初二数学复习讲义正比例、反比例、一次函数

合集下载

【中考数学复习】一次函数与反比例函数知识

【中考数学复习】一次函数与反比例函数知识

【中考数学复习】一次函数与反比例函数知识提要初中代数中涉及的函数有:一次函数(包括正比例函数)、反比例函数、二次函数.每种函数一般从下面四个方面研究:定义,图象,性质,求解析式.本讲研究一次函数和反比例函数.一、一次函数1、定义:函数)0(≠+=k b kx y 称为一次函数,若0=b 则称函数为正比例函数.2、图象:一次函数是过点(0,b )和点(kb -,0)的直线.当b=0时的正比例函数)0(≠=k kx y 是过原点的一条直线,若k 与b 的符号不同,则直线经过的象限也不同,如图所示:3、性质:当0>k 时,y 随x 的增大而增大;当0<k 时,y 随x 的增大而减小.(此性质为一次函数的单调性)另外,正比例函数关于原点O 中心对称4、求解析式:求一次函数的解析式,一般需要两个条件,求出表达式b kx y +=中的k 及b 的值,常用待定系数法来求一次函数.而正比例函数的解析式只需要一个条件.二、反比例函数1、定义:形如)0(≠=k x k y 形式称为反比例函数,定义域为0≠x 的所有实数.2、图象:反比例图象为双曲线,如图所示:3、性质:反比例函数x k y =在0>k 且0>x 时,函数值y 随x 的增大而减小;在0>k 且0<x 时,函数值y 随x 的增大而减小.即:当0>k 时,反比例函数x k y =分布在一、三象限,在每个象限内,y 随x 的增大而减小,如图(1)所示.当0<k 时,反比例函数xk y =分布在二、四象限,在每个象限内,y 随x 的增大而增大,如图(2)所示.反比例函数x k y =图象上的点关于原点O 成中心对称的.当0>k 时,函数的图象关于直线x y =成轴对称;当0<k 时,函数的图象关于直线x y -=成轴对称.4、求解析式:反比例函数的解析式,只需要一个条件,求出xk y =)0(≠k 中的k 即可.在解决有关一次函数及反比例函数的问题时,常运用数形结合及分类讨论的思想方法.待定系数法是研究函数表达式的基本方法,同时紧密结合图象寻求思路,是处理这类问题的重要方法.例1、已知正比例函数x y =和)0(>=a ax y 的图象与反比例函数xky =(k>0)的图象在第一象限内分别相交于A 、B 两点,过A 、B 作x 轴的垂线,垂足分别为C 、D ,设△AOC 和△BOD 的面积分别为1S 、2S ,则1S 与2S 的大小关系怎样?例2、两个反比例函数x y 3=,x y 6=在第一象限内的图象如图所示,点1P ,2P ,3P ,…2005P 在反比例函数x y 6=图象上,它们的横坐标分别是1x ,2x ,3x ,…2005x ,纵坐标分别是1,3,5,…,共2005个连续奇数,过点1P ,2P ,3P ,…2005P 分别作y 轴的平行线,与xy 3=的图象交点依次是)(111y x Q ,,)(222y x Q ,,)(333y x Q ,,…)(200520052005y x Q ,,则_________2005=y .例3、平面直角坐标系内有A (2,-1)、B (3,3)两点,点P 是y 轴上一动点,求P 到A 、B 距离之和最小时的坐标.例4、已知一次函数的图象经过点(2,2),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的解析式.例5、已知A (-2,0)、B (4,0),点P 在直线221+=x y 上,若△PAB 是直角三角形,求点P 的坐标.例6、已知两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供两个方面的信息,如图所示,请根据图中提供的信息,求:(1)第2年全县生产甲鱼的只数及甲鱼池的个数;(2)到第6年,这个县的甲鱼养殖规模比第1年是扩大了还是缩小了,请说明理由.例7、如图,已知C 、D 是双曲线xm y =在第一象限内的分支上的两点,直线CD 分别交x 轴、y 轴于A 、B 两点,设C 、D 的坐标分别是(11y x ,)、(22y x ,),连接OC 、OD.(1)求证:111y m y OC y +<<;(2)若α=∠=∠AOD BOC ,31tan =α,10=OC ,求直线CD 的解析式.(3)在(2)的条件下,双曲线是否存在一点P ,使POD POC S S ∆∆=?若存在,求出P 点坐标;若不存在,请说明理由.例8、有一个附有进、出水管的容器,每单位时间进、出的水量都是一定的,设从某时刻开始5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到时间x (分)与水量y (升)之间的关系如图所示,若20分钟后只放水不进水,求多长时间能将水放完?例9、为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后,y 与x 成反比例(如图),观测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,请根据题中提供的信息解答下列问题:(1)药物燃烧时,y 关于x 的函数关系式为__________,自变量x 的取值范围是___________;药物燃烧后y 关于x 的函数关系式为____________.(2)研究表明,当空气中的每立方米含药量低于1.6毫克时,学生方可进教室,那么从消毒开始,至少需要经过多少分钟后,学生才能回到教室.(3)研究表示,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?例10、某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表所示:家电名称空调器彩电冰箱工时/个213141产值/千元432问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)练习1、已知0≠abc 并且p b a c a c b c b a =+=+=+而直线p px y +=一定通过()A 第一、二象限B 第二、三象限C 第三、四象限D 第一、四象限2、函数kx y =和)0(<=k x k y 在同一坐标系中的图象是()3、一次函数b kx y +=过点)(11y x ,和)(22y x ,,且0>k ,b<0,当210x x <<时,有()A 21y b y >>B 21y b y <<C b y y <<<210D 012<<<y b y 4、若点(-2,1y ),(1,2y ),(2,3y )在反比例函数x y 21=的图象上,则下列结论正确的是()A 123y y y >>B 312y y y >>C 132y y y >>D 321y y y >>5、反比例函数x k y =的图象是轴对称图形,它的一条对称轴是下列正比例函数图象中的()A kxy -=B x k y =C x k k y =D kxy =6、一个一次函数图象与直线49545+=x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有()A 4个B 5个C 6个D 7个7、如图,正比例函数x y 3=的图象与反比例函数xk y =(0>k )的图象交于点A ,若取k 为1,2,3,…,20,对应的Rt △AOB 的面积分别为1S ,2S ,…20S ,则__________2021=+++S S S .8、不论k 为何值,解析式0)11()3()12(=--+--k y k x k 表示函数的图象都经过一定点,则这个定点是_________.9、如图所示,直线l 和双曲线x k y =(0>k )交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP.设△AOC 的面积为1S ,△BOD 的面积为2S ,△POE 的面积为3S ,则321S S S 、、的大小关系是______________.10、甲、乙两车出发后再同一条公路行驶,行驶路程与时间的关系如图所示,那么可以知道:(1)出发行驶在前面的车是_________,此时两车相隔_________;(2)两车的速度分别为甲:___________千米/小时,乙:_________千米/小时,经过___________小时,快车追上慢车;(3)甲、乙两车均行驶600千米时各用的时间分别是:甲用_________小时,乙用__________小时.11、如图,函数221+-=x y 的图象交y 轴于M ,交x 轴于N ,MN 上两点A ,B 在x 轴上射影分别为11B A 、,若411>+OB OA ,则A OA 1∆的面积1S 与B OB 1∆的面积2S 的大小关系是_____________.12、已知非负数x 、y 、z 满足323=++z y x ,433=++z y x ,则z y x w 423+-=的最大值为_________,最小值为__________.13、在直角坐标系中,有四个点:A (-8,3),B (-4,5),C (0,n ),D (m ,0),当四边形ABCD 的周长最短时,求nm 的值.14、设直线1)1(=++y k kx (k 是自然数)与两坐标轴所围成的图形的面积为1S ,2S ,…,2000S .求200021S S S +++ 的值.15、如图(1),已知直线m x y +-=21与反比例函数xk y =的图象在第一象限内交于A 、B 两点(点A 在点B 的左侧),分别于x 、y 轴交于C 、D ,AE ⊥x 轴于E.(1)若OE·CE=12,求k 的值;(2)如图(2),作BF ⊥y 轴于F ,求证:EF ∥CD ;(3)在(1)(2)的条件下,5=EF ,52=AB ,P 是x 轴正半轴上一点,且△PAB 是以P 为直角顶点的等腰直角三角形,求P 点的坐标.(1)(2)16、已知直线62+-=-k y x 和143+=+k y x ,若它们的交点在第四象限内.(1)求k 的取值范围;(2)若k 为非负整数,点A 的坐标为(2,0),点P 在直线62+-=-k y x 上,求使△PAO 为等腰三角形的点P 的坐标.17、A 市、B 市和C 市分别有某种机器10台、10台和8台,现决定把这些机器支援给D 市18台,E 市10台.已知从A 市调运一台机器到D 市、E 市的运费分别为200元和800元,从B 市调运一台机器到D 市、E 市的运费分别为300元和700元,从C 市调运一台机器到D 市、E 市的运费分别为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器全部调运完毕后,求总运费w (元)关于x (台)的函数式,并求w 的最大值和最小值;(2)设从A 市调x 台到D 市,从B 市调y 台到D 市,当28台机器全部调运完毕后,用x ,y 表示总运费w (元),并求w 的最大值和最小值.18、直线133+-=x y 与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,其中∠BAC=90°.如果第二象限内有一点P (a ,21),使△ABP 的面积和△ABC 的面积相等,求a 的值.文式思维教育,传播知识,分享快乐19、如图,在直角坐标系中,点1O 的坐标为(1,0),⊙1O 与x 轴交于原点O 和点A ,又点B 、C 的坐标分别为(-1,0),(0,b ),且30<<b ,直线l 是过B 、C 点的直线.(1)当点C 在线段OC 上移动时,过点1O 作l D O 直线⊥1,交l 于D ,若a S S CBO BOC=∆∆1,试求b a 与的函数关系式及a 的取值范围.20、某仓储系统有20条输入传送带、20条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(a ),每条输出传送带每小时出库的货物流量如图(b ),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(c ),则在0时至2时有多少条输入传送带在工作?在4至5时有多少条输入传送带和输出传送带在工作?。

(整理)正比例、反比例、一次函数

(整理)正比例、反比例、一次函数

德 旺 教 育 周 末 教 案授课人 文老师 学科 数学 授课时间 2012.5.13 年级初三正比例、反比例、一次函数〖知识点〗 正比例函数及其图像、一次函数及其图像、反比例函数及其图像〖大纲要求〗1.理解正比例函数、一次函数、反比例函数的概念;2.理解正比例函数、一次函数、反比例函数的性质;3.会画出它们的图像;4.会用待定系数法求正比例、反比例函数、一次函数的解析式内容分析1、一次函数(1)一次函数及其图象如果y=kx+b (K ,b 是常数,K ≠0),那么,Y 叫做X 的一次函数。

特别地,如果y=kx (k 是常数,K ≠0),那么,y 叫做x 的正比例函数一次函数的图象是直线,画一次函数的图象,只要先描出两点,再连成直线(2)一次函数的性质当k>0时y 随x 的增大而增大,当k<0时,y 随x 的增大而减小。

2、反比例函数(1) 反比例函数及其图象如果)0,(≠=k k xk y 是常数,那么,y 是x 的反比例函数。

反比例函数的图象是双曲线,它有两个分支,可用描点法画出反比例函数的图象(2)反比例函数的性质当K>0时,图象的两个分支分别在一、二、三象限内,在每个象限内, y 随x 的增大而减小;当K<0时,图象的两个分支分别在二、四象限内,在每个象限内,y 随x 的增大而增大。

3.待定系数法先设出式子中的未知数,再根据条件求出未知系数,从而写出这个式子的方法叫做待定系数法可用待定系数法求一次函数、二次函数和反比例函数的解析式〖考查重点与常见题型〗1. 考查正比例函数、反比例函数、一次函数的定义、性质,有关试题常出现在选择题中2. 综合考查正比例、反比例、一次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题3. 用待定系数法求正比例,反比例,一次函数的解析式,有关习题出现的频率很高,类型有中档解答题和选拔性的综合题4. 利用函数解决实际问题,并求最值,这是近三年中考应用题的新特点。

八年级数学正反比例知识点

八年级数学正反比例知识点

八年级数学正反比例知识点数学是一门需要长期积累和探索的科学,正反比例是其中一个重要的知识点。

在八年级的数学学习中,正反比例占有重要位置。

本文将从定义、性质、图像以及应用方面等多角度深入探讨正反比例的相关知识点。

一、定义正比例关系是指两个变量之间的比例关系一直保持不变,即一个变大,另一个也跟着变大,一个变小,另一个也跟着变小,也就是说,两个变量之间存在一个固定的比例因子。

例如:如果每增加一个小时的学习,成绩就会增加5分,那么时间和成绩之间就是正比例关系。

反比例关系是指两个变量之间的积一直保持不变,即一个变大,另一个就跟着变小,一个变小,另一个也跟着变大。

也就是说,两个变量之间的比例因子不是固定的。

例如:一个工厂生产一件商品需要的时间和工人数量之间就是反比例关系。

二、性质正比例关系具有以下性质:1. xy=k,当x或y有一个不同时,k不再相等。

2. k=0时,x、y必有一个为03. 若k>0,x、y同为正数或同为负数,若k<0,x、y一正一负4. 当k>1时,变化越大,比例因子越大,相关性越强5. 当k=1时,成比例关系,x和y具有相同的变化趋势。

6. 当k<1时,变化越大,比例因子越小,相关性越弱。

反比例关系具有以下性质:1. xy=k,当x或y有一个不同时,k不再相等。

2. 若k>0,x、y同时增大或同时减小;若k<0,则x、y反向变化。

3. k>1,x、y的变化越弱,k<1则变化越强。

4. x,y不能同时为0.三、图像正比例关系的图像可以用直线来表示,斜率为正值,越陡峭,相关性越强。

通过图像可以直观地反映出两个变量之间的比例关系。

反比例关系的图像可以用双曲线来表示。

短轴与x轴平行,长轴与y轴平行。

反比例函数的图像与x轴有渐近线,分别在负半轴和正半轴上,及y轴。

通过图像可以看出,当一个变量增大时,另一个变量就会变小。

四、应用正反比例关系在实际生活中有广泛的应用,例如:1.比例尺。

一次函数与正比例函数(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

一次函数与正比例函数(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题4.4一次函数与正比例函数(知识梳理与考点分类讲解)【知识点1】一次函数与正比例函数的定义1.定义若两个变量x,y的对应关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数.特别地,当b=0时,称y是x的正比例函数.2.一次函数与正比例函数的关系(1)正比例函数y=kx(k≠0)是一次函数y=kx+b(k,b为常数,k≠0)中b=0的特例,即正比例函数都是一次函数,但一次函数不一定是正比例函数,(2)若已知y与x成正比例,则可设函数关系式为y=kx(k≠0);若已知y是x的一次函数,则可设函数关系式为y=kx+b(k,b为常数,k≠0)【知识点2】一次函数的关系式列一次函数的步骤(1)认真分析,理解题意;(2)同列方程解应用题的思路,找出等量关系;(3)写出一次函数的关系式;(4)注意自变量x的取值范围,对于实际问题,还要考自变量的取值要使实际问题有意义.特别提醒(1)确定一次函数关系式的方法:(2)按相等关系写出含有两个变量的等式;(3)将等式变形为用含有自变量的式子表示一次函数关系式的形式.【考点一】一次函数与正比例函数的定义【例1】(2023春·全国·八年级专题练习)下列函数中,哪些是一次函数?哪些是正比例函数?系数k和常数项b的值各是多少?2πC r =,22003y x =+,200t v =,2(3)y x =-,(50)s x x =-.【分析】根据一次函数与正比例函数逐个分析判断即可求解.一般地,两个变量x 、y 之间的关系式可以表示成形如y kx =的函数(k 为常数,x 的次数为1,且0k ≠),那么y kx =就叫做正比例函数.一次函数的定义:一次函数y kx b =+中k b 、为常数,0k ≠,自变量次数为1.解:2πC r =,是正比例函数,2πk =;22003y x =+是一次函数,23k =,200b =;200t v=不是一次函数,也不是正比例函数;2(3)y x =-26x =-+,是一次函数,2k =-,6b =;(50)s x x =-250x x =-+,不是正比例函数也不是一次函数.【点拨】本题考查了正比例函数与一次函数的定义,掌握正比例函数与一次函数的定义是解题的关键.【举一反三】【变式1】(2022秋·安徽芜湖·八年级统考阶段练习)若y 关于x 的函数(4)y a x b =-+是正比例函数,则a ,b 应满足的条件是()A .4a ≠且0b ≠B .4a ≠-且0b =C .4a =且0b =D .4a ≠且0b =【答案】D【分析】正比例函数的解析式为y kx =,其中0k ≠,据此求解.解: (4)y a x b =-+是正比例函数,∴40a -≠且0b =,∴4a ≠且0b =.故选D .【点拨】本题考查根据正比例函数的定义求参数,解题的关键是掌握正比例函数中一次项系数不能为0,无常数项.【变式2】(2019秋·广东梅州·八年级广东梅县东山中学校考期中)下列关系式:①6x y =;②321y x =+;③25y x =-+;④221y x =+;⑤5y x =-.其中y 是x 的一次函数的有个.【答案】3【分析】形如y kx b =+(0k ≠,k 、b 是常数)的函数,叫做一次函数,进而判断得出答案.解:函数①6xy =,③25y x =-+,⑤5y x =-是一次函数,共有3个,②321y x =+,④221y x =+,不是一次函数,故答案为:3.【点拨】本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.【考点二】一次函数与正比例函数的参数【例2】(2022秋·安徽安庆·八年级校考阶段练习)已知函数1012y m x m =-+-().(1)m 为何值时,这个函数是一次函数;(2)m 为何值时,这个函数是正比例函数.【答案】(1)10m ≠;(2)12m =【分析】(1)根据一次函数的定义求解;(2)根据正比例函数的定义求解.解:(1)根据一次函数的定义可得:100m -≠,∴当10m ≠时,这个函数是一次函数;(2)根据正比例函数的定义,可得:100m -≠且120m -=,∴12m =时,这个函数是正比例函数.【点拨】本题考查了一次函数和正比例函数的定义,形如()0y kx b k =+≠的函数叫做一次函数,特别的,当0b =时,()0y kx k =≠叫做正比例函数,熟知概念是关键.【举一反三】【变式1】(2023秋·安徽蚌埠·八年级统考阶段练习)已知一次函数y kx b =+的图象经过()11,A x y ,()22,B x y 两点,且当213x x =+时,211y y =-,则k 的值为()A .3-B .3C .13-D .13【答案】C【分析】分别把点()11,A x y ,()22,B x y 代入一次函数y kx b =+,根据213x x =+,211y y =-时,即可得出结论.解: 一次函数y kx b =+的图象经过()11,A x y ,()22,B x y 两点,∴1122y kx b y kx b =+=+,,∴1212y y kx kx -=-,213x x =+ ,211y y =-,∴121213x x y y -=-=-,,31k ∴-=,即13k =-.故选:C .【点拨】本题考查了一次函数图象上点的坐标特征,掌握一次函数图象上点的坐标满足其解析式是解题关键.【变式2】(2023春·黑龙江大庆·七年级校考期中)已知()2835my m x m -=++-是关于x 的一次函数,则m =.【答案】3【分析】根据一次函数的定义得到281m -=且30m +≠,据此求出m 的值即可.解:()2835my m x m -=++- 是关于x 的一次函数,281m ∴-=且30m +≠,解得:3m =,故答案为:3.【点拨】本题考查了一次函数的定义,一般地,形如()0y kx b k =+≠的函数,叫做一次函数,会利用x 的指数构造方程,会利用k 限定字母的值是解题关键.【考点三】求一次函数的自变理或函数值【例3】(2023秋·全国·八年级专题练习)已知函数()()2324m y m x m -=++-,(1)当m 是何值时函数是一次函数.(2)当函数是一次函数时,写出此函数解析式.并计算当1x =时的函数值.(3)点(),2A n 在此一次函数图象上,则n 的值为多少.【答案】(1)2m =;(2)42y x =-,当1x =时,2y =;(3)1n =【分析】(1)根据一次函数的定义进行求解即可;(2)根据(1)所求代入m 得值求出对应的函数关系式,再把1x =代入对应的函数关系式求出此时y 的值即可;(3)代入2y =,求出此时x 的值即可得到答案.(1)解:∵函数()()2324my m x m -=++-是一次函数,∴22031m m +≠⎧⎨-=⎩,∴2m =,∴当2m =时,函数()()2324my m x m -=++-是一次函数;(2)解:由(1)得()()232442my m x m x -=++-=-,∴当1x =时,4122y =⨯-=;(3)解:在42y x =-中,当422y x =-=时,1x =,∴()1,2A ,∴1n =.【点拨】本题主要考查了一次函数的定义,求一次函数的函数值和自变量的值,一般地,形如y kx b =+(其中k 、b 都是常数,且0k ≠)的函数叫做一次函数.【举一反三】【变式1】(2023春·天津滨海新·八年级校考期末)不论实数k 取何值,一次函数3y kx =-的图象必经过的点是()A .()0,3-B .()0,3C .3,02⎛⎫⎪⎝⎭D .3,02⎛⎫- ⎪⎝⎭【答案】A【分析】令0x =,求出y 值即可得解.解: 一次函数3y kx =-,当0x =时,=3y -,∴不论k 取何值,函数图象必过点(0,3)-.故选:A .【点拨】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.【变式2】(2022秋·安徽芜湖·八年级统考阶段练习)在平面直角坐标系中,直线34y x =+过点(,)P a b ,则32023a b -+的值为.【答案】2019【分析】把(,)P a b 代入34y x =+即可得到34a b +=,代入32023a b -+即可求解.解: 直线34y x =+过点(,)P a b ,34b a ∴=+,34a b ∴-=-,32023420232019a b ∴-+=-+=,故答案为:2019.【点拨】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系y kx b =+是解题的关键.【考点四】列函数解析式及求函数值【例4】(2022秋·辽宁锦州·八年级统考期中)某公交公司的16路公交车每月的支出费用为4000元,每月的乘车人数x (人)与这趟公交车每月的利润(利润=收入费用-支出费用)y (元)的变化关系如表所示(每位乘客乘一次公交的票价是固定不变的)x (人)50010001500200025003000⋯y (元)3000-2000-1000-010002000⋯请回答下列问题:(1)自变量为,因变量为;(2)y 与x 之间的关系式是;(3)当每月乘车人数为4000人时,每月利润为多少元?【答案】(1)每月的乘车人数,公交车每月的利润;(2)24000y x =-;(3)当每月乘车人数为4000人时,每月利润为4000元【分析】(1)根据表格中的数量变化可得答案;(2)根据乘坐人数与每月的利润的变化关系可求出每位乘客坐一次车需要的钱数,进而得出函数关系式;(3)把x =4000代入函数关系式求出y 的值即可.(1)解:由题意可知:自变量是:每月的乘车人数,因变量是:公交车每月的利润.故答案为:每月的乘车人数,公交车每月的利润.(2)解: 从表格中数据变化可知,每月乘车人数每增加500人,其每月的利润就增加1000元,∴每位乘客坐一次车需要10005002÷=(元),即函数关系式为:2(500)300024000y x x =--=-.(3)解:当4000x =时,2400040004000y =⨯-=(元).答:当每月乘车人数为4000人时,每月利润为4000元.【点拨】本题考查常量与变量,函数关系式,理解表格中两个变量的变化关系是正确解答的关键.【举一反三】【变式1】(2023春·八年级课时练习)汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,则汽车距天津的路程S (千米)与行驶时间t (时)的函数关系及自变量的取值范围是()A .()1203004S t t =-≤≤B .()3004S t t =≤≤C .()120300S t t =->D .()304S t t ==【答案】A【分析】根据汽车距天津的距离=总路程−已行驶路程列函数关系式,再根据总路程判断出t 的取值范围即可.解:∵汽车行驶的路程为:30t ,∴汽车距天津的路程S (千米)与行驶时间t (时)的函数关系为:12030S t =-,∵120304÷=,∴自变量t 的取值范围是04t ≤≤,故选:A .【点拨】本题考查了列一次函数关系式,解决本题的关键是理解剩余路程的等量关系.【变式2】(2021·全国·九年级专题练习)一根长为24cm 的蜡烛被点燃后,每分钟缩短1.2cm ,则其剩余长度y (cm )与燃烧时间x (min )的函数关系式为,自变量的取值范围是.【答案】y =24-1.2x0≤x ≤20【分析】根据题意,剩下的蜡烛长度=总长度-已经燃烧的长度,已经燃烧的长度=每分钟缩短长度×燃烧时间,即可写出解析式;列出关系式,根据蜡烛最长的燃烧时间可得自变量的取值范围;解:由题意可得:函数关系式为:y=24-1.2x ,∵x 0≥,y 0≥∴24-1.2x 0≥∴x 20≤.∴自变量x 的取值范围是0≤x≤20.故答案为:y=24-1.2x ,0≤x≤20.【点拨】本题目考查一次函数的实际应用,正确理解题意,找到实际问题中的等量关系是解题的关键.。

八年级数学上册综合算式正比例与反比例的关系

八年级数学上册综合算式正比例与反比例的关系

八年级数学上册综合算式正比例与反比例的关系正比例与反比例是数学中常见的两种关系,广泛应用于实际生活和解决问题的过程中。

在八年级数学上册中,综合算式是一个重要的知识点,涉及到正比例与反比例的关系。

本文将从正比例与反比例的定义、性质和应用等方面进行论述,以便帮助同学们更好地理解和掌握这一知识点。

一、正比例的定义和性质正比例是指两个变量之间的关系,当其中一个变量增大或减小时,另一个变量也相应地按比例增大或减小。

具体来说,对于两个变量x 和y,如果它们之间的关系可以表示为y=kx,其中k是一个常数,那么我们称y与x成正比,k称为比例常数。

正比例的性质包括以下几点:1. 零比例:当x等于0时,y也等于0,即x和y是同时为0或同时不为0。

2. 比例常数:对于给定的x和y值,比例常数k始终保持不变。

3. 恒比例:如果两个变量成正比,它们始终保持相同的比值,即y1/x1 = y2/x2。

二、反比例的定义和性质反比例是指两个变量之间的关系,当其中一个变量增大或减小时,另一个变量相应地按比例减小或增大。

具体来说,对于两个变量x和y,如果它们之间的关系可以表示为y=k/x,其中k是一个常数,那么我们称y与x成反比,k称为比例常数。

反比例的性质包括以下几点:1. 零比例:当x等于0时,y没有定义,即x为0时,y不存在。

2. 比例常数:对于给定的x和y值,比例常数k始终保持不变。

3. 恒比例:如果两个变量成反比,它们始终保持相同的乘积,即y1*x1 = y2*x2。

三、正比例与反比例的应用正比例与反比例的关系在现实生活中有许多应用。

下面我们就以一些具体的例子来说明。

1. 光的亮度与距离关系:在太阳光照射下,物体的亮度与光源的距离成反比。

距离光源越远,物体的亮度就越低;反之,距离光源越近,物体的亮度就越高。

2. 时间与速度关系:在等速运动中,时间与速度成正比。

即运动的时间越长,运动的路程就越远;反之,时间越短,运动的路程就越短。

初中数学知识归纳正比例与反比例函数

初中数学知识归纳正比例与反比例函数

初中数学知识归纳正比例与反比例函数初中数学知识归纳:正比例与反比例函数正比例函数是数学中常见的一种函数关系,它表示两个变量之间的关系满足一个比例关系。

而反比例函数则表示两个变量之间的关系满足一个反比关系。

在初中数学中,正比例与反比例函数的概念是重要的基础知识,本文将对此进行归纳和概述。

一、正比例函数正比例函数描述的是两个变量之间的关系满足一个比例关系,数学上用y=kx来表示,其中k是比例系数。

当x增大时,y也随之增大;当x减小时,y也随之减小。

正比例函数的图像是经过原点的一条直线。

例如,若有一辆汽车以恒定的速度行驶,那么行驶的时间与所经过的距离之间的关系就是正比例函数。

行驶的时间越长,所经过的距离就越远,反之亦然。

在实际问题中,正比例函数的应用非常广泛。

例如,单位时间内工人的产量与工作时间之间存在正比例关系;物品的价格和数量之间也存在正比例关系。

通过对这些问题进行函数建模,可以帮助我们更好地理解和解决实际问题。

二、反比例函数反比例函数描述的是两个变量之间的关系满足一个反比关系,数学上用y=k/x来表示,其中k是比例系数。

反比例函数常用于描述一个变量增加时,另一个变量的减小情况。

反比例函数的图像是一个拋物线的开口朝下。

例如,若有一辆汽车以恒定的速度行驶,那么行驶的时间与所经过的距离之间的关系就是反比例函数。

行驶的时间越长,所经过的距离就越短,反之亦然。

和正比例函数一样,反比例函数在实际问题中也有着广泛的应用。

例如,一段管道中的液体的压力与液体通过管道的速度之间存在反比关系;电阻和电流之间也存在反比关系。

掌握反比例函数的概念,可以帮助我们更好地理解和解决这些实际问题。

总结:正比例与反比例函数是初中数学中的重要知识点,掌握这两种函数的概念和特点,有助于我们更好地理解和应用数学知识。

正比例函数描述的是两个变量之间的比例关系,而反比例函数描述的是两个变量之间的反比关系。

通过对实际问题进行函数建模,我们可以利用正比例与反比例函数的概念来解决一系列问题。

正比例函数、一次函数和反比例函数知识点归纳

正比例函数、一次函数和反比例函数知识点归纳

正比例函数、一次函数和反比例函数知识点归纳正比例函数:解析式:y=kx(k为常数,k≠0) ,k叫做函数的比例系数;(注意:x的指数为1) 图像:过原点的直线;必过点:〔0,0〕和〔1,k〕;走向:k>o,图像过一三象限,k<0,图像过二四象限;yx倾斜度:|k|越大,倾斜度越大,也就是越靠近y轴,|k|越小,倾斜度越小,也就是越靠近x轴;如图:y=2xx增减性:k>0,y随x的增大而增大;k<0,y随x的增大而减小;一次函数:解析式:y=kx+b(k,b为常数,k≠0),k叫做函数的比例系数,(注意:x的指数为1,b为直线与y轴交点的纵坐标) ;正比例函数是一次函数的特殊情况,即b=0时的一种情况;图像:一条直线;必过点:〔0,b〕〔-b/k,0〕;走向:k>o,b>0,图像过一二三象限,k>0,b<0,图像过一三四象限;yk<o,b>0,图像过一二四象限k<o,b>0,图像过二三四象限x倾斜度:|k|x轴;如图:x增减性:k>0,y随x的增大而增大;k<0,y随x的增大而减小;平移:y=kx+b,向上平移m个单位:y=kx+b+m;向下平移n个单位:y=kx+b-n;向左平移m个单位:y=k(x+m)+b;向右平移n个单位:y=k(x-n)+b;简称:上加下减,左加右减;〔注:上加下减到代数式后面,左加右减到x后面,直接与x 进行加减,与系数和指数都没关系〕;反比例函数:解析式:y=k/x(k为常数,k≠0)图像:双曲线〔图像无限靠近坐标轴,但永不相交。

〕所在象限:k>0图像经过一三象限;k<0图像经过二四象限。

ykx增减性:k>0,y随x的增大而减小;k<0,y随x的增大而增大;反比例函数知识点归纳一、基础知识〔一〕反比例函数的概念1.〔〕可以写成〔〕的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.〔〕也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.〔二〕反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点〔关于原点对称〕.〔三〕反比例函数与其图象的性质1.函数解析式:〔〕2.自变量的取值范围:3.图象:〔1〕图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.〔2〕图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.〔3〕对称性:图象关于原点对称,即若〔a,b〕在双曲线的一支上,则〔,〕在双曲线的另一支上.图象关于直线对称,即若〔a,b〕在双曲线的一支上,则〔,〕和〔,〕在双曲线的另一支上.4.k的几何意义如图1,设点P〔a,b〕是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是〔三角形PAO和三角形PBO的面积都是〕.如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图2 5.说明:〔1〕双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.〔2〕直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.〔3〕反比例函数与一次函数的联系.〔四〕实际问题与反比例函数1.求函数解析式的方法:〔1〕待定系数法;〔2〕根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.。

初二数学《正比例函数和反比例函数》PPT复习

初二数学《正比例函数和反比例函数》PPT复习
的坐标及k、m的值。
案例分析三
已知正比例函数y=ax(a≠0)的 图像与反比例函数y=b/x(b≠0) 的图像交于C、D两点,且C、D 两点关于原点对称,若点C的坐 标为(3,2),求a、b的值及D点
的坐标。
05 典型例题解析与思路拓展
典型例题选讲
例题1
已知正比例函数 y = kx (k ≠ 0) 的图像经过点 (2, -4),求该正比
在同一平面直角坐标系中,正比例函数 的图像是一条过原点的直线,且关于原 点对称。
比例系数k决定了直线的倾斜程度,k>0 时,直线从左下方向右上方延伸;k<0 时,直线从左上方向右下方延伸。
性质 图像是一条经过原点的直线。
反比例函数定义及性质
性质
图像是分布在两个象限内的双曲 线。
比例系数k决定了双曲线的形状和位置 ,k>0时,双曲线位于第一、三象限; k<0时,双曲线位于第二、四象限。
06 课堂互动环节
学生提问答疑
学生可以向老师提出关于正比例函数 和反比例函数概念、性质、图像等方 面的疑问。
老师会针对学生的问题,进行详细的 解答和辅导,确保学生能够理解和掌 握相关知识。
小组讨论分享学习心得
学生可以分组进行讨论,分享自己在学习正比例函数和反比 例函数过程中的心得和体会。
小组内成。
例题2
已知反比例函数 y = k/x (k ≠ 0) 的图像经过点 (3, 4),求该反比例 函数的解析式。
例题3
已知正比例函数 y = 2x 和反比例函 数 y = 8/x,求这两个函数图像的交 点坐标。
解题思路与方法总结
对于正比例函数,已知一点坐 标,可以通过代入法求出函数 的解析式。
经济学问题

正比例、反比例和一次函数

正比例、反比例和一次函数
C
A
F E
D B
例题探讨: 例题探讨: 例8.已知直线y=3x+6与x轴、y轴分别相交于点A、B, 8.已知直线y=3x+6与 已知直线y=3x+6 轴分别相交于点A 是坐标原点, AB的长及 AOB的面积 的长及△ 的面积。 点O是坐标原点,求AB的长及△AOB的面积。 例9.已知一次函数的图像经过A(0,-3)、B(1,a)、 9.已知一次函数的图像经过A 已知一次函数的图像经过 )、B 三点,且函数值y随着x的值增大而减小, C(a,1)三点,且函数值y随着x的值增大而减小, 求这个一次函数的解析式。 求这个一次函数的解析式。 例10.如果关于x的函数y=(m-2)x+m(m≠2)的图像 10.如果关于x的函数y=( 如果关于 y= x+m( 2 不经过第三象限, 不经过第三象限,求m的取值范围。 的取值范围。
例题探讨: 例题探讨:
例1.已知一个反比例函数的图像与正比例函数 1.已知一个反比例函数的图像与正比例函数 y=3x的图像都经过点A(a,6) y=3x的图像都经过点A(a, 的图像都经过点A(a (1)求a的值 (2)求反比例函数解析式 (3)求正反比例函数图像的另一个交点B的坐标。 求正反比例函数图像的另一个交点B的坐标。 (4)若一次函数的图像经过A、B两点,求这个一 若一次函数的图像经过A 两点, 次函数的解析式。 次函数的解析式。
双曲线; 双曲线; 两支双曲线无限接 一条直线过点 近于坐标轴, (0,0)和(1,k) 近于坐标轴,但永 远无法达到坐标轴
b〉0,上移 b〈0,下移 平行 ⇔ k相等
正比例函数 y=kx(k≠0) 定义 分 布 k﹥0
0 x 在一、 在一、三象限 y
反比例函数

初二数学正比例反比例一次函数知识点总结

初二数学正比例反比例一次函数知识点总结

正比例、反比例、一次函数第一象限(+,+),第二象限(-,+)第三象限(-、-)第四象限(+,-);x 轴上的点的纵坐标等于0,反过来,纵坐标等于0的点都在x 轴上,y 轴上的点的横坐标等于0,反过来,横坐标等于0的点都在y 轴上,若两个点关于x 轴对称,横坐标相等,纵坐标互为相反数;若两个点关于y 轴对称,纵坐标相等,横坐标互为相反数;若两个点关于原点对称,横坐标、纵坐标都是互为相反数。

原点(x ,y ) (x ,-y );(x ,y ) (-x ,y );(x ,y ) (-x ,-y )对称1、 一次函数,正比例函数的定义(1)如果y=kx+b(k,b 为常数,且k ≠0),那么y 叫做x 的一次函数。

(2)当b =0时,一次函数y=kx+b 即为y=kx(k ≠0).这时,y 叫做x 的正比例函数。

注:正比例函数是特殊的一次函数,一次函数包含正比例函数。

2、正比例函数的图象与性质(1)正比例函数y=kx(k ≠0)的图象是过(0,0)(1,k )的一条直线。

3、一次函数的图象与性质一次函数y=kx+b(k ≠0)的图象是必过点(0,b )和点(-k b ,0)的一条直线。

注:(0,b )是直线与y 轴交点坐标,(-kb ,0)是直线与x 轴交点坐标.x 轴 对称 y 轴 对称4、一次函数y=kx+b(k≠0, k b 为常数)中k 、b的符号对图象的影响(1)k>0, b>0⇔直线经过一、二、三象限(2)k>0, b<0⇔直线经过一、三、四象限(3)k<0, b>0⇔直线经过一、二、四象限(4)k<0, b<0⇔直线经过二、三、四象限5、对一次函数y=kx+b 的系数k, b 的理解。

(1)k(k ≠0)相同,b 不同时的所有直线平行,即直线l 1:y=k 1x+b 1;直线l 2:y=k 2x+b 2( k 1,k 2均不为零,k 1,b 1,k 2, b 2为常数)k 1=k 2 k 1=k 2l 1∥l 2平行 l 1与l 2重合b 1≠b 2 b 1=b 2(2)k(k ≠0)不同,b 相同时的所有直线恒过y 轴上一定点(0,b ),例如:直线y=2x+3, y=-2x+3, y=21x+3均交于y 轴一点(0,3) 6、直线的平移:所谓平移,就是将一条直线向左、向右(或向上,向下)平行移动,平移得到的直线k 不变,直线沿y 轴平移多少个单位,可由公式︱b 1-b 2︱得到,其中b 1,b 2是两直线与y 轴交点的纵坐标,直线沿x 轴平移多少个单位,可由公式︱x 1-x 2︱求得,其中x 1,x 2是由两直线与x 轴交点的横坐标。

八年级-期末复习(一次函数)优质讲义

八年级-期末复习(一次函数)优质讲义

教学内容一、能力培养一次函数知识点1、一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数. 【说明】(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定. (2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数. (3)当b=0,k ≠0时,y= kx 仍是一次函数. (4)当b=0,k=0时,它不是一次函数.1.如果()2213m y m x-=-+是一次函数,则的值是( )A 、1B 、-1C 、±1D 、±2 2.函数y=2x+3,当x=1时,y 的值是( )A 、1B 、0C 、-1D 、-5 3.若23y x b =+-是正比例函数,则b 的值是__________ 知识点2、函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点3、一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.知识点4、一次函数y=kx+b (k ,b 为常数,k ≠0)的性质 (1)k 的正负决定直线的倾斜方向; ①k >0时,y 的值随x 值的增大而增大; ②k<O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(陡);|k|越小,直线与x 轴相交的锐角度数越小(缓); (3)b 的正、负决定直线与y 轴交点的位置; ①当b >0时,直线与y 轴交于正半轴上; ②当b <0时,直线与y 轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数.(4)由于k ,b 的符号不同,直线所经过的象限也不同;①当k >0,b >0时,直线经过第一、二、三象限(直线不经过第四象限); ②当k >0,b <O 时,直线经过第一、三、四象限(直线不经过第二象限); ③当k <O ,b >0时,直线经过第一、二、四象限(直线不经过第三象限); ④当k <O ,b <O 时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x 轴相交的锐角的大小,k 相同,说明这两个锐角的大小相等,即两条直线是平行的. 练习:1、若m <0, n >0, 则一次函数y=mx+n 的图象不经过 ( )A.第一象限B. 第二象限C.第三象限D.第四象限 2、当00><b ,a 时,函数y =a x+b 与a bx y +=在同一坐标系中的图象大致是( )知识点5、点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点6、正比例函数及一次函数的表达式(待定系数法)(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b 中,k,b就是待定系数.用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.例:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.知识点8、函数图象的平移(左加右减,上加下减)例1、直线y=2x+1按坐标向上平移3个单位后的函数的表达式为________________例2、将直线y=3x向左平移5个单位,得到直线;将直线y=-2x-5向右平移3个单位,得到直线 .老规矩,下面是试卷练习一、选择题(每小题2分,共16分)1. 点P ( 2,-3 )关于x 轴的对称点是( )A . (-2, 3 )B . (2,3)C .(-2, 3 )D .(2,-3 ) 2. 若2=a ,则a 的值为 ( )A.2B.2±C.4D.±43.把0.697按四舍五入法精确到0.01的近似值是 ( ) A . 0.6 B . 0.7 C . 0.67 D . 0.704. 一次函数y =2x +1的图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 5.若440-=m ,则估计m 的值所在的范围是 ( )A .1<m <2B .2<m <3C .3<m <4D .4<m <56. 若点A (-3,y 1),B (2,y 2),C (3,y 3)是函数2+-=x y 图像上的点,则( ) A .321y y y >> B .321y y y << C .231y y y << D .132y y y >>7. 某电视台“走基层”栏目的一位记者乘汽车赴320km 外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y (单位:km )与时间x (单位:h )之间的关系如图所示,有下列结论,正确的是( )①.汽车在高速公路上的行驶速度为80km/h ②.乡村公路总长为160km③.汽车在乡村公路上的行驶速度约为53.3km/h ④.该记者在出发后5h 到达采访地 A 、①②④ B 、②③④ C 、①②③ D 、①②③④8. 平面直角坐标系中,已知A (8,0),△AOP 为等腰三角形且面积为16,满足条件的P 点有( ) A .4个 B .8个 C .10个 D .12个(第7题图)2401603.52y/kmx/h二.填空题(每小题2分,共20分)9. 计算:3-64 = ▲ .10. 若等腰三角形的两边长分别为4和8,则这个三角形的周长为 . 11. 若032=++-y x ,则()2013y x +的值为 .12. 在平面直角坐标系中,若点M (-1,3)与点N (x ,3)之间的距离是5,则x 的值是 . 13. 如图,已知函数y =2x +1和y =-x -2的图像交于点P ,根据图像,可得方程组⎩⎨⎧2x -y +1=0x +y +2=0的解为 .14. 将一次函数y =2x -1的图像向上平移3个单位长度后,其对应的函数关系式为 .15. 如图,在△ABC 中,AB =1.8,BC =3.9,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为 .16. 如图,在△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若 ∠A =26°,则∠ADE = °.17. 如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A ,B ,C ,D 的面积和是49cm 2 ,则其中最大的正方形S 的边长为 cm. 18. 在平面直角坐标系中,规定把一个正方形先沿着x 轴翻折,再向右平移2个单位称为1次变换.如图,已知正方形ABCD 的顶点A 、B 的坐 标分别是(-1,-1)、(-3,-1),把正方形ABCD 经过连续6次这 样的变换得到正方形A ′B ′C ′D ′,则B 的对应点B ′的坐标是 ▲ .三.解答题(本大题共9小题,共64分)-1-1y= -x-2y=2x+1xyP(第13题图)DECAB(第16题图)xy 1234–1–2–3–41234–1–2–3–4CD BA o (第18题图)(第15题图)D EACB19. (本题满分8分)(1) (4分) 求出式子中x 的值:9x 2-16=0.(2)(4分)232)3(8)2(+---20. (本题满分5分) 求一个正数的算术平方根,有些数可以直接求得,如4,有些数则不能直接求得,如5,但可以通过计算器求得. 还有一种方法可以通过一组数的内在联系,运用规律求得,请同学们观察下表:n16 0.16 0.0016 1600 160000 … n40.40.0440400…(1)表中所给的信息中,你能发现什么规律?(请将规律用文字表达出来)(2)运用你发现的规律,探究下列问题:已知06.2≈1.435,求下列各数的算术平方根: ①0.0206; ②206; ③20600.21. (本题满分6分)已知关于x 的一次函数y =mx +2的图像经过点(-2,6). (1)求m 的值;(2)画出此函数的图像;(3)平移此函数的图像,使得它与两坐标轴所围成的图形的面积为4, 请直接写出此时图像所对应的函数关系式.22. (本题满分8分) 如图,点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别是C 、D . 求证:(1)∠EDC =∠ECD (2)OC =OD(3)OE 是线段CD 的垂直平分线xy12–1–212–1–2o(第21题图)第22题图EDB C AO23. (本题满分7分)如图,一只小蚂蚁要从A 点沿长方体木块表面爬到B 点处吃蜜糖.已知长方体木块的长、宽、高分别为10cm 、8cm 、6cm , 试计算小蚂蚁爬行的最短距离.24.(本题满分6分) 图l 、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.点A 和点B 在小正方形的顶点上.(1)在图1中画出△ABC(点C 在小正方形的顶点上),使△ABC 为直角三角形(画一个 即可); (2)在图2中画出△ABD(点D 在小正方形的顶点上),使△ABD 为等腰三角形(画一个即可);25. (本题满分6分) 一辆客车与一辆出租车分别从甲、乙两地同时出发,相向而行.设客车离甲地的距离为y 1千米,出租车离甲地的距离为y 2千米,两车行驶的时间为x 小时, y 1、y 2关于x 的函数图象如右图所示:(1)根据图像,直接写出y 1、y 2关于x 的函数图象关系式 (2)试计算:何时两车相距300千米?BA(第23题图)y (千米) x (小时)8 5O 800出租车客车(第25题图)26.(本题满分10分)小丽的爸爸驾车外出旅行,途经甲地到乙地.设他出发第t min时的速度为v m/min,图中的折线表示他从甲地到乙地的驾车速度v与时间t之间的函数关系.某学习小组经过探究发现:小丽爸爸前5min运动的路程在数值上等于长方形AOLB的面积.由物理学知识还可知:小丽爸爸前n (5<n≤10)秒运动的路程在数值上等于矩形AOLB 的面积与梯形BLNM的面积之和(以后的路程在数值上有着相似的特点).(1)小丽的爸爸驾车的最高速度是m/min;(2)当45≤t ≤50时,求v与t之间的函数关系式,并求出小丽爸爸出发第47min时的速度;(3)如果汽车每行驶100km耗油10L,那么小丽的爸爸驾车从甲地到乙地共耗油多少升?27.(本题满分8分) 在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED=EC. 试探索以下问题:(1)当点E 为AB 的中点时,如图1,请判断线段AE 与DB 的大小关系,请你直接写出结论:AE DB (填“>”“<”或“=”).(2)当点E 为AB 上任意一点时,如图2,AE 与DB 的大小关系会改变吗?请说明理由.学法升华一、知识收获做了上面这些题目你有什么收获?二、方法总结哪些地方还需要加强?三、技巧提炼将错题反复演练,错一次不错第二次。

一次函数,二次函数,反比例函数性质总结

一次函数,二次函数,反比例函数性质总结

一次函数、二次函数、反比例函数性质总结1.一次函数一次函数一次函数)0(¹+=k b kx y ,当0=x 时,得到的y 的值也即b 叫做图象与坐标轴的纵截距,当0=y 时,得到的x 的值,叫做图象与坐标轴的横截距。

的值,叫做图象与坐标轴的横截距。

(1)当0=b 时,一次函数的解析式变为)0(¹=k kx y ,也称为正比例函数,此函数图象恒过原点)0,0(O ,且横,纵截距都为0。

且0>k 时,函数图象过一、三象限,0>k 时,图象过二、四象限。

时,图象过二、四象限。

①0>k ②0<k(2)当0¹b 时,)0(¹+=k b kx y 的图象及性质为的图象及性质为①0,0>>b k 时,时, ② 0,0<>b k 时 图象过一二,三图象过一二,三 图象过一、三、四图象过一、三、四象限象限 象限象限③0,0><b k 时,时, ④ 0,0<<b k 时,时,图象过一、二、四图象过一、二、四 图象过二、三、四图象过二、三、四象限象限 象限象限yxxy yy OOOO xxyOOy xx2.二次函数二次函数 二次函数的一般形式为)0(2¹++=a c bx ax y ,且a 决定开口方向和大小,当0>a 时,抛物线开口向上,有最小值,值域为),44[2+¥-ab ac 当0<a ,抛物线开口向下,有最大值,值域为]44,(2ab ac --¥。

(1)当0,0==c b 时,函数的解析式变为)0(2¹=a ax y ,则,则 ①0>a 时 ②0<a 时(2)b a ,决定二次函数的对称轴和开口方向决定二次函数的对称轴和开口方向①当0,0,0=>>c b a 时 ②0,0,0=<>c b a 时③ 0,0,0=><c b a 时 ④ 0,0,0=<<c b a 时(3)c a ,决定开口方向和与y 轴的截距轴的截距①0,0,0=>>b c a 时 ②0,0,0=<>b c a 时yyOxxxxyyOOyOxxOyO③0,0,0=><b c a 时 ④0,0,0=<<b c a 时(3)对于一般的二次函数,c b a ,,共同来决定其函数图像和性质,故通常采用配方的方法共同来决定其函数图像和性质,故通常采用配方的方法)0(2¹++=a c bx ax yc a b a b x a b x a c x a bx a +-++=++=))2()2(()(2222c a b a b x a +-+=]4)2[(222=c ab a b x a +-+4)2(22=ab ac a b x a 44)2(22-++我们称ab x 2-=为二次函数的对称轴,坐标)44,2(2a b ac a b--为二次函数的顶点坐标,此时我们也称其解析式为二次函数的顶点式,并可设其解析式为)0()(2¹+-=a k h x a y 。

初二数学《正比例函数和反比例函数》复习课件

初二数学《正比例函数和反比例函数》复习课件

典型例题解析
1. 已知正比例函数$y=kx$的图像经过 点$(3,6)$,求这个正比例函数的解析
式。
【分析】本题考查了用待定系数法求正 比例函数的解析式。先设出正比例函数
解析式,再把已知点的坐标代入求出 $k$的值,即可得出正比例函数的解析
式。
【解答】解:∵正比例函数$y=kx$的 图像经过点$(3,6)$,
复杂函数图像的绘制
介绍如何绘制更复杂的正比例函数和反比例函数 图像,如含有绝对值、分段函数等。
函数在实际问题中的综合运用
通过具体例题,讲解正比例函数和反比例函数在 实际问题中的综合运用,如经济、物理等领域的 问题。
与其他知识点的联系
探讨正比例函数和反比例函数与其他数学知识点 的联系,如一次函数、二次函数等。
典型例题解析
∴$6=3k$,解得
$k=2$,
∴这个正比例函数的解析式为
$y=2x$。
典型例题解析
(1) $m$为何值时, 函数图像经过第一、 三象限;
(3) $m$为何值时, 点$(1,3)$在该函数 图像上。
(2) $m$为何值时, $y$随$x$的增大而 减小;
典型例题解析
01
02
03
04
05 易错难点剖析与 解题技巧
易混淆概念辨析
01
正比例函数与反比例函数定义对比
正比例函数形如y=kx(k≠0),反比例函数形如y=k/x(k≠0),要区
分清楚。
02
函数图像与性质对比
正比例函数图像是过原点的直线,反比例函数图像是双曲线,且两支分
别位于第一、三象限或第二、四象限。
03
比例系数k的几何意义
解析正比例函数与反比例函数的 定义和性质,通过具体题目加深

“正比例和反比例”复习课讲义

“正比例和反比例”复习课讲义
• 如果用字母x、y表示这两种相关联 的量,正比例关系可以用式子表示 为: x k k为常数 或者 y ax (a为常数)
y
• 反比例的意义: 两种相关联的量,一种量增加,另一种量
也随着减少;如果这两种量中相对应的两 个数的乘积一定,这两种量就叫做成反比 例的量,它们的关系叫做反比例关系 。
• 如果用字母x、y表示这两种相关联 的量,反比例关系可以用式子表示 为:x×y=k (k为常数)
• 比例尺的表示方式
二、常见题型:
• 正反比例关系概念理解、应用 • 解比例 • 利用比例解应用题 • 正反比例关系的图像的理解 • 比例尺的理解及应用
例1:
三、易错题:
正方形边长/cm 1 2 正方形面积/cm2 1 4 s与a比值(不一定) 1 2
3 4 …… 9 16 …… 3 4 ……
判断正误:正方形的边长增加,面积也增加,所以 正方形边长和面积成正比例关系。
借出的本数
12345
剩余的本数
98765
借与剩的和(一定) 10 10 10 10 10
判断正误:借出本数和剩余本数的和一定, 所以他们是成比例的量。
易错题讲解: 定量
• 一辆垃圾清运车两次 可以清理5吨垃圾,某
市一天的生活垃圾有 3000吨,
每辆车每次可 以清运2.5吨 垃圾,一天的 垃圾3000吨
• 解:5mm:4cm=5mm:40mm=1:8 • 所以这幅图纸的比例尺是1:8。
对吗?
四、典例解析:
• 例一、判断下面各题中的两种量是 否成比例。如果成比例,成什么比 例?(见学案)
方法小结:
第一,这两种量是不是相互关联?其 中一种量是否随着另一种量的变化 而变化?
第二,这两种量中每一组对应的数的 比值(或积)是否一定 ?(比值 一定,二者是正比例关系,乘积一 定,二者是反比例关系。)这两个 条件缺一不可。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正比例、反比例、一次函数〖知识点〗 正比例函数及其图像、一次函数及其图像、反比例函数及其图像〖大纲要求〗1.理解正比例函数、一次函数、反比例函数的概念;2.理解正比例函数、一次函数、反比例函数的性质;3.会画出它们的图像;4.会用待定系数法求正比例、反比例函数、一次函数的解析式内容分析1、一次函数(1)一次函数及其图象如果y =kx +b (K ,b 是常数,K ≠0),那么,Y 叫做X 的一次函数。

特别地,如果y =kx (k 是常数,K ≠0),那么,y 叫做x 的正比例函数一次函数的图象是直线,画一次函数的图象,只要先描出两点,再连成直线(2)一次函数的性质当k >0时y 随x 的增大而增大,当k <0时,y 随x 的增大而减小。

2、反比例函数(1) 反比例函数及其图象如果)0,(≠=k k xk y 是常数,那么,y 是x 的反比例函数。

反比例函数的图象是双曲线,它有两个分支,可用描点法画出反比例函数的图象(2)反比例函数的性质当K >0时,图象的两个分支分别在一、二、三象限内,在每个象限内, y 随x 的增大而减小; 当K <0时,图象的两个分支分别在二、四象限内,在每个象限内,y 随x 的增大而增大。

3.待定系数法先设出式子中的未知数,再根据条件求出未知系数,从而写出这个式子的方法叫做待定系数法可用待定系数法求一次函数、二次函数和反比例函数的解析式〖考查重点与常见题型〗1. 考查正比例函数、反比例函数、一次函数的定义、性质,有关试题常出现在选择题中2. 综合考查正比例、反比例、一次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题3. 用待定系数法求正比例,反比例,一次函数的解析式,有关习题出现的频率很高,类型有中档解答题和选拔性的综合题4. 利用函数解决实际问题,并求最值,这是近三年中考应用题的新特点。

考查题型1.若函数y =(m +1)x m 2+3m +1是反比例函数,则m 的值是()(A ) m =-1(B )m =-2(C )m =2或m =1(D )m =-2或m =-12.已知一次函数y =(m +2)x +(1-m ),若y 随x 的增大而减小,且该函数的图像与x 轴的交点在原点的右侧,则m 的取值范围是( )(A )m >-2 (B )m <1 (C )-2<m <-1 (D )m <-23.函数y =k x与y =kx +1(k ≠0)在同一坐标系内的图像大致为图中的( ) y y y y4.已知一次函数的图像是一条直线,该直线经过(0,0),(2,-a ),(a ,-3)三点,且函数值随自变量x 值的增大而减小,则此函数的解析式 。

5.一次函数y =2x -3在y 轴上的截距是6.对于函数y =-1x,当x >0时,y 随x 的增大而 7.如果直线y =2x +m 不经过第二象限,那么实数m 的取值范围是8.若双曲线y =(m -1)x -1在第二、四象限,则m 的取值范围是9.已知直线y =34x+b被两坐标轴截取的线段长为5,求此直线函数解析式。

10.已知一次函数y =kx +2b+3的图象经过点(-1,-3),k是方程m2-3m=10的一个根,且Y 随x的增大而增大,求这个一次函数解析式。

考点训练:1. y = x 的图象是一条过原点及点(-3,3 2 )的直线2.一次函数y =kx +b 的图象经过P (1,0) 和Q (0,1)两点,则k = ,b = .3.正比例函数的图象与直线y = -23x +4平行,则该正比例函数的解析式为 ,该正比例函数y 随x 的增大而 .4.已知y -2与x 成正比例,且x =2时,y =4,则y 与x 之间的函数关系是 ,若点(m ,2m +7), 在这个函数的图象上,则m =5. 函数y =(m -4)x m 2-5m -5的图象是过一、三象限的一条直线,则 m =6.函数y =k x(k ≠0)的图象经过点( 2 ,3),则k = ,当x >0时,y 随着x 的增大而 7.如果一次函数y =kx +b 和反比例函数y =k x的图象都经过(-2,1)点,则b 的值是 8.已知一次函数y =kx +b 的y 随x 的增大而减小,那么它的图象必经过 象限。

9.已知函数y = -2x -6。

(1)求当x = -4时,y 的值,当y = -2时,x 的值。

(2)画出函数图象;(3)求出函数图象与坐标轴的两个交点之间的距离;(4)如果y 的取值范围-4≤y ≤2,求x 的取值范围.10.已知z 与y - 3 成正比例,x 与 6 z成反比例,(1)证明:y 是x 的一次函数;(2)如果这个一次函数的图象经过点(-2,3 3 ),并且与x 、y 轴分别交于A 、B 两点。

求两 点的坐标。

*11.已知函数y =k x的图象上有一点P (m,n),且m,n关于t的方程t2-4at+4a2-6a-8=0的两个实数根,其中a是使方程有实数根的最小整数,求函数y =k x的解析式, 解题指导1.函数y = - 32x 的图象是一条过原点(0,0)及点(2, )的直线,这条直线经过第 象限,y 随的增大而2.已知一次函数y = - 12x +2,当x = 时,y =0;当x 时y >0; 当x 时y <0. 3.若一次函数y 1=kx -b 图象经过第一、三、四象限,则一次函数y 2=bx +k 的图象经过第 象限。

4.直线y 1=k 1x +b 1和直线y 2=k 2x +b 2相交于y 轴上同一点的条件是 ;这两直线平行的条件是5.过点(0,2)且与直线y = - x 平行的直线是 。

6.y 与3x +2成正比例,比例系数是4,则y 与x 的函数关系式是 。

7.等腰三角形的周长为30cm ,它的腰长为ycm 与底长xcm 的函数关系式是 。

8.y = x -1 的图象是一条过点(45 ,- 34 )的双曲线,在它的图象所在的每一个象限内,y 随x 的增大而 。

9.把直线y =- 32 x -2向上平移2个单位,得到直线 ,把直线y =- 32x -2向 平移 个单位,得到直线y =- 32(x +4) 10.写出满足下表的一个一次函数的关系式x- 1 2 5 y 7.5 6 4.511.直线y =kx +b 经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,求其解析式。

12.已知反比例函数y =k x(k >0)的图象上的一点P ,它到原点O 的距离OP =2 5 ,PQ 垂直于y 轴,垂足为Q .若△OPQ 的面积为4平方单位,求:(1)点P 的坐标;(2)这个反比例函数的解析式.独立训练(一):1.函数y = - 2x是 函数,这个函数的图象位于第 象限。

2.对函数y = - 53x当x >0时,y 随x 的增大而 。

3.反比例函数y =k x的图象上有一点P ,它的横坐标m 与纵坐标n 是方程t 2-4t -2=0的两个根,则k =4.如图,P 为反比例函数y =k x的图象上的点,过P 分别向 x 轴和y 轴引垂线,它们与两条坐标轴围成的矩形面积为2,这个反比例函数解析式为 。

5.反比例函数y =(a -3)x 2a -2a -4的函数值是4时,它的自变量x 的值是 。

6.一次函数y =kx +b 与反比例函数y =2x 的图象的两个交点的横坐标为12和 -1,则一次函数y = 7.一次函数y =kx +b 过点(-2,5),且它的图象与y 轴的交点和直线y =-12x +3与y 轴的交点关于x 轴对称,那么一次函数的解析式是8.如图,在矩形ABCD 中,已知AB =2 3 ,BD =6,对角线AC 和BD 相交于O ,以O 为原点分别以平行于AB 和AD 的直线为轴和轴建立平面直角坐标系,则对角线AC 和BD 的函数表达式分别为 。

9.求直线y =3x +10,y = -2x -5与y 轴所围成的三角形的面积。

10.如图,一次函数y =k 1x +b 的图象过一、三、四象限,且与双曲线y =k 2x的图象交于A 、B 两点,与y 轴交于C 点,且A (x 1,y 1)是∠XOA 终边上一点。

(1) tan ∠XOA =15,原点到A 点的距离为26 ,求A 点的坐标; (2)在(1)的条件下,若S △AOC =b 2-6,求一次函数的解析式。

独立训练(二):1. 如图,A 、B 是函数y =1x 的图象上关于原点O 对称的任意两点,AC 平行于y 轴, BC 平行于x 轴,△ABC 的面积S ,则( )(A )S =1 (B ) 1<S <2 (C ) S =2 (D ) S >22.函数y =k 1x +b (k 1b <0)与y =k 2x(k 2<0)在同一坐标系中的图象大致是( )3.在边长为 2 的正方形ABCD 的边BC 上,有一点P 从B 点运动到C 点,设PB =x ,图形APCD 的面积为y ,写出y 与自变量x 的函数关系式,并且在直角坐标系中画出它的图象4.已知y =y 1+y 2,y 1与x 2成正比例,y 2与x 成反比例,并且当x =1时,y =1,当x =3时,y =-17,求x =-1时,y 的值5.如图,在y = 8x(x >0)反比例函数的图象上有不重合的两点 A 、B ,且A 点的纵坐标是2,B 点的横坐标为2,BB 1和AA 1都垂直于轴,垂足分别为B 1和A 1,(1)求A 点横坐标;(2)求S △1OBB (3)当OB =2 5 时,求S △OBA6.如图已知AB 是⊙O 的直径,P 是BA 延长线上一点, PC 切⊙O 于C ,P A =6,PEF 是⊙O 的割线,设PE =x, PF =y ,弦CM ⊥AB 于D ,且AD :DB =1:2, 求y与x之间的函数关系式, 并求出自变量x取值范围。

A O PB CF D E。

相关文档
最新文档