微积分8-1

合集下载

大一微积分下册经典题目及解析

大一微积分下册经典题目及解析

微积分练习册[第八章]多元函数微分学习题8-1多元函数的基本概念1.填空题:(1)若yxxy y x y x f tan),(22-+=,则___________),(=ty tx f (2)若xy y x y x f 2),(22+=,则(2,3)________,(1,)________yf f x-==(3)若)0()(22φy y y x xyf +=,则__________)(=x f (4)若22),(y x xy y x f -=+,则____________),(=y x f(5)函数)1ln(4222y x y x z ---=的定义域是_______________(6)函数y x z -=的定义域是_______________(7)函数xyz arcsin=的定义域是________________ (8)函数xy xy z 2222-+=的间断点是_______________2.求下列极限: (1)xy xy y x 42lim0+-→→(2)x xyy x sin lim0→→(3)22222200)()cos(1lim y x y x y x y x ++-→→ 3.证明0lim22)0,0(),(=+→yx xy y x4.证明:极限0lim 242)0,0(),(=+→y x yx y x 不存在5.函数⎪⎩⎪⎨⎧=≠+=(0,0)),( ,0)0,0(),(,1sin ),(22y x y x y x x y x f 在点(0,0)处是否连续?为什么习题8-2偏导数及其在经济分析中的应用1.填空题 (1)设y x z tanln =,则__________________,=∂∂=∂∂yzx z ; (2)设)(y x e z xy+=,则__________________,=∂∂=∂∂yzx z ; (3)设zyxu =,则________,__________________,=∂∂=∂∂=∂∂z u y u x u ; (4)设x y axc z tan =,则_________________,_________,22222=∂∂∂=∂∂=∂∂y x zy z x z(5)设zyx u )(=,则________2=∂∂∂y x u ; (6)设),(y x f 在点),(b a 处的偏导数存在,则_________),(),(lim 0=--+→xb x a f b x a f x2.求下列函数的偏导数y xy z )1()1(+=z y x u )arcsin()2(-=3.设xy z =,求函数在(1,1)点的二阶偏导数4.设)ln(xy x z =,求y x z ∂∂∂23和23yx z∂∂∂ 5.)11(yx ez +-=,试化简yz y x z x∂∂+∂∂226.试证函数⎪⎩⎪⎨⎧=≠+=)0,0(),( ,0)0,0(),(,3),(22y x y x yx xyy x f 在点(0,0)处的偏导数存在,但不连续. 习题8-3全微分及其应用1.X 公司和Y 公司是机床行业的两个竞争者,这两家公司的主要产品的需求曲线分别为:QY PY Qx Px 41600;51000-=-=公司X 、Y 现在的销售量分别是100个单位和250个单位。

大一微积分(经管类)第八章 无穷级数

大一微积分(经管类)第八章 无穷级数


n
S
如果数列{ S n } 没有极限,则称无穷级数
un 发散.
n 1
5

例1 讨论等比级数(几何级数)
aqn1 a aq aq2 aqn1 (a Sn a aq aq aq , 1 q a n 当 | q | 1 时, lim q 0 limS n 收敛 n n 1 q
2
第一节
常数项级数的概念和性质
无穷级数是高等数学的一个重要组成部分, 它是表示函数、研究函数的性质以及进行数值 计算的一种工具.
一、级数的基本概念
计算圆的面积
a1 正十二边形的面积 a1 a2 正 3 2 n 形的面积 a1 a2 an 即 A a1 a2 an

(un vn ) 收敛推出 un 、 vn
n1 n1 n1




收敛;
(2) 若
un 收敛,而 vn
n1 n1
发散,则
(u
n1

n
vn ) 必发散.
证 假设
而已知
所以
(u v ) 收敛,
n1 n n

由 vn (un vn ) un ,
un 收敛,
所以级数发散.
12
级数收敛的必要条件
定理 若级数 证明
u
n1

n
收敛,则必有lim un 0 .
n
un Sn Sn1 ,
n
lim S n S ,
lim un lim( S n S n1 ) lim S n lim S n 1
n n

经济数学基础--微积分第八章

经济数学基础--微积分第八章

(1
1 n
)n
,
因为
lim
n
un
lim
n
1
1
n
1
n
1 e
0, 所以级数发散.
例8.1.7 讨论级数 cos n 的敛散性.
n 1
2
解 因为数列{cos n }就是0, 1, 0,1, 0, 1,, 这个数列发散, 所以级数也发散.
2
第 12 页
经济应用数学基础——微积分
第八章 第二节 第 13 页
8 1
简记为 un , 称上式为数项无穷级数, 简称无穷级数.其中, 第n项un 称为级数的一般项, n 1
级数的前n项和
n
Sn uk u1 u2 un k 1
称为级数的前n项部分和, 简称部分和.
8 2
第4 页
经济应用数学基础——微积分

第八章 第一节




定义8.1.2
若数项级数的部分和数列{Sn
lim
n
Sn
1
S.由于an
Sn
Sn1 ,
所以
lim
n
an
lnim(Sn
Sn1 )
S
S
0.
注意 本性质说明如果级数 an收敛, 则通项的极限等于0.反之不成立, 如调和级数
1, 虽然 lim 1 0, 但此级数发散.另外, 如果通项的极限不等于0, 级数一定是发散的, 这
n1 n
n n
就是下面的推论.
n
1
n 2 3 1 5 1 2
n3/2
n 1
n3/2
n n2
n6
n
1

微积分8-1

微积分8-1
所求定义域为 不要解出x,y只要给出 同 不要解出 只要给出x,y同 只要给出 时满足的一个关系式即可
D = {( x , y ) | 2 ≤ x 2 + y 2 ≤ 4, x > y 2 }.
(5)关于二元函数的一些题型: 关于二元函数的一些题型: y 例3 已知f x − y, = x 2 − y 2,求f ( x, y ) 及f (1, 0 ) x y u uv 解:令x − y =u; = v ⇒ x = ;y = x 1− v 1− v
第一节
多元函数的基本概念
一、多元函数的概念 二、二元函数的几何意义 三、多元函数的极限与连续性
一、多元函数的概念
所谓多元函数 所谓多元函数, 是指依赖于多个变量的一种函 多元函数 数关系。多个变量都是相互独立的互不影响 都是相互独立的互不影响, 数关系。多个变量都是相互独立的互不影响,它们 的取值都影响因变量的取值。 的取值都影响因变量的取值。二元及二元以上的函 数统称为多元函数 数统称为多元函数。 例如:影响需求的因素除了商品自身价格p外 例如:影响需求的因素除了商品自身价格 外,还 有相关商品价格p 消费者的收入水平I、 有相关商品价格 1 p2… pn 、消费者的收入水平 、 消费者对未来收入的预期R等 消费者对未来收入的预期 等。故需求函数可表示 元的函数, 为一个n+3元的函数,即Q= Q(p, p1, p2, …,pn,I,R) 元的函数 一元函数到二元函数发生质的变化, 一元函数到二元函数发生质的变化,而二元 到三元、四元……仅仅是量的变化.下面我们仅讨 ……仅仅是量的变化 到三元、四元……仅仅是量的变化 下面我们仅讨 论二元函数的概念和有关性质. 论二元函数的概念和有关性质
ቤተ መጻሕፍቲ ባይዱ

微积分初步辅导8定积分与无穷积分

微积分初步辅导8定积分与无穷积分

《微积分初步》辅导8----定积分与无穷积分一、学习重难点解析(一)关于定积分1. 定积分的概念 定积分⎰bax x f d )(是一个数值, 这个数值为=ba x F )()()(a Fb F -, 这里F (x )是被积函数f (x )的任意一个原函数. 即⎰bax x f d )(=ba x F a Fb F )()()(=-这个数值与积分区间[a ,b ]有关, 与被积函数和积分变量上、下限有关, 但与积分变量选取什么字母无关. 因此有⎰⎰-=abb ax x f x x f d )(d )(0)d )((d d =⎰b ax x f x定积分不同于不定积分. 不定积分⎰x x f d )(是f (x )的全体原函数, 即无穷多个函数, 而定积分⎰bax x f d )(是一个确定的数值.2. 定积分的计算由牛顿——莱布尼茨公式知, 定积分在计算上是完全依赖于不定积分的. 在定积分计算中也有换元积分法和分部积分法, 它们与不定积分中的换元积分法和分部积分法的区别在于:(1)在使用定积分的换元积分法时, 换元一定要换限, 积分变量必须与自己的积分上、下限相对应. 换元换限后, 对新的积分变量求得的原函数, 可直接代入新变量的上、下限求值, 而不必再还原到原来的变量在求值.(2)定积分的分部积分法所处理的函数类型与u , v d 的选择与不定积分完全相同只是在定积分中每一项都必须带积分上、下限.(二)关于无穷限积分无穷限积分的处理方法是将其转化为有限区间积分的极限, 计算时先求有限区间积分(即定积分)得到一个新变量的函数⎰=Φbax x f b d )()(在令+∞→b , 由)(lim b b Φ+∞→的存在与否, 确定⎰∞+ax x f d )(是否收敛. 若收敛则积分值等于极限值.二、典 型 例 题例1 判断下列等式是否正确. (1)21d ln d de 1=⎰x x x x 分析:根据定积分的定义进行判断.解(1)由定积分定义,)()(d )(a F b F x x f ba-=⎰是一个确定的数值, 因此, 对函数先求定积分再求导数等于对一个数值求导数, 所以结果应该为零. 即等式21d ln d d e 1=⎰x x x x 错误, 正确的结果应为0d ln d d e 1=⎰x xxx . 例2 计算下列积分: (1)x x d sin 20⎰π分析:注意到被积函数带有绝对值符号, 而在积分时, 绝对值符号是一定要打开的, 且在积分区间]2,0[π上有⎩⎨⎧≤<-≤≤=πππ2sin 0sin sin x x x xx 利用定积分的区间可加性和N-L 进行计算.解 (1)⎰⎰⎰-+=ππππ2020d sin d sin d sin x x x x x x)]1(1[]11[cos cos 20--+---=+-=πππx x4=.说明:本例在求积分的方法直接积分法. 这种方法适用与那些只用到基本积分公式和积分运算性质, 或者对被积函数进行适当变形就 可以运用积分公式求积分的题目. 在解题中应该注意:1.熟悉基本积分公式;2.在解题中经常要对被积函数进行适当的的变形(例如(1)中将绝对值打开), 变形的目的是使被积函数为积分基本公式中的函数或它们的线性组合. 这些方法和技巧的掌握是基于平时的练习;3.如果连续试探几次, 进行不同的变形后仍无法达到目的, 则应考虑其它积分方法求解.例3 计算下列积分:(1)x xxd ln e12⎰(2)x x d sin 203⎰π分析 注意到这几个被积函数都是复合函数, 对于复合函数的积分问题一般是利用凑微分法(第一换元积分法), 在计算中要明确被积函数中的中间变量)(x u ϕ=, 设法将对x 求积分转化为对)(x u ϕ=求积分. 对于定积分的凑微分的题目要注意:换元积分法的特点, 即“换元变限”.(1)将被积函数x x 2)(ln 看成x u 2, 其中x u ln =, 且x xu d 1d =, 于是x x u d 2u u d 2=, 这样对于变量x u ln =可以利用积分公式求积分.(2)将被积函数x 3sin 分解成x x x x x x x sin cos sin sin )cos 1(sin sin 222-=-=即分成两个函数积分的和, 第一个积分可以由N-L 公式直接得到, 第二个积分中被积函数视为x u sin 2, 其中x u cos =, x x u d sin d -=解(1)[方法1]换元换限. 令x u ln =, 则x xu d 1d =, 且当1=x 时, 0=u , e =x 时, 1=u , 于是有 31)01(3131d d ln 3313102e12=-===⎰⎰u u u x x x [方法2] 只凑微分不换元, 不换积分限.)d(ln ln d ln e 12e12x x x xx⎰⎰=31])1(ln )e [(ln 31)(ln 3133e13=-==x(2) 因为x x d sin 203⎰π=x x x x x x x x d sin cos d sin d sin ]cos 1[20220202⎰⎰⎰-=-πππ对于积分1cos d sin 2020=-=⎰ππx x x对于积分x x x d sin cos 202⎰π用凑微分法,[方法1] 令x u cos =, 则x x u d sin d -=, 且当0=x 时, 1=u , 2π=x 时, 0=u , 于是有3131d d sin cos 1312202==-=⎰⎰u u u x x x π[方法2] 只凑微分不换元, 不换积分限.31cos 31dcos cos d sin cos 20320222=-=-=⎰⎰πππx x x x x x说明:第一换元积分法是积分运算的重点, 也是难点. 一般地, 第一换元积分法所处理的函数是复合函数, 故此法的实质是复合函数求导数的逆运算. 在运算中始终要记住换元的目的是使换元后的积分⎰u u f d )(容易求原函数.应用第一换元积分法时, 首先要牢记积分基本公式, 明了基本公式中的变量x 换成x 的函数时公式仍然成立. 同时还要熟悉微分学中的微分基本公式, 复合函数微分法则和常见的 “凑微分”形式. 具体解题时, “凑微分”要朝着⎰u u f d )(容易求积分的方向进行.在定积分计算中, 因为积分限是积分变量的变化范围, 当积分变量发生改变, 相应的积分限一定要随之变化, 所以, 在应用换元积分法解题时, 如果积分变量不变(例如(3)(4)中的方法2). 则积分限不变. 而且在换元换限时, 新积分变量的上限对应于旧积分变量的上限, 新积分变量的下限对应于旧积分变量的下限, 当以新的变量求得原函数时可直接代入新变量的积分上、下限求积分值即可无须在还原到原来变量求值(例如(1)(2)中的方法2).由于积分方法是灵活多样的, 技巧性较强, 一些“凑”的方法是要靠一定量的练习来积累的(例如(2))因此, 我们只有通过练习摸索规律, 提高解题能力.例4 计算下列积分:(1)⎰22d e x x x; (2)⎰e e1d ln x x分析 注意到这些积分都不能用换元积分法, 所以要考虑分部积分,对于分部积分法适用的函数及v u ',的选择可以参照表3-1, 具体步骤是:1.凑微分, 从被积函数中选择恰当的部分作为x v d ', 即v x v d d =', 使积分变为⎰v u d ; 2.代公式,⎰⎰-=u v uv v u d d , 计算出x u u d d '= 3.计算积分⎰u v d . 在定积分的分部积分公式是⎰⎰-=baba ba u v uv v u d d , 它与不定积分的区别在于每一项都带有积分上、下限. 注意公式中ba uv 是一个常数, 在计算中应随时确定下来, 在计算(3)小题时应设法先去掉被积函数的绝对值符号, 这时需要根据绝对值的性质适当的利用定积分对区间的可加性质.解(1) 设2e ,x v x u ='=, 则2e 2x v =, 由定积分分部积分公式有44e 4e 4e4e 4d e 2e2d e 20222202202=+-=-=-=⎰⎰x x x x x x x x(2)因为⎪⎩⎪⎨⎧≤≤<≤-=e1ln 1e1ln ln x x x x x , 利用积分区间的可加性得到⎰⎰⎰+-=e11e1e e1d ln d ln d ln x x x x x x其中第一个积分为⎰⎰-=1e 11e 11e 1d ln d ln x x x x x x x 1e2e 11e 1-=+-= 第二个积分为11e e d ln d ln e 1e1e1=+-=-=⎰⎰x x x x x ,最后结果为e221e 21d ln d ln d ln e 11e1e e1-=+-=+-=⎰⎰⎰x x x x x x . 例5 计算下列无穷限积分:(1)x x d )1(113⎰∞++; (2)⎰∞+-02d e x x ; (3)⎰∞+0d ln 1x xx 分析 对于无穷限积分⎰+∞ax x f d )(的求解步骤为:(1)求常义定积分⎰-=baa Fb F x x f )()(d )(;(2)计算极限)]()([lim a F b F b -+∞→极限存在则收敛(或可积)否则发散. 收敛时积分值等于极限值.解 (1)])1(21[lim d )1(1lim d )1(1121313bb b b x x x x x -+∞→+∞→∞++-=+=+⎰⎰=)41()21(])11()1[(lim 2122-⨯-=+-+---+∞→b b 81=(2)]e 31[lim d elimd e30303bx b bxb xx x -+∞→-+∞→∞+--==⎰⎰31]e e[31[lim 03=--=-+∞→bb (3)+∞===+∞→+∞→∞+⎰⎰bb b b x x x x xx e e e)ln(ln lim )d(ln ln 1lim d ln 1说明此无穷积分发散.注意:正如中提到的, 上述无穷限积分的计算过程也可以写成下面的形式(1)81])1(21[d )1(11213-=+-=++∞-∞+⎰x x x (2)31]e 31[d e 0303=-=+∞-∞+-⎰xx x (3)+∞===∞+∞+∞+⎰⎰e x x xx x x )ln(ln )d(ln ln 1d ln 1e e.。

8-1 多元函数的基本概念

8-1 多元函数的基本概念
时,Biblioteka (x,y)有不同的极限值或无极限,则
lim f(x,y) 不存在
微积分八①
18/22-31
x y 例3 证明 lim 6 2 不存在. x 0 x y y 0

3
y kx3 , 令
3
x 3 kx3 3 k x y lim 当(x,y)沿任何曲线 y kx 趋于(0,0)时,有: , lim 6 2 2 x 0 x 6 k 2 x 6 1 k x 0 x y 3
微 积

电 子 教 案
Conception of functions of several variables
一、二元函数及其定义域 二、二元函数的几何意义
三、二元函数的极限与连续
3/22-31
1、平面区域: xy平面上几条曲线围成的平面一部 分或整个平面 围成区域的曲线称为区域边界. y 分为开区域、闭区域、半开区域。 或有界区域、无界区域。 o 2 2 例如 {( x, y ) | 1 x y 4}. y
25/22-31
1.1、二元函数的改变量
设z f ( x, y), ( x, y) D ( x0 , y0 ) D
x y (3) x由 x0改 变 到 0 x , y由 y0改 变 到 0 y, 则z f ( x0 x, y0 y ) f ( x0 , y0 ) 称为f ( x, y )在( x0 , y0 )处 的 全 增 量 .
13/22-31
二元函数 z f ( x, y )的几何意义即二元函数的图形.
二元函数的图形通常是三维空间的一张曲面.
微积分八①
14/22-31
例如, z sin xy 图形如右图.

微积分8_1向量

微积分8_1向量

在空间直角坐标系下, 任意向量 r 可用向径 OM 表示.
OM = ON + NM = OA + OB + OC
r r r r r = x i + y j + z k ↔ (x , y , z )
此式称为向量 r 的坐标分解式 , 坐标分解式
C r r r r M k j B ro y i A N x
机动 目录 上页 下页 返回 结束
分配律
定理1. 设 a 为非零向量 , 则 定理 a∥b (λ 为唯一实数)
例1. 设 M 为 解:
ABCD 对角线的交点,
试 a 与b 表 MA, MB, MC, MD. 用 示
a +b = AC b −a = BD
MC = 1 ( a + b) 2
= −2 MA = −2 MB
a
三角形法则可推广到多个向量相加 .
机动 目录 上页 下页 返回 结束
s = a1 + a2 + a3 + a4 + a5 a4 a3
a5
s
a2
a1
机动
目录
上页
下页
返回
结束
2. 向量的减法
a
三角不等式
机动
目录
上页
下页
返回
结束
3. 向量与数的乘法
r λ 是一个数 , λ 与 a 的乘积是一个新向量, 记作 λ a .
机动
目录
上页
下页
返回
结束
提示: 提示 (1) 设动点为 M(x, y , 0) ,利用 MA = MB , 得 且 (2) 设动点为 M(x, y , z) , 利用 MA = MB , 得 例6. 已知两点

微积分(二)课后题答案,复旦大学出版社 第八章

微积分(二)课后题答案,复旦大学出版社 第八章

第八章习题8-1 1.求下列函数的定义域,并画出其示意图:(1)z=(2)1ln()zx y=-;(3)z=arcsin yx;(4)zarccos(x2+y2).解:(1)要使函数有意义,必须222210x ya b--≥即22221x ya b+≤,则函数的定义域为2222(,)|1x yx ya b⎧⎫+≤⎨⎬⎩⎭,如图8-1阴影所示.图8-1 图8-1(2)要使函数有意义,必须ln()0x yx y-≠⎧⎨->⎩即1x yx y-≠⎧⎨>⎩,则函数的定义域为{(,)|x y x y>且1}x y-≠,如图8-2所示为直线y x=的下方且除去1y x=-的点的阴影部分(不包含直线y x=上的点).(3)要使函数有意义,必须1yxx⎧≤⎪⎨⎪≠⎩,即11yxx⎧-≤≤⎪⎨⎪≠⎩,即x y xx-≤≤⎧⎨>⎩或x y xx≤≤-⎧⎨<⎩,所以函数的定义域为{(,)|0x y x>且}{(,)|0,}x y x x y x x y x-≤≤<≤≤-,如图8-3阴影所示.图8-3 图8-4(4)要使函数有意义,必须2200||1x y x y ⎧⎪≥⎨⎪+≤⎩即222001x y x y x y ≥⎧⎪≥⎪⎨≥⎪⎪+≤⎩, 所以函数的定义域为222{(,)|0,0,,1}x y x y x y x y ≥≥≥+≤,如图8-4阴影所示.2.设函数f (x ,y )=x 3-2xy +3y 2,求 (1) f (-2,3); (2) f 12,x y ⎛⎫⎪⎝⎭; (3)f (x +y ,x -y ). 解:(1)32(2,3)(2)2(2)33331f -=--⨯-⨯+⨯=;(2)23321211221412,23f x y x x y y x xy y ⎛⎫⎛⎫⎛⎫=-⋅⋅+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)32(,)()2()()3()f x y x y x y x y x y x y +-=+-+-+- 3222()2()3()x y x y x y =+--+-. 3.设F (x ,y )f,若当y =1时,F (x ,1)=x ,求f (x )及F (x ,y )的表达式. 解:由(,1)F x x =得1)x f =即1)1f x =-1t =则2(1)x t =+代入上式有2()(1)1(2)f t t t t =+-=+所以 ()(2)f x x x =+于是(,)1)1) 1F x y f x ===-4.指出下列集合A 的内点、边界点和聚点:(1){(,)01,0}A x y x y x =≤≤≤≤;(2){(,)31}A x y x y =+=; (3)A ={(x ,y )|x 2+y 2>0}; (4)(0,2]A =. 解:(1)内点{(,)|01,0}x y x y x <<<<边界点{(,)|01,0}{(,)|01,1}x y x y x y y x ≤≤=≤≤= {(,)|,01}x y y x x =≤≤ 聚点A (2)内点∅ 边界点A 聚点A (3)内点A边界点(0,0) 聚点A(4)内点∅ 边界点[0,2] 聚点[0,2]习题8-21.讨论下列函数在点(0,0)处的极限是否存在:(1) z =224xy x y+; (2) z =x y x y +-. 解:(1)当(,)P x y 沿曲线2x ky =趋于(0,0)时,有24244200lim (,)lim 1y y y kxky kf x y k y y k →→===++这个值随k 的不同而不同,所以函数224Z=xy x y+在(0,0)处的极限不存在. (2)当(,)P x y 沿直线(1)y kx k =≠趋于(0,0)时,有001lim (,)lim(1)1y x y kxx kx kf x y k x kx k→→=++==≠--,这个极限值随k 的不同而不同,所以函数Z=x yx y+-在(0,0)处的极限不存在. 2.求下列极限:(1) 00sin limx y xy x →→; (2)22011lim x y xyx y→→-+;(3)00x y →→ (4)22sin lim x y xy x y →∞→∞+.解:(1)0000sin sin()limlim 0x x y y xy xy y x xy →→→→=⋅=(2)222211101lim101x y xy x y →→--⨯==++(3)0000001)2x x x y y y →→→→→→=== (4)当,x y →∞→∞时,221x y+是无穷小量,而sin xy 是有界函数,所以它们的积为无穷小量,即22sin lim0x y xyx y →∞→∞=+.3.求函数z =2222y xy x+-的间断点.解:由于220y x -=时函数无定义,故在抛物线22y x =处函数间断,函数的间断点是2{(,)|2,R}x y y x x =∈.习题8-31.求下列各函数的偏导数:(1) z =(1+x )y ; (2) z =lntany x; (3) z =arctan yx; (4) u =zx y .解:(1)1(1)y zy x x-∂=+∂(1)ln(1)y zx x y∂=++∂; (2)22221sec cot sec ;tan z y y y y y yx x x x x x x∂-=⋅⋅=-∂ 22111sec cot sec ;tan z y y y yy x x x x xx∂=⋅⋅=∂ (3)22221;1zy yxx x yy x ∂--=⋅=∂+⎛⎫+ ⎪⎝⎭22211;1zx yx x y y x ∂=⋅=∂+⎛⎫+ ⎪⎝⎭(4)22ln ln ;z zx x u z z yy y y x x x∂-=⋅⋅=-⋅∂1;1ln ln .zxzz x xu z y y xu y y y y z x x-∂=∂∂=⋅⋅=⋅∂2.已知f (x ,y )=e -sin x (x +2y ),求x f '(0,1),y f '(0,1).解:sin sin sin (,)e (cos )(2)e e [cos (2)1]x x x x f x y x x y x x y ---'=⋅-++=-⋅++ s i ns i n(,)e22ex x y f x y --'=⋅= 所以sin0(0,1)e (cos0(021)1)1x f -'=-⋅+⨯+=- s i n 0(0,1)2e 2y f -'== 3.设z =x +y +(y -,求112811,x x y y z z x y====∂∂∂∂.解:1122112d (,1)d(1)1d d x x y x z f x x xx x====∂==+=∂又23211(3z x x y y y y-⎛⎫∂-=+-⋅ ⎪∂⎝⎭所以1811π11arcsin 126x y z y==∂=+=+=+∂. 4.验证z =11+ex y ⎛⎫- ⎪⎝⎭满足222z zxy z x y∂∂+=∂∂. 解:1111()()2211e ex yx y z x x x-+-+∂-=⋅-=∂ 1111()()2211e ex yx yz y y y-+-+∂-=⋅-=∂所以1111()()22222211e ex yx y z z x y x y x y x y-+-+∂∂+=⋅+⋅∂∂ 11()2e 2x yz --+==5.设函数z =2222422,00,0xy x y x y x y ⎧+≠⎪+⎨⎪+=⎩,试判断它在点(0,0)处的偏导数是否存在?解:00(0,0)(0,0)00(0,0)lim lim 0y y y f y f z y y ∆→∆→+∆--'===∆∆ 00(0,0)(0,0)00(0,0)limlim 0x x x f x f z x x∆→∆→+∆--'===∆∆ 所以函数在(0,0)处的偏导数存在且(0,0)(0,0)0x y z z ''==.6.求曲线22(),4z x y y ⎧=+⎪⎨⎪=⎩14在点(2,4,5)处的切线与x 轴正向所成的倾角. 解:因为 242z x x x ∂==∂,故曲线221()44z x y y ⎧=+⎪⎨⎪=⎩在点(2,4,5)的切线斜率是(2,4,5)1z x ∂=∂,所以切线与x 轴正向所成的倾角πarctan14α==.7.求函数z =xy 在(2,3)处,当Δx =0.1与Δy =-0.2时的全增量Δz 与全微分d z . 解:,z zy x x y ∂∂==∂∂∴ d d d z zz x y x y∂∂=+∂∂ 而()()z x x y y xy x y y x x y ∆=+∆+∆-=∆+∆+∆∆ 当0.1,0.2,2,3x y x y ∆=∆=-==时,d 30.12(0.2)0.1z =⨯+⨯-=-2(0.2)30.10.1(0.2)0.12z ∆=⨯-+⨯+⨯-=-. 8.求下列函数的全微分:(1) 设u =()zx y,求d u |(1,1,1).(2) 设z,求d z .解:(1)1121(),()z z u x u x x z z x y y y y y --∂∂-=⋅⋅=⋅⋅∂∂;()ln ,z u x xz y y∂=∂ (1,1,1)(1,1,1)1,1,u u x y∂∂∴==-∂∂ (1,1,1)0u z∂=∂,于是(1,1,1)(1,1,1)(1,1,1)(1,1,1)d d d d d d z z z ux y z x y xyz∂∂∂=++=-∂∂∂(2)z x∂==∂2zy∂==∂ ∴22d d d d d z z z x y xyx y ∂∂=+=∂∂习题8-41.求下列各函数的全导数:(1) z =e 2x +3y , x =cos t , y =t 2; (2) z =tan(3t +2x 2+y 3), x =1t,y.解:(1)d d d d d d z z x z yt x t y t∂∂=+⋅∂∂ 22323232cos 3e 2(sin )e 32=2e(3sin )2e (3sin )x y x y x yt t t tt t t t ++++=⋅⋅-+⋅⋅-=-(2)d d d d d d z f f x f y t t x t y t∂∂∂=+⋅+⋅∂∂∂223223222321sec (32)3sec (32)4 sec (32)3t x y t x y xt t x y y -=++⋅+++⋅+++⋅3223242(3(3)t t t t=-++. 2.求下列各函数的偏导数:(1) z =x 2y -xy 2, x =u cos v , y =u sin v ;(2) z =e uv , u =, v =arctany x. 解:(1)z z x z yu x u y u∂∂∂∂∂=⋅+⋅∂∂∂∂∂ 22222222222(2)cos (2)sin 2sin cos sin cos sin cos 2sin cos 3sin cos (cos sin )xy y v x xy vu v v u v v u v v u v v u v v v v =-+-=-+-=-z z x z y v x v y v∂∂∂∂∂=⋅+⋅∂∂∂∂∂ 22323333323333(2)sin (2)cos 2sin cos sin cos 2sin cos 2sin cos (sin cos )(sin cos )xy y u v x xy u vu v v u v u v u v v u v v v v u v v =--+-=-++-=-+++(2)221e e 1()uv uv z z u z v y v u y x u x v x x x∂∂∂∂∂-=⋅+⋅=⋅⋅∂∂∂∂∂+arctan2222e e()(arctanyuvxyxv yu x y x y x y x=-=-++211e e 1()uv uv z z u z vv u y y u y v yxx∂∂∂∂∂=⋅+⋅=+⋅⋅∂∂∂∂∂+2222e e()(arctanln y uvxyyv xu x x x y x y x=+=+++ 3.求下列函数的一阶偏导数,其中f 可微: (1) u =f (,x yy z); (2) z =f (x 2+y 2); (3) u =f (x , xy , xyz ). 解:(1)121110u f f f x y y ∂'''=⋅+⋅=∂12212211u x x f f f f y y z z y ∂-''''=⋅+⋅=-∂122220u y y f f f z z z∂-'''=⋅+⋅=∂ (2)令22,u x y =+则()z f u =22d ()22()d z f u f u x xf x y x u x∂∂''=⋅=⋅=+∂∂22d ()22()d z f u f u y yf x y y u y∂∂''=⋅=⋅=+∂∂ (3)令,,t x v xy w xyz ===,则(,,)u f t v w =.123123d 1d u f t f v f w f f y f yz f yf yzf x t x v x w x∂∂∂∂∂∂''''''=⋅+⋅+⋅=⋅+⋅+⋅=++∂∂∂∂∂∂ 12323d 0d u f t f v f w f f x f xz xf xzf y t y v y w y∂∂∂∂∂∂'''''=⋅+⋅+⋅=⋅+⋅+⋅=+∂∂∂∂∂∂1233d 00d u f t f v f w f f f xy xyf z t z v z w z∂∂∂∂∂∂''''=⋅+⋅+⋅=⋅+⋅+⋅=∂∂∂∂∂∂ 4.设z =xy +x 2F(u ),u =yx,F(u )可导.证明:2z zxy z x y∂∂+=∂∂. 证:222()()2()()z yy xF u x F u y xF u yF u x x∂-''=++⋅=+-∂21()()z x x F u x xF u y x∂''=+⋅=+∂22()()()z zxy xy x F u xyF u xy xyF u x y∂∂''∴==+-++∂∂ 22[()]x y x F u z=+=∂ 5.利用全微分形式不变性求全微分:(1) z =(x 2+y 2)sin(2x +y ); (2) u =222()yf x y z --,f 可微. 解:(1)令22,sin(2)u x y v x y =+=+,则vz u =122d d d d()ln d sin(2)v v z zz u v vu x y u u x y u v-∂∂=+=++⋅+∂∂122sin(2)2222(2d 2d )ln cos(2)d(2)[2(d d )ln cos(2)(2d d )]2sin(2)()(d d )cos(2)ln()(2d d )v v v x y vu x x y y u u x y x y vu x x y y u x y x y ux y x y x x y y x y x y x y x y -+=++⋅++=⋅++⋅++⎡⎤+=++++++⎢⎥+⎣⎦(2)22222222111d d d d ()d()yu y y f y f x y z x y z f f f f-'=+⋅=-----222222222222221()d (2d 2d 2d )12()d (d d d )()()yf x y z y x x y y z z f f yf x y z y x x y y z z f x y z f x y z '--=---'--=-------6.求下列隐函数的导数:(1) 设e x +y +xyz =e x ,求x z ',y z '; (2)设x z =ln z y,求,z zx y ∂∂∂∂. 解:(1)设(,,)e e 0x yx F x y z xyz +=+-=,则ee ,e ,x yx x y x y z F yz F xz F xy ++'''=+-=+=故e e e ,x x y x yy x y z F Fx yz xzz z Fz xy F xy++'--+''=-==-=-(2)设(,,)ln 0x zF x y z z y=-=,则 2221111,,x y z y z x y x F F F z z y y z z y z z--'''==-⋅==-⋅=--故21x z F z z z xF x z z z '∂=-=-='∂+--2211()y z F z z yx yF y x z z z'∂=-=-='∂+-- 7.设x +z =yf (x 2-z 2),其中f 可微,证明:z zzy x x y∂∂+=∂∂. 证:设22(,,)()F x y z x z yf x z =+--则2212()x F xyf x z ''=--2222()12()y z F f x z F yzf x z '=--''=+-故22222()112()x z F zxyf x z x F yzf x z ''∂--=-=''∂+- 2222()12()y zF z f x y y yzf x z F '∂-=-='∂+-' 从而22222222()()12()12()z z xyzf x z z yf x y z y x y yzf x z yzf x z '∂∂∂---+=+''∂∂+-+- 222222222222222()()12()2()12()[2()1]12()xyzf x z z yf x y yzf x z xyzf x z z x zyzf x z x yzf x z x yzf x z '--+-='+-'--++='+-'-+=='+-8.设x =e u cos v , y =e u sin v , z =uv ,求z x ∂∂及z y∂∂. 解法一:由e cos ,e sin u ux v y v ==得221ln(),arctan ,2yu x y v z uv x=+== 故22(cos sin )e uz z u z v xv yu v v u v x u x v x x y-∂∂∂∂∂-=+==-∂∂∂∂∂+22(sin cos )e uz z u z v yv xu v v u v y u y v y x y-∂∂∂∂∂+=+==-∂∂∂∂∂+ 解法二:设方程组e cos e sin uux vy v⎧=⎪⎨=⎪⎩确定了函数(,),(,)u u x y v v x y ==,对方程组的两个方程关于x 求偏导得1e cos e sin 0e sin e cos uu u u u v v v x xu v v v x x ∂∂⎧=-⎪⎪∂∂⎨∂∂⎪=+⎪∂∂⎩解方程组得e cos e sin u u uv xv v x --∂⎧=⎪⎪∂⎨∂⎪=-⎪∂⎩又方程组的两个方程关于y 求偏导得0e cos e sin 1e sin e cos uu u u u v v v y y u v v vy y ∂∂⎧=-⎪∂∂⎪⎨∂∂⎪=+⎪∂∂⎩解方程组得:e sin e cos uu u v y v v y--∂⎧=⎪∂⎪⎨∂⎪=⎪∂⎩ 从而e (cos sin )u z z u z vv v u v x u x v x-∂∂∂∂∂=⋅+=-∂∂∂∂∂e (s i n c o s )uz z u z v v v u v y u y v y-∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂ 9.设u =f (x ,y ,z )有连续偏导数,y =y (x )和z =z (x )分别由方程0xye y -=和e z -xz =0确定,求d d ux. 解:方程e 0xyy -=两边对x 求导得d de ()0d d xyy y y x x x +-=,解得2d e d 1e 1xy xy y y y x x xy==-- 方程e 0zxz -=两边对x 求导得d de 0d d zz z z x x x--= 解得d de z z z z x x xz x==-- 从而2d d d d d d 1y z x y z x y f zf u y zf f f f x x x xy xz x''''''=++=++--习题8-51.求下列函数的二阶偏导数: (1) z =x 4+y 4-4x 2y 2; (2) z =arctany x; (3) z =y x ; (4) z =x ln(xy ).解:(1)23222248, 128;z z x xy x y x x∂∂=-=-∂∂232222248, 128;1622z z y x y y x y y zxy x y∂∂=-=-∂∂∂=-(2)22221,1()z y y y x x x y x∂-=⋅=-∂++ 22222222222222222222222222222211,1()2(2),()()22()()()2()()z x y y x x y xz y xyx x x y x y z x xyy y x y x y z x y y y y x x y x y x y ∂=⋅=∂++∂-=-⋅=∂++∂--=⋅=∂++∂+-⋅-=-=∂∂++(3)1ln , ,x x z zy y xy x y-∂∂==∂∂222222211ln , (1),1ln (1ln )x x x x x z z y y x x y x y z xy y y y x y x y y---∂∂==-∂∂∂=+⋅=+∂∂(4)1ln()1ln(),z xy x y xy x xy∂=+⋅⋅=+∂22222211,1,11.z y x xy x z x x x y xy y z xy y z x x y xy y∂=⋅=∂∂=⋅⋅=∂∂=-∂∂=⋅=∂∂2.求下列函数的二阶偏导数,其中f (u ,v )可微: (1) z =f (x 2+y 2); (2) z =f (xy ,x +2y ).解:(1)2222, 22224z zxf f xf x f x f x x∂∂'''''''==+⋅=+∂∂ 2222, 22224z zyf f yf y f y f y y ∂∂'''''''==+⋅=+∂∂2224zxf y xyf x y∂''''=⋅=∂∂(2)1212, =+2 z zyf f xf f x y∂∂''''=+∂∂ 22111221221112222(1)12zy f y f f y f y f yf f x∂''''''''''''''=⋅+⋅+⋅+⋅=++∂ 22111221*********(2)2(2)44z x f x f f x f x f xf f y∂''''''''''''''=⋅+⋅+⋅+⋅=++∂ 21111221221111222(2)2 (2)2zf y f x f f x f x y f xyf x y f f ∂'''''''''=++⋅+⋅+⋅∂∂'''''''=++++3.求由e z -xyz =0所确定的z =f (x ,y )的所有二阶偏导数. 解:设(,,)e 0zF x y z xyz =-=,则,,e z x y z F yz F xz F xy '''=-=-=-于是,e x z z F z yz zx F xy xz x∂=-==∂--e z z xz zy xy yz y∂==∂-- 从而222()(1)()z z xz x z z x zx x xxz x ∂∂--+-∂∂∂=∂-232223(1)221.(1)(1)z z z z z z z z x z x z --+---==-- 223222223()(1)(1)221.()(1)(1)z zz yz y z z y z z z z z z z y y z y yz y y z y z ∂∂--+---+∂--∂∂-===∂--- 2222233()()(1)(1).()(1)(1)(1)z z z z xz x z x z z z z z y y y y z x y xz x x z xy z xy z ∂∂---∂---∂∂-====∂∂----习题8-61.求z =x 2+y 2在点(1,2)处沿从点(1,2)到点(2,2的方向的方向导数.解:设(1,2),(2,2o p p ,则射线l的方向就是向量(1o p p =的方向,将o p p 单位化得:1(,),22||o o p p p p =于是1cos ,cos 2αβ==, 又2,2,f fx y x y ∂∂==∂∂ 于是(1,2)(1,2)2,4,f f x y∂∂==∂∂所以(1,2)124122f l∂=⨯+=+∂ 2.设u =xyz +x +y +z ,求u 在点(1,1,1)处沿该点到点(2,2,2)的方向的方向导数.解:设0(1,1,1),(2,2,2)p p ,则射线l 的方向就是向量0p p =(1,1,1)的方向,将0p p单位化得00||p p p p =⎝⎭,于是cos αβγ=== 又1,1,1f f f yz xz xy x y z ∂∂∂=+=++∂∂∂,于是(1,1,1)(1,1,1)(1,1,1)2,2,2fff xyz∂∂∂===∂∂∂,所以(1,1,1)222333f l∂=⨯+⨯+⨯=∂. 3.求函数z =x 2-xy +y 2在点M(1,1)处沿与Ox 轴的正方向所成角为α的方向l 上的方向导数.问在什么情况下,此方向导数取得最大值?最小值?等于零? 解:2,2f f x y x y x y ∂∂=-=-+∂∂, (1,1)(1,1)1,1f fx y∂∂==∂∂∴(1,1)π1c o s 1s i n 2s i n ()4f lααα∂=⋅+⋅+∂当πsin()4α+=1,时,即π4α=当πsin()14α+=-时,即5π4α=时,此方向导数有最小值当πsin()04α+=时,即3π4α=或7π4时,此方向导数为0.习题8-71.求下列函数的极值: (1) z=x 3-4x 2+2xy -y 2+3; (2) z =e 2x (x +2y +y 2); (3) z =xy (a -x -y ), a ≠0. 解:(1)由方程组:23820220xy z x x y z x y ⎧'=-+=⎪⎨'=-=⎪⎩ 得驻点(0,0),(2,2) 又68,2,2,xx xy yy z x z z ''''=-==-在点(0,0)处,2120B AC -=-<,又80A =-<,所以函数取得极大值(0,0)3;f = 在点(2,2)处,2120,B AC -=>该点不是极值点.(2)由方程组222e (2241)0e (22)0x xx y z x y y z y ⎧'=+++=⎪⎨'=+=⎪⎩ 得驻点1(,1)2-.又2222e (4484),e (44),2e xxxxx xy yy z x y y z y z ''''''=+++=+=,在点1(,1)2-处22202e 2e 4e 0,B AC -=-⋅=-<且2e 0A =>,所以函数取得极小值11(,1) e.22f -=- (3)由方程组(2)0(2)0xy z y a x y z x a y x ⎧'=--=⎪⎨'=--=⎪⎩ 得四个驻点(0,0),(0,),(,0),,.33a a a a ⎛⎫ ⎪⎝⎭又2,22,2xx xy yy z y z a x y z x ''''''=-=--=-.在点(0,0)处,220,B AC a -=>该点不是极值点. 在点(0,)a 处,220B AC a -=>,该点不是极值点. 在点(,0)a 处,220B AC a -=>,该点不是极值点.在点,33a a ⎛⎫ ⎪⎝⎭处,2203a B AC -=-<,所以函数在该点有极值,且极值为3,3327aa a f ⎛⎫= ⎪⎝⎭,由于23xx A z a ''==-故 当0a >时,(0)A <,函数有极大值327a ,当0a <时,(0)A >,函数有极小值327a .2.求函数z =x 3-4x 2+2xy -y 2在闭区域D :-1≤x ≤4,-1≤y ≤1上的最大值和最小值. [分析]由(,)f x y 在D 上连续,所以必有最大最小值,又由于(,)f x y 在D 内可导,所以(,)f x y 的最值在D 的内部驻点或在D 的边界上,由(,)f x y 在D 内部驻点上值与边界上函数比较可求出(,)f x y 的最大和最小值.解:由方程23820220xy z x x y z x y ⎧'=-+=⎪⎨'=-=⎪⎩得驻点(0,0),(2,2)(2,2)D ∈应该舍去,(0,0)0f =(可由充分条件判别知是极大值).D 的边界可分为四部分:12:1,11; :1,14;L x y L y x =--≤≤=--≤≤ 34:4,11; :1,1 4.L x y L y x =-≤≤=-≤≤在1L 上,2(1,)52(),1 1.f y y y y y ϕ-=---=-≤≤因为()2(1)0,y y ϕ'=-+≤所以()y ϕ单调递减,因而(1)4ϕ-=-最大,(1)8ϕ=-最小. 在2L 上,32(,1)421(),14f x x x x g x x -=---=-≤≤令()0g x '=得124433x x ==.而122227min{(1),(),(),(4)}()27g g x g x g g x --==,1214227m a x {(1),(),(),(4)}()27g g x g x g g x -==分别是(,)f x y 在2L 上的最小值与最大值.类似讨论可得:在3L 上(4,1)7,(4,1)9f f =-=-,分别是(,)f x y 的最大值与最小值;在4L 上(4,1)7,(1,1)f f =-=-8分别是(,)f x y 的最大值与最小值.比较(,)f x y 在内部驻点(0,0)与整个边界上函数值的情况得到(4,1)7f =是函数(,)f x y 在D 上的最大值,116.1f ⎫-=≈-⎪⎪⎝⎭. 3.求函数z =x +y 在条件111x y+= (x >0,y >0)下的条件极值. 解:构造拉格朗日函数11(,)1F x y x y x y λ⎛⎫=+++- ⎪⎝⎭解方程组221010111x y F x F y x yλλ⎧'=-=⎪⎪⎪'=-=⎨⎪⎪+=⎪⎩ 得2,2,4x y λ===,故得驻点(2,2)。

《微积分》各章习题及详细答案

《微积分》各章习题及详细答案

第一章 函数极限与连续一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -就是x 的 阶无穷小。

4、01sin lim 0=→xx kx 成立的k 为 。

5、=-∞→x e xx arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim 0 。

8、设)(x f 的定义域就是]1,0[,则)(ln x f 的定义域就是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 就是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 就是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域就是__________。

13、lim ____________x →+∞=。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 就是],[l l -上的偶函数,)(x h 就是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C))]()()[(x h x g x f +;(D))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α就是比β高阶的无穷小; (B)α就是比β低阶的无穷小; (C)α与β就是同阶无穷小; (D)βα~。

微积分(第五版)教案8

微积分(第五版)教案8

《微积分》教案
编号:
(或∆
x>
式又可写成
《微积分》教案
编号:
《微积分》教案
编号:
0()U x 内的任0(,U x δ
《微积分》教案
编号:
《微积分》教案
编号:
微积分教案
编号:
,()tan tan tan ,tan tan ().m m m f x Ey Ey x Ex Ex y f x A Ey A AB OA Ex ααααθθθθθθθ==-==又平均函数为因而,若考虑弹性的绝对值,则如果我们知道了一条函数所示的曲线,则在曲线上任一点处对应的弹性,通过
作曲线的切线和线段,就可得夹角和,进而就可得
四、经济学中常见的弹性函数
1. 需求弹性
1)需求的价格弹性
需求的价格弹性是指当价格变化一定的百分比以后引起的需求量的反应程度.用公式表示为0d lim .d P p Q P Q P E P Q P Q
∆→∆=⨯=⨯∆ 注:因为需求量与价格的变化总沿着相反的方向,需求的价格弹性算出来总是负值,为了讨论方便,取其绝对值。

另外,在实际应用中,也常用符号 η 表示。

需求弹性与总收益(市场销售总额)的关系
当需求价格弹性大于1时,降价增加销售收入;此时,需求变动的幅度大与价格变动的幅度,边际收益小于0,即价格上涨,总收益减少,价格下跌,总收益增加;
当需求价格弹性小于1时,降价反而会减少销售收入;此时,需求变动的幅度小于价格变动的幅度,边际收益大于0,即价格上涨,总收益增加,价格下跌,总收益减少;
当需求价格弹性等与1时,当价格的变化时,总收益不变.
2. 供给弹性。

同济大学(高等数学)-第八章-向量代数与解析几何

同济大学(高等数学)-第八章-向量代数与解析几何

第五篇 向量代数与空间解析几何第八章 向量代数与空间解析几何解析几何的基本思想是用代数的方法来研究几何的问题,为了把代数运算引入几何中来,最根本的做法就是设法把空间的几何结构有系统的代数化,数量化. 平面解析几何使一元函数微积分有了直观的几何意义,所以为了更好的学习多元函数微积分,空间解析几何的知识就有着非常重要的地位.本章首先给出空间直角坐标系,然后介绍向量的基础知识,以向量为工具讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分容.第1节 空间直角坐标系1.1 空间直角坐标系用代数的方法来研究几何的问题,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现.1.1.1 空间直角坐标系过定点O ,作三条互相垂直的数轴,这三条数轴分别叫做x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),它们都以O 为原点且具有相同的长度单位. 通常把x 轴和y 轴配置在水平面上,而z 轴则是铅垂线;它们的正方向要符合右手规则:右手握住z 轴,当右手的四指从x 轴的正向转过2角度指向y 轴正向时,大拇指的指向就是z 轴的正向,这样就建立了一个空间直角坐标系(图8-1),称为Oxyz 直角坐标系,点O 叫做坐标原点.图8-1在Oxyz 直角坐标系下,数轴Ox ,Oy ,Oz 统称为坐标轴,三条坐标轴中每两条可以确定一个平面,称为坐标面,分别为xOy ,yOz ,zOx ,三个坐标平面将空间分为八个部分,每一部分叫做一个卦限(图8-2),分别用Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ表示.yxzO图8-21.1.2 空间点的直角坐标设M 为空间中的任一点,过点M 分别作垂直于三个坐标轴的三个平面,与x 轴、y 轴和z 轴依次交于A 、B 、C 三点,若这三点在x 轴、y 轴、z 轴上的坐标分别为x ,y ,z ,于是点M 就唯一确定了一个有序数组(, , )x y z ,则称该数组(, , )x y z 为点M 在空间直角坐标系Oxyz 中的坐标,如图8-3.x ,y ,z 分别称为点M 的横坐标、纵坐标和竖坐标.图8-3反之,若任意给定一个有序数组(, , )x y z ,在x 轴、y 轴、z 轴上分别取坐标为x ,y ,z 的三个点A 、B 、C ,过这三个点分别作垂直于三个坐标轴的平面,这三个平面只有一个交点M ,该点就是以有序数组(, , )x y z 为坐标的点,因此空间中的点M 就与有序数组(, , )x y z 之间建立了一一对应的关系.注:A 、B 、C 这三点正好是过M 点作三个坐标轴的垂线的垂足.yxzOyxzAB C(,,)M x y z1.2 空间中两点之间的距离设两点111(, , )M x y z ,222(, , )N x y z ,则M 与N 之间的距离为212212212)()()(z z y y x x d -+-+-= (8-1-1)事实上,过点M 和N 作垂直于xOy 平面的直线,分别交xOy 平面于点1M 和1N ,则1MM ∥1NN ,显然,点1M 的坐标为11(, , 0)x y ,点1N 的坐标为22(, , 0)x y (如图8-4).图8-4由平面解析几何的两点间距离公式知,1M 和1N 的距离为:21221211)()(||y y x x N M -+-=.过点M 作平行于xOy 平面的平面,交直线1NN 于2N ,则11M N ∥2MN ,因此2N 的坐标为221(, , )x y z ,且212212112)()(||||y y x x N M MN -+-==,在直角三角形N MN 2中,||||122z z N N -=,所以点M 与N 间的距离为2122122122222)()()(||||z z y y x x N N MN d -+-+-=+=.例1 设(1, 2, 0)A -与(1, 0, 2)B --为空间两点,求A 与B 两点间的距离. 解 由公式(8-1-1)可得,A 与B 两点间的距离为d ==例2 在z 轴上求与点(3, 5, 2)A -和(4, 1, 5)B -等距的点M .解 由于所求的点M 在z 轴上,因而M 点的坐标可设为(0, 0, )z ,又由于MA MB =,由公式(8-1-1),得222222)5(1)4()2(53z z -++-=--++.从而解得72=z ,即所求的点为2(0, 0, )7M .习题8-11.讨论空间直角坐标系的八个卦限中的点的坐标的符号. 2.在坐标轴上的点和在坐标平面上的点的坐标各有何特点? 3.在空间直角坐标系中,画出以下各点:(2, 0, 0)A ;(0, 3, 0)B -;(3, 0, 1)C ;(3, 2, 1)D -.4.求点(1, 2, 3)-关于各坐标平面对称的点的坐标. 5.求点(1, 2, 3)关于各坐标轴对称的点的坐标. 6.求以下各对点间的距离: (1) (0, 1, 3)A -与(2, 1, 4)B ;(2) (1, 4, 2)C -与D(2, 7, 3).7.在坐标平面yOz 上求与三点(3, 1, 2)A 、(4, 2, 2)B --和(0, 5, 1)C 等距的点. 8.求点(12, 3, 4)A -与原点、各坐标平面和各坐标轴的距离.9. 证明以()()()A 4,3,1,B 7,1,2,C 5,2,3为顶点的三角形△ABC 是一等腰三角形.第2节 空间向量的代数运算2.1 空间向量的概念在日常生活中,我们经常会遇到一些量,如质量、时间、面积、温度等,它们在取定一个度量单位后,就可以用一个数来表示.这种只有大小没有方向的量,叫做数量(或标量).但有一些量,如力、位移、速度、电场强度等,仅仅用一个实数是无法将它们确切表示出来,因为它们不仅有大小,而且还有方向,这种既有大小又有方向的量,叫做向量(或矢量).在数学上,我们用有向线段AB 来表示向量,A 称为向量的起点,B 称为向量的终点,有向线段的长度就表示向量的大小,有向线段的方向就表示向量的方向.通常在印刷时用黑体小写字母a ,b ,c ,…来表示向量,手写时用带箭头的小写字母, ,,a b c来记向量.向量的长度称为向量的模,记作a 或AB ,模为1的向量叫做单位向量,模为0的向量叫做零向量,记作0,规定:零向量的方向可以是任意的.本章我们讨论的是自由向量,即只考虑向量的大小和方向,而不考虑向量的起点,因此,我们把大小相等,方向相同的向量叫做相等向量,记作a =b .规定:所有的零向量都相等.与向量a 大小相等,方向相反的向量叫做a 的负向量(或反向量),记作 a . 平行于同一直线的一组向量称为平行向量(或共线向量).平行于同一平面的一组向量,叫做共面向量,零向量与任何共面的向量组共面.2.2 向量的线性运算2.2.1 向量的加法我们在物理学中知道力与位移都是向量,求两个力的合力用的是平行四边形法则,我们可以类似地定义两个向量的加法.定义1 对向量a ,b ,从同一起点A 作有向线段AB 、AD 分别表示a 与b ,然后以AB 、AD 为邻边作平行四边形ABCD ,则我们把从起点A 到顶点C 的向量AC 称为向量a 与b 的和(图8-5),记作a +b .这种求和方法称为平行四边形法则.图8-5 图8-6若将向量b 平移,使其起点与向量a 的终点重合,则以a 的起点为起点,b 的终点为终ab Cabc =a +b点的向量c 就是a 与b 的和(图8-6),该法则称为三角形法则.多个向量,如a 、b 、c 、d 首尾相接,则从第一个向量的起点到最后一个向量的终点的向量就是它们的和a +b +c +d (图8-7).图8-7对于任意向量a ,b ,c ,满足以下运算法则: (1)a +b =b +a (交换律).(2)()()a +b +c =a +b +c (结合律). (3)0a +=a .2.2.2 向量的减法定义2 向量a 与b 的负向量-b 的和,称为向量a 与b 的差,即()--a b =a +b .特别地,当b =a 时,有()-0a +a =.由向量减法的定义,我们从同一起点O 作有向线段OA ,OB 分别表示a ,b ,则()OA OB OA OB --=+-a b =OA BO BA =+=.也就是说,若向量a 与b 的起点放在一起,则a ,b 的差向量就是以b 的终点为起点,以a 的终点为终点的向量(图8-8).图8-82.2.3数乘向量定义3 实数λ与向量a 的乘积是一个向量,记作λa ,λa 的模是λa ,方向: 当0λ>时,λa 与a 同向;当0λ<时,λa 与a 反向;当0λ=时,λ0a =.abcda +b +c +daabb -a bBAC对于任意向量a ,b 以与任意实数λ,μ,有运算法则: (1) ()()λμλμa =a . (2) ()+λμλμ+a =a a .(3) ()+λλλ+a b =a b .向量的加法、减法与数乘向量运算统称为向量的线性运算,λμa +b 称为a ,b 的一个线性组合(, )R λμ∈.特别地,与 a 同方向的单位向量叫做a 的单位向量,记做a e ,即aa e a=.上式说明:一个非零向量除以它的模的结果是一个与原向量同方向的单位向量.例1 如图8-9,在平行六面体///ABCD B C D /—A 中,设/=AA ,a AD =b AB =c ,试用,,a b c 来表示对角线向量//,.AC A C图8-9解 ''AC AB BC CC =++'AB BC AA =++a b c =++;'''AC A A AB BC AA AB AD =++=-++a b c =++.由于向量λa 与a 平行,所以我们通常用数与向量的乘积来说明两个向量的平行关系.即有,定理1 向量a 与非零向量b 平行的充分必要条件是存在一个实数λ,使得λa =b .2.3 向量的坐标表示2.3.1向量在坐标轴上的投影设A 为空间中一点,过点A 作轴u 的垂线,垂足为'A ,则'A 称为点A 在轴u 上的投影(图8-10).图8-10若M 为空间直角坐标系中的一点,则M 在x 轴、y 轴、z 轴上的投影为A 、B 、C ,如图8-11所示.图8-11设向量AB 的始点与终点B 在轴u 的投影分别为A '、B ',那么轴u 上的有向线段A B ''的值A B ''叫做向量AB 在轴u 上的投影,记作u prj AB A B ''=,轴u 称为投影轴.图8-12当A B ''与轴u 同向时,投影取正号,当A B ''与轴u 反向时,投影取负号. 注 (1) 向量在轴上投影是标量.(2) 设MN 为空间直角坐标系中的一个向量,点M 的坐标为111(, , )x y z ,点N 的坐标为222(, , )x y z ,显然,向量MN 在三个坐标轴上的投影分别为12x x -,12y y -,12z z -. 2.3.2向量的坐标表示yxzOA B CM取空间直角坐标系Oxyz ,在x 轴、y 轴、z 轴上各取一个与坐标轴同向的单位向量,依次记作, , i j k ,它们称为坐标向量.空间中任一向量a ,它都可以唯一地表示为, , i j k 数乘之和. 事实上,设MN a =,过M 、N 作坐标轴的投影,如图8-13所示.MN =MA+AP +PN =MA+MB +MC a =.由于MA 与i 平行,MB 与j 平行,MC 与k 平行,所以,存在唯一的实数, , x y z ,使得MA x =i ,MB y =j ,MC z =k ,即x y z a =i +j +k . (8-2-1)图 8-13我们把(8-2-1)式中, , i j k 系数组成的有序数组(, , )x y z 叫做向量a 的直角坐标,记为{, , }x y z a =,向量的坐标确定了,向量也就确定了.显然,(8-2-1)中的, , x y z 是向量a 分别在x 轴、y 轴、z 轴上的投影.因此,在空间直角坐标系中的向量a 的坐标就是该向量在三个坐标轴上的投影组成的有序数组.例2 在空间直角坐标系中设点(3, 1, 5)M -,(2, 3, 1)N -,求向量MN 与NM 的直角坐标.解 由于向量的坐标即为向量在坐标轴上的投影组成的有序数组,而向量的各投影即为终点坐标与起点坐标对应分量的差.所以向量MN 的坐标为{5, 4, 4}--,向量NM 的坐标为{5, 4, 4}-. 例3(定比分点公式) 设111(,,)A x y z 和222(,,)B x y z 为两已知点,有向线段AB 上的点M 将它分为两条有向线段AM 和MB ,使它们的值的比等于数(1)λλ≠-,即AMMBλ=,求分点(,,)M x y z 的坐标.图8-14 解 如图8-14,因为AM 与MB 在同一直线上,且同方向,故AM MB λ=⋅,而122{,,}AM x x y y z z =---, 222{,,}MB x x y y z z =---222{(),(),()}MB x x y y z z λλλλ=---所以 12()x x x x λ-=-,12()y y y y λ-=-,12()z z z z λ-=- 解得121212,,.111x x y y z z x y z λλλλλλ+⋅+⋅+⋅===+++当λ=1, 点M 的有向线段→AB x 2.3.3向量可以用它的模与方向来表示,设空间向量12a M M =分别为,,αβγ,规定: 0,0απ≤≤≤称,,αβγ为向量a 的方向角因为向量a 12cos cos x a M M a αα=⋅=⋅12cos cos y a M M a ββ=⋅=⋅(8-2-2)12cos cos z a M M a γγ=⋅=⋅公式(8.2.2)中出现的cos ,cos ,cos αβγ称为向量a 的方向余弦.而{,,}{cos ,cos ,cos }x y z a a a a a a a αβγ==⋅⋅⋅{cos ,cos ,cos }a a a e αβγ=⋅=⋅{cos ,cos ,cos }a e αβγ=是与向量a 同方向的单位向量.而 a =M M =12,,x y z M P a M Q a M R a ===111,故向量a 的模为 x a a a =+2(8-2-3)从而向量a 的方向余弦为cos a αβγ===(8-2-4)并且 222cos cos cos 1αβγ++=.例4 已知两点1M 和()21,3,0M ,求向量12M M 的模、方向余弦和方向角.解12(12,32,0(1,1,M M =--=-2)2(1)1(222=-++-=;11cos ,cos ,cos 22αβγ=-==; 23,,334πππαβγ===. 例5 已知两点(4,0,5)A 和(7,1,3)B ,求与AB 同方向的单位向量e . 解 因为{74,10,35}{3,1,2},AB =---=-所以23AB == 于是 {}.e =2.4 向量的数量积在物理中我们知道,一质点在恒力F 的作用下,由A 点沿直线移到B 点,若力F 与位移向量AB 的夹角为θ,则力F 所作的功为||||cos W F AB θ=⋅⋅.类似的情况在其他问题中也经常遇到.由此,我们引入两向量的数量积的概念. 定义1 设a ,b 为空间中的两个向量,则数cos ,a b a b叫做向量a 与b 的数量积(也称积或点积),记作⋅a b ,读作“a 点乘b ”.即cos ,⋅a b =a b a b (8-2-5)其中,a b 表示向量a 与b 的夹角,并且规定0, π≤≤a b .两向量的数量积是一个数量而不是向量,特别地当两向量中一个为零向量时,就有0⋅a b =.由向量数量积的定义易知:(1)2⋅a a =a ,因此=a(2) 对于两个非零向量a ,b ,a 与b 垂直的充要条件是它们的数量积为零,即⊥a b ⇔0⋅a b =.注 数量积在解决有关长度、角度、垂直等度量问题上起着重要作用. 数量积的运算满足如下运算性质: 对于任意向量a ,b 与任意实数λ,有 (1) 交换律:⋅⋅a b =b a .(2) 分配律:()⋅⋅⋅a b +c =a b +a c .(3) 与数乘结合律:()()()λλλ⋅⋅=⋅a b =a b a b . (4)0⋅≥a a 当且仅当0a =时,等号成立.例6 对坐标向量i ,j ,k ,求⋅i i ,⋅j j ,⋅k k ,⋅i j ,⋅j k ,⋅k i . 解 由坐标向量的特点与向量积的定义得1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =.例7 已知2=a ,3=b ,2, 3π=a b ,求a b ⋅,(2)()-+a b a b ⋅,+a b . 解 由两向量的数量积定义有2cos , 23cos 3π⋅=⨯⨯a b =a b a b 123()=32=⨯⨯--.(2)()=22-⋅+⋅⋅-⋅-⋅a b a b a a +a b b a b b22=2-⋅-a a b b 222(3)23=11=---⨯-.2()()+=⋅+a b a +b a b =⋅⋅+⋅+⋅a a +a b b a b b222=+⋅+a a b b 2222(3)3=7=+⨯-+,因此+=a b .在空间直角坐标系下,设向量111{,,}x y z a =,向量222{,,}x y z b =,即111x y z ++a =i j k , 222x y z ++b =i j k .则111222()()x y z x y z ⋅++⋅++a b =i j k i j k121212()()+()x x x y x z ⋅+⋅⋅=i i i j i k 121212()()+()y x y y y z ⋅+⋅⋅+j i j j j k 121212()()+()z x z y z z ⋅+⋅⋅+k i k j k k .由于1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =,所以121212x x y y z z ⋅++a b =.(8-2-6)也就是说,在直角坐标系下,两向量的数量积等于它们对应坐标分量的乘积之和.同样,利用向量的直角坐标也可以求出向量的模、两向量的夹角公式以与两向量垂直的充要条件,即设非零向量111{,,}x y z a =,向量222{,,}x y z b =,则=a (8-2-7)cos ||||⋅=a ba,b a b=. (8-2-8)⊥a b ⇔1212120x x y y z z ++=. (8-2-9)例8 在空间直角坐标系中,设三点(5, 4, 1)A -,(3, 2, 1)B ,(2, 5, 0)C -.证明:ABC ∆是直角三角形.证明 由题意可知{2, 6, 0}AB =-,={3, 1, 1}AC ---,则(2)(3)6(1)0(1)0AB AC ⋅=-⨯-+⨯-+⨯-=,所以AB AC ⊥.即ABC ∆是直角三角形.2.5向量的向量积在物理学中我们知道,要表示一外力对物体的转动所产生的影响,我们用力矩的概念来描述.设一杠杆的一端O 固定,力F 作用于杠杆上的点A 处,F 与OA 的夹角为θ,则杠杆在F 的作用下绕O 点转动,这时,可用力矩M 来描述.力F 对O 的力矩M 是个向量,M 的大小为||||||sin OA OA =M F ,F .M 的方向与OA 与F 都垂直,且OA ,F ,M 成右手系,如图8-16所示.图8-162.5.1向量积的定义在实际生活中,我们会经常遇到象这样由两个向量所决定的另一个向量,由此,我们引入两向量的向量积的概念.定义2 设a ,b 为空间中的两个向量,若由a ,b 所决定的向量c ,其模为sin , c =a b a b . (8-2-10)其方向与a ,b 均垂直且a ,b ,c 成右手系(如图8-17),则向量c 叫做向量a 与b 的向量积(也称外积或叉积).记作⨯a b ,读作“a 叉乘b ”.注 (1) 两向量a 与b 的向量积⨯a b 是一个向量,其模⨯a b 的几何意义是以a ,b 为邻边的平行四边形的面积. (2)⨯0a a =这是因为夹角θ=0,所以⨯0a a = 图8-17(3)对两个非零向量a 与b ,a 与b 平行(即平行)的充要条件是它们的向量积为零向量.a ∥b ⇔⨯0a b =.向量积的运算满足如下性质:对任意向量a ,b 与任意实数λ,有 (1) 反交换律:⨯-⨯a b =b a . (2) 分配律:()⨯⨯⨯a b +c =a b +a c ,()⨯⨯⨯a +b c =a c +b c .(3) 与数乘的结合律:()()()λλλ⨯⨯⨯a b =a b =a b .例9 对坐标向量i ,j ,k ,求⨯i i ,⨯j j ,⨯k k ,⨯i j ,⨯j k ,⨯k i . 解⨯⨯⨯0i i =j j =k k =.⨯i j =k ,⨯j k =i ,⨯k i =j .2.5.2向量积的直角坐标运算在空间直角坐标系下,设向量111{, , }x y z a =,向量222{, , }x y z b =,即111x y z ++a =i j k ,222x y z ++b =i j k ,因为⨯⨯⨯0i i =j j =k k =. ⨯i j =k ,⨯j k =i ,⨯k i =j , ⨯-j i =k ,⨯-k j =i ,⨯-i k =j .则111222()()x y z x y z ⨯++⨯++a b =i j k i j k121212()()+()x x x y x z ⨯+⨯⨯=i i i j i k 121212()()+()y x y y y z ⨯+⨯⨯+j i j j j k 121212()()+()z x z y z z ⨯+⨯⨯+k i k j k k121212121212()()+()()()()x y y x y z z y x z z x -⨯-⨯--⨯=i j j k k i 121212121212()()+()y z z y x z z x x y y x ----=i j k .为了便于记忆,借助于线性代数中的二阶行列式与三阶行列式有111111222222y z x z x y y z x z x y ⨯-a b =i j +k 111222x y z x y z =i j k . 注 设两个非零向量111{, , }x y z a =,222{, , }x y z b =,则a ∥b ⇔⨯0a b =,⇔212121z z y y x x ==. 若某个分母为零,则规定相应的分子为零.例10 设向量{1,2,1}--a =,{2,0,1}b =,求⨯a b 的坐标.解211112121012120201----⨯--=-i j ka b =i j +k 234=--i j +k .因此⨯a b 的直角坐标为{2, 3, 4}--.例11 在空间直角坐标系中,设向量{3, 0, 2}a =,{1, 1, 1}--b =,求同时垂直于向量a 与b 的单位向量.解 设向量⨯c =a b ,则c 同时与a ,b 垂直.而302111⨯--i j kc =a b =23=-+i j +k ,所以向量c 的坐标为{2, 1, 3}-.再将c 单位化,得02,1,3}={=-c ,即{与-- 为所求的向量. 例12 在空间直角坐标系中,设点(4, 1, 2)A -,(1, 2, 2)B -,(2, 0, 1)C ,求ABC ∆的面积.解 由两向量积的模的几何意义知:以AB 、AC 为邻边的平行四边形的面积为AB AC ⨯,由于{3, 3, 4}AB =--,{2, 1, 1}AC =--,因此33453211AB AC ⨯=--=++--i j ki j k ,所以21AB AC ⨯=故ABC ∆的面积为235=∆ABC S .2.6向量的混合积定义3 给定空间三个向量,,a b c ,如果先作前两个向量a 与b 的向量积,再作所得的向量与第三个向量c 的数量积,最后得到的这个数叫做三向量,,a b c 的混合积,记做()a b c ⨯⋅或abc ⎡⎤⎣⎦.说明:三个不共面向量,,a b c 的混合积的绝对值等于以,,a b c 为棱的平行六面体的体积V .定理如果111a X i Y j Z k =++,222b X i Y j Z k =++,333c X i Y j Z k =++,那么 111222333.X Y Z abc X Y Z X Y Z ⎡⎤=⎣⎦习题8-21.,,,,,().ABCD AB AD AC DB MA M ==设为一平行四边形试用表示为平行四边形对角线的交点a b.a b12.,().2M AB O OM OA OB =+设为线段的中点,为空间中的任意一点证明 2223.?(1)()();(2)();(3)()().==⨯=⨯对于任意三个向量与判断下列各式是否成立a,b c,a b c b c a a b a b a b c c a b4.:(1);(2)(3).利用向量证明三角形的余弦定理正弦定理;勾股定理5.设,,a b c 为单位向量,且满足0a b c ++=,求.a b b c c a ++6.1(3,2,2),(1,3,2),(8,6,2),322a b c a b + c.求=-==--7.已知三点(3,0,2),A B AB ==求的坐标、模、方向余弦和方向角.8.一向量的终点在点B(2,-1,7),它在x 轴、y 轴和z 轴上的投影依次为4,-4和7.求这向量的起点A 的坐标.9.设2=a ,4=b ,3πa,b =,求⋅a b ,(2)-⋅a b b ,-a b . 10.设向量a ,b ,c 两两垂直,且1=a ,2=b ,3=c ,求向量d =a +b +c 的模与d,a .11.在空间直角坐标系中,已知{1,2,3}-a = ,{2,2,1}-b = ,求: (1)⋅a b ;(2) 25⋅a b ;(3) a ;(4)cos a,b .12.已知向量2332和,,a i j k b i j k c i j =-+=-+=-,计算 (1)()();a b c a c b -(2)()();a b b c +⨯+(3)()a b c ⨯.13.设向量a ,b 的直角坐标分别为{1, 3, 2}--和{2, 4, }k -,若a b ⊥,求k 的值.14.设向量{2, 1, 1}-a =,{1, 3, 0}-b =,求以、a b 为邻边构造的平行四边形面积. 15.求同时垂直于向量{3, 2, 4}-a =和纵轴的单位向量.16.已知三角形三个顶点(4, 1, 2)A -,(3, 0, 1)B -,(5, 1, 2)C ,求ABC ∆的面积.第3节 空间中的平面与直线方程在本节我们以向量为工具,在空间直角坐标系中讨论最简单的曲面和曲线——平面和直线.3.1平面与其方程首先利用向量的概念,在空间直角坐标系中建立平面的方程,下面我们将给出几种由不同条件所确定的平面的方程.3.1.1平面的点法式方程若一个非零向量n 垂直于平面π,则称向量n 为平面π的一个法向量.显然,若n 是平面π的一个法向量,则λn (λ为任意非零实数)都是π的法向量,即平面上的任一向量均与该平面的法向量垂直.由立体几何知识知道,过一个定点0000(, , )M x y z 且垂直于一个非零向量{, , }A B C n =有且只有一个平面π.设(, , )M x y z 为平面π上的任一点,由于π⊥n ,因此0M M ⊥n .由两向量垂直的充要条件,得00M M =⋅n ,而0000{, , }M M x x y y z z =---,{, , }A B C n =,所以可得0)()()(000=-+-+-z z C y y B x x A . (8-3-1)由于平面π上任意一点(, , )M x y z 都满足方程(8-3-1),而不在平面π上的点都不满足方程(8-3-1),因此方程(8-3-1)就是平面π的方程.由于方程(8-3-1)是给定点0000(, , )M x y z 和法向量{, , }A B C n =所确定的,因而称式(8-3-1)叫做平面π的点法式方程.图8-18例1 求通过点0(1, 2, 4)M -且垂直于向量{3, 2, 1}-n =的平面方程.解 由于{3, 2, 1}-n =为所求平面的一个法向量,平面又过点0(1, 2, 4)M -,所以,由平面的点法式方程(6-14)可得所求平面的方程为3(1)2(2)1(4)=0x y z --⋅++⋅-,整理,得32110x y z -+-=.例2 求过三点()12,1,4M -,()2M 1,3,2--,()3M 0,2,3 的平面π的方程. 解 所求平面π的法向量必定同时垂直于12M M 与13M M .因此可取12M M 与13M M 的向量积1213M M M M ⨯为该平面的一个法向量n .即1213n =M M M M ⨯.由于12{3, 4, 6}M M =--,13{2, 3, 1}M M =--,因此1213-631i j kn =M M M M =342⨯---149i j k,=+-,因此所求平面π的方程为0419214=--++-)()()(z y x ,化简得.015914=--+z y x一般地,过三点(,,)(1,2,3)k k k k M x y z k =的平面方程为1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 称为平面的三点式方程。

D6_8-1格林公式

D6_8-1格林公式

l
O D1
L

x
L l
奇点

2π 0
r cos r sin r
2
目录 上页
2
2
2
2
d 2 π
下页 返回 结束
思考与练习
1. 设
2
y
l
且都取正向, 问下列计算是否正确 ? xd y 4y d x l x2 y2 1 1 x d y 4 y d x 5 d 5 π 4 l 4 D 2 2 x y 0时 提示 : xd y yd x Q P l x2 y2 (1) x y 1 1 x d y yd x 2 d Q P 4 D 4 l (2) x y 2π
d
E D B
A
① 同理可证
c C O a bx

①、②两式相加得:
Q P D x y d xd y L Pd x Qd y
定理1 目录 上页 下页 返回 结束
2) 若D不满足以上条件, 则可通过加辅助线将其分割
为有限个上述形式的区域 , 如图
y
D
Q P d xd y x y
a
目录
上页
下页
返回
结束
例4. 计算
y 2,
其中D 是以 O(0,0) , A(1,1) ,
B(0,1) 为顶点的三角形闭域 . 解:
y
B(0,1) A(1,1)
P 0, Q x e

D
利用格林公式 , 有
yx
O

D
x
xe
y2
dy
1 y2
xe dy 0 ye Q P OA Qd y x y d xd y P d x 1 D L (1 e 1 ) 2

(完整版)《微积分》各章习题及详细答案

(完整版)《微积分》各章习题及详细答案

第一章 函数极限与连续一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x . 3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sin lim 0=→xx k x 成立的k 为 .5、=-∞→x e x x arctan lim .6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b .7、=+→xx x 6)13ln(lim 0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________. 9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a .12、函数x xx f +=13arcsin )(的定义域是__________。

13、lim ____________x →+∞=.14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~.3、函数⎪⎩⎪⎨⎧=-≥≠-+-+=0)1(0,1111)(3x k x x x x x f 在0=x 处连续,则=k 。

微积分(8)-函数无穷大

微积分(8)-函数无穷大

事实上, 上述命题不成立。 即: 如果函数 f ( x) 在点 x0 的某邻域 U ( x0 ) 内无界, 那么函数 f ( x) 在 x x0 时不一定是无穷大。比如函数
f ( x)
对 M 0 , n
*
1 1 cos , x x
1 M (只要取 n 即可) ,令 x1 U (0) ,有 2n 2
x x0
x x0
x x0
lim f ( x)
x x0
lim f ( x)
例 1.已知 f ( x) 证明:由于
1 ,求证: lim f ( x) 。 x 2 x x6
2
x2 x 6 ( x 2)( x 3) ,
因为 x 2 ,不妨假设 x 2 1 ,于是有
k 1 x x0 k 1 K0 K0
x x0
证明:我们只对性质 2 作出证明,性质 3 请大家自己完成。 由于 lim f k ( x) , k 1, 2,
x x0
, K0 ,根据正无穷大的定义,可得:
对 A 0 , k 0 ,当 0 x x0 k 时,有 f k ( x) 取 min 1 , 2 ,
1 取 min 1, 0 ,则当 0 x 2 时,就有 6A
2
f ( x)
1 A, x x6
2
因此,
lim f ( x) 。
x 2
根据无穷大的定义,下面,我们来讨论它的简单性质:
由 于“ 函 数 f ( x) 在 x x0 时是无 穷大”是 指:对 A 0 , 0 ,当
0 x x0 时,有 f ( x) A ;而“函数 f ( x) 在点 x0 的邻域 U ( x0 ) 内无界”是

《微积分》各章习题及详细答案

《微积分》各章习题及详细答案

第一章 函数极限与连续之勘阻及广创作一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim 22x x x x 。

3、0→x 时,x x sin tan -是x 的阶无穷小。

4、01sin lim 0=→xx k x 成立的k 为。

5、=-∞→x e x x arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim0。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xx x f +=13arcsin)(的定义域是__________。

13、lim ____________x →+∞=。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

画刚架内力图的简便方法+辅导课(8-1)

画刚架内力图的简便方法+辅导课(8-1)

绘制刚架的内力图的简便方法 绘制刚架的内力图的简便方法 1、求出水平支座反力(直观确定); 求出水平支座反力(直观确定); 水平支座反力 2、由公式法求部分杆端弯矩,由区段叠 公式法求部分杆端弯矩, 弯矩 加法画弯矩图 画弯矩图; 加法画弯矩图; 3、由M图画V图(dM(x)/dx=V(x) ); 图画V 4、由V图画N图(取刚结点为研究对象)。 图画N 刚结点为研究对象)。
40 kN D B 20 kN/m C 4m
20
B
80kN
20
A 2m
2m
N图(kN) 图
0
NBD
MBA=160kN.m(右拉 右拉) 右拉
NBA
10kN
练习题:作出图示两跨静定刚架的弯矩图。 练习题:作出图示两跨静定刚架的弯矩图。 两跨静定刚架的弯矩图
8 D 4 4 E F 4 G 4
A
B
C
画刚架内力图的简便方法 简便方法+ 画刚架内力图的简便方法+辅导课
教学 讲练结合 方法 熟练掌握静定平面刚架内力图绘制方法 教学 熟练掌握静定平面刚架内力图绘制方法 目的 内力图绘制的简便方法 教学 内力图绘制的简便方法 重点 )、V(x) q(x)间的 V(x)与 间的微分关系 教学 M(x)、V(x)与q(x)间的微分关系 难点
判断内容(画弯矩图的技巧) 判断内容(画弯矩图的技巧) 技巧
1.熟练掌握M V q之间的微分关系 微分关系; 1.熟练掌握M—V—q之间的微分关系; 熟练掌握 铰结点、自由端处无外力偶作用 则杆端弯矩为零, 作用, 2、铰结点、自由端处无外力偶作用,则杆端弯矩为零, 否则杆端弯矩与外力偶矩相等, 使杆同侧受拉 同侧受拉; 否则杆端弯矩与外力偶矩相等,且使杆同侧受拉; 铰链中心弯矩为零 弯矩为零; 中间铰链不影响弯矩、 3、①铰链中心弯矩为零;②中间铰链不影响弯矩、剪力 与荷载集度间的微积分关系。 与荷载集度间的微积分关系。 有两杆交汇的刚结点 若结点上无外力偶作用, 刚结点, 4、有两杆交汇的刚结点,若结点上无外力偶作用,则两 杆弯矩必大小相等且同侧受拉(外侧或内侧); 杆弯矩必大小相等且同侧受拉(外侧或内侧); 若有外力偶作用, 5、若有外力偶作用,则两杆端弯矩之代数和等于此外力 偶数值,且方向相反; 偶数值,且方向相反; 结构上的悬臂部分以及简支部分 含任何两铰直杆), 悬臂部分以及简支部分( 6、结构上的悬臂部分以及简支部分(含任何两铰直杆), 其弯矩图可直接画出 直接画出; 其弯矩图可直接画出; 外力与杆轴重合时不产生弯矩,与杆轴平行时弯矩为 7、外力与杆轴重合时不产生弯矩,与杆轴平行时弯矩为 常数; 常数; 利用结构对称性 对称性。 8、利用结构对称性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)
若加括号后级数收敛,则原级数收敛; B 若加括号后级数收敛,则原级数收敛; 若加括号后级数发散,则原级数发散; C 若加括号后级数发散,则原级数发散; D 若 E 若
∑u
n =1 ∞ n =1


n
收敛,⇒ ∑ (u2 n−1 + u2 n ) 收敛 收敛,
n =1 ∞

∑u
n =1
n
发散,⇒ ∑ (u2 n−1 + u2 n ) 发散 发散,
2 性质 性质2
且若
的敛散性相同, ∑ u 与 ∑ ku 的敛散性相同,
n =1 n
n =1 n


∑u
n =1

n
= s,
∑ ku
n =1

n
= ks (k ∈ R, k ≠ 0)
3 性质 一个级数去掉或添加有限项, 性质3 一个级数去掉或添加有限项, 敛散性不变. 敛散性不变 性质4 若级数收敛, 4 性质4 若级数收敛,则添加括号后新级数 收敛,但反之不一定. 收敛,但反之不一定.


n →∞
lim un = lim( Sn − Sn −1 ) = s − s = 0
n →∞
注意: n→∞ ③注意: i ) lim un = 0 →
1 如 ∑ n, n =1
∑u
n =1


n
收敛
1 lim = 0 n →∞ n
1 ∑n n =1


1 ∑n n =1

发散
(称级数 称级数
为调和级数) 为调和级数
第八章 无穷级数
§1 常数项级数的概念和性质 本节重点: 本节重点 掌握级数收敛的充分与必要条件; 1 掌握级数收敛的充分与必要条件; 2 掌握收敛级数的性质
一、常数项级数的概念
级数的定义: 1. 级数的定义: 数列 {un } 的各项依次相加所得的表达式

∑u
n=1
n
= u1 + u2 + u3 +⋯+ un +⋯
性质应用—例题分析 三 性质应用 例题分析
例1
1 1 设 ∑ un = 2, 求 ∑ ( un − n ) 2 n =1 2 n =1
1 收敛, lim ∑ (1 − u ) 收敛,求 n→∞ un n =1 n ∞ 5 1 的和. ∑ ( n(n + 1) + 2n ) 的和. n =1



例2 设 例3 求
ii ) 若 lim un ≠ 0 ⇒ ∑ un 发散 n →∞


n ∑ n +1 n =1

n =1
发散
必要条件的用途: iii ) 必要条件的用途: 用来判别级数发散; a) 用来判别级数发散; b) 用来求某类型数列极限 (求极限的另一方法) 求极限的另一方法)
∞ n! n! lim 如: n→∞ n = 0, ∵ ∑ n 收敛的(后续课讲) n n 收敛的(后续课讲) n =1
收敛, 为其和, 收敛, s 为其和,即
∑u
n =1


n
= s,
不存在, 若 lim Sn 不存在,则称级数∑ un 发散 n →∞ n =1
(判别级数敛散性的方法) 判别级数敛散性的方法)
若收敛,如何求和?(收敛,求和的方法) ?(收敛 ② 若收敛,如何求和?(收敛,求和的方法)
n →∞
lim Sn = s = ∑ un
n =1

(求数列的极限) 求数列的极限)
4 例题分析 例1 设
∑ un 前 n
n =1

项部分和为
n Sn = n +1
是否收敛? 问: ① ∑ un 是否收敛?
n =1

② 若收敛,求其和; 若收敛,求其和; ③ 写出该级数 判别等比级数(几何级数) 例2 判别等比级数(几何级数)
aq n−1 = a + aq + aq 2 + ⋯ + aq n−1 + ⋯ ∑
Sn = u + u2 +⋯+ un ,⋯ 1
③ un = Sn − Sn −1 ④

∑u
n =1
n
= lim Sn
n →∞
级数的收敛与发散: 3. 级数的收敛与发散:
lim ① 设级数 ∑ un,若 n→∞ S n = s (有限数),则称级数 有限数), ),则称级数

∑u
n =1

n =1
n
(常数项)无穷级数 常数项) 其中
un 称为该级数的一般项或通项
2. 部分和与部分和数列
部分和: ① 部分和: 数列 un 的前 n 项和 S n
Sn = u1 + u2 + ⋯ + un
② 部分和数列 {S n } (n = 1, 2, ⋯)
S1 = u1, S2 = u1 + u2 , S3 = u1 + u2 + u3,⋯,
n =1
F 若 ∑ (u2n + u2 n+1 )发散, 发散,
⇒ ∑ un
n =1

发散
四、小结
常数项级数的基本概念和性质 基本审敛法
1.由定义,若 s n → s , 则级数收敛; 1.由定义, 则级数收敛; 由定义
2.当 则级数发散; 2.当 lim un ≠ 0,则级数发散;
n→ ∞
3. 收敛级数的性质

1 ∑ (2n − 1)(2n + 1) n =1

是否收敛?若收敛求其和 是否收敛 若收敛求其和. 若收敛求其和
二、收敛级数的基本性质
1. 性质 (级数收敛的必要条件 性质1 级数收敛的必要条件 级数收敛的必要条件)
lim ①级数∑ un 收敛 ⇒ n→∞ un = 0
n =1 ∞

lim 简证: ② 简证:∵ ∑ un 收敛 ⇒ n→∞ Sn = s n =1
级数加括号后得新级数发散, 注: 级数加括号后得新级数发散,则原级 数发散. 数发散. 5 性质 若 ∑ un 与 ∑ vn均收敛 性质5 n =1 n =1
⇒ ∑ (k1un + k2vn ) 收敛 ( k1 , k 2
n =1 ∞
∞ ∞
≠ 0).
注: i ) 两个发散级数的和或差不一定发散
ii ) 一敛一散的和或差一定发散

收敛, n=1 发散,分别就①② 例4 设① ∑ un 收敛,② ∑ un 发散,分别就①② n =1 两种情况讨论下列级数的敛散性

i ) ∑ (un + 0.0001) ii )
n =1

∑u
n =1

n +1000
1 iii ) ∑ u n =1 n

下列结论正确的是( 例5 下列结论正确的是( 发散级数加括号后仍发散; A 发散级数加括号后仍发散;
讨论
1 ∑n n =1

假设调和级数收敛 , 其和为 s .
1 1 1 n 1 > = , ∵ s2 n − sn = + +⋯+ n+1 n+ 2 2n 2n 2
于是 lim( s2 n − sn ) = s − s = 0,
n→ ∞
1 (n → ∞) 便有 0 ≥ 2
这是不可能的 .
∴ 级数发散 .
n =1 ∞
其中 a ≠ 0, q ≠ 0 的敛散性
例3
2 判别级数 ∑ 5n n =1


的敛散性 的敛散性
例4 判别级数 ∑ 2 3
n =1

2 n 1− n
1 是否收敛, 例5 判别级数∑ 是否收敛, n =1 n( n + 1)
若收敛求其和
1 思考:问 思考 问 ∑ n(n + 1)(n + 2) , n =1
1 ∑ n(n + 1) 收敛, 收敛, n =1

1 1 1 则 1⋅ 2 + ( 2 ⋅ 3 + 3 ⋅ 4 ) + (4,5, 6, 7) + ⋯
仍收敛. 仍收敛.
(−1) n = −1 + 1 + (−1) + 1 + ⋯ (−1) n + ⋯ 发散 发散, ∑
n =1

收敛. 但 (−1 + 1) + (−1 + 1) + ⋯ + ⋯ 收敛.
相关文档
最新文档