【小初高学习]2018年高考数学 专题04 导数及其应用教学案 理
单元教学设计《导数及其应用》
单元教学设计《导数及其应用》课题名称:《导数及其应用》单元教学设计设计者姓名:XXX设计者单位:XXX联系(未提供)一、教学要素分析1、数学分析1)该单元在整个高中数学中的地位和作用导数是大学数学微积分的核心概念之一,也是中学数学中特别重要的内容。
它在中学数学与高等数学之间起着承前启后的衔接作用。
导数以不同的形式渗透到高中数学的许多方面,与高中数学的许多内容都有密切的联系。
导数可用于研究函数性质、探求函数的极值最值、求曲线的斜率、证明不等式等,为解决中学数学问题提供了新的视野。
在中学数学中的应用涉及到函数、三角、数列、不等式、向量、解析几何、立体几何等方面。
应用导数可以十分方便地处理中学数学问题。
同时,导数也是解决一些物理、化学问题等其他实际问题的有力工具。
2)导数在实际生活中的应用导数在物理、化学、生物、天文、地理、经济等领域都有着十分广泛和主要的应用。
为了突出导数概念的实际背景,教材选用了两个物理问题作为典型实例,从平均变化率到瞬时变化率的过程,引出导数概念,揭示导数的本质——导数就是瞬时变化率。
现实生活中经常遇到求利润最大、用料最省和效率最高等优化问题,这些问题常转化为数学中求函数的最值问题,而导数是求函数最值的强有力工具,因此我们利用导数解决生活中的优化问题就自然而然地用到导数了。
研究了导数及其应用以后,学生可以很容易地根据做变速直线运动物体的运动方程:s=s(t),算出物体的瞬时速度、瞬时加速度;对非稳恒电流,就可以算出其瞬时电流强度;化学中的反应速度、冷却速度等也可以通过微积分的方法来解决。
3)该单元蕴含的基本数学思想和方法,以及数学文化价值在知识传授上,采用从特殊到一般,从猜想到探究,由感性上升到理性的思路,让学生充分感受数学知识产生过程,学会进行数学推理和探究方法。
同时,借助函数图象的直观性,即函数的平均变化率就是曲线割线所在直线的斜率,再利用无限逼近的数学思想得到曲线的切线和导数的关系——导数的几何意义,充分体现了数形结合思想和“无限逼近”的极限思想。
导数及其应用教案
导数及其应用教案教案标题:导数及其应用教案教案概述:本教案旨在引导学生全面了解导数的概念、性质以及其在实际问题中的应用。
通过理论讲解、示例分析和实践练习,培养学生对导数的理解和运用能力,提高他们解决实际问题的能力。
教学目标:1. 理解导数的定义和性质;2. 掌握常见函数的导数计算方法;3. 理解导数在函数图像、极值和曲线运动等方面的应用;4. 运用导数解决实际问题。
教学重点:1. 导数的定义和性质;2. 常见函数的导数计算方法;3. 导数在函数图像、极值和曲线运动等方面的应用。
教学难点:1. 导数在实际问题中的应用;2. 运用导数解决复杂实际问题。
教学准备:1. 教师准备:教学课件、示例题、练习题、实际问题案例等;2. 学生准备:教材、笔记本、计算器等。
教学过程:一、导入(5分钟)1. 引入导数的概念,与学生一起回顾函数的变化率和斜率的概念;2. 提问:你认为如何计算函数在某一点的变化率或斜率?二、理论讲解(15分钟)1. 讲解导数的定义和性质,包括函数在某一点的导数定义、导数的几何意义和导数的性质;2. 通过示例解释导数的计算方法,如常数函数、幂函数、指数函数、对数函数等的导数计算;3. 引导学生理解导数的物理意义,如速度、加速度等的概念。
三、示例分析(15分钟)1. 分析示例题,引导学生运用导数的定义和性质计算函数的导数;2. 分析函数图像的特征,如切线、极值点等,与导数的关系;3. 分析曲线运动的问题,如速度、加速度等与导数的关系。
四、实践练习(15分钟)1. 给学生提供一些练习题,涵盖导数的计算、函数图像分析和实际问题应用等方面;2. 引导学生独立解题,鼓励他们思考和探索;3. 辅导学生解决遇到的问题,及时给予指导和反馈。
五、实际问题应用(15分钟)1. 提供一些实际问题案例,如物体的运动问题、最优化问题等;2. 引导学生分析问题,建立数学模型,并运用导数解决问题;3. 鼓励学生展示解题过程和结果,进行讨论和交流。
导数及其应用教案
课题:变化率问题教学目标:1.理解平均变化率的概念; 2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一、情景导入为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。
导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。
导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二、知识探究探究一:气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=⏹ 如果将半径r 表示为体积V 的函数,那么343)(πV V r = ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?1212)()(V V V r V r --探究二:高台跳水:在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态?思考计算:5.00≤≤t 和21≤≤t 的平均速度v在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =,所以)/(004965)0()4965(m s h h v =--=,虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态。
专题复习 导数及其应用(教案)
专题复习 导数及其应用一、考情分析导数在高中数学中具有相当重要的地位和作用. 从横向看,它是解决函数、不等式、数列、几何等众多重要问题的工具,具有很强的知识交汇联结作用; 纵向看,导数是对函数知识的深化,对极限知识的发展,是初、高等数学知识的重要衔接点.因此它备受高考命题专家的青睐.近年来,无论是全国卷还是各地方卷,导数试题每年必考,并且考查的广度和深度也在不断加重。
二、考纲要求1.了解导数的实际背景,理解导数的几何意义2.能用导数解决函数的单调性、极值与最值等问题三、教学目标1.引导复习回顾导数的应用,让学生感受导数的工具性作用,激发学生进一步探究导数应用的欲望。
2.通过引例分析、题后总结、拓展延伸,让学生自主总结、概括导数的综合应用一般规律,增强数形结合、分类讨论等数学思想解题的能力,培养学生的思维灵活性。
3.通过的导数的综合应用分析,培养学生灵活运用导数工具分析、解决问题的能力,感受数学的魅力。
四、教学重点、难点教学重点:利用导数判断函数单调性,极值,最值。
教学难点:以导数为工具处理恒成立问题。
五、教学过程常考点一:导数的概念及几何意义的应用(1)近几年的高考中,导数的几何意义和切线问题是常考内容,各种题型均有可能出现.(2)利用导数的几何意义求切线方程时关键是搞清所给的点是不是切点.[考点精要](1)已知切点A(x0,f(x0))求斜率k ,即求该点处的导数值:k =f′(x0);(2)已知斜率k ,求切点A(x1,f(x1)),即解方程f′(x1)=k ;(3)已知过某点M(x1,f(x1))(不是切点)的切线斜率为k 时,常需设出切点A(x0,f (x 0)),利用k =f (x 1)-f (x 0)x 1-x 0求解. [典例] (全国卷Ⅱ)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是_______.[类题通法](1)利用导数的几何意义解决切线问题的两种情况①若已知点是切点,则在该点处的切线斜率就是该点处的导数.②如果已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解.(2)曲线与直线相切并不一定只有一个公共点,例如,y=x3在(1,1)处的切线l与y=x3的图象还有一个交点(-2,-8).[题组训练]1.曲线y=xx+2在点(-1,-1)处的切线方程为 ( )A.y=2x+1 B.y=2x-1C.y=-2x-3 D.y=-2x-22.已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________.常考点二导数与函数的单调性(1)题型既有选择题、填空题也有解答题,若以选择题、填空题的形式出现,则难度以中、低档为主,若以解答题形式出现,难度则以中等偏上为主,主要考查求函数的单调区间、证明或判断函数的单调性等问题。
2018年高考数学二轮复习 专题04 导数及其应用教学案 理
专题04 导数及其应用高考将以导数的几何意义为背景,重点考查运算及数形结合能力,导数的综合运用涉及的知识面广,综合的知识点多,形式灵活,是每年的必考内容,经常以压轴题的形式出现. 预测2018年高考仍将利用导数研究方程的根、函数的零点问题、含参数的不等式恒成立、能成立、实际问题的最值等形式考查.1.导数的定义f ′(x)=lim Δx→0 ΔyΔx=lim Δx→0+Δ-Δx .2.导数的几何意义函数y =f(x)在x =x0处的导数f ′(x0)就是曲线y =f(x)在点(x0,f(x0))处的切线的斜率,即k =f ′(x0). 3.导数的运算(1)基本初等函数的导数公式①c′=0(c 为常数);⑤(ex)′=ex; ⑥(ax)′=⑦(lnx)′=1x ;③[]′=-④设y =f(u)u =φ(x),则y′x=y′uu′x.4.函数的性质与导数 在区间(a ,b)′(x)>0,那么函数(a ,b)上单调递增.如果f ′(x)<0,5别注意平面图形的面积为正值,定积分值可能是负值.被积函数为y =f(x),由曲线y =f(x)与直线x =a ,x =b(a<b)和y =0所围成的曲边梯形的面积为S.①当f(x)>0时,S =⎠⎛a b f(x)dx ;②当f(x)<0时,S =-⎠⎛ab f(x)dx ;③当x∈[a,c]时,f(x)>0;当x∈[c,b]时,f(x)<0,则S =⎠⎛a c f(x)dx -⎠⎛cb f(x)dx.考点一导数的几何意义及应用例1、(1)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=________.答案:1(2)已知曲线y=x+ln x在点(1,1)+1相切,则a=________.解析:基本法:令f(x)=x+ln x,求导得f(1)=1,所以曲线y=x+ln x在点(1,1)处的切线方程为y-1=2(x-1),即y=2x-1.设直线y=2x-1与曲线y=ax2+(a+2)x+1的切点为P(x0,y0),则y′|x=x0=2ax0+a+2=2,得a(2x0+1)=0,+1=2x0-1,即ax20+ax0+2=0,当a=0时,显然y=2x-1+++ax+2=0,8a=0,=0(显然不成立【变式探究】设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=( ) A.0 B.1C.2 D.3解析:基本法:y′=a-1x+1,当x=0时,y′=a-1=2,∴a=3,故选D.答案:D考点二导数与函数的极值、最值例2、(1)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( )A .(2,+∞) B.(1,+∞) C .(-∞,-2) D .(-∞,-1)解析:基本法:a =0时,不符合题意.a≠0时,f′(x)=3ax2-6x ,令f′(x)=0, 得x1=0,x2=2a.若a >0,则由图象知f(x)有负数零点,不符合题意.则a <0,由图象结合f(0)=1>0知,此时必有f ⎝ ⎛⎭⎪⎫2a >0,即a×8a3-3×4a2+1>0,化简得a2>4,又a <0,所以a <-2,故选C.速解法:若a >0,又∵f(0)=1,f(-1)=-a -2<0, 在(-1,0)处有零点,不符合题意.∴a<0,若a =-43,则f(x)=-43x3-3x2+1f′(x)=-4x2-6x =0,∴x=0,或x =-32.此时f ⎝ ⎛⎭⎪⎫-32为极小值且f ⎝ ⎛⎭⎪⎫-32<0,有三个零点,排除D. 答案:C(2)已知函数f(x)=x3+ax2+bx +c ,下列结论中错误的是( ) A .∃x0∈R,f(x0)=0B .函数y =f(x)的图象是中心对称图形C .若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D .若x0是f(x)的极值点,则f′(x0)=0解析:基本法:由三次函数的值域为R 知,f(x)=0必有解,A 项正确;因为f(x)=x3+ax2+bx +c 的图象可由y =x3平移得到,所以y =f(x)的图象是中心对称图形,B 项正确;若y =f(x)有极值点,则其导数y =f′(x)必有2个零点,设为x1,x2(x1<x2),则有f′(x)=3x2+2ax +b =3(x -x1)(x -x2),所以f(x)在(-∞,x1)上递增,在(x1,x2)上递减,在(x2,+∞)上递增,则x2为极小值点,所以C 项错误,D 项正确.选C.速解法:联想f(x)的图象模型如图显然C 错. 答案:C【方法技巧】1.函数图象是研究函数单调性、极值、最值最有利的工具.2.可导函数极值点的导数为0,但导数为0的点不一定是极值点,如函数f(x)=x3,当x =0时就不是极值点,但f′(0)=0.3.极值点不是一个点,而是一个数x0,当x =x0时,函数取得极值;在x0处有f′(x0)=0是函数f(x)在x0处取得极值的必要不充分条件.4.f′(x)在f′(x)=0的根的左右两侧的值的符号,如果“左正右负”,那么f(x)在这个根处取得极大值;如果“左负右正”,那么f(x)在这个根处取得极小值;如果左右不改变符号,即都为正或都为负,则f(x)在这个根处无极值.【变式探究】1.函数f(x)=ax3+bx2+cx -34(a ,b ,c∈R)的导函数为f′(x),若不等式f′(x)≤0的解集为{x|-2≤x≤3},且f(x)的极小值等于-115,则a 的值是( ) A .-8122 B.13C .2D .5答案:C考点三 导数与函数的单调性例3、若函数f(x)=x2+ax +1x 在⎝ ⎛⎭⎪⎫12,+∞是增函数,则a 的取值范围是( ) A .[-1,0] B .[-1C .[0,3]D .[3解析:基本法:由题意知f′(x)≥0⎭⎪⎫恒成立,又f′(x)=2x +a -1x2,⎭a≥1x2-2x ,若满足题意,,x∈⎝ ⎛⎭⎪⎫12,+∞.因为h′(x)=-2x3-2,所以当⎝ ⎛⎭⎪⎫12,+∞上单调递减,所以h(x)<h ⎝ ⎛⎭⎪⎫12=3,故a≥3.a =0时, 1+1=2,f C.故选D.(2)若函数f(x)=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞) D.[1,+∞)解析:基本法:依题意得f′(x)=k -1x ≥0在(1,+∞)上恒成立,即k≥1x 在(1,+∞)上恒成立,∵x>1,∴0<1x<1,∴k≥1,故选D.速解法:若k =1,则f′(x)=1-1x =x -1x 在(1,+∞)上有f′(x)>0,f(x)=kx -ln x为增函数.答案:D【变式探究】对于R 上可导的任意函数f(x),若满足1-x≤0,则必有( )A .f(0)+f(2)>2f(1)B .f(0)+f(2)≤2f(1)C .f(0)+f(2)<2f(1)D .f(0)+f(2)≥2f(1)解析:基本法:选A.当x <1时,f′(x)<0,此时函数f(x)递减,当x >1时,f′(x)>0,此时函数f(x)递增,∴当x =1时,函数f(x)取得极小值同时也取得最小值,所以f(0)>f(1),f(2)>f(1),则f(0)+f(2)>2f(1),故选A.1.【2017课标II ,理】已知函数()2ln f x ax ax x x=--,且()0f x ≥。
导数及其应用教案
导数及其应用教案一、引言在高中数学课程中,导数是一个非常重要的概念。
本教案旨在介绍导数及其应用,帮助学生理解导数的概念和基本性质,并学习如何在实际问题中运用导数进行分析和计算。
二、导数的概念1. 导数的定义:导数表示函数在某一点上的变化率,即函数值随自变量变化而变化的快慢程度。
2. 导数的几何意义:导数等于函数曲线在某一点切线的斜率。
3. 导数的符号表示:通常用f'(x)或dy/dx表示函数f(x)的导数。
三、导数的基本性质1. 常数的导数为0:若f(x) = a(a为常数),则f'(x) = 0。
2. 幂函数的导数:若f(x) = x^n(n为常数),则f'(x) = nx^(n-1)。
3. 和差的导数:若f(x) = u(x) ± v(x),则f'(x) = u'(x) ± v'(x)。
4. 乘积的导数:若f(x) = u(x)v(x),则f'(x) = u'(x)v(x) + u(x)v'(x)。
5. 商的导数:若f(x) = u(x)/v(x),则f'(x) = [u'(x)v(x) - u(x)v'(x)] /v(x)^2。
四、导数的应用1. 切线和法线:导数可以用于求函数曲线在某一点的切线和法线方程。
2. 极值问题:导数可以帮助我们判断函数的极值,并求出极值点和极值。
3. 函数图像的画法:导数可以提供函数图像的一些特征,如拐点、极值、单调性等。
4. 物理问题中的应用:导数可以帮助解决一些物理问题,如速度、加速度等。
五、教学活动1. 导数的计算练习:通过给出具体函数的表达式,让学生计算其导数。
2. 导数在几何中的应用:通过给出函数的图像,让学生判断函数的增减性、拐点、极值等。
3. 实际问题解析:将一些实际问题转化为数学模型,并运用导数进行分析和求解。
六、教学反思通过本教案的讲解和练习,学生应能掌握导数的概念和基本性质,具备运用导数进行实际问题分析和计算的能力。
18年高考数学专题04导数及其应用教学案理
专题4 导数的应用【2018年高考考纲解读】高考对本内容的考查主要有:(1)导数的几何意义是考查热点,要求是B级,理解导数的几何意义是曲线上在某点处的切线的斜率,能够解决与曲线的切线有关的问题;(2)导数的运算是导数应用的基础,要求是B级,熟练掌握导数的四则运算法则、常用导数公式及复合函数的导数运算,一般不单独设置试题,是解决导数应用的第一步;(3)利用导数研究函数的单调性与极值是导数的核心内容,要求是B级,对应用导数研究函数的单调性与极值要达到相等的高度.(4)导数在实际问题中的应用为函数应用题注入了新鲜的血液,使应用题涉及到的函数模型更加宽广,要求是B级;(5)导数还经常作为高考的压轴题,能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.估计以后对导数的考查力度不会减弱.作为导数综合题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在. 【重点、难点剖析】1.导数的几何意义(1)函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=f′(x0).(2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f′(x0)(x-x0).2.基本初等函数的导数公式和运算法则(1)基本初等函数的导数公式(2)导数的四则运算①[u (x )±v (x )]′=u ′(x )±v ′(x ); ②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x ); ③⎣⎢⎡⎦⎥⎤u x v x ′=ux v x -u x vx[v x2(v (x )≠0).3.函数的单调性与导数如果已知函数在某个区间上单调递增(减),则这个函数的导数在这个区间上大(小)于零恒成立.在区间上离散点处导数等于零,不影响函数的单调性,如函数y =x +sin x .4.函数的导数与极值对可导函数而言,某点导数等于零是函数在该点取得极值的必要条件.例如f (x )=x 3,虽有f ′(0)=0,但x =0不是极值点,因为f ′(x )≥0恒成立,f (x )=x 3在(-∞,+∞)上是单调递增函数,无极值.5.闭区间上函数的最值在闭区间上连续的函数,一定有最大值和最小值,其最大值是区间的端点处的函数值和在这个区间内函数的所有极大值中的最大者,最小值是区间端点处的函数值和在这个区间内函数的所有极小值中的最小值. 6.函数单调性的应用(1)若可导函数f (x )在(a ,b )上单调递增,则f ′(x )≥0在区间(a ,b )上恒成立; (2)若可导函数f (x )在(a ,b )上单调递减,则f ′(x )≤0在区间(a ,b )上恒成立; (3)可导函数f (x )在区间(a ,b )上为增函数是f ′(x )>0的必要不充分条件. 【题型示例】题型1、导数的几何意义【例1】【2016高考新课标2理数】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = . 【答案】1ln 2-【解析】对函数ln 2y x =+求导得1y x '=,对ln(1)y x =+求导得11y x '=+,设直线y kx b =+与曲线ln 2y x =+相切于点111(,)P x y ,与曲线ln(1)y x =+相切于点222(,)P x y ,则1122l n 2,l n (1)y x y x =+=+,由点111(,)P x y 在切线上得()1111ln 2()y x x x x -+=-,由点222(,)P x y 在切线上得2221ln(1)()1y x x x x -+=-+,这两条直线表示同一条直线,所以12221211121ln(1)ln 1x x x x x x ⎧=⎪+⎪⎨+⎪+=+⎪+⎩,解得11111,2,ln 211ln 22x k b x x =∴===+-=-.【感悟提升】函数图像上某点处的切线斜率就是函数在该点处的导数值.求曲线上的点到直线的距离的最值的基本方法是“平行切线法”,即作出与直线平行的曲线的切线,则这条切线到已知直线的距离即为曲线上的点到直线的距离的最值,结合图形可以判断是最大值还是最小值.【举一反三】(2015·陕西,15)设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析 ∵(e x)′|x =0=e 0=1,设P (x 0,y 0),有⎪⎪⎪⎝ ⎛⎭⎪⎫1x ′x =x 0=-1x 20=-1, 又∵x 0>0,∴x 0=1,故x P (1,1). 答案 (1,1)【变式探究】 (1)曲线y =x ex -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1(2)在平面直角坐标系xOy 中,若曲线y =ax 2+b x (a ,b 为常数)过点P(2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.【命题意图】 (1)本题主要考查函数求导法则及导数的几何意义. (2)本题主要考查导数的几何意义,意在考查考生的运算求解能力. 【答案】(1)C (2)-3 【解析】(1)y′=ex -1+x ex -1=(x +1)ex -1,故曲线在点(1,1)处的切线斜率为y′|x =1=2.(2)由曲线y =ax 2+b x 过点P(2,-5),可得-5=4a +b2.①又y′=2ax -bx2,所以在点P 处的切线斜率4a -b 4=-72.②由①②解得a =-1,b =-2,所以a +b =-3. 【感悟提升】1.求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.2.利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.题型2、利用导数研究函数的单调性【例2】【2017课标II ,理】已知函数()2ln f x ax ax x x =--,且()0f x ≥。
导数专题及其应用教学设计
导数专题及其应用教学设计导数是高等数学中的重要概念,也是微积分的基础知识之一。
在学习和应用导数时,学生需要理解导数的定义、性质以及其在实际问题中的应用。
本文将介绍导数的概念及其应用,并设计一节关于导数的课堂教学。
一、导数的概念导数是函数的增量与自变量增量比的极限。
如果函数 f(x) 在点 x 处可导,并且导数的极限存在,那么函数 f(x) 在点 x 处的导数值就是函数f(x) 在点x 处的切线的斜率。
导数可以用函数的微分来表示,记作 f'(x) 或者 dy/dx。
在教学中,可以从几何和物理角度引入导数的概念。
给定曲线上的一点 P,可以取曲线上与点 P 非常接近的另外一点 Q,通过计算点 P 和点 Q 连线的斜率,可以得到点 P 处的切线的斜率,也即导数的值。
导数有一些重要的性质,例如:1. 可导性:如果函数在某一点可以导,则该点称为可导点。
2. 连续性:可导函数在其定义域内连续。
3. 导数为0:如果导数在某一点为0,则该点是函数的驻点。
4. 导数的加法、减法性质:如果两个函数在某一点都可导,则它们的和/差的导数等于它们的导数之和/差。
二、导数的应用导数在实际问题中有着广泛的应用。
以下列举几个常见的应用领域:1. 最值问题:通过求函数的导数,可以确定函数的最大值或最小值所对应的自变量值。
这一应用在经济学、物理学等领域具有重要意义。
2. 曲线绘制:通过绘制函数的导数,可以描绘函数图像的特征,包括函数的增减性、凹凸性等。
3. 速度与加速度问题:将位移函数对时间求导可以得到速度函数,进一步对速度函数求导可以得到加速度函数。
这一应用在物理学中被广泛使用。
4. 面积与体积问题:通过对函数的导数进行积分,可以得到函数的面积或曲面的体积。
三、导数教学设计本节课的目标是让学生理解导数的定义、性质以及应用,并能够熟练地计算相关的导数和解决实际问题。
教学步骤如下:第一步:导入导数的概念通过举例介绍导数的定义和基本性质,帮助学生初步理解导数的含义。
导数及其应用教案设计
导数及其应用教案设计一、教学目标1.理解导数的定义和概念;2.掌握导数的计算方法;3.了解导数的几何意义和物理意义;4.应用导数解决实际问题。
二、教学重点1.导数的定义和概念;2.导数的计算方法。
三、教学难点1.导数的几何意义和物理意义;2.导数在实际问题中的应用。
四、教学准备1.教学课件;2.教学工具:黑板、彩色笔;3.教学素材:与导数相关的题目和实例。
五、教学过程Step 1 引入导数的概念(10分钟)1.引入问题:小明从家里出发骑自行车到学校,经历了不同的路段,那么他在每个路段上的速度是多少呢?2.学生思考问题,并提出速度的定义。
3.介绍导数的概念:导数是研究函数变化率的工具,它描述了一个函数在其中一点附近的变化速率。
Step 2 导数的计算方法(20分钟)1. 导数的定义:设函数y=f(x),当x在x0处有极限存在,那么函数f(x)在x0处的导数定义为:f'(x0)=lim(x→x0)[f(x)-f(x0)]/(x-x0)。
2.通过例题演示如何计算导数。
3.引入常见导数的计算法则,如幂函数、反函数、指数函数等。
Step 3 导数的几何意义和物理意义(15分钟)1.导数的几何意义:表示函数在其中一点处的切线斜率。
2.通过例题演示导数的几何意义。
3.导数的物理意义:表示物体运动的速度或速度的变化率。
4.通过例题演示导数的物理意义。
Step 4 导数在实际问题中的应用(25分钟)1.介绍导数在实际问题中的应用,如最大值最小值问题、函数的图像判断等。
2.通过例题演示导数在实际问题中的应用。
3.引入微分的概念,并介绍微分的定义和计算方法。
Step 5 拓展与巩固(20分钟)1.指导学生通过课堂练习和课后作业巩固所学知识。
2.引导学生从日常生活中发现和应用导数的问题。
六、教学反思通过引入问题、讲解定义、演示例题等方式,让学生逐步理解导数的概念和计算方法。
在讲解导数的几何意义和物理意义时,通过具体示例,帮助学生更好地理解和应用导数。
导数及其应用教案
导数及其应用教案一、导数的基本概念导数是微积分中的重要概念,用于描述函数在某一点上的变化率。
在计算机科学、物理学、经济学等领域,导数都具有广泛的应用。
在微积分中,函数f(x)在点x=a处的导数可以表示为f'(a),它描述了函数在该点附近的局部行为。
导数可以通过两种方式计算:几何定义和算术定义。
1. 几何定义:导数可以理解为函数图像在某点的斜率,表示为$f'(a)=\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$。
2. 算术定义:导数可以理解为函数在某点上的瞬时速度,表示为$f'(a)=\lim_{x\to a}\frac{f(x)-f(a)}{x-a}$。
二、导数的性质及计算方法导数具有以下几个重要的性质:1. 导数的可加性:若函数f(x)和g(x)都在某点上可导,那么它们的和f(x)+g(x)也在该点上可导,且导数满足$(f+g)'(a)=f'(a)+g'(a)$。
2. 导数的乘法规则:若函数f(x)和g(x)都在某点上可导,那么它们的乘积f(x)g(x)也在该点上可导,且导数满足$(fg)'(a)=f'(a)g(a)+f(a)g'(a)$。
3. 导数的链式法则:若函数y=f(g(x))可以分解为两个函数f(u)和g(x),且它们在某点上可导,那么复合函数y也在该点上可导,并且满足$\frac{{dy}}{{dx}}=\frac{{dy}}{{du}}\cdot \frac{{du}}{{dx}}$。
计算导数的方法主要有以下几种:1. 利用基本函数的导数公式进行求导。
2. 利用导数的性质,例如可加性、乘法规则和链式法则,对复杂函数进行求导。
3. 利用导数的几何定义,通过极限的方法进行求导。
三、导数的应用导数在实际问题中有着广泛的应用,以下介绍几个常见的应用领域:1. 最优化问题:导数可以帮助我们找到函数的最大值和最小值。
导数及其应用 教案
导数及其应用教案教案标题:导数及其应用教学目标:1. 理解导数的概念和意义;2. 掌握求函数导数的基本方法;3. 理解导数的几何意义和应用。
教学准备:1. 教材:包含导数概念和求导方法的教材;2. 教具:白板、彩色笔、计算器、投影仪等;3. 课件:包含导数概念、求导方法和应用实例的课件;4. 练习题:包含不同难度的求导练习题。
教学过程:Step 1:导入导数概念(15分钟)1. 利用课件和白板,引导学生回顾函数的变化率概念,并与导数进行对比;2. 解释导数的定义和符号表示,强调导数表示函数在某一点的变化率;3. 通过图示和实例,展示导数的几何意义。
Step 2:求导方法介绍(20分钟)1. 介绍求导的基本方法,包括常数函数、幂函数、指数函数、对数函数和三角函数的求导法则;2. 利用课件和实例,演示不同类型函数的求导过程;3. 强调求导法则的应用和重要性。
Step 3:导数的应用(25分钟)1. 介绍导数在实际问题中的应用,如速度、加速度、最优化问题等;2. 利用课件和实例,展示导数在实际问题中的具体应用过程;3. 引导学生思考导数在其他学科中的应用,如物理、经济等领域。
Step 4:练习与巩固(20分钟)1. 分发练习题,让学生在课堂上完成求导练习;2. 鼓励学生互相讨论和解答问题,提高求导能力;3. 收集学生的答案,进行讲评和指导。
Step 5:课堂总结(10分钟)1. 总结导数的概念、求导方法和应用;2. 强调导数在数学和其他学科中的重要性;3. 鼓励学生继续深入学习和应用导数知识。
教学延伸:1. 鼓励学生进行更多的导数应用实践,如通过编程模拟物体运动、经济模型等;2. 提供更多的挑战性练习题,培养学生的分析和解决问题的能力;3. 拓展导数概念,引入高阶导数和导数的应用领域,如微分方程等。
教学评估:1. 课堂练习题的完成情况和答案准确性;2. 学生对导数概念、求导方法和应用的理解程度;3. 学生在实际问题中应用导数的能力和创造性。
导数的应用课程设计
导数的应用课程设计一、教学目标本节课的教学目标是让学生掌握导数的应用,包括求函数的切线方程、单调性、极值和最值等。
学生应能理解导数的基本概念,并能运用导数解决实际问题。
在技能目标方面,学生应能熟练运用导数求解函数的切线方程、单调区间、极值和最值等问题。
在情感态度价值观目标方面,学生应能体验到数学的实用性和趣味性,培养对数学的热爱和兴趣。
二、教学内容本节课的教学内容主要包括导数的定义、导数的几何意义、导数的运算规则以及导数在实际问题中的应用。
首先,引导学生回顾函数的极限概念,进而引入导数的定义,通过几何直观解释导数的概念。
然后,介绍导数的运算规则,包括求导法则和复合函数的导数。
最后,结合实际问题,讲解导数在求解函数的切线方程、单调性、极值和最值等方面的应用。
三、教学方法为了提高学生的学习兴趣和主动性,本节课采用多种教学方法。
首先,运用讲授法,系统地讲解导数的定义、几何意义和运算规则。
其次,采用案例分析法,通过具体例子引导学生运用导数解决实际问题。
此外,小组讨论,让学生互相交流学习心得,提高合作能力。
最后,利用实验法,让学生亲自动手操作,加深对导数概念的理解。
四、教学资源为了支持教学内容和教学方法的实施,本节课准备了一系列教学资源。
教材方面,选用《高等数学导数应用》教材,系统地讲解导数的理论和应用。
参考书方面,推荐学生阅读《导数及其应用》等书籍,以拓宽知识面。
多媒体资料方面,制作了导数的动画演示和案例分析的PPT,增强课堂的趣味性和直观性。
实验设备方面,准备了计算机和投影仪,以便进行课堂演示和讲解。
五、教学评估本节课的评估方式包括平时表现、作业和考试三个部分。
平时表现主要评估学生在课堂上的参与程度、提问回答和小组讨论的表现。
作业方面,布置与课程内容相关的练习题,要求学生在规定时间内完成,培养学生的自主学习能力。
考试则分为期中考试和期末考试,期中考试主要评估学生对导数知识的掌握情况,期末考试则综合评估学生对导数应用的理解和运用能力。
导数专题及其应用教案
导数专题及其应用教案教案标题:导数专题及其应用教案教案目标:1. 理解导数的概念和意义;2. 掌握导数的计算方法;3. 熟悉导数在实际问题中的应用。
教学重点:1. 导数的定义和计算方法;2. 导数在函数图像、极值和曲线的切线方程中的应用。
教学难点:1. 理解导数的概念和意义;2. 运用导数解决实际问题。
教学准备:1. 教师准备:教学课件、教学素材、计算工具;2. 学生准备:教材、笔记、计算器。
教学过程:一、导入(5分钟)1. 引入导数的概念,提问学生对导数的理解;2. 通过一个简单的例子,引导学生思考导数的意义。
二、导数的定义和计算方法(15分钟)1. 介绍导数的定义和符号表示;2. 讲解导数的计算方法,包括用极限定义导数和使用导数公式计算导数;3. 通过示例演示导数的计算过程。
三、导数在函数图像中的应用(15分钟)1. 讲解导数与函数图像的关系,包括导数与函数的增减性、极值和拐点;2. 指导学生根据导数的正负判断函数的增减性,并绘制函数图像;3. 引导学生通过导数的零点判断函数的极值和拐点,并绘制函数图像。
四、导数在曲线的切线方程中的应用(15分钟)1. 引入导数与曲线的切线方程的关系;2. 讲解切线方程的一般形式和求解步骤;3. 指导学生根据导数和给定点求解曲线的切线方程,并进行实际问题的应用练习。
五、导数在实际问题中的应用(15分钟)1. 介绍导数在实际问题中的应用领域,如物理、经济等;2. 提供一些实际问题,引导学生运用导数解决问题;3. 学生个别或小组完成导数应用问题的解答和讨论。
六、总结(5分钟)1. 简要回顾导数的概念和计算方法;2. 强调导数在实际问题中的应用;3. 鼓励学生继续深入学习导数的相关知识。
教学延伸:1. 提供更多的导数计算练习题,巩固学生的计算能力;2. 引导学生在实际生活中寻找更多导数的应用案例,并进行讨论和分享。
教学评估:1. 教师观察学生在课堂上的参与和表现;2. 学生完成课后作业,包括导数计算和应用题目;3. 学生进行小组或个人报告,展示导数在实际问题中的应用案例。
《导数及其应用》单元教学设计
《导数及其应用》单元教学设计一、教学目标:1.知识与技能:(1)了解导数的定义和基本性质;(2)掌握导数的计算方法;(3)掌握导数在几何、物理、经济等领域中的应用。
2.过程与方法:(1)通过思维导图、案例分析等活动,培养学生的归纳、推理和解决问题的能力;(2)通过探究、实验等活动,培养学生的实验观察和动手能力;(3)通过小组合作、展示等活动,培养学生的团队合作和表达能力。
3.情感态度和价值观:(1)培养学生用数学思维解决实际问题的兴趣和意识;(2)培养学生负责任、团队合作的精神。
二、教学重点:1.导数的定义和基本性质;2.导数的计算方法;3.导数在几何、物理、经济等领域中的应用。
三、教学难点:1.如何正确计算导数;2.如何将导数应用到实际问题中。
四、教学过程:1.导入(5分钟)通过提问和展示实例,激发学生对导数的兴趣,引入导数的概念。
2.导数的定义和基本性质(25分钟)(1)引导学生通过观察一个物体运动的图像,思考在不同点的瞬时速度是否相同,并引出导数的定义;(2)通过数学符号和公式的方式,给出导数的定义和基本性质;(3)引导学生用导数的定义和基本性质解决一些实际问题,如求函数的增减区间、极值、拐点等。
3.导数的计算方法(20分钟)(1)介绍常用函数的导数的计算公式,如幂函数、指数函数、对数函数、三角函数等;(2)给学生练习计算简单函数的导数,并引导学生归纳出计算导数的一般方法;(3)通过练习和讨论,确保学生掌握计算导数的方法。
4.导数在几何、物理、经济等领域中的应用(30分钟)(1)通过案例分析和实例展示,引导学生认识导数在几何、物理、经济等领域中的应用;(2)给学生提供一些实际问题,让他们尝试用导数解决问题,并展示解决过程和结果;(3)通过小组合作和展示,让学生分享彼此的解决方法和经验。
5.总结与拓展(20分钟)(1)引导学生总结导数的定义、基本性质、计算方法和应用;(2)给学生提供一些拓展问题,让他们进一步思考导数的更多应用,并引导他们提出自己的问题和研究方向;(3)鼓励学生积极参与数学竞赛和科学研究,提高他们在数学领域的综合能力。
导数的应用教案
导数的应用教案导数的应用教案一、教学目标:1.了解导数的概念及其意义;2.掌握导数的计算方法;3.能够应用导数解决实际问题。
二、教学内容:1.导数的概念及其意义;2.导数的计算方法;3.导数的应用实例。
三、教学过程:1.导入导数概念:教师通过提问方式引导学生回顾前面学习的知识,了解函数的极限与导数之间的关系,并引入导数的概念。
教师可以通过举例说明导数的概念,如汽车行驶距离与时间的关系等。
2.导数的计算方法:教师介绍导数的计算方法,包括极限定义、导数公式和导数性质等,并通过具体的例子进行讲解,如多项式函数的导数计算等。
3.导数的应用实例:教师通过实际问题让学生应用导数解决实际问题,如求函数的最值、判定函数的增减性、判定函数的凸凹性等。
教师可以先进行概念讲解,然后给出具体的应用实例,让学生进行分析和解答。
4.教学巩固与拓展:教师进行导数的应用拓展,让学生了解导数在其他领域的应用,如物理学中的速度与加速度、经济学中的边际产量与边际成本等,并进行讲解和讨论。
四、教学方法:1.导入法:通过导入问题或例子引发学生思考,激发学生学习兴趣。
2.讲解法:通过讲解导数的概念和计算方法,使学生掌握相关知识。
3.示范法:通过示范具体例题,帮助学生理解和掌握导数的应用方法。
4.讨论法:通过学生的互动讨论,加深对导数应用的理解和掌握。
五、教学资源:1.课件:包括导数的概念、计算方法及应用实例的课件。
2.习题集:提供导数的应用习题,帮助学生巩固和拓展知识。
六、教学评价:1.课堂练习:提供一定数量的导数应用题,检查学生的掌握情况。
2.作业:布置一定数量的导数应用题,供学生进行复习和巩固。
3.学生评价:通过学生对教学过程的反馈和教师的观察,对教学效果进行评价。
七、教学反思:通过开展导数的应用教学,学生能够进一步理解导数的概念、计算方法及其在实际问题中的应用,从而提高学生的数学思维能力和解决实际问题的能力。
同时,教师应根据学生的实际情况和兴趣,合理安排教学内容和方法,提高教学效果。
高三数学教案范文:导数的概念及其运算
高三数学教案范文:导数的概念及其运算教案标题:导数的概念及其运算教学目标:1. 理解导数的概念及其运算;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。
教学重点:1. 导数的概念;2. 导数的计算方法。
教学难点:1. 导数的计算方法。
教学过程:一、导入(5分钟)1. 引入导数的概念:导数是微积分中的一个重要概念,表示函数在某一点的变化速率。
导数的概念和计算方法在解决实际问题中具有重要应用。
二、提出问题(5分钟)1. 通过实例引出导数的计算方法:假设有一段直线走进山谷,我们想知道在每个位置上,直线的斜率是多少?三、导数的定义(10分钟)1. 定义导数(以函数f(x)为例):函数f(x)在某一点x=a处的导数,记作f'(a),表示函数曲线在点(x=a, f(a))处的切线的斜率。
2. 根据导数的定义,讨论导数的几何意义:导数表示函数曲线在某一点上的切线的斜率,也反映了函数在该点的变化趋势。
四、导数的计算方法(15分钟)1. 导数的计算方法:使用导数的定义,通过极限过程求得导数。
2. 计算导数的示例:(1)求常数函数的导数;(2)求多项式函数的导数;(3)求分式函数的导数。
五、导数运算法则(15分钟)1. 导数运算法则:(1)和法则:(f(x)±g(x))' = f'(x)±g'(x);(2)积法则:(f(x)g(x))' = f'(x)g(x) + f(x)g'(x);(3)商法则:(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2;(4)复合函数的导数:若y=f(u),u=g(x),则y的导数为dy/dx = dy/du * du/dx。
六、应用导数解决实际问题(10分钟)1. 利用导数求函数的增减性和极值;2. 通过实例讲解应用导数解决实际问题的方法。
导数及其应用全章教学案
课题:3.1.1平均变化率学习目标1、知识目标:通过实例直观感知、构建平均变化率的概念,并初步运用和加深理解平均变化率的实际意义和数学意义.2、能力目标:由平均变化率的实际意义到数学意义,体现实际问题数学化的过程,并渗透“以直代曲”、“数形结合”的思想方法,培养学生分析问题、解决问题的能力.3、情感目标:经历运用数学模型刻画客观世界的“数学化”过程,感受数学产生和发展的规律,培养学生勇于探索、创新的个性品质.重点:平均变化率概念的建构和平均变化率的实际意义.难点:平均变化率的实际意义和数学意义的互相转化.学习过程、问一题情境1.在经营高邮双黄蛋的生意中,甲挣到10万元,乙挣到2万元,谁的经2.观察:高邮市3月18日到4月18日与4月18日到4月20日的温度变化曲线图问题1:观察图象,AB段与BC段气温的变化有什么特点?问题2:如何量化曲线的陡峭程度呢?二、学生活动围绕“如何量化曲线的陡峭程度”这一问题展开活动:1.讨论仅仅yC -yB的大小能否量化BC段陡峭程度,为什么?2.讨论用c bc by yx x--刻画曲线陡峭程度的合理性.三、建构数学1.通过讨论,给出平均变化率的定义:一般地,给出函数f(x)在区间[x1,x2]上的平均变化率为2121()()f x f xx x--.2.通过比较气温在区间[1,32]上的变化率0.5与气温[32,34]上的变化率7.4,感知曲线陡峭程度的量化.3.回到气温曲线图中,从数和形两方面对平均变化率进行意义建构.四、数学应用1、例题分析例1 在经营高邮双黄蛋的生意中,甲挣到10万元,乙挣到2万元,谁的经营成果好?变:在经营高邮双黄蛋的生意中,甲用5年时间挣到10万元,乙用5个月时间挣到2万元,谁的经营成果好?小结:解释经营成果的数学意义,说明仅考虑一个变量的变化是不形的.0.1()5tV t e-=⨯(单位:3cm),计算第一个10s内V的平均变化率.函数f(x)=2x+1,g(x)=-2x,分别计算在区间[-3,-1],[]5,0上f(x)及g(x)的平均变化率.思考:一次函数y=kx+b在区间[m,n]上的平均变化率有什么特点?例4 已知函数2()f x x=,分别计算()f x在下列区间上的平均变化率:(1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001].2、练习:教材P59练习1、3五、回顾小结1.平均变化率一般的,函数()f x在区间[x1,x2]上的平均变化率为2121()()f x f xx x--.2.平均变化率是曲线陡峭程度的“数量化”,是一种粗略的刻画,有待进一步精确化,随之而来的便是新的数学模型的建立.例2 水经过虹吸管从容器甲中流向容器乙,t s后容器甲中水的体积六、作业:P59练习2、4 课题:3.1.2瞬时变化率——导数(1)学习目标:1、知识与技能:理解并掌握曲线在某一点处的切线的概念;会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度;理解导数概念实际背景,培养学生解决实际问题的能力.2、过程与方法:掌握在一点处的导数的定义及其几何意义.3、情感态度与价值观:培养学生研究探索问题的能力,共同协作的精神,培养学生转化问题的能力及数形结合思想.学习重点:“以直带曲”的思想方法学习难点:“以直带曲”的思想方法的产生一、问题提出:1、什么叫做平均变化率;2、“曲线上两点的连线(割线)的斜率”与“函数f(x)在区间[xA,xB]上的平均变化率”有怎样的关系?3、如何精确地刻画曲线上某一点处的变化趋势呢?二、学生活动:下面我们来看一个动画.观察这个动画,在点P沿曲线向点Q运动时,随着点P 无限逼近点Q,观察割线PQ的斜率的变化趋势与曲线在点Q处的切线的斜率的关系.三、建构数学:1、曲线上一点处的切线斜率不妨设P(x1,f(x1)),Q(x,f(x)),则割线PQ的斜率为11)()(xxxfxfkPQ--=,设x1-x=△x,则x1=△x+x,∴xxfxxfkPQ∆-∆+=)()(当点P沿着曲线向点Q无限靠近时,割线PQ的斜率就会无限逼近点Q处切线斜率,即当△x无限趋近于0时,xxfxxfkPQ∆-∆+=)()(0无限趋近点Q处切线斜率.2、曲线上任一点(x,f(x))切线斜率的求法:xxfxxfk∆-∆+=)()(0,当△x无限趋近于0时,k值即为(x,f(x))处切线的斜率.3、瞬时速度与瞬时加速度(1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度(2)位移的平均变化率:tt s t t s ∆-∆+)()(00(3)瞬时速度:当无限趋近于0 时,tt s t t s ∆-∆+)()(00无限趋近于一个常数,这个常数称为t=t 0时的瞬时速度(4)求瞬时速度的步骤:①先求时间改变量t ∆和位置改变量)()(00t s t t s s -∆+=∆②求平均速度tsv ∆∆=③求瞬时速度:当t ∆无限趋近于0,ts∆∆无限趋近于常数v 为瞬时速度(5)速度的平均变化率:tt v t t v ∆-∆+)()(00(6)瞬时加速度:当t ∆无限趋近于0 时,tt v t t v ∆-∆+)()(00无限趋近于一个常数,这个常数称为t=t 0时的瞬时加速度注:瞬时加速度是速度对于时间的瞬时变化率 四、数学应用1、例题分析:例1、已知f(x)=x 2,求曲线在x=2处的切线的斜率.变式:1.求21()f x x =过点(1,1)的切线方程2.曲线y=x 3在点P 处切线斜率为k,当k=3时,求P 点的坐标. 3.已知曲线()f x =P(0,0)的切线斜率是否存在?例2.一直线运动的物体,从时间t 到t t +∆时,物体的位移为s ∆,那么当t ∆无限趋近于0零时,ts∆∆无限趋近于(1)从时间t 到t t +∆时,物体的平均速度; (2)在t 时刻时该物体的瞬时速度; (3)当时间为t ∆时物体的速度; (4)从时间t 到t t +∆时物体的平均速度例 3 设一辆轿车在公路上做加速直线运动,假设t s 时的速度为3)(2+=t t v .求0t t =s 时轿车的加速度.变式:自由落体运动的位移s(m)与时间t(s)的关系为s=221gt(1)求t=t 0s 时的瞬时速度 (2)求t=3s 时的瞬时速度 (3)求t=3s 时的瞬时加速度2、练习:P62练习、P64练习五、课堂小结:1、当点Q 沿曲线C 向点P 运动,并无限靠近点P 时,割线PQ 逼近点P的切线l ,从而割线的斜率逼近切线的斜率,即当x ∆无限趋近于0时,xx f x x f ∆-∆+)()(无限趋近于点P ))(,(x f x 处的切线的斜率.2、当t ∆无限趋近于0时,tt s t t s ∆-∆+)()(00无限趋近于物体在0t 时刻的速度;当t ∆无限趋近于0时,tt v t t v ∆-∆+)()(00无限趋近于物体在0t 时刻的加速度.课题:3.1.2瞬时变化率——导数(2)学习目标:1、知识与技能:理解导数的概念、掌握简单函数导数符号表示和求解方法;理解导数的几何意义;理解导函数的概念和意义;2、过程与方法:先理解概念背景,培养解决问题的能力;再掌握定义和几何意义,培养转化问题的能力;最后求切线方程,培养转化问题的能力;3、情感态度及价值观;让学生感受事物之间的联系,体会数学的美;学习重点:导数的概念的建立;学习难点:导数的概念. 学习过程: 一、创设情景1、平均变化率2、探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =,所以)/(004965)0()4965(m s h h v =--=,虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. 二、学生活动:我们把物体在某一时刻的速度称为瞬时速度.运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,2t =时的瞬时速度是多少?考察2t =附近的情况:当t ∆趋近于0时,平均速度v 有什么样的变化趋势?三、建构数学1、导数的概念从函数)(x f y =在区间),(b a 上有定义,),(0b a x ∈,当x ∆无限趋近于0时,比值xx f x x f x y ∆-∆+=∆∆)()(00 无限趋近于一个常数A ,则称)(x f 在0x x =处可导,并称常数A 为函数)(x f 在点0x x =处的导数,记作)('0x f .0000()()lim lim x x f x x f x f x x ∆→∆→+∆-∆=∆∆ 2、导数的几何意义3、导函数的概念4、导数的物理意义四、数学应用 1、例题分析:例1.(1)求函数23x y =在1=x 处的导数.(2)求函数f (x )=x x +-2在1x =-附近的平均变化率,并求出在该点处的导数.变式:已知函数23)(2+=x x f ,(1)求函数)(x f 在2=x 处的导数;(2)求函数)(x f 在a x =处的导数.例2.(课本例1)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单位:C )为2()715(08)f x x x x =-+≤≤,计算第2h 时和第6h 时,原油温度的瞬时变化率,并说明它们的意义.2、课堂练习:P66练习 五.回顾总结1、导数的概念;导数的几何意义与物理意义;2、导函数的概念.六.布置作业:P67习题4、81.质点运动规律为32+=t s ,求质点在3t =的瞬时速度为 .2.曲线221y x =+在点(1,3)的切线斜率为 ,切线方程为3.当h 无限趋近于0时, 22(3)3h h +-无限趋近于,无限趋近4(4,6)处的切线的方程为5.函数2y x =的图像在点39(,)416P 处切线的斜率是多少?写出该切线的方程.6.曲线2yx =的一条切线的斜率是4-,求切点的坐标.7.已知y ,求''1,x y y =8.求曲线y =f (x )=x 2+1在点P (1,2)处的切线方程.9.求函数y =3x 2在点(1,3)处的导数.10.求曲线y =f (x )=x 3在点(1,1)处的切线;11.求曲线y =f (x )=x 3在1x =时的导数.12.例2中,计算第3h 时和第5h 时,原油温度的瞬时变化率,并说明它们的意义.课题:3.2.1常见函数的导数学习目标:1)知识与技能目标:能根据导数的定义求几个简单函数的导数;加深对导数概念的理解;掌握初等函数的求导公式;2)过程与方法目标: 体会建立数学理论的过程,感受学习数学和研究数学的一般方法; 体会算法的思想,熟悉具体的操作步骤;3)情感与价值观:让学生再现知识的发生过程,发展学生的思维能力。
导数及其应用教案
导数及其应用教案导数及其应用教案一、教学目标:1. 了解导数的定义和性质;2. 掌握导数的计算方法;3. 了解导数的应用领域及其作用。
二、教学内容:1. 导数的定义和性质;2. 导数的计算方法;3. 导数在函数图像研究中的应用;4. 导数在物理、经济等领域的应用。
三、教学过程:1. 导入导数的概念,引出导数的定义:导数是函数在某一点处的变化率,用极限表示。
给出导数的定义:若函数在点a处的导数存在,则称函数在点a处可导,记为f'(a)。
2. 介绍导数的计算方法:a. 用导数定义法计算:根据导数的定义,利用极限运算求出导数;b. 用基本导数公式计算:介绍常见函数的导数公式,如常数函数、幂函数、指数函数、对数函数等;c. 用导数运算法则计算:介绍导数的四则运算法则,包括常数倍、和差、积、商。
3. 导数在函数图像研究中的应用:a. 求函数的增减区间:根据函数的导数求出函数的增减性和极值点;b. 求函数的凹凸区间和拐点:根据函数的导数求出函数的凹凸性和拐点。
4. 导数在物理、经济等领域的应用:a. 导数表示速度和加速度:介绍物理学中速度和加速度的概念,并利用导数计算速度和加速度;b. 导数表示边际效应和弹性:介绍经济学中边际效应和弹性的概念,并利用导数计算边际效应和弹性。
5. 总结导数的应用:导数在数学、物理、经济等领域中都有广泛的应用,帮助我们研究函数的性质、分析物体的运动和评估经济的效益等。
四、教学方法:1. 讲授导数的定义和性质,引导学生思考导数的计算方法;2. 结合例题和实际问题,让学生动手计算导数和应用导数;3. 培养学生的分析和解决问题的能力,引导学生思考导数的实际应用。
五、教学评价:1. 练习题:布置一些导数计算和应用题目,要求学生独立完成;2. 口头回答问题:提问学生导数的定义和应用,检查学生对导数的理解程度;3. 个案分析:根据学生的学习情况,进行个别辅导和评价。
六、板书设计:导数的概念:导数是函数在某一点处的变化率,用极限表示。
导数的应用教案
导数的应用教案一、教学目标1.了解导数的概念和性质;2.掌握导数的计算方法;3.理解导数在实际问题中的应用。
二、教学重点1.导数的概念和性质;2.导数的计算方法;3.导数在实际问题中的应用。
三、教学难点1.导数在实际问题中的应用;2.解决实际问题时如何运用导数。
四、教学内容1. 导数的概念和性质导数是微积分中的一个重要概念,它表示函数在某一点处的变化率。
导数的定义如下:f′(x)=limΔx→0f(x+Δx)−f(x)Δx其中,f′(x)表示函数f(x)在x处的导数。
导数的性质如下:1.导数存在的充分必要条件是函数在该点处连续;2.导数表示函数在该点处的变化率,即函数在该点处的切线斜率;3.导数的值可以为正、负或零,分别表示函数在该点处单调递增、单调递减或取极值。
2. 导数的计算方法导数的计算方法有以下几种:1.利用导数的定义进行计算;2.利用导数的四则运算法则进行计算;3.利用导数的链式法则进行计算;4.利用导数的隐函数求导法进行计算。
3. 导数在实际问题中的应用导数在实际问题中的应用非常广泛,下面介绍几个常见的应用:3.1 函数的极值函数的极值是指函数在某一点处取得最大值或最小值。
求函数的极值可以通过求导数来实现。
具体步骤如下:1.求出函数的导数;2.解方程f′(x)=0,求出导数为零的点;3.利用二阶导数判定法判断这些点是否为极值点。
3.2 函数的最大值和最小值函数的最大值和最小值是指函数在某一区间内取得的最大值或最小值。
求函数的最大值和最小值可以通过求导数和极值来实现。
具体步骤如下:1.求出函数在该区间内的导数;2.求出导数为零的点和导数不存在的点;3.将这些点代入原函数,求出函数在这些点处的函数值;4.比较这些函数值,得出函数的最大值和最小值。
3.3 函数的图像函数的图像可以通过求导数来确定函数的单调性和凸凹性。
具体步骤如下:1.求出函数的导数;2.判断导数的正负性,得出函数的单调性;3.求出导数的导数,即函数的二阶导数;4.判断二阶导数的正负性,得出函数的凸凹性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题4 导数的应用【2018年高考考纲解读】高考对本内容的考查主要有:(1)导数的几何意义是考查热点,要求是B级,理解导数的几何意义是曲线上在某点处的切线的斜率,能够解决与曲线的切线有关的问题;(2)导数的运算是导数应用的基础,要求是B级,熟练掌握导数的四则运算法则、常用导数公式及复合函数的导数运算,一般不单独设置试题,是解决导数应用的第一步;(3)利用导数研究函数的单调性与极值是导数的核心内容,要求是B级,对应用导数研究函数的单调性与极值要达到相等的高度.(4)导数在实际问题中的应用为函数应用题注入了新鲜的血液,使应用题涉及到的函数模型更加宽广,要求是B级;(5)导数还经常作为高考的压轴题,能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.估计以后对导数的考查力度不会减弱.作为导数综合题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在. 【重点、难点剖析】1.导数的几何意义(1)函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=f′(x0).(2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f′(x0)(x-x0).2.基本初等函数的导数公式和运算法则(1)基本初等函数的导数公式(2)导数的四则运算①[u (x )±v (x )]′=u ′(x )±v ′(x ); ②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x ); ③⎣⎢⎡⎦⎥⎤u x v x ′=ux v x -u x vx[v x2(v (x )≠0).3.函数的单调性与导数如果已知函数在某个区间上单调递增(减),则这个函数的导数在这个区间上大(小)于零恒成立.在区间上离散点处导数等于零,不影响函数的单调性,如函数y =x +sin x .4.函数的导数与极值对可导函数而言,某点导数等于零是函数在该点取得极值的必要条件.例如f (x )=x 3,虽有f ′(0)=0,但x =0不是极值点,因为f ′(x )≥0恒成立,f (x )=x 3在(-∞,+∞)上是单调递增函数,无极值.5.闭区间上函数的最值在闭区间上连续的函数,一定有最大值和最小值,其最大值是区间的端点处的函数值和在这个区间内函数的所有极大值中的最大者,最小值是区间端点处的函数值和在这个区间内函数的所有极小值中的最小值. 6.函数单调性的应用(1)若可导函数f (x )在(a ,b )上单调递增,则f ′(x )≥0在区间(a ,b )上恒成立; (2)若可导函数f (x )在(a ,b )上单调递减,则f ′(x )≤0在区间(a ,b )上恒成立; (3)可导函数f (x )在区间(a ,b )上为增函数是f ′(x )>0的必要不充分条件. 【题型示例】题型1、导数的几何意义【例1】【2016高考新课标2理数】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = . 【答案】1ln2-【解析】对函数ln 2y x =+求导得1y x '=,对ln(1)y x =+求导得11y x '=+,设直线y kx b =+与曲线ln 2y x =+相切于点111(,)P x y ,与曲线ln(1)y x =+相切于点222(,)P x y ,则1122l n 2,l n (1)y x y x =+=+,由点111(,)P x y 在切线上得()1111ln 2()y x x x x -+=-,由点222(,)P x y 在切线上得2221ln(1)()1y x x x x -+=-+,这两条直线表示同一条直线,所以12221211121ln(1)ln 1xx x x x x ⎧=⎪+⎪⎨+⎪+=+⎪+⎩,解得11111,2,ln 211ln 22x k b x x =∴===+-=-.【感悟提升】函数图像上某点处的切线斜率就是函数在该点处的导数值.求曲线上的点到直线的距离的最值的基本方法是“平行切线法”,即作出与直线平行的曲线的切线,则这条切线到已知直线的距离即为曲线上的点到直线的距离的最值,结合图形可以判断是最大值还是最小值.【举一反三】(2015·陕西,15)设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析 ∵(e x)′|x =0=e 0=1,设P (x 0,y 0),有⎪⎪⎪⎝ ⎛⎭⎪⎫1x ′x =x 0=-1x 20=-1, 又∵x 0>0,∴x 0=1,故x P (1,1). 答案 (1,1)【变式探究】 (1)曲线y =x ex -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1(2)在平面直角坐标系xOy 中,若曲线y =ax 2+b x (a ,b 为常数)过点P(2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.【命题意图】 (1)本题主要考查函数求导法则及导数的几何意义. (2)本题主要考查导数的几何意义,意在考查考生的运算求解能力. 【答案】(1)C (2)-3 【解析】(1)y′=ex -1+x ex -1=(x +1)ex -1,故曲线在点(1,1)处的切线斜率为y′|x =1=2.(2)由曲线y =ax 2+b x 过点P(2,-5),可得-5=4a +b2.①又y′=2ax -bx2,所以在点P 处的切线斜率4a -b 4=-72.②由①②解得a =-1,b =-2,所以a +b =-3. 【感悟提升】1.求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.2.利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.题型2、利用导数研究函数的单调性【例2】【2017课标II ,理】已知函数()2ln f x ax ax x x =--,且()0f x ≥。
(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<。
【答案】(1)1a =; (2)证明略。
【解析】(1)的定义域为设,则等价于因为若a =1,则.当0<x <1时,单调递减;当x >1时,>0,单调递增.所以x=1是的极小值点,故综上,a=1 (2)由(1)知设当时,;当时,,所以在单调递减,在单调递增又,所以在有唯一零点x0,在有唯一零点1,且当时,;当时,,当时,.因为,所以x=x0是f(x)的唯一极大值点由由得因为x=x0是f(x)在(0,1)的最大值点,由得所以【变式探究】【2016高考山东理数】(本小题满分13分) 已知()221()ln ,R x f x a x x a x -=-+∈. (I )讨论()f x 的单调性;(II )当1a =时,证明()3()'2f x f x +>对于任意的[]1,2x ∈成立. 【答案】(Ⅰ)见解析;(Ⅱ)见解析 【解析】(Ⅰ))(x f 的定义域为),0(+∞;223322(2)(1)()a ax x f 'x a x x x x--=--+=.当0≤a , )1,0(∈x 时,()0f 'x >,)(x f 单调递增;(1,),()0x f 'x ∈+∞<时,)(x f 单调递减.当0>a 时,3(1)()(a x f 'x x x x -=+. (1)20<<a ,12>a, 当)1,0(∈x 或x ∈),2(+∞a时,()0f 'x >,)(x f 单调递增; 当x ∈)2,1(a时,()0f 'x <,)(x f 单调递减; (2)2=a 时,12=a ,在x ∈),0(+∞内,()0f 'x ≥,)(x f 单调递增;(3)2>a 时,120<<a ,当)2,0(a x ∈或x ∈),1(+∞时,()0f 'x >,)(x f 单调递增; 当x ∈)1,2(a时,()0f 'x <,)(x f 单调递减. 综上所述,当0≤a 时,函数)(x f 在)1,0(内单调递增,在),1(+∞内单调递减;当20<<a 时,)(x f 在)1,0(内单调递增,在)2,1(a 内单调递减,在),2(+∞a内单调递增; 当2=a 时,)(x f 在),0(+∞内单调递增;当2>a ,)(x f 在)2,0(a 内单调递增,在)1,2(a内单调递减,在),1(+∞内单调递增.又24326()x x h'x x--+=, 设623)(2+--=x x x ϕ,则)(x ϕ在x ∈]2,1[单调递减, 因为10)2(,1)1(-==ϕϕ,所以在]2,1[上存在0x 使得),1(0x x ∈ 时,)2,(,0)(0x x x ∈>ϕ时,0)(<x ϕ, 所以函数()h x 在),1(0x 上单调递增;在)2,(0x 上单调递减, 由于21)2(,1)1(==h h ,因此21)2()(=≥h x h ,当且仅当2=x 取得等号, 所以3()()(1)(2)2f x f 'xgh ->+=, 即3()()2f x f 'x >+对于任意的]2,1[∈x 恒成立。
【感悟提升】确定函数的单调区间要特别注意函数的定义域,不要从导数的定义域确定函数的单调区间,在某些情况下函数导数的定义域与原函数的定义域不同.【举一反三】(2015·福建,10)若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝ ⎛⎭⎪⎫1k<1kB .f ⎝ ⎛⎭⎪⎫1k >1k -1C .f ⎝⎛⎭⎪⎫1k -1<1k -1 D .f ⎝ ⎛⎭⎪⎫1k -1>k k -1【变式探究】(2014·新课标全国卷Ⅱ)已知函数f (x )=e x -e -x-2x . (1)讨论f (x )的单调性;(2)设g (x )=f (2x )-4bf (x ),当x >0时,g (x )>0,求b 的最大值; (3)已知1.414 2<2<1.414 3,估计ln 2的近似值(精确到0.001).【命题意图】本题主要考查导数的综合应用,涉及利用导数求函数的单调区间、求函数的最值、估计无理数的近似值等,考查基本不等式的应用与分类讨论思想的应用,意在考查考生的运算求解能力、推理论证能力与对知识的综合应用能力.【解析】 (1)f ′(x )=e x +e -x-2≥0,等号仅当x =0时成立. 所以f (x )在(-∞,+∞)单调递增. (2)g (x )=f (2x )-4bf (x )=e 2x-e-2x-4b (e x -e -x)+(8b -4)x ,g ′(x )=2[e 2x +e -2x -2b (e x +e -x )+(4b -2)]=2(e x +e -x -2)(e x +e -x-2b +2).①当b ≤2时,g ′(x )≥0,等号仅当x =0时成立,所以g (x )在(-∞,+∞)单调递增.而g (0)=0,所以对任意x >0,g (x )>0;②当b >2时,若x 满足2<e x +e -x <2b -2,即0<x <ln(b -1+b 2-2b )时,g ′(x )<0.而g (0)=0,因此当0<x <ln(b -1+b 2-2b )时,g (x )<0. 综上,b 的最大值为2.(3)由(2)知,g (ln 2)=32-22b +2(2b -1)ln 2.当b =2时,g (ln 2)=32-42+6ln 2>0,ln 2>82-312>0.692 8;当b =324+1时,ln(b -1+b 2-2b )=ln 2,g (ln 2)=-32-22+(3 2 +2)ln 2 <0,ln 2<18+228<0.693 4.所以ln 2的近似值为0.693. 【感悟提升】1.利用导数研究函数单调性的步骤 第一步:确定函数f (x )的定义域; 第二步:求f ′(x );第三步:解方程f ′(x )=0在定义域内的所有实数根;第四步:将函数f (x )的间断点(即f (x )的无定义点)的横坐标和各实数根按从小到大的顺序排列起来,分成若干个小区间;第五步:确定f ′(x )在各小区间内的符号,由此确定每个区间的单调性. 2.根据函数的单调性求参数取值范围的思路 (1)求f ′(x ).(2)将单调性转化为导数f ′(x )在该区间上满足的不等式恒成立问题求解. 【举一反三】 (2015·新课标全国Ⅱ,21)设函数f (x )=e mx+x 2-mx . (1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|0≤e-1,求m 的取值范围. (1)证明 f ′(x )=m (e mx-1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx-1≤0,f ′(x )<0; 当x ∈(0,+∞)时,e mx-1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx-1>0,f ′(x )<0; 当x ∈(0,+∞)时,e mx-1<0,f ′(x )>0. 所以,f (x )在(-∞,0)单调递减, 在(0,+∞)上单调递增.(2)解 由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e-1的充要条件是⎩⎪⎨⎪⎧f (1)-f (0)≤e-1,f (-1)-f (0)≤e-1,即⎩⎪⎨⎪⎧e m-m ≤e -1,e -m +m ≤e-1.① 设函数g (t )=e t -t -e +1,则g ′(t )=e t-1. 当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增.又g (1)=0,g (-1)=e -1+2-e <0,故当t ∈[-1,1]时,g (t )≤0.当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立; 当m >1时,由g (t )的单调性,g (m )>0, 即e m-m >e -1;当m <-1时,g (-m )>0, 即e -m+m >e -1.综上,m 的取值范围是[-1,1].【规律方法】讨论函数的单调性其实就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论,在能够通过因式分解求出不等式对应方程的根时依据根的大小进行分类讨论,在不能通过因式分解求出根的情况时根据不等式对应方程的判别式进行分类讨论.讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制. 题型3、利用导数研究函数的极值与最值【例3】【2017山东,理20】已知函数()22cos f x x x =+,()()cos sin 22x g x e x x x =-+-,其中 2.71828e =是自然对数的底数.(Ⅰ)求曲线()y f x =在点()(),f ππ处的切线方程;(Ⅱ)令()()()()h x g x af x a R =-∈,讨论()h x 的单调性并判断有无极值,有极值时求出极值. 【答案】(1)22ππ2y x =-- (2)见解析 【解析】(Ⅱ)由题意得 ()()()2cos sin 222cos x h x e x x x a x x =-+--+,因为()()()()cos sin 22sin cos 222sin xx h x ex x x e x x a x x =-+-+--+--'()()2sin 2sin x e x x a x x =---()()2sin x e a x x =--,令()sin m x x x =- 则()1cos 0m x x ='-≥ 所以()m x 在R 上单调递增. 因为()00,m =所以 当0x >时, ()0,m x > 当0x <时, ()0m x < (1)当0a ≤时, x e a - 0>当0x <时, ()0h x '<, ()h x 单调递减, 当0x >时, ()0h x '>, ()h x 单调递增,所以 当0x =时()h x 取得极小值,极小值是 ()021h a =--; (2)当0a >时, ()()()ln 2sin x a h x e e x x '=--由 ()0h x '=得 1ln x a =, 2=0x②当1a =时, ln 0a =,所以 当(),x ∈-∞+∞时, ()0h x '≥,函数()h x 在(),-∞+∞上单调递增,无极值; ③当1a >时, ln 0a >所以 当(),0x ∈-∞时, ln 0x a e e -<, ()()0,h x h x '>单调递增; 当()0,ln x a ∈时, ln 0x a e e -<, ()()0,h x h x '<单调递减; 当()ln ,x a ∈+∞时, ln 0x a e e ->, ()()0,h x h x '>单调递增; 所以 当0x =时()h x 取得极大值,极大值是()021h a =--; 当ln x a =时()h x 取得极小值.极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.综上所述:当0a ≤时, ()h x 在(),0-∞上单调递减,在()0,+∞上单调递增, 函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值; 当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增, 在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值, 极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.【变式探究】【2016高考江苏卷】(本小题满分16分) 已知函数()(0,0,1,1)xxf x a b a b a b =+>>≠≠. 设12,2a b ==. (1)求方程()2f x =的根;(2)若对任意x R ∈,不等式(2)f()6f x m x ≥-恒成立,求实数m 的最大值;(3)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值。