江苏省最新高考数学二轮复习专题三解析几何3.3大题考法_椭圆达标训练含解析

合集下载

江苏省天一中学届高三数学二轮复习解析几何应用题

江苏省天一中学届高三数学二轮复习解析几何应用题

06
解析几何应用题的重要性和发展趋势
未来展望:未来的解析几何应用题将更加注重创新和探究,需要学生具备更强的数学素养和创新能力。
重要性:解析几何应用题是数学中的重要题型,能够培养学生的逻辑思维和问题解决能力。
发展趋势:随着科技的进步和数学教育的改革,解析几何应用题将更加注重实际应用和跨学科的综合问题。
特点:解析几何应用题通常涉及较为复杂的几何图形和数量关系,需要学生具备较高的数学建模能力和思维逻辑能力。同时,这类题目通常与实际生活问题密切相关,能够帮助学生理解数学在解决实际问题中的应用。
解析几何应用题的解题思路
理解题意:仔细阅读题目,明确题目要求和条件
建立模型:根据题意,建立相应的数学模型,将实际问题转化为数学问题
注意事项:注意定值问题的特点和难点,结合题目要求选择合适的解题方法
04
读题审题,理解题意
仔细阅读题目,确保理解题意
找出关键信息,明确解题方向
结合图形,将文字信息转化为数学语言
避免因理解错误而导致的解题失误
建立坐标系,确定变量和参数
单击此处添加标题
单击此处添加标题
单击此处添加标题
单击此处添加标题
运用解析几何知识解决问题
运用知识:运用解析几何的知识,如直线、圆、椭圆、双曲线等,进行计算和分析。
理解问题:仔细阅读题目,明确问题的要求和条件,理解问题的本质。
建立模型:根据问题的描述,选择合适的坐标系,建立数学模型,将问题转化为数学表达式。
求解问题:通过计算和推理,得出问题的解,并给出合理的解释和结论。
解析几何知识运用:运用解析几何的知识,对数学模型进行分析和求解
结论检验:对求解结果进行检验,确保符合实际情况
解析几何应用题在高考中的地位和作用

高考数学江苏专版三维二轮专题复习教学案:专题三 解析几何 Word版含答案

高考数学江苏专版三维二轮专题复习教学案:专题三 解析几何 Word版含答案

江苏新高考高考对本章内容的考查多以“两小一大”的形式出现,小题多考查双曲线、抛物线、圆的方程与性质,而大题主要考查直线与圆(如2013年、2016年)、直线与椭圆(如2014年、2015年、2017年)的位置关系、弦长问题及范围问题等.第1课时解析几何中的基本问题(基础课)[常考题型突破]1.两条直线平行与垂直的判定若两条不重合的直线l1,l2的斜率k1,k2存在,则l1∥l2⇔k1=k2,l1⊥l2⇔k1k2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在.2.两个距离公式(1)点(x0,y0)到直线l:Ax+By+C=0的距离公式d=|Ax0+By0+C|A2+B2.(2)两平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离d=|C1-C2|A2+B2.[题组练透]1.已知点P(3,2)与点Q(1,4)关于直线l对称,则直线l的方程为____________.解析:由题意知直线l与直线PQ垂直,所以k l=-1k PQ=1.又直线l经过PQ的中点(2,3),所以直线l的方程为y-3=x-2,即x-y+1=0.答案:x-y+1=02.(2017·南京、盐城二模)在平面直角坐标系xOy中,直线l1:kx-y+2=0与直线l2:x+ky-2=0相交于点P,则当实数k变化时,点P到直线x-y-4=0的距离的最大值为__________.解析:由题意,kl 1=k ,kl 2=-1k ,则kl 1·kl 2=k ·⎝⎛⎭⎫-1k =-1(k =0时,两条直线也相互垂直),并且两条直线分别经过定点:M (0,2),N (2,0).∴两条直线的交点在以MN 为直径的圆上.并且k MN =-1,可得MN 与直线x -y -4=0垂直.∴点M 到直线x -y -4=0的距离d =|0-2-4|2=32为最大值.答案:3 23.(2017·苏州考前模拟)在平面直角坐标系中,已知两点P (0,1),Q (3,6),在直线y =x 上取两点M ,N ,使得MN =2a (其中a >0为定值),则当PM +NQ 取得最小值时,点N 的坐标为________.解析:(1)设点A (1,0),B (1+a ,a ),则AB ∥MN ,且AB =MN ,所以四边形ABNM 为平行四边形,所以AM =BN ,又因为点P 与A 关于直线y =x 对称,所以PM =AM ,所以PM +NQ =AM +NQ =BN +NQ ,所以当B ,N ,Q 三点共线时,PM +NQ 取最小值为BQ =(a -2)2+(a -6)2.此时BQ 方程为(a -6)x -(a -2)y +3a +6=0,与直线y =x 联立解得N ⎝ ⎛⎭⎪⎫3a +64,3a +64. (2)若设A (1,0),B (1-a ,-a ),同理可得PM +NQ 最小值为(a +2)2+(a +6)2,因为a >0,所以(a +2)2+(a +6)2>(a -2)2+(a -6)2,不合题意.综上,PM +NQ 取得最小值时点N 的坐标为⎝ ⎛⎭⎪⎫3a +64,3a +64.答案:⎝⎛⎭⎫3a +64,3a +64 [方法归纳]求直线方程的两种方法[必备知识]1.圆的标准方程当圆心为(a ,b ),半径为r 时,其标准方程为(x -a )2+(y -b )2=r 2,特别地,当圆心在原点时,方程为x 2+y 2=r 2.2.圆的一般方程x 2+y 2+Dx +Ey +F =0,其中D 2+E 2-4F >0,表示以⎝⎛⎭⎫-D 2,-E2为圆心,D 2+E 2-4F 2为半径的圆.[题组练透]1.(2017·南通一模)已知圆C 过点(2,3),且与直线x -3y +3=0相切于点(0,3),则圆C 的方程为_______________.解析:设圆心为(a ,b ), 则⎩⎨⎧b -3a·33=-1,(a -2)2+()b -32=a 2+(b -3)2,解得a =1,b =0,r =2.即所求圆的方程为(x -1)2+y 2=4. 答案:(x -1)2+y 2=42.(2016·天津高考)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________________. 解析:因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =2a 5=455,解得a =2,所以圆C 的半径r =|CM |=4+5=3,所以圆C 的方程为(x -2)2+y 2=9. 答案:(x -2)2+y 2=93.与圆C :x 2+y 2-2x +4y =0外切于原点,且半径为25的圆的标准方程为_______. 解析:由题意,所求圆的圆心在直线y =-2x 上,所以可设所求圆的圆心为(a ,-2a )(a <0),又因为所求圆与圆C :x 2+y 2-2x +4y =0外切于原点,且半径为25,所以a2+(-2a)2=25,可得a2=4,解得a=-2或a=2(舍去).所以所求圆的标准方程为(x +2)2+(y-4)2=20.答案:(x+2)2+(y-4)2=20[方法归纳]1.过圆O∶x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=r2.2.过圆O∶x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点为A,B,则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.3.判断直线与圆的位置关系问题的两种方法(1)代数法:将圆的方程和直线的方程联立起来组成方程组,利用判别式Δ来判断位置关系:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.(2)几何法:把圆心到直线的距离d和半径r的大小加以比较:d<r⇔相交;d=r⇔相切;d>r⇔相离.4.判断两圆位置关系时常用几何法即通过判断两圆心距离O1O2与两圆半径R,r的关系来判断两圆位置关系.(1)外离:O1O2>R+r;(2)外切:O1O2=R+r;(3)相交:R-r<O1O2<R+r;(4)内切:O1O2=R-r;(5)内含:0≤O1O2<R-r.[提醒]利用两圆组成的方程组解的个数,不能判断内切与外切、外离与内含.[题组练透]1.(2017·苏锡常镇二模)已知直线l:mx+y-2m-1=0,圆C:x2+y2-2x-4y=0,当直线l被圆C所截得的弦长最短时,实数m=________.解析:由题意得,C(1,2),直线l:m(x-2)+y-1=0恒过定点A(2,1),当直线l被圆C所截得的弦长最短时,直线l ⊥CA ,因为直线l 的斜率为-m ,直线CA 的斜率为1-22-1=-1,所以-m ×(-1)=-1,即m =-1.答案:-12.(2016·全国卷Ⅰ)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.解析:圆C :x 2+y 2-2ay -2=0化为标准方程为x 2+(y -a )2=a 2+2,所以圆心C (0,a ),半径r =a 2+2,因为|AB |=23,点C 到直线y =x +2a ,即x -y +2a =0的距离d =|0-a +2a |2=|a |2,由勾股定理得⎝⎛⎭⎫2322+⎝⎛⎭⎫|a |22=a 2+2,解得a 2=2,所以r =2,所以圆C 的面积为π×22=4π. 答案:4π3.若圆(x -2a )2+(y -a -3)2=4上总存在两个点到原点的距离为1,则实数a 的取值范围是________.解析:由题意,两圆(x -2a )2+(y -a -3)2=4与x 2+y 2=1相交于相异两点,所以1<4a 2+(a +3)2<3,即⎩⎪⎨⎪⎧5a 2+6a +8>0,5a 2+6a <0,解得-65<a <0.答案:⎝⎛⎭⎫-65,0 4.(2017·扬州考前调研)已知圆C :x 2+y 2-2ax -2y +2=0(a 为常数)与直线y =x 相交于A ,B 两点,若∠ACB =π3,则实数a =________.解析:因为圆C 的标准方程为(x -a )2+(y -1)2=a 2-1,所以C (a,1),r =a 2-1,因为圆C 与直线y =x 相交于A ,B 两点,且∠ACB =π3,所以32r =|a -1|2,且a 2-1>0,解得a =-5.答案:-55.(2017·江苏高考)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上.若PA ―→·PB ―→≤20,则点P 的横坐标的取值范围是________.解析:设P (x ,y ),则PA ―→·PB ―→=(-12-x ,-y )·(-x ,6-y )=x (x +12)+y (y -6)≤20.又x 2+y 2=50,所以2x -y +5≤0,所以点P 在直线2x -y +5=0的上方(包括直线上). 又点P 在圆x 2+y 2=50上,由⎩⎪⎨⎪⎧y =2x +5,x 2+y 2=50,解得x =-5或x =1, 结合图象, 可得-52≤x ≤1,故点P 的横坐标的取值范围是[-52,1]. 答案:[-52,1] [方法归纳]1.解决直线与圆、圆与圆位置关系问题的方法(1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.(2)圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题.2.求弦长问题的两种方法(1)利用半径r ,弦心距d ,弦长l 的一半构成直角三角形,结合勾股定理d 2+⎝⎛⎭⎫l 22=r 2求解;(2)若斜率为k 的直线l 与圆C 交于A (x 1,y 1),B (x 2,y 2)两点,则1.椭圆、双曲线中,a ,b ,c 之间的关系 (1)在椭圆中:a 2=b 2+c 2,离心率为e =ca =1-⎝⎛⎭⎫b a 2;(2)在双曲线中:c 2=a 2+b 2,离心率为e =ca =1+⎝⎛⎭⎫b a 2.2.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x .注意离心率e 与渐近线的斜率的关系.[题组练透]1.(2017·南京三模)在平面直角坐标系xOy 中,双曲线x 22m 2-y 23m =1的焦距为6,则所有满足条件的实数m 构成的集合是__________.解析:由题意得,2m 2+3m =⎝⎛⎭⎫622,所以2m 2+3m -9=0,解得m =32或-3,因为x 22m 2-y 23m =1是双曲线的方程,所以m >0,所以m =32.所以实数m 构成的集合是⎩⎨⎧⎭⎬⎫32. 答案:⎩⎨⎧⎭⎬⎫322.(2017·苏北四市期中)如图,在平面直角坐标系xOy 中,已知A ,B1,B 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右、下、上顶点,F 是椭圆C 的右焦点.若B 2F ⊥AB 1,则椭圆C 的离心率是________.解析:由题意得,A (a,0),B 1(0,-b ),B 2(0,b ),F (c,0),所以B 2F ―→=(c ,-b ),AB 1―→=(-a ,-b ),因为B 2F ⊥AB 1,所以B 2F ―→·AB 1―→=0,即b 2=ac ,所以c 2+ac -a 2=0,e 2+e -1=0,又椭圆的离心率e ∈(0,1),所以e =5-12.答案:5-123.(2017·江苏高考)在平面直角坐标系xOy 中,双曲线x 23-y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1,F 2,则四边形F 1PF 2Q 的面积是________.解析:由题意得,双曲线的右准线x =32与两条渐近线y =±33x 的交点坐标为⎝⎛⎭⎫32,±32.不妨设双曲线的左、右焦点分别为F 1,F 2, 则F 1(-2,0),F 2(2,0), 故四边形F 1PF 2Q 的面积是 12F 1F 2·PQ =12×4×3=2 3. 答案:2 34.(2017·南通三模)在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2=1(a >0)经过抛物线y 2=8x 的焦点,则该双曲线的离心率为________.解析:因为双曲线x 2a 2-y 2=1(a >0)经过抛物线y 2=8x 的焦点坐标(2,0),所以a =2,在双曲线中,b =1,c =a 2+b 2=5,所以双曲线的离心率是e =c a =52.答案:525.(2016·山东高考)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.解析:如图,由题意知|AB |=2b 2a ,|BC |=2c .又2|AB |=3|BC |,∴2×2b 2a=3×2c ,即2b 2=3ac ,∴2(c 2-a 2)=3ac ,两边同除以a 2并整理得2e 2-3e -2=0,解得e =2(负值舍去). 答案:26.(2017·南京考前模拟)已知椭圆C :mx 2+y 2=1(0<m <1),直线l :y =x +1,若椭圆C 上总存在不同的两点A 与B 关于直线l 对称,则椭圆C 的离心率e 的取值范围为________.解析:设A (x 1,y 1),B (x 2,y 2),AB 的中点P (x 0,y 0),∵A ,B 在椭圆C 上,∴⎩⎪⎨⎪⎧mx 21+y 21=1,mx 22+y 22=1,两式相减,整理得m (x 1+x 2)y 1+y 2=-y 1-y 2x 1-x 2,即-mx 0y 0=k AB ,故k AB ·k OP =-m ,又∵k AB =-1,∴k OP =m ,∴直线OP 的方程为y =mx ,联立方程⎩⎪⎨⎪⎧y =mx ,y =x +1,得P ⎝ ⎛⎭⎪⎫1m -1,m m -1,由点P 在椭圆内,∴m ⎝ ⎛⎭⎪⎫1m -12+⎝ ⎛⎭⎪⎫m m -12<1,解得0<m <13,∴离心率e =1-b 2a2=1-m ∈⎝⎛⎭⎫63,1. 答案:⎝⎛⎭⎫63,1[方法归纳][A 组——抓牢中档小题]1.(2017·苏州期末)在平面直角坐标系xOy 中,已知过点M (1,1)的直线l 与圆(x +1)2+(y -2)2=5相切,且与直线ax +y -1=0垂直,则实数a =________.解析:因为点M (1,1)在圆(x +1)2+(y -2)2=5上,圆心与点M 的连线的斜率为2-1-1-1=-12,所以切线l 的斜率为2,又因为切线l 与直线ax +y -1=0垂直,所以a =12. 答案:122.(2017·南通、泰州一调)在平面直角坐标系xOy 中,直线2x +y =0为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线,则该双曲线的离心率为__________.解析:因为直线2x +y =0为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线,所以ba =2,所以e =1+b 2a2= 5. 答案: 53.(2017·无锡期末)设P 为有公共焦点F 1,F 2的椭圆C 1与双曲线C 2的一个交点,且PF 1⊥PF 2,椭圆C 1的离心率为e 1,双曲线C 2的离心率为e 2,若3e 1=e 2,则e 1=________.解析:设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,由定义知,不妨设P 在第一象限,则⎩⎪⎨⎪⎧PF 1+PF 2=2a 1,PF 1-PF 2=2a 2, 所以PF 1=a 1+a 2,PF 2=a 1-a 2, 因为PF 1⊥PF 2,所以PF 21+PF 22=F 1F 22,即(a 1+a 2)2+(a 1-a 2)2=4c 2, 整理得1e 21+1e 22=2,又因为3e 1=e 2,所以e 1=53. 答案:534.(2017·南京考前模拟)在平面直角坐标系xOy 中,M 为圆C :(x -a )2+(y -1)2=169上任意一点,N 为直线l :ax +y +3=0上任意一点,若以M 为圆心,MN 为半径的圆与圆C 至多有一个公共点,则正数a 的最小值为_________.解析:因为圆M 与圆C 至多有一个公共点, 所以MC ≤⎪⎪⎪⎪MN -43, 即⎪⎪⎪⎪MN -43≥43,解得MN ≥83, 又MN 的最小值为a 2+4a 2+1-43, 所以a 2+4a 2+1-43≥83, 解得a ≥22,所以正数a 的最小值为2 2. 答案:2 25.以双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 为圆心,a 为半径的圆恰好与双曲线的两条渐近线相切,则该双曲线的离心率为________.解析:由题设知,双曲线的渐近线方程为y =±b a x ,圆的方程为(x -c )2+y 2=a 2,因为渐近线与圆相切,故由点到直线的距离公式得bc a 2+b2=a ,则a =b ,c =2a ,故离心率e = 2.答案: 26.(2017·南京学情调研)在平面直角坐标系xOy 中,若直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=16相交于A ,B 两点,且△ABC 为直角三角形,则实数a 的值是________.解析:由题意知△ABC 为等腰直角三角形,且AC =BC =4,AB =42, ∴圆心C 到直线ax +y -2=0的距离d =42-(22)2=22,∴|a +a -2|a 2+1=22,解得a =-1.答案:-17.(2017·泰州中学月考)直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若MN ≥23,则k 的取值范围是________.解析:由圆的方程知圆心(2,3),半径r =2, ∵圆心到直线y =kx +3的距离d =|2k |k 2+1,∴MN =2r 2-d 2=24-4k 2k 2+1≥23, 解得4k 2≤k 2+1,即-33≤k ≤33. 答案:⎣⎡⎦⎤-33,33 8.已知点P 是圆C :x 2+y 2+4x -6y -3=0上的一点,直线l :3x -4y -5=0.若点P 到直线l 的距离为2,则符合题意的点P 有________个.解析:由题意知圆C 的标准方程为(x +2)2+(y -3)2=16,所以圆心(-2,3)到直线l 的距离d =|-6-12-5|5=235∈(4,6),故满足题意的点P 有2个.答案:29.若一个椭圆长轴的长度、短轴的长度和焦距依次成等差数列,则该椭圆的离心率为________.解析:由题意知2a +2c =2(2b ),即a +c =2b ,又c 2=a 2-b 2,消去b 整理得5c 2=3a 2-2ac ,即5e 2+2e -3=0,所以e =35或e =-1(舍去).答案:3510.(2017·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________.解析:双曲线的右顶点为A (a,0),一条渐近线的方程为y =ba x ,即bx -ay =0,则圆心A到此渐近线的距离d =|ba -a ×0|b 2+a 2=abc .又因为∠MAN =60°,圆的半径为b ,所以b ·sin 60°=ab c ,即3b 2=ab c ,所以e =23=233.答案:23311.若抛物线y 2=8ax (a >0)的准线经过双曲线x 2a 2-y 2=1的一个焦点,则椭圆x 2a 2+y 2=1的离心率e =________.解析:抛物线y 2=8ax (a >0)的准线方程为x =-2a ,双曲线x 2a2-y 2=1的焦点坐标为(±a 2+1,0),则2a =a 2+1,得a 2=13,所以椭圆的离心率e =1-a 2=63. 答案:6312.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则PM +PF 1的最大值为________.解析:由椭圆定义知PM +PF 1=PM +2×5-PF 2, 而PM -PF 2≤MF 2=5,所以PM +PF 1≤2×5+5=15. 答案:1513.(2017·苏州张家港暨阳中学月考)已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -a +4)2=1.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得∠APB =60°,则实数a 的取值范围为______________.解析:如图,圆O 的半径为1,圆M 上存在点P ,过点P 作圆O的两条切线,切点为A ,B ,使得∠APB =60°,则∠APO =30°,在Rt △PAO 中,PO =2,又圆M 的半径等于1,圆心坐标M (a ,a -4), ∴PO min =MO -1,PO max =MO +1,∵MO =a 2+(a -4)2,∴由a 2+(a -4)2-1≤2≤a 2+(a -4)2+1,解得2-22≤a ≤2+22. 答案:⎣⎡⎦⎤2-22,2+22 14.在平面直角坐标系xOy 中,若直线l :4x -3y -2=0上至少存在一点,使得以该点为圆心、1为半径的圆与以(4,0)为圆心,R 为半径的圆C 有公共点,则R 的最小值是________.解析:由题意,直线4x -3y -2=0上至少存在一点A ,以该点为圆心,1为半径的圆与圆C 有公共点,即AC min =1+R ,因为AC min 即为点C 到直线4x -3y -2=0的距离,为145,所以R 的最小值是95.答案:95[B 组——力争难度小题]1.(2017·南京考前模拟)在平面直角坐标系xOy 中,M 为直线x =3上一动点,以M 为圆心的圆记为圆M ,若圆M 截x 轴所得的弦长恒为4.过点O 作圆M 的一条切线,切点为P ,则点P 到直线2x +y -10=0的距离的最大值为________.解析:设M (3,t ),P (x 0,y 0), 因为OP ⊥PM ,所以OP ―→·PM ―→=0,可得x 20+y 20-3x 0-ty 0=0,①又圆M 截x 轴所得的弦长为4,所以4+t 2=(x 0-3)2+(y 0-t )2,整理得x 20+y 20-6x 0-2ty 0+5=0,② 由①②得x 20+y 20=5,即点P 在圆x 2+y 2=5上,于是P 到直线2x +y -10=0距离的最大值为105+5=3 5. 答案:3 52.在平面直角坐标系xOy 中,已知过原点O 的动直线l 与圆C :x 2+y 2-6x +5=0相交于不同的两点A ,B ,若点A 恰为线段OB 的中点,则圆心C 到直线l 的距离为________.解析:先将圆C 化为标准方程得(x -3)2+y 2=4,则圆心C (3,0),半径r =2,设过原点O 的动直线l 的方程为y =kx ,因为点A 恰为线段OB 的中点,设A (a ,ka ),B (2a,2ka ),得(1+k 2)a 2-6a +5=0. ①取AB 的中点D ,则D ⎝⎛⎭⎫32a ,32ka ,如图,连结CD ,则CD ⊥AB ,32ka 32a -3=-1k . ②联立①②,解得a =54,k =±155,则D ⎝⎛⎭⎫158,±3158,CD =364,即圆心C 到直线l 的距离为364.答案:3643.(2017·山东高考)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点.若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________.解析:设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知|AF |=y 1+p 2,|BF |=y 2+p 2,|OF |=p2,由|AF |+|BF |=y 1+p 2+y 2+p2=y 1+y 2+p =4|OF |=2p ,得y 1+y 2=p .联立⎩⎪⎨⎪⎧x 2a 2-y 2b 2=1,x 2=2py 消去x ,得a 2y 2-2pb 2y +a 2b 2=0,所以y 1+y 2=2pb 2a 2,所以2pb 2a 2=p ,即b 2a 2=12,故b a =22, 所以双曲线的渐近线方程为y =±22x .答案:y =±22x4.已知椭圆x 2a 2+y 2b 2=1(a >b >0),点A ,B 1,B 2,F 依次为其左顶点、下顶点、上顶点和右焦点,若直线AB 2与直线B 1F 的交点恰在椭圆的右准线上,则椭圆的离心率为________.解析:如图,A (-a,0),B 1(0,-b ),B 2(0,b ),F (c,0), 设点M⎝⎛⎭⎫a 2c ,y M . 由k AB 2=k AM ,得b a =y Ma2c +a ,所以y M =b ⎝⎛⎭⎫a c +1.由k FB 1=k FM ,得b c =y Ma2c -c,所以y M =b c⎝⎛⎭⎫a2c -c . 从而b ⎝⎛⎭⎫a c +1=b c ⎝⎛⎭⎫a 2c -c ,整理得2e 2+e -1=0.解得e =12. 答案:12第2课时直线与圆(能力课)[常考题型突破][例1] (2017·苏北四市期中)如图,在平面直角坐标系xOy 中,已知圆C :x 2+y 2-4x =0及点A (-1,0),B (1,2).(1)若直线l 平行于AB ,与圆C 相交于M ,N 两点,MN =AB ,求直线l 的方程;(2)在圆C 上是否存在点P ,使得PA 2+PB 2=12?若存在,求点P 的个数;若不存在,说明理由.[解] (1)因为圆C 的标准方程为(x -2)2+y 2=4,所以圆心C (2,0),半径为2. 因为l ∥AB ,A (-1,0),B (1,2),所以直线l 的斜率为2-01-(-1)=1,设直线l 的方程为x -y +m =0,则圆心C 到直线l 的距离为d =|2-0+m |2=|2+m |2.因为MN =AB =22+22=22,而CM 2=d 2+⎝⎛⎭⎫MN 22,所以4=(2+m )22+2,解得m=0或m=-4,故直线l的方程为x-y=0或x-y-4=0.(2)假设圆C上存在点P,设P(x,y),则(x-2)2+y2=4,PA2+PB2=(x+1)2+(y-0)2+(x-1)2+(y-2)2=12,即x2+y2-2y-3=0,即x2+(y-1)2=4,因为|2-2|< (2-0)2+(0-1)2<2+2,所以圆(x-2)2+y2=4与圆x2+(y-1)2=4相交,所以点P的个数为2.[方法归纳]如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.解:(1)由题设,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C的切线方程为y=kx+3,由题意,得|3k +1|k 2+1=1,解得k =0或k =-34,故所求切线方程为y =3或3x +4y -12=0. (2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为MA =2MO , 所以x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0, 即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤CD ≤2+1,即1≤a 2+(2a -3)2≤3.由5a 2-12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围为⎣⎡⎦⎤0,125.[例2] =0,点P 在直线l 上,过P 点作圆M 的切线PA ,PB ,切点为A ,B .(1)若∠APB =60°,求点P 的坐标;(2)若P 点的坐标为(2,1),过P 作直线与圆M 交于C ,D 两点,当CD =2时,求直线CD 的方程;(3)求证:经过A ,P ,M 三点的圆必过定点,并求出所有定点的坐标.[解] (1)设P (2m ,m ),因为∠APB =60°,AM =1,所以MP =2,所以(2m )2+(m -2)2=4,解得m =0或m =45,故所求点P 的坐标为P (0,0)或P ⎝⎛⎭⎫85,45.(2)易知直线CD 的斜率存在,可设直线CD 的方程为y -1=k (x -2),由题知圆心M 到直线CD 的距离为22, 所以22=|-2k -1|1+k 2,解得k =-1或k =-17,故所求直线CD 的方程为x +y -3=0或x +7y -9=0. (3)证明:设P (2m ,m ),MP 的中点Q ⎝⎛⎭⎫m ,m2+1, 因为PA 是圆M 的切线,所以经过A ,P ,M 三点的圆是以Q 为圆心,以MQ 为半径的圆, 故其方程为(x -m )2+⎝⎛⎭⎫y -m 2-12=m 2+⎝⎛⎭⎫m2-12, 化简得x 2+y 2-2y -m (2x +y -2)=0,此式是关于m 的恒等式,故⎩⎪⎨⎪⎧ x 2+y 2-2y =0,2x +y -2=0,解得⎩⎪⎨⎪⎧x =0,y =2或⎩⎨⎧x =45,y =25.所以经过A ,P ,M 三点的圆必过定点(0,2)或⎝⎛⎭⎫45,25. [方法归纳]1.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当OP =OM 时,求证:△POM 的面积为定值. 解:(1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM ―→=(x ,y -4),MP ―→=(2-x,2-y ). 由题设知CM ―→·MP ―→=0, 故x (2-x )+(y -4)(2-y )=0, 即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)证明:由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆. 由于OP =OM ,故O 在线段PM 的垂直平分线上, 又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为y =-13x +83.又OM =OP =22,O 到l 的距离d 为4105,所以PM =2OP 2-d 2=4105, 所以△POM 的面积为S △POM =12PM ·d =165.2.已知圆C :x 2+y 2=9,点A (-5,0),直线l :x -2y =0.(1)求与圆C 相切,且与直线l 垂直的直线方程;(2)在直线OA 上(O 为坐标原点),存在定点B (不同于点A )满足:对于圆C 上任一点P ,都有PBPA 为一常数,试求所有满足条件的点B 的坐标.解:(1)设所求直线方程为y =-2x +b , 即2x +y -b =0. 因为直线与圆C 相切, 所以|-b |22+12=3,解得b =±3 5.所以所求直线方程为2x +y ±35=0. (2)法一:假设存在这样的点B (t,0).当点P 为圆C 与x 轴的左交点(-3,0)时,PB PA =|t +3|2;当点P 为圆C 与x 轴的右交点(3,0)时,PB PA =|t -3|8.依题意,|t +3|2=|t -3|8,解得t =-5(舍去)或t =-95.下面证明点B ⎝⎛⎭⎫-95,0对于圆C 上任一点P ,都有PBPA 为一常数. 设P (x ,y ),则y 2=9-x 2,所以PB 2PA 2=⎝⎛⎭⎫x +952+y 2(x +5)2+y 2=x 2+185x +9-x 2+8125x 2+10x +25+9-x 2=1825·(5x +17)2·(5x +17)=925.从而PB PA =35为常数.法二:假设存在这样的点B (t,0),使得PBPA 为常数λ,则PB 2=λ2PA 2,所以(x -t )2+y 2=λ2[(x +5)2+y 2],将y 2=9-x 2代入,得x 2-2xt +t 2+9-x 2=λ2(x 2+10x +25+9-x 2), 即2(5λ2+t )x +34λ2-t 2-9=0对x ∈[-3,3]恒成立,所以⎩⎪⎨⎪⎧5λ2+t =0,34λ2-t 2-9=0.解得⎩⎨⎧λ=35,t =-95或⎩⎪⎨⎪⎧λ=1,t =-5(舍去). 故存在点B ⎝⎛⎭⎫-95,0对于圆C 上任一点P ,都有PB PA 为常数35.[例3] (2016·江苏高考)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程; (3)设点T (t,0)满足:存在圆M上的两点P 和Q ,使得TA ―→+TP ―→=TQ ―→,求实数t 的取值范围.[解] 圆M 的标准方程为(x -6)2+(y -7)2=25,所以圆心M (6,7),半径为5.(1)由圆心N 在直线x =6上,可设N (6,y 0).因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1.因此,圆N 的标准方程为(x -6)2+(y -1)2=1.(2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2. 设直线l 的方程为y =2x +m ,即2x -y +m =0,则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5. 因为BC =OA =22+42=25,而MC 2=d 2+⎝⎛⎭⎫BC 22,所以25=(m +5)25+5,解得m =5或m =-15. 故直线l 的方程为2x -y +5=0或2x -y -15=0.(3)设P (x 1,y 1),Q (x 2,y 2).因为A (2,4),T (t,0),TA ―→+TP ―→=TQ ―→,所以⎩⎪⎨⎪⎧x 2=x 1+2-t ,y 2=y 1+4.① 因为点Q 在圆M 上,所以(x 2-6)2+(y 2-7)2=25.②将①代入②,得(x 1-t -4)2+(y 1-3)2=25.于是点P (x 1,y 1)既在圆M 上,又在圆[x -(t +4)]2+(y -3)2=25上,从而圆(x -6)2+(y -7)2=25与圆[x -(t +4)]2+(y -3)2=25有公共点,所以5-5≤ [(t +4)-6]2+(3-7)2≤5+5,解得2-221≤t ≤2+221.因此,实数t 的取值范围是[2-221,2+221 ].[方法归纳](2017·镇江调研)已知圆O :x 2+y 2=4交y 轴正半轴于点A ,点B ,C 是圆O 上异于点A 的两个动点.(1)若B 与A 关于原点O 对称,直线AC 和直线BC 分别交直线y =4于点M ,N ,求线段MN 长度的最小值;(2)若直线AC 和直线AB 的斜率之积为1,求证:直线BC 与x 轴垂直.解:(1)由题意,直线AC 和直线BC 的斜率一定存在且不为0,且A (0,2),B (0,-2),AC ⊥BC .设直线AC 的斜率为k ,则直线BC 的斜率为-1k ,所以直线AC 的方程为y =kx +2,直线BC 的方程为y =-1k x -2,故它们与直线y =4的交点分别为M ⎝⎛⎭⎫2k ,4,N (-6k,4).所以MN =⎪⎪⎪⎪6k +2k ≥43,当且仅当k =±33时取等号,所以线段MN 长度的最小值为4 3.(2)证明:易知直线AC 和直线AB 的斜率一定存在且不为0,设直线AC 的方程为y =kx +2,则直线AB 的方程为y =1kx +2. 由⎩⎪⎨⎪⎧y =kx +2,x 2+y 2=4解得C ⎝ ⎛⎭⎪⎫-4k 1+k 2,2(1-k 2)1+k 2,同理可得B ⎝ ⎛⎭⎪⎫-4k 1+k 2,2(k 2-1)1+k 2. 因为B ,C 两点的横坐标相等,所以BC ⊥x 轴.[课时达标训练]1.已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为坐标原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程.解:(1)证明:因为圆C 过原点O ,所以OC 2=t 2+4t2. 设圆C 的方程是(x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t2, 令x =0,得y 1=0,y 2=4t; 令y =0,得x 1=0,x 2=2t ,所以S △OAB =12OA ·OB =12×⎪⎪⎪⎪4t ×|2t |=4, 即△OAB 的面积为定值.(2)因为OM =ON ,CM =CN ,所以OC 垂直平分线段MN .因为k MN =-2,所以k OC =12. 所以2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),OC =5,此时C 到直线y =-2x +4的距离d =55<5,圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),OC =5,此时C 到直线y =-2x +4的距离d =955> 5. 圆C 与直线y =-2x +4不相交,所以t =-2不符合题意,舍去.所以圆C 的方程为(x -2)2+(y -1)2=5.2.如图,已知圆x 2+y 2=1与x 轴交于A ,B 两点,P 是该圆上任意一点,AP ,PB 的延长线分别交直线l :x =2于M ,N 两点.(1)求MN 的最小值;(2)求证:以MN 为直径的圆恒过定点,并求出该定点的坐标.解:(1)设M (2,t 1),N (2,t 2),则由A (-1,0),B (1,0),且AM ⊥BN ,得AM ―→·BN ―→=0,即(3,t 1)·(1,t 2)=0,所以3+t 1t 2=0,即t 1t 2=-3.所以MN =t 1-t 2=t 1+(-t 2)≥2-t 1t 2=2 3.当且仅当t 1=3,t 2=-3时等号成立.故MN 的最小值为2 3.(2)证明:由(1)得t 1t 2=-3.以MN 为直径的圆的方程为(x -2)2+(y -t 1)(y -t 2)=0,即(x -2)2+y 2-(t 1+t 2)y +t 1t 2=0,也即(x -2)2+y 2-(t 1+t 2)y -3=0.由⎩⎪⎨⎪⎧ y =0,(x -2)2-3=0,得⎩⎪⎨⎪⎧ x =2+3,y =0或⎩⎪⎨⎪⎧x =2-3,y =0.故以MN 为直径的圆恒过定点(2+3,0)和(2-3,0).3.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.解:(1)设圆心C (a,0)⎝⎛⎭⎫a >-52, 则|4a +10|5=2⇒a =0或a =-5(舍去). 所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =k (x -1)得,(k 2+1)x 2-2k 2x +k 2-4=0, 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t=0⇒k (x 1-1)x 1-t +k (x 2-1)x 2-t =0⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0⇒2(k 2-4)k 2+1-2k 2(t +1)k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立.4.在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,求所有满足条件的点P 的坐标.解:(1)由于直线x =4与圆C 1不相交,∴直线l 的斜率存在,设直线l 的方程为y =k (x -4),圆C 1的圆心到直线l 的距离为d . ∵l 被圆C 1截得的弦长为23,∴d = 22-(3)2=1.又由点到直线的距离公式得d =|-1-7k |1+k2, ∴k (24k +7)=0,解得k =0或k =-724, ∴直线l 的方程为y =0或7x +24y -28=0.(2)设点P (a ,b )满足条件,由题意分析可得直线l 1,l 2的斜率均存在且不为0,不妨设直线l 1的方程为y -b =k (x -a ),则直线l 2的方程为y -b =-1k(x -a ). ∵圆C 1和圆C 2的半径相等,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,∴圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等, 即|1-k (-3-a )-b |1+k 2=⎪⎪⎪⎪5+1k (4-a )-b 1+1k 2,整理得|1+3k +ak -b |=|5k +4-a -bk |.∴1+3k +ak -b =±(5k +4-a -bk ),即(a +b -2)k =b -a +3或(a -b +8)k =a +b -5.∵ k 的取值有无穷多个,∴⎩⎪⎨⎪⎧ a +b -2=0,b -a +3=0或⎩⎪⎨⎪⎧ a -b +8=0,a +b -5=0. 解得⎩⎨⎧ a =52,b =-12或⎩⎨⎧ a =-32,b =132,故这样的点只可能是点P 1⎝⎛⎭⎫52,-12或点P 2-32,132. 5.如图,已知位于y 轴左侧的圆C 与y 轴相切于点(0,1),且被x 轴分成的两段弧长之比为2∶1,过点H (0,t )的直线l 与圆C 相交于M ,N 两点,且以MN 为直径的圆恰好经过坐标原点O .(1)求圆C 的方程;(2)当t =1时,求直线l 的方程;(3)求直线OM 的斜率k 的取值范围.解:(1)因为位于y 轴左侧的圆C 与y 轴相切于点(0,1),所以圆心C 在直线y =1上. 又圆C 与x 轴的交点分别为A ,B ,由圆C 被x 轴分成的两段弧长之比为2∶1,得∠ACB =2π3. 所以CA =CB =2,圆心C 的坐标为(-2,1).所以圆C 的方程为(x +2)2+(y -1)2=4.(2)当t =1时,由题意知直线l 的斜率存在,设直线l 的方程为y =mx +1.由⎩⎪⎨⎪⎧y =mx +1,(x +2)2+(y -1)2=4,消去y , 得(m 2+1)x 2+4x =0, 解得⎩⎪⎨⎪⎧ x =0,y =1或⎩⎪⎨⎪⎧ x =-4m 2+1,y =m 2-4m +1m 2+1.不妨令M ⎝ ⎛⎭⎪⎫-4m 2+1,m 2-4m +1m 2+1,N (0,1). 因为以MN 为直径的圆恰好经过O (0,0),所以OM ―→·ON ―→=⎝ ⎛⎭⎪⎫-4m 2+1,m 2-4m +1m 2+1·(0,1)=m 2-4m +1m 2+1=0, 解得m =2±3,故所求直线l 的方程为y =(2+3)x +1或y =(2-3)x +1.(3)设直线OM 的方程为y =kx , 由题意,知|-2k -1|1+k 2≤2,解得k ≤34. 同理得-1k ≤34,解得k ≤-43或k >0. 由(2)知,k =0也满足题意.所以k 的取值范围是⎝⎛⎦⎤-∞,-43∪⎣⎡⎦⎤0,34. 6.如图,在平面直角坐标系xOy 中,已知点A (-3,4),B (9,0),C ,D 分别为线段OA ,OB 上的动点,且满足AC =BD .(1)若AC =4,求直线CD 的方程;(2)证明:△OCD 的外接圆恒过定点(异于原点O ).解:(1)因为A (-3,4),所以OA =(-3)2+42=5.又因为AC =4,所以OC =1,所以C ⎝⎛⎭⎫-35,45. 由BD =4,得D (5,0),所以直线CD 的斜率k =0-455-⎝⎛⎭⎫-35=-17. 所以直线CD 的方程为y =-17(x -5), 即x +7y -5=0.(2)证明:设C (-3m,4m )(0<m ≤1),则OC =5m .所以AC =OA -OC =5-5m .因为AC =BD ,所以OD =OB -BD =5m +4,所以点D 的坐标为(5m +4,0).设△OCD 的外接圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎪⎨⎪⎧ F =0,9m 2+16m 2-3mD +4mE +F =0,(5m +4)2+(5m +4)D +F =0.解得D =-(5m +4),E =-10m -3,F =0,所以△OCD 的外接圆的方程为x 2+y 2-(5m +4)x -(10m +3)y =0,整理得x 2+y 2-4x -3y -5m (x +2y )=0.令⎩⎪⎨⎪⎧ x 2+y 2-4x -3y =0,x +2y =0,解得⎩⎪⎨⎪⎧ x =2,y =-1或⎩⎪⎨⎪⎧x =0,y =0(舍去). 所以△OCD 的外接圆恒过定点(2,-1).第3课时椭 圆(能力课)[常考题型突破][例1] (2015·江苏高考)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.[解] (1)由题意,得c a =22且c +a 2c =3, 解得a =2,c =1,则b =1,所以椭圆的标准方程为x 22+y 2=1. (2)当AB ⊥x 轴时,AB =2,又CP =3,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2), 将AB 的方程代入椭圆方程,得(1+2k 2)x 2-4k 2x +2(k 2-1)=0,则x 1,2=2k 2±2(1+k 2)1+2k 2, C 的坐标为⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2, 且AB =(x 2-x 1)2+(y 2-y 1)2 =(1+k 2)(x 2-x 1)2=22(1+k 2)1+2k 2. 若k =0,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意.从而k ≠0,故直线PC 的方程为y +k1+2k 2=-1k ⎝ ⎛⎭⎪⎫x -2k 21+2k 2, 则P 点的坐标为⎝⎛⎭⎪⎫-2,5k 2+2k (1+2k 2), 从而PC =2(3k 2+1)1+k 2|k |(1+2k 2). 因为PC =2AB , 所以2(3k 2+1) 1+k 2|k |(1+2k 2)=42(1+k 2)1+2k 2, 解得k =±1.此时直线AB 的方程为y =x -1或y =-x +1.[方法归纳](2017·广州模拟)定圆M :(x +3)2+y 2=16,动圆N 过点F (3,0)且与圆M 相切,记圆心N 的轨迹为E .(1)求轨迹E 的方程;(2)设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且AC =CB ,当△ABC 的面积最小时,求直线AB 的方程.解:(1)因为点F (3,0)在圆M :(x +3)2+y 2=16内,所以圆N 内切于圆M . 因为NM +NF =4>FM ,所以点N 的轨迹E 是以M (-3,0),F (3,0)为焦点的椭圆,且2a =4,c =3, 所以b =1.所以轨迹E 的方程为x 24+y 2=1.(2)①当AB 为长轴(或短轴)时,依题意知,点C 就是椭圆的上、下顶点(或左、右顶点), 此时S △ABC =12·OC ·AB =2.②当直线AB 的斜率存在且不为0时, 设其斜率为k ,直线AB 的方程为y =kx , 联立方程⎩⎪⎨⎪⎧x 24+y 2=1,y =kx ,可取x 2A =41+4k 2, y 2A =4k 21+4k 2, 所以OA 2=x 2A +y 2A =4(1+k 2)1+4k 2.由AC =CB 知,△ABC 为等腰三角形,O 为AB 的中点,OC ⊥AB ,所以直线OC 的方程为y =-1k x ,由⎩⎨⎧x 24+y 2=1,y =-1k x ,得x 2C =4k 2k 2+4,y 2C=4k 2+4, 所以OC 2=4(1+k 2)k 2+4.S △ABC =2S △OAC =|OA |·|OC |=4(1+k 2)1+4k2·4(1+k 2)k 2+4=4(1+k 2)(1+4k 2)(k 2+4).由于(1+4k 2)(k 2+4)≤(1+4k 2)+(k 2+4)2=5(1+k 2)2,所以S △ABC ≥85,当且仅当1+4k 2=k 2+4, 即k =±1时等号成立, 此时△ABC 面积的最小值是85.因为2>85,所以△ABC 面积的最小值为85,此时直线AB 的方程为y =x 或y =-x .[例2] (2017·南京考前模拟)如图,在平面直角坐标系xOy 中,过椭圆C :x 2a 2+y 2b 2=1(a >b >0)内一点A (0,1)的动直线l 与椭圆相交于M ,N 两点,当l 平行于x 轴和垂直于x 轴时,l 被椭圆C 所截得的线段长均为2 2.(1)求椭圆C 的方程;(2)是否存在与点A 不同的定点B ,使得对任意过点A 的动直线l 都满足AM AN =BMBN?若存在,求出定点B 的坐标;若不存在,请说明理由.[解] (1)当l 垂直于x 轴时,2b =22,从而b = 2. 当l 平行于x 轴时,点(2,1)在椭圆C 上, 所以2a 2+12=1,解得a =2.所以椭圆C 的方程为x 24+y 22=1.(2)设存在与点A 不同的定点B 满足AM AN =BMBN .当l 平行于x 轴时,AM =AN ,所以BM =BN ,从而点B 在y 轴上,设B (0,t ); 当l 垂直于x 轴时,不妨设M (0,2),N (0,-2).由AM AN =BMBN 可得|t -2||t +2|=|2-1||2+1|,解得t =1(舍去)或t =2,即B (0,2).下面证明对任意斜率存在且不为0的动直线l 都满足AM AN =BMBN . 设直线l 的方程为y =kx +1,M (x 1,y 1),N (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +1,x 24+y 22=1消去y ,得(1+2k 2)x 2+4kx -2=0,所以x 1+x 2=-4k 1+2k 2,x 1x 2=-21+2k 2.因为AMAN =1+k 2|x 1|1+k 2|x 2|=|x 1||x 2|, BMBN=x 21+(y 1-2)2x 22+(y 2-2)2=x 21+(kx 1-1)2x 22+(kx 2-1)2=(1+k 2)x 21-2kx 1+1(1+k 2)x 22-2kx 2+1,要证AM AN =BM BN , 只要证|x 1||x 2|=(1+k 2)x 21-2kx 1+1(1+k 2)x 22-2kx 2+1,只要证x 21[(1+k 2)x 22-2kx 2+1)]=x 22[(1+k 2)·x 21-2kx 1+1)], 即证2kx 21x 2-2kx 22x 1+x 22-x 21=0,即证(x 1-x 2)[2kx 1x 2-(x 1+x 2)]=0. 因为2kx 1x 2-(x 1+x 2)=2k ×-21+2k 2--4k1+2k 2=0, 所以AM AN =BM BN.所以存在与点A 不同的定点B (0,2),使得对任意过点A 的动直线l 都满足AM AN =BMBN .[方法归纳]1.(2017·南通、泰州一调)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,焦点到相应准线的距离为1. (1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =2于点Q ,求1OP 2+1OQ 2的值. 解:(1)由题意得⎩⎪⎨⎪⎧c a =22,a2c -c =1,b 2+c 2=a 2,解得⎩⎪⎨⎪⎧a =2,c =1,b =1.所以椭圆的方程为x 22+y 2=1.(2)由题意知OP 的斜率存在.当OP 的斜率为0时,OP =2,OQ =2, 所以1OP 2+1OQ2=1.当OP 的斜率不为0时,设直线OP 的方程为y =kx . 由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx ,得(2k 2+1)x 2=2,解得x 2=22k 2+1,所以y 2=2k 22k 2+1,所以OP 2=2k 2+22k 2+1.因为OP ⊥OQ ,所以直线OQ 的方程为y =-1k x .由⎩⎪⎨⎪⎧y =2,y =-1k x得x =-2k , 所以OQ 2=2k 2+2.所以1OP 2+1OQ 2=2k 2+12k 2+2+12k 2+2=1.综上,可知1OP2+1OQ2=1.。

高考数学二轮复习重点模块练:解析几何(4)椭圆 含答案

高考数学二轮复习重点模块练:解析几何(4)椭圆 含答案

椭 圆1、已知椭圆2221(0)25x y m m+=>的左焦点为1(4,0)F -,则m =( )A.9B.4C.2D.32、“02m <<”是“方程2212x y m m+=-表示椭圆”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件D.既不充分也不必要条件3、已知ABC △的周长为20,且顶点()()0,4,0,4B C -,则顶点A 的轨迹方程是( )A .()22103620x y x +=≠B .()22102036x y x +=≠C .()2210620x y x +=≠D .()2210206x y x +=≠4、已知椭圆221(0)259x ya b +=>>的两个焦点分别为1F ,2F ,P 是椭圆上一点,且1260F PF ∠=o ,则12F PF △的面积等于( )A. B.C.6D.35、设线段AB 的两个端点,A B 分别在x 轴、y 轴上滑动,且5AB =,3255OM OA OB =+uuu r uu r uu u r,则点M 的轨迹方程为( )A.22194y x += B.22194y x += C.221259y x +=D.221259y x += 6、椭圆22221(0)x y a b a b +=>>与椭圆2222x y a b λ+=(0λ>且1λ≠)有( )A.相同的焦点B.相同的顶点C.相同的离心率D.相同的长、短轴7、已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为,A B ,点M 为椭圆C 上异于,A B的一点,直线AM 和直线BM 的斜率之积为14-,则椭圆C 的离心率为( )A.14B.12C.3 D.15 8、若以椭圆上一点和两个焦点为顶点的三角形面积的最大值为1,则椭圆长轴的最小值为( ) A.1B.2C.2D.229、已知椭圆:2221(02)4x y b b+=<<左、右焦点分别为12,F F ,过1F 的直线l 交椭圆于,A B 两点,若22BF AF +u u u u r u u u u r的最大值为5,则b 的值是( )A.1B.2C.32D.310、如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线,交椭圆的上半部分于127,,P P P ⋅⋅⋅七个点,F 是椭圆的左焦点,则127PF P F P F ++⋅⋅⋅+=( )A.35B.30C.25D.2011、已知椭圆22221(0)x y a b a b+=>>的右焦点为(,0)F c ,且2a c =.若方程20ax bx c +-=的两个实数根分别为12,x x ,则2212x x +的值为__________.12、已知12(,0),(,0)F c F c -为椭圆22221(0)x y a b a b+=>>的两个焦点,P 在椭圆上,且12PF F △22,则12cos F PF ∠=___________. 13、已知椭圆22195x y +=的右焦点为,F P 是椭圆上一点,点(0,23)A ,当点P 在椭圆上运动时,APF △的周长的最大值为_________.14、如图所示,探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在点P 第二次变轨进入仍以F 为一个焦点的椭圆轨道II 绕月飞行,最终卫星在点P 第三次变轨进入以F 为圆心的圆形轨道III 绕月飞行.若用12c 和22c 分别表示椭圆轨道I 和II 的焦距,用12a 和22a 分别表示椭圆轨道I 和II 的长轴长,给出下列式子:①1122a c a c +=+;②1122a c a c -=-;③1212c a a c >;④1212c c a a <. 其中正确式子的序号是___________.15、已知椭圆2222:1(0)x y E a b a b +=>>的左焦点1F ,22,点P 为椭圆E 上任一点,且1||PF 21. (1)求椭圆E 的方程;(2)若直线l 过椭圆的左焦点1F ,与椭圆交于,A B 两点,且OAB △的面积为23,求直线l 的方程.答案以及解析1答案及解析: 答案:C解析:焦点在x 轴上的椭圆()2221025x y m m+=>的左焦点为()4,0F -,可得205,2516m m <<-=,解得3m =.故选C.2答案及解析: 答案:C解析:根据题意,当1m =时,满足02m <<,方程2212x y m m +=-即221x y +=,表示圆,不能表示椭圆.则“02m <<”是“方程2212x y m m+=-表示椭圆 ”的不充分条件,方程2212x y m m +=-表示椭圆,必有0202m m m m>⎧⎪->⎨⎪≠-⎩,解可得01m <<或12m <<,则“02m <<是方程2212x y m m +=-表示椭圆”的必要条件,综合可得:则“02m << ”是“ 方程2212x y m m+=-表示椭圆 ”的必要不充分条件,故选C.3答案及解析: 答案:B解析:∵ABC △的周长为20,顶点()()0,4,0,4B C -, ∴8,20812BC AB AC =+=-=,∵128>,∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆,∵6,4a c ==∴220b =,∴椭圆的方程是()22102036x y x +=≠,故选B.4答案及解析: 答案:B解析:如图所示,椭圆2210259()x y a b +=>>,可得5,3,4a b c ====. 设12,||||PF m PF n ==,则210m n a +==,在12F PF △中,由余弦定理可得:22222(c )os60c m n mn =+-︒,可得2(34)6m n mn +-=,即210364mn -=,解得12mn =.∴12F PF △的面积113sin60123322S mn =︒=⨯⨯=.故选B.5答案及解析: 答案:A解析:设,()M x y ,00(,)A x ,0(0)B y ,,由32=55OM OA OB +uuu r uu r uu u r ,得()()()0032,,00,55x y x y =+,则003525x x y y ⎧=⎪⎪⎨⎪=⎪⎩,解得005352x x y y ⎧=⎪⎪⎨⎪=⎪⎩,由5AB =,得22552532x y ⎛⎫⎛⎫+= ⎪⎪⎝⎭⎝⎭,化简得22194y x +=.故选A.6答案及解析: 答案:C解析:将椭圆方程2222x y a b λ+=(0λ>且1λ≠)化为标准方程,得22221x y a bλλ+=(0λ>且1λ≠),其离心率2222a b a b e aλλλ--==,故选C.7答案及解析: 答案:C解析:设()00,P x y 代入椭圆方程,则()220022:10x y C a b a b+=>>,整理得:()2222002b y x a a=-,又001200,y y k k x a x a ==+-,所以201222014y k k x a ==--, 联立两个方程则212214b k k a ==-,即2214b a =,则e ==.故选C.8答案及解析: 答案:D解析:设椭圆22221(0)x y a b a b+=>>,则当三角形面积最大时,三角形在椭圆上的顶点为椭圆短轴端点,∴222121222b c a S c b bc +=⨯⨯==≤=,∴22a ≥,∴a ≥∴长轴长2a ≥故选D.9答案及解析: 答案:D解析:由椭圆定义,得2248AB AF BF a ++==,所以当线段AB 长度达最小值时, 22BF AF +u u u u r u u u u r 有最大值.当AB 垂直于x 轴时,222min ||222b b AB b a =⨯=⨯=,所以22BF AF +u u u u r u u u u r 的最大值为285b -=,所以23b =,即b = D.10答案及解析: 答案:A解析:设椭圆右焦点为'F ,由椭圆的对称性,知172635',','PF P F P F P F P F P F ===,所以原式7766554(')(')(')735P F P F P F P F P F P F P F a =++++++==.11答案及解析: 答案:74解析:∵2222,a c a b c ==+,∴3b c =.∵方程20ax bx c +-=的两个实数根分别为12,x x ,∴1212,b cx x x x a a+=-=-,∴2222221212122327()2()2()()()24b c b c c c x x x x x x a a a a c +=+-=--⨯-=+=+=.12答案及解析: 答案:13解析:∵12(,0),(,0)F c F c -为椭圆22221(0)x y a b a b+=>>的两个焦点,P 在椭圆上,∴根据椭圆的定义及余弦定理,得1222212121222cos 4PF PF a PF PF PF PF F PF c ⎧+=⎪⎨+-∠=⎪⎩,整理得2121221cos b PF PF F PF =+∠.∵12PF F △的面积为222b ,∴221212122sin 21cos b F PF b F PF ⋅⋅∠=+∠,∴12121cos 2sin F PF F PF +∠=∠. ∵221212sin cos 1F PF F PF ∠+∠=,∴121cos 3F PF ∠=.13答案及解析: 答案:14解析:如图所示,设椭圆的左焦点为'F ,连接'AF 并延长,'AF 的延长线交椭圆于点'P ,连接'PF .易得4'AF AF ==,且'6PF PF +=.∵''PA PF AF -≤,∴APF △的周长等于46'46414AF PA PF PA PF ++=++-≤++=,当且仅当点P 位于'P 处时取等号,∴APF △的周长的最大值为14.14答案及解析: 答案:②③解析:椭圆轨道I 和II 中相同的量是PF ,即1122a c a c -=-,所以②正确;两椭圆比较有1212,a a c c >>,所以1122a c a c +>+,所以①错误;两椭圆中轨道I 较扁,因此离心率较大,即1212c c a a >,整理可得1212c a a c >,所以③正确,④错误.15答案及解析:答案:(1)设椭圆的标准方程为:22221(0)x y a b a b+=>>,2,∴22222212c a b e a a -===,∴a =, ∵点P 为椭圆C 上任意一点,且PF1+, ∴12+=+c a ,22221,1c a b c b ∴=+=+=,解得222,1a b ==,∴椭圆C 的方程为222x y +=1 .(2)因1(1,0)F -,AB 与x 轴不重合,故设AB 的方程为:1x my =-,代入2212x y +=得:22(2)210m y my +--=,其∆>0恒成立,设1122(,),(,)A x y B x y ,则有12122221,22m y y y y m m -+=⋅=++,AB ∴=, 又O 到AB的距离d =,1223OABS AB d ∆∴===,解得1m =±, l ∴的方程为:10x y ++=或10x y -+=,(亦可用21121y y OF S -=)。

江苏省最新高考数学二轮复习专题三解析几何3.4专题提能_“解析几何”专题提能课讲义含解析

江苏省最新高考数学二轮复习专题三解析几何3.4专题提能_“解析几何”专题提能课讲义含解析

第四讲 专题提能——“解析几何”专题提能课提能点 一防止思维定式,实现“移花接木”失误1因忽视方程的标准形式而失误[解析] y =2ax 2(a <0)可化为x 2=12a y ,则焦点坐标为⎝ ⎛⎭⎪⎫0,18a .[答案] ⎝ ⎛⎭⎪⎫0,18a[点评] 本题易错如下:由抛物线方程为y =2ax 2,知抛物线的对称轴为y 轴,2p =-2a ,所以p =-a ,p 2=-a2,所以它的焦点坐标为⎝ ⎛⎭⎪⎫0,-a 2.求解此类问题的关键是:首先要准确理解概念,正确识记抛物线的标准方程:y 2=2px 、y 2=-2px 、x 2=2py 、x 2=-2py ,对于抛物线方程有关的题目要首先将方程变为标准形式,然后在此基础上正确求出抛物线的焦参数p .在求焦参数时要注意p >0,标准方程中一次项系数的绝对值为2p ,求出p 后再研究抛物线的几何性质,结合图形去考虑失误2因忽视圆方程本身的限制条件而失误[例2] 过定点(1,2)作两直线与圆x 2+y 2+kx +2y +k 2-15=0相切,则k 的取值范围是________________.[解析] 把圆的方程化为标准方程得,⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=16-34k 2,所以16-34k 2>0,解得-83<k <83.又点(1,2)应在已知圆的外部,把点代入圆方程得,1+4+k +4+k 2-15>0,即(k -2)(k +3)>0,解得k <-3或k >2.综上,k 的取值范围是⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833.[答案] ⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833[点评] 本题易错在于忽略题中方程必须是圆的方程,有些学生不考虑D 2+E 2-4F >0.本例应把圆的方程化为标准方程后,根据构成圆的条件得到等号右边的式子大于0,列出关于k 的不等式,求出不等式的解集,然后由过已知点总可以作圆的两条切线,得到点在圆外,故把点的坐标代入圆的方程中得到一个关于k 的关系式,求出不等式的解集,综上,求出两解集的交集即为实数k 的取值范围.失误3因忽视斜率不存在的情况而失分[例3] 已知过点(1,2)的直线l 与圆x 2+y 2=4交于A ,B 两点,弦长AB =23,求直线l 的方程.[解] 当过点(1,2)的直线l 斜率不存在时,满足要求,所以方程x =1满足题意;当过点(1,2)的直线l 存在斜率时,记l 的方程为y -2=k (x -1),即kx -y +2-k =0,由弦长为23可得圆心到直线的距离为1,则d =|2-k |1+k2=1,解得k =34,所以直线l 的方程为y -2=34(x -1),即3x -4y +5=0.所以所求直线l 的方程为x =1和3x -4y +5=0.[点评] 本题学生易错在于忽略了斜率不存在的情况,在用斜率研究直线方程首先考虑斜率不存在的情况.给定弦长,一般都有两解,除非弦长值就是直径的值,此时只有一解.提能点 二灵活运用策略,尝试“借石攻玉”策略1利用对称性解决椭圆中焦点三角形问题[例1] 如图,在平面直角坐标系xOy 中,F 是椭圆2a 2+2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率为________.[解析] 法一:由⎩⎪⎨⎪⎧y =b 2,x 2a 2+y2b 2=1,可得B ⎝ ⎛⎭⎪⎫-32a ,b 2, C ⎝⎛⎭⎪⎫32a ,b 2.由F (c,0),得FB ―→=⎝ ⎛⎭⎪⎫-32a -c ,b 2,FC ―→=⎝ ⎛⎭⎪⎫32a -c ,b 2.又∠BFC =90°,所以FB ―→·FC ―→=0,化简可得2a 2=3c 2,即e 2=c 2=2,故e =6.法二:由⎩⎪⎨⎪⎧y =b2,x 2a 2+y2b 2=1,可得B ⎝⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,所以BC =3a ,由椭圆的焦半径公式得BF =a -ex B =a +e ·32a ,CF =a -ex C =a -e ·32a , 又∠BFC =90°,所以BF 2+CF 2=BC 2, 即⎝ ⎛⎭⎪⎫a +e ·32a 2+⎝ ⎛⎭⎪⎫a -e ·32a 2=(3a )2, 式子两边同除以a 2可得e 2=23,即e =63.[答案]63[点评] 本题中B ,C 两点是关于y 轴对称,对称性的运用对线段的求解和坐标求解有很大帮助.策略2利用有界性处理圆锥曲线中的存在性问题[例2] 若双曲线a 2-b2=1(a >0,b >0)右支上存在一点P 到左焦点的距离是到右准线距离的6倍,则该双曲线离心率的取值范围为______________.[解析] 记双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,设点P 到右准线的距离为d ,则由题意得点P 到左焦点的距离为PF 1=6d ,由于PF 1-PF 2=2a ,所以PF 2=6d -2a ,所以6d -2a d =c a ,所以d =2a 26a -c ,又因为d ≥a -a 2c,所以⎩⎪⎨⎪⎧2a 26a -c≥a -a 2c ,6a -c >0,解之得此双曲线的离心率e 的取值范围是(1,2]∪[3,6). [答案] (1,2]∪[3,6)[点评] 一般地,根据“存在一点…”这样的条件求解离心率的取值范围问题,主要是先利用几何条件建立关于a ,b ,c 的方程,再根据椭圆、双曲线和抛物线上点的坐标的有界性来求解.提能点三系统数学思想,实现“触类旁通”函数方程思想——解决平面几何中的最值问题[典例] 在平面直角坐标系xOy 中,设曲线C 1:|x |a +|y |b=1(a >b >0)所围成的封闭图形的面积为42,曲线C 1上的点到原点O 的最短距离为22.以曲线C 1与坐标轴的交点为顶点的椭圆记为C 2.(1)求椭圆C 2的标准方程;(2)设AB 是过椭圆C 2中心O 的任意弦,l 是线段AB 的垂直平分线.若M 是l 与椭圆C 2的交点,求△AMB 的面积的最小值.[解] (1) 由题意得⎩⎨⎧2ab =42,ab a 2+b 2=223.解得a 2=8,b 2=1.所以所求椭圆C 2的标准方程为x 28+y 2=1.(2)法一:设M (x ,y ),则A (λy ,-λx )(λ∈R ,λ≠0). 因为点A 在椭圆C 2上,所以λ2(y 2+8x 2)=8,即y 2+8x 2=8λ2.①又x 2+8y 2=8.②①+②得x 2+y 2=89⎝ ⎛⎭⎪⎫1+1λ2.所以S △AMB =OM ·OA =|λ|(x 2+y 2) =89⎝ ⎛⎭⎪⎫|λ|+1|λ|≥169.当且仅当λ=±1,即k AB =±1时,(S △AMB )min =169.法二:假设AB 所在的直线斜率存在且不为零,设AB 所在直线的方程为y =kx (k ≠0).解方程组⎩⎪⎨⎪⎧x 28+y 2=1,y =kx ,得x 2A =81+8k 2,y 2A =8k 21+8k2,所以OA 2=x 2A +y 2A =81+8k 2+8k 21+8k 2=81+k 21+8k 2,AB 2=4OA 2=321+k 21+8k2.又由⎩⎪⎨⎪⎧x 28+y 2=1,y =-1k x ,解得x 2M =8k 2k 2+8,y 2M =8k 2+8,所以OM 2=81+k 2k 2+8.由于S 2△AMB=14AB 2·OM 2=14·321+k 21+8k2·81+k2k 2+8=641+k221+8k 2k 2+8≥641+k 22⎝ ⎛⎭⎪⎫1+8k 2+k 2+822=641+k228141+k22=25681, 当且仅当1+8k 2=k 2+8时等号成立,即k =±1时等号成立,此时△AMB 面积的最小值是S △AMB =169.当k =0时,S △AMB =12×42×1=22>169;当k 不存在时,S △AMB =12×22×2=22>169.综上所述,△AMB 面积的最小值为169.[点评] 第(2)问中有关三角形面积的计算一般用以下几种方式:(1)以弦长为底,点到弦所在直线距离为高;(2)正弦定理;(3)如果弦所在直线过定点且顶点也为定点,可以将面积进行分割.一般地,如果建立关于k 的函数,可以用导数的方法或换元处理后用基本不等式方法;如果建立的关于(x ,y )的函数可以直接用基本不等式或消元后转化成二次函数.提能点四强化一题多法,激活“解题思维”1.多角度几何条件求解离心率[例1] 如图,已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),离心率为e ,设A ,B 是椭圆上关于原点对称的两点,AF 的中点为M ,BF 的中点为N ,原点O 在以线段MN 为直径的圆上,设直线AB 的斜率为k ,若0<k ≤33,求椭圆离心率e 的取值范围. [解] 法一:设MN 交x 轴与点C , ∵AF 的中点为M ,BF 中点为N , ∴MN ∥AB ,FC =CO =12,∵A ,B 为椭圆上关于原点对称的两点, ∴CM =CN ,∵原点O 在以线段MN 为直径的圆上, ∴CO =CM =CN =12.∴OA =OB =c =1.∵OA >b ,∴a 2=b 2+c 2<2c 2, ∴e =c a >22. 设A (x ,y ),由⎩⎪⎨⎪⎧x 2a 2+y 2a 2-1=1,x 2+y 2=1⇒⎩⎪⎨⎪⎧x 2=a 22-a 2,y 2=1-2a 2+a 4.∵0<k ≤33,∴0<1-2a 2+a 4a 22-a 2≤13,解得1<a ≤62, ∴e ∈⎣⎢⎡⎭⎪⎫63,1,∴椭圆离心率e 的取值范围为⎣⎢⎡⎭⎪⎫63,1. 法二:由⎩⎪⎨⎪⎧y =kx ,x 2+y 2=1,x 2a 2+y 2b 2=1⇒⎩⎪⎨⎪⎧x 21+k 2=1,x 2⎝ ⎛⎭⎪⎫1a 2+k 2b 2=1⇒1+k 2=1a 2+k 2b2.∵e =1a ,∴a =1e ,b 2=a 2-1=1e2-1,∴1+k 2=e 2+k 2e 21-e 2,∴k 2=1-e 222e 2-1. ∵0<k 2≤13,∴0<1-e 222e 2-1≤13.解得63≤e <2,又e <1,∴63≤e <1, ∴椭圆离心率e 的取值范围是⎣⎢⎡⎭⎪⎫63,1. 法三:设∠BAF =α,则2c sin α+2c cos α=2a ,∴e =12sin ⎝⎛⎭⎪⎫α+π4,∠BOF =2α∈⎝ ⎛⎦⎥⎤0,π6,∴α∈⎝ ⎛⎦⎥⎤0,π12,∴α+π4∈⎝ ⎛⎦⎥⎤π4,π3,sin ⎝ ⎛⎭⎪⎫α+π4∈⎝ ⎛⎦⎥⎤22,32,2sin ⎝ ⎛⎭⎪⎫α+π4∈⎝ ⎛⎦⎥⎤1,62,∴e ∈⎣⎢⎡⎭⎪⎫63,1. 与坐标的关系,再得出与e 的关系;也可以构建几何意义,利用几何图形得出关系;也可以转化为角,利用三角函数求解.作互相垂直的直线分别交椭圆于M ,N 两点.求证:直线MN 过定点,并求出该定点坐标.[解] 法一:设M (x 1,y 1),N (x 2,y 2),直线MN :y =kx +m .联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1消去y ,得(1+4k 2)x 2+8kmx +4m 2-4=0,则Δ>0,且x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k 2.由AM ⊥AN ,得y 1x 1+2·y 2x 2+2=-1, 即(k 2+1)x 1x 2+(km +2)(x 1+x 2)+m 2+4=0, (k 2+1)4m 2-41+4k 2+(km +2)-8km 1+4k2+m 2+4=0,化简得5m 2-16km +12k 2=0,∵k ≠0,∴5⎝ ⎛⎭⎪⎫m k 2-16m k+12=0,解得m k =65或mk=2(舍去),直线MN :y =k ⎝ ⎛⎭⎪⎫x +65,过定点⎝ ⎛⎭⎪⎫-65,0. 法二:设直线AM :y =k (x +2)(k ≠0),则直线AN :y =-1k(x +2).联立⎩⎪⎨⎪⎧y =k x +2,x 24+y 2=1消去y ,得(1+4k 2)x 2+16k 2x +16k 2-4=0,则-2x M =16k 2-41+4k 2,∴x M =2-8k 21+4k 2,y M =4k1+4k2.所以点M ⎝ ⎛⎭⎪⎫2-8k 21+4k 2,4k 1+4k 2,同理点N ⎝ ⎛⎭⎪⎫2k 2-84+k 2,-4k 4+k 2,所以k MN =4k 1+4k 2+4k4+k 22-8k 21+4k 2-2k 2-84+k2=5k41-k2,所以直线MN 的方程为y -4k1+4k 2=5k41-k2⎝ ⎛⎭⎪⎫x -2-8k 21+4k 2, 令y =0,得x =2-8k 21+4k 2-161-k 251+4k 2=-61+4k251+4k2=-65,所以直线MN 过定点⎝ ⎛⎭⎪⎫-65,0. 法三:(考查极端位置、特殊位置确定出定点,从而转化为一般性证明题) 同法二知,x M =2-8k 21+4k 2,x N =2k 2-84+k 2,令2-8k 21+4k 2=2k 2-84+k 2⇒k 2=1,此时2-8k 21+4k 2=-65, ∴直线MN 过定点C ⎝ ⎛⎭⎪⎫-65,0.当k 2≠1,k CM =4k1+4k 22-8k 21+4k 2+65=5k41-k2,k CN =-4k 4+k22k 2-84+k 2+65=5k41-k2. ∴k CM =k CN ,∴M ,N ,C 三点共线,即直线MN 过定点⎝ ⎛⎭⎪⎫-65,0. [点评] 直线过定点问题,可以设出直线方程y =kx +m ,得出k 与m 的关系,从而得到过定点;也可以直接用k 表示出新直线的方程,再求过定点;也可以先特殊得出定点,再用三点共线来论证一般情形.[课时达标训练]A 组——易错清零练1.过点P (2,-1)且倾斜角的正弦值为513的直线方程为________________________.解析:设所求直线的倾斜角为α,则由题设知sin α=513,因为0≤α<π,所以cos α=±1-sin 2α=±1213,所以tan α=sin αcos α=±512,则所求直线方程为y +1=±512(x -2),即5x -12y -22=0或5x +12y +2=0.答案:5x -12y -22=0或5x +12y +2=02.若椭圆的短轴长为2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是________. 解析:因为短轴长为2,即b =1,所以a =2,则椭圆的中心到其准线的距离是433. 答案:4333.设双曲线的渐近线为y =±32x ,则其离心率为________.解析:由题意可得b a =32或b a =23,从而e =ca=1+b 2a 2=132或133.答案:132或1334.若关于x 的方程 1-x 2=a (x -1)+1有两个不相等的实数根,那么实数a 的取值范围是________.解析:作出函数y =1-x 2的图象,它是单位圆的上半部分,作出直线y =a (x -1)+1,它是过点A (1,1)的直线,由图象可知,实数a 的取值范围是⎝ ⎛⎦⎥⎤0,12.答案:⎝ ⎛⎦⎥⎤0,12 B 组——方法技巧练1.已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.若|AB |=23,则|CD |=________.解析:由直线l :mx +y +3m -3=0知其过定点(-3,3),圆心O 到直线l 的距离为d =|3m -3|m 2+1.由|AB |=23得⎝⎛⎭⎪⎫3m -3m 2+12+(3)2=12,解得m =-33.又直线l 的斜率为-m =33,所以直线l 的倾斜角α=π6.画出符合题意的图形如图所示,过点C 作CE ⊥BD ,则∠DCE =π6.在Rt △CDE 中,可得|CD |=|AB |cos π6=23×23=4.答案:42.如图,设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.解析:设F 1(-c,0),F 2(c,0),其中c =1-b 2, 则可设A (c ,b 2),B (x 0,y 0),由|AF 1|=3|F 1B |,可得AF 1―→=3F 1B ―→,故⎩⎪⎨⎪⎧-2c =3x 0+3c ,-b 2=3y 0,即⎩⎪⎨⎪⎧x 0=-53c ,y 0=-13b 2,代入椭圆方程可得251-b 29+19b 2=1,解得b 2=23,故椭圆方程为x 2+3y22=1.答案:x 2+32y 2=13.椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c,0)关于直线y =bcx 的对称点Q 在椭圆上,则椭圆的离心率是________.解析:法一:设椭圆的另一个焦点F 1(-c,0),如图,连结QF 1,QF ,设QF 与直线y =b cx 交于点M ,又题意知M 为线段QF 的中点,且OM ⊥FQ ,O 为线段F 1F 的中点,∴F 1Q ∥OM ,∴F 1Q ⊥QF ,F 1Q =2OM . 在Rt △MOF 中,tan ∠MOF =MF OM =bc,OF =c . 解得OM =c 2a ,MF =bc a ,故QF =2MF =2bc a ,QF 1=2OM =2c2a.由椭圆的定义QF +QF 1=2bc a +2c 2a=2a ,整理得b =c ,∴a =b 2+c 2=2c ,故e =22. 法二:设Q (x 0,y 0),则FQ 的中点坐标为⎝⎛⎭⎪⎫x 0+c 2,y 02,k FQ =y 0x 0-c .依题意得⎩⎪⎨⎪⎧ y 02=b c ·x 0+c2,y 0x 0-c ·bc =-1,解得⎩⎪⎨⎪⎧x 0=c 2c 2-a 2a 2,y 0=2bc2a 2.又因为(x 0,y 0)在椭圆上,所以c 22c 2-a 22a 6+4c4a 4=1.令e =c a,则4e 6+e 2=1,故离心率e =22. 答案:224.若椭圆x 2a 2+y 2b2=1(a >b >0)上存在一点M ,它到左焦点的距离是它到右准线距离的2倍,则椭圆离心率的最小值为________.解析:由题意,设点M 的横坐标为x ,根据焦半径公式得,a +ex =2⎝ ⎛⎭⎪⎫a 2c -x ,x =2a2c -ae +2,有-a ≤2a2c -a e +2≤a ,不等式各边同除以a ,得-1≤2ac -1e +2≤1,则2e-1≤e +2,即e 2+3e -2≥0,又0<e <1,所以17-32≤e <1,所以椭圆离心率的最小值为17-32. 答案:17-325.已知点(x ,y )在圆x 2+y 2=1上,求x 2+2xy +3y 2的最大值和最小值. 解:圆x2+y 2=1的参数方程为:⎩⎪⎨⎪⎧x =cos θ,y =sin θ.则x 2+2xy +3y 2=cos 2θ+2sin θcos θ+3sin 2θ=1+cos 2θ2+sin 2θ+3×1-cos 2θ2=2+sin 2θ-cos 2θ=2+2sin ⎝⎛⎭⎪⎫2θ-π4, 则当2θ-π4=2k π+π2,即θ=k π+3π8(k ∈Z )时,x 2+2xy +3y 2取得最大值,为2+2;当2θ-π4=2k π-2,即θ=k π-π8(k ∈Z )时,x 2+2xy +3y 2取得最小值,为2- 2.6.设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22,求该椭圆的标准方程.解:设F 1(-c,0),F 2(c,0),其中c 2=a 2-b 2. 由|F 1F 2||DF 1|=22,得|DF 1|=|F 1F 2|22=22c . 从而S △DF 1F 2=12|DF 1|·|F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22.由DF 1⊥F 1F 2,得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=322, 所以2a =|DF 1|+|DF 2|=22, 故a =2,b 2=a 2-c 2=1.所以所求椭圆的标准方程为x 22+y 2=1.C 组——创新应用练1.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,不难验证PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.答案:52.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为________.解析:如图所示,由题意得A (-a,0),B (a,0),F (-c,0).设E (0,m ),由PF ∥OE ,得|MF ||OE |=|AF ||AO |,则|MF |=m a -ca.① 又由OE ∥MF ,得12|OE ||MF |=|BO ||BF |,则|MF |=m a +c2a.② 由①②得a -c =12(a +c ),即a =3c ,∴e =c a =13.答案:133.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________.解析:依题意,直线MN 与圆O 有公共点即可,即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A ,在Rt △OMA 中,因为∠OMA =45°,故|OA |=|OM |sin 45°=22|OM |≤1,所以|OM |≤2,则x 20+1≤2,解得-1≤x 1≤1. 答案:[-1,1]4.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2c ,若椭圆上存在点M 使得sin ∠MF 1F 2a =sin ∠MF 2F 1c,则该椭圆离心率的取值范围为________.解析:在△MF 1F 2中,|MF 2|sin ∠MF 1F 2=|MF 1|sin ∠MF 2F 1,而sin ∠MF 1F 2a =sin ∠MF 2F 1c,∴|MF 2||MF 1|=sin ∠MF 1F 2sin ∠MF 2F 1=a c.① 又M 是椭圆x 2a 2+y 2b2=1上一点,F 1,F 2是椭圆的焦点,∴|MF 1|+|MF 2|=2a .②由①②得,|MF 1|=2ac a +c ,|MF 2|=2a2a +c .显然|MF 2|>|MF 1|,∴a -c <|MF 2|<a +c ,即a -c <2a2a +c <a +c ,,又0<e <1,P 1(1,1),P 2(0,1),P 3⎝ ⎛(1)求的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.解:(1)由于P 3,P 4两点关于y 轴对称, 故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上. 因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎫t ,-4-t 22.则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1). 将y =kx +m 代入x 24+y 2=1得 (4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -1x 1+x 2x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0.解得k =-m +12.当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l过定点(2,-1).6.如图,在平面直角坐标系xOy 中,椭圆的中心在原点O ,右焦点F 在x 轴上,椭圆与y 轴交于A ,B 两点,其右准线l 与x 轴交于T 点,直线BF 交椭圆于C 点,P 为椭圆上弧AC 上的一点.(1)求证:A ,C ,T 三点共线;(2)如果BF ―→=3FC ―→,四边形APCB 的面积最大值为6+23,求此时椭圆的方程和P 点坐标.解:(1)证明:设椭圆方程为x 2a 2+y 2b2=1(a >b >0),①则A (0,b ),B (0,-b ),T ⎝ ⎛⎭⎪⎫a 2c ,0, AT :x a 2c +yb =1,②BF :x c +y-b=1,③联立②③,解得交点C ⎝ ⎛⎭⎪⎫2a 2ca 2+c 2,b 3a 2+c 2,代入①得:⎝ ⎛⎭⎪⎫2a 2c a 2+c 22a 2+⎝ ⎛⎭⎪⎫b 3a 2+c 22b 2=4a 2c 2+a 2-c 22a 2+c 22=1.满足①式,则C 点在椭圆上,A ,C ,T 三点共线. (2)过C 作CE ⊥x 轴,垂足为E (图略),则△OBF ∽△ECF . ∵BF ―→=3FC ―→,CE =13b ,EF =13c ,则C ⎝ ⎛⎭⎪⎫4c 3,b 3,代入①得:⎝ ⎛⎭⎪⎫43c 2a2+⎝ ⎛⎭⎪⎫b 32b2=1,∴a 2=2c 2,b 2=c 2.设P (x 0,y 0),则x 0+2y 20=2c 2, 此时C ⎝⎛⎭⎪⎫4c 3,c 3,AC =235c ,S △ABC=12·2c ·4c 3=43c 2,直线AC 的方程为x +2y -2c =0, 点P 到直线AC 的距离为d =005=x 0y 0c5, S △APC =12d ·AC =12·x 0+2y 0-2c 5·235c =x 0+2y 0-2c3·c .只需求x 0+2y 0的最大值.∵(x 0+2y 0)2=x 20+4y 20+2·2x 0y 0≤x 20+4y 20+2(x 20+y 20)=3(x 20+2y 20)=6c 2, ∴x 0+2y 0≤6c , 当且仅当x 0=y 0=63c 时,(x 0+2y 0)max =6c . ∴四边形的面积最大值为6-23c 2+43c 2=6+23c 2=6+23, ∴c 2=1,a 2=2,b 2=1,此时椭圆方程为x 22+y 2=1,P 点坐标⎝ ⎛⎭⎪⎫63,63.。

高三数学解析几何专题(含解析)

高三数学解析几何专题(含解析)

高三数学解析几何专题(含解析)1.【理科】已知动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,且∠APB=2θ,且d1d2cos2θ=1.Ⅰ)求动点P的轨迹C的方程;Ⅱ)过点B作直线l交轨迹C于M,N两点,交直线x=4于点E,求|EM||EN|的最小值。

2.已知椭圆C:(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的离心率为2,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=7/2,PF·PF3/12=4.其中O为坐标原点。

I)求椭圆C的方程;Ⅱ)如图,过点S(0,1/3),且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。

3.已知两定点F1(-2,0)、F2(2,0),满足条件PF2-PF1=2的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A、B两点。

Ⅰ)求k的取值范围;Ⅱ)如果AB=63,且曲线E上存在点C,使OA+OB=mOC,求m的值和△ABC的面积S。

4.已知抛物线W:y=ax^2经过点A(2,1),过A作倾斜角互补的两条不同的直线L1、L2.1)求抛物线W的方程及其准线方程;2)当直线L1与抛物线W相切时,求直线L2与抛物线W所围成封闭区域的面积;3)设直线L1、L2分别交抛物线W于B、C两点(均不与A重合),若以BC为直径的圆与抛物线的准线相切,求直线BC的方程。

5.动点M(x,y)到定点F(-1,0)的距离与到y轴的距离之差为1.I)求动点M的轨迹C的方程;II)过点Q(-3,0)的直线l与曲线C交于A、B两点,问直线x=3上是否存在点P,使得△PAB是等边三角形?若存在,求出所有的点P;若不存在,请说明理由。

6.椭圆M的中心在坐标原点D,左、右焦点F1、F2在x轴上,抛物线N的顶点也在原点D,焦点为F2,椭圆M与抛物线N的一个交点为A(3,26)。

江苏省南京市高三数学二轮专题复习 解析几何

江苏省南京市高三数学二轮专题复习 解析几何

解析几何二轮复习建议引入坐标系,使点与坐标,曲线与方程联系起来的坐标方法对于数学发展起了巨大的作用。

用坐标法研究曲线(几何图形),实际上要解决两个问题:第一是由曲线(几何图形)求方程;第二是利用方程讨论曲线(几何图形)的性质。

由曲线求方程,要解决如何将曲线上的点所满足的条件转化为曲线上点的坐标所适合的方程;在解析几何里,所讨论的曲线的性质通常包括:曲线的范围,曲线的对称性,曲线的截距,以及不同曲线所具有的一些特殊性质,例如过定点,过定线,最值等一些不变(量)性。

用坐标法研究几何问题,是数学中一个很大的课题,问题的大小、深浅差别很大。

坐标法是借助坐标系,以代数中数与式、方程的知识为基础来研究几何问题的一种数学方法。

因此,要有一定的代数知识基础,特别是代数式变形和解方程组的能力要求较高。

以下解析几何二轮复习建议,仅供参考。

基本题型一:求基本量1.直线的几何量主要是斜率、倾斜角、截距;圆的几何量主要是圆心、半径。

这些量主要通过两直线的平行与垂直、线性规划、直线与圆的位置关系等进行综合,作为题中的一个点出现.2.圆锥曲线的几何量主要包括轴、轴长、顶点、焦距、焦点、准线、渐近线、离心率。

在已知方程求有关量时,首先是把方程化为标准方程,找准a ,b ,c ,p 的值,二是记准相应量的计算公式.在已知图形中求有关量时,要明确各个量的几何意义和图形中的特征求方程或不等式求几何量.例1.直线l :3x -y +m =0与圆C :x 2+y 2-2x -2=0相切,则直线l 在x 轴上的截距_____. 解:因为⊙C 方程可化为(x -1)2+y 2=(3)2,所以圆心C (1,0),半径r =3,因为直线l 与圆C 相切,直线C 到l 的距离等于r ,即∣3⋅1-1⋅0+m ∣2=3,解得m =-33或3.当m =3时,直线l 方程为3x -y +3=0,在x 轴上的截距为-1; 当m =-33,直线l 方程为3x -y +-33=0,在x 轴上的截距为3.例2.(2008天津)设椭圆x 2m 2+y 2m 2-1=1(m >1)上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 到右准线的距离为___________解:根据椭圆定义得2a =1+3,a =2,即m =2,b =m 2-1=3,c =1,e =c a =12,根据第二定义得P 到右准线距离为2.例3.(2007安徽)如图,F 1和F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,A 和B是以O 为圆心,以|OF 1|为半径的圆与该双曲线左支的两个交点,且△F 2AB 是等边三角形,则双曲线的离心率为___________.解法一:不妨设OF 2=1,因为OF 1=OF 2=OA , 所以△AF 1F 2为直角三角形.所以AF 1=1.所以2a =AF 2-AF 1=3-1,又2c =2,所以e =ca=3+解法二:连接OA ,由△ABF 2为等边三角形,可得A 点的坐标为(-12c ,32c ). 因为A 在双曲线上,所以(-12c )2a 2-(32c )2b 2=1,即14e 2-34e 2e 2-1=1,去分母整理得e 4-8e 2+4=0,解得e 2=4±23,e =3±1.因为e >1,所以e =3+1.例4.(2008四川)已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且AK =2AF ,则△AFK 的面积为____________.解:如图,过A 作AH ⊥l ,垂足为H ,由抛物线的定义可知,AF =AH ,又AK =2AF ,所以AK =2AH ,因为∠AHK =90︒,所以∠AKH =45︒,所以KH =AH =y A .所以AF =y A .即AF ⊥x 轴. 所以AF =FK =4,S △AFK =8.例5.(2010四川)椭圆12222=+by a x )0(>>b a 的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是 .分析:由题意,椭圆上存在点P ,使得线段AP 的垂直平分线过点F ,即F 点到P 点与A 点的距离相等,FA PF =。

高考数学江苏专版三维二轮专题复习训练:14个填空题专项强化练(十二) 椭圆 Word版含解析

高考数学江苏专版三维二轮专题复习训练:14个填空题专项强化练(十二) 椭圆 Word版含解析

14个填空题专项强化练(十二) 椭圆A 组——题型分类练题型一 椭圆的定义及标准方程1.设F 1,F 2是椭圆x 249+y 224=1的两个焦点,P 是椭圆上的点,且PF 1∶PF 2=4∶3,则△PF 1F 2的面积为________.解析:因为PF 1+PF 2=14, 又PF 1∶PF 2=4∶3, 所以PF 1=8,PF 2=6.因为F 1F 2=10,所以PF 1⊥PF 2.所以S △PF 1F 2=12PF 1·PF 2=12×8×6=24.答案:242.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为43,则椭圆C 的方程为________.解析:由椭圆的定义知AF 1+AF 2=2a ,BF 1+BF 2=2a , 又∵△AF 1B 的周长=AF 1+AF 2+BF 1+BF 2=43,∴a = 3. 又e =33,∴c =1.∴b 2=a 2-c 2=2, ∴椭圆C 的方程为x 23+y 22=1.答案:x 23+y 22=13.一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且PF 1,F 1F 2,PF 2成等差数列,则椭圆方程为________________.解析:设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点(2,3)在椭圆上,知4a 2+3b 2=1①.又PF 1,F 1F 2,PF 2成等差数列,则PF 1+PF 2=2F 1F 2,即2×2c =2a ,c a =12②,又c 2=a 2-b 2③,联立①②③得a 2=8,b 2=6.故椭圆方程为x 28+y 26=1.答案:x 28+y 26=1题型二 椭圆的几何性质1.椭圆x 29+y 24=1的离心率是________.解析:根据题意知,a =3,b =2,则c =a 2-b 2=5, ∴椭圆的离心率e =c a =53.答案:532.椭圆x 2+my 2=1的焦点在x 轴上,长轴长是短轴长的2倍,则m =________. 解析:由题意可得, 1m =12,所以m =4.答案:43.中心在坐标原点的椭圆,焦点在x 轴上,焦距为4,离心率为22,则该椭圆的方程为______________.解析:依题意,2c =4,c =2,又e =c a =22,则a =22,b =2,所以椭圆的标准方程为x 28+y 24=1. 答案:x 28+y 24=14.已知圆C 1:x 2+2cx +y 2=0,圆C 2:x 2-2cx +y 2=0,椭圆C :x 2a 2+y 2b2=1(a >b >0),若圆C 1,C 2都在椭圆内,则椭圆离心率的取值范围是________.解析:圆C 1,C 2都在椭圆内等价于圆C 2的右顶点(2c,0),上顶点(c ,c )在椭圆内部, ∴只需⎩⎪⎨⎪⎧2c ≤a ,c 2a 2+c 2b 2≤1⇒0<c a ≤12.答案:⎝⎛⎦⎤0,12 5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为________.解析:以线段A 1A 2为直径的圆的方程为x 2+y 2=a 2,由原点到直线bx -ay +2ab =0的距离d =2ab b 2+a2=a ,得a 2=3b 2,所以C 的离心率e = 1-b 2a 2=63. 答案:63题型三 椭圆的综合问题1.已知椭圆x 24+y 2=1的左、右焦点分别为F 1,F 2,点M 在该椭圆上,且MF ―→1·MF ―→2=0,则点M 到y 轴的距离为________.解析:由题意,得F 1(-3,0),F 2(3,0).设M (x ,y ),则MF ―→1·MF ―→2=(-3-x ,-y )·(3-x ,-y )=0,整理得x 2+y 2=3.①又因为点M 在椭圆上,故x 24+y 2=1,即y 2=1-x 24.②将②代入①,得34x 2=2,解得x =±263.故点M 到y 轴的距离为263.答案:2632.设点P 在圆C :x 2+(y -2)2=1上移动,点Q 在椭圆x 29+y 2=1上移动,则PQ 的最大值是________.解析:圆心C (0,2),PQ ≤PC +CQ =1+CQ ,于是只要求CQ 的最大值.设Q (x ,y ), ∴CQ =x 2+(y -2)2=9(1-y 2)+(y -2)2=-8y 2-4y +13=-8⎝⎛⎭⎫y +142+272. ∵-1≤y ≤1,∴当y =-14时,CQ max =272=362, ∴PQ max =1+362. 答案:1+3623.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)及点B (0,a ),过B 与椭圆相切的直线交x 轴的负半轴于点A ,F 为椭圆的右焦点,则∠ABF =________.解析:法一:由题意知,切线的斜率存在,设切线方程为y =kx +a (k >0),与椭圆方程联立⎩⎪⎨⎪⎧y =kx +a ,x 2a 2+y 2b 2=1,得b 2x 2+a 2(kx +a )2-a 2b 2=0,即(b 2+a 2k 2)x 2+2a 3kx +a 4-a 2b 2=0,由Δ=4a 6k 2-4(b 2+a 2k 2)(a 4-a 2b 2)=0,得k =c a ,从而y =c a x +a 交x 轴于A ⎝⎛⎭⎫-a 2c ,0,又F (c,0),易知BA ―→·BF ―→=0,故∠ABF =90°.法二:由椭圆性质可知,过B 且与椭圆相切的斜率为正的直线方程为y =ex +a (e 为椭圆的离心率),即切线斜率为e ,∴tan ∠BAF =c a =e ,又tan ∠OBF =ca =e ,则∠BAF =∠OBF ,因而∠ABF =90°.答案:90° B 组——高考提速练1.在矩形ABCD 中,AB =4,BC =3,则以A ,B 为焦点,且过C ,D 两点的椭圆的短轴的长为________.解析:依题意得AC =5,所以椭圆的焦距为2c =AB =4,长轴长2a =AC +BC =8,所以短轴长为2b =2a 2-c 2=216-4=4 3.答案:4 32.已知P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,若PF ―→1·PF ―→2=0,tan∠PF 1F 2=12,则此椭圆的离心率为________.解析:因为PF ―→1·PF ―→2=0,tan ∠PF 1F 2=12,所以PF ―→1⊥PF ―→2,sin ∠PF 1F 2=55,cos∠PF 1F 2=255.所以PF 1=455c ,PF 2=255c ,则PF 1+PF 2=655c =2a ,所以e =c a =53.答案:533.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点是F (1,0),若椭圆短轴的两个三等分点M ,N与F 构成正三角形,则此椭圆的方程为________.解析:由△FMN 为正三角形,得c =OF =32MN =32×23b =1.解得b =3,∴a 2=b 2+c 2=4.故椭圆的方程为x 24+y 23=1.答案:x 24+y 23=14.过椭圆x 225+y 216=1的中心任作一直线交椭圆于P ,Q 两点,F 是椭圆的一个焦点,则△PQF 周长的最小值是________.解析:设F 为椭圆的左焦点,右焦点为F 2, 根据椭圆的对称性可知FQ =PF 2,OP =OQ ,所以△PQF 的周长为PF +FQ +PQ =PF +PF 2+2PO =2a +2PO =10+2PO , 易知2OP 的最小值为椭圆的短轴长,即点P ,Q 为椭圆的上下顶点时,△PQF 的周长取得最小值18.答案:185.已知椭圆C :x 24+y 23=1的左、右顶点分别为M ,N ,点P 在C 上,且直线PN 的斜率是-14,则直线PM 的斜率为________.解析:设P (x 0,y 0),则x 204+y 203=1,直线PM 的斜率k PM =y 0x 0+2,直线PN 的斜率k PN=y 0x 0-2,可得k PM ·k PN =y 20x 20-4=-34,故k PM =-34·1k PN =3.答案:36.已知椭圆的对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,则这个椭圆方程为________.解析:由题意知⎩⎪⎨⎪⎧a -c =3,c a =12,解得⎩⎨⎧a =23,c = 3.所以椭圆方程为x 212+y 29=1或y 212+x 29=1.答案:x 212+y 29=1或y 212+x 29=17.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过点P (-5,4),则椭圆的方程为________.解析:设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),将点P (-5,4)代入得25a 2+16b2=1.又离心率e =c a =55,即e 2=c 2a 2=a 2-b 2a 2=15,解得a 2=45,b 2=36,故椭圆的方程为x 245+y 236=1.答案:x 245+y 236=18.已知抛物线x 2=2py (p >0)的焦点F 是椭圆y 2a 2+x 2b2=1(a >b >0)的一个焦点,若P ,Q是椭圆与抛物线的公共点,且直线PQ 经过焦点F ,则该椭圆的离心率为________.解析:设点P 在第一象限,由题意,p =2c ,P (2pc ,c ),即P (2c ,c ),代入椭圆方程,可得c 2a 2+4c 2b2=1,整理可得e 4-6e 2+1=0,∵0<e <1,∴e =2-1.答案:2-19.已知动点P (x ,y )在椭圆C :x 225+y 216=1上,F 是椭圆C 的右焦点,若点M 满足|MF―→MF ―→|=1且MP ―→·MF ―→=0,则|PM ―→|的最小值为________.解析:由题意可得FP ―→·FM ―→=|FM ―→|2=1,所以|PM ―→|=|FM ―→-FP ―→|=1+|FP ―→|2-2=|FP ―→|2-1≥(5-3)2-1=3,当且仅当点P 在右顶点时取等号,所以|PM ―→|的最小值是 3. 答案: 310.如图,已知过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A (-a,0)作直线l 交y轴于点P ,交椭圆于点Q ,若△AOP 是等腰三角形,且PQ ―→=2QA ―→,则椭圆的离心率为________.解析:法一:因为△AOP 是等腰三角形,所以OA =OP ,故A (-a,0),P (0,a ),又PQ ―→=2QA ―→,所以Q ⎝⎛⎭⎫-2a 3,a 3,由点Q 在椭圆上得49+a 29b 2=1,解得b 2a 2=15,故离心率e =1-b 2a2=1-15=255. 法二:因为△AOP 是等腰三角形,所以OA =OP ,故直线AP 的方程为y =x +a ,与椭圆方程联立并消去y 得(a 2+b 2)x 2+2a 3x +a 2c 2=0,从而(-a )x Q =a 2c 2a 2+b 2,即x Q =-ac 2a 2+b 2,又由A (-a,0),P (0,a ),PQ ―→=2QA ―→,得x Q =-2a 3,故-ac 2a 2+b 2=-2a 3,即5c 2=4a 2,e 2=45,故e =255. 答案:25511.若椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点在x 轴上,过点(2,1)作圆x 2+y 2=4的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是________.解析:设切点坐标为(m ,n ),则n -1m -2·nm=-1, 即m 2+n 2-n -2m =0. ∵m 2+n 2=4, ∴2m +n -4=0,即AB 的直线方程为2x +y -4=0.∵直线AB 恰好经过椭圆的右焦点和上顶点, ∴2c -4=0,b -4=0,解得c =2,b =4. ∴a 2=b 2+c 2=20,故椭圆方程为x 220+y 216=1.答案:x 220+y 216=112.若A ,B 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)长轴的两个端点,垂直于x 轴的直线与椭圆交于点M ,N ,且k AM ·k BN =14,则椭圆C 的离心率为________.解析:不妨取A (-a,0),B (a,0),设M (x 1,y 1),N (x 1,-y 1). ∵k AM ·k BN =14,∴y 1x 1+a ·-y 1x 1-a =14. 即-y 21x 21-a 2=14.① ∵M (x 1,y 1)在椭圆C 上,∴x 21a 2+y 21b2=1, 即y 21=b 2a2(a 2-x 21),②将②代入①得b 2a 2=14,即a 2=4b 2=4(a 2-c 2). ∴3a 2=4c 2,即e 2=34,∴e =32. 答案:3213.如图所示,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为A ,离心率为12,点P 为椭圆在第一象限内的一点.若S △PF 1A ∶S △PF 1F 2=2∶1,则直线PF 1的斜率为________.解析:连结AF 2交PF 1于点B .由S △PF 1A ∶S △PF 1F 2=2∶1得ABBF 2=21.而A (0,b ),F 1(-c,0),F 2(c,0),所以由A ,B ,F 2三点共线得B ⎝⎛⎭⎫2c 3,b 3,kPF 1=b 3-02c 3-(-c )=b 5c .又因为离心率为12,所以a =2c ,b =3c ,故kPF 1=b 5c =35.答案:35 14.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e .直线l :y=ex +a 与x 轴、y 轴分别交于A ,B 两点,M 是直线l 与椭圆C 的一个公共点,设AM =eAB ,则该椭圆的离心率e =________.解析:因为点A ,B 分别是直线l :y =ex +a 与x 轴,y 轴的交点,所以点A ,B 的坐标分别是⎝⎛⎭⎫-ae ,0,(0,a ). 设点M 的坐标是(x 0,y 0),由AM =eAB , 得⎩⎪⎨⎪⎧x 0=a e (e -1),y 0=ea .(*) 因为点M 在椭圆上,所以x 20a 2+y 20b 2=1,将(*)式代入,得(e -1)2e 2+e 2a 2b 2=1,整理得,e 2+e -1=0, 解得e =5-12或e =-5-12(舍去). 答案:5-12。

(文理通用)江苏省高考数学二轮复习专题三解析几何第10讲圆锥曲线中定点、定值问题练习

(文理通用)江苏省高考数学二轮复习专题三解析几何第10讲圆锥曲线中定点、定值问题练习

(文理通用)江苏省高考数学二轮复习专题三解析几何第10讲圆锥曲线中定点、定值问题练习课后自测诊断——及时查漏补缺·备考不留死角1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点P (2,-1).(1)求椭圆C 的方程;(2)设点Q 在椭圆C 上,且PQ 与x 轴平行,过点P 作两条直线分别交椭圆C 于A (x 1,y 1),B (x 2,y 2)两点,若直线PQ 平分∠APB ,求证:直线AB 的斜率是定值,并求出这个定值.解:(1)由e =c a =32,得a =2b , 所以椭圆C 的方程为x 24b 2+y 2b2=1.把P (2,-1)的坐标代入,得b 2=2, 所以椭圆C 的方程是x 28+y 22=1.(2)证明:由已知得PA ,PB 的斜率存在,且互为相反数. 设直线PA 的方程为y +1=k (x -2),其中k ≠0.由⎩⎪⎨⎪⎧y +1=k x -2,x 2+4y 2=8,消去y ,得x 2+4[kx -(2k +1)]2=8,即(1+4k 2)x 2-8k (2k +1)x +4(2k +1)2-8=0. 因为该方程的两根为2,x A ,所以2x A =42k +12-81+4k2, 即x A =8k 2+8k -21+4k 2.从而y A =4k 2-4k -14k 2+1. 把k 换成-k ,得x B =8k 2-8k -21+4k 2,y B =4k 2+4k -14k 2+1. 计算,得k AB =y B -y A x B -x A =8k -16k =-12,是定值. 2.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为M ,△MF 1F 2为等腰直角三角形,且其面积为1.(1)求椭圆C 的方程;(2)过点M 分别作直线MA ,MB 交椭圆C 于A ,B 两点,设这两条直线的斜率分别为k 1,k 2,且k 1+k 2=2,证明:直线AB 过定点.解:(1)由题意得12a 2=1,∴a =2,又b =c ,a 2=b 2+c 2,∴b =1, ∴椭圆C 的方程为x 22+y 2=1.(2)证明:由(1)得M (0,1).当直线AB 的斜率不存在时,设A (x 0,y 0),则B (x 0,-y 0), 由k 1+k 2=2得y 0-1x 0+-y 0-1x 0=2,得x 0=-1. 当直线AB 的斜率存在时,设直线AB 的方程为y =kx +m (m ≠1),A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m ,可得(1+2k 2)x 2+4kmx +2m 2-2=0,则Δ=8(2k 2-m 2+1)>0, x 1+x 2=-4km 1+2k 2,x 1·x 2=2m 2-21+2k 2.由k 1+k 2=2,得y 1-1x 1+y 2-1x 2=2, 即kx 2+m -1x 1+kx 1+m -1x 2x 1x 2=2,(2-2k )x 1x 2=(m -1)(x 1+x 2), (2-2k )(2m 2-2)=(m -1)(-4km ),由m ≠1,得(1-k )(m +1)=-km ,∴m =k -1, 即y =kx +m =kx +k -1=k (x +1)-1, 故直线AB 过定点(-1,-1),经检验,当k >0或k <-2时,直线AB 与椭圆C 有两个交点,满足题意. 综上所述,直线AB 过定点(-1,-1).3.如图,在平面直角坐标系xOy 中,已知椭圆C 1:x 24+y 2=1,椭圆C 2:x 2a 2+y 2b2=1(a >b >0),C 2与C 1的长轴长之比为2∶1,离心率相同.(1)求椭圆C 2的标准方程; (2)设点P 为椭圆C 2上的一点.①射线PO 与椭圆C 1依次交于点A ,B ,求证:PA PB为定值;②过点P 作两条斜率分别为k 1,k 2的直线l 1,l 2,且直线l 1,l 2与椭圆C 1均有且只有一个公共点,求证k 1·k 2为定值.解:(1)设椭圆C 2的焦距为2c , 由题意,a =22,c a =32,a 2=b 2+c 2,解得b =2, 因此椭圆C 2的标准方程为x 28+y 22=1.(2)证明:①当直线OP 斜率不存在时,PA =2-1,PB =2+1,则PA PB =2-12+1=3-2 2.当直线OP 斜率存在时, 设直线OP 的方程为y =kx ,代入椭圆C 1的方程,消去y ,得(4k 2+1)x 2=4, 所以x 2A =44k 2+1,同理x 2P =84k 2+1.所以x 2P =2x 2A ,由题意,x P 与x A 同号,所以x P =2x A ,从而PA PB =|x P -x A ||x P -x B |=|x P -x A ||x P +x A |=2-12+1=3-2 2.所以PA PB=3-22为定值.②设P (x 0,y 0),所以直线l 1的方程为y -y 0=k 1(x -x 0),即y =k 1x -k 1x 0+y 0, 记t =-k 1x 0+y 0,则l 1的方程为y =k 1x +t ,代入椭圆C 1的方程,消去y ,得(4k 21+1)x 2+8k 1tx +4t 2-4=0, 因为直线l 1与椭圆C 1有且只有一个公共点, 所以Δ=(8k 1t )2-4(4k 21+1)(4t 2-4)=0, 即4k 21-t 2+1=0, 将t =-k 1x 0+y 0代入上式,整理得,(x 20-4)k 21-2x 0y 0k 1+y 20-1=0, 同理可得,(x 20-4)k 22-2x 0y 0k 2+y 20-1=0,所以k 1,k 2为关于k 的方程(x 20-4)k 2-2x 0y 0k +y 20-1=0的两根,从而k 1·k 2=y 20-1x 20-4.又点P (x 0,y 0)在椭圆C 2:x 28+y 22=1上,所以y 20=2-14x 20,所以k 1·k 2=2-14x 20-1x 20-4=-14为定值.4.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)上的点到两个焦点的距离之和为4,椭圆C 的离心率为32,A 为椭圆C 的左顶点. (1)求椭圆C 的方程;(2)圆M :x 2+(y -2)2=r 2(0<r <2).①当r =1时,过点A 作直线l 与圆M 相交于P ,Q 两点,且PQ =255,求直线l 的方程;②当r 变化时,过点A 作圆M 的两条切线分别与椭圆C 相交于点B 和点D ,证明直线BD 恒过定点.解:(1)由题意,得⎩⎪⎨⎪⎧2a =4,c a =32,解得⎩⎨⎧c =3,a =2,所以b 2=a 2-c 2=1.所以椭圆C 的方程为x 24+y 2=1. (2)由题意知,A (-2,0).①当r =1时,圆M :x 2+(y -2)2=1, 易知直线l 的斜率存在且不等于0, 设直线l :y =k l (x +2)(k l ≠0), 则圆心M 到直线l 的距离d =|2k l -2|k 2l +1, PQ =2r 2-d 2=21-⎝ ⎛⎭⎪⎫|2k l -2|k 2l +12=255, 化简得2k 2l -5k l +2=0,解得k l =2或k l =12.所以直线l 的方程为y =2x +4或y =12x +1.②证明:由题意可设过点A 的圆M 的切线方程为y =k (x +2)(k ≠0), 则圆心M 到切线的距离为|2k -2|k 2+1=r ,得(4-r 2)k 2-8k +4-r 2=0, 设切线AB ,AD 的斜率分别为k 1,k 2,则k 1,2=4±r 8-r24-r2,k 1k 2=1. 由⎩⎪⎨⎪⎧y =k x +2,x 24+y 2=1,得(1+4k 2)x 2+16k 2x +16k 2-4=0,解得x =2-8k 21+4k2或x =-2.设B (x 1,y 1),D (x 2,y 2),则x 1=2-8k 211+4k 21,y 1=4k 11+4k 21,x 2=2-8k 221+4k 22=2k 21-8k 21+4,y 2=4k 21+4k 22=4k 1k 21+4, 则k BD =4k 1k 21+4-4k 11+4k 212k 21-8k 21+4-2-8k 211+4k 21=3k 141+k 21. 所以直线BD 的方程为 y -4k 11+4k 21=3k 141+k 21⎝ ⎛⎭⎪⎫x -2-8k 211+4k 21, 化简得y =3k 141+k 21⎝ ⎛⎭⎪⎫x +103,所以直线BD 恒过定点⎝ ⎛⎭⎪⎫-103,0. 5.已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)经过点M (-2,1),且右焦点F (3,0).(1)求椭圆Γ的标准方程;(2)过N (1,0)且斜率存在的直线AB 交椭圆Γ于A ,B 两点,记t =M A →·M B →,若t 的最大值和最小值分别为t 1,t 2,证明t 1+t 2为定值.解:(1)由椭圆x 2a 2+y 2b 2=1的右焦点为(3,0),知a 2-b 2=3,即b 2=a 2-3,则x 2a 2+y 2a 2-3=1,a 2>3. 又椭圆过点M (-2,1),∴4a 2+1a 2-3=1,∵a 2>3,∴a 2=6.∴椭圆Γ的标准方程为x 26+y 23=1.(2)证明:设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 26+y 23=1,y =k x -1得(1+2k 2)x 2-4k 2x +2k 2-6=0,∵点N (1,0)在椭圆内部,∴Δ>0,∴⎩⎪⎨⎪⎧x 1+x 2=4k 21+2k2,x 1x 2=2k 2-62k 2+1,①②则t =M A →·M B →=(x 1+2)(x 2+2)+(y 1-1)(y 2-1) =x 1x 2+2(x 1+x 2)+4+(kx 1-k -1)(kx 2-k -1) =(1+k 2)x 1x 2+(2-k 2-k )(x 1+x 2)+k 2+2k +5,③ 将①②代入③得,t =(1+k 2)·2k 2-62k 2+1+(2-k 2-k )·4k22k 2+1+k 2+2k +5,∴t =15k 2+2k -12k 2+1,∴(15-2t )k 2+2k -1-t =0,k ∈R , 则Δ1=22+4(15-2t )(1+t )≥0,∴(2t -15)(t +1)-1≤0,即2t 2-13t -16≤0, 由题意知t 1,t 2是2t 2-13t -16=0的两根, ∴t 1+t 2=132.∴t 1+t 2为定值.。

江苏省2019届高考数学专题三解析几何3.3大题考法—椭圆达标训练

江苏省2019届高考数学专题三解析几何3.3大题考法—椭圆达标训练

椭圆A 组——大题保分练1.如图,圆C 与y 轴相切于点T (0,2),与x 轴正半轴相交于两点M ,N (点M 在点N 的左侧),且MN =3.(1)求圆C 的方程;(2)过点M 任作一条直线与椭圆T :x 24+y 28=1相交于两点A ,B ,连结AN ,BN ,求证:∠ANM =∠BNM .解:(1)设圆C 的半径为r ,依题意得,圆心坐标为(r,2). ∵MN =3,∴r =⎝ ⎛⎭⎪⎫322+22,∴r =52, ∴圆C 的方程为⎝ ⎛⎭⎪⎫x -522+(y -2)2=254.(2)证明:把y =0代入方程⎝ ⎛⎭⎪⎫x -522+(y -2)2=254,解得x =1或x =4,即点M (1,0),N (4,0).①当AB ⊥x 轴时,由椭圆对称性可知∠ANM =∠BNM .②当AB 与x 轴不垂直时,可设直线AB 的方程为y =k (x -1),联立方程⎩⎪⎨⎪⎧y =k x -,x 24+y28=1消去y ,得(k 2+2)x 2-2k 2x +k 2-8=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2k 2k 2+2,x 1x 2=k 2-8k 2+2.∵y 1=k (x 1-1),y 2=k (x 2-1), ∴k AN +k BN =y 1x 1-4+y 2x 2-4=k x 1-x 1-4+k x 2-x 2-4=k x 1-x 2-+k x 2-x 1-x 1-x 2-.∵(x 1-1)(x 2-4)+(x 2-1)(x 1-4)=2x 1x 2-5(x 1+x 2)+8=k 2-k 2+2-10k2k 2+2+8=0, ∴k AN +k BN =0,∴∠ANM =∠BNM . 综上所述,∠ANM =∠BNM .2.(2018·高邮中学月考)如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左顶点为A (-2,0),离心率为12,过点A 的直线l 与椭圆E 交于另一点B ,点C 为y 轴上的一点.(1)求椭圆E 的标准方程;(2)若△ABC 是以点C 为直角顶点的等腰直角三角形,求直线l 的方程.解:(1)由题意可得:⎩⎪⎨⎪⎧a =2,c a =12,即⎩⎪⎨⎪⎧a =2,c =1,从而有b 2=a 2-c 2=3,所以椭圆E 的标准方程为x 24+y 23=1.(2)设直线l 的方程为y =k (x +2),代入x 24+y 23=1,得(3+4k 2)x 2+16k 2x +16k 2-12=0,因为x =-2为该方程的一个根,解得B ⎝ ⎛⎭⎪⎫6-8k 23+4k 2,12k 3+4k 2,设C (0,y 0),由k AC ·k BC =-1, 得y 02·12k3+4k 2-y 06-8k23+4k2=-1, 即(3+4k 2)y 20-12ky 0+(16k 2-12)=0.(*)由AC =BC ,即AC 2=BC 2,得4+y 2=⎝ ⎛⎭⎪⎫6-8k 23+4k 22+⎝⎛⎭⎪⎫y 0-12k 3+4k 22,即4=⎝ ⎛⎭⎪⎫6-8k 23+4k 22+⎝ ⎛⎭⎪⎫12k 3+4k 22-24k 3+4k 2y 0, 即4(3+4k 2)2=(6-8k 2)2+144k 2-24k (3+4k 2)y 0, 所以k =0或y 0=-2k3+4k2,当k =0时,直线l 的方程为y =0,当y 0=-2k 3+4k 2时,代入(*)得16k 4+7k 2-9=0,解得k =±34,此时直线l 的方程为y =±34(x +2),综上,直线l 的方程为y =0,3x -4y +6=0或3x +4y +6=0.3.(2018·南通、泰州一调)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,焦点到相应准线的距离为1.(1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =2于点Q ,求1OP2+1OQ 2的值.解:(1)由题意得⎩⎪⎨⎪⎧c a =22,a2c -c =1,b 2+c 2=a 2,解得⎩⎨⎧a =2,c =1,b =1.所以椭圆的标准方程为x 22+y 2=1.(2)由题意知OP 的斜率存在.当OP 的斜率为0时,OP =2,OQ =2, 所以1OP2+1OQ 2=1.当OP 的斜率不为0时,设直线OP 的方程为y =kx .由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx ,得(2k 2+1)x 2=2,解得x 2=22k 2+1,所以y 2=2k 22k 2+1,所以OP 2=2k 2+22k 2+1.因为OP ⊥OQ ,所以直线OQ 的方程为y =-1kx .由⎩⎪⎨⎪⎧y =2,y =-1k x 得x =-2k ,所以OQ 2=2k 2+2.所以1OP 2+1OQ 2=2k 2+12k 2+2+12k 2+2=1.综上,可知1OP2+1OQ 2=1.4.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,一个焦点到相应的准线的距离为3,圆N 的方程为(x -c )2+y 2=a 2+c 2(c 为半焦距),直线l :y =kx +m (k >0)与椭圆M 和圆N 均只有一个公共点,分别设为A ,B .(1)求椭圆M 的方程和直线l 的方程; (2)试在圆N 上求一点P ,使PBPA=2 2. 解:(1)由题意知⎩⎪⎨⎪⎧c a =12,a2c -c =3,解得a =2,c =1,所以b =3,所以椭圆M 的方程为x 24+y 23=1.圆N 的方程为(x -1)2+y 2=5,联立⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +m ,消去y ,得(3+4k 2)x 2+8kmx +4m 2-12=0,① 因为直线l :y =kx +m 与椭圆M 只有一个公共点, 所以Δ=64k 2m 2-4(3+4k 2)(4m 2-12)=0得m 2=3+4k 2,② 由直线l :y =kx +m 与圆N 只有一个公共点, 得|k +m |1+k2=5,即k 2+2km +m 2=5+5k 2,③将②代入③得km =1,④ 由②④且k >0,得k =12,m =2.所以直线l 的方程为y =12x +2.(2)将k =12,m =2代入①,可得A ⎝⎛⎭⎪⎫-1,32. 又过切点B 的半径所在的直线l ′为y =-2x +2,所以得交点B (0,2), 设P (x 0,y 0),因为PBPA=22, 则x 20+y 0-2x 0+2+⎝⎛⎭⎪⎫y 0-322=8,化简得7x 20+7y 20+16x 0-20y 0+22=0,⑤又P (x 0,y 0)满足x 20+y 20-2x 0=4,⑥将⑤-7×⑥得3x 0-2y 0+5=0,即y 0=3x 0+52.⑦将⑦代入⑥得13x 20+22x 0+9=0, 解得x 0=-1或x 0=-913,所以P (-1,1)或P ⎝ ⎛⎭⎪⎫-913,1913.B 组——大题增分练1.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1,F 2,右顶点、上顶点分别为A ,B ,原点O 到直线AB 的距离等于ab .(1)若椭圆C 的离心率为63,求椭圆C 的方程; (2)若过点(0,1)的直线l 与椭圆有且只有一个公共点P ,且P 在第二象限,直线PF 2交y 轴于点Q ,试判断以PQ 为直径的圆与点F 1的位置关系,并说明理由.解:由题意,得点A (a,0),B (0,b ),直线AB 的方程为x a +y b=1,即bx +ay -ab =0﹒ 由题设,得||ab a 2+b2=ab ,化简得a 2+b 2=1.①(1)因为e =c a =63,所以a 2-b 2a 2=23,即a 2=3b 2.②由①②,解得⎩⎪⎨⎪⎧a 2=34,b 2=14,所以椭圆C 的方程为4x 23+4y 2=1.(2)点F 1在以PQ 为直径的圆上,理由如下:由题设,直线l 与椭圆相切且l 的斜率存在,设直线l 的方程为y =kx +1,由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =kx +1消去y 得,(b 2+a 2k 2)x 2+2ka 2x +a 2-a 2b 2=0,(*) 则Δ=(2ka 2)2-4(b 2+a 2k 2)(a 2-a 2b 2)=0, 化简得1-b 2-a 2k 2=0,所以k 2=1-b2a2=1,因为点P 在第二象限,所以k =1.把k =1代入方程(*),得x 2+2a 2x +a 4=0, 解得x =-a 2,从而y =b 2,所以P (-a 2,b 2)﹒从而直线PF 2的方程为y -b 2=b 2-a 2-c(x +a 2),令x =0,得y =b 2c a 2+c ,所以点Q ⎝ ⎛⎭⎪⎫0,b 2c a 2+c ﹒从而F 1P ―→=(-a 2+c ,b 2),F 1Q ―→=⎝ ⎛⎭⎪⎫c ,b 2c a 2+c ,从而F 1P ―→·F 1Q ―→=c (-a 2+c )+b 4c a 2+c=c -a 4+b 4+c 2a 2+c =c []b 2-a 2b 2+a 2+c 2a 2+c=0,所以F 1P ―→·F 1Q ―→=0.所以点F 1在以PQ 为直径的圆上.2.如图,在平面直角坐标系xOy 中, 已知圆O :x 2+y 2=4,椭圆C :x 24+y 2=1,A 为椭圆右顶点.过原点O 且异于坐标轴的直线与椭圆C 交于B ,C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的另一交点为Q ,其中D ⎝ ⎛⎭⎪⎫-65,0.设直线AB ,AC 的斜率分别为k 1,k 2. (1)求k 1k 2的值;(2)记直线PQ ,BC 的斜率分别为k PQ ,k BC ,是否存在常数λ,使得k PQ =λk BC ?若存在,求λ的值;若不存在,说明理由;(3)求证:直线AC 必过点Q .解:(1)设B (x 0,y 0),则C (-x 0,-y 0),x 204+y 20=1,因为A (2,0),所以k 1=y 0x 0-2,k 2=y 0x 0+2, 所以k 1k 2=y 0x 0-2·y 0x 0+2=y 2x 20-4=1-14x 2x 20-4=-14.(2)设直线AP 方程为y =k 1(x -2),联立⎩⎪⎨⎪⎧y =k 1x -,x 2+y 2=4,消去y ,得(1+k 21)x 2-4k 21x +4(k 21-1)=0,解得x P =k 21-1+k 21,y P =k 1(x P -2)=-4k 11+k 21, 联立⎩⎪⎨⎪⎧y =k 1x -2,x 24+y 2=1,消去y ,得(1+4k 21)x 2-16k 21x +4(4k 21-1)=0, 解得x B =k 21-1+4k 21,y B =k 1(x B -2)=-4k 11+4k 21,所以k BC =y B x B =-2k 14k 21-1,k PQ =y Px P +65=-4k 11+k 21k 21-1+k 21+65=-5k 14k 21-1, 所以k PQ =52k BC ,故存在常数λ=52,使得k PQ =52k BC .(3)设直线AC 的方程为y =k 2(x -2), 当直线PQ 与x 轴垂直时,Q ⎝ ⎛⎭⎪⎫-65,-85,则P ⎝ ⎛⎭⎪⎫-65,85,所以k 1=-12,即B (0,1),C (0,-1),所以k 2=12,则k AQ =-85-65-2=12=k 2,所以直线AC 必过点Q .当直线PQ 与x 轴不垂直时,设直线PQ 的方程为y =-5k 14k 21-1⎝ ⎛⎭⎪⎫x +65,联立⎩⎪⎨⎪⎧y =-5k 14k 21-1⎝ ⎛⎭⎪⎫x +65,x 2+y 2=4,解得x Q =-k 21-16k 21+1,y Q =16k 116k 21+1,因为k 2=-y B-x B -2=4k 11+4k 21-4k 211+4k 21-2=-14k 1,所以k AQ =16k 116k 21+1-k 21-16k 21+1-2=-14k 1=k 2,故直线AC 必过点Q . 3.(2018·扬州期末)已知椭圆E 1:x 2a 2+y 2b 2=1(a >b >0),若椭圆E 2:x 2ma 2+y 2mb 2=1(a >b >0,m >1),则称椭圆E 2与椭圆E 1“相似”.(1)求经过点(2,1),且与椭圆E 1:x 22+y 2=1“相似”的椭圆E 2的方程;(2)若椭圆E 1与椭圆E 2“相似”,且m =4,椭圆E 1的离心率为22,P 在椭圆E 2上,过P 的直线l 交椭圆E 1于A ,B 两点,且AP ―→=λAB ―→.①若B 的坐标为(0,2),且λ=2,求直线l 的方程; ②若直线OP ,OA 的斜率之积为-12,求实数λ的值.解:(1)设椭圆E 2的方程为x 22m +y 2m=1,将点(2,1)代入得m =2,所以椭圆E 2的方程为x 24+y 22=1.(2)因为椭圆E 1的离心率为22,故a 2=2b 2,所以椭圆E 1:x 2+2y 2=2b 2. 又椭圆E 2与椭圆E 1“相似”,且m =4,所以椭圆E 2:x 2+2y 2=8b 2.设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0).①法一:(设线法)由题意得b =2,所以椭圆E 1:x 2+2y 2=8,椭圆E 2:x 2+2y 2=32.当直线l 斜率不存在时,B (0,2),A (0,-2),P (0,4),不满足AP ―→=2AB ―→,从而直线l 斜率存在,可设直线l :y =kx +2,代入椭圆E 1:x 2+2y 2=8得(1+2k 2)x 2+8kx =0, 解得x 1=-8k 1+2k 2,x 2=0,故y 1=2-4k21+2k2,y 2=2,所以A ⎝ ⎛⎭⎪⎫-8k 1+2k 2,2-4k 21+2k 2.又AP ―→=2AB ―→,即B 为AP 中点,所以P ⎝ ⎛⎭⎪⎫8k 1+2k 2,2+12k 21+2k 2, 代入椭圆E 2:x 2+2y 2=32,得⎝ ⎛⎭⎪⎫8k 1+2k 22+2⎝ ⎛⎭⎪⎫2+12k 21+2k 22=32, 即20k 4+4k 2-3=0,所以k =±3010,所以直线l 的方程为y =±3010x +2. 法二:(设点法)由题意得b =2,所以椭圆E 1:x 2+2y 2=8,E 2:x 2+2y 2=32.由A (x 1,y 1),B (0,2),AP ―→=2AB ―→,即B 为AP 中点, 则P (-x 1,4-y 1).代入椭圆得⎩⎪⎨⎪⎧x 21+2y 21=8,x 21+-y 12=32,解得y 1=12,故x 1=±302, 所以直线l 的斜率k =±3010, 所以直线l 的方程为y =±3010x +2. ②由题意得x 20+2y 20=8b 2,x 21+2y 21=2b 2,x 22+2y 22=2b 2,法一:(设点法)由直线OP ,OA 的斜率之积为-12,得y 0x 0·y 1x 1=-12,即x 0x 1+2y 0y 1=0. 又AP ―→=λAB ―→,则(x 0-x 1,y 0-y 1)=λ(x 2-x 1,y 2-y 1),解得⎩⎪⎨⎪⎧x 2=x 0+λ-1x 1λ,y 2=y 0+λ-1y 1λ,所以⎣⎢⎡⎦⎥⎤x 0+λ-1x 1λ2+2⎣⎢⎡⎦⎥⎤y 0+λ-1y 1λ2=2b 2,则x 20+2(λ-1)x 0x 1+(λ-1)2x 21+2y 20+4(λ-1)y 0y 1+2(λ-1)2y 21=2λ2b 2, (x 20+2y 20)+2(λ-1)(x 0x 1+2y 0y 1)+(λ-1)2(x 21+2y 21)=2λ2b 2,所以8b 2+(λ-1)2·2b 2=2λ2b 2,即4+(λ-1)2=λ2,所以λ=52.法二:(设线法) 不妨设点P 在第一象限,设直线OP :y =kx (k >0),代入椭圆E 2:x 2+2y 2=8b 2,解得x 0=22b 1+2k2,则y 0=22bk 1+2k2.直线OP ,OA 的斜率之积为-12,则直线OA :y =-12k x ,代入椭圆E 1:x 2+2y 2=2b 2,解得x 1=-2bk 1+2k2,则y 1=b1+2k2.又AP ―→=λAB ―→,则(x 0-x 1,y 0-y 1)=λ(x 2-x 1,y 2-y 1),解得⎩⎪⎨⎪⎧x 2=x 0+λ-x 1λ,y 2=y 0+λ-y 1λ,所以⎣⎢⎡⎦⎥⎤x 0+λ-x 1λ2+2⎣⎢⎡⎦⎥⎤y 0+λ-y 1λ2=2b 2,则x 20+2(λ-1)x 0x 1+(λ-1)2x 21+2y 20+4(λ-1)y 0y 1+2(λ-1)2y 21=2λ2b 2, (x 20+2y 20)+2(λ-1)(x 0x 1+2y 0y 1)+(λ-1)2(x 21+2y 21)=2λ2b 2,所以8b 2+2(λ-1)22b 1+2k2·⎝ ⎛⎭⎪⎫-2bk1+2k 2+2·22bk 1+2k 2·b 1+2k2+(λ-1)2·2b 2=2λ2b 2, 即8b 2+(λ-1)2·2b 2=2λ2b 2,即4+(λ-1)2=λ2, 所以λ=52.4.(2018·江苏高考)如图,在平面直角坐标系xOy 中,椭圆C过点⎝⎛⎭⎪⎫3,12,焦点为F 1(-3,0), F 2(3,0),圆O 的直径为F 1F 2.(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若△OAB 的面积为267,求直线l 的方程. 解:(1)因为椭圆C 的焦点为F 1(-3,0),F 2(3,0),可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0).又点⎝⎛⎭⎪⎫3,12在椭圆C 上,所以⎩⎪⎨⎪⎧3a 2+14b 2=1,a 2-b 2=3,解得⎩⎪⎨⎪⎧ a 2=4,b 2=1. 所以椭圆C 的方程为x 24+y 2=1. 因为圆O 的直径为F 1F 2, 所以圆O 的方程为x 2+y 2=3.(2)①设直线l 与圆O 相切于点P (x 0,y 0)(x 0>0,y 0>0),则x 20+y 20=3, 所以直线l 的方程为y =-x 0y 0(x -x 0)+y 0, 即y =-x 0y 0x +3y 0. 由⎩⎪⎨⎪⎧x 24+y 2=1,y =-x 0y 0x +3y 0消去y ,得 (4x 20+y 20)x 2-24x 0x +36-4y 20=0.(*) 因为直线l 与椭圆C 有且只有一个公共点, 所以Δ=(-24x 0)2-4(4x 20+y 20)·(36-4y 20)=48y 20(x 20-2)=0.因为x 0>0,y 0>0,所以x 0=2,y 0=1.所以点P 的坐标为(2,1).②因为△OAB 的面积为267, 所以12AB ·OP =267,从而AB =427. 设A (x 1,y 1),B (x 2,y 2),由(*)得x 1,2=24x 0± 48y 20x 20-x 20+y 20, 所以AB 2=(x 1-x 2)2+(y 1-y 2)2 =⎝ ⎛⎭⎪⎫1+x 20y 20·48y 20x 20-24x 20+y 202. 因为x 20+y 20=3,所以AB 2=16x 20-2x 20+12=3249, 即2x 40-45x 20+100=0,解得x 20=52(x 20=20舍去),则y 20=12, 因此P 的坐标为⎝ ⎛⎭⎪⎫102,22. 所以直线l 的方程为y -22=-5⎝ ⎛⎭⎪⎫x -102, 即y =-5x +3 2.。

江苏省高考数学二轮复习 专题三 解析几何 3.1 小题考法—解析几何中的基本问题讲义(含解析)-人教

江苏省高考数学二轮复习 专题三 解析几何 3.1 小题考法—解析几何中的基本问题讲义(含解析)-人教

专题三 解析几何[江苏卷5年考情分析]小题考情分析大题考情分析常考点1.直线与圆、圆与圆的位置关系(5年4考)2.圆锥曲线的方程及几何性质(5年5考)主要考查直线与椭圆(如2014年、2015年、2017年、2018年)的位置关系、弦长问题、面积问题等;有时也考查直线与圆(如2016年),常与向量结合在一起命题.偶考点 直线的方程、圆的方程第一讲 小题考法——解析几何中的基本问题 考点(一) 直线、圆的方程主要考查圆的方程以及直线方程、圆的基本量的计算.[题组练透]1.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为____________. 解析:由题意知直线l 与直线PQ 垂直,所以k l =-1k PQ=1.又直线l 经过PQ 的中点(2,3),所以直线l 的方程为y -3=x -2,即x -y +1=0.答案:x -y +1=02.(2018·南通一模)已知圆C 过点(2,3),且与直线x -3y +3=0相切于点(0,3),则圆C 的方程为____________.解析:设圆心为(a ,b ), 则⎩⎨⎧b -3a·33=-1,a -22+()b -32=a 2+b -32,解得a =1,b =0,r =2.即所求圆的方程为(x -1)2+y 2=4. 答案:(x -1)2+y 2=43.(2018·南通、扬州、淮安、宿迁、泰州、徐州六市二调)在平面直角坐标系xOy 中,若动圆C 上的点都在不等式组⎩⎨⎧x ≤3,x -3y +3≥0x+3y +3≥0,表示的平面区域内,则面积最大的圆C 的标准方程为____________.解析:作出不等式组表示的可行域如图中阴影部分所示,面积最大的圆C 即为可行域三角形的内切圆.由对称性可知,圆C 的圆心在x 轴上,设半径为r ,则圆心C (3-r,0),且它与直线x -3y +3=0相切,所以|3-r +3|1+3=r ,解得r =2,所以面积最大的圆C 的标准方程为(x -1)2+y 2=4.答案:(x -1)2+y 2=4[方法技巧]1.求直线方程的两种方法 直接法 选用恰当的直线方程的形式,由题设条件直接求出方程中系数,写出结果 待定 系数法先由直线满足的一个条件设出直线方程,使方程中含有待定系数,再由题设条件构建方程,求出待定系数几何法 通过研究圆的性质、直线和圆、圆与圆的位置关系,从而求得圆的基本量和方程 代数法 用待定系数法先设出圆的方程,再由条件求得各系数,从而求得圆的方程考点(二) 直线与圆、圆与圆的位置关系主要考查直线与圆、圆与圆的位置关系,以及根据直线与圆的位置关系求相关的最值与范围问题.[典例感悟][典例] (1)(2018·无锡期末)过圆x 2+y 2=16内一点P (-2,3)作两条相互垂直的弦AB 和CD ,且AB =CD ,则四边形ACBD 的面积为________.(2)(2018·南通、泰州一调)在平面直角坐标系xOy 中,已知点A (-4,0),B (0,4),从直线AB 上一点P 向圆x 2+y 2=4引两条切线PC ,PD ,切点分别为C ,D.设线段CD 的中点为M ,则线段AM 长的最大值为________.[解析] (1)设O 到AB 的距离为d 1,O 到CD 的距离为d 2,则由垂径定理可得d 21=r 2-⎝ ⎛⎭⎪⎫AB 22,d 22=r 2-⎝ ⎛⎭⎪⎫CD 22,由于AB =CD ,故d 1=d 2,且d 1=d 2=22OP =262,所以⎝ ⎛⎭⎪⎫AB 22=r 2-d 21=16-132=192,得AB =38,从而四边形ACBD 的面积为S =12AB ×CD =12×38×38=19. (2)法一:(几何法) 因为直线AB 的方程为y =x +4,所以可设P (a ,a +4),C (x 1,y 1),D (x 2,y 2),所以PC 的方程为x 1x +y 1y =4,PD 的方程为x 2x +y 2y =4,将P (a ,a +4)分别代入PC ,PD 的方程,得⎩⎪⎨⎪⎧ax 1+a +4y 1=4,ax 2+a +4y 2=4,则直线CD 的方程为ax +(a +4)y =4,即a (x+y )=4-4y ,所以直线CD 过定点N (-1,1),又因为OM ⊥CD ,所以点M 在以ON 为直径的圆上(除去原点).又因为以ON 为直径的圆的方程为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -122=12,所以AM 的最大值为⎝⎛⎭⎪⎫-4+122+⎝ ⎛⎭⎪⎫122+22=3 2. 法二:(参数法) 因为直线AB 的方程为y =x +4,所以可设P (a ,a +4),同法一可知直线CD 的方程为ax +(a +4)y =4,即a (x +y )=4-4y ,得a =4-4yx +y .又因为O ,P ,M 三点共线,所以ay -(a +4)x =0,得a =4x y -x .因为a =4-4y x +y =4x y -x ,所以点M 的轨迹方程为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -122=12(除去原点),所以AM 的最大值为⎝ ⎛⎭⎪⎫-4+122+⎝ ⎛⎭⎪⎫122+22=3 2. [答案] (1)19 (2)3 2[方法技巧]解决关于直线与圆、圆与圆相关问题的策略(1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.(2)解决直线与圆相关的最值问题:一是利用几何性质,如两边之和大于第三边、斜边大于直角边等来处理最值;二是建立函数或利用基本不等式求解.(3)对于直线与圆中的存在性问题,可以利用所给几何条件和等式,得出动点轨迹,转化为直线与圆、圆与圆的位置关系.[演练冲关]1.已知圆M :(x -1)2+(y -1)2=4,直线l :x +y -6=0,A 为直线l 上一点,若圆M上存在两点B ,C ,使得∠BAC =60°,则点A 的横坐标的取值范围是________.解析:由题意知,直线l 与圆M 相离,所以点A 在圆M 外.设AP ,AQ 分别与圆M 相切于点P ,Q ,则∠PAQ ≥∠BAC =60°,从而∠MAQ ≥30°.因为MQ =2,所以MA ≤4.设A (x 0,6-x 0),则MA 2=(x 0-1)2+(6-x 0-1)2≤16,解得1≤x 0≤5.答案:[1,5]2.(2018·苏北四市期末)在平面直角坐标系xOy 中,若圆C 1:x 2+(y -1)2=r 2(r >0)上存在点P ,且点P 关于直线x -y =0的对称点Q 在圆C 2:(x -2)2+(y -1)2=1上,则r 的取值范围是________.解析:设圆C 1上存在点P (x 0,y 0)满足题意,点P 关于直线x -y =0的对称点Q (y 0,x 0),则⎩⎪⎨⎪⎧x 20+y 0-12=r 2,y 0-22+x 0-12=1,故只需圆x 2+(y -1)2=r 2与圆(x -1)2+(y -2)2=1有交点即可,所以|r -1|≤1-02+2-12≤r +1,解得2-1≤r ≤2+1.答案:[2-1,2+1]3.在平面直角坐标系xOy 中,已知点P (3,0)在圆C :x 2+y 2-2mx -4y +m 2-28=0内,动直线AB 过点P 且交圆C 于A ,B 两点,若△ABC 的面积的最大值为16,则实数m 的取值范围为________.解析:圆C 的标准方程为(x -m )2+(y -2)2=32,圆心为C (m,2),半径为42,当△ABC 的面积的最大值为16时,∠ACB =90°,此时C 到AB 的距离为4,所以4≤CP <42,即16≤(m -3)2+(0-2)2<32,解得23≤|m -3|<27,即m ∈(3-27,3-23]∪[3+23,3+27).答案:(3-27,3-2 3 ]∪[3+23,3+27)4.(2018·南京、盐城、连云港二模)在平面直角坐标系xOy 中,已知A ,B 为圆C :(x +4)2+(y -a )2=16上的两个动点,且AB =211.若直线l :y =2x 上存在唯一的一个点P ,使得PA ―→+PB ―→=OC ―→,则实数a 的值为________.解析:法一:设AB 的中点为M (x 0,y 0),P (x ,y ),则由AB =211,得CM =16-11=5,即点M 的轨迹为(x 0+4)2+(y 0-a )2=5.又因为PA ―→+PB ―→=OC ―→,所以PM ―→=12OC ―→,即(x 0-x ,y 0-y )=⎝ ⎛⎭⎪⎫-2,a 2,从而⎩⎪⎨⎪⎧x 0=x -2,y 0=y +a 2,则动点P 的轨迹方程为(x +2)2+⎝ ⎛⎭⎪⎫y -a 22=5,又因为直线l 上存在唯一的一个点P ,所以直线l 和动点P 的轨迹(圆)相切,则⎪⎪⎪⎪⎪⎪-4-a 222+-12=5,解得a =2或a =-18.法二:由题意,圆心C 到直线AB 的距离d =16-11=5,则AB 中点M 的轨迹方程为(x +4)2+(y -a )2=5.由PA ―→+PB ―→=OC ―→,得2PM ―→=OC ―→,所以PM ―→∥OC ―→.如图,连结CM 并延长交l 于点N ,则CN =2CM =2 5.故问题转化为直线l 上存在唯一的一个点N ,使得CN =25,所以点C 到直线l 的距离为|2×-4-a |22+-12=25,解得a =2或a =-18. 答案:2或-18考点(三)圆锥曲线的方程及几何性质主要考查三种圆锥曲线的定义、方程及几何性质,在小题中以考查椭圆和双曲线的几何性质为主.[题组练透]1.(2018·南通、泰州一调)在平面直角坐标系xOy 中,已知F 为抛物线y 2=8x 的焦点,则点F 到双曲线x 216-y 29=1的渐近线的距离为________.解析:抛物线的焦点F (2,0),双曲线的渐近线方程为y =±34x ,不妨取y =34x ,即3x-4y =0,所以焦点F 到渐近线的距离为|6|32+-42=65. 答案:652.(2018·苏北四市期中)如图,在平面直角坐标系xOy 中,已知A ,B 1,B 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的右、下、上顶点,F 是椭圆C 的右焦点.若B 2F ⊥AB 1,则椭圆C 的离心率是________.解析:由题意得,A (a,0),B 1(0,-b ),B 2(0,b ),F (c,0),所以B 2F ―→=(c ,-b ),AB 1―→=(-a ,-b ),因为B 2F ⊥AB 1,所以B 2F ―→·AB 1―→=0,即b 2=ac ,所以c 2+ac -a 2=0,e 2+e-1=0,又椭圆的离心率e ∈(0,1),所以e =5-12. 答案:5-123.(2017·江苏高考)在平面直角坐标系xOy 中,双曲线x 23-y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1,F 2,则四边形F 1PF 2Q 的面积是________.解析:由题意得,双曲线的右准线x =32与两条渐近线y =±33x 的交点坐标为⎝ ⎛⎭⎪⎫32,±32.不妨设双曲线的左、右焦点分别为F 1,F 2, 则F 1(-2,0),F 2(2,0), 故四边形F 1PF 2Q 的面积是 12|F 1F 2|·|PQ |=12×4×3=2 3. 答案:2 34.(2018·常州期末)在平面直角坐标系xOy 中,设直线l :x +y +1=0与双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线都相交且交点都在y 轴左侧,则双曲线C 的离心率e 的取值范围是________.解析:双曲线的渐近线分别为y =b a x ,y =-b a x ,依题意有-b a >-1,即b <a ,e =ca=c 2a 2=a 2+b 2a 2< 2.又因为e >1,所以e 的取值范围是(1,2). 答案:(1,2)[方法技巧]应用圆锥曲线的性质的两个注意点(1)明确圆锥曲线中a ,b ,c ,e 各量之间的关系是求解问题的关键.(2)在求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆或双曲线的几何特点,建立关于参数c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.[必备知能·自主补缺](一) 主干知识要记牢1.直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0的位置关系 (1)平行⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0; (2)重合⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1=0; (3)相交⇔A 1B 2-A 2B 1≠0; (4)垂直⇔A 1A 2+B 1B 2=0. 2.直线与圆相交 (1)几何法由弦心距d 、半径r 和弦长的一半构成直角三角形,计算弦长|AB |=2r 2-d 2. (2)代数法设直线y =kx +m 与圆x 2+y 2+Dx +Ey +F =0相交于点M ,N ,M (x 1,y 1),N (x 2,y 2),将直线方程代入圆方程中,消去y 得关于x 的一元二次方程,求出x 1+x 2和x 1·x 2,则|MN |=1+k 2·x 1+x 22-4x 1·x 2.3.判断两圆位置关系时常用几何法即通过判断两圆心距离O 1O 2与两圆半径R ,r (R >r )的关系来判断两圆位置关系. (1)外离:O 1O 2>R +r ; (2)外切:O 1O 2=R +r ; (3)相交:R -r <O 1O 2<R +r ; (4)内切:O 1O 2=R -r ; (5)内含:0≤O 1O 2<R -r .4.椭圆、双曲线中,a ,b ,c 之间的关系 (1)在椭圆中:a 2=b 2+c 2,离心率为e =c a=1-⎝ ⎛⎭⎪⎫b a 2;(2)在双曲线中:c 2=a 2+b 2,离心率为e =c a=1+⎝ ⎛⎭⎪⎫b a2.(3)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±bax .注意离心率e 与渐近线的斜率的关系.(二) 二级结论要用好1.过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2. 2.过圆C 外一点P 做圆C 的切线,切点分别为A ,B (求切线时要注意斜率不存在的情况)如图所示,则(1)P ,B ,C ,A 四点共圆,且该圆的直径为PC ; (2)该四边形是有两个全等的直角三角形组成; (3)cos ∠BCA 2=sin ∠BPA 2=r PC;(4)直线AB 的方程可以转化为圆C 与以PC 为直径的圆的公共弦,且P (x 0,y 0)时,直线AB 的方程为x 0x +y 0y =r 2.3.椭圆焦点三角形的3个规律设椭圆方程是x 2a 2+y 2b2=1(a >b >0),焦点F 1(-c,0),F 2(c,0),点P 的坐标是(x 0,y 0).(1)三角形的三个边长是PF 1=a +ex 0,PF 2=a -ex 0,|F 1F 2|=2c ,e 为椭圆的离心率. (2)如果△PF 1F 2中∠F 1PF 2=α,则这个三角形的面积S △PF 1F 2=c |y 0|=b 2tan α2.(3)椭圆的离心率e =sin ∠F 1PF 2sin ∠F 1F 2P +sin ∠F 2F 1P .4.双曲线焦点三角形的2个结论P (x 0,y 0)为双曲线x 2a 2-y 2b2=1(a >0,b >0)上的点,△PF 1F 2为焦点三角形.(1)面积公式S =c |y 0|=12r 1r 2sin θ=b 2tanθ2(其中PF 1=r 1,PF 2=r 2,∠F 1PF 2=θ).(2)焦半径若P 在右支上,PF 1=ex 0+a ,PF 2=ex 0-a ;若P 在左支上,PF 1=-ex 0-a ,PF 2=-ex 0+a .5.抛物线y 2=2px (p >0)焦点弦AB 的3个结论 (1)x A ·x B =p 24;(2)y A ·y B =-p 2; (3)AB =x A +x B +p . [课时达标训练]A 组——抓牢中档小题1.若直线l 1:mx +y +8=0与l 2:4x +(m -5)y +2m =0垂直,则m =________.解析:∵l 1⊥l 2,∴4m +(m -5)=0,∴m =1. 答案:12.已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为____________.解析:因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =2a5=455,解得a =2,所以圆C 的半径r =|CM |=22+52=3,所以圆C 的方程为(x -2)2+y 2=9.答案:(x -2)2+y 2=93.(2018·镇江期末)已知双曲线x 2a2-y 2=1的左焦点与抛物线y 2=-12x 的焦点重合,则双曲线的右准线方程为________.解析:因为抛物线的焦点为(-3,0),即为双曲线的左焦点,所以a 2=9-1=8,所以双曲线的右准线方程为x =83.答案:x =834.已知直线l 过点P (1,2)且与圆C :x 2+y 2=2相交于A ,B 两点,△ABC 的面积为1,则直线l 的方程为________.解析:当直线斜率存在时,设直线的方程为y =k (x -1)+2,即kx -y -k +2=0.因为S △ABC =12CA ·CB ·sin∠ACB =1,所以12×2×2×sin∠ACB =1,所以sin ∠ACB =1,即∠ACB =90°,所以圆心C 到直线AB 的距离为1,所以|-k +2|k 2+1=1,解得k =34,所以直线方程为3x -4y +5=0;当直线斜率不存在时,直线方程为x =1,经检验符合题意.综上所述,直线l 的方程为3x -4y +5=0或x =1.答案:3x -4y +5=0或x =15.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为4 3,则C 的方程为__________.解析:因为△AF 1B 的周长为43,所以|AF 1|+|AB |+|BF 1|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =43,所以a = 3.又因为椭圆的离心率e =c a =33,所以c =1,b 2=a 2-c 2=3-1=2,所以椭圆C 的方程为x 23+y 22=1.答案:x 23+y 22=16.(2018·南京学情调研)在平面直角坐标系xOy 中,若圆(x -2)2+(y -2)2=1上存在点M ,使得点M 关于x 轴的对称点N 在直线kx +y +3=0上,则实数k 的最小值为________.解析:圆(x -2)2+(y -2)2=1关于x 轴的对称圆的方程为(x -2)2+(y +2)2=1,由题意得,圆心(2,-2)到直线kx +y +3=0的距离d =|2k -2+3|k 2+1≤1,解得-43≤k ≤0,所以实数k 的最小值为-43.答案:-437.已知以椭圆的右焦点F 2为圆心的圆恰好过椭圆的中心,交椭圆于点M ,N ,椭圆的左焦点为F 1,且直线MF 1与此圆相切,则椭圆的离心率e =________.解析:因为圆的半径r =c ,在Rt △F 1F 2M 中,|F 1F 2|=2c ,|F 2M |=c ,|F 1M |=3c ,所以2a =|F 1M |+|F 2M |=(3+1)c ,离心率e =2c 2a =2c3c +c=3-1.答案:3-18.(2018·南京学情调研)在平面直角坐标系xOy 中,若直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=16相交于A ,B 两点,且△ABC 为直角三角形,则实数a 的值是________.解析:由题意知△ABC 为等腰直角三角形,且AC =BC =4,AB =42, ∴圆心C 到直线ax +y -2=0的距离d =42-222=22,∴|a +a -2|a 2+1=22,解得a =-1. 答案:-19.(2018·扬州期末)在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与圆x 2+y 2-6y +5=0没有交点,则双曲线离心率的取值范围是________.解析:由圆x 2+y 2-6y +5=0,得圆的标准方程为x 2+(y -3)2=4,所以圆心C (0,3),半径r =2.因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线bx ±ay =0与该圆没有公共点,则圆心到直线的距离应大于半径,即|b ×0±a ×3|b 2+a 2>2,即3a >2c ,即e =c a <32,又e >1,故双曲线离心率的取值范围是⎝ ⎛⎭⎪⎫1,32.答案:⎝ ⎛⎭⎪⎫1,32 10.在平面直角坐标系xOy 中,已知圆C :x 2+(y -3)2=2,点A 是x 轴上的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则线段PQ 长的取值范围是________.解析:设∠PCA =θ,所以PQ =22sin θ.又cos θ=2AC,AC ∈[3,+∞),所以cosθ∈⎝ ⎛⎦⎥⎤0,23,所以cos 2θ∈⎝ ⎛⎦⎥⎤0,29,sin 2θ=1-cos 2θ∈⎣⎢⎡⎭⎪⎫79,1,所以sinθ∈⎣⎢⎡⎭⎪⎫73,1,所以PQ ∈⎣⎢⎡⎭⎪⎫2143,22. 答案:⎣⎢⎡⎭⎪⎫2143,22 11.(2018·南京、盐城、连云港二模)在平面直角坐标系xOy 中,已知双曲线C :x 2-y 2b2=1(b >0) 的两条渐近线与圆O :x 2+y 2=2的四个交点依次为A ,B ,C ,D .若矩形ABCD 的面积为b ,则b 的值为________.解析:由题意知,双曲线C 的渐近线方程为y =±bx ,如图所示,两条渐近线与圆O 的四个交点为A ,B ,C ,D.不妨设点B 的坐标为(m ,n ),则⎩⎪⎨⎪⎧n =bm ,m 2+n 2=2,解得m 2=2b 2+1,而矩形ABCD 的面积为2m ×2n =4mn =4bm 2=4b ×2b 2+1=b ,解得b =7.答案:712.(2018·苏锡常镇调研)已知直线l :x -y +2=0与x 轴交于点A ,点P 在直线l 上.圆C :(x -2)2+y 2=2上有且仅有一个点B 满足AB ⊥BP ,则点P 的横坐标的取值集合为________.解析:法一:由AB ⊥BP ,得点B 在以AP 为直径的圆D 上,所以圆D 与圆C 相切. 由题意得A (-2,0),C (2,0).若圆D 与圆C 外切,则DC -DA =2;若圆D 与圆C 内切,则DA -DC = 2.所以圆心D 在以A ,C 为焦点的双曲线x 212-y 272=1上,即14x 2-2y 2=7.又点D在直线l 上,由⎩⎪⎨⎪⎧y =x +2,14x 2-2y 2=7,得12x 2-8x -15=0,解得x D =32或x D =-56.所以x P =2x D-x A =2x D +2=5或x P =13.法二:由题意可得A (-2,0),设P (a ,a +2),则AP 的中点M ⎝ ⎛⎭⎪⎫a -22,a +22,AP =2a +22,故以AP 为直径的圆M 的方程为⎝⎛⎭⎪⎫x -a -222+⎝ ⎛⎭⎪⎫y -a +222=⎝⎛⎭⎪⎫|a +2|22.由题意得圆C 与圆M 相切(内切和外切),故⎝ ⎛⎭⎪⎫a -22-22+⎝ ⎛⎭⎪⎫a +222=⎪⎪⎪⎪⎪⎪2±|a +2|2,解得a =13或a =5.故点P 的横坐标的取值集合为⎩⎨⎧⎭⎬⎫13,5.答案:⎩⎨⎧⎭⎬⎫13,513.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,直线x =m 与椭圆相交于A ,B 两点.若△FAB 的周长最大时,△FAB 的面积为ab ,则椭圆的离心率为________.解析:设直线x =m 与x 轴交于点H ,椭圆的右焦点为F 1,由椭圆的对称性可知△FAB 的周长为2(FA +AH )=2(2a -F 1A +AH ),因为F 1A ≥AH ,故当F 1A =AH 时,△FAB 的周长最大,此时直线AB 经过右焦点,从而点A ,B 坐标分别为⎝ ⎛⎭⎪⎫c ,b 2a ,⎝⎛⎭⎪⎫c ,-b 2a ,所以△FAB 的面积为12·2c ·2b 2a ,由条件得12·2c ·2b 2a =ab ,即b 2+c 2=2bc ,b =c ,从而椭圆的离心率为e =22. 答案:2214.已知A ,B 是圆C 1:x 2+y 2=1上的动点,AB =3,P 是圆C 2:(x -3)2+(y -4)2=1上的动点,则|PA ―→+PB ―→|的取值范围为________.解析:因为A ,B 是圆C 1:x 2+y 2=1上的动点,AB =3,所以线段AB 的中点H 在圆O :x 2+y 2=14上,且|PA ―→+PB ―→|=2|PH ―→|.因为点P 是圆C 2:(x -3)2+(y -4)2=1上的动点,所以5-32≤|PH ―→|≤5+32,即72≤|PH ―→|≤132,所以7≤2|PH ―→|≤13,从而|PA ―→+PB ―→|的取值范围是[7,13].答案:[7,13]B 组——力争难度小题1.已知点P 是圆C :x 2+y 2+4x -6y -3=0上的一点,直线l :3x -4y -5=0.若点P 到直线l 的距离为2,则符合题意的点P 有________个.解析:由题意知圆C 的标准方程为(x +2)2+(y -3)2=16,所以圆心(-2,3)到直线l 的距离d =|-6-12-5|5=235∈(4,5),故满足题意的点P 有2个.答案:22.(2017·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________.解析:双曲线的右顶点为A (a,0),一条渐近线的方程为y =b ax ,即bx -ay =0,则圆心A 到此渐近线的距离d =|ba -a ×0|b 2+a 2=abc .又因为∠MAN =60°,圆的半径为b ,所以b ·sin 60°=ab c,即3b 2=ab c ,所以e =23=233. 答案:2333.(2018·南京、盐城一模)在平面直角坐标系xOy 中,若直线y =k (x -33)上存在一点P ,圆x 2+(y -1)2=1上存在一点Q ,满足OP ―→=3OQ ―→,则实数k 的最小值为________.解析:设点P (x ,y ),由OP ―→=3OQ ―→,可得Q ⎝ ⎛⎭⎪⎫x 3,y 3.又点Q 在圆x 2+(y -1)2=1上,可得⎝ ⎛⎭⎪⎫x 32+⎝ ⎛⎭⎪⎫y3-12=1,即x 2+(y -3)2=9,所以点P 既在圆x 2+(y -3)2=9上,又在直线y =k (x -33)上,即直线与圆有交点,所以圆心到直线距离d =||-3-33k 1+k2≤3,解得-3≤k ≤0.答案:- 34.(2017·山东高考)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b2=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点.若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________.解析:设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知 |AF |=y 1+p 2,|BF |=y 2+p 2,|OF |=p2,由|AF |+|BF |=y 1+p 2+y 2+p2=y 1+y 2+p =4|OF |=2p ,得y 1+y 2=p .联立⎩⎪⎨⎪⎧x 2a 2-y 2b2=1,x 2=2py消去x ,得a 2y 2-2pb 2y +a 2b 2=0,所以y 1+y 2=2pb 2a 2,所以2pb2a2=p ,即b 2a 2=12,故b a =22, 所以双曲线的渐近线方程为y =±22x . 答案:y =±22x 5.设椭圆C :x 2a 2+y 2b2=1(a >b >0)恒过定点A (1,2),则椭圆的中心到准线的距离的最小值是________.解析:由已知得1a 2+4b 2=1,因为准线方程为x =a 2c,所以椭圆的中心到准线的距离为d=a 2c ,即d 2=a 4c 2=a 4a 2-b 2=a 4a 2-4a 2a 2-1=a 4-a 2a 2-5=a 2-52+9a 2-5+20a 2-5=a 2-5+20a 2-5+9≥220+9=45+9=(5+2)2,当且仅当a 2=5+25时取等号.所以d ≥5+2,即d min =5+2.答案:5+26.已知圆C :(x -2)2+y 2=4,线段EF 在直线l :y =x +1上运动,点P 为线段EF 上任意一点,若圆C 上存在两点A ,B ,使得PA ―→·PB ―→≤0,则线段EF 长度的最大值是________.解析:过点C 作CH ⊥l 于H ,因为C 到l 的距离CH =32=322>2=r ,所以直线l 与圆C 相离,故点P 在圆C 外.因为PA ―→·PB ―→=|PA ―→||PB ―→|cos ∠APB ≤0,所以cos ∠APB ≤0,所以π2≤∠APB <π,圆C 上存在两点A ,B 使得∠APB ∈⎣⎢⎡⎭⎪⎫π2,π,由于点P 在圆C 外,故当PA ,PB 都与圆C 相切时,∠APB 最大,此时若∠APB =π2,则PC =2r =22,所以PH =PC 2-CH 2=222-⎝⎛⎭⎪⎫3222=142,由对称性可得EF max =2PH =14. 答案:14。

江苏省高考数学二轮复习 专题三 解析几何 3.2 大题考法—直线与圆讲义(含解析)-人教版高三全册数

江苏省高考数学二轮复习 专题三 解析几何 3.2 大题考法—直线与圆讲义(含解析)-人教版高三全册数

第二讲 大题考法——直线与圆题型(一) 直线与圆的位置关系主要考查直线与圆的位置关系以及复杂背景下直线、圆的方程.[典例感悟][例1] 如图,在Rt △ABC 中,∠A 为直角,AB 边所在直线的方程为x -3y -6=0,点T (-1,1)在直线AC 上,BC 中点为M (2,0).(1)求BC 边所在直线的方程;(2)若动圆P 过点N (-2,0),且与Rt △ABC 的外接圆相交所得公共弦长为4,求动圆P 中半径最小的圆方程.[解] (1)因为AB 边所在直线的方程为x -3y -6=0,AC 与AB 垂直,所以直线AC 的斜率为-3.故AC 边所在直线的方程为y -1=-3(x +1), 即3x +y +2=0.设C 为(x 0,-3x 0-2),因为M 为BC 中点, 所以B (4-x 0,3x 0+2).点B 代入x -3y -6=0,解得x 0=-45,所以C ⎝ ⎛⎭⎪⎫-45,25. 所以BC 所在直线方程为x +7y -2=0.(2)因为Rt △ABC 斜边中点为M (2,0),所以M 为Rt △ABC 外接圆的圆心. 又AM =22,从而Rt △ABC 外接圆的方程为(x -2)2+y 2=8. 设P (a ,b ),因为动圆P 过点N ,所以该圆的半径r =a +22+b 2,圆方程为(x -a )2+(y -b )2=r 2.由于⊙P 与⊙M 相交,则公共弦所在直线m 的方程为(4-2a )x -2by +a 2+b 2-r 2+4=0. 因为公共弦长为4,⊙M 半径为22,所以M (2,0)到m 的距离d =2,即|24-2a +a 2+b 2-r 2+4|22-a 2+b2=2,化简得b 2=3a 2-4a ,所以r =a +22+b 2= 4a 2+4.当a =0时,r 最小值为2,此时b =0,圆的方程为x 2+y 2=4.[方法技巧]解决有关直线与圆位置关系的问题的方法(1)直线与圆的方程求解通常用的待定系数法,由于直线方程和圆的方程均有不同形式,故要根据所给几何条件灵活使用方程.(2)对直线与直线的位置关系的相关问题要用好直线基本量之一斜率,要注意优先考虑斜率不存在的情况.(3)直线与圆的位置关系以及圆与圆的位置关系在处理时几何法优先,有时也需要用代数法即解方程组.[演练冲关]已知以点C ⎝⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为坐标原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程. 解:(1)证明:因为圆C 过原点O ,所以OC 2=t 2+4t2.设圆C 的方程是(x -t )2+⎝⎛⎭⎪⎫y -2t 2=t 2+4t2,令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t ,所以S △OAB =12OA ·OB =12×⎪⎪⎪⎪⎪⎪4t ×|2t |=4,即△OAB 的面积为定值. (2)因为OM =ON ,CM =CN , 所以OC 垂直平分线段MN . 因为k MN =-2,所以k OC =12.所以2t =12t ,解得t =2或t =-2.当t =2时,圆心C 的坐标为(2,1),OC =5, 此时C 到直线y =-2x +4的距离d =55<5, 圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),OC =5, 此时C 到直线y =-2x +4的距离d =955> 5.圆C 与直线y =-2x +4不相交, 所以t =-2不符合题意,舍去. 所以圆C 的方程为(x -2)2+(y -1)2=5.题型(二) 圆中的定点、定值问题主要考查动圆过定点的问题其本质是含参方程恒有解,定值问题是引入参数,再利用其满足的约束条件消去参数得定值.[典例感悟][例2] 已知圆C :x 2+y 2=9,点A (-5,0),直线l :x -2y =0. (1)求与圆C 相切,且与直线l 垂直的直线方程;(2)在直线OA 上(O 为坐标原点),存在定点B (不同于点A )满足:对于圆C 上任一点P ,都有PB PA为一常数,试求所有满足条件的点B 的坐标.[解] (1)设所求直线方程为y =-2x +b , 即2x +y -b =0. 因为直线与圆C 相切, 所以|-b |22+12=3,解得b =±3 5.所以所求直线方程为2x +y ±35=0. (2)法一:假设存在这样的点B (t,0). 当点P 为圆C 与x 轴的左交点(-3,0)时,PB PA =|t +3|2;当点P 为圆C 与x 轴的右交点(3,0)时,PB PA =|t -3|8.依题意,|t +3|2=|t -3|8,解得t =-95或t =-5(舍去).下面证明点B ⎝ ⎛⎭⎪⎫-95,0对于圆C 上任一点P ,都有PB PA 为一常数. 设P (x ,y ),则y 2=9-x 2,所以PB 2PA2=⎝ ⎛⎭⎪⎫x +952+y 2x +52+y 2=x 2+185x +9-x 2+8125x 2+10x +25+9-x 2=1825·5x +172·5x +17=925.从而PB PA =35为常数.法二:假设存在这样的点B (t,0),使得PBPA为常数λ,则PB 2=λ2PA 2,所以(x -t )2+y 2=λ2[(x +5)2+y 2],将y 2=9-x 2代入,得x 2-2xt +t 2+9-x 2=λ2(x 2+10x +25+9-x 2),即2(5λ2+t )x +34λ2-t 2-9=0对x ∈[-3,3]恒成立,所以⎩⎪⎨⎪⎧5λ2+t =0,34λ2-t 2-9=0.解得⎩⎪⎨⎪⎧λ=35,t =-95或⎩⎪⎨⎪⎧λ=1,t =-5(舍去).故存在点B ⎝ ⎛⎭⎪⎫-95,0对于圆C 上任一点P ,都有PB PA 为常数35. [方法技巧]关于解决圆中的定点、定值问题的方法(1)与圆有关的定点问题最终可化为含有参数的动直线或动圆过定点.解这类问题关键是引入参数求出动直线或动圆的方程.(2)与圆有关的定值问题,可以通过直接计算或证明,还可以通过特殊化,先猜出定值再给出证明.[演练冲关]1.已知圆C :(x -3)2+(y -4)2=4,直线l 1过定点A (1,0). (1) 若l 1与圆相切,求直线l 1的方程;(2) 若l 1与圆相交于P ,Q 两点,线段PQ 的中点为M ,又l 1与l 2:x +2y +2=0的交点为N ,判断AM ·AN 是否为定值.若是,则求出定值;若不是,请说明理由.解:(1)若直线l 1的斜率不存在,即直线l 1的方程为x =1,符合题意; 若直线l 1斜率存在,设直线l 1的方程为y =k (x -1),即kx -y -k =0. 由题意知,圆心(3,4)到直线l 1的距离等于半径2,即||3k -4-k k 2+1=2,解得k =34,则l 1:3x -4y -3=0.所求直线l 1的方程是x =1或3x -4y -3=0.(2)直线与圆相交,斜率必定存在,且不为0,可设直线l 1方程为kx -y -k =0. 由⎩⎪⎨⎪⎧x +2y +2=0,kx -y -k =0得N ⎝⎛⎭⎪⎫2k -22k +1,-3k 2k +1.又因为直线CM 与l 1垂直,故⎩⎪⎨⎪⎧y =kx -k ,y -4=-1k x -3,可得M ⎝ ⎛⎭⎪⎫k 2+4k +31+k2,4k 2+2k 1+k 2.所以AM ·AN =⎝ ⎛⎭⎪⎫k 2+4k +31+k 2-12+⎝ ⎛⎭⎪⎫4k 2+2k 1+k 22·⎝ ⎛⎭⎪⎫2k -22k +1-12+⎝ ⎛⎭⎪⎫-3k 2k +12=2||2k +11+k 21+k 2·31+k 2||2k +1=6,为定值.故AM ·AN 是定值,且为6. 2.已知圆M 的方程为x 2+(y -2)2=1,直线l 的方程为x -2y =0,点P 在直线l 上,过P 点作圆M 的切线PA ,PB ,切点为A ,B .(1)若∠APB =60°,求点P 的坐标;(2)若P 点的坐标为(2,1),过P 作直线与圆M 交于C ,D 两点,当CD =2时,求直线CD 的方程;(3)求证:经过A ,P ,M 三点的圆必过定点,并求出所有定点的坐标. 解:(1)设P (2m ,m ),因为∠APB =60°,AM =1, 所以MP =2,所以(2m )2+(m -2)2=4, 解得m =0或m =45,故所求点P 的坐标为P (0,0)或P ⎝ ⎛⎭⎪⎫85,45. (2)易知直线CD 的斜率存在,可设直线CD 的方程为y -1=k (x -2), 由题知圆心M 到直线CD 的距离为22,所以22=|-2k -1|1+k2, 解得k =-1或k =-17,故所求直线CD 的方程为x +y -3=0或x +7y -9=0. (3)证明:设P (2m ,m ),MP 的中点Q ⎝ ⎛⎭⎪⎫m ,m2+1,因为PA 是圆M 的切线,所以经过A ,P ,M 三点的圆是以Q 为圆心,以MQ 为半径的圆,故其方程为(x -m )2+⎝ ⎛⎭⎪⎫y -m 2-12=m 2+⎝ ⎛⎭⎪⎫m2-12,化简得x 2+y 2-2y -m (2x +y -2)=0,此式是关于m 的恒等式,故⎩⎪⎨⎪⎧x 2+y 2-2y =0,2x +y -2=0,解得⎩⎪⎨⎪⎧x =0,y =2或⎩⎪⎨⎪⎧x =45,y =25.所以经过A ,P ,M 三点的圆必过定点(0,2)或⎝ ⎛⎭⎪⎫45,25.题型(三)与直线、圆有关的最值或范围问题主要考查与直线和圆有关的长度、面积的最值或有关参数的取值范围问题.[典例感悟][例3] 已知△ABC 的三个顶点A (-1,0),B (1,0),C (3,2),其外接圆为圆H . (1)若直线l 过点C ,且被圆H 截得的弦长为2,求直线l 的方程;(2)对于线段BH 上的任意一点P ,若在以C 为圆心的圆上都存在不同的两点M ,N ,使得点M 是线段PN 的中点,求圆C 的半径r 的取值范围.[解] (1)线段AB 的垂直平分线方程为x =0,线段BC 的垂直平分线方程为x +y -3=0.所以外接圆圆心H (0,3),半径为12+32=10. 圆H 的方程为x 2+(y -3)2=10.设圆心H 到直线l 的距离为d ,因为直线l 被圆H 截得的弦长为2,所以d =102-1=3.当直线l 垂直于x 轴时,显然符合题意,即x =3为所求;当直线l 不垂直于x 轴时,设直线方程为y -2=k (x -3),则|3k +1|1+k 2=3,解得k =43. 所以直线l 的方程为y -2=43(x -3),即4x -3y -6=0.综上,直线l 的方程为x =3或4x -3y -6=0.(2) 直线BH 的方程为3x +y -3=0,设P (m ,n )(0≤m ≤1),N (x ,y ). 因为点M 是线段PN 的中点,所以M ⎝⎛⎭⎪⎫m +x 2,n +y 2,又M ,N 都在半径为r 的圆C 上,所以⎩⎪⎨⎪⎧x -32+y -22=r 2,⎝ ⎛⎭⎪⎫m +x 2-32+⎝ ⎛⎭⎪⎫n +y 2-22=r 2,即⎩⎪⎨⎪⎧x -32+y -22=r 2,x +m -62+y +n -42=4r 2.因为该关于x ,y 的方程组有解,即以(3,2)为圆心,r 为半径的圆与以(6-m,4-n )为圆心,2r 为半径的圆有公共点,所以(2r -r )2≤(3-6+m )2+(2-4+n )2≤(r +2r )2.又3m +n -3=0,所以r 2≤10m 2-12m +10≤9r 2对任意的m ∈[0,1]成立. 而f (m )=10m 2-12m +10在[0,1]上的值域为⎣⎢⎡⎦⎥⎤325,10,所以r 2≤325且10≤9r 2.又线段BH 与圆C 无公共点,所以(m -3)2+(3-3m -2)2>r 2对任意的m ∈[0,1]成立,即r 2<325.故圆C 的半径r 的取值范围为⎣⎢⎡⎭⎪⎫103,4105.[方法技巧]1.隐形圆问题有些时候,在条件中没有直接给出圆方面的信息,而是隐藏在题目中的,要通过分析和转化,发现圆(或圆的方程), 从而最终可以利用圆的知识来求解,我们称这类问题为“隐形圆”问题.2.隐形圆的确定方法(1)利用圆的定义(到定点的距离等于定长的点的轨迹)确定隐形圆; (2)动点P 对两定点A ,B 张角是90°(k PA ·k PB =-1)确定隐形圆;(3)两定点A ,B ,动点P 满足PA ―→·PB ―→=λ确定隐形圆; (4)两定点A ,B ,动点P 满足PA 2+PB 2是定值确定隐形圆;(5)两定点A ,B ,动点P 满足PA =λPB (λ>0,λ≠1)确定隐形圆(阿波罗尼斯圆); (6)由圆周角的性质确定隐形圆. 3.与圆有关的最值或范围问题的求解策略与圆有关的最值或取值范围问题的求解,要对问题条件进行全方位的审视,特别是题中各个条件之间的相互关系及隐含条件的挖掘,要掌握解决问题常使用的思想方法,如要善于利用数形结合思想,利用几何知识,求最值或范围,要善于利用转化与化归思想将最值或范围转化为函数关系求解.[演练冲关]1.(2018·苏北四市期中)如图,在平面直角坐标系xOy 中,已知圆C :x 2+y 2-4x =0及点A (-1,0),B (1,2).(1)若直线l 平行于AB ,与圆C 相交于M ,N 两点,MN =AB ,求直线l 的方程; (2)在圆C 上是否存在点P ,使得PA 2+PB 2=12?若存在,求点P 的个数;若不存在,说明理由.解:(1)因为圆C 的标准方程为(x -2)2+y 2=4, 所以圆心C (2,0),半径为2. 因为l ∥AB ,A (-1,0),B (1,2), 所以直线l 的斜率为2-01--1=1,设直线l 的方程为x -y +m =0,则圆心C 到直线l 的距离为d =|2-0+m |2=|2+m |2.因为MN =AB =22+22=22, 而CM 2=d 2+⎝ ⎛⎭⎪⎫MN 22,所以4=2+m 22+2,解得m =0或m =-4,故直线l 的方程为x -y =0或x -y -4=0. (2)假设圆C 上存在点P ,设P (x ,y ), 则(x -2)2+y 2=4,PA 2+PB 2=(x +1)2+(y -0)2+(x -1)2+(y -2)2=12,即x 2+y 2-2y -3=0,x 2+(y -1)2=4,因为|2-2|<2-02+0-12<2+2,所以圆(x -2)2+y 2=4与圆x 2+(y -1)2=4相交, 所以点P 的个数为2.2.在等腰△ABC 中,已知AB =AC ,且点B (-1,0).点D (2,0)为AC 的中点. (1)求点C 的轨迹方程;(2)已知直线l :x +y -4=0,求边BC 在直线l 上的射影EF 长的最大值. 解:(1)设C (x ,y ), ∵D (2,0)为AC 的中点. ∴A (4-x ,-y ),∵B (-1,0),由AB =AC ,得AB 2=AC 2. ∴(x -5)2+y 2=(2x -4)2+(2y )2, 整理得(x -1)2+y 2=4.∵A ,B ,C 三点不共线,∴y ≠0,则点C 的轨迹方程为(x -1)2+y 2=4(y ≠0). (2)法一:由条件,易得BE :x -y +1=0. 设CF :x -y +b =0. 当EF 取得最大值时,直线CF 与圆(x -1)2+y 2=4相切,设M (1,0),则M 到CF 的距离为|1-0+b |2=2.∴b =22-1(舍去)或b =-22-1. ∴CF :x -y -22-1=0. ∴EF max 等于点B 到CF 的距离 =|-1-0-22-1|2=2+2.法二:设点M (1,0),如图,过点C 的轨迹圆心M 作BE ,CF 的垂线,垂足分别为G ,H ,则四边形EFHG 是矩形. ∴EF =GH =GM +MH . 由条件,得MG =BM2=22= 2.∵MH 的最大值为半径2. ∴EF max =2+2.3.如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程; (3)设点T (t,0)满足:存在圆M 上的两点P 和Q ,使得TA ―→+TP ―→=TQ ―→,求实数t 的取值范围.解:圆M 的标准方程为(x -6)2+(y -7)2=25, 所以圆心M (6,7),半径为5.(1)由圆心N 在直线x =6上,可设N (6,y 0). 因为圆N 与x 轴相切,与圆M 外切, 所以0<y 0<7,圆N 的半径为y 0, 从而7-y 0=5+y 0,解得y 0=1.因此,圆N 的标准方程为(x -6)2+(y -1)2=1.(2)因为直线l ∥OA , 所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m , 即2x -y +m =0, 则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5. 因为BC =OA =22+42=25,而MC 2=d 2+⎝ ⎛⎭⎪⎫BC 22,所以25=m +525+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0. (3)设P (x 1,y 1),Q (x 2,y 2).因为A (2,4),T (t,0),TA ―→+TP ―→=TQ ―→,所以⎩⎪⎨⎪⎧ x 2=x 1+2-t ,y 2=y 1+4.①因为点Q 在圆M 上,所以(x 2-6)2+(y 2-7)2=25.②将①代入②,得(x 1-t -4)2+(y 1-3)2=25.于是点P (x 1,y 1)既在圆M 上,又在圆[x -(t +4)]2+(y -3)2=25上,从而圆(x -6)2+(y -7)2=25与圆[x -(t +4)]2+(y -3)2=25有公共点,所以5-5≤[t +4-6]2+3-72≤5+5, 解得2-221≤t ≤2+221.因此,实数t 的取值范围是[2-221,2+221 ].[课时达标训练]A 组——大题保分练1.已知圆O :x 2+y 2=4交y 轴正半轴于点A ,点B ,C 是圆O 上异于点A 的两个动点.(1)若B 与A 关于原点O 对称,直线AC 和直线BC 分别交直线y =4于点M ,N ,求线段MN 长度的最小值;(2)若直线AC 和直线AB 的斜率之积为1,求证:直线BC 与x 轴垂直.解:(1)由题意,直线AC 和直线BC 的斜率一定存在且不为0,且A (0,2),B (0,-2),AC ⊥BC .设直线AC 的斜率为k ,则直线BC 的斜率为-1k, 所以直线AC 的方程为y =kx +2,直线BC 的方程为y =-1kx -2, 故它们与直线y =4的交点分别为M ⎝ ⎛⎭⎪⎫2k ,4,N (-6k,4). 所以MN =⎪⎪⎪⎪⎪⎪6k +2k ≥43,当且仅当k =±33时取等号,所以线段MN 长度的最小值为4 3.(2)证明:易知直线AC 和直线AB 的斜率一定存在且不为0,设直线AC 的方程为y =kx+2,则直线AB 的方程为y =1kx +2. 由⎩⎪⎨⎪⎧ y =kx +2,x 2+y 2=4解得C ⎝ ⎛⎭⎪⎫-4k 1+k 2,21-k 21+k 2,同理可得B ⎝ ⎛⎭⎪⎫-4k 1+k 2,2k 2-11+k 2.因为B ,C 两点的横坐标相等,所以BC ⊥x 轴.2.已知圆x 2+y 2-4x +2y -3=0和圆外一点M (4,-8).(1)过M 作直线交圆于A ,B 两点,若|AB |=4,求直线AB 的方程;(2)过M 作圆的切线,切点分别为C ,D ,求切线长及CD 所在直线的方程.解:(1)圆即(x -2)2+(y +1)2=8,圆心为P (2,-1),半径r =2 2.①若割线斜率存在,设AB :y +8=k (x -4),即kx -y -4k -8=0,设AB 的中点为N ,则|PN |=|2k +1-4k -8|k 2+1=|2k +7|k 2+1, 由|PN |2+⎝ ⎛⎭⎪⎫|AB |22=r 2,得k =-4528, AB :45x +28y +44=0.②若割线斜率不存在,AB :x =4,代入圆方程得y 2+2y -3=0,y 1=1,y 2=-3符合题意.综上,直线AB 的方程为45x +28y +44=0或x =4.(2)切线长为|PM |2-r 2=4+49-8=3 5.以PM 为直径的圆的方程为(x -2)(x -4)+(y +1)(y +8)=0,即x 2+y 2-6x +9y +16=0.又已知圆的方程为x 2+y 2-4x +2y -3=0,两式相减,得2x -7y -19=0,所以直线CD 的方程为2x -7y -19=0.3.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.解:(1)设圆心C (a,0)⎝⎛⎭⎪⎫a >-52, 则|4a +10|5=2⇒a =0或a =-5(舍去).所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧ x 2+y 2=4,y =k x -1,得(k 2+1)x 2-2k 2x +k 2-4=0, 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t =0⇒k x 1-1x 1-t +k x 2-1x 2-t =0⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0⇒2k 2-4k 2+1-2k 2t +1k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立.4.在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,求所有满足条件的点P 的坐标.解:(1)由于直线x =4与圆C 1不相交,∴直线l 的斜率存在,设直线l 的方程为y =k (x -4),圆C 1的圆心到直线l 的距离为d .∵l 被圆C 1截得的弦长为23,∴d = 22-32=1.又由点到直线的距离公式得d =|-1-7k |1+k2, ∴k (24k +7)=0,解得k =0或k =-724, ∴直线l 的方程为y =0或7x +24y -28=0.(2)设点P (a ,b )满足条件,由题意分析可得直线l 1,l 2的斜率均存在且不为0,不妨设直线l 1的方程为y -b =k (x -a ),则直线l 2的方程为y -b =-1k(x -a ).∵圆C 1和圆C 2的半径相等,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,∴圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等, 即|1-k -3-a -b |1+k 2=⎪⎪⎪⎪⎪⎪5+1k 4-a -b 1+1k 2,整理得|1+3k +ak -b |=|5k +4-a -bk |.∴1+3k +ak -b =±(5k +4-a -bk ),即(a +b -2)k =b -a +3或(a -b +8)k =a +b -5.∵k 的取值有无穷多个,∴⎩⎪⎨⎪⎧ a +b -2=0,b -a +3=0或⎩⎪⎨⎪⎧a -b +8=0,a +b -5=0. 解得⎩⎪⎨⎪⎧ a =52,b =-12或⎩⎪⎨⎪⎧ a =-32,b =132,故这样的点只可能是点P 1⎝ ⎛⎭⎪⎫52,-12或点P 2-32,132.B 组——大题增分练1.如图,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .(1)求圆A 的方程;(2)当MN =219时,求直线l 的方程.解:(1)设圆A 的半径为r .由于圆A 与直线l 1:x +2y +7=0相切,∴r =|-1+4+7|5=2 5.∴圆A 的方程为(x +1)2+(y -2)2=20.(2)①当直线l 与x 轴垂直时,易知x =-2符合题意;②当直线l 的斜率存在时,设直线l 的方程为y =k (x +2).即kx -y +2k =0.连结AQ ,则AQ ⊥MN .∵MN =219,∴AQ =20-19=1,则由AQ =|k -2|k 2+1=1, 得k =34,∴直线l :3x -4y +6=0. 故直线l 的方程为x =-2或3x -4y +6=0.2.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当OP =OM 时,求证:△POM 的面积为定值.解:(1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4.设M (x ,y ),则CM ―→=(x ,y -4),MP ―→=(2-x,2-y ).由题设知CM ―→·MP ―→=0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2.由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)证明:由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于OP =OM ,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以PM 的斜率为-13, 故PM 的方程为y =-13x +83. 又OM =OP =22,O 到l 的距离d 为4105, 所以PM =2OP 2-d 2=4105, 所以△POM 的面积为S △POM =12PM ·d =165. 3.如图,已知位于y 轴左侧的圆C 与y 轴相切于点(0,1),且被x 轴分成的两段弧长之比为2∶1,过点H (0,t )的直线l 与圆C 相交于M ,N 两点,且以MN 为直径的圆恰好经过坐标原点O .(1)求圆C 的方程;(2)当t =1时,求直线l 的方程;(3)求直线OM 的斜率k 的取值范围.解:(1)因为位于y 轴左侧的圆C 与y 轴相切于点(0,1),所以圆心C 在直线y =1上. 又圆C 与x 轴的交点分别为A ,B ,由圆C 被x 轴分成的两段弧长之比为2∶1,得∠ACB =2π3. 所以CA =CB =2,圆心C 的坐标为(-2,1).所以圆C 的方程为(x +2)2+(y -1)2=4.(2)当t =1时,由题意知直线l 的斜率存在,设直线l 的方程为y =mx +1.由⎩⎪⎨⎪⎧ y =mx +1,x +22+y -12=4,消去y , 得(m 2+1)x 2+4x =0,解得⎩⎪⎨⎪⎧ x =0,y =1或⎩⎪⎨⎪⎧ x =-4m 2+1,y =m 2-4m +1m 2+1. 不妨令M ⎝ ⎛⎭⎪⎫-4m 2+1,m 2-4m +1m 2+1,N (0,1). 因为以MN 为直径的圆恰好经过O (0,0),所以OM ―→·ON ―→=⎝ ⎛⎭⎪⎫-4m 2+1,m 2-4m +1m 2+1·(0,1)=m 2-4m +1m 2+1=0,解得m =2±3, 故所求直线l 的方程为y =(2+3)x +1或y =(2-3)x +1.(3)设直线OM 的方程为y =kx , 由题意,知|-2k -1|1+k2≤2,解得k ≤34. 同理得-1k ≤34,解得k ≤-43或k >0. 由(2)知,k =0也满足题意.所以k 的取值范围是⎝⎛⎦⎥⎤-∞,-43∪⎣⎢⎡⎦⎥⎤0,34. 4.已知过点A (-1,0)的动直线l 与圆C :x 2+(y -3)2=4相交于P 、Q 两点,M 是PQ 中点,l 与直线m :x +3y +6=0相交于N .(1)求证:当l 与m 垂直时,l 必过圆心C ;(2)当PQ =23时,求直线l 的方程;(3)探索AM ―→·AN ―→是否与直线l 的倾斜角有关,若无关,请求出其值;若有关,请说明理由.解:(1)∵l 与m 垂直,且k m =-13,∴k l =3, 故直线l 方程为y =3(x +1),即3x -y +3=0.∵圆心坐标(0,3)满足直线l 方程,∴当l 与m 垂直时,l 必过圆心C .(2)①当直线l 与x 轴垂直时, 易知x =-1符合题意.②当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),即kx -y +k =0,∵PQ =23,∴CM =4-3=1,则由CM =|-k +3|k 2+1=1,得k =43, ∴直线l :4x -3y +4=0.故直线l 的方程为x =-1或4x -3y +4=0.(3)∵CM ⊥MN ,∴AM ―→·AN ―→=(AC ―→+CM ―→)·AN ―→=AC ―→·AN ―→+CM ―→·AN ―→=AC ―→·AN ―→.当l 与x 轴垂直时,易得N ⎝⎛⎭⎪⎫-1,-53, 则AN ―→=⎝⎛⎭⎪⎫0,-53,又AC ―→=(1,3), ∴AM ―→·AN ―→=AC ―→·AN ―→=-5.当l 的斜率存在时,设直线l 的方程为y =k (x +1),则由⎩⎪⎨⎪⎧ y =k x +1,x +3y +6=0,得N ⎝ ⎛⎭⎪⎫-3k -61+3k ,-5k 1+3k , 则AN ―→=⎝ ⎛⎭⎪⎫-51+3k ,-5k 1+3k , ∴AM ―→·AN ―→=AC ―→·AN ―→=-51+3k +-15k 1+3k=-5. 综上所述,AM ―→·AN ―→与直线l 的斜率无关,且AM ―→·AN ―→=-5.。

苏教版高中数学高考二轮复习专题运用设点和解点求解椭圆综合问题共16张

苏教版高中数学高考二轮复习专题运用设点和解点求解椭圆综合问题共16张

=
? 9?
6k2 ? 1
4k4 ? k2
4k4 ? k2
令t ? 6k2 ? 1?t ? 1?
联立方程?? ?
y y
? ?
kx? ?2
1
?
P
????
1 k
,?2???
k ? 3k, k ?k ? ? 1 ?3k ? ? 3 为定值.
2
1
2
4k
4
uuur uuuur PB ?PM ? 9 ?
18t
? 9?
运用设点与解点求解椭圆综合问题
高三数学
解析几何中,点是最基本的单位 .点在曲线上,点的坐标 满足方程 .设点意味着建构方程 ,解点意味求解方程(组基本点 .
解决与方程有关问题的关键在于聚焦目标,确定合理路径, 善于运用 设而不求、设而善求 等数学方法 .
在?4,?? ?上单调递增
uuur uuuur
从而有PB ?PM ? 9.
解法3(:1)设M点坐标为
?x 0
,
y 0
?,
?x 0
?
0 ?(2)
uuur PB=
? ? ?
x 0
y? 0
,3 1
? ?, ?
uuuur PM
?
? ? ?
x 0
?
x 0
y? 0
, 1
y 0
?
? 2?
?
k
?
y 0
? 1,
PM
x
0
则k
?k
3?y 2 ? 1?
?
0
1
2
x2
0
因为
x 0
2
?
y2
? 1,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆A 组——大题保分练1.如图,圆C 与y 轴相切于点T (0,2),与x 轴正半轴相交于两点M ,N (点M 在点N 的左侧),且MN =3.(1)求圆C 的方程;(2)过点M 任作一条直线与椭圆T :x 24+y 28=1相交于两点A ,B ,连结AN ,BN ,求证:∠ANM =∠BNM .解:(1)设圆C 的半径为r ,依题意得,圆心坐标为(r,2). ∵MN =3,∴r =⎝ ⎛⎭⎪⎫322+22,∴r =52, ∴圆C 的方程为⎝ ⎛⎭⎪⎫x -522+(y -2)2=254.(2)证明:把y =0代入方程⎝ ⎛⎭⎪⎫x -522+(y -2)2=254,解得x =1或x =4,即点M (1,0),N (4,0).①当AB ⊥x 轴时,由椭圆对称性可知∠ANM =∠BNM .②当AB 与x 轴不垂直时,可设直线AB 的方程为y =k (x -1),联立方程⎩⎪⎨⎪⎧y =k x -1,x 24+y28=1消去y ,得(k 2+2)x 2-2k 2x +k 2-8=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2k 2k 2+2,x 1x 2=k 2-8k 2+2.∵y 1=k (x 1-1),y 2=k (x 2-1), ∴k AN +k BN =y 1x 1-4+y 2x 2-4=k x 1-1x 1-4+k x 2-1x 2-4=k x 1-1x 2-4+k x 2-1x 1-4x 1-4x 2-4.∵(x 1-1)(x 2-4)+(x 2-1)(x 1-4)=2x 1x 2-5(x 1+x 2)+8=2k 2-8k 2+2-10k2k 2+2+8=0,∴k AN +k BN =0,∴∠ANM =∠BNM . 综上所述,∠ANM =∠BNM .2.(2018·高邮中学月考)如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左顶点为A (-2,0),离心率为12,过点A 的直线l 与椭圆E 交于另一点B ,点C 为y 轴上的一点.(1)求椭圆E 的标准方程;(2)若△ABC 是以点C 为直角顶点的等腰直角三角形,求直线l 的方程.解:(1)由题意可得:⎩⎪⎨⎪⎧a =2,c a =12,即⎩⎪⎨⎪⎧a =2,c =1,从而有b 2=a 2-c 2=3,所以椭圆E 的标准方程为x 24+y 23=1.(2)设直线l 的方程为y =k (x +2),代入x 24+y 23=1,得(3+4k 2)x 2+16k 2x +16k 2-12=0,因为x =-2为该方程的一个根,解得B ⎝ ⎛⎭⎪⎫6-8k 23+4k 2,12k 3+4k 2,设C (0,y 0),由k AC ·k BC =-1, 得y 02·12k3+4k 2-y 06-8k23+4k2=-1, 即(3+4k 2)y 20-12ky 0+(16k 2-12)=0.(*)由AC =BC ,即AC 2=BC 2,得4+y 2=⎝ ⎛⎭⎪⎫6-8k 23+4k 22+⎝⎛⎭⎪⎫y 0-12k 3+4k 22,即4=⎝ ⎛⎭⎪⎫6-8k 23+4k 22+⎝ ⎛⎭⎪⎫12k 3+4k 22-24k 3+4k 2y 0, 即4(3+4k 2)2=(6-8k 2)2+144k 2-24k (3+4k 2)y 0, 所以k =0或y 0=-2k3+4k2,当k =0时,直线l 的方程为y =0,当y 0=-2k 3+4k 2时,代入(*)得16k 4+7k 2-9=0,解得k =±34,此时直线l 的方程为y =±34(x +2),综上,直线l 的方程为y =0,3x -4y +6=0或3x +4y +6=0.3.(2018·南通、泰州一调)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,焦点到相应准线的距离为1.(1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =2于点Q ,求1OP2+1OQ 2的值.解:(1)由题意得⎩⎪⎨⎪⎧c a =22,a2c -c =1,b 2+c 2=a 2,解得⎩⎨⎧a =2,c =1,b =1.所以椭圆的标准方程为x 22+y 2=1.(2)由题意知OP 的斜率存在.当OP 的斜率为0时,OP =2,OQ =2, 所以1OP2+1OQ 2=1.OP 的方程为y =kx .由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx ,得(2k 2+1)x 2=2,解得x 2=22k 2+1,所以y 2=2k 22k 2+1,所以OP 2=2k 2+22k 2+1.因为OP ⊥OQ ,所以直线OQ 的方程为y =-1kx .由⎩⎪⎨⎪⎧y =2,y =-1k x 得x =-2k ,所以OQ 2=2k 2+2.所以1OP 2+1OQ 2=2k 2+12k 2+2+12k 2+2=1.综上,可知1OP2+1OQ 2=1.4.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,一个焦点到相应的准线的距离为3,圆N 的方程为(x -c )2+y 2=a 2+c 2(c 为半焦距),直线l :y =kx +m (k >0)与椭圆M 和圆N 均只有一个公共点,分别设为A ,B .(1)求椭圆M 的方程和直线l 的方程; (2)试在圆N 上求一点P ,使PBPA=2 2. 解:(1)由题意知⎩⎪⎨⎪⎧c a =12,a2c -c =3,解得a =2,c =1,所以b =3,所以椭圆M 的方程为x 24+y 23=1.圆N 的方程为(x -1)2+y 2=5,联立⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +m ,消去y ,得(3+4k 2)x 2+8kmx +4m 2-12=0,① 因为直线l :y =kx +m 与椭圆M 只有一个公共点, 所以Δ=64k 2m 2-4(3+4k 2)(4m 2-12)=0得m 2=3+4k 2,② 由直线l :y =kx +m 与圆N 只有一个公共点, 得|k +m |1+k2=5,即k 2+2km +m 2=5+5k 2,③将②代入③得km =1,④ 由②④且k >0,得k =12,m =2.所以直线l 的方程为y =12x +2.(2)将k =12,m =2代入①,可得A ⎝⎛⎭⎪⎫-1,32. 又过切点B 的半径所在的直线l ′为y =-2x +2,所以得交点B (0,2), 设P (x 0,y 0),因为PBPA=22, 则x 20+y 0-22x 0+12+⎝⎛⎭⎪⎫y 0-322=8,化简得7x 20+7y 20+16x 0-20y 0+22=0,⑤又P (x 0,y 0)满足x 20+y 20-2x 0=4,⑥将⑤-7×⑥得3x 0-2y 0+5=0,即y 0=3x 0+52.⑦将⑦代入⑥得13x 20+22x 0+9=0, 解得x 0=-1或x 0=-913,所以P (-1,1)或P ⎝ ⎛⎭⎪⎫-913,1913.B 组——大题增分练1.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1,F 2,右顶点、上顶点分别为A ,B ,原点O 到直线AB 的距离等于ab .(1)若椭圆C 的离心率为63,求椭圆C 的方程; (2)若过点(0,1)的直线l 与椭圆有且只有一个公共点P ,且P 在第二象限,直线PF 2交的位置关系,并说明理由.,即bx +ay -ab =0﹒ 2由①②,解得⎩⎪⎨⎪⎧a 2=34,b 2=14,所以椭圆C 的方程为4x 23+4y 2=1.(2)点F 1在以PQ 为直径的圆上,理由如下:由题设,直线l 与椭圆相切且l 的斜率存在,设直线l 的方程为y =kx +1,由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =kx +1消去y 得,(b 2+a 2k 2)x 2+2ka 2x +a 2-a 2b 2=0,(*) 则Δ=(2ka 2)2-4(b 2+a 2k 2)(a 2-a 2b 2)=0, 化简得1-b 2-a 2k 2=0,所以k 2=1-b2a2=1,因为点P 在第二象限,所以k =1.把k =1代入方程(*),得x 2+2a 2x +a 4=0, 解得x =-a 2,从而y =b 2,所以P (-a 2,b 2)﹒从而直线PF 2的方程为y -b 2=b 2-a 2-c(x +a 2),令x =0,得y =b 2c a 2+c ,所以点Q ⎝ ⎛⎭⎪⎫0,b 2c a 2+c ﹒从而F 1P ―→=(-a 2+c ,b 2),F 1Q ―→=⎝ ⎛⎭⎪⎫c ,b 2c a 2+c ,从而F 1P ―→·F 1Q ―→=c (-a 2+c )+b 4c a 2+c=c -a 4+b 4+c 2a 2+c =c []b 2-a 2b 2+a 2+c 2a 2+c=0,所以F 1P ―→·F 1Q ―→=0.所以点F 1在以PQ 为直径的圆上.2.如图,在平面直角坐标系xOy 中, 已知圆O :x 2+y 2=4,椭圆C :x 24+y 2=1,A 为椭圆右顶点.过原点O 且异于坐标轴的直线与椭圆C 交于B ,C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的另一交点为Q ,其中D ⎝ ⎛⎭⎪⎫-65,0.设直线AB ,AC 的斜率分别为k 1,k 2. (1)求k 1k 2的值;(2)记直线PQ ,BC 的斜率分别为k PQ ,k BC ,是否存在常数λ,使得k PQ =λk BC ?若存在,求λ的值;若不存在,说明理由;(3)求证:直线AC 必过点Q .解:(1)设B (x 0,y 0),则C (-x 0,-y 0),x 204+y 20=1,因为A (2,0),所以k 1=y 0x 0-2,k 2=y 0x 0+2, 所以k 1k 2=y 0x 0-2·y 0x 0+2=y 2x 20-4=1-14x 2x 20-4=-14.(2)设直线AP 方程为y =k 1(x -2),联立⎩⎪⎨⎪⎧y =k 1x -2,x 2+y 2=4,消去y ,得(1+k 21)x 2-4k 21x +4(k 21-1)=0,解得x P =2k 21-11+k 21,y P =k 1(x P -2)=-4k 11+k 21,联立⎩⎪⎨⎪⎧y =k 1x -2,x 24+y 2=1,消去y ,得(1+4k 21)x 2-16k 21x +4(4k 21-1)=0, 解得x B =24k 21-11+4k 21,y B =k 1(x B -2)=-4k 11+4k 21,所以k BC =y B x B =-2k 14k 21-1,k PQ =y P x P +65=-4k 11+k 212k 21-11+k 21+65=-5k 14k 21-1, 所以k PQ =52k BC ,故存在常数λ=52,使得k PQ =52k BC .(3)设直线AC 的方程为y =k 2(x -2), 当直线PQ 与x 轴垂直时,Q ⎝ ⎛⎭⎪⎫-65,-85,则P ⎝ ⎛⎭⎪⎫-65,85,所以k 1=-12,即B (0,1),C (0,-1),所以k 2=12,则k AQ =-85-65-2=12=k 2,所以直线AC 必过点Q .当直线PQ 与x 轴不垂直时,设直线PQ 的方程为y =-5k 14k 21-1⎝ ⎛⎭⎪⎫x +65,联立⎩⎪⎨⎪⎧y =-5k 14k 21-1⎝ ⎛⎭⎪⎫x +65,x 2+y 2=4,解得x Q =-216k 21-116k 21+1,y Q =16k 116k 21+1, 因为k 2=-y B -x B -2=4k 11+4k 2121-4k 211+4k 21-2=-14k 1,所以k AQ =16k 116k 21+1-216k 21-116k 21+1-2=-14k 1=k 2,故直线AC 必过点Q . 3.(2018·扬州期末)已知椭圆E 1:x 2a 2+y 2b 2=1(a >b >0),若椭圆E 2:x 2ma 2+y 2mb 2=1(a >b >0,m >1),则称椭圆E 2与椭圆E 1“相似”.(1)求经过点(2,1),且与椭圆E 1:x 22+y 2=1“相似”的椭圆E 2的方程;(2)若椭圆E 1与椭圆E 2“相似”,且m =4,椭圆E 1的离心率为22,P 在椭圆E 2上,过P 的直线l 交椭圆E 1于A ,B 两点,且AP ―→=λAB ―→.①若B 的坐标为(0,2),且λ=2,求直线l 的方程; ②若直线OP ,OA 的斜率之积为-12,求实数λ的值.解:(1)设椭圆E 2的方程为x 22m +y 2m=1,将点(2,1)代入得m =2,所以椭圆E 2的方程为x 24+y 22=1.(2)因为椭圆E 1的离心率为2,故a 2=22,所以椭圆E 1:x 2+2y 2=2b 2. 又椭圆E 2与椭圆E 1“相似”,且m =4,所以椭圆E 2:x 2+2y 2=8b 2.设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0).①法一:(设线法)由题意得b =2,所以椭圆E 1:x 2+2y 2=8,椭圆E 2:x 2+2y 2=32.当直线l 斜率不存在时,B (0,2),A (0,-2),P (0,4),不满足AP ―→=2AB ―→,从而直线l 斜率存在,可设直线l :y =kx +2,代入椭圆E 1:x 2+2y 2=8得(1+2k 2)x 2+8kx =0, 解得x 1=-8k 1+2k 2,x 2=0,故y 1=2-4k21+2k2,y 2=2,所以A ⎝ ⎛⎭⎪⎫-8k 1+2k 2,2-4k 21+2k 2.又AP ―→=2AB ―→,即B 为AP 中点,所以P ⎝ ⎛⎭⎪⎫8k 1+2k 2,2+12k 21+2k 2, 代入椭圆E 2:x 2+2y 2=32,得⎝ ⎛⎭⎪⎫8k 1+2k 22+2⎝ ⎛⎭⎪⎫2+12k 21+2k 22=32, 即20k 4+4k 2-3=0,所以k =±3010,所以直线l 的方程为y =±3010x +2. 法二:(设点法)由题意得b =2,所以椭圆E 1:x 2+2y 2=8,E 2:x 2+2y 2=32.由A (x 1,y 1),B (0,2),AP ―→=2AB ―→,即B 为AP 中点, 则P (-x 1,4-y 1).代入椭圆得⎩⎪⎨⎪⎧x 21+2y 21=8,x 21+24-y 12=32,解得y 1=12,故x 1=±302, 所以直线l 的斜率k =±3010, 所以直线l 的方程为y =±3010x +2. ②由题意得x 20+2y 20=8b 2,x 21+2y 21=2b 2,x 22+2y 22=2b 2,法一:(设点法)由直线OP ,OA 的斜率之积为-12,得y 0x 0·y 1x 1=-12,即x 0x 1+2y 0y 1=0. 又AP ―→=λAB ―→,则(x 0-x 1,y 0-y 1)=λ(x 2-x 1,y 2-y 1),解得⎩⎪⎨⎪⎧x 2=x 0+λ-1x 1λ,y 2=y 0+λ-1y 1λ,所以⎣⎢⎡⎦⎥⎤x 0+λ-1x 1λ2+2⎣⎢⎡⎦⎥⎤y 0+λ-1y 1λ2=2b 2,则x 20+2(λ-1)x 0x 1+(λ-1)2x 21+2y 20+4(λ-1)y 0y 1+2(λ-1)2y 21=2λ2b 2, (x 20+2y 20)+2(λ-1)(x 0x 1+2y 0y 1)+(λ-1)2(x 21+2y 21)=2λ2b 2,所以8b 2+(λ-1)2·2b 2=2λ2b 2,即4+(λ-1)2=λ2,所以λ=52.法二:(设线法) 不妨设点P 在第一象限,设直线OP :y =kx (k >0),代入椭圆E 2:x 2+2y 2=8b 2,解得x 0=22b 1+2k2,则y 0=22bk 1+2k2.直线OP ,OA 的斜率之积为-12,则直线OA :y =-12k x ,代入椭圆E 1:x 2+2y 2=2b 2,解得x 1=-2bk 1+2k2,则y 1=b1+2k2.又AP ―→=λAB ―→,则(x 0-x 1,y 0-y 1)=λ(x 2-x 1,y 2-y 1),解得⎩⎪⎨⎪⎧x 2=x 0+λ-1x 1λ,y 2=y 0+λ-1y 1λ,所以⎣⎢⎡⎦⎥⎤x 0+λ-1x 1λ2+2⎣⎢⎡⎦⎥⎤y 0+λ-1y 1λ2=2b 2,则x 20+2(λ-1)x 0x 1+(λ-1)2x 21+2y 20+4(λ-1)y 0y 1+2(λ-1)2y 21=2λ2b 2, (x 20+2y 20)+2(λ-1)(x 0x 1+2y 0y 1)+(λ-1)2(x 21+2y 21)=2λ2b 2,所以8b 2+2(λ-1)22b 1+2k2·⎝ ⎛⎭⎪⎫-2bk1+2k 2+2·22bk 1+2k 2·b 1+2k2+(λ-1)2·2b 2=2λ2b 2, 即8b 2+(λ-1)2·2b 2=2λ2b 2,即4+(λ-1)2=λ2, 所以λ=52.4.(2018·江苏高考)如图,在平面直角坐标系xOy 中,椭圆C 过点⎝⎛⎭⎪⎫3,12,焦点为F 1(-3,0), F 2(3,0),圆O 的直径为F 1F 2.(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若△OAB 的面积为267,求直线l 的方程. 解:(1)因为椭圆C 的焦点为F 1(-3,0),F 2(3,0),可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0).又点⎝⎛⎭⎪⎫3,12在椭圆C 上,所以⎩⎪⎨⎪⎧ 3a 2+14b2=1,a 2-b 2=3,解得⎩⎪⎨⎪⎧ a 2=4,b 2=1. 所以椭圆C 的方程为x 24+y 2=1. 因为圆O 的直径为F 1F 2, 所以圆O 的方程为x 2+y 2=3.(2)①设直线l 与圆O 相切于点P (x 0,y 0)(x 0>0,y 0>0),则x 20+y 20=3, 所以直线l 的方程为y =-x 0y 0(x -x 0)+y 0, 即y =-x 0y 0x +3y 0. 由⎩⎪⎨⎪⎧x 24+y 2=1,y =-x 0y 0x +3y 0消去y ,得 (4x 20+y 20)x 2-24x 0x +36-4y 20=0.(*) 因为直线l 与椭圆C 有且只有一个公共点, 所以Δ=(-24x 0)2-4(4x 20+y 20)·(36-4y 20)=48y 20(x 20-2)=0.因为x 0>0,y 0>0,所以x 0=2,y 0=1.所以点P 的坐标为(2,1).②因为△OAB 的面积为267, 所以12AB ·OP =267,从而AB =427. 设A (x 1,y 1),B (x 2,y 2),由(*)得x 1,2=24x 0± 48y 20x 20-224x 20+y 20, 所以AB 2=(x 1-x 2)2+(y 1-y 2)2 =⎝ ⎛⎭⎪⎫1+x 20y 20·48y 20x 20-24x 20+y 202. 因为x 20+y 20=3,所以AB 2=16x 20-2x 20+12=3249, 即2x 40-45x 20+100=0,解得x 20=52(x 20=20舍去),则y 20=12, 因此P 的坐标为⎝ ⎛⎭⎪⎫102,22. 所以直线l 的方程为y -22=-5⎝ ⎛⎭⎪⎫x -102, 即y =-5x +3 2.。

相关文档
最新文档