁量模型, (8)Ant Systems, 蚂蚁系统, (8)Applied Artificial Intelligence, 应用人工智能, (1)Approximate Nondeterministic Tree Search (ANTS), 近似非确定树搜索, (8) Artificial Ant, 人工蚂蚁, (8)Artificial Intelligence (AI), 人工智能, (1) Artificial Neural Network (ANN), 人工神经网络, (1), (3)Artificial Neural System, 人工神经系统,(3) Artificial Neuron, 人工神经元, (3) Associative Memory, 联想记忆, (4) Asynchronous Mode, 异步模式, (4) Attractor, 吸引子, (4)Automatic Theorem Proving, 自动定理证明,(1)Automatic Programming, 自动程序设计, (1) Average Reward, 平均收益, (6) Axon, 轴突, (4)Axon Hillock, 轴突丘, (4)BBackward Chain Reasoning, 逆向推理, (3) Bayesian Belief Network, 贝叶斯信念网, (5) Bayesian Decision, 贝叶斯决策, (3) Bayesian Learning, 贝叶斯学习, (5) Bayesian Network贝叶斯网, (5)Bayesian Rule, 贝叶斯规则, (3)Bayesian Statistics, 贝叶斯统计学, (3) Biconditional, 双条件, (3)Bi-Directional Reasoning, 双向推理, (3) Biological Neuron, 生物神经元, (4) Biological Neural System, 生物神经系统, (4) Blackboard System, 黑板系统, (8)Blind Search, 盲目搜索, (2)Boltzmann Machine, 波尔兹曼机, (3) Boltzmann-Gibbs Distribution, 波尔兹曼-吉布斯分布, (3)Bottom-Up, 自下而上, (4)Building Block Hypotheses, 构造块假说, (7) CCell Body, 细胞体, (3)Cell Membrane, 细胞膜, (3)Cell Nucleus, 细胞核, (3)Certainty Factor, 可信度, (3)Child Machine, 婴儿机器, (1)Chinese Room, 中文屋, (1) Chromosome, 染色体, (6)Class-conditional Probability, 类条件概率,(3), (5)Classifier System, 分类系统, (6)Clause, 子句, (3)Cluster, 簇, (5)Clustering Analysis, 聚类分析, (5) Cognitive Science, 认知科学, (1) Combination Function, 整合函数, (4) Combinatorial Optimization, 组合优化, (2) Competitive Learning, 竞争学习, (4) Complementary Base, 互补碱基, (11) Computer Games, 计算机博弈, (1) Computer Vision, 计算机视觉, (1)Conflict Resolution, 冲突消解, (3) Conjunction, 合取, (3)Conjunctive Normal Form (CNF), 合取范式,(3)Collapse, 坍缩, (11)Connectionism, 连接主义, (3) Connective, 连接词, (3)Content Addressable Memory, 联想记忆, (4) Control Policy, 控制策略, (6)Crossover, 交叉, (7)Cytosine, 胞嘧啶, (11)DData Mining, 数据挖掘, (1)Decision Tree, 决策树, (5) Decoherence, 消相干, (11)Deduction, 演绎, (3)Default Reasoning, 默认推理(缺省推理),(3)Defining Length, 定义长度, (7)Rule (Delta Rule), 德尔塔规则, 18(3) Deliberative Agent, 慎思型智能体, (6) Dempster-Shafer Theory, 证据理论, (3) Dendrites, 树突, (4)Deoxyribonucleic Acid (DNA), 脱氧核糖核酸, (6), (11)Disjunction, 析取, (3)Distributed Artificial Intelligence (DAI), 分布式人工智能, (1)Distributed Expert Systems, 分布式专家系统,(9)Divisive Hierarchical Clustering, 分裂层次聚类, (5)DNA Computer, DNA计算机, (11)DNA Computing, DNA计算, (11) Discounted Cumulative Reward, 累计折扣收益, (6)Domain Expert, 领域专家, (10) Dominance Operation, 显性操作, (7) Double Helix, 双螺旋结构, (11)Dynamical Network, 动态网络, (3)E8-Puzzle Problem, 八数码问题, (2) Eletro-Optical Hybrid Computer, 光电混合机, (11)Elitist strategy for ant systems (EAS), 精化蚂蚁系统, (8)Energy Function, 能量函数, (3) Entailment, 永真蕴含, (3) Entanglement, 纠缠, (11)Entropy, 熵, (5)Equivalence, 等价式, (3)Error Back-Propagation, 误差反向传播, (4) Evaluation Function, 评估函数, (6) Evidence Theory, 证据理论, (3) Evolution, 进化, (7)Evolution Strategies (ES), 进化策略, (7) Evolutionary Algorithms (EA), 进化算法, (7) Evolutionary Computation (EC), 进化计算,(7)Evolutionary Programming (EP), 进化规划,(7)Existential Quantification, 存在量词, (3) Expert System, 专家系统, (1)Expert System Shell, 专家系统外壳, (9) Explanation-Based Learning, 解释学习, (5) Explanation Facility, 解释机构, (9)FFactoring, 因子分解, (11)Feedback Network, 反馈型网络, (4) Feedforward Network, 前馈型网络, (1) Feasible Solution, 可行解, (2)Finite Horizon Reward, 横向有限收益, (6) First-order Logic, 一阶谓词逻辑, (3) Fitness, 适应度, (7)Forward Chain Reasoning, 正向推理, (3) Frame Problem, 框架问题, (1)Framework Theory, 框架理论, (3)Free-Space Optical Interconnect, 自由空间光互连, (11)Fuzziness, 模糊性, (3)Fuzzy Logic, 模糊逻辑, (3)Fuzzy Reasoning, 模糊推理, (3)Fuzzy Relation, 模糊关系, (3)Fuzzy Set, 模糊集, (3)GGame Theory, 博弈论, (8)Gene, 基因, (7)Generation, 代, (6)Genetic Algorithms, 遗传算法, (7)Genetic Programming, 遗传规划(遗传编程),(7)Global Search, 全局搜索, (2)Gradient Descent, 梯度下降, (4)Graph Search, 图搜索, (2)Group Rationality, 群体理性, (8) Guanine, 鸟嘌呤, (11)HHanoi Problem, 梵塔问题, (2)Hebbrian Learning, 赫伯学习, (4)Heuristic Information, 启发式信息, (2) Heuristic Search, 启发式搜索, (2)Hidden Layer, 隐含层, (4)Hierarchical Clustering, 层次聚类, (5) Holographic Memory, 全息存储, (11) Hopfield Network, 霍普菲尔德网络, (4) Hybrid Agent, 混合型智能体, (6)Hype-Cube Framework, 超立方体框架, (8)IImplication, 蕴含, (3)Implicit Parallelism, 隐并行性, (7) Individual, 个体, (6)Individual Rationality, 个体理性, (8) Induction, 归纳, (3)Inductive Learning, 归纳学习, (5) Inference Engine, 推理机, (9)Information Gain, 信息增益, (3)Input Layer, 输入层, (4)Interpolation, 插值, (4)Intelligence, 智能, (1)Intelligent Control, 智能控制, (1) Intelligent Decision Supporting System (IDSS), 智能决策支持系统,(1) Inversion Operation, 倒位操作, (7)JJoint Probability Distribution, 联合概率分布,(5) KK-means, K-均值, (5)K-medoids, K-中心点, (3)Knowledge, 知识, (3)Knowledge Acquisition, 知识获取, (9) Knowledge Base, 知识库, (9)Knowledge Discovery, 知识发现, (1) Knowledge Engineering, 知识工程, (1) Knowledge Engineer, 知识工程师, (9) Knowledge Engineering Language, 知识工程语言, (9)Knowledge Interchange Format (KIF), 知识交换格式, (8)Knowledge Query and ManipulationLanguage (KQML), 知识查询与操纵语言,(8)Knowledge Representation, 知识表示, (3)LLearning, 学习, (3)Learning by Analog, 类比学习, (5) Learning Factor, 学习因子, (8)Learning from Instruction, 指导式学习, (5) Learning Rate, 学习率, (6)Least Mean Squared (LSM), 最小均方误差,(4)Linear Function, 线性函数, (3)List Processing Language (LISP), 表处理语言, (10)Literal, 文字, (3)Local Search, 局部搜索, (2)Logic, 逻辑, (3)Lyapunov Theorem, 李亚普罗夫定理, (4) Lyapunov Function, 李亚普罗夫函数, (4)MMachine Learning, 机器学习, (1), (5) Markov Decision Process (MDP), 马尔科夫决策过程, (6)Markov Chain Model, 马尔科夫链模型, (7) Maximum A Posteriori (MAP), 极大后验概率估计, (5)Maxmin Search, 极大极小搜索, (2)MAX-MIN Ant Systems (MMAS), 最大最小蚂蚁系统, (8)Membership, 隶属度, (3)Membership Function, 隶属函数, (3) Metaheuristic Search, 元启发式搜索, (2) Metagame Theory, 元博弈理论, (8) Mexican Hat Function, 墨西哥草帽函数, (4) Migration Operation, 迁移操作, (7) Minimum Description Length (MDL), 最小描述长度, (5)Minimum Squared Error (MSE), 最小二乘法,(4)Mobile Agent, 移动智能体, (6)Model-based Methods, 基于模型的方法, (6) Model-free Methods, 模型无关方法, (6) Modern Heuristic Search, 现代启发式搜索,(2)Monotonic Reasoning, 单调推理, (3)Most General Unification (MGU), 最一般合一, (3)Multi-Agent Systems, 多智能体系统, (8) Multi-Layer Perceptron, 多层感知器, (4) Mutation, 突变, (6)Myelin Sheath, 髓鞘, (4)(μ+1)-ES, (μ+1) -进化规划, (7)(μ+λ)-ES, (μ+λ) -进化规划, (7) (μ,λ)-ES, (μ,λ) -进化规划, (7)NNaïve Bayesian Classifiers, 朴素贝叶斯分类器, (5)Natural Deduction, 自然演绎推理, (3) Natural Language Processing, 自然语言处理,(1)Negation, 否定, (3)Network Architecture, 网络结构, (6)Neural Cell, 神经细胞, (4)Neural Optimization, 神经优化, (4) Neuron, 神经元, (4)Neuron Computing, 神经计算, (4)Neuron Computation, 神经计算, (4)Neuron Computer, 神经计算机, (4) Niche Operation, 生态操作, (7) Nitrogenous base, 碱基, (11)Non-Linear Dynamical System, 非线性动力系统, (4)Non-Monotonic Reasoning, 非单调推理, (3) Nouvelle Artificial Intelligence, 行为智能,(6)OOccam’s Razor, 奥坎姆剃刀, (5)(1+1)-ES, (1+1) -进化规划, (7)Optical Computation, 光计算, (11)Optical Computing, 光计算, (11)Optical Computer, 光计算机, (11)Optical Fiber, 光纤, (11)Optical Waveguide, 光波导, (11)Optical Interconnect, 光互连, (11) Optimization, 优化, (2)Optimal Solution, 最优解, (2)Orthogonal Sum, 正交和, (3)Output Layer, 输出层, (4)Outer Product, 外积法, 23(4)PPanmictic Recombination, 混杂重组, (7) Particle, 粒子, (8)Particle Swarm, 粒子群, (8)Particle Swarm Optimization (PSO), 粒子群优化算法, (8)Partition Clustering, 划分聚类, (5) Partitioning Around Medoids, K-中心点, (3) Pattern Recognition, 模式识别, (1) Perceptron, 感知器, (4)Pheromone, 信息素, (8)Physical Symbol System Hypothesis, 物理符号系统假设, (1)Plausibility Function, 不可驳斥函数(似然函数), (3)Population, 物种群体, (6)Posterior Probability, 后验概率, (3)Priori Probability, 先验概率, (3), (5) Probability, 随机性, (3)Probabilistic Reasoning, 概率推理, (3) Probability Assignment Function, 概率分配函数, (3)Problem Solving, 问题求解, (2)Problem Reduction, 问题归约, (2)Problem Decomposition, 问题分解, (2) Problem Transformation, 问题变换, (2) Product Rule, 产生式规则, (3)Product System, 产生式系统, (3) Programming in Logic (PROLOG), 逻辑编程, (10)Proposition, 命题, (3)Propositional Logic, 命题逻辑, (3)Pure Optical Computer, 全光计算机, (11)QQ-Function, Q-函数, (6)Q-learning, Q-学习, (6)Quantifier, 量词, (3)Quantum Circuit, 量子电路, (11)Quantum Fourier Transform, 量子傅立叶变换, (11)Quantum Gate, 量子门, (11)Quantum Mechanics, 量子力学, (11) Quantum Parallelism, 量子并行性, (11) Qubit, 量子比特, (11)RRadial Basis Function (RBF), 径向基函数,(4)Rank based ant systems (ASrank), 基于排列的蚂蚁系统, (8)Reactive Agent, 反应型智能体, (6) Recombination, 重组, (6)Recurrent Network, 循环网络, (3) Reinforcement Learning, 强化学习, (3) Resolution, 归结, (3)Resolution Proof, 归结反演, (3) Resolution Strategy, 归结策略, (3) Reasoning, 推理, (3)Reward Function, 奖励函数, (6) Robotics, 机器人学, (1)Rote Learning, 机械式学习, (5)SSchema Theorem, 模板定理, (6) Search, 搜索, (2)Selection, 选择, (7)Self-organizing Maps, 自组织特征映射, (4) Semantic Network, 语义网络, (3)Sexual Differentiation, 性别区分, (7) Shor’s algorithm, 绍尔算法, (11)Sigmoid Function, Sigmoid 函数(S型函数),(4)Signal Function, 信号函数, (3)Situated Artificial Intelligence, 现场式人工智能, (1)Spatial Light Modulator (SLM), 空间光调制器, (11)Speech Act Theory, 言语行为理论, (8) Stable State, 稳定状态, (4)Stability Analysis, 稳定性分析, (4)State Space, 状态空间, (2)State Transfer Function, 状态转移函数,(6)Substitution, 置换, (3)Stochastic Learning, 随机型学习, (4) Strong Artificial Intelligence (AI), 强人工智能, (1)Subsumption Architecture, 包容结构, (6) Superposition, 叠加, (11)Supervised Learning, 监督学习, (4), (5) Swarm Intelligence, 群智能, (8)Symbolic Artificial Intelligence (AI), 符号式人工智能(符号主义), (3) Synapse, 突触, (4)Synaptic Terminals, 突触末梢, (4) Synchronous Mode, 同步模式, (4)TThreshold, 阈值, (4)Threshold Function, 阈值函数, (4) Thymine, 胸腺嘧啶, (11)Topological Structure, 拓扑结构, (4)Top-Down, 自上而下, (4)Transfer Function, 转移函数, (4)Travel Salesman Problem, 旅行商问题, (4) Turing Test, 图灵测试, (1)UUncertain Reasoning, 不确定性推理, (3)Uncertainty, 不确定性, (3)Unification, 合一, (3)Universal Quantification, 全称量词, (4) Unsupervised Learning, 非监督学习, (4), (5)WWeak Artificial Intelligence (Weak AI), 弱人工智能, (1)Weight, 权值, (4)Widrow-Hoff Rule, 维德诺-霍夫规则, (4)。

自然灾害风险分析的信息矩阵方法

自然灾害风险分析的信息矩阵方法


・2・
自 然 灾 害 学 报 15 卷
1 自然灾害风险分析的 4 个环节
自然灾害风险泛指自然灾害发生的时间 、 空间 、 强度的可能性 。例如我们说“ 一次大洪水 5h 后将会淹 没村庄 A ” ,时间是“5h后 ” ,空间是“ 村庄 A ” ,强度是“ 大洪水 ” ,可能性是“ 将会 ” 。严格地讲 ,自然灾害风险 的存在需要有 3 个条件 : ( 1 )必须存在灾源 ; ( 2 )必须有暴露于灾源影响范围之内的人员和财物 ; ( 3 ) 必须存 在伤亡和损失的可能性 。其中 ,灾源也称为致灾因子 ; 暴露物也称为承灾体 。自然灾害的风险水平取决于致 灾因子强度 、 承灾体脆弱性 、 伤亡和损失 。 自然灾害风险分析是对风险区遭受不同强度自然灾害的可能性及其可能造成的后果进行定量分析和评 估 。为此 ,首先必须确定致灾因子测度空间 、 场地致灾力测度空间 、 承灾体破坏测度空间 、 伤亡和损失测度空 间 。每个测度空间称为一个环节 。 在自然灾害风险分析中 ,测度空间也称为定义域 。为了使用模糊集表达方式 ,测度空间也称为论域 。如 果没有不同测度空间的混淆 , 用 U 代表论域 , 其元素变量记为 u。在需要有所区别时 , 用 M ( m agnitude, 量 级 )记致灾因子论域 , W (wave,波 )记场地致灾力论域 , D ( damage,破坏 )记承灾体破坏论域 , L ( loss,损失 ) 记 伤亡和损失论域 ,相应的元素变量分别记为 m , w, d, l。从致灾因子到损失是一个因果链 ,由图 1 所示 。尤其 值得注意的是 , L 是一个多维空间 , 元素 l有多个分量 。通常一个分量是死亡人数 ,一个分量是受伤人数 ,一 个分量是损失金额 。 在原因环节中 ,主要工作是估计致灾因子 m 发生的可能 性 P ( m ) 。全球地震危险性图 使用测量随机不确定性的概 率测度表达可能性 , 主要工作是用 Cornell早在 1968 就总结 [2] 出来的所谓 PSHA 方法 估计地震参数 m 发生的概率分布 Prob ( m ) 。如果概率分布不易估计 , 则可代之估计可能性 [3] 概率分布 Poss ( m , p) , 相应的风险称为模糊风险 。 中间环节 1 的主要工作 , 是识别灾害打击力 m 从灾源到 场地的衰减关系 w = f1 ( m , s) , 以便根据暴露的承灾体的环境 参数 s (包括距离在内 ) , 计算出该承灾体将面对的场地致灾 力 w。 中间环节 2 的主要工作 , 是识别致灾力 w 与承灾体破坏 程度 d 之间的“ 剂量 - 反应 ” 关系 d = f2 ( w , θ) , 以便根据承灾 体参数 θ(通常是一个向量 ) , 计算出该承灾体的破坏程度 d。 在结果环节中 , 主要工作是识别破坏程度 d 和损失程度 l 图 1 自然灾害风险分析的四个环节和相应的论域 之间的关系 l = f3 ( d, φ) , 以便根据社会性参数 φ (包括人口 Fig . 1 Four step s and universes for risk analysis 密度 、 承灾体价值等在内 ) , 计算出该承灾体将面对的损失 l。 of natural disaster 自然灾害风险分析的最后一部分工作 , 就是研究出某种 ) 和 f3 ( d, φ) , 模型 , 由致灾因子 m 发生的可能性 P ( m ) 和承灾体系统中的 3 个关系 w = f1 ( m , s) , d = f2 ( w ,θ 计算出承灾体 O 的损失 l发生的可能性 PO ( l) 。对于由 n 个承灾体 O 1 , O 2 , …, O n组成的区域 C 的自然灾害 风险分析 , 需进行一些合成运算 , 得出区域 C 的损失 lc发生的可能性 Pc ( lc ) 。 显然 ,自然灾害风险分析 ,主要涉及两类模式识别 : 致灾因子概率分布识别 ,承灾体系统输入 - 输出关系 识别 。由于概率分布和输入 - 输出关系在数学上均可用函数表达 ,所以 ,自然灾害风险分析涉及的两类模式 识别 ,均是函数关系的识别 。在只有有限观测数据的条件下 ,本文建议用一种新的统计方法去识别这些函数 关系 。我们称它为信息矩阵方法 ,它由构造信息矩阵 、 生成模糊关系矩阵和模糊近似推理 3 部分组成 。

Lukasiewicz型直觉模糊推理三I方法的性质分析

Lukasiewicz型直觉模糊推理三I方法的性质分析

Lukasiewicz型直觉模糊推理三I方法的性质分析李骏;刘岩【摘要】直觉模糊推理的两个基本模型是Intuitionistic Fuzzy Modus Ponens(IFMP)和Intuitionistic Fuzzy Modus Tollens(IFMT).首先利用经典模糊集之间的自然距离定义了直觉模糊集间的一种距离.其次,证明了基于Lukasiewicz 直觉模糊蕴涵的IFMP和IFMT问题的三I方法关于该距离都具有连续性,并且分别给出了IFMP和IFMT问题的三I方法满足逼近性的充分条件.%The two basic reasoning models of intuitionistic fuzzy reasoning are Intuitionistic Fuzzy Modus Ponens(IFMP) and Intuitionistic Fuzzy ModusTollens(IFMT)respectively.A kind of distance between intuitionistic fuzzy sets is intro-duced by the natural distance between classical fuzzy sets in the present paper.It is proven that both the triple I methods for solving IFMP and IFMT problems based on Lukasiewicz intuitionistic fuzzy implication are continuous with respect to this distance.Some sufficient conditions to guarantee the approximation property of the triple I methods for solving IFMP and IFMT are given respectively.【期刊名称】《计算机工程与应用》【年(卷),期】2018(054)008【总页数】5页(P44-47,54)【关键词】直觉模糊集;直觉模糊推理;三I方法;连续性;逼近性【作者】李骏;刘岩【作者单位】兰州理工大学理学院,兰州730050;兰州理工大学理学院,兰州730050【正文语种】中文【中图分类】TP181;O1591 引言模糊推理作为模糊控制的核心,在模糊信息的处理过程中起着举足轻重的作用。

Fuzzy set

Fuzzy set

Fuzzy Set Theory by Shin-Yun WangBefore illustrating the fuzzy set theory which makes decision under uncertainty, it is important to realize what uncertainty actually is.Uncertainty is a term used in subtly different ways in a number of fields, including philosophy, statistics, economics, finance, insurance, psychology, engineering and science. It applies to predictions of future events, to physical measurements already made, or to the unknown. Uncertainty must be taken in a sense radically distinct from the familiar notion of risk, from which it has never been properly separated.... The essential fact is that 'risk' means in some cases a quantity susceptible of measurement, while at other times it is something distinctly not of this character; and there are far-reaching and crucial differences in the bearings of the phenomena depending on which of the two is really present and operating.... It will appear that a measurable uncertainty, or 'risk' proper, as we shall use the term, is so far different from an immeasurable one that it is not in effect an uncertainty at all.What is relationship between uncertainty, probability, vagueness and risk? Risk is defined as uncertainty based on a well grounded (quantitative) probability. Formally, Risk = (the probability that some event will occur) X (the consequences if it does occur). Genuine uncertainty, on the other hand, cannot be assigned such a (well grounded) probability. Furthermore, genuine uncertainty can often not be reduced significantly by attempting to gain more information about the phenomena in question and their causes. Moreover the relationship between uncertainty, accuracy, precision, standard deviation, standard error, and confidence interval is that the uncertainty of a measurement is stated by giving a range of values which are likely to enclose the true value. This may be denoted by error bars on a graph, or as value ± uncertainty, or as decimal fraction (uncertainty).Often, the uncertainty of a measurement is found by repeating the measurement enough times to get a good estimate of the standard deviation of the values. Then, any single value has an uncertainty equal to the standard deviation. However, if the values are averaged and the mean is reported, then the averaged measurement has uncertainty equal to the standard error which is the standard deviation divided by the square root of the number of measurements. When the uncertainty represents the standard error of the measurement, then about 68.2% of the time, the true value of the measured quantity falls within the stated uncertainty range.Therefore no matter how accurate our measurements are, some uncertainty always remains. The possibility is the degree that thing happens, but the probability is theprobability that things be happen or not. So the methods that we deal with uncertainty are to avoid the uncertainty, statistical mechanics and fuzzy set (Zadeh in 1965).(Figure from Klir&Yuan)Fuzzy sets have been introduced by Lotfi A. Zadeh (1965). What Zadeh proposed is very much a paradigm shift that first gained acceptance in the Far East and its successful application has ensured its adoption around the world. Fuzzy sets are an extension of classical set theory and are used in fuzzy logic. In classical set theory the membership of elements in relation to a set is assessed in binary terms according to a crisp condition — an element either belongs or does not belong to the set. By contrast, fuzzy set theory permits the gradual assessment of the membership of elements in relation to a set; this is described with the aid of a membership function valued in the real unit interval [0, 1]. Fuzzy sets are an extension of classical set theory since, for a certain universe, a membership function may act as an indicator function, mapping all elements to either 1 or 0, as in the classical notion.Specifically, A fuzzy set is any set that allows its members to have different grades of membership (membership function) in the interval [0,1]. A fuzzy set on a classical set Χ is defined as follows:The membership function μA (x ) quantifies the grade of membership of the elements x to the fundamental set Χ. An element mapping to the value 0 means that the member is not included in the given set, 1 describes a fully included member. Values strictly between 0 and 1 characterize the fuzzy members.Membership function terminology Universe of Discourse: the universe of discourse is the range of all possible values for an input to a fuzzy system. Support: the support of a fuzzy set F is the crisp set of all points in the universe of discourse U such that the membership function of F is non-zero.Core: the core of a fuzzy set F is the crisp set of all points in the universe of discourseU such that the membership function of F is 1.Supp {|()0, X}A A x x x μ=>∀∈core {|()1, X}A A x x x μ==∀∈Boundaries: the boundaries of a fuzzy set F is the crisp set of all points in the universe of discourse U such that the membership function of F is between 0 and 1. Crossover point: the crossover point of a fuzzy set is the element in U at which its membership function is 0.5. Height: the biggest value of membership functions of fuzzy set. Normalized fuzzy set: the fuzzy set of Cardinality of the set:Relative cardinality:Convex fuzzy set: , a fuzzy set A is Convex, if forType of membership functions1. Numerical definition (discrete membership functions)()/i A i i x X A x x μ∈=∑2. Function definition (continuous membership functions)Including of S function, Z Function, Pi function, Triangular shape, Trapezoid shape, Bell shape.()/A XA x x μ=⎰(1) S function: monotonical increasing membership function220 2() (;,,)12() 1 x x for x for x S x for x for xαγααγαααβαβγβγγ----≤⎧⎪≤≤⎪=⎨-≤≤⎪⎪≤⎩()0.5x μ=Boundaries {|0()1, X}A A x x x μ=<<∀∈Height()1A =A A X Supp()X : ()()x x A finiteA x x μμ∈∈==∑∑X AA =X R ∈[0, 1]λ∀∈1212((1))min((), ())A A A x x x x μλλμμ+-≥(2) Z function: monotonical decreasing membership function(3) ∏ function: combine S function and Z function, monotonical increasing and decreasing membership functionPiecewise continuous membership function(4)Trapezoidal membership function(5) Triangular membership function(6) Bell-shaped membership function11a 1b a 011a 1b b a 221 12() (;,,)2() 0 x x for x for x Z x for x for xαγααγαααβαβγβγγ----≤⎧⎪-≤≤⎪=⎨≤≤⎪⎪≤⎩22(; , , ) (;,)1(; , , ) S x for x x S x for x ββγβγγγβγγγγβγ⎧--≤⎪∏=⎨-++≥⎪⎩111111110 ()1 0 x a a a A b x b b for x a for a x a x for a x b for b x b for b xμ----≤⎧⎪≤≤⎪⎪=≤≤⎨⎪≤≤⎪⎪≤⎩111111110 () 0 x a a a A b x b a for x a for a x a x for a x b for b xμ----≤⎧⎪≤≤⎪=⎨≤≤⎪⎪≤⎩Before illustrating the mechanisms which make fuzzy logic machines work, it is important to realize what fuzzy logic actually is. Fuzzy logic is a superset of conventional (Boolean) logic that has been extended to handle the concept of partial truth- truth values between "completely true" and "completely false". As its name suggests, it is the logic underlying modes of reasoning which are approximate rather than exact. The importance of fuzzy logic derives from the fact that most modes of human reasoning and especially common sense reasoning are approximate in nature. The essential characteristics of fuzzy logic are as follows.• In fuzzy logic, exact reasoning is viewed as a limiting case of approximate reasoning.•In fuzzy logic everything is a matter of degree.• Any logical system can be fuzzified.• In fuzzy logic, knowledge is interpreted as a collection of elastic or, equivalently, fuzzy constraint on a collection of variables.• Inference is viewed as a process of propagation of elastic constraints. After know about the characteristic of fuzzy set, we will introduce the operations of fuzzy set. A fuzzy number is a convex, normalized fuzzy set whose membership function is at least segmental continuous and has the functional value μA (x ) = 1 at precisely one element. This can be likened to the funfair game "guess your weight," where someone guesses the contestants weight, with closer guesses being more correct, and where the guesser "wins" if they guess near enough to the contestant's weight, with the actual weight being completely correct (mapping to 1 by the membership function). A fuzzy interval is an uncertain set with a mean interval whose elemen ts possess the membership function value μA (x ) = 1. As in fuzzy numbers, the membership function must be convex, normalized, and at least segmental continuous.Set- theoretic operationsSubset: A B A B μμ⊆⇔≤ Complement: ()1()A A A X A x x μμ=-⇔=-Union: ()max((),())()()c A B A B C A B x x x x x μμμμμ=⋃⇔==∨Intersection: ()min((),())()()c A B A B C A B x x x x x μμμμμ=⋂⇔==∧Although one can create fuzzy sets and perform various operations on them, in general they are mainly used when creating fuzzy values and to define the linguistic terms of fuzzy variables. This is described in the section on fuzzy variables. At some point it may be an interesting exercise to add fuzzy numbers to the toolkit. These would be specializations of fuzzy sets with a set of operations such as addition, subtraction, multiplication and division defined on them.According to the characteristics of triangular fuzzy numbers and the extension principle put forward by Zadeh (1965), the operational laws of triangular fuzzy numbers , 111(,,)A l m r =and 222(,,)B l m r =are as follows:(1) Addition of two fuzzy numbers111222121212(,,)(,,)(,,)l m r l m r l l m m r r ⊕=+++(2) Subtraction of two fuzzy numbers111222121212(,,)(,,)(,,)l m r l m r l r m m r l Θ=---(3) Multiplication of two fuzzy numbers111222121212(,,)(,,)(,,)l m r l m r l l m m rr ⊗≅(4) Division of two fuzzy numbers111222121212(,,)(,,)(/,/,/)l m r l m r l r m m r l ∅≅When we through the operations of fuzzy set to get the fuzzy interval, next we will convert the fuzzy value into the crisp value. Below are some methods that convert a fuzzy set back into a single crisp (non-fuzzy) value. This is something that is normally done after a fuzzy decision has been made and the fuzzy result must be used in the real world. For example, if the final fuzzy decision were to adjust the temperaturesetting on the thermostat a ‘little higher’, then it would be necessary to convert this ‘little higher’ fuzzy value to the ‘best’ crisp value to actually move the thermost at setting by some real amount.Maximum Defuzzify: finds the mean of the maximum values of a fuzzy set as the defuzzification value. Note: this doesn't always work well because there can be x ranges where the y value is constant at the max value and other places where the maximum value is only reached for a single x value. When this happens the single value gets too much of a say in the defuzzified value.Moment Defuzzify: moment defuzzifies a fuzzy set returning a floating point (double value) that represents the fuzzy set. It calculates the first moment of area of a fuzzy set about the y axis. The set is subdivided into different shapes by partitioning vertically at each point in the set, resulting in rectangles, triangles, and trapezoids. The centre of gravity (moment) and area of each subdivision is calculated using the appropriate formulas for each shape. The first moment of area of the whole set is then:where x i' is the local centre of gravity, A i is the local area of the shape underneath line segment (p i-1, p i), and n is the total number of points. As an example,For each shaded subsection in the diagram above, the area and centre of gravity is calculated according to the shape identified (i.e., triangle, rectangle or trapezoid). The centre of gravity of the whole set is then determined:x' = (2.333*1.0 + 3.917*1.6 + 5.5*0.6 + 6.333*0.3)/(1.0+1.6+0.6+0.3) = 3.943…Center of Area (COA): defuzzification finds the x value such that half of the area under the fuzzy set is on each side of the x value. In the case above (in the moment defuzzify section) the total area under the fuzzy set is 3.5 (1.0+1.6+0.6+0.3). So we would want to find the x value where the area to the left and the right both had values of 1.75. This occurs where x = . Note that in general the results of moment defuzzify and center of area defuzzify are not the same. Also note that in some cases the center of area can be satisfied by more than one value. For example, for the fuzzy set defined by the points:(5,0) (6,1) (7,0) (15,0) (16,1) (17,0)the COA could be any value from 7.0 to 15.0 since the 2 identical triangles centered at x=6 and x=16 lie on either side of 7.0 and 15.0. We will return a value of 11.0 in this case (in general we try to find the middle of the possible x values).Weighted Average Defuzzify: finds the weighted average of the x values of the points that define a fuzzy set using the membership values of the points as the weights. This value is returned as the defuzzification value. For example, if we have the following fuzzy set definition:Then the weighted average value of the fuzzy set points will be:This is only moderately useful since the value at 1.0 has too much influence on the defuzzified result. The moment defuzzification is probably most useful in this case. However, a place where this defuzzification method is very useful is when the fuzzy set is in fact a series of singleton values. It might be that a set of rules is of the Takagi-Sugeno-Kang type (1st order) with formats like:If x is A and y is B then c = kwhere x and y are fuzzy variables and k is a constant that is represented by a singleton fuzzy set. For example we might have rules that look like:where the setting of the hot valve has several possibilities, say full closed, low, medium low, medium high, high and full open, and these are singleton values rather than normal fuzzy sets. In this case medium low might be 2 on a scale from 0 to 5.An aggregated conclusion for setting the hot valve position (after all of the rules have contributed to the decision) might look like:And the weighted average defuzzification value for this output would be:Note that neither a maximum defuzzification nor a moment defuzzification would produce a useful result in this situation. The maximum version would use only 1 of the points (the maximum one) giving a result of 2.0 (the x value of that point), while the moment version would not find any area to work with and would generate an exception. This description of the weighted average defuzzify method will be clearer after you have completed the sections on fuzzy values and fuzzy rules.After the process of defuzzified, next step is to make a fuzzy decision. Fuzzy decision which is a model for decision making in a fuzzy environment, the object function and constraints are characterized as their membership functions, the intersection of fuzzy constraints and fuzzy objection function. Fuzzy decision-making method consists of three main steps:1.Representation of the decision problem: the method consists of three activities. (1)Identifying the decision goal and a set of the decision alternatives. (2) Identifyinga set of the decision criteria. (3) Building a hierarchical structure of the decisionproblem under consideration2.Fuzzy set evaluation of decision alternatives: the steps consist of three activities.(1) Choosing sets of the preference ratings for the importance weights of thedecision preference ratings include linguistic variable and triangular fuzzy number.(2) Evaluating the importance weights of the criteria and the degrees ofappropriateness of the decision alternatives. (3) Aggregating the weights of the decision criteria.3.Selection of the optimal alternative: this step includes two activities. (1)Prioritization of the decision alternatives using the aggregated assessments. (2) Choice of the decision alternative with highest priority as the optimal.Applications of fuzzy set theory:An innovative method based on fuzzy set theory has been developed that can accurately predict market demand on goods. Based on the fuzzy demand function and fuzzy utility function theories, two real-world examples have been given to demonstrate the efficacy of the theory.Example:I.Brief Background on Consumption Theory1. Consumer Behaviors and PreferenceOne consumer would in general have different consumption behaviors or preferences from another. He may spend money on computers and technical books, while the other may spend on clothing and food. Availability of this information on consumer preference will be of great value to a marketing company, a bank, or a credit card company that can use this information to target different groups of consumer for improved response rate or profit. By the same token, information on consumption preference of the residents in one specific region can help businesses in planning their operations in this region for improved profit. Therefore, it is very important to have a tool that can help analyze consumers’ behaviors and forecast the changes in purchase patterns and changes in purchase trend.2. Fuzzy Consumption Utility Functions-based Utility TheoryIn studying advanced methodology for consumption behaviors, AI researchers at Zaptron Systems have developed the so called fuzzy utility functions that can model and describe the consumption behaviors of a target consumer group.3. Consumption Utility - it is a criterion (or index) used to evaluate the effectiveness of customers consumption. A low value of consumption utility, say 0.15 indicates that a customer is not satisfied with the consumption of a certain commodity; while high value, say 0.96, indicates that the customer is very satisfied. There are formal theories on utility, including ordinal utility, cardinal utility and marginal utility.4. Consumption utility function - The behavioral characteristics of human beings can be represented by the concept of consumption utility, and consumption utility function is the mathematical description of this concept. In addition, human consumption behaviors are determined by the following two types of factors:(1) Objective factors - the physical, chemical, biological and artistic properties ofgoods;(2) Subjective factors - consumer's interest, preference and psychological state.5. Because of the objective and subjective factors, the fuzzy utility function for consumption can use the fuzzy set theoretical approach -- in fact, consumption utility is a fuzzy concept. To model the above subjective factors, fuzzy set theory is used to describe different levels of consumers’ satisfaction with respect to various consumption plans (spending patterns), such as "not satisfied," "somehow satisfied," "very satisfied," and etc. Mathematically, the fuzzy utility function is a more accurate measure on the consumption utility. It can describe the relationships among spending, price, consumption composition (decomposition), preference and subjective measure on commodity or service values.II.Brief Background on Demand Theory1. Consumption Demand - it is the amount of consumption on goods (purchase amount). In general, it is related to the objective factors of commodities (such as physical, chemical and artistic characters) and the subjective value of the consumer (preference, personal habits, health conditions, etc.). Demand is affected by the total spending capability and population of a customer group, as well as the consumer prices.2. Consumption Demand Function - the behavioral characteristics of financial market can be represented by the concept of consumption demand and the consumption demand function is the mathematical description of this concept. In addition, consumption demand can be determined by the following types of factors:(1) Objective factors - the physical, chemical, biological and artistic properties ofgoods;(2) Subjective factors - consumer's interest, preference and psychological state;(3) Group factors - population and wealth of the consumers (consumer group);(4) Comparative factors - the ratio of prices of different goods, ratio of differentpreference, and ratio of subjective values on(i) Different goods (comparisons of different consumption can directly affect theconsumption demand);(ii) Fluctuation factors - wealth, population and price fluctuations.3. Because of the objective, subjective, group and comparative factors, the fuzzy consumption demand functions can use the fuzzy set theoretical approach-- in studying advanced methodology for the analysis of consumption demand, AI researchers at Zaptron Systems have developed technology and software tool based on the so called fuzzy demand functions. They can model and describe the market demand, or consumption demand, on various commodities or services, based on consumption data available. The fuzzy demand functions discussed here are developed based on the fuzzy consumption utility function theory developed by Zaptron scientists.4. In fact, consumption demand is a fuzzy logic concept. Mathematically, the fuzzy demand function is a more accurate measure on the consumption demand, compared against a traditional (non-fuzzy) demand function. It can describe relationships among wealth, price, consumption composition (decomposition), preference and subjective measure on commodity or service values. Computation of fuzzy demand functions and parameters - based on the maximum utility principle, they can be computed by solving a set of complex mathematical equations. From above examples, an innovative method based on fuzzy set theory has been developed that can accurately predict market demand on goods. Based on the fuzzy demand function and fuzzy utility function theories have been given to demonstrate the efficacy of the theory.III.Brief Background on Option Theory1. Option pricing model: the optimal option price has been used to compute by the binomial model (1979) or the Black-Scholes model (1973). However, volatility and riskless interest rate are assumed as constant in those models. Hence, many subsequent studies emphasized the estimated riskless interest rate and volatility. Cox (1975) introduced the concept of Constant-Elasticity-of-Variance for volatility. Hull and White (1987) released the assumption that the distribution of price of underlying asset and volatility are constant. Wiggins (1987), Scott (1987), Lee, Lee and Wei (1991) released the assumption that the volatility is constant and assumedthat the volatility followed Stochastic-Volatility.Amin (1993) and Scott (1987) considered that the Jump-Diffusion process of stock price and the volatility were random process. Researchers have so far made substantial effort and achieve significant results concerning the pricing of options (e.g., Brennan and Schwartz, 1977; Geske and Johnson, 1984; Barone-Adesi and Whaley, 1987). Empirical studies have shown that given their basic assumptions, existing pricing model seem to have difficulty in properly handling the uncertainties inherent in any investment process.2. There are five primary factors affecting option prices. These are striking price, current stock price, time, riskless interest rate, and volatility. Since the striking price and time until option expiration are both determined, current stock prices reflect on ever period, but riskless interest rate determined the interest rate of currency market, and volatility can’t be observed directly but can be estimated by historical data and situation analysis. Therefore, riskless interest rate and volatility are estimated. The concept of fuzziness can be used to estimate the two factors riskless interest rate and volatility.3. Fuzzy option pricing model: because most of studies have focused on how to release the assumptions in the CRR model and the B-S model, including: (1) the short-term riskless interest rate is constant, (2) the volatility of a stock is constant. After loosening these assumptions, the fuzzy set theory applies to the option pricing model, in order to replace the complex models of previous studies. (Lee, Tzeng and Wang, 2005).4. As derivative-based financial products become a major part of current global financial market, it is imperative to bring the basic concepts of options, especially the pricing method to a level of standardization in order to eliminate possible human negligence in the content or structure of the option market. The fuzzy set theory applies to the option pricing model (OPM) can providing reasonable ranges of option prices, which many investors can use it for arbitrage or hedge.ReferencesAmin, K. I. (1993). Jump diffusion option valuation in discrete time. Journal of Finance, 48(5), 1833–1863.Barone-Adesi, G. and R. E. Whaley (1987). Efficient analytic approximation of American option values. Journal of Finance, 42(2), 301–320.Black, F., and M. Scholes (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637–654.Brennan, M. J. and E. S. Schwartz (1977). The valuation of American put options. Journal of Finance, 32(2), 449–462.Cox, J. C. and S. A. Ross (1975). Notes on option pricing I: Constant elasticity of variance diffusion. Working paper. Stanford University.Cox, J. C., S. A. Ross, and M. Rubinstein (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7(3), 229–263.Lee, C.F., G.H. Tzeng, and S.Y. Wang (2005). A new application of fuzzy set theory to the Black-Scholes option pricing model. Expert Systems with Applications, 29(2), 330-342.Lee, C.F., G.H. Tzeng, and S.Y. Wang (2005). A Fuzzy set approach to generalize CRR model: An empirical analysis of S&P 500 index option. Review of Quantitative Finance and Accounting, 25(3), 255-275.Lee, J. C., C. F. Lee, and K. C. J. Wei (1991). Binomial option pricing with stochastic parameters: A beta distribution approach. Review of Quantitative Finance and Accounting, 1(3), 435–448.Goguen, J. A. (1967). L-fuzzy sets. Journal of Mathematical Analysis and Applications, 18, 145–174.Geske, R. and H. E. Johnson (1984). The american put valued analytically. Journal of Finance, 1511–1524.Gottwald, S. (2001). A Treatise on Many-Valued Logics. Baldock, Hertfordshire, England: Research Studies Press Ltd.Hull, J. and A. White (1987). The pricing of options on assets with stochastic volatilities. Journal of Finance, 42(2), 281–300.Klir, G.J. and B. Yuan. (1995). Fuzzy Sets and Fuzzy Logic. Theory. and Applications, Ed. Prentice-Hall.Scott, L. (1987). Option pricing when variance changes randomly: Theory, estimation and an application. Journal of Financial and Quantitative Analysis, 22(4), 419–438.Wiggins, J. B. (1987). Option values under stochastic volatility: Theory and empirical evidence. Journal of Financial Economics, 19(2), 351–372.Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning. Information Sciences, 8,199–249, 301–357; 9, 43–80.Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28.。

模糊PID控制在直流调速系统中的应用_毕业设计 推荐

模糊PID控制在直流调速系统中的应用_毕业设计 推荐

模糊PID控制在直流调速系统中的应用摘要:本论文将PID控制和模糊控制相结合,解决了直流调速系统中转速响应速度慢的问题。

在论文中主要针对了电压对传统PID控制时双闭环直流调速系统性能下降的问题, 提出了模糊PID控制的方法。

这种控制方法主要是根据根据调速系统的偏差e和偏差变化率ec, 经过模糊逻辑推理,然后对直流电机系统进行调节控制后,系统的动态特性有明显的提高。

论文主要针对双闭环直流调速系统进行了仿真分析。

为了对直流电机的控制选择出更好的控制方法,本设计中对转速环进行PI控制,由于在直流调速系统中转速环起主导作用,电流环只是调节电流,所以在设计中将转速环中的PI调节器用模糊控制器代替,在这两种情况下进行仿真实验。

虽然传统PID控制结构简单,但是转速环PI控制的情况下,系统达到稳定状态的时间较长而在转速环模糊控制的情况下, 能使系统更快恢复到平衡状态, 且具有更小的转速降。

因此,本控制方法能够保证系统具有较好的动态性能。

关键词直流调速, PID控制,模糊PID控制,双闭环ABSTRACTThis paper combines PID control and fuzzy control,to solved DC speed-regulating system for speed in slow response problem. Thesis when main voltage to the traditional control in double closed-loop DC speed system performance issues, proposed fuzzy control method. This control method is based mainly on according to the deviation and deviation of rate of change of speed regulating system, through fuzzy logic inference, then adjust the DC motorsystems control, dynamic characteristics of the systems has significantly improved. Thesis focused on double closed-loop DC speed-regulating system for the simulation. In order to select better control for DC motor control method, designed to control the speed ring, because of the speed loop in DC speed regulating system play a leading role, current loop is regulating current, so design your speed controller using a fuzzy controller in place of the ring, in both cases conducted simulation experiments. While traditional control structure is simple, the speed control of cases, however, the system reaches a steady state for a long time, and in the case of speed-loop fuzzy control, can make your system faster return to equilibrium, and has a smaller rpm drop. Therefore, the control method to ensure the system has good dynamic performance.Key words:DC speed governing Double closed loop PID control Fuzzy PID control目录1绪论 (1)1.1选题背景及目的 (1)1.2直流调速系统的发展过程 (1)1.3模糊控制的发展概况 (2)1.4本设计的主要内容 (4)2 模糊控制的基本理论 (4)2.1模糊控制理论 (4)2.2模糊控制的核心部分——模糊控制器 (5)将模糊推理后得到的模糊集转换为用作控制的数字值 (7)2.3 模糊化的具体步骤 (7)2.4 精确化的过程 (8)2.5逻辑推理 (9)2.6语言变量值的选取 (10)3双闭环直流调速系统的仿真 (10)3.1直流电机系统采用控制的主要原因 (10)3.2系统采用控制主要解决的问题 (11)3.3 电机参数的选取和计算 (12)3.4 搭建模型 (12)3.5双环的设计 (12)3.6 双闭环直流调速系统的仿真结果 (16)4模糊PID在直流调速系统中的仿真 (20)4.1 模糊PID控制器的设计 (20)4.2 模糊规则表的建立 (21)4.3 仿真模型的建立 (22)4.4 仿真结果 (24)4.5 小结 (25)5总结与展望 (25)参考文献 (27)致谢............................................................................................................................ 错误!未定义书签。

自动化专业英语复习资料

自动化专业英语复习资料

element n、元件,成分node n、节点branch n、分支loop n、回路resistor n、电阻器impedance n、阻抗analog n、模拟digital adj、数字的pulse n、脉冲interface n、接触面,界面decoder n、解码器transformer n、变压器single-phase 单相pulsate vi、脉动three-phase power三相电源three-phase circuit 三相电路wye connection 星形连接delta connection 三角形连接phase voltage 相电压line voltage 线电压voltmeter n、电压表ammeter n、电流表clamp-on ammeter钳式安培表solid-state adj、固态的valve n、真空管,活栓semiconductor n、半导体switching n、开关diode n、二极管inverter n、反向换流器(逆变器) thyristor n、硅可控整流器inverter thyristor 晶闸管逆变器transistor n、晶体管substantial adj、牢固的fluorescent lamp ballast 荧光灯镇流器HVDC transmission system 高压直流输电系统induction motor 感应电动机rectifier n、整流器thyratron n、闸流管ignitron n、引燃管,放电管cycloconverter n、循环变流器spectrum n、光谱wafer n、圆片,晶片chopper n、斩波器polarity n、极性silicon-controlled rectifiers (SCR) n、可控硅整流器gate turn-off thyristors (GTO) n、门极可关断晶闸管MOS Controlled Thyristor (MCT) n、MOS控制晶闸管insulated gate bipolar transistor (IGBT) n、绝缘栅双极型晶体管bipolar junction transistors (BJTs) n、双极结型晶体管(三极管)field-effect transistors (FETs) n、场效应管forward-bias 正向偏置reverse-biased 反向偏置silicon-controlled 可控硅metal-oxide-semiconductor field-effect transistor(MOSFET) n、金属氧化层半导体场效应晶体管generator n、发电机electro-mechanical 机电electromagnetic adj、电磁的integral adj、积分的commutator n、换向器turbine n、涡轮机,汽轮机vibrating n、振荡oscillating v、振荡hydraulic adj、水力的cylinder n、汽缸power electronics 电力电子rating ranging额定范围capacitor n、电容器inductor n、感应器armature n、电枢reactance n、电抗resistance n、电阻transient adj、瞬时的,短暂的instantaneous adj、瞬间的electromotive force (emf) 电动势rheostat n、可变电阻器squirrel-cage n、鼠笼式adapter n、适配器brushless n、无刷out-of-synchronous adj、不同步的,失步的substation n、变电站circuit breaker 断路器compensator n、补偿器,自耦变压器busbar n、母线load frequency control 负荷频率控制optimal power flow 潮(电)流优化switchgear n、开关设备current rating额定电流voltage class电压等级solenoid n.螺线管auto-reclosing 自动重合闸(装置) glow-discharge n、辉光放电varistor n、压敏电阻,变阻器furnace n、燃烧室pulverizer n.粉煤机boiler n、蒸发器electrostatic adj、静电的electrostatic precipitator 电除尘coal hopper 煤斗burner 燃烧器cooling tower冷却塔feed water pump给水泵heater exchanger 热交换器condenser n、冷凝器turbogenerator n、涡轮发电机single-stage turbine 单级汽轮机multi-stage turbine 多级汽轮机superheater n、过热器high-pressure turbine 高压汽轮机reheater n、再热器intermediate-pressure turbine 中压汽轮机low-pressure turbine 低压汽轮机acid rain 酸雨greenhouse effect 温室效应electromagnet n、电磁体stator n.定子baseload n、基本负载photovoltaic adj、光电的battery back-up system 电池备份系统performance characteristics 运行特性physical property 物理特性manipulated variable 操纵变量feedback n、反馈comparator n、比较器disturbance n、扰动actuate v、开动flipping n、翻转luminous flux 光通量lumens n、流明variable n、变量accelerator depression 对加速的抑制accelerator pedal加速踏板carburetor butterfly valve化油器阀门light bulb 灯泡relay n、继电器photocell n、光电池follow-up system 随动系统external intervention 外部干预interdependent elements 相互依存的元件stimuli n、激励thermostat control 恒温控制cowl flap 整流罩flyball-governed 离心式调速器restraining spring 限制弹簧differential equation 微分方程independent variable 独立变量Laplace transform 拉普拉斯变换ratio n、比率initial condition 初始条件super-position 叠加性open-circuit 开路s-domain s域dynamic response 动态响应transient response 瞬态响应steady-state response 稳态响应angular position 角位置finite steady-state error 有限稳态误差servomechanism n、伺服机构process control 过程控制proportional term 比例项proportional gain 比例增益tuning parameter 整定参数instantaneous time 瞬时时间integral term 积分项accumulated offset 累计偏移量derivative term 微分项slope n、斜率fuzzy logic 模糊逻辑fuzzifier module 模糊逻辑块fuzzy inference engine 模糊推理机defuzzifier module 去模糊器模块microcontroller n、微控制器microprocessor n、微处理器integrated circuit 集成电路programmable logic controller程序控制逻辑器sensor n、传感器detector n.探测器,检波器elevator n.电梯sensitivity n.灵敏性offset n.偏移量bode n.伯德图lag n.滞后threshold n.阈值thermistor n、电热调节器thermocouple n.热电偶coil n、线圈bobbin n、线轴substrate n、基底linearity n、线性strain n、应变gauge v、测量insulating adj、绝缘的Wheatstone bridge 惠斯登电桥transmitter n、传导物,发报机sender n、寄件人,发报机indicator n、指示器piezometer n、压力计,压强计manometer n、压力计bourdon tube n、波尔登压力计deflection n、偏差dielectric n、电介质,绝缘体piezoresistance n、压电电阻tiltmeter n、测量地面倾斜角度之仪器oscillator n、振荡器crosstalk 串扰,交调失真air gap 空气隙cross-sectional area 横截面积reluctance n、磁阻armature n、电枢rectification n、校正,整流demodulation n、解调,检波filtering n、过滤variable-reluctance tacho generator n、可变磁阻测速发电机inductance n、感应系数waveform n、波形Ⅱ。

遥控车控制

遥控车控制

摘要随着现代社会科学技术的飞速发展,无线遥控器领域已逐步进入科研领域作为一个新兴的话题,它已成为越来越广泛的应用在今天的社会。

无论是在娱乐,国防技术甚至文体教育,它有自己的研究和开发价值。

本文介绍了与遥控小车相关的机器人领域以及智能车辆领域的研究现状,对遥控小车的设计与结构做了系统的介绍,给出了遥控小车的概要设计。

详细介绍了遥控小车运动控制系统设计与实现。

重点就遥控车的机械结构进行了研究。

辅助针对智能小车运动控制系统的非线性界环境的不确定性,利用模糊逻辑推理的方法,允许知识边界的不确定性,通过遥控车控制部分的这种认识和传输部分,我们可以更好地了解所涉及的遥控汽车设计的诸多问题。

我希望我可以通过自己的研究实现了智能化,做出一定的成绩,并给予一定的条件,以实现无线控制和结构性问题,以满足整体设计。

关键词:控制机构传递机构的多传感器数据融合模糊控制AbstractIn contemporary society with the rapid development of science and technology,A new discipline in the field of wireless remote control has gradually entered scientific research, and the industrial field has become more and more widespread in today's society. Whether it is in entertainment, defense technology, education methods and applications, it has certain research and development value.This car is introduced and the remote areas and related robot of intelligent vehicle research status of remote control system of basic car technology is introduced, the system is given based on the summary of remote car design.The design and car of the remote control system are described in detail. The remote control of the mechanical structure was studied. Intelligent vehicle nonlinear boundary environment uncertainty auxiliary motion control system, using fuzzy logic inference method, allowing knowledge boundary uncertainty,This is based on remote control and drive car parts, we can better understand the remote car design problems involved. Hope to achieve its own research through a certain achievement, intelligent, given the conditions to achieve wireless control, and the structure of the problem, in order to meet the overall design.Keywords: control agencies transmission mechanism of multi-sensor data fusion fuzzy contro 1.1选题背景在当今社会,遥控,作为一个新兴领域,正在被越来越多的人应用,都具有广泛的应用价值,科技,生活各个领域。

工商管理专业英语术语汇总

工商管理专业英语术语汇总

工商管理专业英语术语汇总专业简介: 工商管理主要研究管理学、经济学和现代企业管理等方面的基本知识和技能,包括企业的经营战略制定和内部行为管理等,运用现代管理的方法和手段进行有效的企业管理和经营决策,制定企业的战略性目标,以保证企业的生存和发展。

开设课程: 管理学原理、微观经济学、宏观经济学、技术经济学、管理信息系统、统计学、会计学、中级会计实务、财务管理、运筹学、市场营销、经济法、现代公司制概论、经营管理、公司金融、人力资源管理、企业战略管理等。

一、管理学原理术语术语术语术语术语管理 (Management)经营管理 (BusinessManagement)管理过程 (ManagementProcess)管理功能 (ManagementFunctions)管理层次 (ManagementLevels)管理者 (Manager)领导者 (Leader)领导风格 (LeadershipStyle)领导理论 (LeadershipTheory)领导技能 (LeadershipSkills)决策 (Decision Making)决策类型 (DecisionTypes)决策模型 (DecisionModels)决策方法 (DecisionMethods)决策过程 (DecisionProcess)规划 (Planning)规划类型 (PlanningTypes)规划原则 (PlanningPrinciples)规划工具 (PlanningTools)规划控制 (PlanningControl)组织 (Organization)组织结构(OrganizationalStructure)组织设计(Organizational Design)组织文化(OrganizationalCulture)组织变革(OrganizationalChange)激励 (Motivation)激励理论 (MotivationTheory)激励方法 (MotivationMethods)激励因素 (MotivationFactors)激励效果 (MotivationEffects)控制 (Control)控制类型 (ControlTypes)控制原则 (ControlPrinciples)控制方法 (ControlMethods)控制过程 (ControlProcess)沟通 (Communication)沟通模型(Communication Model)沟通方式(Communication Mode)沟通技巧(Communication Skills)沟通障碍(CommunicationBarriers)协调 (Coordination)协调机制 (CoordinationMechanism)协调原则 (CoordinationPrinciples)协调方法 (CoordinationMethods)协调效果(CoordinationEffects)管理环境(Management Environment)管理伦理(ManagementEthics)管理创新(ManagementInnovation)管理战略(ManagementStrategy)管理评价(ManagementEvaluation)二、微观经济学术语术语术语术语术语微观经济学(Microeconomics)市场(Market)需求(Demand)供给(Supply)市场均衡(MarketEquilibrium)弹性(Elasticity)消费者行为(ConsumerBehavior)效用(Utility)边际效用(MarginalUtility)预算约束(BudgetConstraint)消费者选择(ConsumerChoice)无差异曲线(IndifferenceCurve)边际替代率(Marginal Rateof Substitution)消费者剩余(Consumer Surplus)需求曲线(DemandCurve)生产者行为(ProducerBehavior)生产函数(ProductionFunction)边际产品(MarginalProduct)规模报酬(Returns toScale)成本(Cost)短期成本(Short-runCost)长期成本(Long-runCost)边际成本(Marginal Cost)平均成本(AverageCost)供给曲线(Supply Curve)市场结构(Market Structure)完全竞争(PerfectCompetition)垄断(Monopoly)寡头(Oligopoly)垄断竞争(MonopolisticCompetition)价格歧视(Price Discrimination)博弈论(Game Theory)纳什均衡(NashEquilibrium)策略(Strategy)支配策略(DominantStrategy)外部性(Externality)公共品(Public Good)信息不对称(AsymmetricInformation)逆向选择(AdverseSelection)道德风险(Moral Hazard)市场失灵(MarketFailure)政府干预(GovernmentIntervention)税收(Taxation)补贴(Subsidy)福利经济学(WelfareEconomics)三、宏观经济学术语术语术语术语术语宏观经济学(Macroeconomics)国民收入(NationalIncome)国内生产总值(GrossDomestic Product)国民生产总值(GrossNational Product)消费者物价指数(Consumer PriceIndex)通货膨胀(Inflation)失业(Unemployment)菲利普斯曲线(Phillips Curve)经济增长(EconomicGrowth)经济周期(EconomicCycle)经济波动(Economic Fluctuation)经济危机(EconomicCrisis)经济衰退(EconomicRecession)经济萧条(EconomicDepression)经济恢复(EconomicRecovery)总需求(Total Demand)总供给(Total Supply)总需求总供给模型(Aggregate Demand andAggregate Supply Model)短期均衡(Short-runEquilibrium)长期均衡(Long-runEquilibrium)消费(Consumption)投资(Investment)政府支出(GovernmentSpending)净出口(Net Exports)国民收入恒等式(National IncomeIdentity)消费函数(Consumption Function)边际消费倾向(MarginalPropensity to Consume)投资函数(InvestmentFunction)边际效率投资(MarginalEfficiency ofInvestment)多重效应(MultiplierEffect)货币(Money)货币供应量(MoneySupply)货币需求量(Money Demand)货币市场平衡(MoneyMarket Equilibrium)利率(Rate ofInterest)货币政策(MonetaryPolicy)中央银行(Central Bank)开放市场操作(Open MarketOperations)存款准备金率(ReserveRequirement Ratio)贴现率(DiscountRate)财政政策(FiscalPolicy)政府预算(GovernmentBudget)财政赤字(Fiscal Deficit)公共债务(Public Debt)自动稳定器(AutomaticStabilizer)国际贸易(InternationalTrade)国际收支(Balance ofPayments)汇率(Exchange Rate)贸易政策(Trade Policy)汇率制度(ExchangeRate Regime)四、技术经济学术语术语术语术语术语技术经济学(Technical Economics)技术(Technology)技术创新(TechnologicalInnovation)技术进步(TechnologicalProgress)技术水平(TechnologicalLevel)技术选择(Technological Choice)技术评价(TechnologicalEvaluation)技术效益(TechnologicalBenefit)技术风险(TechnologicalRisk)技术转让(TechnologicalTransfer)技术方案(TechnicalScheme)技术参数(TechnicalParameter)技术指标(TechnicalIndicator)技术标准(TechnicalStandard)技术规范(TechnicalSpecification)工程项目(EngineeringProject)工程设计(EngineeringDesign)工程造价(EngineeringCost)工程投资(EngineeringInvestment)工程回收期(EngineeringPayback Period)工程效益分析(Engineering BenefitAnalysis)工程经济效益(Engineering EconomicBenefit)工程社会效益(Engineering SocialBenefit)工程环境效益(EngineeringEnvironmental Benefit)工程综合效益(EngineeringComprehensive Benefit)资金(Fund)资金需求(FundDemand)资金来源(FundSource)资金成本(Fund Cost)资金利润率(Fund ProfitRate)现金流量(Cash Flow)现金流量表(Cash FlowStatement)现金流量分析(CashFlow Analysis)现金流量折现(Discounted Cash Flow)现值净值(Net PresentValue)内部收益率(Internal Rate of Return)敏感性分析(SensitivityAnalysis)变动成本(MarginalCost)变动收益(MarginalRevenue)边际分析(MarginalAnalysis)五、管理信息系统术语术语术语术语术语管理信息系统(Management Information System)信息系统(InformationSystem)信息技术(InformationTechnology)信息资源管理(InformationResource Management)信息系统规划(Information SystemPlanning)信息需求分析(Information Requirement Analysis)信息系统设计(Information SystemDesign)信息系统开发(Information SystemDevelopment)信息系统实施(InformationSystem Implementation)信息系统维护(Information SystemMaintenance)数据(Data)数据库(Database)数据库管理系统(DatabaseManagement System)数据模型(Data Model)数据字典(DataDictionary)数据仓库(Data Warehouse)数据挖掘(DataMining)数据分析(DataAnalysis)数据可视化(DataVisualization)数据安全(Data Security)网络(Network)计算机网络(Computer Network)网络拓扑(NetworkTopology)网络协议(NetworkProtocol)网络架构(NetworkArchitecture)局域网(Local AreaNetwork)广域网(Wide AreaNetwork)因特网(Internet)互联网(Internet of Things)网络安全(NetworkSecurity)系统(System)计算机系统(Computer System)操作系统(OperationSystem)系统分析(SystemAnalysis)系统设计(SystemDesign)软件(Software)软件工程(SoftwareEngineering)软件生命周期(SoftwareLife Cycle)软件开发方法(SoftwareDevelopment Method)软件质量(SoftwareQuality)硬件(Hardware)计算机硬件(ComputerHardware)输入设备(Input Device)输出设备(Output Device)存储设备(StorageDevice)处理器(Processor)内存(Memory)总线(Bus)接口(Interface)外设(Peripheral)人工智能(Artificial Intelligence)机器学习(MachineLearning)深度学习(DeepLearning)神经网络(Neural Network)自然语言处理(NaturalLanguage Processing)专家系统(Expert System)智能代理(IntelligentAgent)模糊逻辑(Fuzzy Logic)遗传算法(GeneticAlgorithm)人工神经网络(ArtificialNeural Network)电子商务(E-commerce)电子商务模式(E-commerce Model)电子商务平台(E-commerce Platform)电子支付(ElectronicPayment)电子商务安全(E-commerce Security)电子政务(E-government)电子政务模式(E-government Model)电子政务平台(E-government Platform)电子政务服务(E-government Service)电子政务安全(E-government Security)知识管理(Knowledge Management)知识(Knowledge)知识类型(KnowledgeType)知识获取(KnowledgeAcquisition)知识表示(KnowledgeRepresentation)知识组织(Knowledge Organization)知识共享(KnowledgeSharing)知识创新(KnowledgeInnovation)知识库(Knowledge Base)知识系统(KnowledgeSystem)六、统计学术语术语术语术语术语统计学(Statistics)统计方法(StatisticalMethod)统计推断(StatisticalInference)统计分析(StatisticalAnalysis)统计软件(StatisticalSoftware)数据(Data)数据类型(Data Type)数据来源(Data Source)数据收集(DataCollection)数据清洗(Data Cleaning)数据描述(Data Description)数据展示(DataPresentation)数据摘要(DataSummary)数据分布(DataDistribution)数据变换(DataTransformation)变量(Variable)变量类型(Variable Type)自变量(IndependentVariable)因变量(DependentVariable)控制变量(Control Variable)单变量分析(UnivariateAnalysis)双变量分析(BivariateAnalysis)多变量分析(MultivariateAnalysis)相关分析(CorrelationAnalysis)回归分析(RegressionAnalysis)随机变量(RandomVariable)概率(Probability)概率分布(ProbabilityDistribution)期望值(ExpectedValue)方差(Variance)标准差(StandardDeviation)均值(Mean)中位数(Median)众数(Mode)四分位数(Quartile)极差(Range)变异系数(Coefficient ofVariation)偏度(Skewness)峰度(Kurtosis)正态分布(NormalDistribution)抽样(Sampling)抽样方法(SamplingMethod)抽样误差(SamplingError)抽样分布(SamplingDistribution)中心极限定理(Central LimitTheorem)点估计(Point Estimation)区间估计(IntervalEstimation)置信区间(ConfidenceInterval)置信水平(ConfidenceLevel)标准误差(Standard Error)假设检验(HypothesisTesting)原假设(Null Hypothesis)备择假设(AlternativeHypothesis)显著性水平(Significance Level)拒绝域(Rejection Region)检验统计量(Test Statistic)P值(P-value)类型一错误(Type IError)类型二错误(Type IIError)功效(Power)参数检验(ParametricTest)非参数检验(Nonparametric Test)单样本检验(One-sample Test)双样本检验(Two-sample Test)配对样本检验(Paired-sample Test)Z检验(Z-test)T检验(T-test)F检验(F-test)卡方检验(Chi-squareTest)方差分析(Analysis ofVariance)七、会计学术语术语术语术语术语会计学(Accounting)会计对象(AccountingObject)会计要素(AccountingElement)会计科目(Accounting Subject)会计方程(AccountingEquation)会计核算(Accounting Calculation)会计原则(AccountingPrinciple)会计假设(AccountingAssumption)会计政策(Accounting Policy)会计准则(AccountingStandard)会计期间(AccountingPeriod)会计年度(AccountingYear)会计报告期(AccountingReporting Period)会计循环(Accounting Cycle)会计业务(AccountingBusiness)记账(Bookkeeping)记账方法(BookkeepingMethod)记账凭证(BookkeepingVoucher)记账账簿(Bookkeeping Book)记账账户(BookkeepingAccount)记账分录(Bookkeeping Entry)借贷记账法(Double-entryBookkeeping Method)借方(Debit Side)贷方(Credit Side)借贷平衡(Balance of Debitand Credit)会计报表(Accounting Statement)资产负债表(BalanceSheet)利润表(IncomeStatement)现金流量表(CashFlow Statement)所有者权益变动表(Statementof Changes in Owner'sEquity)会计科学(AccountingScience)会计理论(AccountingTheory)会计方法(AccountingMethod)会计技术(AccountingTechnique)会计创新(AccountingInnovation)财务会计(Financial Accounting)管理会计(ManagementAccounting)成本会计(CostAccounting)审计会计(AuditingAccounting)税务会计(Tax Accounting)资产(Asset)负债(Liability)所有者权益(Owner'sEquity)收入(Income)费用(Expense)收益(Revenue)损失(Loss)利润(Profit)毛利(Gross Profit)净利(Net Profit)存货(Inventory)应收账款(AccountsReceivable)预付账款(PrepaidExpenses)固定资产(FixedAssets)无形资产(Intangible Assets)应付账款(AccountsPayable)预收账款(UnearnedRevenue)长期负债(Long-termLiabilities)资本(Capital)留存收益(Retained Earnings)折旧(Depreciation)摊销(Amortization)减值(Impairment)计提(Accrual)结转(Carryover)对冲(Hedging)杠杆(Leverage)财务比率(FinancialRatio)资本结构(CapitalStructure)资本预算(Capital Budgeting)八、中级会计实务术语术语术语术语术语会计 (Accounting)资产 (Asset)负债 (Liability)所有者权益 (Owner'sEquity)收入 (Revenue)费用 (Expense)损益 (Profit or Loss)现金流量 (Cash Flow)资产负债表 (BalanceSheet)利润表 (IncomeStatement)现金流量表 (Cash FlowStatement)所有者权益变动表(Statement of Changesin Owner's Equity)附注 (Notes)记账凭证 (Voucher)记账方法 (AccountingMethod)原始凭证 (Original Document)记账分录 (Journal Entry)总分类账 (GeneralLedger)明细分类账 (SubsidiaryLedger)总账科目 (GeneralAccount)明细科目 (SubsidiaryAccount)借方 (Debit)贷方 (Credit)借贷平衡原则 (Double-entry Principle)记账方向 (AccountingDirection)试算平衡表 (Trial Balance)调整分录 (AdjustingEntry)调整后试算平衡表(Adjusted TrialBalance)结转分录 (ClosingEntry)结转后试算平衡表(Post-closing TrialBalance)存货制度 (InventorySystem)存货核算方法 (InventoryAccounting Method)先进先出法 (FIFOMethod)后进先出法 (LIFOMethod)加权平均法 (WeightedAverage Method)科学成本法(Specific Identification Method)存货跌价准备(Allowance forInventory Decline)存货盘点(InventoryCounting)存货盈亏(InventoryProfit or Loss)固定资产(FixedAsset)折旧(Depreciation)折旧方法(DepreciationMethod)直线法(Straight-lineMethod)双倍余额递减法(Double-decliningBalance Method)年数总和法(Sum-of-the-years'-digitsMethod)残值(Residual Value)折旧年限(Useful Life)净残值率(SalvageRate)固定资产清理(Disposal of FixedAsset)无形资产(IntangibleAsset)商誉(Goodwill)知识产权(IntellectualProperty)专利权(Patent)商标权(Trademark)著作权(Copyright)长期股权投资(Long-term Equity Investment)成本法(Cost Method)权益法(EquityMethod)投资收益(InvestmentIncome)投资性房地产(InvestmentProperty)资产减值(Asset Impairment)减值损失(ImpairmentLoss)可回收金额(RecoverableAmount)可变现净值(NetRealizable Value)使用价值(Value inUse)金融资产(FinancialAsset)金融负债(FinancialLiability)公允价值(FairValue)利息收入(InterestIncome)利息支出(InterestExpense)汇兑收益(ExchangeGain)汇兑损失(ExchangeLoss)应收账款(AccountsReceivable)坏账损失(Bad DebtLoss)坏账准备(Allowancefor Bad Debt)应付账款(Accounts Payable)预收账款(UnearnedRevenue)预付账款(PrepaidExpense)应计收入(AccruedRevenue)应计费用(AccruedExpense)职工薪酬(Employee Compensation)工资与奖金(Wages andBonuses)社会保险费用(SocialInsurance Expense)住房公积金费用(Housing ProvidentFund Expense)职工福利费用(Employee WelfareExpense)借款费用 (BorrowingCost)资本化 (Capitalization)资本化利率(Capitalization Rate)资本化期间(Capitalization Period)资本化暂停(CapitalizationSuspension)现金等价物 (Cash Equivalent)现金流量表附表(Supplemental Scheduleof Cash Flow Statement)经营活动现金流量(Cash Flow fromOperating Activities)投资活动现金流量(Cash Flow fromInvesting Activities)筹资活动现金流量(Cash Flow fromFinancing Activities)直接法 (Direct Method)间接法 (Indirect Method)现金流量净额 (NetCash Flow)现金流量增减表(Statement of Changesin Cash Flow)现金流量比率 (CashFlow Ratio)利润表 (Income Statement)收入确认原则 (RevenueRecognition Principle)营业收入 (OperatingRevenue)营业成本 (OperatingCost)营业税金及附加(Business Tax andSurcharges)销售费用 (Selling Expense)管理费用 (AdministrativeExpense)财务费用 (FinancialExpense)营业利润 (OperatingProfit)营业外收入 (Non-operating Income)营业外支出 (Non-operating Expense)利润总额 (Total Profit)所得税费用 (IncomeTax Expense)净利润 (Net Profit)每股收益 (EarningsPer Share)所有者权益变动表(Statement of Changes in Owner's Equity)股本 (Capital Stock)资本公积 (CapitalReserve)盈余公积 (SurplusReserve)未分配利润 (RetainedEarnings)九、财务管理术语术语术语术语术语财务管理 (Financial Management)财务目标 (FinancialObjective)财务决策 (FinancialDecision)财务计划 (FinancialPlan)财务控制 (FinancialControl)资金 (Fund)资金需求 (FundDemand)资金供给 (FundSupply)资金流动 (Fund Flow)资金结构 (FundStructure)资本 (Capital)资本成本 (CapitalCost)资本结构 (CapitalStructure)资本预算 (CapitalBudget)资本收益率 (CapitalReturn Rate)投资 (Investment)投资项目 (InvestmentProject)投资评价 (InvestmentEvaluation)投资回收期 (PaybackPeriod)净现值 (Net PresentValue)内部收益率 (Internal Rate of Return)敏感性分析 (SensitivityAnalysis)风险分析 (RiskAnalysis)投资组合理论 (PortfolioTheory)资本资产定价模型(Capital Asset PricingModel)现金管理 (Cash Management)现金预测 (CashForecasting)现金流量预算表 (CashBudget)现金流量周期 (CashCycle)现金余额 (Cash Balance)应收账款管理 (AccountsReceivableManagement)应收账款周转率(Accounts ReceivableTurnover Ratio)坏账率 (Bad DebtRatio)应收账款账龄分析法(Aging Method ofAccounts Receivable)应收账款折现法(Discount Method ofAccounts Receivable)存货管理(Inventory Management)存货周转率(InventoryTurnover Ratio)经济订货量(Economic OrderQuantity)安全存量(SafetyStock)订货点(Reorder Point)短期融资(Short-term Financing)银行贷款(BankLoan)商业票据(CommercialPaper)应付账款融资(Accounts PayableFinancing)保兑仓融资(WarehouseReceipt Financing)长期融资(Long-term Financing)债券(Bond)债券价格(BondPrice)债券收益率(BondYield)债券评级(BondRating)股票(Stock)股票价格(StockPrice)股票收益率(StockReturn Rate)股息政策(DividendPolicy)股权融资(EquityFinancing)杠杆效应(LeverageEffect)操作杠杆系数(Operating LeverageCoefficient)财务杠杆系数(Financial LeverageCoefficient)综合杠杆系数(Combined LeverageCoefficient)杠杆调整原则(LeverageAdjustment Principle)十、运筹学术语术语术语术语术语运筹学 (Operations Research)决策 (Decision)决策变量 (DecisionVariable)目标函数 (ObjectiveFunction)约束条件 (Constraint)线性规划 (Linear Programming)图形法 (GraphicalMethod)单纯形法 (SimplexMethod)对偶理论 (DualityTheory)敏感性分析 (SensitivityAnalysis)整数规划 (Integer Programming)分支定界法 (Branch andBound Method)割平面法 (CuttingPlane Method)隐枚举法 (ImplicitEnumeration Method)0-1规划 (0-1Programming)非线性规划 (Nonlinear Programming)拉格朗日乘子法(Lagrange MultiplierMethod)KKT条件 (KKTCondition)梯度法 (GradientMethod)牛顿法 (Newton Method)动态规划 (Dynamic Programming)阶段 (Stage)状态 (State)决策 (Decision)最优值函数 (OptimalValue Function)贝尔曼方程 (BellmanEquation)网络优化 (NetworkOptimization)关键路径法 (CriticalPath Method)最短路问题 (ShortestPath Problem)最小生成树问题(Minimum Spanning TreeProblem)最大流问题 (Maximum Flow Problem)最小费用流问题(Minimum Cost FlowProblem)匹配问题 (MatchingProblem)背包问题 (KnapsackProblem)指派问题 (AssignmentProblem)非线性整数规划(Nonlinear Integer Programming)分数规划(FractionalProgramming)凸规划(ConvexProgramming)目标规划(GoalProgramming)多目标规划(Multi-objective Programming)随机规划(Stochastic Programming)鲁棒优化(RobustOptimization)参数规划(ParametricProgramming)可行方向法(FeasibleDirection Method)序列二次规划(Sequential QuadraticProgramming)队列论(QueueingTheory)到达过程(ArrivalProcess)服务过程(ServiceProcess)排队系统(QueueingSystem)排队模型(QueueingModel)M/M/1模型(M/M/1Model)M/M/c模型(M/M/cModel)M/G/1模型(M/G/1Model)G/M/1模型(G/M/1Model)排队长度(QueueLength)平均排队时间(Average Queueing Time)平均服务时间(AverageService Time)到达率(ArrivalRate)服务率(ServiceRate)利用率(UtilizationRate)十一、市场营销术语术语术语术语术语市场营销 (Marketing)市场营销管理(MarketingManagement)市场营销环境(MarketingEnvironment)市场营销计划(Marketing Plan)市场营销组合 (MarketingMix)市场 (Market)市场需求 (MarketDemand)市场细分 (MarketSegmentation)市场定位 (MarketPositioning)市场目标 (MarketTargeting)消费者行为 (ConsumerBehavior)消费者需求 (ConsumerNeed)消费者动机 (ConsumerMotivation)消费者态度(Consumer Attitude)消费者满意度 (ConsumerSatisfaction)产品 (Product)产品生命周期 (ProductLife Cycle)产品创新 (ProductInnovation)产品差异化 (ProductDifferentiation)产品定价 (Product Pricing)价格 (Price)价格策略 (PricingStrategy)价格弹性 (PriceElasticity)价格歧视 (PriceDiscrimination)价格竞争 (PriceCompetition)促销 (Promotion)促销策略 (PromotionStrategy)促销组合 (PromotionMix)广告 (Advertising)公关 (Public Relations)销售促进(Sales Promotion)个人销售(PersonalSelling)直接营销(DirectMarketing)网络营销(InternetMarketing)社会媒体营销(SocialMedia Marketing)分销(Distribution)分销渠道(DistributionChannel)分销策略(DistributionStrategy)物流(Logistics)运输(Transportation)库存管理(Inventory Management)订货量(OrderQuantity)经济批量(EconomicBatch Quantity)订货点(ReorderPoint)安全库存(Safety Stock)市场调研(Market Research)调研目的(ResearchObjective)调研方法(ResearchMethod)调研设计(ResearchDesign)调研样本(ResearchSample)数据收集(Data Collection)数据分析(DataAnalysis)数据呈现(DataPresentation)调研报告(ResearchReport)调研误差(ResearchError)十二、经济法术语术语术语术语术语经济法 (Economic Law)经济活动 (EconomicActivity)经济主体 (EconomicSubject)经济权利 (EconomicRight)经济责任 (EconomicResponsibility)经济法律关系 (Economic Legal Relationship)经济合同 (EconomicContract)经济纠纷 (EconomicDispute)经济诉讼 (EconomicLitigation)经济仲裁 (EconomicArbitration)民商事法律体系 (Civiland Commercial LegalSystem)民法典 (Civil Code)商法典 (CommercialCode)合同法 (Contract Law)物权法 (Property Law)侵权责任法 (Tort LiabilityLaw)民事诉讼法 (CivilProcedure Law)商事诉讼法(CommercialProcedure Law)仲裁法 (Arbitration Law)消费者权益保护法(Consumer Rights andInterests Protection Law)公司法(CompanyLaw)合伙企业法(PartnershipEnterprise Law)独资企业法(SoleProprietorshipEnterprise Law)外商投资企业法(Foreign InvestmentEnterprise Law)公司治理(CorporateGovernance)股东(Shareholder)董事会(Board ofDirectors)监事会(Board ofSupervisors)高级管理人员(SeniorManagement)股东大会(Shareholders'Meeting)股份(Share)股权(StockRight)股票(Stock)股本(Capital Stock)股利(Dividend)债券(Bond)债权(Debt Right)债务(Debt)债务人(Debtor)债权人(Creditor)破产(Bankruptcy)破产程序(BankruptcyProcedure)破产申请(BankruptcyApplication)破产管理人(BankruptcyAdministrator)破产债权人会议(Bankruptcy Creditors'Meeting)十三、现代公司制概论术语术语术语术语术语现代公司制 (Modern Corporation System)公司 (Company)公司法人 (CorporateLegal Person)公司治理 (CorporateGovernance)公司社会责任 (CorporateSocial Responsibility)股份有限公司 (Joint-stock Company)有限责任公司 (LimitedLiability Company)股东 (Shareholder)股份 (Share)股权 (Stock Right)董事会 (Board of Directors)监事会 (Board ofSupervisors)高级管理人员 (SeniorManagement)股东大会(Shareholders'Meeting)公司章程 (Articles ofAssociation)注册资本 (RegisteredCapital)实收资本 (Paid-inCapital)资本公积 (CapitalReserve)盈余公积 (SurplusReserve)未分配利润 (RetainedEarnings)股利 (Dividend)股息率 (DividendRate)现金分红 (CashDividend)股票分红 (StockDividend)分红政策 (Dividend Policy)上市公司(Listed Company)发行股票(IssueStock)募集资金(RaiseFunds)首次公开募股(InitialPublic Offering)再融资(Refinancing)股票市场(Stock Market)证券交易所(StockExchange)证券监管机构(SecuritiesRegulatory Authority)证券法(SecuritiesLaw)证券合同(SecuritiesContract)股票价格(StockPrice)股票指数(StockIndex)市盈率(Price-earningsRatio)市净率(Price-bookRatio)市场效率(MarketEfficiency)投资者保护(Investor Protection)信息披露(InformationDisclosure)内幕交易(InsiderTrading)操纵市场(MarketManipulation)证券欺诈(SecuritiesFraud)十四、经营管理术语术语术语术语术语经营管理 (Business Management)经营目标 (BusinessObjective)经营策略 (BusinessStrategy)经营模式 (BusinessModel)经营效率 (BusinessEfficiency)经营效果 (Business Effectiveness)经营创新 (BusinessInnovation)经营风险 (BusinessRisk)经营伦理 (BusinessEthics)经营文化 (BusinessCulture)组织 (Organization)组织结构(OrganizationalStructure)组织设计(OrganizationalDesign)组织变革 (OrganizationalChange)组织发展 (OrganizationalDevelopment)协调 (Coordination)协调机制 (CoordinationMechanism)协调原则(Coordination协调方法 (CoordinationMethod)协调技巧 (CoordinationSkill)Principle)控制 (Control)控制系统 (ControlSystem)控制过程 (ControlProcess)控制标准 (ControlStandard)控制反馈 (ControlFeedback)激励(Motivation)激励理论(MotivationTheory)激励因素(MotivationFactor)激励方法(MotivationMethod)激励机制(MotivationMechanism)资源(Resource)物质资源(MaterialResource)人力资源(HumanResource)财务资源(FinancialResource)信息资源(InformationResource)活动(Activity)生产活动(ProductionActivity)销售活动(SalesActivity)采购活动(PurchasingActivity)研发活动(Research andDevelopment Activity)目标(Objective)目标管理(ObjectiveManagement)目标设定(ObjectiveSetting)目标分解(ObjectiveDecomposition)目标评价(ObjectiveEvaluation)十五、公司金融术语术语术语术语术语公司金融 (CorporateFinance)投资决策 (InvestmentDecision)融资决策 (FinancingDecision)分红决策 (DividendDecision)资本结构 (CapitalStructure)资本成本 (CapitalCost)资本预算 (Capital Budget)现金流量 (Cash Flow)净现值 (Net PresentValue)内部收益率 (InternalRate of Return)敏感性分析(Sensitivity Analysis)风险分析 (Risk Analysis)投资组合理论 (PortfolioTheory)资本资产定价模型(Capital Asset PricingModel)证券市场线 (SecurityMarket Line)贝塔系数(Beta Coefficient)无风险利率(Risk-freeRate)市场风险溢价(MarketRisk Premium)资本市场线(CapitalMarket Line)有效边界(EfficientFrontier)杠杆效应(LeverageEffect)操作杠杆系数(OperatingLeverage Coefficient)财务杠杆系数(Financial LeverageCoefficient)综合杠杆系数(Combined LeverageCoefficient)杠杆调整原则(Leverage AdjustmentPrinciple)股权融资(Equity Financing)债务融资(DebtFinancing)权益融资(Quasi-equity Financing)混合融资(HybridFinancing)转换债券(ConvertibleBond)可赎回债券(Redeemable Bond)可交换债券(Exchangeable Bond)优先股(PreferredStock)可转换优先股(Convertible PreferredStock)权证(Warrant)十六、人力资源管理术语术语术语术语术语人力资源管理 (Human Resource Management)人力资源规划 (HumanResource Planning)人力资源分析 (HumanResource Analysis)人力资源需求 (HumanResource Demand)人力资源供给 (HumanResource Supply)招聘 (Recruitment)招聘渠道 (RecruitmentChannel)招聘广告 (RecruitmentAdvertisement)招聘成本 (RecruitmentCost)招聘效果 (RecruitmentEffectiveness)选拔 (Selection)选拔方法 (SelectionMethod)选拔标准 (SelectionCriterion)选拔工具 (SelectionTool)选拔过程 (SelectionProcess)培训 (Training)培训需求分析 (TrainingNeeds Analysis)培训目标 (TrainingObjective)培训内容 (TrainingContent)培训方法 (TrainingMethod)培训评估(Training Evaluation)培训效果(TrainingEffectiveness)培训反馈(TrainingFeedback)培训转移(TrainingTransfer)培训成本(TrainingCost)术语术语术语术语术语评估(Performance Appraisal)评估目的(PerformanceAppraisal Purpose)评估标准(PerformanceAppraisal Criterion)评估方法(PerformanceAppraisal Method)评估结果(PerformanceAppraisal Result)激励(Motivation)激励理论(MotivationTheory)激励因素(MotivationFactor)激励方法(MotivationMethod)激励机制(MotivationMechanism)薪酬(Compensation)薪酬结构(CompensationStructure)薪酬水平(CompensationLevel)薪酬调整(CompensationAdjustment)薪酬管理(CompensationManagement)十七、企业战略管理术语术语术语术语术语企业战略管理(Corporate Strategy Management)战略 (Strategy)战略管理过程(Strategy ManagementProcess)战略分析 (StrategyAnalysis)战略制定 (StrategyFormulation)战略实施 (Strategy Implementation)战略评估 (StrategyEvaluation)战略控制 (StrategyControl)战略调整 (StrategyAdjustment)战略创新 (StrategyInnovation)环境分析(Environmental Analysis)宏观环境分析 (Macro-environmentalAnalysis)行业环境分析 (IndustryEnvironmentalAnalysis)微观环境分析 (Micro-environmental Analysis)PEST分析法(PESTAnalysis Method)波特五力模型(Porter's Five Forces Model)SWOT分析法(SWOT AnalysisMethod)VRIO分析法(VRIOAnalysis Method)价值链分析法(ValueChain Analysis Method)核心竞争力分析法(Core CompetenceAnalysis Method)目标管理(Objective Management)SMART原则(SMART Principle)平衡计分卡(BalancedScorecard)关键绩效指标(KeyPerformance Indicator)目标层次结构(ObjectiveHierarchy)战略选择(StrategyChoice)战略类型(StrategyType)成本领先战略(CostLeadership Strategy)差异化战略(DifferentiationStrategy)聚焦战略(FocusStrategy)集团化战略(Diversification Strategy)垂直一体化战略(Vertical IntegrationStrategy)水平一体化战略(HorizontalIntegration Strategy)国际化战略(InternationalizationStrategy)蓝海战略(Blue OceanStrategy)。

第三章 模糊集理论(continue2)

第三章 模糊集理论(continue2)
Goal: Control a steam engine & boiler combination by a set of linguistic control rules obtained from experienced human operators. Illustrations of how a two-rule Mamdani fuzzy inference system derives the overall output z when subjected to two crisp input x & y.
Mamdani Fuzzy models Sugeno Fuzzy Models Tsukamoto Fuzzy models Other Considerations
Fuzzy modeling
2
Introduction
Fuzzy inference is a computer paradigm based on fuzzy set theory, fuzzy if-then-rules and fuzzy reasoning. A.k.a. (also known as) fuzzy-rule based system, fuzzy expert system, fuzzy model, fuzzy associative memory, fuzzy logic controller. Applications: data classification, decision analysis, expert systems, times series predictions, robotics & pattern recognition Fuzzy System is consist of Rule Base, Data Base, Reasoning Mechanism

中西文化比较思维模式

中西文化比较思维模式
人类思维主要由知识、观念、方法、智力、情 感、意志、语言、习惯等八大要素组成。这些要素 相互联系,相互作用,形成思维模式这样一个动态 复杂的系统。
Mode of thinking 思维模式
The mode of thinking is closely related to the worldview. It is the concentrated embodiment of all cultural and psychological properties and is shaped in a certain historical, social and geographical environment.
Analytical 分析
西方人倾向于分 析思维,更多地关注 某一场景中的主要或 突出物体,例如在 “蒙娜丽莎”这幅画 中,关注画中的人而 非她身后的岩石与天 空。
Holistic 整体
中国人倾向 整体思维,他们往 往观察整个画面, 并依靠在情景中所 获得的信息对所观 察事物作出决定和 判断。
How Is
The Mode of Thinking Formed?
Mode of thinking 思维模式
Human thinking mainly consists of such elements as knowledge, ideology, methodology, intelligence, emotion, willpower, language and habits. The interrelationship and interaction of these elements form a dynamic complex system known as the mode of thinking.

模糊推理的数学模型与实现

模糊推理的数学模型与实现

模糊推理的数学模型与实现模糊推理(Fuzzy Inference)是一种用于处理不确定性信息的计算方法,广泛应用于人工智能、控制系统、决策支持等领域。

模糊推理允许我们处理模糊、模糊不确定性信息,使得系统能够更好地应对复杂的现实问题。

本文将探讨模糊推理的数学模型和实现方式,以及其在不同领域的应用。

## 什么是模糊推理模糊推理是一种基于模糊逻辑的推理方法。

与传统的布尔逻辑不同,模糊逻辑允许变量具有连续的隶属度,而不仅仅是真或假。

这使得模糊推理能够更好地应对现实世界中的不确定性和模糊性。

在模糊推理中,我们通常使用模糊集合来描述输入、输出和规则,这些模糊集合通过隶属度函数来定义。

模糊规则基于这些模糊集合进行推理,产生模糊输出,最后通过去模糊化来获得清晰的结果。

## 模糊推理的数学模型### 模糊集合模糊集合是模糊推理的基础,它通过隶属度函数来描述元素对集合的隶属度。

常见的隶属度函数包括三角形函数、梯形函数和高斯函数。

一个模糊集合可以用以下形式表示:\[A = \{(x, \mu_A(x)) | x \in X\}\]其中,\(A\) 是模糊集合的名称,\(x\) 是元素,\(\mu_A(x)\) 是元素\(x\) 对集合 \(A\) 的隶属度。

### 模糊规则模糊规则用于描述输入和输出之间的关系。

一般形式如下:如果 \(x_1\) 是 \(A_1\) 且 \(x_2\) 是 \(A_2\),那么 \(y\) 是 \(B\)这里,\(x_1\) 和 \(x_2\) 是输入变量,\(A_1\) 和 \(A_2\) 是对应的模糊集合,\(y\) 是输出变量,\(B\) 是对应的模糊集合。

### 模糊推理模糊推理通过模糊规则将模糊输入映射到模糊输出。

常见的推理方法包括最大隶属度法、最小法和加权平均法。

最后,通过去模糊化将模糊输出转化为清晰的结果。

## 模糊推理的实现模糊推理的实现通常包括以下步骤:1. **模糊化**:将输入值映射到各个模糊集合上,计算隶属度值。

模糊神经网络

模糊神经网络
O : X [0,1]规定为:
0
O(
x)
1
x
5 5
0
2
1
0 x 50 50 x 100
随着x增加,O(x)增大 O(50) 0, O(60) 0.8 O(90) 0.985
1
0.8 50 60 90
例2 Y 年轻, Y : X [0,1]规定为:
1
Y
(
x)
1
x
25 5
2
(—2)—梯模形糊或数半学梯创形按始分人布照教授常见的形式,模糊推理系统可分为:
“Edit”—“Membership functions”进行输入输出变量隶属函数的定义。 1 典型模糊神经网络的结构 同其他模糊神经系统相比,ANFIS具有便捷高效的特点。 subplot(222),mesh(x111,x112,y111);title('实际输出'); (权值代表了每条规则的置信度,
(5)运用评价数据对训练好的模糊神经系统进行验证,观察仿真结果。 典型的一阶Sugeno型模糊规则形式如下:
x111=reshape(x11,41,21); (1)将选取的训练样本和评价样本分别写入两个. 1 模糊系统的构成 注:(a、b为待定参数) %对训练好的模糊神经推理系统进行验证 自适应模糊神经推理系统,也称为基于神经网络的自适应模糊推理系统(Adaptive Network-based Fuzzy Inference System),简称 ANFIS,1993年由学者Jang Roger提出。 典型的模糊神经网络结构
纯模糊逻辑系统
纯模糊逻辑系统仅由知识库和模糊推理机组成。 其输入输出均是模糊集合。
×
×
纯模糊逻辑系统结构图
纯模糊逻辑系统的优点:提供了一种量化专辑

自适应神经模糊推理系统_ANFIS_及其仿真

自适应神经模糊推理系统_ANFIS_及其仿真

收稿日期:2008-10-27 修回日期:2009-02-11 作者简介:顾秀萍(1972- ),女,山东淄博人,硕士,研究方向:控制理论与控制工程。

文章编号:1002-0640(2010)02-0048-02自适应神经模糊推理系统(ANFIS )及其仿真顾秀萍(山西工程职业技术学院,太原 030009) 摘 要:自适应神经网络模糊推理系统ANF IS 是模糊控制与神经网络控制结合的产物。

讨论了ANF IS 的结构及其特点,并利用MAT LAB 的专用工具箱进行了仿真研究,取得满意的效果。

关键词:模糊控制,神经网络控制,自适应神经网络模糊推理系统,仿真中图分类号:TP 273+.4 文献标识码:AStudy on the Adaptive Network -based FuzzyInference System and Its SimulationGU Xiu-ping(Shanxi Vocatio nal T echnique College o f E ngineering ,T aiyuan 030009,China ) Abstract :ANFIS(Adaptive Network-based Fuzzy Inference System)is the combination of fuzzy and neural network control .T he structure and characteristics of A NFIS are discussed ,and simulations are taken using the MATLAB toolbox,satisfactory results have been obtained.Key wor ds :fuzzy contr ol,neural network control,adaptive network-based fuzzy inference system,simulation1 自适应神经模糊推理系统(ANFIS )模糊控制与神经网络控制是智能控制领域十分重要而又非常活跃的两大分支。

复杂生态系统的模糊数学模型.

复杂生态系统的模糊数学模型.

物种利用周围环境的能力, 我们还可以把这种生态位的重叠推广到多个物种的情形。
模型 2 设物种 x 1, x 2, …, x m 的生态位分别为 H x 1 (Κ1) , H x 2 (Κ2) , …, H xm (Κm ) , 则多物种生态位 重叠为:
H x (∧)
Κn) 分别表示生物生存和生殖的全部生态因子 (生物因子和非生物因子) 的坐标, 则 n 维空间的集合
套 H (∧) 就是物种 X 的生态位。
H (∧) 是由 n 维向量组成的, 从几何意义上说就是 n 维超体积, 其内包含物种生存和生殖有关
的所有生态因子, 如温度、湿度、海拔梯度、pH 值、资源、时空、竞争等。
空间中也即实际生态位。由集合套理论: 设 Ν1、Ν和 Ν2 分别表示相对某一生态因子的生态幅度量, 则
H (Ν1)、H (Ν) 和 H (Ν2) 分别表示物种的理想生态位, 基础生态位和实际生态位, 当 Ν1< Ν< Ν2 时, 有
H (Ν1) Β H (Ν) Β H (Ν2)。上式恰好表示了物种实际生态位始终是基础生态位和理想生态位的子集,
生态位是指物种实际占有生物环境和生物开拓利用环境的能力的总和, 它要与环境进行物质、 能量和信息的交流与流通, 是一种耗散结构, 一个完全开发的动态系统。 从几何意义上看就是 n 维 超体积, 其内包含物种生存和生殖有关的所有生态因子, 如温度、湿度、海拔梯度、pH 值、资源、时 空、竞争等。 生态位包含两方面的内容, 一是生物占有的生存空间, 二是生物对环境的利用。
其中, H x y (Κi) = (H x (Κ1i) ∩ (H y (Κ2i) = [m ax (m 1i, m 2i) , m in (n1i, n2i) ], Κ1i∈[m 1i, n1i ], Κ2i∈[m 2i, n2i ]。 H x y (Κi) 表示物种 X 和物种 Y 在第 i 个生态因子 Κi 上投影生态位 H x (Κi) 和 H y (Κi) 的重叠,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Inference in Fuzzy Models of Physical ProcessesBohdan S.Butkiewicz1Warsaw University of Technology,Institute of Electronic Systems,00-665Warsaw,Poland"B.Butkiewicz"bb@.pl.pl/~bb/index.htmlAbstract.General idea of the paper is comparison of different reasoningmethods,which may be used in some types of fuzzy models.Differenttriangular norms and defuzzification methods were used.It is shownthat many reasoning methods give similar results.However,many ofthem are not very reasonable.Some simple theorems about functionsapproximated by models are presented.Special attention is applied tomodeling of physical processes.Examples of models used in reality arepresented.Some of them are build as modifications of Takagi-Sugenomodel introduced earlier by author.1IntroductionThere are many classes of fuzzy models.One of possible classification was given by Pedrycz[10].He arranged model categories in order of an increased level of structural dependencies.The least structured category appearsfirst on the list –tabular representations–fuzzy grammars–fuzzy relational equations–fuzzy neural networks–rule based models–local regression models–fuzzy regression modelsIn the paper,analyze of this categories is performed from point of view of possi-ble applications in modeling of physical processes.Fuzzy grammar[9]models are used for describing time series and signal classifiers.Fuzzy relational equation models were largely studying by Pedrycz,Nola,Hirota,and some others mainly from theoretical point of view.It seems that these models are good for system identification.Tabular,rule based,and local regression models are studying in the paper.Most popular reasoning:Mamdani[8],Larsen[7],Tsukamoto[13], and Takagi-Sugeno[12]are considered.Special attention is applied to inference methods used during approximate reasoning to obtain good results.General-ized Mamdani and generalized Larsen reasoning are used with different triangu-lar norms and some other parison of results obtained for some models of physical processes are presented.B.Reusch(Ed.):Fuzzy Days2001,LNCS2206,pp.782–790,2001.c Springer-Verlag Berlin Heidelberg2001Inference in Fuzzy Models of Physical Processes 7832Description of Models 2.1Tabular ModelsTabular model has a form of a table,where basic relations between linguistic labels of inputs and outputs are presented.Relations describing dynamics of sin-gle input single output (SISO)system of first order may be presented as a single table.Rows and colons denote linguistic values of input and derivative of input.In the table are placed linguistic values of output.The model is very popular in fuzzy modeling and control.It may presents,for example,fuzzy controller of proportional-derivative (PD)type.Tabular model may be suitable for physical processes,especially when we have no much information about process behavior.Example,steam boiler may be described by quantity of supplied water and fuel,temperature and pressure inside of boiler and quantity of outgoing ing linguistic values small,medium,large,low,medium,high steady-state behavior of boiler may be described.But good description of dynamics requires knowledge about time constant and may be other parameters,so requires analytical description of process.Tabular model is suitable also for simple discrete systems.Some theoretical and practical results obtained in fuzzy control area [2][3],and examples presented in the paper show that general Mamdani reasoning,where operations minimum and maximum were replaced by different triangular t-norms and s-norms,is good for this type of model.Moreover,for different tri-angular norms the results are similar,so it is not very important what pair of norms is used during reasoning.Also the results are identical if rules are used in aggregated form or not.Consider now a simple example of a function y =f (x )with saturation describing by seven rulesR1:if x is P L then y is P LR2:if x is P M then y is P MR3:if x is P S then y is P SR4:if x is ZE then y is ZEand symmetrically for negative values.If Mamdani,Larsen,Tsukamoto or Takagi-Sugeno model is used then rule weights equals to membership value µ{.}(x )of x for respective set {.}.Height,areas,and gravity defuzzification methods are weighted means y =i y i w i i w i(1)Also Tsukamoto model use weighted mean.Suppose that membership func-tions µ{.}(x )have symmetrical triangular shape with trapezes at the end of universum [-10,10].Thus,membership is linear function µ{.}(x )=a i x +b i where a i ,b i are constant in some regions.If height defuzzification method is used then values y i are independent on weight w i ,except trapezes.So,y = y i (a i x +b i )/ (a i x +b i ).Similar situation is observed for Larsen model.The results are presented in the Fig.1.Generally,a theorem may be easy proofed.Theorem 1Suppose that membership functions are symmetric and described in different784 B.S.Butkiewiczregions by polynomials of n-th order.If Mamdani or Larsen models are used with height defuzzification method then models are described piecewise by ratio-nal functions y =a n x n +a n −1x n −1+...+a 0b n x n +b n −1x n −1+...+b 0(2)Now,consider Tsukamoto method.Let similarly µ{.}(x )=a i x +b i .FunctionsFig.1.Mamdani model with height defuzzification,logic (left),Yager (right)opera-tionsµ{.}(y )=c i |y |and values y i =µ{.}−1(w i )=w i /c i .So,y =[ (a i x +b i )2/c i ]/ (a i x +b i ).Generally,one obtains theorem.Fig.2.Mamdani (left)and Larsen (right)models with area defuzzification and logic operationsTheorem 2If membership functions are symmetric and described in different regions by poly-nomials of n-th order and Tsukamoto model is used then model is describedInference in Fuzzy Models of Physical Processes 785piecewise by rational functionsy =a n x 2n +a 2n −1x n −1+...+a 0b n x n +b n −1x n −1+...+b 0(3)Finally,consider Mamdani and Larsen models with areas and gravity methods.For symmetrical triangular shapes values y i are constant but areas S i depend on the weights w i in square S i =A (1−w i /2)w i .Thus,for areas method y = S i w i / S i = Ay i (a i x +b i )[1−(a i x +b i )2/2]/ A (a i x +bi )[1−(a i x +bi )2/2].General dependence is more complicated.An example is presented in the Fig.2.Two other examples of Mamdani and Tsukamoto models are shown in the parison of models with Mamdani,Larsen and TsukamotoFig.3.Mamdani model with gravity defuzzification (left)and Tsukamoto model (right)both with algebraic operationsreasoning with different triangular norms and defuzzification methods shows that choice of triangular norm has no big influence on the result,curves obtained are very similar.Grater influence has defuzzification method,especially when height method is compared with areas and gravity.Mamdani and Larsen models give similar results.Tsukamoto model is different.Some interesting results concerning equivalence of approximated reasoning using different interpretation of fuzzy if-then rules and aggregation problem are presented in [6].Sometimes one uses Wang model.It was proofed,(Wang theorem [14])that any continuous function may be exactly approximated by fuzzy tabular model with gaussian membership functions for input and consequences.Gaussian func-tions are not very convenient to use and may have nothing common with physical process behavior.If we have some knowledge about functional relations between process vari-ables it is better to use Takagi Sugeno model.786 B.S.Butkiewicz2.2Rule-based ModelsThis type of models is the most popular.This approach to modeling seems more general.The rules may contain heterogeneous form,and different statements Rules can be graduated by word quantifiplex analyze is impossible,because of possible system and rules diversity.It seems that rule based models are good for situations where non numerical values are expected as decision or model output,example possibility that output take some linguistic value.It may describe some sociological,medical and other decision problems.An example of model supporting human decision for personnel selection in tourist agency is presented below.Suppose that chief of agency looks for a can-didate,which can work as a guide.The candidate ought to:–known at least two languages among English,French,German,Spain in very high level–known history and geography of a region in high level–know-how to use telefax,xserox,computer–have pleasant sight at least in satisfactory level–be responsible and patient in high level–be able to resolve unexpected problems at least in medium level–................Let the candidate fulfill each feature with some level.For example he has a note from an exam or something like this.There are several candidates.Who is the best?Any numerical value of the candidate feature can be treated as fuzzy number with membership µC (x ).Any requirement can be described by fuzzy set with membership µR (x ).Overlapping membership functions it is possible to find level l =max {min [µC (x ),µR (x )]}of feature satisfaction.Finding weighted sum w i l i ,where w i are weight of i −th feature choused before,it is possible to find the best candidate.Other good solution is put l =max [µC (x )µR (x )].2.3Local Regression ModelsThis models are the best if we have some,may be not exact,mathematical de-scription for physical process.However,the model can be used also without this knowledge.Takagi-Sugeno model may be considered under some conditions [15]as universal approximator.Very popular is Takagi-Sugeno-Kang model (TSK)[11]use linear functions as local approximations.Author experience shown that using other than linear functions,example polynomials of second order,with-out real knowledge of local system behavior,not gives better approximation.Contrary,the results can be considered as bad,i.e.not justified by any reason.Modification of TSK modelThe TSK model may describe sufficiently well any continuouse function y =f (x 1,x 2,...,x n ).However,the model has one very important inconvenience.Sup-pose that model describe a function y =f (x )and is composed with two rules if x is Small then y =a 1x +b 1Inference in Fuzzy Models of Physical Processes787 if x is Large then y=a2x+b2If conventional triangular or trapezoidal functions are use for membership func-tions of fuzzy sets of x,here for Large and Small,see Fig.4(left),then non expected effect arise,see Fig.4(right)and5,and[1].In intermediate region parabolic distortion appears.Thus,the model is worth than conventional crisp model with two linear functions and two separated regions.Of course,it is pos-Fig.4.Membership functions for x(left),TSK model and chord(right)sible use conventional spline convolution model for better approximation,but it is complicated.Author proposed in[4]some simple modification of TSK model which can avoid inconvenience of TSK model.Suppose that we have some exper-imental data forming two straight lines with different slopes and an intermediate region.TSK model gives function g(x).Two lines in separate regions may be joined directly in intermediate region by chord line c(x),but this solution is not very good.However,is is possiblefind better solution.In intermediate region the weighted meanu(x)=g(x)+λc(x)1+λ(4)can be taken as model value,whereλis a constant choosed experimentally for good approximation of the data.The result is shown in the Fig.5.The data represent strange effect of optical property relaxation observed in chalkogenide viteouse semiconductor glasses after gamma irradiation[5].Very interesting property of Takagi-Sugeno model is possibility of knowledge discovering.If mathematical description of some phenomena is known,building this model for unknown process we may verify what phenomena are observed in this process.Presented example shown that two effects are discovered using model built for relaxation process of optical properties in chalcogenides.After gamma irradiation along the time T elapse transparency of semiconductor glass changes in accordance with two different lows.Membership functions of the model give appropriate regions for the lows.2.4Fuzzy Regression ModelsSometimes it is not possible to introduce in the model all variables,which have influence on physical process.Simply,these variables are not measured or are not788 B.S.ButkiewiczFig.5.TSK model without modification(left)and after modification(right) possible to measure.However,the model must take often in consideration influ-ence of these variables.An example of such situation may be sintering process.It depends on actual total mass of details in the furnace,ambient temperature not possible to preview many days before etc.Reasonable solution is to build fuzzy regression model where conclusion is a fuzzy number or fuzzy function or/and to build fuzzy-probability model where conclusion is random variable or function. In this way additional uncertainty may be introduced.Numerical considerations concerning inference method are limited to an ex-ample of model of sintering process.Different components,as Cu,MnS,C (graphite),StZn are added to iron powder.Exact description of physical and chemical changes during sintering is unknown,because of their complexity.Thus, mathematical model can not be built.Main task of model was preview geomet-rical changes of detail dimensions after sintering process,taking in consideration proportion of powder components,temperature in sintering zone of the furnace, velocity of tape transporting details in the furnace,and initial density of pressed powder.It was impossible to gathered data in special way.Production process can not be interrupted.However,some specimens with different components were prepared and put in the furnace together with produced details.Thus,some data for the model were very difficult to compare,and results were sometimes dis-crepant.First,rule-based model was built.Mamdani and Larsen methods are compared.After,modified Takagi Sugeno model is proposed and accepted.The rules have formif Cu is S and C is S then∆h=f1(Cu,C,σ1)if Cu is S and C is M then∆h=f2(Cu,C,σ2) ...................................if StZn is S then∆h=f10(StZn,σ10) ...................................if T emp is L and T ime is L then∆h=f17(T emp,T ime,σ17)where∆h describes changes of any parameter,example the height of detail,vari-ables Cu,C,StZn,...contents of the powder components,and variables T emp, T ime the temperature and time in sintering zone of the furnace.VariablesσiInference in Fuzzy Models of Physical Processes789 have a special task.Functions f i are fuzzy functions.Its values are fuzzy num-bers with trapezoidal shapes of membership functions.Valueσi desribe width of trapezes,so it describe uncertainty.It is approximate model of the process. Any rule may be considered as multidimensional cloud with different density. Example of this fuzzy surface is presented in the Fig.6.Fig.6.Example of fuzzy surface for rule1.Stars represent center value of fuzzy num-bers,points minimal and maximal values3ConclusionPhysical processes may be modeled in two ways depending on knowledge of mathematical relations between process variables.Without any knowledge,rule-based fuzzy Mamdani and Larsen models or Takagi-Sugeno-Kang fuzzy regres-sion model with linear functions can be build.In many types of models Mamdani reasoning with logic operation(minimum and maximum)is used.Author expe-rience shows that also other triangular norms,ex.algebraic operations,can be used with success.However,many operations give similar results.In the paper only a few examples are presented,but author have tried many other triangular rsen reasoning is underestimated.It gives also good results and often is easier in numerical applications then Mamdani.If we have some knowledge in the form of functional dependencies for relations between variables,we may use these functions as conclusions in some rules in Takagi-Sugeno fuzzy regres-sion model.Theoretically it is the best solution in this case,but practically it is difficult tofind the best shape of membership functions,so estimation of model parameters is complicated.If standard triangular or trapezoidal shape for mem-bership functions is used then strange effect arises in intermediate regions,shown as example presented in the paper.Therefore,author proposed new solution for Takagi-Sugeno model.In intermediate region weighted mean of standard model and chord joining ends of intermediate region is introduced.790 B.S.ButkiewiczReferences1.Babuska R.:Fuzzy Modeling for Control,Kluwer Academic Publisher(1998).2.Butkiewicz B.S.:Steady-State Error of a System with Fuzzy Controller,IEEETransactions on System,Man,and Cybernetics,Part B:Cybernetics,Vol.28,No.6, (1998)855–860.3.Butkiewicz B.S.:About Robustness of Fuzzy Logic PD and PID Controller un-der Changes of Reasoning Methods,European Symp.on Intelligent Techniques, Aachen,Germany(2000)350–356.4.Butkiewicz B.S.:Fuzzy Reasoning Methods,its Properties and Applications(inpolish),accepted for Prace Naukowe Politechniki Warszawskiej,Elektronika.5.Butkiewicz B.S.,Golovchak R.,Kovalskiy A.,Shpotyuk O.,and Vakiv M.:Onthe Problem of Relaxation for Radiation-Induced Optical Effects in Some Ternary Chalcogenide Glasses,Radiation Effects and Deffects in Solids,(2000).6.Czogala E.,Leski J.,On Equivalence of Approximate Reasoning Results UsingDifferent Interpretations of Fuzzy if-then Rules,Fuzzy Sets and Systems,Vol.117, (2001)279–296.rsen P.M.:Industrial application of fuzzy logic control,Int.J.Man MachineStudies,Vol.12,No.1(1980)3–10.8.Mamdani E.H.:Application of fuzzy algorithm for control of simple dynamic plant,Proc.IEE,Vol.121,No.12(1974)158—1588.9.Mizumoto M.,Toyoda J.,Tanaka K.:General formulation of formal grammars,Information Science,Vol.4(1972)87–100.10.Pedrycz W.:Fuzzy Models:Methodology,Design,Applications and Challenges,inPerdycz W.(ed.)Fuzzy Modelling Paradigms end Practice,Kluwer Acad.Publ.pp3-22,1996.11.Sugeno M.,Kang G.T.:Structure Identification of Fuzzy Model,Fuzzy sets andSystems,Vol.28(1988)15–33.12.Takagi T.,Sugeno M.:Fuzzy Identification of Systems and its Application to Mod-eling and Control,IEEE Trans.on Systems,Man,and Cybernetics,Vol.15(1985) 116-132.13.Tsukamoto Y.:An approach to fuzzy reasoning method,in Fuzzy Set Theory andApplications,Gupta M.M.,Ragade R.K.,Yager R.R.,(eds.),Amsterdam,North-Holland(1979).14.Wang X.L.:Fuzzy Systems are Universal Approximators,Proc.IEEE Int.Conf.on Fuzzy Systems,San Diego,CA(1992)1163–1169.15.Ying H.,Ding Y.,Li S.,Shao S.:Comparison of Necessary Conditions for TypicalTakagi-Sugeno and Mamdani Fuzzy System as Universal Approximators,IEEE Trans.on Systems,Man,and Cybernetics-Part A,Vol.29,No.5(1999)508–514.。

相关文档
最新文档