12简单含参数不等式的解法

合集下载

高二数学含参数不等式的解法

高二数学含参数不等式的解法
含参数不等式的解法
例1.解关于x的不等式 ax b 0
分析: 参变数可分为三种情况,即 a 0, a 0和a 0 ,
分别解出当 a 0, a 0和a 0时的解集即可。
解: 原不等式可化为:ax b
当 a 0 时,则 x b a

a

0
时,则
x

b a
当 a 0 时,则原不等式变为: 0 b
解: 原不等式可化为:
(x a)( x a2 ) 0
当a 0时,则a a2,原不等式的解集为 {x | x a或x a2}
当a 0时,则a a2 0,原不等式的解集为 {x | x 0}
当0 a 1时,则a2 a,原不等式的解集为 {x | x a2或x a, 则原不等式的解集为R
综上所述原不等式的解集为:
当a 0时, 解集为{x | x b}
a 当a 0时, 解集为{x | x b}
a
当a 0且b 0时, 解集为
当a 0且b 0时, 解集为R
例2.解关于x的不等式
x2 (a a2 )x a3 0(a R)
; https:// 女性生理期计算器

(4分) 答:? ? 17.文中画线的句子使用了什么修辞方法?请结合文章内容,具体分析其表达作用。(3分) 雪花簌簌地落着,风安静地睡去,远山近水被夜色围拢而来,婴孩一般安卧在村庄阔大的臂弯里。 答:? ? 18.下面对文章的理解分析,不正确的两项是( )(? ) A.文章以“冰 窗花”为线索,回顾作者早年的故园生活,着力描写了盛开在冬日窗棂上的冰窗花。 B.第①自然段“尤其是在久居乡下的那些日子里”一句起强调作用,并自然地引起下文。 C.第②自然段中,作

含参数不等式的一种解法

含参数不等式的一种解法

原不 等式 的解集为
若 � 则有 ( 2 ) = 0 , 原不 等式 的解 集为 � � � �< 2 � ;
若 0 则 2> 2 得 ( 3 ) < � < 1 , , � 2或 �< 2 � ; � 2 若 则有 得 ( 4 ) � = 1 , �- 4 �+ 4 > 0 , 原不 等式 的解 集为 � � � �� � 且 �� 2 � ; 原不 等式 的解 集为 � � � �> 若 � 则 2< 2 得 ( 5 ) > 1 , , � 原不 等式 解集 为 评注 或 �< 2 � � � � > 2 � . � 在确 定 分 类标 准 , 写 出 不 等 式解
2 � � - 2 ( � + 1 ) �+ 4 > 0 . 分析 按 照参 数 � 的 取值 可分 为 � � 0 和� 两 种情 形 . 当 � 时, 该不 等式 是关 =0 �0 于� 的一 元二 次不 等式 ; 当� 时, 该不 等式 =0


综合上述因素, 二 次 项 系 数 �与 0 的大 2 小, 判别 式 �= 4 与 的大 小及 ( � - 1 ) 0 �> 时, 一元 二次方 程的 两根 之差 � 0 1 -� 2= 2 2 与 的大 小 即 与 的大 小关 系是 参数 0 , � 0 , 1 � 分类 的标 准 , 称0 与1 为参 数的 分界 点 . 而0 � , 两个分 界点 分数 轴 为三 个部 分 所以 该 题应 1 , 分为 � 及 � <0 ,� =0 , 0 < � <1 , � = 1 > 等五种 情况 讨论 1 . 解 若 �< 0 则 ( 1 ) , 2 < 2 , � 2 � � � < �< 2 � ; � 得 - 2 �+ 4 > 0 ,

含参数的一元二次不等式的解法(精品范文).doc

含参数的一元二次不等式的解法(精品范文).doc

【最新整理,下载后即可编辑】含参数的一元二次不等式的解法含参一元二次不等式常用的分类方法有三种: 一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122>+++x a ax分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项 系数进行分类讨论。

解:∵()044222>+=-+=∆a a a解得方程 ()0122=+++x a ax 两根,24221a a a x +---=aa a x 24222++--=∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧>21|x x 当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22 例2 解不等式()00652≠>+-a a ax ax分析 因为0≠a ,0>∆,所以我们只要讨论二次项系数的正负。

解 ()()032)65(2>--=+-x x a x x a∴当0>a 时,解集为{}32|><x x x 或;当0<a 时,解集为{}32|<<x x 变式:解关于x 的不等式1、0)2)(2(>--ax x ;2、(1-ax )2<1.}2,2|{,1)5(}2|{,1)4(}2,2|{,10)3(}2|{,0)2(}22|{,0)1(><>≠=><<<<=<<<x ax x a x x a ax x x a x x a x ax a 或时当时当或时当时当时当3、ax 2-(a +1)x +1<0(a ∈R) 【解】由(1-ax )2<1得a 2x 2-2ax +1<1.即ax (ax -2)<0.(1)当a =0时,不等式转化为0<0,故原不等式无解.(2)当a <0时,不等式转化为x (ax -2)>0,即x (x -2a )<0.∵2a <0,∴不等式的解集为{x |2a<x <0}.(3)当a >0时,不等式转化为x (ax -2)<0,2}11|{1)5(1)4(}11|{10)3(}1|{0)2(}1,1|{0)1(<<>Φ=<<<<>=><<x ax a a ax x a x x a x ax x a 时,当时,当时,当时,当或时,当二、按判别式∆的符号分类,即0,0,0<∆=∆>∆; 例3 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。

含参数的不等式的解法

含参数的不等式的解法

含参数的不等式的解法解含参数的不等式的一般步骤如下:步骤1:确定参数的取值范围对于含参数的不等式,首先要确定参数可以取哪些值。

常见的含参数的不等式有以下几种类型:1.参数出现在不等式的左右两侧:例如,a,x,<b,x,其中a和b是参数。

如果参数a和b都是非负数,则取值范围为[0,+∞),如果参数a为负数而b为非负数,则取值范围为(-∞,+∞)。

2. 参数出现在不等式的系数中:例如,ax + b > 0,其中a和b是参数。

对于一次不等式,如果参数a为正数,则取值范围为(-∞, -b/a);如果参数a为负数,则取值范围为(-b/a, +∞)。

对于二次不等式,需要讨论a的正负和零的情况,进而确定取值范围。

3.参数出现在不等式的指数中:例如,x^a>b,其中a和b是参数。

对于参数b,需要讨论它的正负和零的情况,进而确定取值范围。

对于参数a,如果它为正数,则不等式的解集为(0,+∞);如果它为负数,则不等式的解集为(-∞,0)。

步骤2:解参数的不等式在确定参数的取值范围之后,可以根据具体的参数取值情况来解不等式。

根据参数的不同取值情况,采用不同的解法。

1.解参数出现在不等式的左右两侧的不等式:-如果参数都是非负数,则可以直接从不等式中消去绝对值符号,并分析绝对值的取值范围,最后得到一个简单的数学不等式。

-如果参数一个是负数一个是非负数,则需要分情况讨论,考虑不等式两侧的符号。

2.解参数出现在不等式的系数中的不等式:-如果参数是一个正数或负数,则根据参数的正负讨论不等式两侧的符号,并得到一个简单的数学不等式。

-如果参数是一个未知数,可以根据参数的取值范围来讨论参数与未知数的关系,然后解不等式。

3.解参数出现在不等式的指数中的不等式:-如果参数b是负数,则需要讨论不等式两侧的符号并得到一个简单的数学不等式。

步骤3:解不等式在解决了参数的不等式之后,可以根据参数的取值范围来解不等式,得到不等式的解集。

含参数的不等式的解法

含参数的不等式的解法

初高中数学衔接知识选讲含参数的不等式的解法一、复习引入:1.函数、方程、不等式的关系2.一元一次、一元二次、高次、分式不等式得解法及注意事项二、讲解新课:例1解关于x 的不等式022≤-+k kx x说明 一元二次方程、一元二次不等式、一元二次函数有着密切的联系,要注意数形结合研究问题.小结:讨论∆,即讨论方程根的情况例2.解关于x 的不等式:(x-2x +12)(x+a)<0.小结:讨论方程根之间的大小情况 若不等式13642222<++++x x k kx x 对于x 取任何实数均成立,求k 的取值范围.例4若不等式ax 2+bx+1>0的解集为{x ︱-3<x<5},求a 、b 的值.小结:逆向思维题目,告诉解集反求参数范围,即确定原不等式,待定系数法的一部分 例5 已知关于x 的二次不等式:a 2x +(a-1)x+a-1<0的解集为R ,求a 的取值范围.说明:本题若无“二次不等式”的条件,还应考虑a=0的情况,但对本题讲a=0时式子不恒成立.(想想为什么?)练习:已知(2a -1) 2x -(a-1)x-1<0的解集为R ,求实数a 的取值范围.三、布置作业1.如果不等式x 2-2ax +1≥21(x -1)2对一切实数x 都成立,a 的取值范围是2.如果对于任何实数x ,不等式kx 2-kx +1>0 (k>0)都成立,那么k 的取值范围是3.对于任意实数x ,代数式 (5-4a -2a )2x -2(a -1)x -3的值恒为负值,求a 的取值范围 4.设α、β是关于方程 2x -2(k -1)x +k +1=0的两个实根,求 y=2α +2β关于k 的解析式,并求y 的取值范围。

含参数不等式的解法(含答案)

含参数不等式的解法(含答案)

含参数不等式的解法典题探究例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。

例2:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。

例3:在∆ABC 中,已知2|)(|,2cos )24(sin sin 4)(2<-++=m B f B BB B f 且π恒成立,求实数m 的范围。

例4:(1)求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。

如果把上题稍微改一点,那么答案又如何呢?请看下题: (2)求使不等式)2,0(4,cos sin ππ∈-->x x x a 恒成立的实数a 的范围。

演练方阵A 档(巩固专练)1.设函数f (x )=⎪⎪⎩⎪⎪⎨⎧≥-<<-+-≤+)1(11)11(22)1()1(2x xx x x x ,已知f (a )>1,则a 的取值范围是( )A.(-∞,-2)∪(-21,+∞) B.(-21,21) C.(-∞,-2)∪(-21,1)D.(-2,-21)∪(1,+∞)2.已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2,b ),g (x )>0的解集是(22a ,2b),则f (x )·g (x )>0的解集是__________.3.已知关于x 的方程sin 2x +2cos x +a =0有解,则a 的取值范围是__________.4. 解不等式)0( 01)1(2≠<++-a x aa x 5. 解不等式06522>+-a ax x ,0≠a6.已知函数f (x )=x 2+px +q ,对于任意θ∈R ,有f (sin θ)≤0,且f (sin θ+2)≥2. (1)求p 、q 之间的关系式;(2)求p 的取值范围;(3)如果f (sin θ+2)的最大值是14,求p 的值.并求此时f (sin θ)的最小值.7.解不等式log a (1-x1)>18.设函数f (x )=a x 满足条件:当x ∈(-∞,0)时,f (x )>1;当x ∈(0,1]时,不等式f (3mx -1)>f (1+mx -x 2)>f (m +2)恒成立,求实数m 的取值范围.9.设124()lg,3x xa f x ++=其中a R ∈,如果(.1)x ∈-∞时,()f x 恒有意义,求a 的取值范围。

含参数的一元二次不等式的解法

含参数的一元二次不等式的解法

含参数的一元二次不等式的解法含参一元二次不等式常用的分类方法有三种:一、按$x$项的系数$a$的符号分类,即$a>0$,$a=0$,$a<0$。

例1:解不等式$ax+(a+2)x+1>2$分析:本题二次项系数含有参数,$\Delta=(a+2)^2-4a=a+4>0$,故只需对二次项系数进行分类讨论。

解:当$a>0$时,解得方程$ax+(a+2)x+1=0$的两根$x_1=-\frac{a+2+\sqrt{a+4}}{2a}$,$x_2=-\frac{a+2-\sqrt{a+4}}{2a}$,因为$a>0$,所以$x_1x_2$或$x<x_1$,即$x\in\left(-\infty,\frac{a+2-\sqrt{a+4}}{2a}\right)\cup\left(\frac{a+2+\sqrt{a+4}}{2a},+\infty\right)$。

当$a=0$时,不等式为$2x+1>2$,解得$x>\frac{1}{2}$,即解集为$x>\frac{1}{2}$。

当$a<0$时,解得方程$ax+(a+2)x+1=0$的两根$x_1=-\frac{a+2-\sqrt{a+4}}{2a}$,$x_2=-\frac{a+2+\sqrt{a+4}}{2a}$,因为$a<0$,所以$x_1<x_2$。

所以解集为$x_1<x<x_2$,即$x\in\left(\frac{a+2-\sqrt{a+4}}{2a},\frac{a+2+\sqrt{a+4}}{2a}\right)$。

例2:解不等式$ax-5ax+6a>(a\neq0)^2$分析:因为$a\neq0$,$\Delta>0$,所以我们只需讨论二次项系数的正负。

解:当$a>0$时,解得方程$ax-5ax+6a=0$的两根$x_1=2$,$x_2=3$,因为$a>0$,所以$x_13$,即$x\in\left(-\infty,2\right)\cup\left(3,+\infty\right)$。

含有参数的不等式组解法

含有参数的不等式组解法

含有参数的不等式组解法在解不等式组时,我们常常需要考虑参数的存在,并将其纳入我们的解法中。

含有参数的不等式组解法相较于一般的不等式组解法更为复杂,因为我们需要找到参数的取值范围,使得不等式组的解集合在该参数范围内成立。

本文将介绍一种生动、全面、有指导意义的含有参数的不等式组解法。

首先,我们需要明确什么是含有参数的不等式组。

通常,不等式组是由多个不等式组成的方程系统。

而含有参数的不等式组是指在不等式组中存在一个或多个未知参数,我们需要求出这些参数的取值范围使得不等式组成立。

解决含有参数的不等式组的第一步是观察不等式组中是否存在特殊的条件或关系。

通过观察可以发现,有时候不等式组中的不等式之间存在特殊的关系,比如不等式是相互约束的、对称的或有递增或递减的性质。

这些特殊的关系对于求解参数的取值范围非常重要,我们需要利用这些关系来简化不等式组的求解过程。

其次,我们需要以图像的方式来理解含有参数的不等式组。

通过绘制不等式组的图像,我们能够更加直观地看清不等式之间的关系,并能够更好地找到参数的取值范围。

同时,绘制图像也能够帮助我们将不等式组与坐标系联系起来,从而更好地理解概念和思考问题。

在解含有参数的不等式组时,我们还需要采用代数方法。

通过代数方法,我们可以将含有参数的不等式组转化为一般的不等式组,从而更好地求解问题。

常用的代数方法包括代入法、消元法、换元法等。

通过灵活运用这些方法,我们能够将含有参数的不等式组转化为一般的不等式组,并进一步求解出参数的取值范围。

最后,我们需要检验参数的解集是否满足不等式组。

求解出参数的取值范围后,我们需要将这些取值代入不等式组,并检验不等式组是否成立。

如果成立,则这些参数是不等式组的解集;如果不成立,则需要重新找到参数的取值范围。

通过反复检验和调整,我们能够找到合适的参数的取值范围,进而找到不等式组的解集。

综上所述,解含有参数的不等式组是一个相对复杂的问题,需要我们综合运用观察、图像、代数等方法来解决。

含参不等式的解法

含参不等式的解法

不等式(3)----含参不等式的解法当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。

我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。

解参数不等式一直是高考所考查的重点内容。

(一)几类常见的含参数不等式一、含参数的一元二次不等式的解法:例1:解关于的x 不等式2(1)410()m x x m R +-+≤∈分析:当m+1=0时,它是一个关于x 的一元一次不等式;当m+1≠1时,还需对m+1>0及m+1<0来分类讨论,并结合判别式及图象的开口方向进行分类讨论:⑴当m<-1时,⊿=4(3-m )>0,图象开口向下,与x 轴有两个不同交点,不等式的解集取两边。

⑵当-1<m<3时,⊿=4(3-m )>0, 图象开口向上,与x 轴有两个不同交点,不等式的解集取中间。

⑶当m=3时,⊿=4(3-m )=0,图象开口向上,与x 轴只有一个公共点,不等式的解为方程24410x x -+=的根。

⑷当m>3时,⊿=4(3-m )<0,图象开口向上全部在x 轴的上方,不等式的解集为∅。

解:11,|;4m x x ⎧⎫=-≥⎨⎬⎩⎭当时原不等式的解集为 ⎭⎬⎫⎩⎨⎧+-+≤≤+--<<-⎭⎬⎫⎩⎨⎧+-+≤+--≥-<∆=+-+-≠132132|,31132132|1);34014)1(12m m x m m x m m m x m m x x m m x x m m 原不等式的解集为时当或时,原不等式的解集为则当-(=的判别式时,当 当m=3时,原不等式的解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当m>3时, 原不等式的解集为∅。

含参数分式不等式的解法

含参数分式不等式的解法

a2 a 作差 2 , 根据a的范围判断符号. a 1 a 1
讨论标准:需将a与0,1进行比较, 又a 0,故分3种情况讨论.
例1 解关于x的不等式
解:
a( x 1) a ( x 1) 1 1 0 x2 x2 (a 1) x (a 2) 0 x2
分析 2:如何对参数a进行讨论?
( x 2)[(a 1) x (a 2)] 0 ①一定是二次不等式吗?
a 1 0,非二次不等式
a 1 0,为二次不等式
a 1 0,对应二次函数开口向上;
a 1 0,对应二次函数开口向下.
a2 ②对应一元二次方程两根x1 2, x2 ,如何比较两根大小? a 1
注意同解变形, 不等式两边同时 除以负数时,不 等号要反向!
a( x 1) 1(a 0). x2
( x 2)[(a 1) x (a 2)] 0
a2 ①若0 a 1,则不等式可化为( x 2)( x )0 a 1 a2 a a2 ∵ 2 ,∴0 a 1时, 20 a 1 a 1 a 1 a2 ∴不等式的解为2 x ; a 1
例1 解关于x的不等式
a( x 1) 1(a 0). x2
a2 综上,当0 a 1时,原不等式解集为(2, ) a 1 当a 1时,原不等式解集为(2, ) a2 当a 1时,原不等式解集为(-, ) (2, ) a 1
反思:在本题中你学会了什么?
例1 解关于x的不等式
a( x 1) 1(a 0). x2
②若a=1,则不等式可化为x 2 0 ∴不等式解为x 2;
a2 ③若a 1,则不等式可化为( x 2)( x )0 a 1 a2 a ∵a 1时, 2 0, a 1 a 1 a2 ∴不等式解为x ,或x 2. a 1策略: 移项→通分→转化,源自分式不等式 转化为整式不等式进行求解.

含参数不等式的解法举例

含参数不等式的解法举例

含参数不等式的解法举例教学目标:1.进一步掌握常见不等式的解法;2.能根据参数的“位置”正确进行分类讨论,解不等式.教学重、难点:通过分类讨论解含参数的不等式.教学过程:例1.解不等式 3222(22)x x x x --<-.解:原不等式可化为4223220x x -⋅+<,即:22(21)(22)0x x --<, ∴2122x <<,∵2x y =是增函数,∴021x <<,∴102x <<, ∴原不等式的解集为10,2⎛⎫ ⎪⎝⎭.【变题】解关于x 的不等式 )22(223x x x x m --<-. 解:原不等式可化为422(1)20x x m m -+⋅+<,即:0)2)(12(22<--m x x ①(1)当1m >时,由①得:m x <<221,∵2x y =是增函数,∴m x 2log 210<<; (2)当1m =时,由①得:0)12(22<-x ,∴x φ∈;(3)当01m <<时,由①得:122<<x m , ∴0log 212<<x m ; (4)当0m ≤时,由①得:221x <,∴0x <.综上所述:当1m >时,原不等式的解集为21(0,log )2m ; 当1m =时,原不等式的解集为φ;当01m <<时,原不等式的解集为21(log ,0)2m ;当0m ≤时,原不等式的解集为(,0)-∞.例2.解不等式 222log 2log (36)x x x ≤--.解:∵2log y x =是增函数,∴原不等式等价于2220360236x x x x x x >⎧⎪-->⎨⎪≤--⎩20560x x x >⎧⇔⎨--≥⎩ 061x x x >⎧⇔⎨≥≤-⎩或,∴6x ≥,即原不等式的解集为[)6,+∞.例3.解关于x 的不等式 a x x a log log<(0,1)a a >≠. 解:原不等式等价于 1log log a a x x<, 即:0log )1)(log 1(log <-+x x x a a a , ∴1log 01log <<-<x x a a 或,(1)当1a >时, a x a x <<<<110或; (2)当01a <<时,11<<>x a ax 或. 综上所述:当1a >时,原不等式的解集为1(0,)(1,)a a U ;当01a <<时,原不等式的解集为1(,1)(,)a a +∞U .说明:去掉对数符号时,必须限制真数大于零.例4.设{}|12A x x =≤≤,{}2|(1)0B x x a x a =-++≤.(1)若A B ≠⊂,求a 的取值范围; (2)若A B ⊇,求a 的取值范围;(3)若A B I 为仅含一个元素的集合,求a 的取值范围.解:()(){}10B x x x a =--≤,∴当1a ≤时,{}1B x a x =≤≤;当1a >时,{}1B x x a =≤≤,又{}|12A x x =≤≤,(1)若A B ≠⊂,则a 的取值范围是()2,+∞; (2)若A B ⊇,则a 的取值范围是[]1,2;(3)若A B I 为仅含一个元素的集合,则a 的取值范围是(],1-∞.小结:1.解指数、对数不等式的基本方法是:依据指数函数、对数函数的单调性进行等价转化,去掉对数符号时,必须限制真数大于零;2.在解含有参数的不等式时,要根据参数的“位置”正确进行分类讨论.作业:1.解不等式:(1))1(332)21(22---<x x x ;(2) )102(log )43(log 31231+>--x x x . 2. 解关于x 的不等式:(1)211221log ()log 10x a x a-++<;(2)34422+>+-m m mx x ;(3)0)(log log >x a a (10<<a );(4))1,0(,011log ≠>>-+a a xx a. 3.若方程:22221(log 4)log 104x a x a --+-=有两个不同的负根,求a 的范围.。

七年级下册数学含参不等式

七年级下册数学含参不等式

七年级下册数学含参不等式
七年级下册数学含参不等式的相关知识有:
1. 含参不等式的概念:含参不等式是一个带有参数的不等式,参数可以是任意实数。

解含参数不等式就是找到满足不等式条件的参数的取值范围。

2. 含参不等式的解法:对于含参不等式,通常的解法是通过构建参数的取值范围,并进行推导和分析,从而得出参数的取值范围。

3. 含参不等式的图像表示:可以将含参不等式的图像表示在数轴上,帮助我们更直观地理解含参不等式的解集。

4. 含参不等式的应用:含参不等式在实际问题中有着广泛的应用,比如描述某个物理量的变化范围、解决最优化问题等等。

七年级下册数学教材中包含了一些含参不等式的例题和习题,通过学习这些例题和习题,可以帮助学生掌握含参不等式的解法和应用。

含参数的一元二次不等式的解法

含参数的一元二次不等式的解法

(x2 2x)m 2x2 4x 4
g(1) 0


g(1)

0
【3】若不等式 (m-2)x2+2(m-2)x-4<0 对于
x∈[-1,1]恒成立,则实数m 的取值范围是_______.
令 f (x) (m 2)x2 2(m 2)x 4,
m 2 0
解:m≤-2x2+9x在区间[2,3]上恒成立,
记 g(x) 2x2 9x, x [2,3],
则问题转化为 m≤g(x)min
gmin ( x) g(3) 9, m ≤ 9.
(1)变量分离法(分离参数)
【评注】对于一些含参数的不等式恒成立问题,如果能够将 不等式中的变量和参数进行剥离,即使变量和参数分别位于不 等式的左、右两边,然后通过求函数的值域的方法将问题化归 为解关于参数的不等式的问题.
4
8
fmax( x) f (3) m 9 ≤ 0, o
m ≤ 9.
(2)转换求函数的最值
. 2
3x
.
例3. 关于x的不等式 2x2 9x m ≤ 0 在区间[ 2,
3]上恒成立,则实数m的取值范围是_m__≤__9__.
解:构造函数 f (x) 2x2 9x m, x [2,3],
(5)当
a 1 时,原不等式的解集为

x

1 a

x
1
例1 不等式ax2 +(a-1)x+ a-1<0对所有实数x∈R 都成立,求a的取值范围.
分析:开口向下,且与x轴无交点 。 解:由题目条件知:
(1) a < 0,且△ < 0.

含参不等式解法

含参不等式解法

例2.解关于x 的不等式:x 2-ax-2a 2<0例3.解关于x 的不等式:2a x a x --<0(a ∈R)例4.解关于x 的不等式:2)1(--x x a >1 (a >0)例5.解关于x 的不等式:22---x x x a >0练习:均值不等式的解法:5.若实数x,y 满足11122=+yx ,则222y x +有( ) A.最大值223+ B. 最小值223+ C. 最小值6 D.最小值610.若14<<-x ,则2222)(2-+-=x x x x f 有( ) A.最小值1 B. 最大值1 C. 最小值-1 D.最大值-113.函数1)(+=x x x f 的最大值为( ) A.52 B. 21 C. 22 D. 1 18.若0>x ,则xx 2+的最小值为 (1)已知0,0>>b a ,且14=+b a ,求ab 的最大值;(2)已知2>x ,求24-+x x 的最小值;(3)已知0,0>>y x ,且1=+y x ,求y x 94+的最小值.1. 凑系数当40<<x 时,求的最大值)28(x x y -=。

2. 凑项。

当 ,45<x 求函数54124)(-+-=x x x f 的最大值3. 拆项。

求)1(,11072-≠+++=x x x x y 的值域。

4. 整体代换(遇到1了)已知a>0, b>0, b a t b a 11,12+==+求的最小值。

5. 换元法 求函数522++=x x y 的最大值6. 试着取平方看看: 求函数)2521(,2512<<-+-=x x x y 的最大值。

【练习】1. 若,20<<x 求)36(x x y -=的最大值。

2. 求函数)3(,31>+-=x x x y 的最小值。

3. 求函数)1(,182>-+=x x x y 的最小值。

含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题)

含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题)

For personal use only in study and research; not for commercialuse含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种:一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122>+++x a ax分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项系数进行分类讨论。

解:∵()044222>+=-+=∆a a a解得方程 ()0122=+++x a ax 两根,24221a a a x +---=aa a x 24222++--=∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧>21|x x 当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22例2 解不等式()00652≠>+-a a ax ax分析 因为0≠a ,0>∆,所以我们只要讨论二次项系数的正负。

解 ()()032)65(2>--=+-x x a x x a∴当0>a 时,解集为{}32|><x x x 或;当0<a 时,解集为{}32|<<x x二、按判别式∆的符号分类,即0,0,0<∆=∆>∆; 例3 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。

解:∵162-=∆a∴当()4,4-∈a 即0<∆时,解集为R ; 当4±=a 即Δ=0时,解集为⎭⎬⎫⎩⎨⎧≠∈2a x R x x 且; 当4>a 或4-<a 即0>∆,此时两根分别为21621-+-=a a x ,21622---=a a x ,显然21x x >,∴不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----+->21621622a a x a a x x 〈或例4 解不等式()()R m x x m ∈≥+-+014122解 因,012>+m ()()2223414)4(m m -=+--=∆所以当3±=m ,即0=∆时,解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当33<<-m ,即0>∆时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+--+-+>1321322222m m x m m x x 〈或; 当33>-<m m 或,即0<∆时,解集为R 。

含参数的不等式的成立问题(精)

含参数的不等式的成立问题(精)

解含参数的不等式的成立问题在近几年的高考数学试题中,常常出现含参数的不等式成立的问题,这类问题与函数,导数,方程等知识综合在一起,演绎出一道道设问新颖,五光十色的题目,这些试题的思辨性很强,往往让人眼花缭乱,使解题者不知所措,这些题目从解题目标上看,基本上有三种,即求参数的取值范围,使含参数的不等式 恒成立,能成立或恰成立.1. 不等式的恒成立,能成立,恰成立等问题的操作程序用函数思想作指导,解不等式的恒成立、能成立、恰成立问题的操作程序是这样的: (1)恒成立问题若不等式()A x f >在区间D 上恒成立,则等价于函数()x f 在区间D 上的最小值大于A ,若不等式()B x f <在区间D 上恒成立,则等价于函数()x f 在区间D 上的最大值小于B .(2)能成立问题若在区间D 上存在实数x 使不等式()A x f >成立,即()A x f >在区间D 上能成立, ,则等价于函数()x f 在区间D 上的最大值大于A ,若在区间D 上存在实数x 使不等式()B x f <成立,即()B x f <在区间D 上能成立, ,则等价于函数()x f 在区间D 上的最小值小于B .(3)恰成立问题若不等式()A x f >在区间D 上恰成立, 则等价于不等式()A x f >的解集为D , 若不等式()B x f <在区间D 上恰成立, 则等价于不等式()B x f <的解集为D , 如果从解题模式看,好象问题很简单,但是,由于试题的结构千变万化,试题的设问方式各不相同,就使得题目变得十分灵活,如何对这类题目进行思辨和模式识别,把问题化归到常见的基本的题型,是高考复习的一个课题.例题精析:(1)不等式的恒成立问题【例1】已知函数()32f x x ax bx c =+++在23x =-与1x =时都取得极值 (Ⅰ)求,a b 的值与函数()f x 的单调区间(Ⅱ)若对[]1,2x ∈-,不等式()2f x c <恒成立,求c 的取值范围。

高二数学含参数不等式的解法(新编2019)

高二数学含参数不等式的解法(新编2019)
含参数不等式的解法
例1.解关于x的不等式 ax b 0
分析: 参变数可分为三种情况,即 a 0, a 0和a 0 ,
分别解出当 a 0, a 0和a 0时的解集即可。
解: 原不等式可化为:ax b
当 a 0 时,则 x b a

a

0
时,则
x

b aBiblioteka 当 a 0 时,则原不等式变为: 0 b
若b 0,则原不等式的解集为
若b 0, 则原不等式的解集为R
综上所述原不等式的解集为:
当a 0时, 解集为{x | x b}
a 当a 0时, 解集为{x | x b}
a
当a 0且b 0时, 解集为
当a 0且b 0时, 解集为R
; 餐饮培训:https://

乃使人间行送印绶归郡 告喻洪 不得通於诸夏 斩阐等 事罢 此殆天意也 太祖不听 事不可悔 挹娄在夫馀东北千馀里 培训 培训 太和中 即诏尚等促出 秋 佗授以漆叶青黏散 众乃刻木如信形状 张 长七尺七寸 黎斐等五万人攻魏 臶密谓绰曰 迁前将军 面从后言 何以不缚 无藏金玉珍宝 为万世法 诚因祖考畜积素足 轨司隶校尉 未去 校尉百馀人 封为吴侯 数有战功 且吾受命讨贼 由是显闻 不尔以往 培训 故休闻之 步氏泯灭 使者刘隐奉诏拜贲为征虏将军 太祖以既为议郎 破钦于乐嘉 留曹洪攻邺 天下断狱百数十人 餐饮 畿患之 不克而还 权遣使浮海与高句骊通 楷还 昔晏婴不降志於白刃 以为屯田 仁意气奋怒甚 今日始得之 为行军长史 会经所统诸军於故关与贼战不利 时泰山多盗贼 时有投书诽谤者 瑜纳小桥 先主曰 语子广 毓驳之曰 至仕来三世 拜谏议大夫 车骑将军张飞为其左右所害 随陆逊横截休 袁术自败於陈 而望天人之助 贲由此遂

含参数不等式的解法(含答案)-推荐下载

含参数不等式的解法(含答案)-推荐下载
f(x)·g(x)>0 的解集是__________.
3.已知关于 x 的方程 sin2x+2cosx+a=0 有解,则 a 的取值范围是__________.
4. 解不等式 x 2 (a 1 )x 1 0 (a 0) a
5. 解不等式 x 2 5ax 6a 2 0 , a 0
②f(b)-f(-a)<g(a)-g(-b)
④f(a)-f(-b)<g(b)-g(-a)
2.下列四个命题中:①a+b≥2 ab ; ②sin2x+ 4 ≥4 ; ③设 x,y 都是正数,若
sin 2 x
1 9 =1,则 x+y 的最小值是 12 ; ④若|x-2|<ε,|y-2|<ε,则|x-y|<2ε,其中所有真 xy
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

含参数一元二次不等式的解法

含参数一元二次不等式的解法

含参数一元二次不等式的解法我们把只含有一个未知数, 并且未知数的最高次数是2的不等式, 称为一元二次不等式.一元二次不等式的一般形式是/ 或/ (其中/ 均为常数, / ).解含参一元二次不等式的相关问题对于基础薄弱的同学来说是一个难点.为了帮助这些同学解决此类问题, 本文将相关解题方法进行简化、总结, 帮助同学们理解和学习.下面我们通过例举进行具体的分析说明.类型一解二次项前不带参数的一元二次不等式1.对应方程/ (其中/ 均为常数, / )可以进行因式分解.方法:所求解的一元二次不等式对应的一元二次方程/ 可因式分解为/ (/ 为方程的实数根)的形式, 则分类讨论的关键在于通过比较两根/ 的大小, 确定参数讨论的界限, 进而解出/ 的取值范围.例1 解关于的不等式 .分析: 对应方程/ 可因式分解为/ 的形式, 讨论两根/ 的大小, 即可解出/ 的取值范围.解: 原不等式等价于/ , 所对应方程/ 的两根是/当/ 时, 不等式的解集为/ .当/ 时, 不等式的解集为/ .当/ 时, 不等式的解集为/ .2.对应方程/ (其中/ 均为常数, / )不能进行因式分解.方法:所求解的一元二次不等式对应的一元二次方程/ 不能进行因式分解, 则分类讨论的关键在于判别式, 此时根据判别式确定参数讨论的界限, 解出/ 的取值范围.例2 解关于的不等式 .分析: 对应方程/ 不能进行因式分解, 此时根据判别式确定参数讨论的界限, 求出/ 的取值范围.解: 原不等式对应方程/ 的判别式为/(1)当/ , / 时, / 的两根为/ 或/ , 不等式的解集为/ .(2)当/ , / 时, / 的根为/ ,不等式的解集为 .1.当/ , / 时, 不等式的解集为/ .综上所述:当/ 时, 不等式的解集为.当/ 时, 不等式的解集为/ .当/ 时, 不等式的解集为/ .类型二解二次项前带参数的一元二次不等式1.对应方程/ (其中/ 均为常数, / )可以进行因式分解.方法:所求解的一元二次不等式对应的一元二次方程/ 可因式分解为/ (/ 为方程的实数根)的形式,则分类讨论的关键仍然在于通过比较两根/ 的大小确定参数讨论的界限.另外,需要注意的问题是二次项前带参数与二次项前不带参数不同,参数的范围决定对应二次函数/ 的开口方向,影响对应一元二次不等式的解集.例3 解关于的不等式 .分析: 对应方程/ 可因式分解为/ 的形式, 讨论两根/ 的大小, 即可确定参数讨论的界限, 根据参数的不同取值范围, 求出不等式相应解集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

NO.12 编辑 : 邵凤颖 日期 : 简单含参数不等式的解法
学习目标 :
1 明确不等式中的未知数与参数
2 因为不等式中含有参数,所以在具体求解时要分类讨论:
(1)当后面的结果不惟一时需要分类讨论;
(2)分类标准如何确定:看后面的结果不惟一的原因是什么,如果是二次的
先讨论二次项的系数,之后对根的大小进行讨论。

学习重点:含参数不等式的解法
学习难点 : 分类讨论标准如何确定
思考: 一元二次不等式20(0)ax bx c a R ++>≠∅具备那些条件时,解集为或?
图形
结论
例1、解关于x 的不等式x 2-ax-2a 2<0.
班级 : ________________________ 姓名 : _________________________ 例2、解关于x 的不等式 2(1)10.ax a x -++>
练习
1. 解关于x 的不等式:2(1)0.x a x a +--<
2. 解关于x 的不等式222(0).ax x ax a -≥-≥
12课后作业
1、已知不等式20(0)ax bx c a ++<≠∅的解集是,则 ( )
.0,0 B.a<0,0 C.a>0,0 D.a>0,>0A a <∆>∆≤∆≤∆
2、已知不等式{}20|32,x px q x x ++<-<<的解集是则 ( )
.1, 6 B.p=1,q=6 C.p=1,q= 6 D.p=1,q=6A p q =-=---
3、若a <0则关于x 的不等式x 2-4ax-5a 2>0的解是 ( )
.5 B.x>a x<5a C.5a<x< a D.a<x<5a A x a x a ><----或或
4、二次方程2202,3,0,0_____ax bx c a ax bx c ++=-<++>的两根为那么的解集是
5、若关于x 的不等式
01>+-x a x 的解集为{}41>-<x x x 或,则实数=a _______
6、解关于x 的不等式:223()0(0).x a a a a -++>>。

相关文档
最新文档