2018年鲁教版初三数学中考总复习专题分类练习汇编
鲁教版2018中考数学专题复习 二次函数专项训练
鲁教版2018中考数学专题复习二次函数专项训练一、选择题1.如图,抛物线y=x2与直线y=x交于点A,沿直线y=x平移抛物线,使得平移后的抛物线顶点恰好为A点,则平移后抛物线的解析式是().A. y=(x+1)2-1B. y=(x+1)2+1C. y=(x-1)2+1D. y=(x-1)2-1(第1题)(第2题)2.如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标为(1,n),与y轴的交点在(0,2),(0,3)之间(包含端点).有下列结论:A. ①②B. ③④C. ①③D. ①③④(第3题)3.如图,在四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD 的面积为y,则y与x之间的函数关系式是().二、填空题4.点P在抛物线y=(x-2)2+1上,设点P的坐标为(x,y),当0≤x≤3时,y的取值范围为.5.已知二次函数y=ax2+bc+c中,函数y与自变量y=(x>0)的部分对应值如下表:若A(m,y1),B(m+1,y2)两点都在该函数的图象上,当m= 时,y1=y2.6.已知点A(m,0)是抛物线y=x2-2x-1与x轴的一个交点,则代数式2m2-4m+2 013的值是.三、解答题7.如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在边BC上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的解析式;(2)求点D的坐标.(第7题)8.已知抛物线经过A(2,0).设顶点为点P,与x轴的另一交点为点B.(1)求b的值,求出点P、点B的坐标;(2)如图,在直线上是否存在点D,使四边形OPBD为平行四边形?若存在,求出点D的坐标;若不存在,请说明理由;(3)在x轴下方的抛物线上是否存在点M,使△AMP≌△AMB?如果存在,试举例验证你的猜想;如果不存在,试说明理由.(第8题)9.(1)填空:点C的坐标是,b= ,c= ;(2)求线段QH的长(用含t的式子表示);(3)依点P的变化,是否存在t的值,使以P,H,Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.(第9题)参考答案与解析1. C[解析] 得出A点的坐标是(1,1),所以平移后以A点为顶点的解析式为y=(x-1)2+1.2.D[解析]①由抛物线的对称轴为直线x=1,一个交点A(-1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=-2a,将其代入(3a+b),并判定其符号;利用c的取值范围可以求得n的取值范围.4. 1≤y≤5[解析]将x=0,x=2分别代入y=(x-2)2+1求出y的取值范围为1≤y≤5,注意本题切忌直接将x=0,x=3代入,要考虑二次函数的对称轴二边增减性,5. 1.5[解析]二次函数的解析式为y=x2-4x+5,∵y1=y2,∴m2-4m=(m+1)2-4(m+1),解得m=1.5.6. 2015[解析]依题意知m2-2m-1=0,得m2-2m=1,所以2m2-4m+2013=2(m2-2m)+2013=2015.7. (1)设抛物线顶点为E,根据题意,得E(2,3),设抛物线解析式为y=a(x-2)2+3,(3)符合条件的点M存在.证明如下:过点P作x轴的垂线,垂足为C,则PC=2,AC=2,由勾股定理,可得AP=4,PB=4,又AB=4,所以△APB是等边三角形.只要作∠PAB的平分线交抛物线于M点,连接PM,BM,由于AM=AM,∠PAM=∠BAM,AB=AP,可得△AMP≌△AMB.因此存在这样的点M,使△AMP≌△AMB.由题意,得△BHP∽△BOC,∵OC∶OB∶BC=3∶4∶5,∴HP∶HB∶BP=3∶4∶5.∵PB=5t,∴HB=4t,HP=3t.∴OH=OB-HB=4-4t.∴OQ=4t.①当H在Q,B之间时,QH=OH-OQ=(4-4t)-4t=4-8t.②当H在O,Q之间时,QH=OQ-OH=4t-(4-4t)=8t-4.综合①②,得QH=|4-8t|.。
2018中考数学一轮复习 各知识点练习题分层设计十三(一次函数部分)(无答案) 鲁教版
(一次函数部分)A级基础题1.已知一次函数y=-x+b的图象经过第一、二、四象限,则b的值可能是( ) A.-2 B.-1 C.0 D.22.直线y=x-1的图象经过的象限是( )A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限3.直线y=kx-1一定经过点( )A.(1,0) B.(1,k) C.(0,k) D.(0,-1)4.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为( ) A.y=x+1 B.y=x-1 C.y=x D.y=x-25.在平面直角坐标系中,点O为原点,直线y=kx+b交x轴于点A(-2,0),交y轴于点B.若△AOB 的面积为8,则k的值为( )A.1 B.2 C.-2或4 D.4或-46.关于的一次函数y=kx+k2+1的图象可能是( )7.一次函数y=(k-2)x+b的图象如图所示,则k的取值范围是( ) A.k>2 B.k<2 C.k>3 D.k<38.一次函数y=-2x+3中,y的值随x值增大而________(填“增大”或“减小”).9.一次函数y=2x-1的图象经过点(a,3),则a=________.10.(国家和地方政府为了提高农民种粮的积极性,每亩地每年发放种粮补贴120元.种粮大户老王今年种了150亩地,计划明年再承租50~150亩土地种粮以增加收入.考虑各种因素,预计明年每亩种粮成本y(单位:元)与种粮面积x(单位:亩)之间的函数关系如图所示:(1)今年老王种粮可获得补贴多少元?(2)根据图象,求y 与x 之间的函数关系式. B 级 中等题11.如图,一次函数y =(m -1)x -3的图象分别与x 轴、y 轴的负半轴相交于A ,B ,则m 的取值范围是( )A .m >1 B .m <1 C .m <0 D .m >012.一次函数y =mx +|m -1|的图象过点(0,2)且y 随x 的增大而增大,则m =( ) A .-1 B .3 C .1 D .-1或313.如图,直线y 1=x2与y 2=-x +3相交于点A ,若y 1<y 2,那么( )A .x >3B .x <2C .x >1D .x <114.如图,一次函数y =kx +b 的图象与正比例函数y =2x 的图象平行且经过点A (1,-2),则kb =________C 级 拔尖题15.如图,点A 的坐标为(-1,0),点B 在直线y =2x -4上运动,当线段AB 最短时,点B 的坐标是__________.16.某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为每件25元时,可卖出105件,而售价每上涨1元,就少卖5件.(1)当售价定为每件30元时,一个月可获利多少元?(2)当售价定为每件多少元时,一个月的获利最大?最大利润是多少元?17.“五一”期间,为了满足广大人民的消费需求,某商店计划用160 000元购进一批家电,这批家电的进价和售价如下表:(1) (2)若在现有资金160 000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,请你算一算有几种进货方案?哪种进货方案能使商店销售完这批家电后获得的利润最大?请求出最大利润(利润=售价-进价). 选做题18.某电器商城“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:(1)买了冰箱、彩电各一台,可以享受多少元的补贴?(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的56.若使商场获利最大,请你帮助商场计算应该购进冰箱、彩电各多少台?最大获利是多少?。
鲁教版2018中考数学专题复习-压轴题专项训练
2018年中考专题复习--压轴题1.如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值(3)当0△为等腰三角形,如果存在,求出P的坐标;m 时,探索是否存在点P,使得PCO如果不存在,请说明理由.2.正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O、P、A三点坐标;②求抛物线L的解析式;(2)求△OAE与△OCE面积之和的最大值.3.已知二次函数y=ax 2﹣2ax+c (a <0)的最大值为4,且抛物线过点(,﹣),点P (t ,0)是x 轴上的动点,抛物线与y 轴交点为C ,顶点为D .(1)求该二次函数的解析式,及顶点D 的坐标;(2)求|PC ﹣PD|的最大值及对应的点P 的坐标;(3)设Q (0,2t )是y 轴上的动点,若线段PQ 与函数y=a|x|2﹣2a|x|+c 的图象只有一个公共点,求t 的取值.4.如图,在平面直角坐标系中,边长为32的等边ABC 随着顶点A 在抛物线y=x 2-32x 上运动而运动,且始终有BC//x 轴.(1)当顶点A 运动至与原点重合时,顶点C 是否在该抛物线上?(2)△ABC 在运动过程中有可能被x 轴分成两部分,当上下两部分的面积之比为1:8(即S 上部分:S 下部分=1:8)时,求顶点A 的坐标;(3)△ABC 在运动过程中,当顶点B 落在坐标轴上时,直接写出顶点C 的坐标.5.已知:抛物线y=﹣x2+bx+c交y轴于点C(0,3),交x轴于点A,B,(点A在点B 的左侧),其对称轴为x=1,顶点为D.(1)求抛物线的解析式及A,B两点的坐标;(2)若⊙P经过A,B,C三点,求圆心P的坐标;(3)求△BDC的面积S△DCB;并探究抛物线上是否存在点M,使S△MCB=S△DCB?若存在,求出M点的坐标;若不存在,说明理由.6.如图,在平面直角坐标系中,二次函数y=﹣0.25x2+bx+c的图象与坐标轴交于A、B、C 三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.7.如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF 与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.8.已知线段OA⊥OB,C为OB上中点,D为AO上一点,连AC、BD交于P点.(1)如图1,当OA=OB且D为AO中点时,求的值;(2)如图2,当OA=OB,时,求tan∠BPC.9.如图,已知Rt△ABC中,∠C=90°,AC=8.BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P、Q运动的时间为t秒.(Ⅰ)在运动过程中,请你用t表示P、Q两点间的距离,并求出P、Q两点间的距离的最大值;(Ⅱ)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式.10.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.11.如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E 两点的坐标;(2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD于点M,过点M作AE平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,s有最大值,最大值是多少?(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标?12.(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD•BC=AP•BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=12,AD=BD=10.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC 为半径的圆与AB相切,求t的值.13.如图,在平面直角坐标系中,矩形OABC的边OA在x轴的负半轴上,边OC在y轴的正半轴上,且OA=1,tan∠ACB=2,将矩形OABC绕点O按顺时针方向旋转90°后得到矩形ODEF.点A的对应点为点D,点B的对应点为点E,点C的对应点为点F,抛物线y=ax2+bx+2的图象过点A,C,F.(1)求抛物线所对应函数的表达式;(2)在边DE上是否存在一点M,使得以O,D,M为顶点的三角形与△ODE相似,若存在,求出经过M点的反比例函数的表达式,若不存在,请说明理由;(3)在x轴的上方是否存在点P,Q,使以O,F,P,Q为顶点的平行四边形的面积是矩形OABC面积的2倍,且点P在抛物线上,若存在,请求出P,Q两点的坐标;若不能存在,请说明理由;(4)在抛物线的对称轴上是否存在一点H,使得HA﹣HC的值最大,若存在,直接写出点H的坐标;若不存在,请说明理由.14.如图,在直角坐标系中,Rt△OAB的直角顶点A在x轴上,OA=4,AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了x秒(0<x<4)时,解答下列问题:(1)求点N的坐标(用含x的代数式表示);(2)设△OMN的面积是S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?(3)在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,请说明理由.15.如图所示,已知抛物线y=x2﹣1与x轴交于A、B两点,与y轴交于点C.(1)求A、B、C三点的坐标;(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.参考答案1.(1)设(4)y ax x =-,A 点坐标代入得1a =-,函数为24y x x =-+.(2)03m <<,23PC PD CD m m =-=-+()23294m =--+,当()32,0D 时,max 94PC =. (3)当03m <<时,仅有OC=PC ,此时,232m m m -+=,解得32m =-,(32,122)P -+;当3m ≥时,23PC CD PD m m =-=-,OC=2m ,222222(4)OP OD DP m m m =+=+-. ① 当OC= PC 时,232m m m -=.解得32m =+,(32,122)P +-;② ②当OC= OP 时,2222(2)(4)m m m m =+-,解得m 1=5,m 2=3(舍去),(5,5)P -; ③当PC=OP 时,22222(3)(4)m m m m m -=+-,解得4m =,(4,0)P .2.解:(1)以O 点为原点,线段OA 所在的直线为x 轴,线段OC 所在的直线为y 轴建立直角坐标系,如图所示.①∵正方形OABC 的边长为4,对角线相交于点P ,∴点O 的坐标为(0,0),点A 的坐标为(4,0),点P 的坐标为(2,2). ②设抛物线L 的解析式为y=ax 2+bx+c ,∵抛物线L 经过O 、P 、A 三点,∴有,解得:,∴抛物线L 的解析式为y=﹣+2x .(2)∵点E 是正方形内的抛物线上的动点,∴设点E的坐标为(m,﹣+2m)(0<m<4),∴S△OAE+S OCE=OA•y E+OC•x E=﹣m2+4m+2m=﹣(m﹣3)2+9,∴当m=3时,△OAE与△OCE面积之和最大,最大值为9.3.解:(1)∵y=ax2﹣2ax+c的对称轴为:x=﹣=1,∴抛物线过(1,4)和(,﹣)两点,代入解析式得:,解得:a=﹣1,c=3,∴二次函数的解析式为:y=﹣x2+2x+3,∴顶点D的坐标为(1,4);(2)∵C、D两点的坐标为(0,3)、(1,4);由三角形两边之差小于第三边可知:|PC﹣PD|≤|CD|,∴P、C、D三点共线时|PC﹣PD|取得最大值,此时最大值为|CD|=,由于CD所在的直线解析式为y=x+3,将P(t,0)代入得t=﹣3,∴此时对应的点P为(﹣3,0);(3)y=a|x|2﹣2a|x|+c的解析式可化为:y=设线段PQ所在的直线解析式为y=kx+b,将P(t,0),Q(0,2t)代入得:线段PQ所在的直线解析式:y=﹣2x+2t,∴①当线段PQ过点(0,3),即点Q与点C重合时,线段PQ与函数y=有一个公共点,此时t=,当线段PQ过点(3,0),即点P与点(3,0)重合时,t=3,此时线段PQ与y=有两个公共点,所以当≤t<3时,线段PQ与y=有一个公共点,②将y=﹣2x+2t代入y=﹣x2+2x+3(x≥0)得:﹣x2+2x+3=﹣2x+2t,﹣x2+4x+3﹣2t=0,令△=16﹣4(﹣1)(3﹣2t)=0,t=>0,所以当t=时,线段PQ与y=也有一个公共点,③当线段PQ过点(﹣3,0),即点P与点(﹣3,0)重合时,线段PQ只与y=﹣x2﹣2x+3(x<0)有一个公共点,此时t=﹣3,所以当t≤﹣3时,线段PQ与y=也有一个公共点,综上所述,t的取值是≤t<3或t=或t≤﹣3.4.(1)当顶点A运动至与原点重合时,设BC与y轴交于点D,如图所示.∵BC∥x轴,BC=AC=23,∴CD=3,AD=3.∴C点的坐标为(3,-3).∵当x=3时,y=-3.∴当顶点A运动至与原点重合时,顶点C在抛物线上.(2)过点A作AD⊥BC于点D,设点A的坐标为(x,x2-23x).∵BC∥x轴,∴x轴上部分的三角形∽△ABC.∵S上部分:S下部分=1:8,∴S上部分:S△ABC=1:9,∴AD=3(x2-23x).5.6.解:(1)把A(0,8),B(﹣4,0)代入y=﹣0.25x2+bx+c得,解得,所以抛物线的解析式为y=﹣0.25x2+x+8;当y=0时,﹣0.25 x2+x+8=0,解得x1=﹣4,x2=8,所以C点坐标为(8,0);(2)①连结OF,如图,设F(t,﹣0.25 t2+t+8),∵S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,∴S△CDF=S△ODF+S△OCF﹣S△OCD=0.5•4•t+0.5•8•(﹣0.25t2+t+8)﹣0. 5•4•8=﹣t2+6t+16=﹣(t﹣3)2+25,当t=3时,△CDF的面积有最大值,最大值为25,∵四边形CDEF为平行四边形,∴S的最大值为50;②∵四边形CDEF为平行四边形,∴CD∥EF,CD=EF,∵点C向左平移8个单位,再向上平移4个单位得到点D,∴点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣0.25 t2+t+12),∵E(t﹣8,﹣0.25 t2+t+12)在抛物线上,∴﹣0.25(t﹣8)2+t﹣8+8=﹣0.25t2+t+12,解得t=7,当t=7时,S△CDF=﹣(7﹣3)2+25=9,∴此时S=2S△CDF=18.7.解:(1)∵点B是点A关于y轴的对称点,∴抛物线的对称轴为y轴,∴抛物线的顶点为(0,),故抛物线的解析式可设为y=ax2+.∵A(﹣1,2)在抛物线y=ax2+上,∴a+=2,解得a=﹣,∴抛物线的函数关系表达式为y=﹣x2+;(2)①当点F在第一象限时,如图1,令y=0得,﹣x2+=0,解得:x1=3,x2=﹣3,∴点C的坐标为(3,0).设直线AC的解析式为y=mx+n,则有,解得,∴直线AC的解析式为y=﹣x+.设正方形OEFG的边长为p,则F(p,p).∵点F(p,p)在直线y=﹣x+上,∴﹣p+=p,解得p=1,∴点F的坐标为(1,1).②当点F在第二象限时,同理可得:点F的坐标为(﹣3,3),此时点F不在线段AC上,故舍去.综上所述:点F的坐标为(1,1);(3)过点M作MH⊥DN于H,如图2,则OD=t,OE=t+1.∵点E和点C重合时停止运动,∴0≤t≤2.当x=t时,y=﹣t+,则N(t,﹣t+),DN=﹣t+.当x=t+1时,y=﹣(t+1)+=﹣t+1,则M(t+1,﹣t+1),ME=﹣t+1.在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,∴MN2=12+()2=.①当DN=DM时,(﹣t+)2=t2﹣t+2,解得t=;②当ND=NM时,﹣t+==,解得t=3﹣;③当MN=MD时,=t2﹣t+2,解得t1=1,t2=3.∵0≤t≤2,∴t=1.综上所述:当△DMN是等腰三角形时,t的值为,3﹣或1.8.解:(1)过D作DE∥CO交AC于E,∵D为OA中点,∴AE=CE=,,∵点C为OB中点,∴BC=CO,,∴,∴PC==,∴=2;(2)过点D作DE∥BO交AC于E,∵,∴==,∵点C为OB中点,∴,∴,∴PC==,过D作DF⊥AC,垂足为F,设AD=a,则AO=4a,∵OA=OB,点C为OB中点,∴CO=2a,在Rt△ACO中,AC===2 a,又∵Rt△ADF∽Rt△ACO,∴,∴AF=,DF=,PF=AC﹣AF﹣PC=2 a﹣﹣=,tan∠BPC=tan∠FPD==.9.解:(Ⅰ)分两种情况考虑:当Q在AB边上时,过Q作QE⊥AC,交AC于点E,连接PQ,如图1所示:∵∠C=90°,∴QE∥BC,∴△ABC∽△AQE,∴==,在Rt△ABC中,AC=8,BC=6,根据勾股定理得:AB=10,∵AQ=2t,AP=t,∴==,整理得:PE=t,QE=t,根据勾股定理得:PQ2=QE2+PE2,整理得:PQ=t;当Q在BC边上时,连接PQ,如图2所示:由AB+BQ=2t,AB=10,得到BQ=2t﹣10,CQ=BC﹣BQ=6﹣(2t﹣10)=16﹣2t,由AP=t,AC=8,得到PC=8﹣t,根据勾股定理得:PQ==,当Q与B重合时,PQ的值最大,则当t=5时,PQ最大值为3;(Ⅱ)分两种情况考虑:当Q在AB边上时,如图1,△ABC被直线PQ扫过的面积为S△AQP=此时S=AP•QE=t•t=t2(0<t≤5);当Q在BC边上时,△ABC被直线PQ扫过的面积为S四边形ABQP,此时S=S△ABC﹣S△PQC=×8×6﹣(8﹣t)(16﹣2t)=﹣t2+16t﹣40(5<t≤8).综上,经过t秒的运动,△ABC被直线PQ扫过的面积S与时间t的函数关系式为10.解:(1)由题意解得,∴抛物线解析式为y=x2﹣x+2.(2)∵y=x2﹣x+2=(x﹣1)2+.∴顶点坐标(1,),∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3),∴S△BDC=S△BDH+S△DHC=•3+•1=3.(3)由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.11.解:(1)依题意可知,折痕AD是四边形OAED的对称轴,∴在Rt△ABE中,AE=AO=5,AB=4.BE==3.∴CE=2.∴E点坐标为(2,4).在Rt△DCE中,DC2+CE2=DE2,又∵DE=OD.∴(4﹣OD)2+22=OD2.解得:OD=2.5.∴D点坐标为(0,2.5).(2)如图②∵PM∥ED,∴△APM∽△AED.∴,又知AP=t,ED=2.5,AE=5,PM=0.5t ×2.5=0.5t,又∵PE=5﹣t.而显然四边形PMNE为矩形.S矩形PMNE=PM•PE=0.5t×(5﹣t)=﹣0.5t2+2.5t;∴S四边形PMNE=﹣0.5(t﹣2.5)2+,又∵0<2.5<5.∴当t=2.5时,S矩形PMNE有最大值.(3)(i)若以AE为等腰三角形的底,则ME=MA(如图①)在Rt△AED中,ME=MA,∵PM⊥AE,∴P为AE的中点,∴t=AP=0.5AE=2.5.又∵PM∥ED,∴M为AD的中点.过点M作MF⊥OA,垂足为F,则MF是△OAD的中位线,∴MF=0.5OD=1.25,OF=0.5OA=2.5,∴当t=2.5时,(0<2.5<5),△AME为等腰三角形.此时M点坐标为(2.5,1.25).(ii)若以AE为等腰三角形的腰,则AM=AE=5(如图②)在Rt△AOD中,AD===.过点M作MF⊥OA,垂足为F.∵PM∥ED,∴△APM∽△AED.∴.∴t=AP===2,∴PM=t=.∴MF=MP=,OF=OA﹣AF=OA﹣AP=5﹣2,∴当t=2时,(0<2<5),此时M点坐标为(5﹣2,).综合(i)(ii)可知,t=2.5或t=2时,以A,M,E为顶点的三角形为等腰三角形,相应M点的坐标为(2.5,1.25)或(5﹣2,).12.(1)证明:如图1,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴,∴AD•BC=AP•BP;(2)结论AD•BC=AP•BP仍成立;理由:证明:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴AD•BC=AP •BP;(3)解:如下图,过点D作DE⊥AB于点E,∵AD=BD=10,AB=12,∴AE=BE=6∴DE==8,∵以D为圆心,以DC为半径的圆与AB相切,∴DC=DE=8,∴BC=10﹣8=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(1)(2)的经验得AD•BC=AP•BP,又∵AP=t,BP=12﹣t,∴t(12﹣t)=10×2,∴t=2或t=10,∴t的值为2秒或10秒.13.解:(1)∵矩形OABC,∴BC=OA=1,OC=AB,∠B=90°,∵tan∠ACB=2,∴AB:BC=2∴OC:OA=2,则OC=2,∵将矩形OABC绕点O按顺时针方向旋转90°后得到矩形ODEF,∴OF=2,则有A(﹣1,0)C(0,2)F(2,0)∵抛物线y=ax2+bx+2的图象过点A,C,F,把点A、C、F坐标代入得a-b+c=0,4a+2b+c=0,c=2∴解得a=-1,b=1,c=2∴函数表达式为y=﹣x2+x+2,(2)存在,当∠DOM=∠DEO时,△DOM∽△DEO∴此时有DM:DO=DO:DE.∴DM2=0.5,∴点M坐标为(0.5,1),设经过点M的反比例函数表达式为y=kx-1,把点M代入解得k=0.5∴经过M点的反比例函数的表达式为y=0.5x-1,(3)存在符合条件的点P,Q.∵S矩形ABCD=2×1=2,∴以O,F,P,Q为顶点平行四边形的面积为4,∵OF=2,∴以O,F,P,Q为顶点平行四边形的高为2,∵点P在抛物线上,设点P坐标为(m,2),∴﹣m2+m+2=2,解得m1=0,m2=1,∴点P坐标为P1(0,2),P2(1,2)∵以O,F,P,Q为顶点的四边形为平行四边形,∴PQ∥OF,PQ=OF=2.∴当点P坐标为P1(0,1)时,点Q的坐标分别为Q1(2,2),Q2(﹣2,2);当点P坐标为P2(1,2)时,点Q的坐标分别为Q3(3,2),Q4(﹣1,2);(4)若使得HA﹣HC的值最大,则此时点A、C、H应在同一直线上,设直线AC的函数解析式为y=kx+b,把点A(﹣1,0),点C(0,2)代入得-k+b=0,b=2解得k=2,b=2∴直线AC的函数解析式为y=2x+2,∵抛物线函数表达式为y=﹣x2+x+2,∴对称轴为x=0.5∴把x=0.5代入y=2x+2 解得y=3∴点H的坐标为(0.5,3)14.解:(1)根据题意得:MA=x,ON=1.25x,在Rt△OAB中,由勾股定理得:OB===5,作NP⊥OA于P,如图1所示:则NP∥AB,∴△OPN∽△OAB,∴,即,解得:OP=x,PN=,∴点N的坐标是(x,);(2)在△OMN中,OM=4﹣x,OM边上的高PN=,∴S=0.5OM•PN=0.5(4﹣x)•=﹣x2+1.x,∴S与x之间的函数表达式为S=﹣x2+1.x(0<x<4),配方得:S=﹣(x﹣2)2+1.5,∵﹣<0,∴S有最大值,当x=2时,S有最大值,最大值是1.5;(3)存在某一时刻,使△OMN是直角三角形,理由如下:分两种情况:①若∠OMN=90°,如图2所示:则MN∥AB,此时OM=4﹣x,ON=1.25x,∵MN∥AB,∴△OMN∽△OAB,∴,即,解得:x=2;②若∠ONM=90°,如图3所示:则∠ONM=∠OAB,此时OM=4﹣x,ON=1.25x,∵∠ONM=∠OAB,∠MON=∠BOA,∴△OMN∽△OBA,∴,即,解得:x=;综上所述:x的值是2秒或秒.15.。
2018中考数学一轮复习 各知识点练习题分层设计九(方式方程部分)(无答案) 鲁教版
) C.v=-5 ) D.x=4 D.v=20
C.x=3
5.甲车行 驶 30 千米与乙车行驶 40 千米所用的时间 相同.已知乙车每小时比甲车多行驶 15 千 米,设甲车的速度为 x 千米/时,依题意列方程正确的是( A. 30 40 = x x-15 B. 30 40 = x-15 x C. 30 40 = x x+15 ) 30 40 D. = x+15 x
选做题 14. 某学校后勤人员到一家文具店给九年级的同学购买考试用文具包, 文具店规定一次购买 400 个以上,可享受 8 折优惠.若给九年级学生每人购买一个,不能享受 8 折优惠,需付款 1 936 元;
若多买 88 个,就可享受 8 折优惠,同样只需付款 1 936 元.请问 该学校九年级学生有多少人?
15.某服装厂设计了一款新式夏装,想尽快制作 8 800 件投入市场,服装厂有 A,B 两个制衣车间,
A 车间每天加工的数量是 B 车间的 1.2 倍,A,B 两车间共同完成一半后,A 车间出现故障停产,剩
下全部由 B 车间单独完成,结果前后共用 20 天完成,求 A,B 两车间每天分别能加工多少件.
C级
拔尖题 15.某开发商进行商铺促销,广告上写着如下条款: 投资者购买商铺后,必须由开发商代为租赁 5 年,5 年期满后由开发商以比原商铺标价高 20%
的价格进行回购.投资者可在以下两种购铺方案中做出选择: 方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的 10%; 方案二:投资者按商铺 标价的八五折一次性付清铺款,2 年后每年可以获得的租金为商铺标价 的 10%,但要缴纳租金的 10%作为管理费用. (1)请问:投资者选择哪种购铺方案,5 年后所获得的投资收益率更高?为什么(注:投资收益 率= 投资收益 ×100%)? 实际投资额 (2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么 5 年后两人获得的收 益将相差 5 万元.问:甲、乙两人各投资了多少万元?
2018中考数学一轮复习 各知识点练习题分层设计十四(反比例函数部分)(无答案) 鲁教版
(反比例函数部分)A 级 基础题1.如图X3-3-1,某反比例函数的图象过点(-2,1),则此反比例函数表达式为( )A .y =2xB .y =-2xC .y =12xD .y =-12x2.对反比例函数y =1x,下列结论中不正确的是( ) A .图象经过点(-1,-1) B .图象在第一、三象限C .当x >1时,0<y <1D .当x <0时,y 随着x 的增大而增大3.若反比例函数y =k x 与一次函数y =x +2的图象没有交点,则k 的值可能是( )A .-2B .-1C .1D .24.已知直线y =ax (a ≠0)与双曲线y =k x (k ≠0)的一个交点坐标为(2,6),则它们的另一个交点坐标是( )A .(-2,6)B .(-6,-2)C .(-2,-6)D .(6,2)5.已知反比例函数的图象y =m -1x如图所示,则实数m 的取值范围是( ) A .m >1 B .m >0 C .m <1 D .m <06.(江苏无锡)若双曲线y =k x与直线y =2x +1一个交点的横坐标为-1,则k 的值为( )A .-1B .1C .-2D .27.矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系用图象表示大致为( )8.一次函数y 1=kx +b (k ≠0)与反比例函数y 2=m x (m ≠0),在同一直角坐标系中的图象如图X3-3-3所示,若y 1>y 2,则x 的取值范围是( )A .-2<x <0或x >1B .x <-2或0<x <1C .x >1D .-2<x <19.已知反比例函数y =k x 的图象经过点(1,-2),则k =________.10.已知反比例函数的图象经过点(m,2)和(-2,3),则m 的值为__________.11.如图,一次函数y =kx +b 与反比例函数y =6x(x >0)的图象交于A (m,6),B (n,3)两点. (1)求一次函数的解析式;(2)根据图象直接写出,当kx +b -6x>0时,x 的取值范围.B 级 中等题12.点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数y =-3x的图象上,若x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A .y 3<y 1<y 2B .y 1<y 2<y 3C .y 3<y 2<y 1D .y 2<y 1<y 313.如图,反比例函数y 1=k 1x 和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( )A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >114.如图,直线y =k 1x +b 与双曲线y =k 2x 交于A ,B 两点,其横坐标分别为1和5,则不等式k 1x <k 2x +b 的解集是____________.15.如图,点A 在双曲线y =k x上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k =________.16.如图在平面直角坐标系xOy 中,一次函数y 1=k 1x +1的图象与y 轴交于点A ,与x 轴交于点B ,与反比例y 2=k 2x的图象分别交于点M ,N ,已知△AOB 的面积为1,点M 的纵坐标为2.(1)求一次函数与反比例函数的解析式;(2)直接写出y 1>y 2时,x 取值范围.C 级 拔尖题17.如图,在平面直角坐标系xOy 中,梯形AOBC 的边OB 在x 轴的正半轴上,AC ∥OB ,BC ⊥OB ,过点A 的双曲线y =k x的一支在第一象限交梯形对角线OC 于点D ,交边BC 于点E .(1)填空:双曲线的另一支在第________象限,k 的取值范围是________;(2)若点C 的坐标为(2,2),当点E 在什么位置时?阴影部分面积S 最小?(3)若OD OC =12,S △OAC =2,求双曲线的解析式.18.甲、乙两家商场进行促销活动,甲商场采用“满200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…,乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x (400≤x <600)元,优惠后得到商家的优惠率为p (p =优惠金额购买商品的总金额),写出p 与x 之间的函数关系式,并说明p 随x 的变化情况; (3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x (200≤x <400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.选做题19.如图,一次函数y 1=kx +b 的图象与反比例函数y 2=m x的图象相交于点A (2,3)和点B ,与x 轴相交于点C (8,0).(1)求这两个函数的解析式;(2)当x 取何值时,y 1>y 2.20.据媒体报道,近期“手足口病”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量(单位;毫克)与燃烧时间(单位;分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),根据图象所示信息,解答下列问题:(1)写出从药物释放开始,y与x之间的函数关系式及自变量的取值范围;(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?。
2018中考数学一轮复习 各知识点练习题分层设计二(代数式部分)(无答案) 鲁教版
(代数式部分)A 级 基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a 万人,则女生约有( )A .(15+a )万人B .(15-a )万人C .15a 万人 D.15a万人 2.若x =m -n ,y =m +n ,则xy 的值是( )A .2 mB 。
2 nC .m +nD .m -n3.若x =1,y =12,则x 2+4xy +4y 2的值是( ) A .2 B .4 C.32 D .124.已知a -b =1,则代数式2a -2b -3的值是( )A .-1B .1C .-5D .55.已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于( )A .3B .-3C .1D .-16.若|x -3|+|y +2|=0,则x +y 的值为__________.7.通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a 元后,再次下调了20%,现在收费标准是每分钟b 元,则原收费标准每分钟是____________元.8.已知代数式2a 3bn +1与-3a m +2b 2是同类项,2m +3n =________.9.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是________(用含m ,n 的式子表示).10.已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值.B 级 中等题11.若a 2-b 2=14,a -b =12,则a +b 的值为( ) A .-12 B.12C .1D .212.化简m 2-163m -12得____________ ;当m =-1时,原式的值为________ .13.把四张形状大小完全相同的小长方形卡片[如图X1-2-1(1)]不重叠的放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部[如图X1-2-1(2)],盒子底面未被卡片覆盖的部分用阴影表示,则图X1-2-1(2)中两块阴影部分的周长和是( )图X1-2-1A .4m cmB .4n cmC .2(m +n ) cmD .4(m -n ) cm14.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a +b +c 就是完全对称式.下列三个代数式:①(a -b )2;②ab +bc +ca ;③a 2b +b 2c +c 2a .其中是完全对称式的是( )A .①②B .①③C .②③D .①②③15.已知A =2x +y ,B =2x -y ,计算A 2-B 2.C 级 拔尖题16.若3x =4,9y =7,则3x -2y 的值为( ) A.47 B.74 C .-3 D.2717.一组按一定规律排列的式子(a ≠0):-a 2,a 52,-a 83,a 114,…, 则第n 个式子是________(n 为正整数).选做题 18.)已知,x =2 009,y =2 010,求代数式x -y x ÷22xy y x x ⎛⎫-- ⎪⎝⎭的值.19.如图,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形 (不重叠无缝隙),则该矩形的面积是( )A .2 cm 2B .2a cm2 C .4a cm 2 D .(a 2-1)cm 2。
鲁教版2018中考数学一轮复习:各知识点练习题分层设计(24套)
(实数部分)A 级 基础题1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A .-1 B .0 C .1 D .22.-2的绝对值等于( ) A .2 B .-2 C.12 D .±23.-4的倒数的相反数是( ) A .-4 B .4 C .-14 D.144.-3的倒数是( ) A .3 B .-3 C.13 D .-135.无理数-3的相反数是( ) A .- 3 B. 3 C.13 D .-136.下列各式,运算结果为负数的是( )A .-(-2)-(-3)B .(-2)×(-3)C .(-2)2D .(-3)-37.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃.8.如果x -y <0,那么x 与y 的大小关系是x ____y (填“<”或“>”).9.已知一粒米的质量是0.000 021千克,这个数字用科学记数法表示为( ) A .21×10-4千克 B .2.1×10-6千克 C .2.1×10-5千克 D .2.1×10-4千克10.计算:|-5|-(2-3)0+6×1132⎛⎫- ⎪⎝⎭+(-1)2.B 级 中等题11.实数a ,b 在数轴上的位置如图所示,下列式子错误的是( ) A .a <b B .|a |>|b | C .-a <-b D .b -a >012.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒请你用科学记数法表示________________________秒.13.将1,2,3,6按下列方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(14,5)表示的两数之积是________.14.计算:|-3 3|-2cos30°-2-2+(3-π)0. 15.计算:-22+-113⎛⎫⎪⎝⎭-2cos60°+|-3|.C 级 拔尖题16.如图X1-1-2,矩形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为__________.图X1-1-217.观察下列等式:第1个等式:a 1=11×3=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=13×5=12×1135⎛⎫- ⎪⎝⎭;第3个等式:a 3=15×7=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=17×9=12×1179⎛⎫- ⎪⎝⎭;请解答下列问题:(1)按以上规律列出第5个等式:a 5=___________=______________;(2)用含有n 的代数式表示第n 个等式:a n =______________=____________(n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值. 选做题18.请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立: 1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a ⊕b =_______(用a ,b 的一个代数式表示).(代数式部分)A 级 基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a 万人,则女生约有( )A .(15+a )万人B .(15-a )万人C .15a 万人 D.15a万人2.若x =m -n ,y =m +n ,则xy 的值是( ) A .2 m B 。
2018中考数学一轮复习 各知识点练习题分层设计十五(二次函数部分)(无答案) 鲁教版
(二次函数部分)A 级 基础题1.抛物线y =-(x +2)2-3的顶点坐标是( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3)2.将抛物线y =3x 2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .y =3(x +2)2+3B .y =3(x -2)2+3C .y =3(x +2)2-3D .y =3(x -2)2-33.已知抛物线y =ax 2+bx +c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( )A .a >0B B .b <0C .c <0D .a +b +c >04.二次函数y =a (x +m )2+n 的图象如图,则一次函数y =mx +n 的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限5.如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是( )A .y 的最大值小于0B .当x =0时,y 的值大于1C .当x =-1时,y 的值大于1D .当x =-3时,y 的值小于06.二次函数y =ax 2+bx +c (a ≠0)的图象如图X3-4-4所示,给出下列结论:①b 2-4ac >0;②2a+b <0;③4a -2b +c =0;④a ∶b ∶c =-1∶2∶3.其中正确的是( )A .①② B.②③ C.③④ D.①④7.已知拋物线y =-13x 2+2,当1≤x ≤5时,y 的最大值是( )A .2 B.23 C.53 D.738.抛物线y =-3x 2-x +4与坐标轴的交点个数是( )A .3B .2C .1D .09.抛物线y =x 2-2x -3的顶点坐标是__________.10.二次函数y =x 2-2x -3的图象如图所示.当y <0时,自变量x 的取值范围是____________.11.已知二次函数y =-12x 2-x +32. (1)在如图的直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y <0时,x 的取值范围;(3)若将此图象沿x 轴向右平移3个单位,请写出平移后图象所对应的函数关系式.B 级 中等题12.抛物线y =ax 2+bx -3经过点(2,4),则代数式8a +4b +1的值为( )A .3B .9C .15D .-1513.已知二次函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( )A .k <4B .k ≤4C .k <4且k ≠3 D.k ≤4且k ≠314.如图所示的二次函数y =ax 2+bx +c 的图象中,刘星同学观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)2a -b <0;(4)a +b +c <0.你认为其中错误..的有( ) A .2个 B .3个 C .4个 D .1个15.二次函数y =ax 2+bx +c 的图象如图所示,则反比例函数y =a x与一次函数y =bx +c 在同一坐标系中的大致图象是( )AB C D16.某商场购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个.(1)假设销售单价提高x 元,那么销售每个篮球所获得的利润是__________元;这种篮球每月的销售量是__________个;(用含x 的代数式表示)(2)8 000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大利润,并求出此时篮球的售价应定为多少元.C级拔尖题17.如图,抛物线y=ax2+bx+3与x轴相交于点A(-3,0),B(-1,0),与y轴相交于点C,⊙O1为△ABC的外接圆,交抛物线于另一点D.(1)求抛物线的解析式; (2)求cos∠CAB的值和⊙O1的半径;(3)如图,抛物线的顶点为P,连接BP,CP,BD,M为弦BD中点,若点N在坐标平面内,满足△BMN∽△BPC,请直接写出所有符合条件的点N的坐标.18.已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x1<0<x2,与y轴交于点C,O为坐标原点,tan∠CAO-tan∠CBO=1.(1)求证:n+4m=0;(2)求m,n的值;(3)当p>0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.选做题19.如图,经过原点的抛物线y=-x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B,C不重合).连结CB,CP.(1)当m=3时,求点A的坐标及BC的长;(2)当m>1时,连结CA,问m为何值时CA⊥CP?(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并写出相对应的点E坐标;若不存在,请说明理由.20.(广东广州)如图X3-4-13,抛物线y =-38x 2-34x +3与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A ,B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4,0),M 为直线l 上的动点,当以A ,B ,M 为顶点所作的直角三角形有且只有三个时,求直线l 的解析式.图X3-4-13。
鲁教版数学中考复习各知识点练习题分层设计三整式部分无答案
(整式部分)A级基础题1.计算(-x)2·x3的结果是( ) A.x5 B.-x5 C.x6 D.-x62.下列运算正确的是( ) A.3a-a=3 B.a2·a3=a5 C.a15÷a3=a5(a≠0)D.(a3)3=a63.下列运算正确的是( )A.a+a=a2 B.(-a3)2=a5C.3a·a2=a3 D.(2a)2=2a24.在下列代数式中,系数为3的单项式是( )A.xy2 B.x3+y3 C.x3y D.3xy5.下列计算正确的是( )A.(-p2q)3=-p5q3 B.(12a2b3c)÷(6ab2)=2abC.3m2÷(3m-1)=m-3m2 D.(x2-4x)x-1=x-46.下列等式一定成立的是( )A.a2+a3=a5 B.(a+b)2=a2+b2C.(2ab2)3=6a3b6 D.(x-a)(x-b)=x2-(a+b)x+ab7.计算(-5a3)2的结果是( ) A.-10a5 B.10a6 C.-25a5 D.25a68.将代数式x 2+4x -1化成(x +p )2+q 的形式为( )A .(x -2)2+3B .(x +2)2-4C .(x +2)2-5D .(x +2)2+49.计算: (1)(3+1)(3-1)=____________; (2)(山东德州)化简:6a 6÷3a 3=________.(3)(-2a )·3114a ⎛⎫- ⎪⎝⎭=________.10.化简:(a +b )2+a (a -2b ).B 级 中等题11.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( )A .-5x -1B .5x +1C .13x -1D .13x +112.如图,从边长为(a +4) cm 的正方形纸片中剪去一个边长为(a +1) cm 的正方形(a >0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ).A.(2a2+5a) cm2 B.(3a+15) cm2 C.(6a+9) cm2 D.(6a+15) cm2 13.先化简,再求值:(2a-b)2-b2,其中a=-2,b=3.14.先化简,再求值:(a+b)(a-b)+2a2,其中a=1,b= 2.15.先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=- 3.C级拔尖题16将代数式x2+6x+2化成(x+p)2+q的形式为( )A.(x-3)2+11 B.(x+3)2-7 C.(x+3)2-11 D.(x+2)2+4 17.若2x-y+|y+2|=0,求代数式[(x-y)2+(x+y)(x-y)]÷2x的值.选做题18.观察下列算式:①1×3-22=3-4=-1;②2×4-32=8-9=-1;③3×5-42=15-16=-1;④__________________________.……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.19.若3×9m×27m=311,则m的值为____________.。
2018中考数学一轮复习 习题分类汇编六(函数及其图象3)(无答案) 鲁教版
(函数及其图象3)19、函数y kx k =-与(0)ky k x=≠在同一坐标系中的大致图象是( )。
20、如图,在平面直角坐标系xoy 中,抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线2()y x h k =-+.所得抛物线与x 轴交于A B 、两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D .(1)求h k 、的值;(2)判断ACD △的形状,并说明理由;(3)在线段AC 上是AOM △与ABC △相似.若存在,求出点M 的坐标;若不存在,说明理由. 23题图21、(一次函数3+-=x y 的图象不经过...( )。
A .第一象限 B .第二象限 C .第三象限 D .第四象限x22、已知A (1,5)和B (m ,-2)是一次函数b kx y +=的图象与反比例函数xny =的图象的两个交点. (1)求m 的值和xny =函数的解析式; (2)在同一直角坐标系中画出这两个函数的大致图象,并根据图象直接写出使一次函数的值大于反比例函数的值的x 的取值范围.23、如图,已知点A (-3,0)和B (1,0),直线4-=kx y 经过点A 并且与y 轴交于点C . (1)求点C 的坐标; (2)求经过A 、B 、C 三点的抛物线的解析式和对称轴; (3)半径为1个单位长度的动圆⊙P 的圆心P 始终在抛物线的对称轴上.当点P 的纵坐标为5时,将⊙P 以每秒1个单位长度的速度在抛物线的对称轴上移动.那么,经过几秒,⊙P 与直线AC 开始有公共点?经过几秒后,⊙P 与直线AC 不再有公共点? 24、反比例函数y=xk与一次函数y=-kx+k 在同一直角坐标系中的图象大致是( )。
25、在函数x x y +-=31中,自变量x 的取值范围是 。
26、如图,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、B 的坐标分别为A (-4,0)、B (-4,2)。
2018中考数学一轮复习 习题分类汇编六(函数及其图象1)(无答案) 鲁教版
(函数及其图象1)10.函数y=的自变量x 的取值范围是 x≥7 .18.已知A ,B 两地相距200千米,一辆汽车以每小时60千米的速度从A 地匀速驶往B 地,到达B 地后不再行驶,设汽车行驶的时间为x 小时,汽车与B 地的距离为y 千米.(1)求y 与x 的函数关系,并写出自变量x 的取值范围;(2)当汽车行驶了2小时时,求汽车距B 地有多少千米?17.将油箱注满k 升油后,轿车可行驶的总路程S (单位:千米)与平均耗油量a (单位:升/千米)之间是反比例函数关系ak =S (k 是不等于0的常数).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S 与平均耗油量a 之间的函数解析式;(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?11.写出一个图象经过第一、二象限的正比例函数)0(≠=k kx y 的解析式: .12.抛物线322+-=x x y 的顶点坐标是 .1、抛物线542+-=x x y 的顶点坐标是_________。
2、函数2-=x y 中自变量x 的取值范围是( ) A. x ≥2 B. x>2 C. x<2 D. x ≤23、在平面直角坐标系中,A 点坐标为(0,4),C 点坐标为(10,0)。
(1)如图①,若直线AB//OC ,AB 上有一动点P ,当P 点坐标为__________时,有PO=PC ;(2)如图②若直线AB 与OC 不平行,在过点A 的直线4+-=x y 上是否存在点P ,使∠OPC=90°,若有这样的点P ,求出它的坐标。
若没有,请简要说明理由。
(3)若点P 在直线4+=kx y 上移动时,只存在一个点P 使∠OPC=90°,试求出此时4+=kx y 中k 的值是多少?1、二次函数21(4)52y x =-+的开口方向、对称轴、顶点坐标分别是( ) A.向上、直线x=4、(4,5) B.向上、直线x =-4、(-4,5)C.向上、直线x=4、(4,-5)D.向下、直线x=-4、(-4,5)2、已知反比例函数的图象经过点(2,3 ),则这个反比例函数的表达式为 .3、如图,直线1l 与2l 相交于点P ,1l 的函数表达式为y=2x+3,点P 的横坐标为-1,且2l 交y 轴于点A(0,1).求直线2l 的函数表达式.第3题 第4题4、如图,在直角坐标系中,O 为坐标原点,平行四边形0ABC 的边OA 在x 轴上.∠B=600,OA=6.OC=4,D 是BC 的中点,延长AD 交OC 的延长线于点E.(l )画出△ECD 关于边CD 所在直线为对称轴的对称图形△E 1CD ,并求出点E 1的坐标;(2)求经过C 、E 2、B 三点的抛物线的函数表达式;(3)请探求经过C 、E 1、B 三点的抛物线上是否存在点P .使以点P 、B 、C 为顶点的三角形与△ECD 相似,若存在这样的点P ,请求出点P 的坐标;若不存在这样的点P ,请说明理由.1、奥运火炬将在我云南省传递(传递路线为:昆明—丽江—香格里拉),某校学生小明在我省地图上设定的临沧市位置点的坐标为(–1,0),火炬传递起点昆明市位置点的坐标为(1,1).如图,请帮助小明确定出火炬传递终点香格里拉位置点的坐标为___________.2、某地在调整电价时,为了鼓励居民节约用电,采取了居民用电分段计价的办法:若每月每户用电量不超过80度,按0.48元∕度收费;用电量在80~180度(含180度)之间,超过80度的部分按0.56元∕度收费;用电量在180度以上,超过180度的部分按0.62元∕度收费.同时规定在实行调价的当月..收费中,用电量的13按原电价...0.42元∕度收费,用电量的23按调价后的分段计价....办法收费.以后各月的用电量全部按分段计价的办法收费.(1)已知在调价的当月..,小王家用电量按原电价部分所付的电费为12.60元,现请你。
超级资源(共24套75页)鲁教版中考数学复习(全套)考点专练汇总
超级资源(共24套75页)鲁教版中考数学复习(全套)考点专练汇总(一元二次方程部分)A 级 基础题1.一元二次方程x 2=2x 的根是( )A .x =2B .x =0C .x 1=0,x 2=2D .x 1=0,x 2=-22.方程x 2-4=0的根是( )A .x =2B .x =-2C .x 1=2,x 2=-2D .x =43.一元二次方程x (x -2)=2-x 的根是( )A .-1B .2C .1和2D .-1和24.已知1是关于x 的一元二次方程(m -1)x 2+x +1=0的一个根,则m 的值是( )A .1B .-1C .0D .无法确定5.若x 1,x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2的值是( )A .-2B .2C .3D .16.若一元二次方程x 2+2x +m =0有实数解,则m 的取值范围是( )A .m ≤-1B .m ≤1C .m ≤4 D.m ≤127.已知关于x 的一元二次方程x 2+2x -a =0有两个相等的实数根,则a 的值是( )A .1B .-1 C.14 D .-148.如果关于x 的一元二次方程x 2-6x +c =0(c 是常数)没有实根,那么c 的取值范围是__________.9.某商品原售价为289元,经过连续两次降价后售价为256元,设平均每次降价的分率为x, 可列方程为______________________________________________。
10.解方程: (x -3)2+4x (x -3)=0.B 级 中等题11.已知:x 1,x 2是一元二次方程x 2+2ax +b =0的两个根,且x 1+x 2=3,x 1x 2=1,则a ,b 的值分别是( )A .a =-3,b =1B .a =3,b =1C .a =-32,b =-1D .a =-32,b =112.关于x 的方程x 2+2kx +k -1=0的根的情况描述正确的是( )A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种13.若x 1,x 2是方程x 2+x -1=0的两个实数根,则x 21+x 22=__________.14.已知a ,b 是一元二次方程x 2-2x -1=0的两个实数根,则代数式(a -b )(a +b -2)+ab 的值等于________.15.某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种核桃要想平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?16.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN 最长可利用25 m),现在已备足可以砌50 m 长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m 2.C 级 拔尖题17.如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是( )A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠0选做题18.设α,β是一元二次方程x 2+3x -7=0的两个根,则α2+4α+β=________.19.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是________.(实数部分)A 级 基础题1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A .-1 B .0 C .1 D .22.-2的绝对值等于( ) A .2 B .-2 C.12 D .±23.-4的倒数的相反数是( ) A .-4 B .4 C .-14 D.144.-3的倒数是( ) A .3 B .-3 C.13 D .-135.无理数-3的相反数是( ) A .- 3 B. 3 C.13 D .-136.下列各式,运算结果为负数的是( )A .-(-2)-(-3)B .(-2)×(-3)C .(-2)2D .(-3)-37.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃.8.如果x -y <0,那么x 与y 的大小关系是x ____y (填“<”或“>”).9.已知一粒米的质量是0.000 021千克,这个数字用科学记数法表示为( ) A .21×10-4千克 B .2.1×10-6千克 C .2.1×10-5千克 D .2.1×10-4千克10.计算:|-5|-(2-3)0+6×+(-1)2.B级中等题11.实数a,b在数轴上的位置如图所示,下列式子错误的是( )A.a<b B.|a|>|b| C.-a<-b D.b-a>012.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒请你用科学记数法表示________________________秒.13.将1,2,3,6按下列方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(14,5)表示的两数之积是________.14.计算:|-3 3|-2cos30°-2-2+(3-π)0. 15.计算:-22+-113⎛⎫⎪⎝⎭-2cos60°+|-3|.C级拔尖题16.如图X1-1-2,矩形ABCD的顶点A,B在数轴上,CD=6,点A对应的数为-1,则点B所对应的数为__________.图X1-1-217.观察下列等式:第1个等式:a 1=11×3=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=13×5=12×1135⎛⎫- ⎪⎝⎭;第3个等式:a 3=15×7=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=17×9=12×1179⎛⎫- ⎪⎝⎭;…请解答下列问题:(1)按以上规律列出第5个等式:a 5=___________=______________;(2)用含有n 的代数式表示第n 个等式:a n =______________=____________(n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值. 选做题18.请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立: 1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a ⊕b =_______(用a ,b 的一个代数式表示).(代数式部分)A 级 基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a 万人,则女生约有( )A .(15+a )万人B .(15-a )万人C .15a 万人 D.15a万人2.若x =m -n ,y =m +n ,则xy 的值是( ) A .2 m B 。
2018中考数学一轮复习 各知识点练习题分层设计四(因式分解部分)(无答案) 鲁教版
(因式分解部分)A级基础题1.下列多项式能分解因式的是( )A.x2+y2 B.-x2-y2 C.-x2+2xy-y2 D.x2-xy+y22.下列式子变形是因式分解的是( )A.x2-5x+6=x(x-5)+6 B.x2-5x+6=(x-2)(x-3) C.(x-2)(x-3)=x2-5x+6 D.x2-5x+6=(x+2)(x+3)3.下列各因式分解正确的是( )A.-x2+(-2)2=(x-2)(x+2) B.x2+2x-1=(x-1)C.4x2-4x+1=(2x-1)2 D.x2-4x=x(x+2)(x-2)4.因式分解:a2-b2=______ 5.分解因式:m2-6m+9=______.6.分解因式:4x2-2x=________.7.分解因式:2x2-8=________.8.分解因式:2x2+4x+2=________.9.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)[如图X1-3-2(1)],把余下的部分拼成一个矩形如图,根据两个图形中阴影部分的面积相等,可以验证( )A.(a+b)2=a2+2ab+b2 B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b) D.(a+2b)(a-b)=a2+ab-2b210.若m2-n2=6且m-n=3,则m+n=________.B 级 中等题11.对于任意自然数n ,(n +11)2-n 2是否能被11整除,为什么?12.分解因式:a -6ab +9a b 2=____________.13.分解因式:ab 3-4ab =______________.14.分解因式:x 3-4x 2-12x =______________.15.分解因式(x -1)2-2(x -1)+1的结果是( )A .(x -1)(x -2)B .x 2C .(x +1)2D .(x -2)216.已知:x =3+1,y =3-1,求x 2-2xy +y 2x 2-y 2的值.C 级 拔尖题17.若a =2,a +b =3,则a 2+ab =________.18.设a 2+2a -1=0,b 4-2b 2-1=0,且1-ab 2≠0, 则52231ab b a a ⎛⎫+-+ ⎪⎝⎭=________.选做题19.分解因式:x2-y2-3x-3y=______________.20.已知a,b,c为△ABC的三边长,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.21.分解因式x3-4x=______________________.。
20182019学年度第一学期鲁教版本初中九年级的上册的数学单元总结复习测试卷试题第一章解直角三角形
2021--2021 学年度第一学期鲁教版九年级上册数学单元测试题第一章解直角三角形做卷时间 100 分钟总分值 120 分题号一二三总分得分班级姓名一.单项选择题〔共10 小题 , 每题 3 分,计 30 分〕1.三角形在方格纸中的位置如下图,那么tan α的值是〔〕A.B.C.D.2.如图,小明要测量河内小岛 B 到河边公路 l 的距离,在 A 点测得∠ BAD=30°,在 C 点测得∠ BCD=60°,又测得 AC=50米,那么小岛 B 到公路 l 的距离为〔〕米.A.25B.25 3C. 100 3D.25+25 333. 为测量如下图的上山坡道的倾斜度,小明测得图中所示的数据〔单位:米〕,那么该坡道倾斜角α的正切值是〔〕A.B.4C.D.4. 在中, 如果各边的长度同时扩大 2 倍, 那么锐角 A 的正弦值和余弦值 ______A. 都扩大 2 倍B. 都缩小 2 倍C.都不变D.不能确定5. 如图:某市在“旧城改造〞中方案在市内一块三角形空地上种植某种草皮来美化环境,这种草皮 每平方米售价为 a 元,那么购置这种草皮至少需要〔〕元。
A 、450aB 、225aC 、150aD 、300a6. 在△ ABC 中,∠ C=90°, AB=15,sinA=1,那么 BC 等于〔 〕3A .45B .5C .D .7. 如果α是锐角,那么 sin α+cos α的值是〔 〕A .小于 1B .等于 1C .大于 1D .任意实数8. 某水库大坝的横断面是梯形,坝内斜坡的坡度,坝外斜坡的坡度i=1 :1,那么两个坡角的和为〔 〕A .90°B .60°C .75°D .105°9. 在△ ABC 中,假设 tanA=1,sinB=3,你认为最确切的判断是〔 〕2A .△ ABC 是等腰三角形B .△ ABC 是等腰直角三角形C .△ ABC 是直角三角形D .△ ABC 是一般锐角三角形10.如图,两条宽度均为 40 m 的公路相交成α角,那么这两条公路在相交处的公共局部〔图中阴影局部〕的路面面积是〔 〕2222A . 〔m 〕B . 〔m 〕C .1600sina 〔m 〕D .600cos α〔m 〕二.填空题〔共 9 小题 , 每题 3 分,计 27 分〕1.一个钢球沿着坡比为i=1 :3的斜坡向上滚动了 5 米,此时钢球距地面的高度是 ___________米.2.假设的三边长满足关系式,那么的形状是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年鲁教版初三数学中考总复习练习题汇编目录一、实数 (1)二、代数式 (4)三、方程与方程组 (7)四、不等式与不等式组 (11)五、图形与坐标 (14)六、一次函数 (18)七、比例函数 (25)八、二次函数 (30)九、图形的认识 (36)十、图形与证明1 (40)十一、图形与证明2 (48)十二、图形与变换 (55)十三、统计 (61)十四、概率 (73)一、实数命题方向:实数这部分在初中数学中属于基础知识,课程标准对这部分知识点的要求都比较低,在各地中考中多以选择题、填空题的形式出现,也有少量计算题。
备考攻略:这部分的主要任务是:了解有理数、无理数、实数的概念;会比较实数的大小,知道实数与数轴上的点一一对应,会用科学记数法表示有理数;理解相反数和绝对值的概念及意义。
进一步,对上述知识理解程度的评价既可以用纯粹数学语言、符号的方式,呈现试题,也可以建立在应用知识解决实际问题的基础之上,即将考查的知识、方法融于不同的情境之中,通过解决问题而考查学生对相应知识、方法的理解情况。
了解乘方与开方的概念,并理解这两种运算之间的关系,了解平方根、算术平方根、立方根的概念,了解整数指数幂的意义和基本性质。
巩固练习:1.2的相反数是()A.2 B.﹣2 C.﹣D.2.﹣9的相反数是()A.﹣B.C.﹣9 D.93.﹣的绝对值是()A.﹣B.C.﹣D.4.﹣的倒数是()A.B.C.﹣D.﹣5.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103B.28×103C.2.8×104D.0.28×1056.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×1067.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106B.3×105C.3×106D.30×1048.在《关于促进城市南部地区加快发展第二阶段行动计划(2013﹣2015)》中,北京市提出了共计约3960亿元的投资计划,将3960用科学记数法表示应为()A.39.6×102 B.3.96×103C.3.96×104D.0.396×1049.首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元.将60 110 000 000用科学记数法表示应为()A.6.011×109B.60.11×109C.6.011×1010D.0.6011×101110.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为()A.66.6×107B.0.666×108C.6.66×108D.6.66×10711.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b12.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d13.计算:(3﹣π)0+4sin45°﹣+|1﹣|.14.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.15.计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣| 16.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.17.计算:(π﹣3)0+﹣2sin45°﹣()﹣1.18.计算:.二、代数式命题方向:这部分内容是代数学的最基础内容,是学习方程、函数等知识的必备知识。
因此是各地区中考的必考内容。
中考题的考查形式以选择题、填空题为主,有少量的解答题,也出现一些简单的计算题,一般是利用分式性质化简后求值或与乘法公式综合进行化简。
备考攻略:题目比较简单,解答这类题目要注意审题,读清楚每一部分式子内容,分清底数指数。
对于这部分知识解题要认真,一般不存在思维障碍,失误往往是由于不认真造成的。
例如因式分解时没有注意分解到不能再分解为止,分式化简求值时化简出现错误,等等。
另外,近几年中考题关于分式的化简求值题字母取值是开放性的不少见,这里实际上考查了分式有意义时字母的取值范围。
所以当自己选取字母值时,一定要使化简前和化简后的分式同时有意义才行。
巩固练习:1.百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,则这个和为.2.在右表中,我们把第i行第j列的数记为a i,j(其中i,j都是不大于5的正整数),对于表中的每个数a i,j,规定如下:当i≥j时,a i,j=1;当i<j时,a i,j=0.例如:当i=2,j=1时,a i,j=a2,1=1.按此规定,a1,3=;表中的25个数中,共有个1;计算a1,1•a i,1+a1,2•a i,2+a1,3•a i,3+a1,4•a i,4+a1,5•a i,5的值为.3.已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.4.已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.5.已知a2+2ab+b2=0,求代数式a(a+4b)﹣(a+2b)(a﹣2b)的值.6.如图中的四边形均为矩形,根据图形,写出一个正确的等式.7.分解因式:5x3﹣10x2+5x=.8.分解因式:ax4﹣9ay2=.9.分解因式:ab2﹣4ab+4a=.10.分解因式:mn2+6mn+9m=.11.分解因式:a3﹣10a2+25a=.12.如果分式有意义,那么x的取值范围是.13.若分式的值为0,则x的值等于.14.如果a+b=2,那么代数(a﹣)•的值是()A.2 B.﹣2 C.D.﹣15.已知,求代数式的值.三、方程与方程组命题方向:本部分知识是中考的必考内容。
这部分知识在中考题中占有重要地位。
题型一般以解答题为主,也有少量的选择题和填空题,由于方程和方程组在生立、生活实际中有广泛的应用,所以应用问题是中考的热点问题。
备考攻略:解应用问题的关键是分析题中的数量关系,找出等量关系列出方程,对于方程的解要注意检验其合理性,对不合题意的解要舍去。
巩固练习:1.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.2.关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.3.关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=,b=.4.已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.5.已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.6.若关于x的方程x2﹣2x﹣m=0有两个相等的实数根,则m的值是.7.为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25 000辆,租赁点600个.预计到2015年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个?8.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.9.列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿化面积.10.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.11.列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶多少千米?四、不等式与不等式组命题方向:本部分知识是初中阶段的重点知识,也是各地中考的必考内容之一。
考查的题型以解答题为主,也有少量的选择题及填空题。
考查内容主要是不等式的基本性质、一元一次不等式与一元一次不等式组的解法、不等式(组)解集的数轴表示、不等式组解集的确定办法以及一元一次不等式的应用、不等式的知识与其它数学知识的综合。
备考攻略:解这部分题的关键是掌握不等式基本性质三,同时解应用问题卓越要分析题中的数量关系,正确列出不等式求解。
巩固练习:1.不等式组250112xx-<⎧⎪⎨+⎪⎩≥所有整数解的和是.2.用不等式表示“3与-1的差不小于x与2的和的4倍.3. 某次环保知识竞赛试卷有20道题。