第5章 频域特性法
5.1 频域特性
e j[ωt +∠G ( jω )] e j[ωt + ∠G ( jω )] = Ar G ( jω ) 2j
r(t)=Arsin(ωt) )=A sin(ω
在正弦输入信号作用下,线性系统的稳态输出是和输 入具有相同频率的正弦信号. A(ω ) = G ( jω ) 输出与输入的幅值比为 输出与输入的相位差 (ω ) = ∠G ( jω )
13
二,频率特性的图示方法 (1) 极坐标图 (Polar plot) (2) 对数坐标图 (Bode diagram or logarithmic plot) (3) 对数幅相图 (Log-magnitude versus phase plot) (Log-
14
1,极坐标图 (Polar plot) 极坐标图(Polar plot), 幅相频率特性曲线,= 极坐标图(Polar plot),=幅相频率特性曲线,=幅相曲线 , =奈奎斯特曲线(简称奈氏图 ). 奈奎斯特曲线( G(jω)可用幅值|G(jω)|和相角φ(ω)(= ∠G(jω))的向量表示. 可用幅值| 和相角φ ))的向量表示. 当输入信号的频率ω →∞变化时,向量G 当输入信号的频率ω:0→∞变化时,向量G(jω)的幅值和 相位也随之作相应的变化,其端点在复平面上移动的轨迹称为 极坐标图. 在极坐标图上,正/负相角是从正实轴开始,以逆时针/ 在极坐标图上,正/负相角是从正实轴开始,以逆时针/顺 时针旋转来定义的. 奈奎斯特(N.Nyquist)在1932年基于 奈奎斯特(N.Nyquist)在1932年基于 极坐标图阐述了反馈系统稳定性.
n b a a = + ∑ i s + jω s jω i =1 s si
si为开环极点, a, a 和bi (i = 1,2, n)为待定系数.
自动控制原理(第2版)(余成波_张莲_胡晓倩)习题全解及MATLAB实验第5章习题解答
第5章频率特性法频域分析法是一种图解分析法,可以根据系统的开环频率特性去判断闭环系统的性能,并能较方便地分析系统参量对系统性能的影响,从而指出改善系统性能的途径,已经发展成为一种实用的工程方法,其主要内容是:1)频率特性是线性定常系统在正弦函数作用下,稳态输出与输入的复数之比对频率的函数关系。
频率特性是传递函数的一种特殊形式,也是频域中的数学模型。
频率特性既可以根据系统的工作原理,应用机理分析法建立起来,也可以由系统的其它数学模型(传递函数、微分方程等)转换得到,或用实验法来确定。
2)在工程分析和设计中,通常把频率特性画成一些曲线。
频率特性图形因其采用的坐标不同而分为幅相特性(Nyquist图)、对数频率特性(Bode图)和对数幅相特性(Nichols图)等形式。
各种形式之间是互通的,每种形式有其特定的适用场合。
开环幅相特性在分析闭环系统的稳定性时比较直观,理论分析时经常采用;波德图可用渐近线近似地绘制,计算简单,绘图容易,在分析典型环节参数变化对系统性能的影响时最方便;由开环频率特性获取闭环频率指标时,则用对数幅相特性最直接。
3)开环对数频率特性曲线(波德图)是控制系统分析和设计的主要工具。
开环对数幅频特性L(ω)低频段的斜率表征了系统的型别(v),其高度则表征了开环传递系数的大小,因而低频段表征系统稳态性能;L(ω)中频段的斜率、宽度以及幅值穿越频率,表征着系统的动态性能;高频段则表征了系统抗高频干扰的能力。
对于最小相位系统,幅频特性和相频特性之间存在着唯一的对应关系,根据对数幅频特性,可以唯一地确定相应的相频特性和传递函数。
4)奈奎斯特稳定性判据是利用系统的开环幅相频率特性G(jω)H(jω)曲线,又称奈氏曲线,是否包围GH平面中的(-l,j0)点来判断闭环系统的稳定性。
利用奈奎斯特稳定判据,可根据系统的开环频率特性来判断闭环系统的稳定性,并可定量地反映系统的相对稳定性,即稳定裕度。
稳定裕度通常用相角裕量和幅值裕量来表示。
第5章-线性系统的频域分析法
0.1 0.2
0.5
1
2
5
10
20
50
() -96.3 -102.5 -116.6 -140.7 -164.7 -195.3 -219.3 -240.6 -257.5
5-4 频率域稳定判据
一、奈氏判据的数学基础 1、幅角原理
设F(s)为复变函数,F(s)
在s平面上任一点 K*(s z1)(s z2) (s zm)
G( j) j L() 20lg () 90
L(dB) 40 20
0 0.01 0.1
1
20
20dB / dec
10
-40
( ) 90
0 0.01 0.1
1
90
10
4、一阶惯性环节
G(
j)
1
Tj
1
1
e arctgT
1 T 22
L() 20 lg 1 T 22
() arg tgT
5-1 引言
频率特性是研究自动控制系统的一种工程方法,它 反映正弦信号作用下系统性能。应用频率特性可以 间接地分析系统的动态性能与稳态性能。频率特性 法的突出优点是组成系统的元件及被控对象的数学 模型若不能直接从理论上推出和计算时,可以通过 实验直接求得频率特性来分析系统的品质。其次, 应用频率特性法分析系统可以得出定性和定量的结 论,并且有明显的物理意义。在应用频率特性法分 析系统时,可以利用曲线,图表及经验公式,因此, 用频率特性法分析系统是很方便的。
1
T
() 45
L(dB) 0
20
40
60 ( )
0
1 T
精确特性
45
90
渐进特性
20dB/ dec
自动控制原理第5章频域分析法
通过分析频率响应函数的极点和零点分布,以及系统的相位和幅值 特性,利用稳定性判据判断系统在不同频率下的稳定性。
注意事项
稳定性判据的选择应根据具体系统的特性和要求而定,同时应注意 不同判据之间的适用范围和限制条件。
04
频域分析法的应用实例
04
频域分析法的应用实例
控制系统性能分析
稳定性分析
极坐标或对数坐标表示。
绘制方法
通过频率响应函数的数值计算,将 结果绘制成曲线图,以便直观地了 解系统在不同频率下的性能表现。
注意事项
绘制曲线时应选择合适的坐标轴比 例和范围,以便更好地展示系统的 性能特点。
频率特性曲线的绘制
定义
频率特性曲线是频率响应函数在 不同频率下的表现形式,通常以
极坐标或对数坐标表示。
稳定裕度。
动态性能分析
02
研究系统在不同频率下的响应,分析系统的动态性能,如超调
和调节时间等。
静态误差分析
03
分析系统在稳态下的误差,确定系统的静态误差系数,评估系
统的静态性能。
系统优化设计
参数优化
通过调整系统参数,优化 系统的频率响应,提高系 统的性能指标。
结构优化
根据系统频率响应的特点, 对系统结构进行优化,改 善系统的整体性能。
05
总结与展望
05
总结与展望
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。
通过频率响应曲线,可以方便地比较不同系统或同一 系统不同参数下的性能。
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。
第5章频域分析法
自动控制原理
第五章 频域分析法-频率法
幅相曲线
伯德图
自动控制原理
第五章 频域分析法-频率法
二、积分环节
1 传递函数: G( s ) s
1 频率特性: G (j ) j
幅频特性: M ( ) G(j )
1
相频特性: ( ) G(j ) 90
对数幅频特性: 1 L( ) 20lg M ( ) 20lg 20lg
自动控制原理
第五章 频域分析法-频率法
对数相频曲线的纵坐标表示相频特性的函 数值,线性均匀分度,单位是度或弧度。
lg
1
2
3
4
5
6
7
8
9
10
0 0.301 0.477 0.6020.6990.7780.8450.9030.954 1
自动控制原理
第五章 频域分析法-频率法
采用对数坐标图的优点是:
自动控制原理
第五章 频域分析法-频率法
幅相曲线
伯德图
自动控制原理
第五章 频域分析法-频率法
四、惯性环节
1 传递函数: G ( s ) Ts 1 1 频率特性: G (j ) jT 1
幅相曲线
1
对数幅频特性:
L( ) 20 lg G (j ) 20 lg 20 lg1 20 lg
2
T
2
1
T 1 20 lg
T 1
2
对数相频特性: G(j ) arctan T
自动控制原理
第五章 频域分析法-频率法
近似对数幅频特性:
1 当 T
T 1,略去 (T )2 则得 时,
自动控制原理第五章频域分析法
谐振峰值
Am(m) 2
1
12
振荡环节的对数频率特性
L ()2l0 oG g (j) 2l0 o(g 1 n 2 2)24 2 n 2 2
n L()0低频渐近线是零分贝线。
n L ( ) 4 0lo g (/ n) 4 0lo g (T ) n 1 /T
高频段是一条斜率为- 40/dB的直线,和零分
幅频特性的谐振峰值和谐振角频率:
G(ju)
1
(1u2)242u2
d G d (j) u u 0 ,u r 1 22 ( 1 /2 0 .7)0
r n12 2 ( 1/ 20 .7) 0
幅频特性的谐振角频率和谐振峰值:
rn1 22, M r G (jr) 1 /21 2
谐振频率
1 / T , L () 2l0 o1 g2 T 2 2l0 o 1 0 g ( d)B
在频率很低时,对数幅频曲线可用0分贝线近似。
1 / T , L ( ) 2l0 o1 g 2 T 2 2l0 o T g
当频率很高时,对数幅频曲线可用一条直线近似,直
线斜率为-20dB/dec,与零分贝线相交的角频率为 1/T 。
( )
0 0.1 1 10
0 o 0.1 1 10
45o
20
90o
对数坐标刻度图
注意:
➢纵坐标是以幅值对数分贝数刻度的,是均匀的;横 ➢ 坐标按频率对数标尺刻度,但标出的是实际的值, ➢ 是不均匀的。 ——这种坐标系称为半对数坐标系。 ➢在横轴上,对应于频率每增大10倍的范围,称为十 ➢ 倍频程(dec),如1-10,5-50,而轴上所有十倍频 程 ➢ 的长度都是相等的。 ➢为了说明对数幅频特性的特点,引进斜率的概念, ➢ 即横坐标每变化十倍频程〔即变化〕所对应的纵 坐
第五章_频域特性
,半径为
1 2
。
16
A()—— 幅频特性;G(j)的模,它等于稳态 的输出分 量与输入分量幅值之比. ()—— 相频特性;G(j)的幅角,它等于稳态输出分 量与输入分量的相位差。 G ( j ) U()—— 实频特性; j V V()—— 虚频特性; V ( ) 都是的函数,之间的 A ( ) 关系用矢量图来表示。
10
R
极坐标图
c 1 G ( j ) r R C j 2
r (t )
i (t )
C
c (t )
1 1 j T e
j a rc ta n T
e
j
1 1 j T
1 /( 2 T )
1/ 1 T
G ( j ) 9 0
由于幅角是常数,且幅值随ω增大而减小。因此,积分 环节是一条与虚轴负段相重合的直线。
14
典型环节的极坐标图
4. 惯性环节
G ( j ) 1 1 j T 1 1 ω T
2 2
1 1 T
2 2
j
T
1 T
2 2
G jω
取三个特殊点
(RC=T)
5
即为无源RC网络的频率特性。
频率特性的性质
1、与传递函数一样,频率特性也是一种数学模型。 它描述了系统的内在特性,与外界因素无关。当系统 结构参数给定,则频率特性也完全确定。 2、频率特性是一种稳态响应。 系统稳定的前提下求得的,不稳定系统则无法直接观 察到稳态响应。从理论上讲,系统动态过程的稳态分量总 可以分离出来,而且其规律并不依赖于系统的稳定性。因 此,我们仍可以用频率特性来分析系统的稳定性、动态性 能、稳态性能等。 3、系统的稳态输出量与输入量具有相同的频率。 当频率改变,则输出、输入量的幅值之比A()和相 位移()随之改变。这是系统中的储能元件引起的。
频率法
正弦信号发生器
系统或元件
双踪示波器
一路测输入/输出的幅值比,一路测输入/输出的相位之差 不断改变正弦输入的角频率,可得系统的频率特性
2
4 .对于二阶系统,频率特性与过渡过程性能指标有确定的对应关系;对 于高阶系统,两者也存在近似关系。 因为频率特性与系统的参数和结构有关,故可用研究频率特性的方法, 把系统参数和结构的变化与过渡过程指标联系起来。
C ( jw ) = F ( jw ) e jF ( jw ) = A(w )e jj F ( jw ) = R( jw ) 频率特性 F ( jw) :在正弦信号作用下,系统的输出稳态分量 与输入量复数之比。表征输入输出幅值、相位上的差异。 幅频特性 A(w ) :谐波输入下,输出响应中与输入同频率的 谐波分量与输入谐波分量的幅值之比。A(w) = F ( jw)
T
T
0 0
A(w )
j (w )
1
0
1
1 2
- 450
0
w =
w =0
1 1 Tw + = 2 2 2 2 1 + T 2w 2 1+T w 1+T w
2 2
1 1 Tw 1 - + = 1 + T 2w 2 2 1 + T 2w 2 2
r (t ) = R sin wt
R( s ) = R ×2 s + w2
s + p1 s + pn + b0 b1 + s + jw s - jw
第五章频率特性法
教学内容
1、频率特性的概念 2、典型环节频率特性
3、开环幅相曲线绘制方法,重点:开环对数频率特性曲线
4、频域稳定判据,奈奎斯特判据,对数频率稳定判据 5、稳定裕度的概念 6、闭环系统的频域指标
5-1 频率特性
频率特性法:用频率特性作为数学模型来分析和设 计系统的方法。 优点:①具有明确的物理意义; ②计算量很小,采用近似作图法,简单、直 观,易于在工程技术中使用; ③可以采用实验的方法求出系统或元件的频 率特性。
1 1 (T1 )
2
1 1 (T2 )
2
k
相频特性: ( ) tan1 T1 tan1 T2
1.确定开环幅相曲线的起点和终点
0时, G ( j 0) k (0) 0 时, G ( j 0) 0 (0) -180
式中, φ=-arctgωτ。
式(5.3)的等号右边 , 第一项是输出的暂态分量 , 第
二项是输出的稳态分量。 当时间t→∞ 时, 暂态分量趋 于零, 所以上述电路的稳态响应可以表示为
1 1 limuo (t ) sin( t ) U sin t (5.4) 2 2 t 1 j 1 j 1 U
0
ω 0 1/T ∞
∠G(jω ) 0º -90º -180º
│G(jω │ 1 1/2ζ 0
U(ω ) 1 0 0
V(ω )
-0.5
ζ =0.2— 0.8
0 -1/2ζ 0
-1.5 -0.5 0 0.5 1 1.5 -1
振荡环节的幅相曲线
: 0 , G ( j )曲 线 有 单 调 衰 减 和 谐 两 振种形式。
第五章 频率特性分析法
由于 G( j ) G(s) s j 是一个复数,可写为
G( j ) G( j ) e
jG ( j )
A( )e
j ( )
G( j ) 和 G( j )是共轭的,故 G( j ) 可写成
G( j ) A( )e
j ( )
R Kc A( )e j ( ) 2j R K c A( )e j ( ) 2j
Kc e
jt
K c e
jt
若系统稳定, G ( s ) 的极点均为负实根。当 t 时得 c(t ) 的稳态分量为 css (t ) lim c(t ) K c e jt K c e jt
t
R G ( j ) R 其中 K c G( s) ( s j ) s j ( s j )(s j ) 2j R G ( j ) R K c G ( s) ( s j ) s j ( s j )(s j ) 2j
为方便讨论,设所有极点为互不相同的实数。
若输入信号为正弦函数,即
r (t ) R sin t
其拉氏变换为
R R R( s ) 2 2 s ( s j )(s j )
N ( s) X 则 C ( s) ( s p1 )(s p2 ) (s pn ) ( s j )(s j )
第5章 线性系统的频域分析法
频率特性是研究控制系统的一种工程方法, 应用频率特性可间接地分析系统的动态性能和稳 态性能。频域分析法的突出优点是可以通过实验 直接求得频率特性来分析系统的品质,应用频率 特性分析系统可以得出定性和定量的结论,并具 图表及经验公式。
有明显的物理含义,频域法分析系统可利用曲线、
自动控制原理--第五章-频率特性法
3. 频率特性随输入频率变化的原因是系统往往含有电容、电感、 弹簧等储能元件,导致输出不能立即跟踪输入,而与输入信号 的频率有关。
4.频率特性表征系统对不同频率正弦信号的跟踪能力,一般有 “低通滤波”与“相位滞后”作用。
2024年5月3日
2024年5月3日
若用一个复数G(jω)来表示,则有 G(jω)=∣G(jω)∣·ej∠G(jω)=A(ω)·ej 指数表示法
G(jω)=A(ω)∠ (ω) 幅角表示法
G(jω)就是频率特性通用的表示形式,是ω的函数。
当ω是一个特定的值时,可以 在复平面上用一个向量去表示G (jω)。向量的长度为A(ω),向量
频率特性的数学意义
频率特性是描述系统固有特性的数学模型,与微分方程、 传递函数之间可以相互转换。
微分方程
(以t为变量)
d s
dt
传递函数
(以s为变量)
s j 频率特性
(以ω为变量)
控制系统数学模型之间的转换关系
以上三种数学模型以不同的数学形式表达系统的运 动本质,并从不同的角度揭示出系统的内在规律,是经 典控制理论中最常用的数学模型。
R() A()cos()
I () A()sin()
2024年5月3日
以上函数都是ω的函数,可以用曲线表示它 们随频率变化的规律,使用曲线表示系统的频率 特性,具有直观、简便的优点,应用广泛。
并且A(ω)与R(ω)为ω的偶函数, (ω)与I
(ω)是ω的奇函数。
2024年5月3日
三、频率特性的实验求取方法
css(t) =Kce-jωt+K-cejωt
系数Kc和K-c由留数定理确定,可以求出
自动控制原理第5章-频域分析
第5章 控制系统的频域分析
§5.1 频 率 特 性
一、频率特性概述
1、 RC网络的频率特性
T
du0 (t) dt
u0 (t)
ui (t)
其传递函数为:
G(s) U0(s) 1 Ui (s) Ts 1
在复数域内讨论RC网络,并求输出电压
(T)2 1
——RC网络的频率特性
G( j)
1
(T)2 1 —幅频特性
() arctan T —相频特性
第5章 控制系统的频域分析
比较
G( j)
1
jT 1
和
G(s) 1 Ts 1
可见,只要用jω代替该网络的传递函数G(s)中的复变 量S,便可得其频率特性G(jω)。结论具有一般性。
2、线性定常系统的频率特性
设 ui (t) Um sin t
U U e •
j00 复阻抗 Z R 1 jRC 1
i
m
第5章 控制系统的频域分析
jC
jC
•
•
•
U0
1
•
I
jC
1 Ui
jC Z
1
jC
jCUi jCR 1
1
jT
•
U 1
i
于是有:
•
U0
•
Ui
1
jT 1
•
(T RC)
G( j)
U0
•
Ui
1
e j () G( j) e j ()
第5章 控制系统的频域分析
5.2.2 典型环节的频率特性
1、积分环节
传递函数: G(s) 1
第5章 频率特性法
该系统是稳定的。为Ⅰ型系统,有Kv=100 具有闭环主导极点的三阶系统,应用二阶近似 公式可求取时域指标为: c tg 26.873 4 0.5302 n 4 2 2 4 1 2 2 ( tg ) 1
1 1 L( ) 20 lgT 20 lg 20 lg T T
惯性环节的伯德图(续1)
Bode Diagram
L(ω)
Magnitude (dB)
0
1/10T
1/T
10/T
-10
-20
-30
Φ(ω)
Phase (deg)
-40 0
-45
-90 10
-2
10
-1
10
0
10
1Байду номын сангаас
1 1 Am H (s) Am H (s) s j s j s j s j s j s j
1 H ( j ) H ( j ) Am j 2 s j s j
10(s 3) G( s) 1 1 2 1 s s 1 s s 1 2 2 2
解:将G(s)变换成典型环节之积形式有
1 1 1 1 G( s) 10 3 s 1 1 1 2 1 3 s 比例 s 1 s s 1 一阶微分积 2 2 2
系统性能分析举例
例5.5某单位负反馈系统测得开环幅频特性图 如图所示,试分析其性能。 1
100( s 1) 6 G(s) 1 1 s( s 1)( s 1) 2 60
解:求ωc有 20 lg100 20 lg 2 40 lg 3 20 lg 6 100
自动控制原理第五章频域分析法
第19页/共187页
频率特性
对应的幅值和相角:
同理,可求得对应于2的|G(j2)|和(j2) 。
若对取所有可能的值,则可得到一系列相应的幅值和相位。 其中幅值随频率变化而变化的特性称为系统的幅频特性。 相角随频率变化而变化的特性称为系统的相频特性。
第20页/共187页
每当ω增加十倍, L(ω)减少20dB负20分贝十倍频程 -20dB/ dec
第34页/共187页
5-3典型环节和开环系统频率特性
第35页/共187页
积分环节L(ω)
[-20]
[-20]
[-20]
第36页/共187页
5-3典型环节和开环系统频率特性
三、微分环节
幅频特性与ω成正比,相频特性恒为90°
第12页/共187页
5-2频率特性
以RC网络为例,说明频率特性的基本概念。
取拉氏变换,求网络的传递函数
如果输入为正弦量:
由电路分析,电路达到稳态时,输出也是以ω为角频率的正弦量。
在传递函数中G(s)中,只要令s=jω,则可由⑴式得到⑵式。
第13页/共187页
5-2频率特性
控制系统的三种数学模型:微分方程、传递函数、频率特性可以相互转换,它们的关系见右图。
交接频率将近似对数幅频特性曲线分为二段:低频段和高频段。
第41页/共187页
惯性环节G(jω)
φ(ω) = -tg-10.5 ω
ω
0
0.5
1
2
4
5
8
20
φo(ω)
A(ω)
0
1
-14.5
0.97
-26.6
0.89
第五章1 控制系统的频域分析(频率特性与BODE图)
自动控制原理
幅相频率特性画法举例
画出二阶系统 G ( s ) = 112
的幅相频率特性
s (1 + 0 .02 s )
自动控制原理
2. 伯德图(Bode图)
如将系统频率特性G(jω ) 的幅值和相角分别绘在半对数坐
标图上,分别得到对数幅频特性曲线(纵轴:对幅值取分贝数
自动控制原理
极坐标图(Polar plot),幅相频率特性曲线,幅相曲线 当ω在0~∞变化时,相量G(jω) 的幅值和相角随ω而变化,与 此对应的相量G(jω) 的端点在复平面 G(jω) 上的运动轨迹 就称为幅相频率特性曲线或 Nyqusit曲线。画有 Nyqusit曲 线的坐标图称为极坐标图或Nyqusit图。( ω在0~-∞变化 对称于实轴) 奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述了反馈系统 稳定性
这些幅频特性曲线将通过点
自动控制原理
0dB,ω = 1
L(ω ) = 20 lg 1 = −20 lg ω (dB ) jω
ϕ (ω ) = −90°
Magnitude (dB)
Phas e (deg)
20 10
0 -10 -20 -30 -40 -89
-89.5
-90
-90.5
-91
-1
10
Bode Diagram of G(jw )=1/(jw )
(a) 幅频特性
自动控制原理
ϕ(ω) = −arctgTω
自动控制原理
输出与输入的相位之差
(b)相频特性
Uo (s) = G(s) = 1
Uo ( jω) = G( jω) = 1 = 1
自动控制原理 第5章
⇒
X 2 − X +Y 2 = 0
(下半圆) 下半圆)
Y = −ω T X
§5.2 典型环节与开环系统的频率特性
1 G( s) = 不稳定惯性环节 Ts − 1 1 G ( jω ) = − 1 + jω T 1 G = 1 + ω 2T 2 ωT ∠ G = − arctan = − ( 180° − arctan ω T ) = −180° + arctan ω T -1
ω ω ⑹ G ( jω ) = 1 1 − 2 + j 2ξ ωn 2 ωn ω ω ⑺ G ( jω ) = 1 − 2 + j 2ξ ωn ωn ω2 ω 1 − 2 − j 2ξ ωn ωn ⑻ G ( jω ) = e − jτ ω
2
jω
ω ω2 1 − 2 + j 2ξ ωn ωn
建 模
§5.1
频率特性
cs (t ) = A
2
r ( t ) = A sin ω t
1+ω T
2
§5.1.2 频率特性 G(jω) 的定义 ω 定义一: 定义一: G ( jω ) = G ( jω ) ∠G ( jω )
G ( jω ) = cs (t ) 1 = r (t ) 1 + ω 2T 2
∠ c s (t ) = − 63.4° + 30° = − 33.4°
ω =2
cs (t ) =
3 sin( 2t − 33.4° ) 5
s Φ e ( s) = s+1
ω =2 2 es (t ) ω jω Φ e ( jω ) = = = = 2 1 + jω 3 5 1+ω
第5章 控制系统的频域分析
积分环节的对数相频特性表达式为
积分环 节 的 伯 德 图 如 图 5-12 所 示。
第5章 控制系统的频域分析
图5-12 积分环节的伯德图
第5章 控制系统的频域分析 3.微分环节
第5章 控制系统的频域分析
图5-13 微分环节的极坐标图
第5章 控制系统的频域分析
图5-9 比例环节的极坐标图
第5章 控制系统的频域分析 2)伯德图 比例环节的对数幅频特性表达式为
其对数相频特性表达式为
比例环节的对数频率特性曲线(即伯德图)如图5-10所示。
第5章 控制系统的频域分析
图5-10 比例环节的伯德图
第5章 控制系统的频域分析 2.积分环节 积分环节的传递函数为
第5章 控制系统的频域分析
图5-21 二阶比例微分环节的伯德图
第5章 控制系统的频域分析 8.延迟环节
第5章 控制系统的频域分析
图5-22 延迟环节的极坐标图和伯德图
第5章 控制系统的频域分析 5.3 系统的开环频率特性
第5章 控制系统的频域分析
5.3.1 最小相位系统和非最小相位系统 若控制系统开环传递函数的所有零、极点都位于虚轴以
图5-1 典型一阶系统
第5章 控制系统的频域分析
第5章 控制系统的频域分析 对于图5-2所示的一般线性定常系统,可列出描述输出量
c(t)和输入量r(t)关系的微分方程:
图5-2 一般线性定常系统
第5章 控制系统的频域分析 与其对应的传递函数为
如果在系统输入端加一个正弦信号,即 式中,R0是幅值,ω 是角频率。由于 所以
第5章 控制系统的频域分析
自动控制原理 第五章-2
Determine the stability of the system for two cases (1)K is small(2) K is large
G ( j ) H ( j )
K (1 jT1 )(1 jT2 )( j ) (1 T12 2 )(1 T22 2 ) K ((T1 T2 ) j (1 T 1T2 2 ) (1 T12 2 )(1 T22 2 )
0 ~ 90
K ( j 3) G ( j ) H ( j ) j ( j 1) K [4 j (3 2 )] (1 2 )
Im[G( j ) H ( j )] 0
c 3
G ( j ) H ( j )
K ( j 3) j ( j 1)
越(-∞,-1)区间一次。 开环频率特性曲线逆时针穿越(-∞,-1)区间时,随ω增加,频 率特性的相角值增大,称为一次正穿越N’+。 反之,开环频率特性曲线顺时针穿越(-∞,-1)区间时,随ω增 加,频率特性的相角值减小,则称为一次负穿越N’-。 频率特性曲线包围(-1,j0)点的情况,就可以利用频率特性曲线 在负实轴(-∞,-1)区间的正、负穿越来表达。
除劳斯判据外,分析系统稳定性的另一种常用判据 为奈奎斯特(Nyquist)判据。Nyquist稳定判据是奈奎斯 特于1932年提出的,是频率法的重要内容,简称奈氏判 据。奈氏判据的主要特点有
1.根据系统的开环频率特性,来研究闭环系统稳定性,而 不必求闭环特征根;
2.能够确定系统的稳定程度(相对稳定性)。 3.可分析系统的瞬态性能,利于对系统的分析与设计; 4.基于系统的开环奈氏图,是一种图解法。
N(s)=0 的根为开环传递函数的极点。
第5章线性系统的频域分析法重点与难点一、基本概念1.频率特性的
·145·第5章 线性系统的频域分析法重点与难点一、基本概念 1. 频率特性的定义设某稳定的线性定常系统,在正弦信号作用下,系统输出的稳态分量为同频率的正弦函数,其振幅与输入正弦信号的振幅之比)(ωA 称为幅频特性,其相位与输入正弦信号的相位之差)(ωϕ称为相频特性。
系统频率特性与传递函数之间有着以下重要关系:ωωj s s G j G ==|)()(2. 频率特性的几何表示用曲线来表示系统的频率特性,常使用以下几种方法:(1)幅相频率特性曲线:又称奈奎斯特(Nyquist )曲线或极坐标图。
它是以ω为参变量,以复平面上的矢量表示)(ωj G 的一种方法。
(2)对数频率特性曲线:又称伯德(Bode )图。
这种方法用两条曲线分别表示幅频特性和相频特性。
横坐标为ω,按常用对数lg ω分度。
对数相频特性的纵坐标表示)(ωϕ,单位为“°”(度)。
而对数幅频特性的纵坐标为)(lg 20)(ωωA L =,单位为dB 。
(3)对数幅相频率特性曲线:又称尼柯尔斯曲线。
该方法以ω为参变量,)(ωϕ为横坐标,)(ωL 为纵坐标。
3. 典型环节的频率特性及最小相位系统 (1)惯性环节:惯性环节的传递函数为11)(+=Ts s G 其频率特性 11)()(+===j T s G j G j s ωωω·146·对数幅频特性 2211lg20)(ωωT L +=(5.1)其渐近线为⎩⎨⎧≥-<=1 )lg(2010)(ωωωωT T T L a (5.2) 在ωT =1处,渐近线与实际幅频特性曲线相差最大,为3dB 。
对数相频特性)(arctg )(ωωϕT -= (5.3)其渐近线为⎪⎩⎪⎨⎧≥︒-<≤+<=10 90101.0 )lg(1.0 0)(ωωωωωϕT T T b a T a (5.4)当ωT =0.1时,有b a b a -=+=1.0lg 0 (5.5)当ωT =10时,有b a b a +=+=︒-10lg 90 (5.6)由式(5.5)、式(5.6)得︒=︒-=45 45b a因此:⎪⎩⎪⎨⎧≥︒-<≤︒-<=10 90101.0 )10lg(451.0 0)(ωωωωωϕT T T T a (5.7)(2)振荡环节:振荡环节的传递函数为10 121)(22<<++=ξξTs S T s G·147·其频率特性)1(21|)()(22ωωξωωT j Ts s G j G j s -+=== 对数幅频特性2222224)1(lg 20)(ωξωωT T L +--= (5.8)其渐近线为⎩⎨⎧≥-<=1)lg(4010)(ωωωωT T T L a (5.9) 当707.0<ξ时,在221ξω-=T 处渐近线与实际幅频特性曲线相差最大,为2121lg20ξξ-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说 : 明 1.在 定系 中 稳 统 输出 号 输入 号 信 与 信 的幅 比 ω的 值 是 非 线 性函 , 称 幅 数 为 频特 性 Y/X =| ϕ(jω) | 2.输 信号 输 , 出 与 入信 的 位差 是 的 号 相 φ ω 非线性函数 称 , 系统 入不 频率 为相 特 .它 频 性 描述 稳态 况下当 在 情 输 同 , 相 产生 前 φ > 0)或 ( 的 谐波 号时 其 位 信 超 ( 滞后φ < 0)的 特 . 性 3.幅 频特 和相 特性 称 性 频 总 为频 特性 记 率 , 为
ϕ(jω) = ϕ(jω) ej∠ϕ(jω)
4.频 特性 求 率 的 取 ϕ(jω) = ϕ(s) s=jω 结 :频 论 率特 和传 函数 及 性 递 以 微分 程一 ,也 方 样 表 征了 统的 动规 , 这 是 系 运 律 就 频率 应 响 能 够 从频 特性 发研 系 的 率 出 究 统 理论 据 依 。
L(ω) = 20lg 1 = −20lgω
ω
Bode Diagram 20 10 Magnitude (dB) 0 -10 -20 -30 -40 -89
Nyquist Diagram
10
5 Imaginary Axis
0
-89.5
-5
Phase (deg)
-90
-10
-90.5 -91
-1
-0.9
-1
10
0
10 Frequency (rad/sec)
1
10
2
2.积分环节 G(s) = 1 s A(ω) = 1
G(jω) = 1 jω
ω =0 ω =∞
ω
ϕ(ω) = -90o
A(ω) = ∞ ϕ(ω) = -90o A(ω) = 0 ϕ(ω) = −90o
>> H=tf([1],[ 1, 0]); figure; >> nyquist(H) figure >> bode(H)
15 10 Imaginary Axis 5 0 -5 -10 -15 -20 -25 -1
20 10 0 -10 -20 91 90.5
90
89.5 89 10
-1
10
0
10 Frequency (rad/sec)
1
10
2
4.惯 环 性 节
>> H=tf([1],[ 1 1]); figure; >> nyquist(H) 1 A(ω) = ϕ(ω) = -arctgTω ω = 0 A(ω) =1 ϕ(ω) = 0 figure 1+ T2ω2 >> bode(H) 2 = 0.707 ϕ(ω) = −45o ω = ∞ A(ω) = 0 ϕ(ω) = −90o A(ω) = ω= 1 T 2 1 U(ω) = Re[(jω)] = V(ω) = Im[G(jω)] = -Tω 2 2 2 1+ T ω 1+T 2ω 1 )2 + V2 = ( 1 1 )2 + T2ω2 = ( 1)2 (U2 2 2 2 2 2 2 1+ T ω 2 (1+T ω )
控制系统中常见的典型环节 K(bmsm + bm-1sm-1 +L+ b1s +1) G(s) = = n n-1 ans + an-1s +L+ a1s +1 1 1 1 K vΠ Π ×Π(τ j s +1) Π (τi2S2 + 2ξτi S +1) i j =1 s i=1 Ts +1 i=1 Ti 2s2 + 2ξiTs +1 j=1 i i
d p= dt
s= p
微分方程
传递函数
s = jω
系统
jω = p
频率特性
频率特性的几何表示法(一) 1、幅相频率特性 以 ω 为变量将幅频特性和相频特性同时表示在复平面上, 幅相频率特性曲线又称奈奎斯特曲线,简称奈氏图,也 称极坐标图。
A(ω ):代表模值
ϕ (ω ):代表角度值 u (ω ):代表实部 v(ω ):代表虚部
说 : 明 1. RC网 的 络 稳态 出仍 正 输 是 弦电 , 其 率与 入 压 频 输 电压 同 相 , 幅值 输入 压 1 是 电 的 (幅 特性 相 比 频 ), 角 输入 压 电 2 2 1+T ω ). 滞 - arctgTω(相 特性 后 频
- jarctgωT 1 1 ej∠ (1+jTω) = 1 2. e = 1+ jTω 1+ jωT 2ω2 1+ T 它 述了 络 描 网 在正 输入 用 , 稳 输出 电压 值 弦 作 下 态 时 幅 1
ω =∞
Re
ω =0
ω = ω1
1 , 输 为Asinωt, 系 的 出 系 为 统 入 则 统 输 为 1+ Ts t a e−T + d e− jωt + d e jωt U0 (t) = 1 2 T lim U0 (t) = d1e− jωt + d2e jωt
t→∞
=
A sin( ωt − arctgTω) 1+ T2ω2 A 系 的 值 统 幅 为 , 1+ T2ω2 相 为− arctgTω 角
绘制系统的幅相频率特性
2.对数频率特性图(Bode图) 是将频率特性表示在对数坐标中,分别用两张图 表示. 1)幅频特性的对数值 常用分贝(dB)表示。 如A(ω)=10 ,L(ω)=20lgA(ω)dB 即A(ω)每变化10倍,L(ω)变化20dB. 横坐标为角频率ω,采用对数比例尺标度,ω每 变化10倍,横坐标就增加一个长度。纵坐标采 用普通比例尺标度 2)相频特性横坐标仍采用对数比例尺标度。纵 坐标采用普通比例尺标度。
和 相角 正 随 弦输 电 频 ω变 的规 , 称 入 压 率 化 律 为网 的 络 频 率 性 特 . 1 = 1 3. 1+ jωT TS +1 S=jω
b.一 系 般 统 Y(s) = ϕ(s) X (s) B(s) B(s) = ϕ(s) = A(s) (s − s1)(s − s2 )L(s − sn ) Y(s) = B(s) X (s) (s − s1)(s − s2 )L(s − sn ) X(s) = Rω s2 +ω2
h l
1 (n−v−h) 2 1 (m−l ) 2
1.比例环节 G( s) = K A(ω) = K G(jω) = K
Imaginary Axis
Nyquist Diagram 0.1 0.08 0.06 0.04 0.02 0 -0.02 -0.04 -0.06 -0.08 -0.1 -1
ϕ(ω) = 0 L(ω) = 20lgK
1 Aω AωT 2 a= ⋅ 2 (Ts +1 s=− 1 = ) 2 T Ts +1 s +ω 1+T 2ω2
a e−T + d e− jωt + d e jωt U0 (t) = 1 2 T l m U0 (t) = d1e− jωt + d2e jωt i
t→ ∞ t
A si ( ω − arctgTω) n t ω 1+ T2 2 ejθ − e− jθ 这 应 欧 公 里 用 拉 式 si θ = n 2j =
>> H=tf([1 0],[ 1]); figure; >> nyquist(H) figure >> bode(H)
Bode Diagram 40 30 Magnitude (dB) Phase (deg)
-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 Real Axis
G(S) = = 当 < ω < ∞时 下 圆 0 为 半
0 .5 0 .4 0 .3 0 .2 Imaginary Axis 0 .1 0 - 0 .1 - 0 .2 - 0 .3 - 0 .4 - 0 .5 -1 - 0 .8 - 0 .6 - 0 .4 - 0 .2 0 R e a l A x is 0 .2 0 .4 0 .6 0 .8 1
Rω ϕ(-jω)R d1 = ϕ(s) 2 (s + jω) S=-jω = 2 s +ω 2j Rω ϕ(jω)R d2 = ϕ(s) 2 (s - jω) S=jω = 2 s +ω 2j
ϕ(jω) =| ϕ(jω) | ejφ ϕ(-jω) =| ϕ(-jω) | e- jφ | ϕ(jω) |=| ϕ(-jω) |
自动控制原理
第5章 频率特性法
昆明理工大学现代农业工程学院
第五章 频域特性法
频率特性法是一种图解的方法,通过频率特性来分析 系统的性能。 频率特性具有明确的物理意义,频率特性反映了不同 频率下电路传递正弦信号的性能。 可用实验的方法来 确定 频率特性法主要通过系统开环频率特性的图形来分析 闭环系统的性能,因而可避免复杂的求解运算 频率特性法不仅适用于线性定常系统,而且还适用于 传递函数不是有理分式的纯滞后环节以及部分非线性 环节的分析。
φ = ∠ϕ(jω) - φ = ∠ϕ(-jω)
| ϕ(jω) | e-jφ R − jωt | ϕ(jω) | ejφ R jωt yss (t) = e + e 2j 2j e j (ωt +φ) − e− j (ωt +φ) =| ϕ(jω) | R 2j yss (t) = Ysin( ωt +φ)
o
7.5
-0.5
0
0.5 Real Axis
1
1.5