北师大版2021高考数学一轮复习统考第4章三角函数解三角形第6讲正弦定理和余弦定理学案含解析

合集下载

【北师大版】高三数学一轮复习:4-6正弦定理和余弦定理

【北师大版】高三数学一轮复习:4-6正弦定理和余弦定理

系列丛书
[探究] 1.在三角形ABC中,“A>B”是“sinA>sinB”的什 么条件?“A>B”是“cosA<cosB”的什么条件?
提示:“A>B”是“sinA>sinB”的充要条件,“A>B”是 “cosA<cosB”的充要条件.
高三总复习 ·北师大版 ·数学(理)
进入导航
第四章 第六节
系列丛书
答案:B
高三总复习 ·北师大版 ·数学(理)
进入导航
第四章 第六节
系列丛书
2.(2012·湖北改编)设△ABC的内角A,B,C所对的边
分别为a,b,c.若(a+b-c)(a+b+c)=ab,则角C=( )
A.60°
B.90°
C.120°
D.150°
高三总复习 ·北师大版 ·数学(理)
进入导航
第四章 第六节
进入导航
第四章 第六节
系列丛书
答案
1.
a sinA

b sinB

c sinC
a2+c2-2accosB a2+b2-
bc 2abcosC 2RsinB 2RsinC 2R 2R sinA B C
a2+c2-b2 a2+b2-c2
2ac
2ab
高三总复习 ·北师大版 ·数学(理)
进入导航
第四章 第六节
解析:由正、余弦定理得2·a2+2ca2c-b2 ·a=c,整理得a =b,故△ABC为等腰三角形.
答案:B
高三总复习 ·北师大版 ·数学(理)
进入导航
第四章 第六节
系列丛书
5.(2014·郑州调研)已知圆的半径为4,a,b,c为该圆 的内接三角形的三边,若abc=16 2 ,则三角形的面积为 ________.

第4章第6讲 正弦定理和余弦定理

第4章第6讲 正弦定理和余弦定理

第6讲 正弦定理和余弦定理基础知识整合1.正弦定理a sin A =01b sin B =02csin C =2R , 其中2R 为△ABC 外接圆的直径.变式:a =032R sin A ,b =042R sin B ,c =052R sin C . a ∶b ∶c =06sin A ∶07sin B ∶08sin C . 2.余弦定理a 2=09b 2+c 2-2bc cos A ;b 2=10a 2+c 2-2ac cos B ; c 2=11a 2+b 2-2ab cos C .变式:cos A =12b 2+c 2-a 22bc ;cos B =13a 2+c 2-b 22ac ;cos C =14a 2+b 2-c 22ab . sin 2A =sin 2B +sin 2C -2sin B sin C cos A .3.在△ABC 中,已知a ,b 和A 时,三角形解的情况图形关系式 解的个数 A 为锐角a <b sin A15无解a =b sin A16一解b sin A <a <b 17两解a ≥b18一解 A 为钝角a >b19一解或直角a ≤b 20无解4.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =2112ac sin B =2212ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径).1.三角形内角和定理 在△ABC 中,A +B +C =π; 变形:A +B 2=π2-C2. 2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C 2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ; b =a cos C +c cos A ; c =b cos A +a cos B .1.(2019·北京西城模拟)已知△ABC 中,a =1,b =2,B =45°,则A 等于( ) A .150° B .90° C .60° D .30°答案 D解析 由正弦定理,得1sin A =2sin45°,得sin A =12.又a <b ,∴A <B =45°.∴A =30°.故选D.2.(2019·安徽马鞍山一模)△ABC的内角A,B,C的对边分别为a,b,c.已知a=3,b=2,A=60°,则c=()A.12B.1C. 3 D.2答案 B解析∵a=3,b=2,A=60°,∴由余弦定理a2=b2+c2-2bc cos A,得3=4+c2-2×2×c×12,整理得c2-2c+1=0,解得c=1.故选B.3.(2019·安徽合肥模拟)在△ABC中,A=60°,AB=2,且△ABC的面积为3 2,则BC的长为()A.32B. 3C.2 3 D.2 答案 B解析因为S=12AB·AC sin A=12×2×32AC=32,所以AC=1,所以BC2=AB2+AC2-2AB·AC cos60°=3.所以BC= 3.4.(2019·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-14,则bc=()A.6 B.5C.4 D.3答案 A解析∵a sin A-b sin B=4c sin C,∴由正弦定理,得a2-b2=4c2,即a2=4c2+b2.由余弦定理,得cos A=b 2+c2-a22bc=b2+c2-(4c2+b2)2bc=-3c22bc=-14,∴bc=6.故选A.5.设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cos C=-1 4,3sin A =2sin B ,则c =________.答案 4解析 由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由cos C =a 2+b 2-c 22ab ,得-14=22+32-c22×2×3,解得c =4.6.在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________. 答案 2解析 因为∠A =75°,∠B =45°,所以∠C =60°,由正弦定理可得AC sin45°=6sin60°,解得AC =2.核心考向突破考向一 利用正、余弦定理解三角形 例1 (1)(2018·全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( )A .4 2B .30 C.29 D .2 5答案 A解析 因为cos C =2cos 2C 2-1=2×⎝ ⎛⎭⎪⎫552-1=-35,所以AB 2=BC 2+AC 2-2BC ·AC ·cos C =1+25-2×1×5×⎝ ⎛⎭⎪⎫-35=32,所以AB =4 2.选A.(2)(2019·沧州七校联考)已知在△ABC 中,a =5,b =15,∠A =30°,则c =( )A .2 5B . 5C .25或 5D .均不正确 答案 C解析 ∵a sin A =bsin B ,∴sin B =b sin A a =155·sin30°=32.∵b >a ,∴B =60°或120°.若B =60°,则C =90°,∴c =a 2+b 2=2 5. 若B =120°,则C =30°,∴a =c = 5.解三角形问题的技巧(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.①应用正弦定理求角时容易出现增解或漏解的错误,要根据条件和三角形的限制条件合理取舍.②求角时易忽略角的范围而导致错误,因此需要根据大边对大角,大角对大边的规则,画图进行判断.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角规则进行判断.[即时训练] 1.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定 答案 C解析 由正弦定理,得b sin B =csin C , ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.2.(2019·浙江高考)在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上.若∠BDC =45°,则BD =________,cos ∠ABD =________.答案1225 7210解析 如图, 易知sin ∠C =45, cos ∠C =35.在△BDC 中,由正弦定理可得 BD sin ∠C =BCsin ∠BDC, ∴BD =BC ·sin ∠C sin ∠BDC =3×4522=1225.由∠ABC =∠ABD +∠CBD =90°,可得cos ∠ABD =cos(90°-∠CBD )=sin ∠CBD =sin[π-(∠C +∠BDC )] =sin(∠C +∠BDC )=sin ∠C ·cos ∠BDC +cos ∠C ·sin ∠BDC =45×22+35×22=7210.考向二 利用正、余弦定理判断三角形形状例2(1)设△ABC的内角A,B,C所对的边分别为a,b,c,若a2+b2-c2=ab,且2cos A sin B=sin C,则△ABC的形状为()A.等边三角形B.直角三角形C.钝角三角形D.不确定答案 A解析∵a2+b2-c2=ab,∴cos C=a 2+b2-c22ab=12,又0<C<π,∴C=π3,又由2cos A sin B=sin C,得sin(B-A)=0,∴A=B,故△ABC为等边三角形.(2)在△ABC中,a,b,c分别表示三个内角A,B,C的对边,如果(a2+b2)sin(A -B)=(a2-b2)sin(A+B),则该三角形的形状为()A.直角三角形B.等边三角形C.等腰三角形或直角三角形D.等腰直角三角形答案 C解析∵(a2+b2)sin(A-B)=(a2-b2)sin(A+B),∴(a2+b2)(sin A cos B-cos A sin B)=(a2-b2)(sin A cos B+cos A sin B),∴a2cos A sin B=b2sin A cos B,∴sin2A cos A sin B=sin2B sin A cos B,∴sin A cos A=sin B cos B,∴sin2A=sin2B,∴A=B或A+B=π2,即△ABC是等腰三角形或直角三角形.三角形形状的判定方法(1)通过正弦定理和余弦定理,化边为角(如a=2R sin A,a2+b2-c2=2ab cos C等),利用三角变换得出三角形内角之间的关系进行判断.此时注意一些常见的三角等式所体现的内角关系,如sin A=sin B⇔A=B;sin(A-B)=0⇔A=B;sin2A=sin2B⇔A=B或A+B=π2等.(2)利用正弦定理、余弦定理化角为边,如sin A=a2R,cos A=b2+c2-a22bc等,通过代数恒等变换,求出三条边之间的关系进行判断.提醒:(1)注意无论是化边还是化角,在化简过程中出现公因式不要约掉,否则会有漏掉一种形状的可能.(2)在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A,B,C的范围对三角函数值的影响.[即时训练] 3.(2019·陕西安康模拟)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案 B解析∵b cos C+c cos B=a sin A,∴由正弦定理,得sin B cos C+sin C cos B=sin2A,∴sin(B+C)=sin2A,即sin A=sin2A.又sin A>0,∴sin A=1,又A∈(0,π),∴A=π2,故△ABC为直角三角形.4.在△ABC中,角A,B,C所对的边分别为a,b,c,若cb<cos A,则△ABC 为()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形答案 A解析根据正弦定理得cb =sin Csin B<cos A,即sin C<sin B cos A,∵A+B+C=π,∴sin C=sin(A+B)<sin B cos A,整理得sin A cos B<0,又三角形中sin A>0,∴cos B<0,∴π2<B<π.∴△ABC为钝角三角形.精准设计考向,多角度探究突破考向三正、余弦定理的综合应用角度1三角形面积问题例3(1)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若sin A=223,a=3,S△ABC=22,则b的值为()A.6 B.4C.2 D.2或3答案 D解析因为S△ABC=22=12bc sin A,sin A=223,且A∈⎝⎛⎭⎪⎫0,π2,所以bc=6,cos A=13,又因为a=3,由余弦定理,得9=b2+c2-2bc cos A=b2+c2-4,所以b2+c2=13,可得b=2或b=3.(2)(2019·全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a =2c,B=π3,则△ABC的面积为________.答案6 3解析由余弦定理,得b2=a2+c2-2ac cos B.又b=6,a=2c,B=π3,∴36=4c2+c2-2×2c2×12,∴c=23,∴a=43,∴S△ABC=12ac sin B=12×43×23×32=6 3.(3)(2020·合肥八中模拟)在古希腊数学家海伦的著作《测地术》中记载了著名的海伦公式,利用三角形的三条边长求三角形面积,若三角形的三边长分别为a,b ,c ,则其面积S =p (p -a )(p -b )(p -c ),这里p =12(a +b +c ).已知在△ABC 中,BC =6,AB =2AC ,则其面积取最大值时,sin A =________.答案 35解析 已知在△ABC 中,BC =6,AB =2AC , 所以a =6,c =2b ,所以p =12(6+b +2b )=3+3b2, △ABC 的面积S =p (p -a )(p -b )(p -c ) =⎝ ⎛⎭⎪⎫3+3b 2⎝ ⎛⎭⎪⎫3b 2-3⎝ ⎛⎭⎪⎫3b 2+3-b ⎝ ⎛⎭⎪⎫3+3b 2-2b =⎝ ⎛⎭⎪⎫3+3b 2⎝ ⎛⎭⎪⎫3b 2-3⎝ ⎛⎭⎪⎫b 2+3⎝ ⎛⎭⎪⎫3-b 2 =⎝ ⎛⎭⎪⎫9b 24-9⎝ ⎛⎭⎪⎫9-b 24 =3-116(b 2-20)2+16.故当b 2=20时,S 有最大值, 所以b =25,c =45, cos A =b 2+c 2-a 22bc =45, 所以sin A =35.三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.[即时训练] 5.(2018·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知b sin C+c sin B=4a sin B sin C,b2+c2-a2=8,则△ABC的面积为________.答案233解析根据题意,结合正弦定理可得sin B sin C+sin C sin B=4sin A sin B sin C,所以sin A=12,结合余弦定理可得2bc cos A=8,所以A为锐角,所以cos A=32,所以bc=833,所以△ABC的面积为S=12bc sin A=12×833×12=233.6.(2020·福建三明质量检查)△ABC的内角A,B,C所对的边分别是a,b,c,且b=3(a cos B+b cos A),b+c=8.(1)求b,c;(2)若BC边上的中线AD=72,求△ABC的面积.解(1)由正弦定理,得sin B=3(sin A cos B+sin B cos A),所以sin B=3sin(A+B),因为A+B+C=π,所以sin(A+B)=sin(π-C)=sin C,所以sin B=3sin C,所以b=3c,又b+c=8,所以b=6,c=2.(2)在△ABD和△ACD中,由余弦定理,得c2=AD2+BD2-2AD·BD·cos∠ADB,b2=AD2+CD2-2AD·CD·cos∠ADC.因为∠ADB+∠ADC=π,所以cos∠ADB=-cos∠ADC,又因为b=6,c=2,BD=DC=a2,AD=72,所以a2=31,所以cos ∠BAC =b 2+c 2-a 22bc =38,又因为∠BAC ∈(0,π),所以sin ∠BAC =558. 所以△ABC 的面积S △ABC =12bc sin ∠BAC =3554. 角度2 三角形中的范围问题例4 (1)(2019·江西赣州模拟)在锐角△ABC 中,若B =2A ,则ba 的取值范围是( )A .(2,6)B .(1,2)C .(2,3)D .(3,6)答案 C解析 ∵B =2A ,∴b a =sin Bsin A =2cos A . 又△ABC 为锐角三角形,∴A +B =3A >π2,B =2A <π2,∴π6<A <π4,∴22<cos A <32,∴2<ba < 3.故选C.(2)(2018·北京高考)若△ABC 的面积为34(a 2+c 2-b 2),且∠C 为钝角,则∠B =________;ca 的取值范围是________.答案 π3 (2,+∞)解析 依题意有12ac sin B =34(a 2+c 2-b 2)=34×2ac cos B ,则tan B =3, ∵0<∠B <π,∴∠B =π3.c a =sin C sin A =sin ⎝ ⎛⎭⎪⎫2π3-A sin A =12+3cos A 2sin A =12+32·1tan A , ∵∠C 为钝角,∴2π3-∠A >π2,又∠A >0,∴0<∠A <π6,则0<tan A <33, ∴1tan A >3,故c a >12+32×3=2. ∴ca 的取值范围为(2,+∞).解三角形问题中,求解某个量(式子)的取值范围是命题的热点,其主要解决思路是:要建立所求量(式子)与已知角或边的关系,然后把角或边作为自变量,所求量(式子)的值作为函数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利用条件中的范围限制,以及三角形自身范围限制,尽量把角或边的范围(也就是函数的定义域)找完善,避免结果的范围过大.[即时训练] 7.(2019·山东实验中学等四校联考)如图所示,边长为1的正三角形ABC 中,点M ,N 分别在线段AB ,AC 上,将△AMN 沿线段MN 进行翻折,得到右图所示的图形,翻折后的点A 在线段BC 上,则线段AM 的最小值为________.答案 23-3解析 设AM =x ,∠AMN =α,则BM =1-x , ∠AMB =180°-2α,∴∠BAM =2α-60°, 在△ABM 中,由正弦定理可得AM sin ∠ABM =BM sin ∠BAM ,即x32=1-x sin (2α-60°),∴x =3232+sin (2α-60°),∴当2α-60°=90°,即α=75°时,x 取得最小值为3232+1=23-3,即线段AM 的最小值为23-3.8.(2019·陕西第三次教学质量检测)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且(a +b +c )(a +b -c )=3ab .(1)求角C 的值;(2)若c =2,且△ABC 为锐角三角形,求a +b 的取值范围. 解 (1)由题意知(a +b +c )(a +b -c )=3ab , ∴a 2+b 2-c 2=ab ,由余弦定理可知, cos C =a 2+b 2-c 22ab =12, 又C ∈(0,π),∴C =π3. (2)由正弦定理可知, a sin A =b sin B =2sin π3=433,即a =433sin A ,b =433sin B , ∴a +b =433(sin A +sin B ) =433⎣⎢⎡⎦⎥⎤sin A +sin ⎝ ⎛⎭⎪⎫2π3-A=23sin A +2cos A =4sin ⎝ ⎛⎭⎪⎫A +π6,又△ABC 为锐角三角形,∴⎩⎪⎨⎪⎧0<A <π2,0<B =2π3-A <π2,即π6<A <π2,则π3<A +π6<2π3,∴23<4sin ⎝ ⎛⎭⎪⎫A +π6≤4,综上a +b 的取值范围为(23,4]. 角度3 正、余弦定理解决平面几何问题例5 (2019·南宁模拟)如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.解 (1)由cos ∠ADC =17知sin ∠ADC =437, 于是sin ∠BAD =sin(∠ADC -∠B ) =sin ∠ADC ·cos π3-cos ∠ADC ·sin π3 =437×12-17×32=3314. (2)在△ABD 中,由正弦定理,得BD =AB ·sin ∠BAD sin ∠ADB =AB ·sin ∠BAD sin (π-∠ADC )=8×3314437=3.在△ABC 中,由余弦定理,得 AC 2=AB 2+BC 2-2AB ·BC ·cos B =82+52-2×8×5×12=49.所以AC =7.平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之,若研究最值,常使用函数思想.[即时训练]9.(2020·河北唐山期末)如图,在梯形ABCD中,∠A=∠D=90°,M为AD上一点,AM=2MD=2,∠BMC=60°.(1)若∠AMB=60°,求BC的长;(2)设∠DCM=θ,若MB=4MC,求tanθ.解(1)由∠BMC=60°,∠AMB=60°,得∠CMD=60°.在Rt△ABM中,MB=2AM=4;在Rt△CDM中,MC=2MD=2.在△MBC中,由余弦定理,得BC2=MB2+MC2-2MB·MC·cos∠BMC=12,所以BC=2 3.(2)因为∠DCM=θ,所以∠ABM=60°-θ,0°<θ<60°.在Rt△MCD中,MC=1,sinθ,在Rt△MAB中,MB=2sin(60°-θ)由MB =4MC ,得2sin(60°-θ)=sin θ, 所以3cos θ-sin θ=sin θ,即2sin θ=3cos θ, 整理可得tan θ=32.学科素养培优(八) 利用基本不等式破解三角形中的最值问题(2018·江苏高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________.答案 9解析 依题意画出图形,如图所示. 易知S △ABD +S △BCD =S △ABC , 即12c sin60°+12a sin60°=12ac sin120°, ∴c +a =ac ,∴1a +1c =1,∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c ≥9,当且仅当c a =4a c ,即a =32,c =3时取“=”.答题启示利用基本不等式破解三角形中的最值问题时,当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.对点训练(2019·山东烟台模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知2(tan A +tan B )=tan A cos B +tan Bcos A .(1)证明:a +b =2c ; (2)求cos C 的最小值.解 (1)证明:由题意知2⎝ ⎛⎭⎪⎫sin A cos A +sin B cos B =sin A cos A cos B +sin B cos A cos B ,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin(A +B )=sin A +sin B .因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C ,从而sin A +sin B =2sin C .由正弦定理,得a +b =2c .(2)由(1)知c =a +b2,所以cos C =a 2+b 2-c 22ab =a 2+b 2-⎝⎛⎭⎪⎫a +b 222ab=38⎝ ⎛⎭⎪⎫a b +b a -14≥34-14=12,当且仅当a =b 时,等号成立. 故cos C 的最小值为12.课时作业1.(2020·广东广雅中学模拟)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 所对的边,若3b cos C =c (1-3cos B ),则sin C ∶sin A =( )A .2∶3B .4∶3C .3∶1D .3∶2答案 C解析 由正弦定理得3sin B cos C =sin C -3sin C cos B,3sin(B +C )=sin C ,因为A +B +C =π,所以B +C =π-A ,所以3sin A =sin C ,所以sin C ∶sin A =3∶1,故选C.2.(2019·南昌模拟)在△ABC 中,已知C =π3,b =4,△ABC 的面积为23,则c =( )A .27B .7C .2 2D .2 3答案 D解析 由S =12ab sin C =2a ×32=23,解得a =2,由余弦定理得c 2=a 2+b 2-2ab cos C =12,故c =2 3.3.(2019·兰州市实战考试)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( )A.24 B .-24 C.34 D .-34答案 B解析 由题意得,b 2=ac =2a 2,所以b =2a ,所以cos C =a 2+b 2-c22ab=a 2+2a 2-4a 22a ×2a=-24,故选B.4.(2019·广西南宁模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ac =3,且a =3b sin A ,则△ABC 的面积等于( )A.12 B .32C .1D .34答案 A解析 ∵a =3b sin A ,∴由正弦定理得sin A =3sin B sin A ,∴sin B =13.∵ac =3,∴△ABC 的面积S =12ac sin B =12×3×13=12.故选A.5.在△ABC 中,角A ,B ,C 所对的边的长分别为a ,b ,c ,若a sin A +b sin B <c sin C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 C解析 根据正弦定理可得a 2+b 2<c 2.由余弦定理,得cos C =a 2+b 2-c22ab <0,故C 是钝角.6.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B =( )A.π6 B .π4 C.π3 D .3π4答案 C解析 因为c -b c -a =sin A sin C +sin B ,所以c -b c -a =ac +b ,即(c -b )(c +b )=a (c -a ),所以a 2+c 2-b 2=ac ,所以cos B =12,又B ∈(0,π),所以B =π3.7.(2019·大连双基测试)△ABC 中,AB =2,AC =3,B =60°,则cos C =( ) A.33 B .±63 C .-63 D .63 答案 D解析 由正弦定理得AC sin B =AB sin C ,∴sin C =AB ·sin B AC =2×sin60°3=33,又AB <AC ,∴0<C <B =60°,∴cos C =1-sin 2C =63.故选D.8.(2018·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2 B .π3 C.π4 D .π6 答案 C解析 由题可知S △ABC =12ab sin C =a 2+b 2-c 24,所以a 2+b 2-c 2=2ab sin C .由余弦定理得a 2+b 2-c 2=2ab cos C ,∴sin C =cos C .∵C ∈(0,π),∴C =π4.故选C.9.(2019·江西新八校第二次联考)我国南宋著名数学家秦九韶提出了由三角形三边求三角形面积的“三斜求积”,设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,面积为S ,则“三斜求积”公式为S =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222,若a 2sin C =2sin A ,(a +c )2=6+b 2,则用“三斜求积”公式求得△ABC 的面积为( )A.32 B .3 C.12 D .1答案 A解析 因为a 2sin C =2sin A ,所以a 2c =2a ,所以ac =2, 因为(a +c )2=6+b 2,所以a 2+c 2+2ac =6+b 2, 所以a 2+c 2-b 2=6-2ac =6-4=2, 从而△ABC 的面积为S △ABC =14×⎣⎢⎡⎦⎥⎤22-⎝ ⎛⎭⎪⎫222=32,故选A. 10.(2019·南阳模拟)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a,3sin A =5sin B ,则C =( )A.π3 B .3π4 C.5π6 D .2π3答案 D解析 因为3sin A =5sin B ,所以由正弦定理可得:3a =5b ,所以a =5b3. 又b +c =2a ,所以c =2a -b =7b3, 不妨取b =3,则a =5,c =7,所以cos C=a 2+b2-c22ab=52+32-722×5×3=-12.因为C∈(0,π),所以C=2π3.11.已知△ABC的内角A,B,C的对边分别为a,b,c,若2b cos B=a cos C +c cos A,b=2,则△ABC的面积的最大值是()A.1 B. 3C.2 D.4答案 B解析∵2b cos B=a cos C+c cos A,∴2sin B cos B=sin A cos C+sin C cos A=sin(A+C)=sin B.∵0<B<π,∴cos B=12,∴B=π3.∵cos B=a 2+c2-b22ac=12,b=2,∴a2+c2-4=ac.∵a2+c2≥2ac,∴2ac-4≤ac,即ac≤4,当且仅当a=c时等号成立,∴S△ABC =12ac sin B≤12×4×32=3,故△ABC的面积的最大值为 3.12.在△ABC中,角A,B,C的对边分别为a,b,c,若2(b cos A+a cos B)=c2,b=3,3cos A=1,则a=()A. 5 B.3C.10 D.4答案 B解析由正弦定理可得2(sin B cos A+sin A cos B)=c sin C,∵2(sin B cos A+sin A cos B)=2sin(A+B)=2sin C,∴2sin C=c sin C,∵sin C>0,∴c=2,由余弦定理得a2=b2+c2-2bc cos A=32+22-2×3×2×13=9,∴a=3.故选B.13.(2020·北京海淀模拟)在△ABC中,A=2π3,a=3c,则bc=________.答案 1解析由题意知sin2π3=3sin C,∴sin C=12,又0<C<π3,∴C=π6,从而B=π6,∴b=c,故bc=1.14.△ABC的内角A,B,C的对边分别为a,b,c,若2b cos B=a cos C+c cos A,则B=________.答案π3解析解法一:由2b cos B=a cos C+c cos A及正弦定理,得2sin B cos B=sin A cos C+sin C cos A.∴2sin B cos B=sin(A+C).又A+B+C=π,∴A+C=π-B.∴2sin B cos B=sin(π-B)=sin B.又sin B≠0,∴cos B=12.∴B=π3.解法二:∵在△ABC中,a cos C+c cos A=b,∴条件等式变为2b cos B=b,∴cos B=12.又0<B<π,∴B=π3.15.(2019·杭州模拟)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sin B)=(c-b)·sin C,则△ABC的面积的最大值为________.答案 3解析因为a=2,(2+b)(sin A-sin B)=(c-b)sin C,所以根据正弦定理,得(a +b)(a-b)=(c-b)c,所以a2-b2=c2-bc,所以b2+c2-a2=bc,根据余弦定理,得cos A=b 2+c2-a22bc=12,因为A∈(0,π),故A=π3.因为b2+c2-bc=4,所以4=b2+c2-bc≥2bc-bc=bc(当且仅当b=c=2时取等号),所以△ABC的面积S△ABC =12bc sin A=34bc≤34×4=3,所以△ABC的面积的最大值为 3.16.已知在△ABC 中,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.答案152104解析 依题意作出图形,如图所示, 则sin ∠DBC =sin ∠ABC .由题意知AB =AC =4,BC =BD =2, 则sin ∠ABC =154,cos ∠ABC =14. 所以S △BDC =12BC ·BD ·sin ∠DBC =12×2×2×154=152.因为cos ∠DBC =-cos ∠ABC =-14=BD 2+BC 2-CD 22BD ·BC =8-CD 28,所以CD =10.由余弦定理,得cos ∠BDC =4+10-42×2×10=104.17.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sin B sin C .(1)求A ;(2)若2a +b =2c ,求sin C .解 (1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C , 故由正弦定理得b 2+c 2-a 2=bc . 由余弦定理得cos A =b 2+c 2-a 22bc =12. 因为0°<A <180°,所以A =60°. (2)由(1)知B =120°-C ,由题设及正弦定理,得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sin C , 可得cos(C +60°)=-22.因为0°<C <120°,所以sin(C +60°)=22, 故sin C =sin(C +60°-60°)=sin(C +60°)cos60°-cos(C +60°)sin60°=6+24.18.(2019·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a,3c sin B =4a sin C .(1)求cos B 的值; (2)求sin ⎝ ⎛⎭⎪⎫2B +π6的值.解 (1)在△ABC 中,由正弦定理b sin B =csin C , 得b sin C =c sin B .由3c sin B =4a sin C , 得3b sin C =4a sin C ,即3b =4a ,所以b =43a . 因为b +c =2a ,所以c =23a .由余弦定理可得 cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14. (2)由(1)可得sin B =1-cos 2B =154, 从而sin2B =2sin B cos B =-158, cos2B =cos 2B -sin 2B =-78,故sin ⎝ ⎛⎭⎪⎫2B +π6=sin2B cos π6+cos2B sin π6=-158×32-78×12=-35+716.19.(2019·河南安阳一模)如图,在圆内接四边形ABCD 中,AB =2,AD =1,3BC =3BD cos α+CD sin β.(1)求角β的大小;(2)求四边形ABCD 周长的取值范围. 解 (1)∵3BC =3BD cos α+CD sin β, ∴3sin ∠BDC =3sin βcos α+sin αsin β, ∴3sin(α+β)=3sin βcos α+sin αsin β, ∴3(sin αcos β+sin βcos α) =3sin βcos α+sin αsin β,∴3sin αcos β=sin αsin β,∴tan β=3, 又β∈(0,π),∴β=π3.(2)根据题意,得∠BAD =2π3,由余弦定理,得 BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD =4+1-2×2×1×cos 2π3=7, 又BD 2=CB 2+CD 2-2CB ·CD cos β =(CB +CD )2-3CB ·CD≥(CB +CD )2-3(CB +CD )24=(CB +CD )24,∴CB +CD ≤27,又CB +CD >7,∴四边形ABCD 的周长AB +BC +CD +DA 的取值范围为(3+7,3+27]. 20.(2019·河南联考)如图,在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c,已知c=4,b=2,2c cos C=b,D,E分别为线段BC上的点,且BD=CD,∠BAE=∠CAE.(1)求线段AD的长;(2)求△ADE的面积.解(1)因为c=4,b=2,2c cos C=b,所以cos C=b2c=14.由余弦定理得cos C=a2+b2-c22ab=a2+4-164a=14,所以a=4,即BC=4.在△ACD中,CD=2,AC=2,所以AD2=AC2+CD2-2AC·CD·cos∠ACD=6,所以AD= 6.(2)因为AE是∠BAC的平分线,所以S△ABES△ACE=12AB·AE·sin∠BAE12AC·AE·sin∠CAE=ABAC=2,又S△ABES△ACE=BEEC,所以BEEC=2,所以EC=13BC=43,DE=2-43=23.又cos C=14,所以sin C=1-cos2C=154.所以S△ADE=12DE·AC·sin C=156.。

近年届高考数学大一轮复习第四章三角函数、解三角形第6讲正弦定理和余弦定理练习理北师大版(2021年

近年届高考数学大一轮复习第四章三角函数、解三角形第6讲正弦定理和余弦定理练习理北师大版(2021年

2019届高考数学大一轮复习第四章三角函数、解三角形第6讲正弦定理和余弦定理练习理北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学大一轮复习第四章三角函数、解三角形第6讲正弦定理和余弦定理练习理北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学大一轮复习第四章三角函数、解三角形第6讲正弦定理和余弦定理练习理北师大版的全部内容。

第6讲正弦定理和余弦定理一、选择题1。

(2017·合肥模拟)在△ABC中,AB=3,AC=1,B=30°,△ABC的面积为错误!,则C=( )A.30°B.45° C。

60° D.75°解析法一∵S△ABC=错误!·AB·AC·sin A=错误!,即错误!×错误!×1×sin A=错误!,∴sin A=1,由A∈(0°,180°),∴A=90°,∴C=60°.故选C.法二由正弦定理,得sin BAC=错误!,即错误!=错误!,sin C=错误!,又C∈(0°,180°),∴C=60°或C=120°。

当C=120°时,A=30°,S△ABC=错误!≠错误!(舍去).而当C=60°时,A=90°,S△ABC=错误!,符合条件,故C=60°。

故选C.答案C2。

在△ABC中,角A,B,C对应的边分别为a,b,c,若A=错误!,a=2,b =错误!,则B等于()A.错误!B。

2021高考数学一轮总复习课件(北师大版):第四章 三角函数、三角恒等变形、解三角形-6.ppt

2021高考数学一轮总复习课件(北师大版):第四章 三角函数、三角恒等变形、解三角形-6.ppt

则 A 等于( )
A.30°
B.45°
C.60°
D.75°
[答案] C
第四章 第六节
走向高考 ·高考一轮总复习 ·北师大版 ·数学
[解析] 由余弦定理得:cosA=b2+2cb2c-a2=12+ ×41- ×32=12, ∵0<A<π,∴A=60°.
第四章 第六节
走向高考 ·高考一轮总复习 ·北师大版 ·数学
a= bsinA< a≥b
a>b

bsinA a<b
解的 无解
个数
一解 两解 一解 一解
a≤b 无解
第四章 第六节
走向高考 ·高考一轮总复习 ·北师大版 ·数学
3.解三角形的常见类型及解法
在三角形的 6 个元素中要已知三个(除三角外)才能求解,
常见类型及其解法如表所示.
已知条件 应用定理
一般解法
由 A+B+C=180°,求
bc
a
b2+c2-a2
2R · 2R
sinA
BC
sinA
2bc
a2+c2-b2 a2+b2-c2
2ac
2ab
第四章 第六节
走向高考 ·高考一轮总复习 ·北师大版 ·数学
基础自测
1.(教材改编题)△ABC 的边分别为 a、b、c,且 a=1,c
=4 2,B=45°,则△ABC 的面积为( )
A.4 3
4.在△ABC 中,若coasA=cobsB=cocsC,则△ABC 是(
)
A.等腰三角形
B.等边三角形
C.顶角为 120°的等腰三角形
D.以上均不正确
[答案] B
第四章 第六节
走向高考 ·高考一轮总复习 ·北师大版 ·数学

2021版高考理科数学(北师大版)一轮复习:第四章 第6讲 正弦定理和余弦定理

2021版高考理科数学(北师大版)一轮复习:第四章 第6讲 正弦定理和余弦定理

[基础题组练]1.(2020·湖北武汉调研测试)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a =3b ,A -B =π2,则角C =( )A.π12 B .π6C.π4D .π3解析:选B.因为在△ABC 中,A -B =π2,所以A =B +π2,所以sin A =sin ⎝⎛⎭⎫B +π2=cos B ,因为a =3b ,所以由正弦定理得sin A =3sin B ,所以cos B =3sin B ,所以tan B =33,因为B ∈(0,π),所以B =π6,所以C =π-⎝⎛⎭⎫π6+π2-π6=π6,故选B. 2.(2020·江西上饶一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S ,若2S =(a +b )2-c 2,则tan C 的值是( )A.43 B .34C .-43D .-34解析:选C.因为S =12ab sin C ,c 2=a 2+b 2-2ab cos C ,所以由2S =(a +b )2-c 2,可得ab sin C =(a +b )2-(a 2+b 2-2ab ·cos C ), 整理得sin C -2cos C =2,所以(sin C -2cos C )2=4,所以(sin C -2cos C )2sin 2C +cos 2C =4,sin 2C +4cos 2C -4sin C cos C sin 2C +cos 2C =4,化简得3tan 2C +4tan C =0,因为C ∈(0,π), 所以tan C =-43,故选C.3.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:选B.因为b cos C +c cos B =a sin A ,所以由正弦定理得sin B cos C +sin C cos B =sin 2A ,所以sin(B +C )=sin 2A .又sin(B +C )=sin A 且sin A ≠0,所以sin A =1,所以A =π2,所以△ABC 为直角三角形,故选B.4.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c .若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =( )A. 2 B . 3 C.32D .2解析:选C.因为A ,B ,C 依次成等差数列,所以B =60°,所以由余弦定理得b 2=a 2+c 2-2ac cos B ,得c =2,所以由正弦定理得S △ABC =12ac sin B =32,故选C.5.在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边且∠A =60°,若S △ABC =332且2sin B =3sin C ,则△ABC 的周长等于( )A .5+7B .12C .10+7D .5+27解析:选A.在△ABC 中,∠A =60°.因为2sin B =3sin C ,故由正弦定理可得2b =3c ,再由S △ABC =332=12bc ·sin A ,可得bc =6,所以b =3,c =2.由余弦定理可得a 2=b 2+c 2-2bc ·cos A =7,所以a =7,故△ABC 的周长为a +b +c =5+7,故选A.6.(2020·河北衡水模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且有a =1,3sin A cos C +(3sin C +b )cos A =0,则A =________.解析:由3sin A cos C +(3sin C +b )cos A =0,得3sin A cos C +3sin C cos A =-b cos A ,所以3sin (A +C )=-b cos A ,即3sin B =-b cos A ,又a sin A =b sin B ,所以3cos A =-b sin B =-a sin A ,从而sin A cos A =-13⇒tan A =-33,又因为0<A <π,所以A =5π6. 答案:5π67.(2019·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________.解析:法一:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以△ABC 的面积S =12ac sin B =12×43×23×sin π3=6 3.法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以△ABC的面积S =12×23×6=6 3.答案:6 38.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a cos B -c -b 2=0,a 2=72bc ,b >c ,则bc=________.解析:由a cos B -c -b 2=0及正弦定理可得sin A cos B -sin C -sin B2=0.因为sin C =sin(A+B )=sin A cos B +cos A sin B ,所以-sin B 2-cos A sin B =0,所以cos A =-12,即A =2π3.由余弦定理得a 2=72bc =b 2+c 2+bc ,即2b 2-5bc +2c 2=0,又b >c ,所以bc=2.答案:29.(2020·河南郑州一模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为S ,且满足sin B =b 24S.(1)求sin A sin C ;(2)若4cos A cos C =3,b =15,求△ABC 的周长. 解:(1)因为△ABC 的面积为S =12ac sin B ,sin B =b 24S ,所以4×⎝⎛⎭⎫12ac sin B ×sin B =b 2,所以ac =b22sin 2B, 所以由正弦定理可得sin A sin C =sin 2B 2sin 2B =12.(2)因为4cos A cos C =3,sin A sin C =12,所以cos B =-cos(A +C )=sin A sin C -cos A cos C =12-34=-14,因为b =15,所以ac =b 22sin 2B =b 22(1-cos 2B )=(15)22×⎝⎛⎭⎫1-116=8,所以由余弦定理可得15=a 2+c 2+12ac =(a +c )2-32ac =()a +c 2-12, 解得a +c =33,所以△ABC 的周长为a +b +c =33+15.10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且a 2+c 2-b 2=ab cos A +a 2cosB .(1)求角B ;(2)若b =27,tan C =32,求△ABC 的面积. 解:(1)因为a 2+c 2-b 2=ab cos A +a 2cos B ,所以由余弦定理,得2ac cos B =ab cos A +a 2cos B ,又a ≠0,所以2c cos B =b cos A +a cos B .由正弦定理,得2sin C cos B =sin B cos A+sin A cos B =sin(A +B )=sin C ,又C ∈(0,π),sin C >0,所以cos B =12.因为B ∈()0,π,所以B =π3.(2)由tan C =32,C ∈(0,π),得sin C =217,cos C =277,所以sin A =sin(B +C )=sin B cos C +cos B sin C =32×277+12×217=32114. 由正弦定理a sin A =b sin B ,得a =b sin Asin B =27×3211432=6,所以△ABC 的面积为12ab sin C=12×6×27×217=6 3. [综合题组练]1.(2020·安徽六安模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2a -c b =cos C cos B ,b =4,则△ABC 的面积的最大值为( )A .4 3B .2 3C .2D . 3解析:选A.因为在△ABC 中,2a -c b =cos Ccos B ,所以(2a -c )cos B =b cos C ,所以(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B =sin C cos B +sin B cos C =sin(B +C )=sin A ,所以cos B =12,即B =π3,由余弦定理可得16=a 2+c 2-2ac cos B =a 2+c 2-ac ≥2ac -ac ,所以ac ≤16,当且仅当a =c 时取等号,所以△ABC 的面积S =12ac sin B =34ac ≤4 3.故选A.2.(2020·江西抚州二模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知3a cos A =b cos C +c cos B ,b +c =3,则a 的最小值为( )A .1B . 3C .2D .3解析:选B.在△ABC 中,因为3a cos A =b cos C +c cos B , 所以3sin A cos A =sin B cos C +sin C cos B =sin(B +C )=sin A , 即3sin A cos A =sin A ,又A ∈(0,π),所以sin A ≠0,所以cos A =13.因为b +c =3,所以两边平方可得b 2+c 2+2bc =9,由b 2+c 2≥2bc ,可得9≥2bc +2bc =4bc ,解得bc ≤94,当且仅当b =c 时等号成立,所以由a 2=b 2+c 2-2bc cos A ,可得a 2=b 2+c 2-23bc =(b +c )2-8bc 3≥9-83×94=3,当且仅当b =c 时等号成立,所以a 的最小值为 3.故选B.3.(2020·湖北恩施2月质检)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos B =13,b =4,S △ABC =42,则△ABC 的周长为________.解析:由cos B =13,得sin B =223,由三角形面积公式可得12ac sin B =12ac ·223=42,则ac =12①,由b 2=a 2+c 2-2ac cos B ,可得16=a 2+c 2-2×12×13,则a 2+c 2=24②,联立①②可得a =c =23,所以△ABC 的周长为43+4.答案:43+44.已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a 2+b 2-c 2)(a cos B +b cos A )=abc .若a +b =2,则c 的取值范围为________.解析:在△ABC 中,因为(a 2+b 2-c 2)(a cos B +b cos A )=abc , 所以a 2+b 2-c 2ab(a cos B +b cos A )=c ,由正、余弦定理可得2cos C (sin A cos B +sin B cos A )=sin C ,所以2cos C sin(A +B )=sin C ,即2cos C sin C =sin C ,又sin C ≠0,所以cos C =12,因为C ∈(0,π),所以C =π3,B =2π3-A ,所以由正弦定理a sin A =b sin ⎝⎛⎭⎫2π3-A =c 32,可得a =c sin A32,b =c sin ⎝⎛⎭⎫2π3-A 32,因为a +b =2,所以c sin A32+c sin ⎝⎛⎭⎫2π3-A 32=2,整理得c =3sin A +sin ⎝⎛⎭⎫2π3-A =332sin A +32cos A =1sin ⎝⎛⎭⎫A +π6,因为A ∈⎝⎛⎭⎫0,2π3,所以A +π6∈⎝⎛⎭⎫π6,5π6,可得 sin ⎝⎛⎭⎫A +π6∈⎝⎛⎦⎤12,1,所以c =1sin ⎝⎛⎭⎫A +π6∈[1,2). 答案:[1,2)5.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. 解:(1)在△ABC 中,由正弦定理a sin A =bsin B,可得b sin A =a sin B ,又由b sin A =a cos ⎝⎛⎭⎫B -π6,得a sin B =a cos ⎝⎛⎭⎫B -π6,即sin B =cos ⎝⎛⎭⎫B -π6,可得tan B = 3.又因为B ∈(0,π),可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有b 2=a 2+c 2-2ac cos B =7,故b=7.由b sin A =a cos ⎝⎛⎭⎫B -π6,可得sin A =37.因为a <c ,故cos A =27.因此sin 2A =2sin A cos A =437,cos 2A =2cos 2A -1=17,所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.6.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,A =60°. (1)若△ABC 的面积为33,a =13,求b -c ; (2)若△ABC 是锐角三角形,求sin B sin C 的取值范围. 解:(1)由S △ABC =33,得12bc sin A =33,即12bc sin 60°=33,得bc =12. 由余弦定理,得a 2=b 2+c 2-2bc cos A ,即b 2+c 2-bc =13, 所以(b -c )2=13-bc =1,所以b -c =1或b -c =-1. (2)因为A =60°,所以B +C =120°,所以C =120°-B . 所以sin B sin C =sin B sin(120°-B ) =sin B ⎝⎛⎭⎫32cos B +12sin B =34sin 2B +1-cos 2B 4 =12⎝⎛⎭⎫32sin 2B -12cos 2B +12=12sin ()2B -30°+14.因为△ABC 是锐角三角形,所以C =120°-B <90°,得B >30°, 所以30°<B <90°,则30°<2B -30°<150°, 所以12<sin(2B -30°)≤1,14<12sin(2B -30°)≤12,所以12<12sin(2B -30°)+14≤34,所以sin B sin C 的取值范围是⎝⎛⎦⎤12,34.快乐分享,知识无界!感谢您的下载!由Ruize收集整理!。

北师大版高考数学一轮总复习《正弦定理和余弦定理》课件

北师大版高考数学一轮总复习《正弦定理和余弦定理》课件

课前自主导学
知识梳理 1.仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹 角,目标视线在水平视线______叫仰角,目标视线在水平视线 ______叫俯角(如图①).
2.方位角 指从____方向顺时针转到目标方向线的水平角,如 B 点 的方位角为 α(如图②). 3.方向角:相对于某一正方向的水平角(如图③)
[解析] 如题中图所示,在△ABC 中,AB=40,AC=20, ∠ BAC = 120°, 由 余 弦 定 理 知 , BC2 = AB2 + AC2 -
2AB·AC·cos120°=2800⇒BC=20 7.
由正弦定理得,sin∠ABACB=sin∠BCBAC
⇒sin∠ACB=BACBsin∠BAC=
2=10(
3-1).
在 Rt△ABE 中,∠AEB=30°,
∴AB=BEtan30°=130(3- 3)(m). 故所求的塔高为130(3- 3)m.
[方法总结] (1)处理有关高度问题时,要理解仰角、俯角 (视线在水平线上方、下方的角分别称为仰角、俯角)是一个关 键.
(2)在实际问题中,可能会遇到空间与平面(地面)同时研究 的问题,这时最好画两个图形,一个空间图形,一个平面图 形,这样处理起来既清楚又不容易搞错.
由余弦定理得 AD= AC2+CD2-2AC·CDcos120°
= 27+3 3+92-2×3 3×3 3+9×-12
=9
2+9 2
6(km).
由正弦定理得 sin∠CAD=CD·siAn∠D ACD
3 =
9
3+2+99×623=
2 2.
2
∴∠CAD=45°,
于是 AD 的方位角为 50°+30°+45°=125°,

高三一轮总复习高效讲义第4章第6节正弦定理、余弦定理及应用举例课件

高三一轮总复习高效讲义第4章第6节正弦定理、余弦定理及应用举例课件

[对点练]
1.在△ ABC中,c-2ca
=sin
2B 2
(a,b,c分别为角A,B,C的对边),则
△ ABC的形状为( )
A.直角三角形
B.等边三角形
C.等腰三角形或直角三角形 D.等腰直角三角形
解析:由cos
B=1-2sin
2B 2
得sin
2B 2
=1-co2s
B ,所以c-2ca =1-co2s
AE sin sin
45° 30°

2AB cos 15°
,因此CD=AD
sin
60°= cos
2×10 (45°-30°)
×sin 60°=10(3- 3 ).
答案:10(3- 3 )
备考第 2 步——突破核心考点,提升关键能力
考点1 利用正弦定理、余弦定理解三角形[自主演练]
1.△ ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin
答案:BC
4.在△ ABC中,内角A,B,C的对边分别为a,b,c,若a=4,b=5,b>c, △ ABC的面积为5 3 ,则c=________.
解析:由三角形面积公式,得12 ×4×5sin C=5 3 ,
即sin
C=
3 2
.又b>a,b>c,所以C为锐角,于是C=60°.
由余弦定理,得c2=42+52-2×4×5cos 60°,解得c= 21 .
3.(多选)在△ ABC中,角A,B,C所对的各边分别为a,b,c,若a=1,b= 2 ,
A=30°,则B等于( )
A.30°
B.45°
C.135°
D.150°
解析:根据正弦定理sina A =sinb B 得,

第四篇 三角函数、解三角形第6讲 正弦定理和余弦定理

第四篇 三角函数、解三角形第6讲 正弦定理和余弦定理

第6讲 正弦定理和余弦定理1.考查正、余弦定理的推导过程.2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法. 【复习指导】1.掌握正弦定理和余弦定理的推导方法.2.通过正、余定理变形技巧实现三角形中的边角转换,解题过程中做到正余弦定理的优化选择.基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R 等形式,以解决不同的三角形问题. 2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角A 为钝角或直角图形关系 式 a <b sin Aa =b sin Ab sin A <a <ba ≥ba >ba ≤b解的 个数无解 一解 两解 一解 一解 无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角. 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ). A .5 2 B .10 2 C.1063D .5 6解析 由A +B +C =180°,知C =45°, 由正弦定理得:a sin A =csin C , 即1032=c 22.∴c =1063. 答案 C2.在△ABC 中,若sin A a =cos Bb ,则B 的值为( ). A .30° B .45° C .60° D .90° 解析 由正弦定理知:sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.答案 B3.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ). A .30° B .45° C .60° D .75° 解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°. 答案 C4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ). A .3 3 B .2 3 C .4 3 D. 3 解析 ∵cos C =13,0<C <π, ∴sin C =223, ∴S △ABC =12ab sin C=12×32×23×223=4 3. 答案 C5.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 解析 ∵a 2+b 2-c 2=-3ab , ∴cos C =a 2+b 2-c 22ab =-32, 故C =150°为三角形的最大内角. 答案 150°考向一 利用正弦定理解三角形【例1】►在△ABC 中,a =3,b =2,B =45°.求角A ,C 和边c .[审题视点] 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°, ∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°, c =b sin Csin B =6+22;当A =120°时,C =180°-45°-120°=15°, c =b sin Csin B =6-22.(1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.解析 因为△ABC 中,tan A =2,所以A 是锐角, 且sin Acos A =2,sin 2A +cos 2A =1, 联立解得sin A =255, 再由正弦定理得a sin A =bsin B , 代入数据解得a =210.答案255 210考向二 利用余弦定理解三角形【例2】►在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c .(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.[审题视点] 由cos B cos C =-b2a +c ,利用余弦定理转化为边的关系求解.解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac , cos C =a 2+b 2-c 22ab .将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c , 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12. ∵B 为三角形的内角,∴B =23π. (2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac -2ac cos B , ∴13=16-2ac ⎝ ⎛⎭⎪⎫1-12,∴ac =3.∴S △ABC =12ac sin B =334.(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.【训练2】(2011·桂林模拟)已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2A2+cos A=0.(1)求角A的值;(2)若a=23,b+c=4,求△ABC的面积.解(1)由2cos2A2+cos A=0,得1+cos A+cos A=0,即cos A=-1 2,∵0<A<π,∴A=2π3.(2)由余弦定理得,a2=b2+c2-2bc cos A,A=2π3,则a2=(b+c)2-bc,又a=23,b+c=4,有12=42-bc,则bc=4,故S△ABC =12bc sin A= 3.考向三利用正、余弦定理判断三角形形状【例3】►在△ABC中,若(a2+b2)sin(A-B)=(a2-b2)sin C,试判断△ABC的形状.[审题视点] 首先边化角或角化边,再整理化简即可判断.解由已知(a2+b2)sin(A-B)=(a2-b2)sin C,得b2[sin(A-B)+sin C]=a2[sin C-sin(A-B)],即b2sin A cos B=a2cos A sin B,即sin2B sin A cos B=sin2A cos B sin B,所以sin 2B=sin 2A,由于A,B是三角形的内角.故0<2A<2π,0<2B<2π.故只可能2A=2B或2A=π-2B,即A=B或A+B=π2.故△ABC 为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.【训练3】 在△ABC 中,若a cos A =b cos B =ccos C ;则△ABC 是( ). A .直角三角形 B .等边三角形 C .钝角三角形D .等腰直角三角形解析 由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径).∴sin A cos A =sin B cos B =sin C cos C .即tan A =tan B =tan C ,∴A =B =C . 答案 B考向三 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题. 解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎨⎧ a 2+b 2-ab =4,ab =4,解得⎩⎨⎧a =2,b =2. (2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A .当cos A =0,即A =π2时,B =π6, a =433,b =233;当cos A ≠0时,得sin B =2sin A , 由正弦定理,得b =2a .联立方程组⎩⎨⎧a 2+b 2-ab =4,b =2a ,解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题.【训练3】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2. (1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值. 解 (1)因为cos B =45,所以sin B =35. 由正弦定理a sin A =b sin B ,可得a sin 30°=103, 所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35, 所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a+c)2-2ac=20,(a+c)2=40.所以a+c=210.阅卷报告4——忽视三角形中的边角条件致错【问题诊断】考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件., 【防范措施】解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC中,a,b,c分别为内角A,B,C所对的边长,a =3,b=2,1+2cos(B+C)=0,求边BC上的高.错因忽视三角形中“大边对大角”的定理,产生了增根.实录由1+2cos(B+C)=0,知cos A=12,∴A=π3,根据正弦定理asin A=bsin B得:sin B=b sin Aa=22,∴B=π4或3π4.以下解答过程略.正解∵在△ABC中,cos(B+C)=-cos A,∴1+2cos(B+C)=1-2cos A=0,∴A=π3.在△ABC中,根据正弦定理asin A=bsin B,∴sin B=b sin Aa=22.∵a>b,∴B=π4,∴C=π-(A+B)=5 12π.∴sin C=sin(B+A)=sin B cos A+cos B sin A=22×12+22×32=6+24.∴BC边上的高为b sin C=2×6+24=3+12.【试一试】(2011·辽宁)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求b a;(2)若c2=b2+3a2,求B.[尝试解答](1)由正弦定理得,sin2A sin B+sin B cos2A=2sin A,即sin B(sin2A+cos2A)=2sin A.故sin B=2sin A,所以ba= 2.(2)由余弦定理和c2=b2+3a2,得cos B=(1+3)a2c.由(1)知b2=2a2,故c2=(2+3)a2.可得cos2B=12,又cos B>0,故cos B=22,所以B=45°.。

2021高考数学一轮复习统考第4章三角函数解三角形第6讲正弦定理和余弦定理课时作业含解析北师大版

2021高考数学一轮复习统考第4章三角函数解三角形第6讲正弦定理和余弦定理课时作业含解析北师大版

6讲 正弦定理和余弦定理课时作业1.(2020·广东广雅中学模拟)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 所对的边,若3b cos C =c (1-3cos B ),则sin C ∶sin A =( )A .2∶3B .4∶3C .3∶1D .3∶2答案 C解析 由正弦定理得3sin B cos C =sin C -3sin C cos B,3sin(B +C )=sin C ,因为A +B +C =π,所以B +C =π-A ,所以3sin A =sin C ,所以sin C ∶sin A =3∶1,故选C.2.(2019·南昌模拟)在△ABC 中,已知C =π3,b =4,△ABC 的面积为23,则c =( )A .27B .7C .2 2D .2 3答案 D解析 由S =12ab sin C =2a ×32=23,解得a =2,由余弦定理得c 2=a 2+b 2-2ab cos C=12,故c =2 3.3.(2019·兰州市实战考试)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( )A.24B .-24C.34 D .-34答案 B解析 由题意得,b 2=ac =2a 2,所以b =2a ,所以cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24,故选B. 4.(2019·广西南宁模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ac =3,且a =3b sin A ,则△ABC 的面积等于( )A.12 B .32 C .1 D .34答案 A解析 ∵a =3b sin A ,∴由正弦定理得sin A =3sin B sin A ,∴sin B =13.∵ac =3,∴△ABC的面积S =12ac sin B =12×3×13=12.故选A.5.在△ABC 中,角A ,B ,C 所对的边的长分别为a ,b ,c ,若a sin A +b sin B <c sin C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 C解析 根据正弦定理可得a 2+b 2<c 2.由余弦定理,得cos C =a 2+b 2-c 22ab<0,故C 是钝角.6.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B =( ) A.π6 B .π4C.π3D .3π4答案 C 解析 因为c -b c -a =sin A sin C +sin B ,所以c -b c -a =a c +b,即(c -b )(c +b )=a (c -a ),所以a 2+c 2-b 2=ac ,所以cos B =12,又B ∈(0,π),所以B =π3.7.(2019·大连双基测试)△ABC 中,AB =2,AC =3,B =60°,则cos C =( ) A.33 B .±63C .-63D .63答案 D解析 由正弦定理得AC sin B =ABsin C,∴sin C =AB ·sin B AC =2×sin60°3=33,又AB <AC ,∴0<C <B =60°,∴cos C =1-sin 2C =63.故选D. 8.(2018·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B .π3C.π4 D .π6答案 C解析 由题可知S △ABC =12ab sin C =a 2+b 2-c 24,所以a 2+b 2-c 2=2ab sin C .由余弦定理得a2+b 2-c 2=2ab cos C ,∴sin C =cos C .∵C ∈(0,π),∴C =π4.故选C.9.(2019·江西新八校第二次联考)我国南宋著名数学家秦九韶提出了由三角形三边求三角形面积的“三斜求积”,设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,面积为S ,则“三斜求积”公式为S =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222,若a 2sin C =2sin A ,(a +c )2=6+b 2,则用“三斜求积”公式求得△ABC 的面积为( )A.32B . 3 C.12 D .1答案 A解析 因为a 2sin C =2sin A ,所以a 2c =2a ,所以ac =2, 因为(a +c )2=6+b 2,所以a 2+c 2+2ac =6+b 2, 所以a 2+c 2-b 2=6-2ac =6-4=2, 从而△ABC 的面积为S △ABC =14×⎣⎢⎡⎦⎥⎤22-⎝ ⎛⎭⎪⎫222=32,故选A. 10.(2019·南阳模拟)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a,3sin A =5sin B ,则C =( )A.π3 B .3π4C.5π6D .2π3答案 D解析 因为3sin A =5sin B ,所以由正弦定理可得:3a =5b ,所以a =5b3.又b +c =2a ,所以c =2a -b =7b3,不妨取b =3,则a =5,c =7,所以cos C =a 2+b 2-c 22ab =52+32-722×5×3=-12.因为C ∈(0,π),所以C =2π3. 11.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,b =2,则△ABC 的面积的最大值是( )A .1B . 3C .2D .4答案 B解析 ∵2b cos B =a cos C +c cos A ,∴2sin B cos B =sin A cos C +sin C cos A =sin(A +C )=sin B .∵0<B <π,∴cos B =12,∴B =π3.∵cos B =a 2+c 2-b 22ac =12,b =2,∴a 2+c 2-4=ac .∵a 2+c 2≥2ac ,∴2ac -4≤ac ,即ac ≤4,当且仅当a =c 时等号成立,∴S △ABC =12ac sin B≤12×4×32=3,故△ABC 的面积的最大值为 3. 12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A. 5 B .3 C.10 D .4答案 B解析 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C ,∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.故选B.13.(2020·北京海淀模拟)在△ABC 中,A =2π3,a =3c ,则bc =________.答案 1解析 由题意知sin 2π3=3sin C ,∴sin C =12,又0<C <π3,∴C =π6,从而B =π6,∴b =c ,故b c=1.14.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________. 答案π3解析 解法一:由2b cos B =a cos C +c cos A 及正弦定理, 得2sin B cos B =sin A cos C +sin C cos A . ∴2sin B cos B =sin(A +C ). 又A +B +C =π,∴A +C =π-B . ∴2sin B cos B =sin(π-B )=sin B . 又sin B ≠0,∴cos B =12.∴B =π3.解法二:∵在△ABC 中,a cos C +c cos A =b , ∴条件等式变为2b cos B =b ,∴cos B =12.又0<B <π,∴B =π3.15.(2019·杭州模拟)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )·sin C ,则△ABC 的面积的最大值为________.答案3解析 因为a =2,(2+b )(sin A -sin B )=(c -b )sin C ,所以根据正弦定理,得(a +b )(a-b )=(c -b )c ,所以a 2-b 2=c 2-bc ,所以b 2+c 2-a 2=bc ,根据余弦定理,得cos A =b 2+c 2-a 22bc=12,因为A ∈(0,π),故A =π3.因为b 2+c 2-bc =4,所以4=b 2+c 2-bc ≥2bc -bc =bc (当且仅当b =c =2时取等号),所以△ABC 的面积S △ABC =12bc sin A =34bc ≤34×4=3,所以△ABC 的面积的最大值为 3.16.已知在△ABC 中,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.答案152104解析 依题意作出图形,如图所示, 则sin ∠DBC =sin ∠ABC .由题意知AB =AC =4,BC =BD =2, 则sin ∠ABC =154,cos ∠ABC =14. 所以S △BDC =12BC ·BD ·sin∠DBC=12×2×2×154=152.因为cos ∠DBC =-cos ∠ABC =-14=BD 2+BC 2-CD 22BD ·BC =8-CD 28,所以CD =10.由余弦定理,得cos ∠BDC =4+10-42×2×10=104. 17.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sinB sinC .(1)求A ;(2)若2a +b =2c ,求sin C .解 (1)由已知得sin 2B +sin 2C -sin 2A =sinB sinC , 故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A <180°,所以A =60°. (2)由(1)知B =120°-C ,由题设及正弦定理,得2sin A +s in(120°-C )=2sin C , 即62+32cos C +12sin C =2sin C , 可得cos(C +60°)=-22. 因为0°<C <120°,所以sin(C +60°)=22, 故sin C =sin(C +60°-60°)=sin(C +60°)cos60°-cos(C +60°)sin60°=6+24. 18.(2019·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a,3c sin B =4a sin C .(1)求cos B 的值; (2)求sin ⎝⎛⎭⎪⎫2B +π6的值. 解 (1)在△ABC 中,由正弦定理b sin B =csin C ,得b sin C =c sin B .由3c sin B =4a sin C , 得3b sin C =4a sin C ,即3b =4a ,所以b =43a .因为b +c =2a ,所以c =23a .由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14.(2)由(1)可得sin B =1-cos 2B =154, 从而sin2B =2sin B cos B =-158, cos2B =cos 2B -sin 2B =-78,故sin ⎝ ⎛⎭⎪⎫2B +π6=sin2B cos π6+cos2B sin π6=-158×32-78×12=-35+716. 19.(2019·河南安阳一模)如图,在圆内接四边形ABCD 中,AB =2,AD =1,3BC =3BD cos α+CD sin β.(1)求角β的大小;(2)求四边形ABCD 周长的取值范围. 解 (1)∵3BC =3BD cos α+CD sin β, ∴3sin ∠BDC =3sin βcos α+sin αsin β, ∴3sin(α+β)=3sin βcos α+sin αsin β, ∴3(sin αcos β+sin βcos α) =3sin βcos α+sin αsin β,∴3sin αcos β=sin αsin β,∴tan β=3, 又β∈(0,π),∴β=π3.(2)根据题意,得∠BAD =2π3,由余弦定理,得BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD=4+1-2×2×1×cos 2π3=7,又BD 2=CB 2+CD 2-2CB ·CD cos β =(CB +CD )2-3CB ·CD ≥(CB +CD )2-3(CB +CD )24=(CB +CD )24,∴CB +CD ≤27,又CB +CD >7,∴四边形ABCD 的周长AB +BC +CD +DA 的取值范围为(3+7,3+27].20.(2019·河南联考)如图,在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知c =4,b =2,2c cos C =b ,D ,E 分别为线段BC 上的点,且BD =CD ,∠BAE =∠CAE .(1)求线段AD 的长; (2)求△ADE 的面积.解 (1)因为c =4,b =2,2c cos C =b ,所以cos C =b 2c =14.由余弦定理得cos C =a 2+b 2-c 22ab =a 2+4-164a =14,所以a =4,即BC =4. 在△ACD 中,CD =2,AC =2,所以AD 2=AC 2+CD 2-2AC ·CD ·cos∠ACD =6,所以AD = 6. (2)因为AE 是∠BAC 的平分线,所以S △ABE S △ACE =12AB ·AE ·sin∠BAE12AC ·AE ·sin∠CAE =AB AC=2,又S △ABE S △ACE =BE EC ,所以BEEC=2, 所以EC =13BC =43,DE =2-43=23.又cos C =14,所以sin C =1-cos 2C =154.所以S △ADE =12DE ·AC ·sin C =156.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。

一轮复习北师大版第4章第6节正弦定理和余弦定理课件

一轮复习北师大版第4章第6节正弦定理和余弦定理课件
+sin Ccos B=sin2A,所以 sin(B+C)=sin2A,即 sin A=sin2A.又 sin
A>0,所以 sin A=1,所以 A=2π,故△ABC 为直角三角形.
若本例条件变为ab=ccooss BA,判断△ABC 的形状. 解:由ab=ccooss BA,得ssiinn AB=ccooss BA, 所以 sin Acos A=cos Bsin B,
(方法二)由正弦定理得 cos B=ssiinn CA,又 sin A=sin (B+C)=sin Bcos C+cos B·sin C,所以 cos Bsin C=sin B·cos C+cos Bsin C,即 sin Bcos C=0.又 sin B≠0,所以 cos C=0,又角 C 为三角形的内角,所 以 C=π2,所以△ABC 为直角三角形.又无法判断两直角边是否相等, 故选 A.
(2,2 2) 解析:如图,△ABC 有两解的充要条件是 bsin 45°<2<b, 解得 2<b<2 2.故 b 的取值范围是(2,2 2).
02
关键能力•研析考点强“四翼”
考点1 考点2 考点3
考点 1 利用正弦定理、余弦定理解三角形——基础性
1.(2020·全国卷Ⅲ)在△ABC 中,cos C=23,AC=4,BC=3,则 cos B=( )
-45°=75°.
4.(2019·全国卷Ⅱ)△ABC 的内角 A,B,C 的对边分别为 a,b, c.已知 bsin A+acos B=0,则 B=________.
3π 4
解析:因为 bsin A+acos B=0,所以sina A=-cbos B.
由正弦定理sina A=sinb B,得-cos B=sin B,

三角函数解三角形第6讲正弦定理和余弦定理讲义理-高考数学一轮复习资料

三角函数解三角形第6讲正弦定理和余弦定理讲义理-高考数学一轮复习资料

第6讲正弦定理和余弦定理1.正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆的半径,则2.在△ABC中,已知a,b和A时,三角形解的情况3.三角形中常用的面积公式(1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =□0112ac sin B =□0212ab sin C . (3)S =12r (a +b +c )(r 为三角形的内切圆半径).1.概念辨析(1)正弦定理和余弦定理对任意三角形都成立.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( ) (4)当b 2+c 2-a 2>0时,三角形ABC 为锐角三角形.( ) 答案 (1)√ (2)√ (3)× (4)× 2.小题热身(1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =5,c =2,cos A =23,则b=( )A. 2B. 3 C .2 D .3 答案 D解析 由余弦定理得5=b 2+4-2×b ×2×23,解得b =3或b =-13(舍去),故选D.(2)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,若cos A cos B =ba=2,则该三角形的形状是( )A.直角三角形 B .等腰三角形 C.等边三角形 D .钝角三角形答案 A解析 因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin2A =sin2B .由ba=2,可知a ≠b ,所以A ≠B .又A ,B ∈(0,π),所以2A =180°-2B ,即A +B =90°,所以C =90°,于是△ABC 是直角三角形.(3)在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为________.答案 4 3解析 ∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C =12×32×23×223=4 3.(4)在△ABC 中,a =4,b =5,c =6,则sin2Asin C =________.答案 1解析 因为a =4,b =5,c =6,所以cos A =b 2+c 2-a 22bc =52+62-422×5×6=34,所以sin2Asin C=2sin A cos A sin C =2a cos Ac =2×4×346=1.题型 一 利用正、余弦定理解三角形角度1 用正弦定理解三角形1.(1)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________;(2)(2017·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.答案 (1)1 (2)75°解析 (1)因为sin B =12且B ∈(0,π),所以B =π6或B =5π6,又C =π6,所以B =π6,A =π-B -C =2π3,又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. (2) 如图,由正弦定理,得3sin60°=6sin B ,∴sin B =22. 又c >b ,∴B =45°,∴A =180°-60°-45°=75°. 角度2 用余弦定理解三角形2.(1)在△ABC 中,若b =1,c =3,A =π6,则cos5B =( )A.-32B.12C.12或-1 D .-32或0 (2)在△ABC 中,AB =3,BC =13,AC =4,则边AC 上的高为( ) A.322 B.332 C.32D .3 3 答案 (1)A (2)B解析 (1)因为b =1,c =3,A =π6,所以由余弦定理得a 2=b 2+c 2-2bc cos A =1+3-2×1×3×32=1, 所以a =1.由a =b =1,得B =A =π6,所以cos5B =cos 5π6=-cos π6=-32.(2)由题意得cos A =AB 2+AC 2-BC 22AB ·AC=32+42-1322×3×4=12, ∴sin A =1-⎝ ⎛⎭⎪⎫122=32, ∴边AC 上的高h =AB sin A =332. 角度3 综合利用正、余弦定理解三角形3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解 (1)∵2a cos C -c =2b ,由正弦定理得2sin A cos C -sin C =2sin B,2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C ,∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A,∴sin ∠ADB =AB sin A BD =22. 又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,AC =AB =2,由余弦定理,得BC 2=AB 2+AC2-2AB ·AC ·cos A =(2)2+(2)2-2×2×2cos 2π3=6,∴a = 6.用正弦、余弦定理解三角形的基本题型及解题方法(1)已知两角和一边①用三角形内角和定理求第三个角. ②用正弦定理求另外两条边. (2)已知两边及其中一边所对的角 ①用正弦定理(适用于优先求角的题) 以知a ,b ,A 解三角形为例: a .根据正弦定理,经讨论求B ;b .求出B 后,由A +B +C =180°,求出C ;c .再根据正弦定理a sin A =csin C ,求出边c .②用余弦定理(适用于优先求边的题) 以知a ,b ,A 解三角形为例:列出以边c 为元的一元二次方程c 2-(2b cos A )c +(b 2-a 2)=0,根据一元二次方程的解法,求边c ,然后应用正弦定理或余弦定理,求出B ,C .(3)已知两边和它们的夹角 ①用余弦定理求第三边.②用余弦定理的变形或正弦定理求另外两角. (4)已知三边可以连续用余弦定理求出两角,常常是分别求较小两边所对的角,再由A +B +C =180°,求出第三个角.1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =62b ,A =2B ,则cos B 等于( ) A.66 B.65 C.64 D.63答案 C解析 因为a =62b ,A =2B ,所以由正弦定理可得62b sin2B =b sin B ,所以622sin B cos B =1sin B ,所以cos B =64. 2.(2018·和平区模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a 2-b 2=3bc ,且sin C =23sin B ,则角A 的大小为________.答案π6解析 由sin C =23·sin B 得c =23b . ∴a 2-b 2=3bc =3·23b 2,即a 2=7b 2.则cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 243b2=32. 又A ∈(0,π).∴A =π6.3.如图,在△ABC 中,B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB =________.答案562解析 在△ACD 中,由余弦定理可得 cos C =49+9-252×7×3=1114,则sin C =5314.在△ABC 中,由正弦定理可得AB sin C =ACsin B, 则AB =AC sin Csin B =7×531422=562.题型 二 利用正、余弦定理判定三角形的形状1.(2018·武汉调研)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若c b<cos A ,则△ABC 为( )A.钝角三角形 B .直角三角形 C.锐角三角形 D .等边三角形答案 A解析 因为c b<cos A ,所以c <b cos A , 由正弦定理得sin C <sin B cos A ,又A +B +C =π,所以sin C =sin(A +B ). 所以sin A cos B +cos A sin B <sin B cos A , 所以sin A cos B <0,又sin A >0,所以cos B <0,B 为钝角,所以△ABC 是钝角三角形. 2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A.直角三角形 B .等腰非等边三角形 C.等边三角形 D .钝角三角形答案 C解析 ∵sin A sin B =a c ,∴a b =ac ,∴b =c .又(b +c +a )(b +c -a )=3bc , ∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12.∵A ∈(0,π),∴A =π3,∴△ABC 是等边三角形.条件探究1 把举例说明2中△ABC 满足的条件改为“a cos A =b cos B ”,判断△ABC 的形状.解 因为a cos A =b cos B , 所以sin A cos A =sin B cos B , 所以sin2A =sin2B ,又因为0<2A <2π,0<2B <2π,0<A +B <π, 所以2A =2B 或2A +2B =π, 即A =B 或A +B =π2,所以△ABC 是等腰三角形或直角三角形.条件探究2 把举例说明2中△ABC 满足的条件改为“cos 2B 2=a +c 2c”,判断△ABC 的形状.解 因为cos 2B 2=a +c 2c, 所以12(1+cos B )=a +c 2c ,在△ABC 中,由余弦定理得 12+12·a 2+c 2-b 22ac =a +c 2c. 化简得2ac +a 2+c 2-b 2=2a (a +c ), 则c 2=a 2+b 2,所以△ABC 为直角三角形.1.应用余弦定理判断三角形形状的方法 在△ABC 中,c 是最大的边.若c 2<a 2+b 2,则△ABC 是锐角三角形; 若c 2=a 2+b 2,则△ABC 是直角三角形; 若c 2>a 2+b 2,则△ABC 是钝角三角形. 2.判断三角形形状的常用技巧 若已知条件中既有边又有角,则(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状. (2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论.1.若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形 答案 C解析 由正弦定理得,a ∶b ∶c =sin A ∶sin B ∶sin C =5∶11∶13,设a =5t ,b =11t ,c =13t (t >0),则cos C =a 2+b 2-c 22ab=t2+t 2-t22×5t ×11t<0,所以C 是钝角,△ABC 是钝角三角形.2.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A.锐角三角形 B .直角三角形 C.钝角三角形 D .不确定答案 B解析 根据正弦定理,由b cos C +c cos B =a sin A 得sin B ·cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,又因为A +B +C =π,所以sin(B +C )=sin A ,所以sin A =1,由0<A <π,得A =π2.所以△ABC 是直角三角形.题型 三 与三角形面积有关的问题(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解 (1)由题设得12ac sin B =a 23sin A ,即12c sin B =a 3sin A .由正弦定理得12sin C sin B =sin A3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题意得12bc sin A =a23sin A ,a =3,所以bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9.由bc =8,得b +c =33. 故△ABC 的周长为3+33.1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形的面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.(2018·洛阳三模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin B +(c -b )sin C =a sin A .(1)求角A 的大小;(2)若sin B sin C =38,且△ABC 的面积为23,求a .解 (1)由b sin B +(c -b )sin C =a sin A 及正弦定理得b 2+(c -b )c =a 2,即b 2+c 2-bc =a 2, 所以b 2+c 2-a 22bc =cos A =12,所以A =π3.(2)由正弦定理a sin A =b sin B =c sin C ,可得b =a sin B sin A ,c =a sin Csin A,所以S △ABC =12bc sin A =12·a sin B sin A ·a sin Csin A·sin A=a 2sin B sin C2sin A=2 3.又sin B sin C =38,sin A =32,∴38a 2=23,解得a =4.高频考点 用正弦、余弦定理进行边、角之间的转化考点分析 在综合运用正、余弦定理解决较为复杂的与解三角形有关的问题时,常利用边、角之间的转化与化归的方法解决.[典例1] (2018·枣庄二模)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a 2+b 2-c 2)·(a cos B +b cos A )=abc ,若a +b =2,则c 的取值范围为( )A .(0,2)B .[1,2)C.⎣⎢⎡⎭⎪⎫12,2 D .(1,2] 答案 B解析 由正、余弦定理,得2cos C (sin A cos B +sin B cos A )=sin C .即2cos C sin(A +B )=sin C .所以2cos C sin C =sin C ,因为sin C ≠0,所以cos C =12. 又C ∈(0,π),所以C =π3. 因为c 2=a 2+b 2-2ab cos C =(a +b )2-3ab ,且(a +b )2≥4ab ,所以ab ≤1.所以c 2≥1,即c ≥1,又c <a +b =2.所以1≤c <2.[典例2] (2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.答案 π3 解析 解法一:由2b cos B =a cos C +c cos A 及正弦定理,得2sin B cos B =sin A cos C +sin C cos A .∴2sin B cos B =sin(A +C ).又A +B +C =π,∴A +C =π-B .∴2sin B cos B =sin(π-B )=sin B .又sin B ≠0,∴cos B =12.∴B =π3. 解法二:∵在△ABC 中,a cos C +c cos A =b ,∴条件等式变为2b cos B =b ,∴cos B =12. 又0<B <π,∴B =π3. [典例3] (2018·东北三省四市教研联合体模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b =2,且2b cos B =a cos C +c cos A .(1)求B 的大小;(2)求△ABC 面积的最大值.解 (1)由正弦定理a sin A =b sin B =Csin C可得 2sin B cos B =sin A cos C +sin C cos A =sin B ,∵sin B >0,故cos B =12,∵0<B <π,∴B =π3. (2)由b =2,B =π3及余弦定理可得ac =a 2+c 2-4, 由基本不等式可得ac =a 2+c 2-4≥2ac -4,ac ≤4,而且仅当a =c =2时,S △ABC =12ac sin B 取得最大值12×4×32=3,故△ABC 的面积的最大值为 3. 方法指导 1.两种主要方法全部化为角的关系,用三角恒等变换及三角函数的性质解答.全部化为边的关系,用因式分解、配方等方法变形.2.基本原则若出现边的一次式一般采用正弦定理;若出现边的二次式一般采用余弦定理.。

2021版高考数学一轮复习第四章三角函数、解三角形4.7正弦定理、余弦定理的应用举例练习理北师大版

2021版高考数学一轮复习第四章三角函数、解三角形4.7正弦定理、余弦定理的应用举例练习理北师大版

4.7正弦定理、余弦定理的应用举例中心考点·精确研析考点一丈量距离问题1. 如图 , 从气球 A 上测得正前面的河流的两岸B,C 的俯角分别为75°,30 °, 此时气球的高是60m, 则河流的宽度 BC=()A.240(-1)mB.180(-1)mC.120(-1)mD.30(+1)m2. 一船以每小时15km 的速度向东行驶, 船在 A 处看到一灯塔 B 在北偏东60°, 行驶 4 小时后 , 船抵达 C 处 , 看到这个灯塔在北偏东 15°, 这时船与灯塔的距离为 ()A.60kmB.60kmC.30kmD.30km3.(2019 ·衡阳模拟 ) 如图 , 为了丈量A,C 两点间的距离 , 选用同一平面上B,D 两点 , 测出四边形ABCD各边的长度 ( 单位 :km):AB=5,BC=8,CD=3,DA=5, 且∠ B 与∠ D互补 , 则 AC的长为()A.7kmB.8kmC.9kmD.6km4. 如图 , 海中有一小岛C, 一小船从 A 地出发由西向东航行, 看见小岛C在北偏东 60°, 航行 8 海里抵达 B 处 ,看见小岛C在北偏东15°, 若此小船不改变航行的方向持续前行2(-1) 海里 , 则离小岛C的距离为()A.8(+2) 海里B.2(-1) 海里C.2(+1) 海里D.4(+1) 海里【分析】 1. 选 C. 记气球在地面的投影为D, 在 Rt△ ABD中,cos15 °=, 又cos15°=cos(60 ° - 45°)=, 所以 AB=. 在△ ABC中 , 由正弦定理得=, 所以BC==AB=120(-1)(m).2. 选 A. 画出图形如下图, 在△ ABC中 , ∠ BAC=30° ,AC=4× 15=60,∠ B=45° , 由正弦定理得=,所以 BC===60,所以船与灯塔的距离为60km.3. 选 A. 在△ ABC中, 由余弦定理得2222× 5×8cosB=89-80cosB.在△ ADC AC=AB+BC-2AB·BCcosB,即 AC=25+64-2中 , 由余弦定理得2222× 5× 3cosD=34-30cosD. 由于∠ B 与∠ D 互补 , 所AC=AD+DC-2AD· DCcosD,即 AC=25+9-2以 cosB=-cosD, 所以 -=, 解得 AC=7(km).4. 选 C.BC===4,所以离小岛 C 的距离为==2(+1) 海里 .距离问题的常有种类及解法1.种类 : 丈量距离问题常分为三种种类 : 山双侧、河两岸、河对岸 .2.解法 : 选择适合的协助丈量点 , 结构三角形 , 将实质问题转变为求某个三角形的边长问题 , 进而利用正、余弦定理求解 .【秒杀绝招】直角三角形解T1, 记气球在地面的投影为D, 在 Rt△ ACD中,tan60 °=, 所以 CD=60, 在 Rt △ABD中 ,由于 tan15 °=,tan15 °=tan(60 ° - 45°)==2-, 所以 BD=120-60, 所以 BC=CD-BD=120(-1)(m).考点二丈量高度问题【典例】 1. 一架直升飞机在200m高度处进行测绘, 测得一塔顶与塔底的俯角分别是30°和 60°, 则塔高为()A.mB.mC.mD.m2.如图 , 在水平川面上有两座直立的相距60m的铁塔 AA1和 BB1. 已知从塔 AA1的底部看塔 BB1顶部的仰角是从塔 BB1的底部看塔AA1顶部的仰角的 2 倍 , 从两塔底部连线中点C分别看两塔顶部的仰角互为余角. 则从塔BB1的底部看塔AA1顶部的仰角的正切值为; 塔 BB1的高为m.【解题导思】序号联想解题1由“测得一塔顶与塔底的俯角分别是30°和 60°” , 想到作图 , 成立数学模型由“ 60m”“从塔 AA 的底部看塔 BB 顶部的仰角是从塔BB 的底部看塔AA 顶部的仰角的 2 倍”11112 C 分别看两塔顶部的仰角互为余角”, 想到△ A AC∽△ CBB“从两塔底部连线中点11【分析】 1. 选 A. 如下图 .在 Rt △ ACD中 ,CD==BE,在△ ABE中, 由正弦定理得=, 所以 AB=,DE=BC=200-=(m).2. 设从塔 BB1的底部看塔AA1顶部的仰角为α, 则 AA1=60tan α m,BB1=60tan2 α m.由于从两塔底部连线中点C 分别看两塔顶部的仰角互为余角, 所以△ A1AC∽△ CBB1, 所以=, 所以 AA1·BB1=900, 所以 3600tan α tan2 α =900, 所以 tan α= ( 负值舍去 ), 所以 tan2α= ,BB 1=60tan2 α =45m.答案:451.在办理相关高度问题时 , 要理解仰角、俯角 ( 在铅垂面上所成的角 ) 、方向 ( 位 ) 角 ( 在水平面上所成的角 )是重点 .2.注意山或塔垂直于地面或海平面, 把空间问题转变为平面问题 .1.(2019 ·宜春模拟 ) 某工厂实行煤改电工程防治雾霾, 欲拆掉高为AB的烟囱 ,测绘人员取与烟囱底部 B 在同一水平面内的两个观察点C,D, 测得∠ BCD=75°,∠BDC=60°,CD=40 米 , 并在点 C处的正上方 E 处观察顶部 A 的仰角为30°, 且 CE=1米 , 则烟囱高AB=米 .【分析】∠ CBD=180° - ∠ BCD-∠ BDC=45° ,在△ CBD中, 由正弦定理得 BC==20,所以 AB=1+tan30 °· CB=1+20( 米 ).答案 :(1+20)2. 如图 , 一辆汽车在一条水平的公路上向正西行驶, 到 A处时测得公路北侧一山顶D在西偏北 30°的方向上 ,行驶 600m后抵达 B处 , 测得此山顶在西偏北75°的方向上 , 仰角为 30°, 则此山的高度CD=m.【分析】在△ABC中, ∠ CAB=30° , ∠ ACB=75° -30 ° =45°, 依据正弦定理知,=, 即BC=× sin ∠BAC=×=300(m),所以 CD=BC× tan ∠ DBC=300×=100(m).答案 :100考点三丈量角度问题命题1. 考什么 : 航行方向问题 , 航行时间、速度问题等等 .精 2.怎么考 : 考察运用正弦定理、余弦定理解决航向, 时间 , 速度等实质问题 .解 3.新趋向 : 运用正弦定理、余弦定理解决实质问题.读学1.不要搞错各样角的含义 , 不要把这些角和三角形内角之间的关系弄混.霸2.在实质问题中 , 可能会碰到空间与平面 ( 地面 ) 同时研究的问题 , 这时能够画两个图形, 一个空间好图形 , 一个平面图形, 这样将空间几何问题转变为平面几何问题, 办理起来既清楚又不简单出现错方误 .法方向问题【典例】如图, 两座灯塔 A 和 B 与海岸察看站C的距离相等 , 灯塔 A 在察看站南偏西40°, 灯塔 B 在察看站南偏东 60°, 则灯塔 A 在灯塔 B的 ()A. 北偏东 10°B. 北偏西 10°C. 南偏东 80°D.南偏西 80°【分析】选 D. 由条件及题干图知, ∠ CAB=∠ CBA=40° ,又∠ BCD=60° , 所以∠ CBD=30° ,所以∠ DBA=10° ,所以灯塔A在灯塔 B 的南偏西80° .解决丈量角度问题时有哪些注意事项?提示 :1. 丈量角度时 , 第一应明确方向角及方向角的含义.2.求角的大小时 , 先在三角形中求出其正弦或余弦值.3. 在解应用题时, 要由已知正确画出表示图, 经过这一步可将实质问题转变为可用数学方法解决的问题, 解题中也要注意领会正、余弦定理使用的长处.【典例】如图 , 据气象部门预告, 在距离某码头南偏东45°方向 600kmA处的热带风暴中心正以20km/h 的速度向正北方向挪动, 距风暴中心450km 之内的地域都将遇到影响, 则该码头将遇到热带风暴影响的时间为()A.14hB.15hC.16hD.17h【分析】选 B. 记此刻热带风暴中心的地点为点A,t小时后热带风暴中心抵达点 B 地点 , 在△ OAB中 ,OA=600km,AB=20tkm, ∠ OAB=45° , 由余弦定理得222× 20t × 600×22 OB=600 +400t-2, 令 OB≤450 ,即4t 2-120t+1575 ≤ 0, 解得≤ t≤, 所以该码头将遇到热带风暴影响的时间为-=15(h).怎样求解码头将遇到热带风暴影响的时间?提示 : 已知热带风暴速度, 所以将时间问题转变为行程问题, 即求出码头遇到热带风暴影响时的风暴路线长度 . 运用解三角形知识求解即可.1. 如下图 , 已知两座花坛 A 和 B 与教课楼 C 的距离相等 , 花坛 A 在教课楼C的北偏东40°的方向上 , 花坛B 在教课楼C 的南偏东60°的方向上 , 则花坛 A 在花坛 B 的的方向上.【分析】由已知, ∠ ABC= (1 80° - 80°)=50 °, 所以花坛 A 在花坛 B 的北偏西10°的方向上 .答案 : 北偏西 10°2. 在一次抗洪抢险中, 某救生艇发动机忽然发生故障停止转动, 失掉动力的救生艇在洪水中漂行, 此时 , 风向是北偏东30°, 风速是 20km/h; 水的流向是正东, 流速是 20km/h, 若不考虑其余要素, 救生艇在洪水中漂行的速度的方向为北偏东, 大小为km/h.【分析】如图∠ AOB=60° , 由余弦定理知222° =1200, 故 OC=20 , ∠COY=30° +30°OC=20 +20 -800cos120=60° .答案 : 60°201.如图 , 两座相距 60m的建筑物 AB,CD的高度分别为 20m,50m,BD为水平面 , 则从建筑物 AB的顶端 A 看建筑物 CD的张角∠ CAD等于()A.30°B.45°C.60°D.75°【分析】选 B. 由已知 ,AD=20m,AC=30m,又 CD=50m,所以在△ ACD中 , 由余弦定理得cos ∠ CAD====,又 0° <∠ CAD<180°, 所以∠ CAD=45°,所以从顶端 A 看建筑物 CD的张角为45° .2. 如图 , 在海岸 A 处发现北偏东45°方向 , 距 A 处 (-1) 海里的 B 处有一艘走私船. 在 A 处北偏西75°方向 , 距 A 处 2 海里的 C处的我方缉私船受命以10海里/小时的速度追截走私船, 此时走私船正以10 海里/小时的速度从 B处向北偏东 30°方向逃跑 . 问 : 缉私船沿什么方向行驶才能最快截获走私船 ?并求出所需时间 .【分析】设缉私船应沿CD方向行驶t 小时 , 才能最快截获 ( 在 D 点) 走私船 , 则 CD=10t 海里 ,BD=10t 海里 , 在△ ABC中 , 由余弦定理得,22222BC=AB+AC-2AB· AC· cos ∠ BAC=(-1) +2 -2(-1)× 2× cos120 ° =6, 解得 BC= ,又由于=,所以 sin ∠ABC===,所以∠ ABC=45° ,B 点在 C 点的正东方向上,所以∠ CBD=90° +30° =120°,在△ BCD中, 由正弦定理 , 得=,所以 sin ∠BCD=== .所以∠ BCD=30° , 缉私船沿北偏东60°的方向行驶 .又在△ BCD中 , ∠ CBD=120° , ∠ BCD=30° ,所以∠ D=30° , 所以 BD=BC,即 10t=,解得 t=( 小时 )≈ 15( 分钟 ).所以缉私船应沿北偏东60°的方向行驶 , 才能最快截获走私船, 大概需要15分钟 .。

2021版高考理科数学(北师大版)一轮复习高效演练分层突破:第四章 第6讲 正弦定理和余弦定理 W

2021版高考理科数学(北师大版)一轮复习高效演练分层突破:第四章 第6讲 正弦定理和余弦定理 W

姓名,年级:时间:[基础题组练](2020·湖北武汉调研测试)在△ABC中,角A,B,C的对边分别为a,b,c.1.已知a=错误!b,A-B=错误!,则角C=()A.错误!B.错误!C。

错误!D.错误!解析:选B。

因为在△ABC中,A-B=错误!,所以A=B+错误!,所以sin A =sin错误!=cos B,因为a=错误!b,所以由正弦定理得sin A=错误!sin B,所以cos B=错误!sin B,所以tan B=错误!,因为B∈(0,π),所以B=错误!,所以C=π-错误!-错误!=错误!,故选B。

2.(2020·江西上饶一模)在△ABC中,角A,B,C的对边分别为a,b,c,△ABC的面积为S,若2S=(a+b)2-c2,则tan C的值是( ) A。

错误!B.错误!C.-错误!D.-错误!解析:选C。

因为S=错误!ab sin C,c2=a2+b2-2ab cos C,所以由2S=(a+b)2-c2,可得ab sin C=(a+b)2-(a2+b2-2ab·cos C),整理得sin C-2cos C=2,所以(sin C-2cos C)2=4,所以错误!=4,错误!=4,化简得3tan2C+4tan C=0,因为C∈(0,π),所以tan C=-错误!,故选C。

3.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选B。

因为b cos C+c cos B=a sin A,所以由正弦定理得sin B cos C+sin C cos B=sin2A,所以sin(B+C)=sin2A。

又sin(B+C)=sin A且sin A≠0,所以sin A=1,所以A=错误!,所以△ABC为直角三角形,故选B。

4.在△ABC中,角A,B,C所对应的边分别为a,b,c.若角A,B,C依次成等差数列,且a=1,b=错误!,则S△ABC=()A。

北师版高考总复习一轮理科数精品课件 第4章 三角函数、解三角形 第6节 余弦定理、正弦定理及应用举例

北师版高考总复习一轮理科数精品课件 第4章 三角函数、解三角形 第6节 余弦定理、正弦定理及应用举例
为a,b,c,若b2+c2=a2+bc,且cos B·cos C+cos A=sin2A,则△ABC的形状是
.
答案:等边三角形
解析:cos
2 + 2 - 2
A=
2
=

2
=
1
π
,∵0<A<π,∴A= .
2
3
∵cos B·
cos C+cos A=sin2A,
∴cos Bcos C+cos [π-(B+C)]=cos Bcos C-cos(B+C)

2.利用正弦、余弦定理判断三
角形形状
3.解与三角形面积有关的问题
4.解三角形与三角函数的综合
问题
5.解三角形的实际应用
核心素养
1.直观想象
2.逻辑推理
3.数学运算
强基础 增分策略
1.正弦定理和余弦定理
在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC的外接圆半径,则
定理
内容
正弦定理
,且4S=
3 (b2+c2-a2),试判断△ABC的形状.
答案:(1)B
解析:(方法1)由bcos C+ccos B=asin A,
应用正弦定理得sin Bcos C+sin Ccos B=sin Asin A,即sin(B+C)=sin Asin A,
所以 sin A=1,即
π
A=2 ,
因此△ABC 是直角三角形.
所以sin Acos C=-sin Csin A.
又 sin A≠0,所以 tan C=-1.又 C∈(0,π),所以
3

北师大版高考数学一轮复习统考第4章三角函数解三角形第6讲正弦定理和余弦定理课件

北师大版高考数学一轮复习统考第4章三角函数解三角形第6讲正弦定理和余弦定理课件
=a2+2ba2b-c2,得-14=222+×322×-3c2,解得 c=4.
最新 PPT
解析
6.在△ABC 中,AB= 6,∠A=75°,∠B=45°,则 AC=___2_____.
解析 因为∠A=75°,∠B=45°,所以∠C=60°,由正弦定理可得siAn4C5° =sin660°,解得 AC=2.
c= 05 _____2_R__si_n_C________.
a∶b∶c= 06 ___s_i_n_A______∶ 07 ____si_n_B______∶ 08 ____s_in_C______.
最新 PPT
2.余弦定理 a2= 09 _____b_2_+__c_2-__2_b_c_c_o_s_A_______________;
第四章 三角函数、解三角形 第6讲 正弦定理和余弦定理
最新 PPT
1
PART ONE
基础知识整合
最新 PPT
1.正弦定理
b

sianA= 01 ___s_in_B____= 02 ___si_n_C_____=2R,
其中 2R 为△ABC 外接圆的直径.
变式:a= 03 _____2_R_s_in_A_________,b= 04 ____2_R_s_in_B__________,
最新 PPT
解析 答案
(2)(2019·沧州七校联考)已知在△ABC 中,a= 5,b= 15,∠A=30°,
则 c=( )
A.2 5
B. 5
C.2 5或 5
D.均不正确
解析 ∵sianA=sibnB,
∴sinB=bsainA= 155·sin30°= 23. ∵b>a,∴B=60°或 120°.

2021届北师大版高考理科数一轮复习教师用书:第四章 第6讲 正弦定理和余弦定理

2021届北师大版高考理科数一轮复习教师用书:第四章 第6讲 正弦定理和余弦定理

第6讲正弦定理和余弦定理一、知识梳理1.正弦定理和余弦定理定理正弦定理余弦定理内容asin A=bsin B=csin C=2R(R为△ABC外接圆半径)a2=b2+c2-2bc cos_A;b2=c2+a2-2ca cos_B;c2=a2+b2-2ab cos_C变形形式a=2R sin_A,b=2R sin_B,c=2R sin_C;sin A=a2R,sin B=b2R,sin C=c2R;a∶b∶c=sin_A∶sin_B∶sin_C;a+b+csin A+sin B+sin C=asin Acos A=b2+c2-a22bc;cos B=c2+a2-b22ca;cos C=a2+b2-c22abA为锐角A为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解(1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =12ac sin_B =12ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径).常用结论1.三角形内角和定理 在△ABC 中,A +B +C =π; 变形:A +B 2=π2-C 2.2.三角形中的三角函数关系 (1)sin(A +B )=sin C ; (2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2; (4)cosA +B 2=sin C2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ; b =a cos C +c cos A ; c =b cos A +a cos B .二、教材衍化1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC =( ) A.π6 B .π3C.2π3D .5π6解析:选C.因为在△ABC 中,设AB =c =5,AC =b =3,BC =a =7,所以由余弦定理得cos ∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角,所以∠BAC =23π.2.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于________. 解析:因为23sin 60°=4sin B ,所以sin B =1,所以B =90°,所以AB =2,所以S △ABC =12×2×23=2 3. 答案:2 3一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)在△ABC 中,已知a ,b 和角B ,能用正弦定理求角A ;已知a ,b 和角C ,能用余弦定理求边c .( )(2)在三角形中,已知两角和一边或已知两边和一角都能解三角形.( ) (3)在△ABC 中,sin A >sin B 的充分不必要条件是A >B .( )(4)在△ABC 中,a 2+b 2<c 2是△ABC 为钝角三角形的充分不必要条件.( ) (5)在△ABC 的角A ,B ,C ,边长a ,b ,c 中,已知任意三个可求其他三个.( ) 答案:(1)√ (2)√ (3)× (4)√ (5)× 二、易错纠偏常见误区|K(1)利用正弦定理求角时解的个数弄错; (2)在△ABC 中角与角的正弦关系弄错; (3)判断三角形形状时弄错.1.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解D .有解但解的个数不确定解析:选C.由正弦定理得b sin B =csin C ,所以sin B =b sin Cc =40×3220=3>1.所以角B 不存在,即满足条件的三角形不存在.2.在△ABC 中,若sin A =sin B ,则A ,B 的关系为________;若sin A >sin B ,则A ,B 的关系为________.解析:sin A =sin B ⇔a =b ⇔A =B ; sin A >sin B ⇔a >b ⇔A >B . 答案:A =B A >B3.在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________. 解析:由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B , 即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形. 答案:等腰三角形或直角三角形利用正、余弦定理求解三角形(多维探究) 角度一 求边长(一题多解)在△ABC 中,内角A ,B ,C 的对边a ,b ,c 成公差为2的等差数列,C =120°.(1)求边长a ;(2)求AB 边上的高CD 的长.【解】 (1)由题意得b =a +2,c =a +4,由余弦定理cos C =a 2+b 2-c 22ab 得cos 120°=a 2+(a +2)2-(a +4)22a (a +2),即a 2-a -6=0,所以a =3或a =-2(舍去),所以a =3.(2)法一:由(1)知a =3,b =5,c =7, 由三角形的面积公式得 12ab sin ∠ACB =12c ×CD , 所以CD =ab sin ∠ACBc =3×5×327=15314,即AB 边上的高CD =15314.法二:由(1)知a =3,b =5,c =7, 由正弦定理得3sin A =7sin ∠ACB =7sin 120°,即sin A =3314,在Rt △ACD 中,CD =AC sin A =5×3314=15314,即AB 边上的高CD =15314.角度二 求角度(2019·高考全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B-sin C )2=sin 2A -sin B sin C .(1)求A ;(2)若2a +b =2c ,求sin C .【解】 (1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C ,故由正弦定理得b 2+c 2-a 2=bc . 由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sin C ,可得cos(C +60°)=-22. 由于0°<C <120°,所以sin(C +60°)=22,故 sin C =sin(C +60°-60°)=sin(C +60°)cos 60°-cos(C +60°)sin 60° =6+24.(1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.(2)正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.(3)涉及最值问题时,常利用基本不等式或表示为三角形的某一内角的三角函数形式求解.1.(2020·安徽安庆二模)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b sin 2A =a sin B ,且c =2b ,则ab等于 ( )A.32 B .43C. 2D . 3解析:选D.由b sin 2A =a sin B ,及正弦定理得2sin B sin A cos A =sin A sin B ,得cos A =12.又c =2b ,所以由余弦定理得a 2=b 2+c 2-2bc cos A =b 2+4b 2-4b 2×12=3b 2,得ab = 3.故选D.2.(2020·河南郑州一模)在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-3bc =a 2,bc =3a 2,则角C 的大小是( )A.π6或2π3 B .π3C.2π3 D .π6解析:选A.由b 2+c 2-3bc =a 2,得b 2+c 2-a 2=3bc ,则cos A =b 2+c 2-a 22bc =3bc2bc=32,则A =π6, 由bc =3a 2,得sin B sin C =3sin 2A =3×14=34,即4sin(π-C -A )sin C =3,即4sin(C +A )sin C =4sin ⎝⎛⎭⎫C +π6sin C =3, 即4⎝⎛⎭⎫32sin C +12cos C sin C =23sin 2C +2sin C cos C =3,即3(1-cos 2C )+sin 2C =3-3cos 2C +sin 2C =3,则- 3 cos 2C +sin 2C =0, 则3cos 2C =sin 2C ,则tan 2C =3, 即2C =π3或4π3,即C =π6或2π3,故选A.判断三角形的形状(典例迁移)(2020·重庆六校联考)在△ABC 中,cos 2 B 2=a +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形【解析】 已知等式变形得cos B +1=a c +1,即cos B =ac ①.由余弦定理得cos B =a 2+c 2-b 22ac ,代入①得a 2+c 2-b 22ac =ac ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.【答案】 A【迁移探究1】 (变条件)将“cos 2B 2=a +c2c ”改为“c -a cos B =(2a -b )cos A ”,试判断△ABC 的形状.解:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形.【迁移探究2】 (变条件)将“cos 2B 2=a +c 2c ”改为“sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ”,试判断△ABC 的形状.解:因为sin A sin B =a c ,所以a b =ac ,所以b =c .又(b +c +a )(b +c -a )=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.(1)判定三角形形状的2种常用途径(2)判定三角形形状的3个注意点①“角化边”后要注意用因式分解、配方等方法得出边的相应关系;②“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系;③还要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.(2020·河南洛阳一模)在△ABC 中,已知2a cos B =c, sin A sin B (2-cos C )=sin 2C 2+12,则△ABC 为( )A .等边三角形B .等腰直角三角形C .锐角非等边三角形D .钝角三角形解析:选B.将已知等式2a cos B =c 利用正弦定理化简得2sin A cos B =sin C , 因为sin C =sin ()A +B =sin A cos B +cos A sin B , 所以2sin A cos B =sin A cos B +cos A sin B , 即sin A cos B -cos A sin B =sin(A -B )=0, 因为A 与B 都为△ABC 的内角, 所以A -B =0,即A =B .因为sin A sin B (2-cos C )=sin 2C 2+12,所以sin A sin B (2-cos C )=12(1-cos C )+12=1-12cos C ,所以-12[]cos ()A +B -cos (A -B )(2-cos C )=1-12cos C ,所以-12(-cos C -1)(2-cos C )=1-12cos C ,即(cos C +1)(2-cos C )=2-cos C ,整理得cos 2C -2cos C =0,即cos C (cos C -2)=0,所以cos C =0或cos C =2(舍去),所以C =90°,则△ABC 为等腰直角三角形,故选B.与三角形面积有关的问题(师生共研)(2019·高考全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sinA +C 2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 【解】 (1)由题设及正弦定理得 sin A sinA +C2=sin B sin A . 因为sin A ≠0,所以sin A +C2=sinB .由A +B +C =180°,可得sin A +C 2=cos B 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,故sin B 2=12,因此B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a . 由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°. 由(1)知A +C =120°, 所以30°<C <90°,故12<a <2,从而38<S △ABC <32. 因此,△ABC 面积的取值范围是⎝⎛⎭⎫38,32.求解三角形面积问题的基本思维(1)若已知一个角(角的大小或该角的正弦值,余弦值),一般结合题意求这个角的两边或两边之积,再代入公式求解;(2)若已知三边,可先求一个角的余弦值,再求正弦值,最后代入公式得面积; (3)若求面积的最值,一般表示为一个内角的三角函数,利用三角函数的性质求解,也可结合基本不等式求解.1.(2020·福建厦门一模)在△ABC 中,cos B =14,b =2,sin C =2sin A ,则△ABC 的面积等于( )A.14 B .12C.32D .154解析:选D.在△ABC 中,cos B =14,b =2,sin C =2sin A ,由正弦定理得c =2a ;由余弦定理得b 2=a 2+c 2-2ac ·cos B =a 2+4a 2-2a ·2a ·14=4a 2=4,解得a =1,可得c =2,所以△ABC 的面积为S =12ac sin B =12×1×2×1-⎝⎛⎭⎫142=154.故选D.2.(2020·陕西汉中一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,3b sin A =a ·(2-cos B ).(1)求角B 的大小;(2)D 为边AB 上一点,且满足CD =2,AC =4,锐角三角形△ACD 的面积为15,求BC 的长.解:(1)由正弦定理得3sin B sin A =sin A (2-cos B ), 因为A ∈(0,π),则sin A >0,所以3sin B =2-cos B , 所以2sin ⎝⎛⎭⎫B +π6=2, 所以sin ⎝⎛⎭⎫B +π6=1, 因为B ∈(0,π), 所以B +π6=π2,解得B =π3.(2)由题意,可得S △ACD =12CD ·CA sin ∠ACD=12×2×4sin ∠ACD =15, 解得sin ∠ACD =154. 又因为△ACD 为锐角三角形, 所以cos ∠ACD =1-sin 2∠ACD =14,在△ACD 中,由余弦定理得AD 2=CA 2+CD 2-2CA ·CD ·cos ∠ACD =42+22-2×2×4×14=16,所以AD =4,在△ACD 中,由正弦定理得CD sin A =ADsin ∠ACD, 则sin A =CD AD ·sin ∠ACD =158,在△ABC 中,由正弦定理得BC sin A =ACsin B, 所以BC =AC sin Asin B= 5.三角形中最值问题一、求角的三角函数的最值若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________. 【解析】 由sin A +2sin B =2sin C ,结合正弦定理可得a +2b =2c ,所以cos C =a 2+b 2-c 22ab =3a 2+2b 28ab -24≥6-24( 3 a = 2 b 时取等号),故cos C 的最小值是6-24. 【答案】6-24在△ABC 中,a 2+c 2=b 2+2ac . (1)求B 的大小;(2)求2cos A +cos C 的最大值. 【解】 (1)由余弦定理和已知条件可得 cos B =a 2+c 2-b 22ac =2ac 2ac =22,又因为0<B <π,所以B =π4.(2)由(1)知A +C =3π4,所以2cos A +cos C =2cos A +cos ⎝⎛⎭⎫3π4-A =2cos A -22cos A +22sin A =22cos A +22sin A =cos ⎝⎛⎭⎫A -π4. 因为0<A <3π4,所以当A =π4时,2cos A +cos C 取得最大值1.此类问题主要考查余弦定理、三角形内角和定理、辅助角公式以及三角函数的最值和基本不等式;解此类问题的关键是熟练地运用余弦定理、两角差的正余弦公式以及辅助角公式.二、求边的最值(1)在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________. (2)如图,四边形ABCD 的对角线交点位于四边形的内部,AB =BC =1,AC =CD ,AC ⊥CD ,当∠ABC 变化时,BD 的最大值为________.【解析】 (1)因为BC sin A =AB sin C =AC sin B =3sin 60°,所以AB =2sin C ,BC =2sin A ,因此AB +2BC =2sin C +4sin A =2sin ⎝⎛⎭⎫2π3-A +4sin A =5sin A +3cos A =27sin(A +φ),因为φ∈(0,2π),A ∈⎝⎛⎭⎫0,2π3,所以AB +2BC 的最大值为27.(2)设∠ACB =θ⎝⎛⎭⎫0<θ<π2,则∠ABC =π-2θ,∠DCB =θ+π2,由余弦定理可知,AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC ,即AC =DC =2+2cos 2θ=2cos θ⎝⎛⎭⎫0<θ<π2,由余弦定理知,BD 2=BC 2+DC 2-2BC ·DC cos ∠DCB ,即BD 2=4cos 2θ+1-2×1×2cos θ·cos ⎝⎛⎭⎫θ+π2=2cos 2θ+2sin 2θ+3=22sin ⎝⎛⎭⎫2θ+π4+3.由0<θ<π2,可得π4<2θ+π4<5π4,则()BD 2max =22+3,此时θ=π8,因此(BD )max =2+1.【答案】 (1)27 (2)2+1边的最值一般通过三角形中的正、余弦定理将边转化为角的三角函数值,再结合角的范围求解.有时也可利用均值不等式求解.三、求三角形面积的最值在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2c cos B =2a +b ,若△ABC的面积S =3c ,则ab 的最小值为________.【解析】 在△ABC 中,2c cos B =2a +b ,由正弦定理,得2sin C cos B =2sin A +sinB .又A =π-(B +C ),所以sin A =sin[π-(B +C )]=sin(B +C ),所以2sin C cos B =2sin(B +C )+sin B =2sin B cos C +2cos B sin C +sin B ,得2sin B cos C +sin B =0,因为sin B ≠0,所以cos C =-12,又0<C <π,所以C =23π.由S =3c =12ab sin C =12ab ×32,得c =ab4.由余弦定理得,c 2=a 2+b 2-2ab cos C =a 2+b 2+ab ≥2ab +ab =3ab (当且仅当a =b 时取等号),所以⎝⎛⎭⎫ab 42≥3ab ,得ab ≥48,所以ab 的最小值为48.【答案】 48利用三角函数的有关公式,结合三角形的面积公式及正、余弦定理,将问题转化为边或角的关系,利用函数或不等式是解决此类问题的一种常规方法.[基础题组练]1.(2020·湖北武汉调研测试)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a =3b ,A -B =π2,则角C =( )A.π12B .π6C.π4 D .π3解析:选B.因为在△ABC 中,A -B =π2,所以A =B +π2,所以sin A =sin ⎝⎛⎭⎫B +π2=cos B ,因为a =3b ,所以由正弦定理得sin A =3sin B ,所以cos B =3sin B ,所以tan B =33,因为B ∈(0,π),所以B =π6,所以C =π-⎝⎛⎭⎫π6+π2-π6=π6,故选B. 2.(2020·江西上饶一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S ,若2S =(a +b )2-c 2,则tan C 的值是( )A.43 B .34C .-43D .-34解析:选C.因为S =12ab sin C ,c 2=a 2+b 2-2ab cos C ,所以由2S =(a +b )2-c 2,可得ab sin C =(a +b )2-(a 2+b 2-2ab ·cos C ), 整理得sin C -2cos C =2,所以(sin C -2cos C )2=4,所以(sin C -2cos C )2sin 2C +cos 2C =4,sin 2C +4cos 2C -4sin C cos C sin 2C +cos 2C =4,化简得3tan 2C +4tan C =0,因为C ∈(0,π), 所以tan C =-43,故选C.3.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:选B.因为b cos C +c cos B =a sin A ,所以由正弦定理得sin B cos C +sin C cos B =sin 2A ,所以sin(B +C )=sin 2A .又sin(B +C )=sin A 且sin A ≠0,所以sin A =1,所以A =π2,所以△ABC 为直角三角形,故选B.4.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c .若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =( )A. 2 B . 3 C.32D .2解析:选C.因为A ,B ,C 依次成等差数列,所以B =60°,所以由余弦定理得b 2=a 2+c 2-2ac cos B ,得c =2,所以由正弦定理得S △ABC =12ac sin B =32,故选C.5.在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边且∠A =60°,若S △ABC =332且2sin B =3sin C ,则△ABC 的周长等于( )A .5+7B .12C .10+7D .5+27解析:选A.在△ABC 中,∠A =60°.因为2sin B =3sin C ,故由正弦定理可得2b =3c ,再由S △ABC =332=12bc ·sin A ,可得bc =6,所以b =3,c =2.由余弦定理可得a 2=b 2+c 2-2bc ·cos A =7,所以a =7,故△ABC 的周长为a +b +c =5+7,故选A.6.(2020·河北衡水模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且有a =1,3sin A cos C +(3sin C +b )cos A =0,则A =________.解析:由3sin A cos C +(3sin C +b )cos A =0,得3sin A cos C +3sin C cos A =-b cos A ,所以3sin (A +C )=-b cos A ,即3sin B =-b cos A ,又a sin A =b sin B ,所以3cos A =-b sin B =-a sin A ,从而sin A cos A =-13⇒tan A =-33,又因为0<A <π,所以A =5π6. 答案:5π67.(2019·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________.解析:法一:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以△ABC 的面积S =12ac sin B =12×43×23×sin π3=6 3.法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以△ABC的面积S =12×23×6=6 3.答案:6 38.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a cos B -c -b 2=0,a 2=72bc ,b >c ,则bc=________.解析:由a cos B -c -b 2=0及正弦定理可得sin A cos B -sin C -sin B2=0.因为sin C =sin(A+B )=sin A cos B +cos A sin B ,所以-sin B 2-cos A sin B =0,所以cos A =-12,即A =2π3.由余弦定理得a 2=72bc =b 2+c 2+bc ,即2b 2-5bc +2c 2=0,又b >c ,所以bc=2.答案:29.(2020·河南郑州一模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为S ,且满足sin B =b 24S.(1)求sin A sin C ;(2)若4cos A cos C =3,b =15,求△ABC 的周长. 解:(1)因为△ABC 的面积为S =12ac sin B ,sin B =b 24S ,所以4×⎝⎛⎭⎫12ac sin B ×sin B =b 2,所以ac =b22sin 2B, 所以由正弦定理可得sin A sin C =sin 2B 2sin 2B =12.(2)因为4cos A cos C =3,sin A sin C =12,所以cos B =-cos(A +C )=sin A sin C -cos A cos C =12-34=-14,因为b =15,所以ac =b 22sin 2B =b 22(1-cos 2B )=(15)22×⎝⎛⎭⎫1-116=8,所以由余弦定理可得15=a 2+c 2+12ac =(a +c )2-32ac =()a +c 2-12, 解得a +c =33,所以△ABC 的周长为a +b +c =33+15.10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且a 2+c 2-b 2=ab cos A +a 2cosB .(1)求角B ;(2)若b =27,tan C =32,求△ABC 的面积. 解:(1)因为a 2+c 2-b 2=ab cos A +a 2cos B ,所以由余弦定理,得2ac cos B =ab cos A +a 2cos B ,又a ≠0,所以2c cos B =b cos A +a cos B .由正弦定理,得2sin C cos B =sin B cos A+sin A cos B =sin(A +B )=sin C ,又C ∈(0,π),sin C >0,所以cos B =12.因为B ∈()0,π,所以B =π3.(2)由tan C =32,C ∈(0,π),得sin C =217,cos C =277,所以sin A =sin(B +C )=sin B cos C +cos B sin C =32×277+12×217=32114. 由正弦定理a sin A =b sin B ,得a =b sin Asin B =27×3211432=6,所以△ABC 的面积为12ab sin C=12×6×27×217=6 3. [综合题组练]1.(2020·安徽六安模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2a -c b =cos C cos B ,b =4,则△ABC 的面积的最大值为( )A .4 3B .2 3C .2D . 3解析:选A.因为在△ABC 中,2a -c b =cos Ccos B ,所以(2a -c )cos B =b cos C ,所以(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B =sin C cos B +sin B cos C =sin(B +C )=sin A ,所以cos B =12,即B =π3,由余弦定理可得16=a 2+c 2-2ac cos B =a 2+c 2-ac ≥2ac -ac ,所以ac ≤16,当且仅当a =c 时取等号,所以△ABC 的面积S =12ac sin B =34ac ≤4 3.故选A.2.(2020·江西抚州二模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知3a cos A =b cos C +c cos B ,b +c =3,则a 的最小值为( )A .1B . 3C .2D .3解析:选B.在△ABC 中,因为3a cos A =b cos C +c cos B , 所以3sin A cos A =sin B cos C +sin C cos B =sin(B +C )=sin A , 即3sin A cos A =sin A ,又A ∈(0,π),所以sin A ≠0,所以cos A =13.因为b +c =3,所以两边平方可得b 2+c 2+2bc =9,由b 2+c 2≥2bc ,可得9≥2bc +2bc=4bc ,解得bc ≤94,当且仅当b =c 时等号成立,所以由a 2=b 2+c 2-2bc cos A ,可得a 2=b 2+c 2-23bc =(b +c )2-8bc 3≥9-83×94=3,当且仅当b =c 时等号成立,所以a 的最小值为 3.故选B.3.(2020·湖北恩施2月质检)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos B =13,b =4,S △ABC =42,则△ABC 的周长为________.解析:由cos B =13,得sin B =223,由三角形面积公式可得12ac sin B =12ac ·223=42,则ac =12①,由b 2=a 2+c 2-2ac cos B ,可得16=a 2+c 2-2×12×13,则a 2+c 2=24②,联立①②可得a =c =23,所以△ABC 的周长为43+4.答案:43+44.已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a 2+b 2-c 2)(a cos B +b cos A )=abc .若a +b =2,则c 的取值范围为________.解析:在△ABC 中,因为(a 2+b 2-c 2)(a cos B +b cos A )=abc , 所以a 2+b 2-c 2ab(a cos B +b cos A )=c ,由正、余弦定理可得2cos C (sin A cos B +sin B cos A )=sin C ,所以2cos C sin(A +B )=sin C ,即2cos C sin C =sin C ,又sin C ≠0,所以cos C =12,因为C ∈(0,π),所以C =π3,B =2π3-A ,所以由正弦定理a sin A =b sin ⎝⎛⎭⎫2π3-A =c 32,可得a =c sin A32,b =c sin ⎝⎛⎭⎫2π3-A 32,因为a +b =2,所以c sin A32+c sin ⎝⎛⎭⎫2π3-A 32=2,整理得c =3sin A +sin ⎝⎛⎭⎫2π3-A =332sin A +32cos A =1sin ⎝⎛⎭⎫A +π6,因为A ∈⎝⎛⎭⎫0,2π3,所以A +π6∈⎝⎛⎭⎫π6,5π6,可得 sin ⎝⎛⎭⎫A +π6∈⎝⎛⎦⎤12,1,所以c =1sin ⎝⎛⎭⎫A +π6∈[1,2). 答案:[1,2)5.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. 解:(1)在△ABC 中,由正弦定理a sin A =bsin B,可得b sin A =a sin B ,又由b sin A =a cos ⎝⎛⎭⎫B -π6,得a sin B =a cos ⎝⎛⎭⎫B -π6,即sin B =cos ⎝⎛⎭⎫B -π6,可得tan B = 3.又因为B ∈(0,π),可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有b 2=a 2+c 2-2ac cos B =7,故b=7.由b sin A =a cos ⎝⎛⎭⎫B -π6,可得sin A =37.因为a <c ,故cos A =27.因此sin 2A =2sin A cos A =437,cos 2A =2cos 2A -1=17,所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.6.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,A =60°. (1)若△ABC 的面积为33,a =13,求b -c ; (2)若△ABC 是锐角三角形,求sin B sin C 的取值范围. 解:(1)由S △ABC =33,得12bc sin A =33,即12bc sin 60°=33,得bc =12. 由余弦定理,得a 2=b 2+c 2-2bc cos A ,即b 2+c 2-bc =13, 所以(b -c )2=13-bc =1,所以b -c =1或b -c =-1. (2)因为A =60°,所以B +C =120°,所以C =120°-B . 所以sin B sin C =sin B sin(120°-B ) =sin B ⎝⎛⎭⎫32cos B +12sin B =34sin 2B +1-cos 2B 4 =12⎝⎛⎭⎫32sin 2B -12cos 2B +12=12sin ()2B -30°+14. 因为△ABC 是锐角三角形,所以C =120°-B <90°,得B >30°, 所以30°<B <90°,则30°<2B -30°<150°, 所以12<sin(2B -30°)≤1,14<12sin(2B -30°)≤12,所以12<12sin(2B -30°)+14≤34,所以sin B sin C 的取值范围是⎝⎛⎦⎤12,34.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6讲 正弦定理和余弦定理基础知识整合1.正弦定理asin A=01bsin B=02csin C=2R , 其中2R 为△ABC 外接圆的直径.变式:a =032R sin A ,b =042R sin B ,c =052R sin C .a ∶b ∶c =06sin A ∶07sin B ∶08sin C .2.余弦定理a 2=09b 2+c 2-2bc cos A ;b 2=10a 2+c 2-2ac cos B ; c 2=11a 2+b 2-2ab cos C .变式:cos A =12b 2+c 2-a 22bc ;cos B =13a 2+c 2-b 22ac ;cos C =14a 2+b 2-c 22ab.sin 2A =sin 2B +sin 2C -2sin B sin C cos A .3.在△ABC 中,已知a ,b 和A 时,三角形解的情况图形关系式解的个数 A 为锐角a <b sin A15无解a =b sin A16一解b sin A <a <b17两解a ≥b18一解A 为钝角或直角a >b19一解a ≤b20无解4.三角形中常用的面积公式(1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =2112ac sin B =2212ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径).1.三角形内角和定理 在△ABC 中,A +B +C =π; 变形:A +B 2=π2-C2. 2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sinA +B2=cos C 2;(4)cos A +B 2=sin C 2. 3.三角形中的射影定理 在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ; c =b cos A +a cos B .1.(2019·北京西城模拟)已知△ABC 中,a =1,b =2,B =45°,则A 等于( ) A .150° B .90° C .60° D .30°答案 D解析 由正弦定理,得1sin A =2sin45°,得sin A =12.又a <b ,∴A <B =45°.∴A =30°.故选D.2.(2019·安徽马鞍山一模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =3,b =2,A =60°,则c =( )A.12 B .1 C.3 D .2答案 B解析 ∵a =3,b =2,A =60°,∴由余弦定理a 2=b 2+c 2-2bc cos A ,得3=4+c 2-2×2×c ×12,整理得c 2-2c +1=0,解得c =1.故选B.3.(2019·安徽合肥模拟)在△ABC 中,A =60°,AB =2,且△ABC 的面积为32,则BC 的长为( )A.32B . 3C .2 3D .2答案 B解析 因为S =12AB ·AC sin A =12×2×32AC =32,所以AC =1,所以BC 2=AB 2+AC 2-2AB ·AC cos60°=3.所以BC = 3.4.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc=( )A .6B .5C .4D .3答案 A解析 ∵a sin A -b sin B =4c sin C ,∴由正弦定理,得a 2-b 2=4c 2,即a 2=4c 2+b 2.由余弦定理,得cos A =b 2+c 2-a 22bc =b 2+c 2-4c 2+b 22bc =-3c 22bc =-14,∴bc=6.故选A.5.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.答案 4解析 由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由cos C =a 2+b 2-c22ab ,得-14=22+32-c22×2×3,解得c =4.6.在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________. 答案 2解析 因为∠A =75°,∠B =45°,所以∠C =60°,由正弦定理可得AC sin45°=6sin60°,解得AC =2.核心考向突破考向一 利用正、余弦定理解三角形例1 (1)(2018·全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( )A .4 2B .30 C.29 D .2 5答案 A解析 因为cos C =2cos 2C 2-1=2×⎝ ⎛⎭⎪⎫552-1=-35,所以AB 2=BC 2+AC 2-2BC ·AC ·cos C=1+25-2×1×5×⎝ ⎛⎭⎪⎫-35=32,所以AB =4 2.选A.(2)(2019·沧州七校联考)已知在△ABC 中,a =5,b =15,∠A =30°,则c =( ) A .2 5 B . 5 C .25或 5 D .均不正确答案 C解析 ∵a sin A =bsin B ,∴sin B =b sin A a =155·sin30°=32. ∵b >a ,∴B =60°或120°.若B =60°,则C =90°,∴c =a 2+b 2=2 5. 若B =120°,则C =30°,∴a =c = 5.解三角形问题的技巧(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.①应用正弦定理求角时容易出现增解或漏解的错误,要根据条件和三角形的限制条件合理取舍.②求角时易忽略角的范围而导致错误,因此需要根据大边对大角,大角对大边的规则,画图进行判断.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角规则进行判断.[即时训练] 1.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定 答案 C解析 由正弦定理,得b sin B =csin C ,∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.2.(2019·浙江高考)在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上.若∠BDC =45°,则BD =________,cos ∠ABD =________.答案1225 7210解析 如图, 易知sin ∠C =45,cos ∠C =35.在△BDC 中,由正弦定理可得 BD sin ∠C =BCsin ∠BDC,∴BD =BC ·sin∠Csin ∠BDC =3×4522=1225.由∠ABC =∠ABD +∠CBD =90°,可得cos ∠ABD =cos(90°-∠CBD )=sin ∠CBD =sin[π-(∠C +∠BDC )] =sin(∠C +∠BDC )=sin ∠C ·cos∠BDC +cos ∠C ·sin∠BDC =45×22+35×22=7210. 考向二 利用正、余弦定理判断三角形形状 例2 (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,则△ABC 的形状为( )A .等边三角形B .直角三角形C .钝角三角形D .不确定答案 A解析 ∵a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =12,又0<C <π,∴C =π3,又由2cos A sin B=sin C ,得sin(B -A )=0,∴A =B ,故△ABC 为等边三角形.(2)在△ABC 中,a ,b ,c 分别表示三个内角A ,B ,C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),则该三角形的形状为( )A .直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形 答案 C解析 ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ), ∴(a 2+b 2)(sin A cos B -cos A sin B ) =(a 2-b 2)(sin A cos B +cos A sin B ), ∴a 2cos A sin B =b 2sin A cos B , ∴sin 2A cos A sinB =sin 2B sin A cos B , ∴sin A cos A =sin B cos B , ∴sin2A =sin2B ,∴A =B 或A +B =π2,即△ABC 是等腰三角形或直角三角形.三角形形状的判定方法(1)通过正弦定理和余弦定理,化边为角(如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等),利用三角变换得出三角形内角之间的关系进行判断.此时注意一些常见的三角等式所体现的内角关系,如sin A =sin B ⇔A =B ;sin(A -B )=0⇔A =B ;sin2A =sin2B ⇔A =B 或A +B =π2等.(2)利用正弦定理、余弦定理化角为边,如sin A =a 2R ,cos A =b 2+c 2-a 22bc等,通过代数恒等变换,求出三条边之间的关系进行判断.提醒:(1)注意无论是化边还是化角,在化简过程中出现公因式不要约掉,否则会有漏掉一种形状的可能.(2)在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.[即时训练] 3.(2019·陕西安康模拟)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 B解析 ∵b cos C +c cos B =a sin A ,∴由正弦定理,得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin A =sin 2A .又sin A >0,∴sin A =1,又A ∈(0,π),∴A =π2,故△ABC 为直角三角形.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若c b<cos A ,则△ABC 为( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形答案 A解析 根据正弦定理得c b =sin Csin B<cos A ,即sin C <sin B cos A ,∵A +B +C =π,∴sin C =sin(A +B )<sin B cos A ,整理得sin A cos B <0,又三角形中sin A >0,∴cos B <0,∴π2<B <π.∴△ABC 为钝角三角形.精准设计考向,多角度探究突破 考向三 正、余弦定理的综合应用 角度1 三角形面积问题例3 (1)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )A .6B .4C .2D .2或3答案 D解析 因为S △ABC =22=12bc sin A ,sin A =223,且A ∈⎝ ⎛⎭⎪⎫0,π2,所以bc =6,cos A =13,又因为a =3,由余弦定理,得9=b 2+c 2-2bc cos A =b 2+c 2-4,所以b 2+c 2=13,可得b =2或b =3.(2)(2019·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________. 答案 6 3解析 由余弦定理,得b 2=a 2+c 2-2ac cos B . 又b =6,a =2c ,B =π3,∴36=4c 2+c 2-2×2c 2×12,∴c =23,∴a =43,∴S △ABC =12ac sin B =12×43×23×32=6 3.(3)(2020·合肥八中模拟)在古希腊数学家海伦的著作《测地术》中记载了著名的海伦公式,利用三角形的三条边长求三角形面积,若三角形的三边长分别为a ,b ,c ,则其面积S =p p -a p -b p -c ,这里p =12(a +b +c ).已知在△ABC 中,BC =6,AB =2AC ,则其面积取最大值时,sin A =________.答案 35解析 已知在△ABC 中,BC =6,AB =2AC , 所以a =6,c =2b ,所以p =12(6+b +2b )=3+3b2,△ABC 的面积S =p p -a p -b p -c=⎝ ⎛⎭⎪⎫3+3b 2⎝ ⎛⎭⎪⎫3b 2-3⎝ ⎛⎭⎪⎫3b 2+3-b ⎝ ⎛⎭⎪⎫3+3b 2-2b=⎝ ⎛⎭⎪⎫3+3b 2⎝ ⎛⎭⎪⎫3b 2-3⎝ ⎛⎭⎪⎫b 2+3⎝ ⎛⎭⎪⎫3-b 2=⎝ ⎛⎭⎪⎫9b 24-9⎝ ⎛⎭⎪⎫9-b 24 =3-116b 2-202+16.故当b 2=20时,S 有最大值, 所以b =25,c =45,cos A =b 2+c 2-a 22bc =45,所以sin A =35.三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.[即时训练] 5.(2018·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b sin C +c sin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC 的面积为________.答案233解析 根据题意,结合正弦定理可得sin B sin C +sin C sin B =4sin A sin B sin C ,所以sin A =12,结合余弦定理可得2bc cos A =8,所以A 为锐角,所以cos A =32,所以bc =833,所以△ABC 的面积为S =12bc sin A =12×833×12=233.6.(2020·福建三明质量检查)△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且b =3(a cos B +b cos A ),b +c =8.(1)求b ,c ;(2)若BC 边上的中线AD =72,求△ABC 的面积.解 (1)由正弦定理,得sin B =3(sin A cos B +sin B cos A ),所以sin B =3sin(A +B ),因为A +B +C =π, 所以sin(A +B )=sin(π-C )=sin C , 所以sin B =3sin C , 所以b =3c ,又b +c =8, 所以b =6,c =2.(2)在△ABD 和△ACD 中,由余弦定理,得c 2=AD 2+BD 2-2AD ·BD ·cos∠ADB , b 2=AD 2+CD 2-2AD ·CD ·cos ∠ADC .因为∠ADB +∠ADC =π, 所以cos ∠ADB =-cos ∠ADC ,又因为b =6,c =2,BD =DC =a 2,AD =72,所以a 2=31,所以cos ∠BAC =b 2+c 2-a 22bc =38,又因为∠BAC ∈(0,π),所以sin ∠BAC =558. 所以△ABC 的面积S △ABC =12bc sin ∠BAC =3554.角度2 三角形中的范围问题例4 (1)(2019·江西赣州模拟)在锐角△ABC 中,若B =2A ,则ba的取值范围是( ) A .(2,6) B .(1,2) C .(2,3) D .(3,6)答案 C解析 ∵B =2A ,∴b a =sin Bsin A=2cos A .又△ABC 为锐角三角形,∴A +B =3A >π2,B =2A <π2,∴π6<A <π4,∴22<cos A <32,∴2<ba< 3.故选C. (2)(2018·北京高考)若△ABC 的面积为34(a 2+c 2-b 2),且∠C 为钝角,则∠B =________;c a的取值范围是________.答案π3(2,+∞) 解析 依题意有12ac sin B =34(a 2+c 2-b 2)=34×2ac cos B ,则tan B =3,∵0<∠B <π,∴∠B =π3.c a =sin C sin A =sin ⎝ ⎛⎭⎪⎫2π3-A sin A =12+3cos A 2sin A =12+32·1tan A, ∵∠C 为钝角,∴2π3-∠A >π2,又∠A >0,∴0<∠A <π6,则0<tan A <33,∴1tan A >3,故c a >12+32×3=2. ∴c a的取值范围为(2,+∞).解三角形问题中,求解某个量(式子)的取值范围是命题的热点,其主要解决思路是: 要建立所求量(式子)与已知角或边的关系,然后把角或边作为自变量,所求量(式子)的值作为函数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利用条件中的范围限制,以及三角形自身范围限制,尽量把角或边的范围(也就是函数的定义域)找完善,避免结果的范围过大.[即时训练] 7.(2019·山东实验中学等四校联考)如图所示,边长为1的正三角形ABC 中,点M ,N 分别在线段AB ,AC 上,将△AMN 沿线段MN 进行翻折,得到右图所示的图形,翻折后的点A 在线段BC 上,则线段AM 的最小值为________.答案 23-3解析 设AM =x ,∠AMN =α,则BM =1-x , ∠AMB =180°-2α,∴∠BAM =2α-60°, 在△ABM 中,由正弦定理可得AMsin ∠ABM=BMsin ∠BAM,即x32=1-xsin 2α-60°, ∴x =3232+sin 2α-60°,∴当2α-60°=90°,即α=75°时,x 取得最小值为3232+1=23-3,即线段AM 的最小值为23-3.8.(2019·陕西第三次教学质量检测)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且(a +b +c )(a +b -c )=3ab .(1)求角C 的值;(2)若c =2,且△ABC 为锐角三角形,求a +b 的取值范围. 解 (1)由题意知(a +b +c )(a +b -c )=3ab , ∴a 2+b 2-c 2=ab ,由余弦定理可知,cos C =a 2+b 2-c 22ab =12,又C ∈(0,π),∴C =π3.(2)由正弦定理可知,asin A=bsin B =2sinπ3=433,即 a =433sin A ,b =433sin B ,∴a +b =433(sin A +sin B )=433⎣⎢⎡⎦⎥⎤sin A +sin ⎝ ⎛⎭⎪⎫2π3-A =23sin A +2cos A =4sin ⎝⎛⎭⎪⎫A +π6,又△ABC 为锐角三角形,∴⎩⎪⎨⎪⎧0<A <π2,0<B =2π3-A <π2,即π6<A <π2, 则π3<A +π6<2π3, ∴23<4sin ⎝ ⎛⎭⎪⎫A +π6≤4,综上a +b 的取值范围为(23,4]. 角度3 正、余弦定理解决平面几何问题例5 (2019·南宁模拟)如图,在△ABC 中,∠B =π3,AB =8,点D在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.解 (1)由cos ∠ADC =17知sin ∠ADC =437,于是sin ∠BAD =sin(∠ADC -∠B ) =sin ∠ADC ·cos π3-cos ∠ADC ·sin π3=437×12-17×32=3314. (2)在△ABD 中,由正弦定理,得BD =AB ·sin∠BAD sin ∠ADB =AB ·sin∠BADsin π-∠ADC =8×3314437=3.在△ABC 中,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+52-2×8×5×12=49.所以AC =7.平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之,若研究最值,常使用函数思想.[即时训练] 9.(2020·河北唐山期末)如图,在梯形ABCD 中,∠A =∠D =90°,M 为AD 上一点,AM =2MD =2,∠BMC =60°.(1)若∠AMB =60°,求BC 的长; (2)设∠DCM =θ,若MB =4MC ,求tan θ.解 (1)由∠BMC =60°,∠AMB =60°,得∠CMD =60°. 在Rt △ABM 中,MB =2AM =4; 在Rt △CDM 中,MC =2MD =2. 在△MBC 中,由余弦定理,得BC 2=MB 2+MC 2-2MB ·MC ·cos∠BMC =12,所以BC =2 3.(2)因为∠DCM =θ,所以∠ABM =60°-θ, 0°<θ<60°. 在Rt △MCD 中,MC =1sin θ, 在Rt △MAB 中,MB =2sin 60°-θ,由MB =4MC ,得2sin(60°-θ)=sin θ,所以3cos θ-sin θ=sin θ,即2sin θ=3cos θ,整理可得tan θ=32.(2018·江苏高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________.答案 9解析 依题意画出图形,如图所示. 易知S △ABD +S △BCD =S △ABC ,即12c sin60°+12a sin60°=12ac sin120°, ∴c +a =ac ,∴1a +1c=1,∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c ≥9,当且仅当c a =4a c ,即a =32,c =3时取“=”. 答题启示利用基本不等式破解三角形中的最值问题时,当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.对点训练(2019·山东烟台模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知2(tan A +tan B )=tan A cos B +tan Bcos A. (1)证明:a +b =2c ; (2)求cos C 的最小值. 解 (1)证明:由题意知2⎝⎛⎭⎪⎫sin A cos A +sin B cos B =sin A cos A cos B +sin B cos A cos B,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin(A +B )=sin A +sin B .因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C ,从而sin A +sin B =2sin C .由正弦定理,得a +b =2c .(2)由(1)知c =a +b2,所以cos C =a 2+b 2-c 22ab=a 2+b 2-⎝⎛⎭⎪⎫a +b 222ab=38⎝ ⎛⎭⎪⎫a b +b a -14≥34-14=12,当且仅当a =b 时,等号成立. 故cos C 的最小值为12.。

相关文档
最新文档