case:Data Envelopment Analysis in Retail Banking
一种针对半导体制造工艺的全面动态取样方案
电子技术• Electronic Technology88 •电子技术与软件工程 Electronic Technology & Software Engineering【关键词】动态取样 工艺风险 Cpk1 介绍现如今随着半导体制造过程的复杂性不断提升,采用科学有效的工艺管控方法来帮助快速侦测并改进异常工艺表现是非常重要的。
工艺管控方法中最有效的方法就是改进取样方案。
通过高效的取样方案,能够快速检测到工艺的偏离,并实现改进和预防措施。
目前业界常用的取样方法是在初始阶段建立,之后根据需要人工改变频率。
本文介绍了一种新的动态取样解决方案,通过采用工艺风险评估并配合多种因素作用,实现针对不同工艺风险的取样决定。
2 全面动态取样方案全面动态取样系统是基于工艺状况、机台情况、工艺不确定性、异常事件信号以及量测机台产能来调整取样率的。
我们根据工艺风险将取样方案分成三个区间,即低-基准-高。
当工艺流程处在一个较低的风险级时,取样在低频率下进行,反之将在高频率下进行。
如果线上工艺流程表现出向高风险发展的趋势,取样率会随着提升,并伴随改进方案的实施,从而减少风险产品的数量。
反之取样率会随之降低,量测机台的产能得到缓解,同时低取样率也能够缩短制造工艺的周期。
本文的取样方案是以传统方案作为框架并配合动态改变取样率实现的。
下面对各影响因素作介绍:2.1 工艺状况整体的工艺状况代表了生产出满足客户需求的产品的能力。
线上量测的图表是一个表现工艺状况好坏的重要指标,而Cpk 又是表现工艺能力的重要参数,我们基于Cpk 的表现来判断工艺流程的风险级别,高风险的将会一种针对半导体制造工艺的全面动态取样方案文/陈彧触发高取样率。
2.2 机台情况机台情况是影响整体工艺风险的重要因素。
当机台接近它们的维护周期时,机台性能会出现退化,这种情况会给工艺带来额外的风险,因此取样方案也要做相应的调整。
机台的风险会随着定期维护的周期发生着变化,当机台越接近维护的时间前后,机台的风险会随着增加。
data_envelopment_analysis_(dea)model_概述说明
data envelopment analysis (dea)model 概述说明1. 引言1.1 概述数据包络分析(Data Envelopment Analysis,简称DEA)是一种常用的效率评估方法,可以应用于不同领域的决策问题中。
该方法通过对输入和输出变量进行分析和比较,来评估各个决策单元(如公司、机构或个人等)的相对效率和优劣程度。
DEA模型以线性规划为基础,通过构建有效前沿来衡量各个决策单元在给定输入产出下的相对效率,并提供改善不高效决策单元的参考建议。
由于其能够同时考虑多个输入和输出变量,并克服了传统评价方法中刻板印象的缺点,因此在许多实际应用中得到广泛使用。
1.2 文章结构本文主要围绕DEA模型展开论述,并分为五个部分。
引言部分主要介绍文章概述、结构和目的。
接下来是数据包络分析模型概述,包括该模型的定义、背景以及应用领域。
然后,我们将重点介绍DEA模型的要点一,包括输入输出变量选择方法、效率评估方法以及模型解释和结果分析。
紧接着是DEA模型的要点二,包括线性规划模型与非线性规划模型对比、超效率与相对效率分析方法以及DEA模型的优缺点与局限性。
最后,在结论部分对文章的主要内容进行总结,并展望DEA模型在未来的应用前景。
1.3 目的本文旨在全面概述数据包络分析(DEA)模型的基本原理、应用领域以及相关要点。
通过阐明该模型在多个方面的优势和局限性,读者可以更好地理解和运用DEA模型进行效率评估,并为决策提供科学参考。
另外,本文也将讨论DEA模型在未来的发展前景,为相关研究和实践提供指导。
2. 数据包络分析模型概述:2.1 定义和背景:数据包络分析(Data Envelopment Analysis, DEA)是一种非参数效率评价方法,其目的是通过比较多个决策单元(如企业、组织或个人)的输入与输出之间的关系来评估它们的相对效率。
该方法最早由Cooper等人在1978年提出,并得到了广泛应用。
胰岛移植即刻经血液介导的炎症反应应对策略
第14卷 第3期2023年5月Vol. 14 No.3May 2023器官移植Organ Transplantation ·移植前沿·胰岛移植即刻经血液介导的炎症反应应对策略杨玉伟 张婷 李万里 陈继冰 高宏君【摘要】 胰岛移植作为治疗1型糖尿病和终末期2型糖尿病的有效手段,可以使患者获得较好的血糖控制能力。
即刻经血液介导的炎症反应(IBMIR )是胰岛移植早期出现的非特异性炎症反应,发生后可迅速出现凝血级联和补体系统激活、炎症细胞聚集等,造成大量移植胰岛丢失,严重影响胰岛移植的疗效。
如何减轻IBMIR 对胰岛造成损伤是目前胰岛移植的研究热点,临床推荐的治疗胰岛移植IBMIR 的药物有肝素和肿瘤坏死因子-α抑制剂依那西普。
新近研究表明多种方法和药物可以减轻IBMIR 对胰岛的损伤,本文就这些临床研究成果和临床前研究成果进行综述,以期为胰岛移植IBMIR 的应对提供参考。
【关键词】 胰岛移植;糖尿病;即刻经血液介导的炎症反应(IBMIR );炎症反应;胰岛丢失;胰岛保护;胰岛封装;凝血【中图分类号】 R617,R587 【文献标志码】A 【文章编号】 1674-7445(2023)03-0005-06【Abstract 】 As an effective procedure for type 1 diabetes mellitus and end-stage type 2 diabetes mellitus, islet transplantation could enable those patients to obtain proper control of blood glucose levels. Instant blood-mediated inflammatory reaction (IBMIR) is a nonspecific inflammation during early stage after islet transplantation. After IBMIR occurs, coagulation cascade, complement system activation and inflammatory cell aggregation may be immediately provoked, leading to loss of a large quantity of transplant islets, which severely affects clinical efficacy of islet transplantation. How to alleviate the islet damage caused by IBMIR is a hot topic in islet transplantation. Heparin and etanercept, an inhibitor of tumor necrosis factor-α, are recommended as drugs for treating IBMIR following islet transplantation. Recent studies have demonstrated that multiple approaches and drugs may be adopted to mitigate the damage caused by IBMIR to the islets. In this article, the findings in clinical and preclinical researches were reviewed, aiming to provide reference for the management of IBMIR after islet transplantation.【Key words 】 Islet transplantation; Diabetes mellitus; Instant blood-mediated inflammatory reaction (IBMIR); Inflammation; Islet loss; Islet protection; Islet encapsulation; CoagulationTherapeutic strategy for instant blood-mediated inflammatory reaction after islet transplantation Yang Yuwei *, Zhang Ting, Li Wanli, Chen Jibing, Gao Hongjun.*Graduate School of Guangxi University of Chinese Medicine, Nanning 530001, China Correspondingauthor:GaoHongjun,Email:***************DOI: 10.3969/j.issn.1674-7445.2023.03.005基金项目:广西科技基地和人才专项(桂科AD22035122);广西研究生教育创新计划项目(YCSW2022355、YCXJ2021091)作者单位:530001 南宁,广西中医药大学研究生院(杨玉伟、李万里);广西中医药大学附属瑞康医院(张婷、陈继冰、高宏君)作者简介:杨玉伟(ORCID :0009-0000-2017-8883),硕士研究生,住院医师,研究方向为器官移植,Email :*****************通信作者:高宏君(ORCID :0000-0003-1451-0725),博士,主任医师,研究方向器官移植与胰岛移植,Email :***************对于疗效欠佳的1型糖尿病和伴有胰岛功能衰竭的2型糖尿病,胰岛移植已成为理想的治疗方法。
handbook on data envelopment analysis
handbook on data envelopment analysisData envelopment analysis(DEA)已经成为了经济学中非常重要的分析方法,尤其是在效率评估方面。
而《Handbook on Data Envelopment Analysis》是关于DEA的一本重要工具书,涵盖了本领域的各个方面。
下面将围绕这本书进行一步步的阐述。
第一部分:介绍手册这本手册的作者是W.W. Cooper、Lawrence M. Seiford和Kaoru Tone。
在手册中,这三位作者给出了DEA的具体定义和历史、应用领域以及其进行分析的各种方法和技术。
他们还详细介绍了如何通过DEA 技术来确定单位的效率,以及如何进行效率分析。
其核心含义是将所有的数据单位纳入到一个最大化效率的“包络线”当中,衡量各个单位的绩效表现与他人的表现相比,发现他们存在的潜在问题,然后提出改进策略。
第二部分:涵盖的主题在这本手册中,涵盖的主题非常广泛,包括处理海量数据集的计算方法,对不确定性进行量化以及对各种获得数据的方法进行总结和统一等方面,使本手册成为了目前市面上最权威的关于DEA的一本工具书。
在书中,作者们使用通俗易懂的语言对各种技术和方法进行详细的介绍,使非专业人士也能够轻松阅读。
第三部分:应用案例在本手册中,也包含了各种DEA应用案例,这些案例都是作者们从实际生活中提取的,比如供应链管理、公共政策评估等等,这些实例不仅有助于理解DEA的理论,更重要的是展示了DEA在实际生活中的应用情况。
这对于从事相关领域的学者、业务人员等,有非常大的帮助。
总之,本手册是一本非常重要的工具书,其对于经济学领域和实际生产和管理方面都具有非常重要的意义。
手册的综述性和权威性受到广大读者的好评和认可,可以为我们提供非常重要的借鉴和指导。
晚期肺癌患者肺部感染病原菌特征及预测模型构建和验证
晚期肺癌患者肺部感染病原菌特征及预测模型构建和验证王亚平 李小月[摘 要] 目的 探讨晚期肺癌患者肺部感染的病原菌特征以及预测模型的构建。
方法 统计分析安庆市第一人民医院2019年3月至2021年12月收治的208例晚期肺癌患者肺部感染发生率、感染病原菌分布特点,K-B 扩散纸片法分析病原菌对抗菌药物的耐药性,采用多因素logistic 逐步回归分析患者肺部感染的危险因素,并根据其回归系数构建晚期肺癌肺部感染预测模型,使用受试者工作特征(ROC )曲线、Hosmer-Lemeshow 检验对预测模型进行效能评估。
结果 208例晚期肺癌患者中,并发肺部感染49例(23.56%),革兰阴性菌37株(60.66%)、革兰阳性菌20株(32.79%)、真菌4株(6.56%);铜绿假单胞菌、鲍曼不动杆菌、肺炎克雷伯菌对亚胺培南的耐药性低,表皮葡萄球菌、金黄色葡萄球菌对万古霉素、氨苄西林的耐药性低。
logistic 逐步回归分析结果显示,糖尿病、低蛋白血症、KPS 评分<80分、放疗及化疗是晚期肺癌患者肺部感染的危险因素(P <0.05);患者肺部感染预测模型为P =1/1+exp (-2.686+1.566χ糖尿病+1.838χ低蛋白血症+1.336χKPS 评分+1.236χ放疗+0.874χ化疗),预测模型的ROC 下面积(AUC )为0.817,且Hosmer-Lemeshow 检验P =0.529。
结论 晚期肺癌患者肺部感染以革兰阴性菌为主,合并糖尿病、低蛋白血症、Karnofsky 评分<80分、放化疗是患者肺部感染的危险因素,基于上述因素建立的预测模型有较高的预测效能。
[关键词]晚期肺癌;肺部感染;病原菌;危险因素;预测模型doi:10.3969/j.issn.1000-0399.2023.04.006Characteristics of lung infection pathogens and construction of prediction model for lung infection in advanced lung cancer WANG Yaping ,LI XiaoyueDepartment of Clinical laboratory,Anqing First People's Hospital,Anqing 246003,ChinaFunding project:Project of Anhui Provincial Department of Science and Technology(NO.201904a 07020016)Correspondingauthor:LIXiaoyue,***************[Abstract] Objective To investigate the characteristics of lung infection pathogens and construction of prediction model in patients with advanced lung cancer. Methods The incidence of lung infection and distribution characteristics of pathogens were statistically analyzed in the 208 patients with advanced lung cancer admitted to Anqing First People ’s Hospital between March 2019 and December 2021. The drug resis⁃tance of pathogens to antibiotics was analyzed by Kirby-Bauer (K-B) method. The risk factors of lung infection were analyzed by multivariate logistic stepwise regression analysis, and the prediction model for lung infection was constructed based on their regression coefficients. The pre⁃dictive efficiency of the model was evaluated by receiver operating characteristic (ROC) curves and Hosmer-Lemeshow test. Results In the 208 patients with advanced lung cancer, there were 49 cases (23.56%) with lung infection. There were 37 strains of Gram-negative bacte⁃ria (60.66%), 20 strains of Gram-positive bacteria (32.79%) and 4 strains of fungi (6.56%). The drug resistance of Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae was low to imipenem, and drug resistance of Staphylococcus epidermidis and Staphylococ⁃cus aureus was low to vancomycin and ampicillin. The results of logistic stepwise regression analysis showed that diabetes, hypoproteinemia, KPS score <80 points, radiotherapy and chemotherapy were independent risk factors of lung infection in patients with advanced lung cancer (P <0.05). The prediction model for lung infection was as follows: P =1/1+exp (-2.686+1.566 χdiabetes +1.838 χhypoproteinemia +1.336χKPS score +1.236 χradio⁃therapy+0.874 χchemotherapy ). The area under the ROC curve (AUC) of the prediction model was 0.817 (P =0.529 in Hosmer-Lemeshow test). Conclu⁃sions The main pathogen of lung infection is Gram-negative bacteria in patients with advanced lung cancer. Diabetes, hypoproteinemia, KPS score <80 points, radiotherapy and chemotherapy are independent risk factors of lung infection. The prediction model for lung infection of ad⁃vanced lung cancer constructed based on the above factors has high predictive efficiency.[Key words ] Advanced lung cancer; Lung infection; Pathogen; Risk factors; Prediction model基金项目:安徽省科学技术厅基金项目(编号:201904a07020016)作者单位:246003 安徽安庆 安庆市第一人民医院检验科通信作者:李小月,***************本文引用格式:王亚平,李小月.晚期肺癌患者肺部感染病原菌特征及预测模型构建和验证[J ].安徽医学,2023,44(4):388-393.DOI :10.3969/j.issn.1000-0399.2023.04.006第 44 卷第 4 期 2023 年4 月388安徽医学Anhui Medical Journal第 44 卷第 4 期2023 年4 月安徽医学Anhui Medical Journal肺癌可分为非小细胞肺癌和小细胞肺癌,肺癌中晚期患者已出现癌细胞扩散或病灶转移[1],可采用化学治疗(简称化疗)和放射治疗(简称放疗)治疗方式,但伴随副作用较强[2]。
决策树模型在临床研究数据分析中的应用
·临床研究规范·决策树模型在临床研究数据分析中的应用沈范玲子1王瑞平1,2(1. 上海中医药大学公共健康学院上海 201203;2. 上海市皮肤病医院临床研究与创新转化中心上海 200443)摘要决策树模型是一种有监督的机器学习方法,分类规则通常采取IF-THEN形式,分析结果常以树形图呈现,具有可解释性强、易于理解的优势,在灾害预测、环境监测、临床诊疗决策等领域均有广泛的应用。
本文从决策树模型概念入手,介绍了决策树模型的一般构建步骤、分类与回归树(classification and regression tree, CART)决策树模型在临床研究数据分析中的应用,并应用SPSS软件示例CART决策树模型的构建过程和实现方法,以期为临床研究者采用决策树模型进行数据分析提供参考。
关键词决策树临床研究 CART算法 SPSS软件中图分类号:G304; R-3 文献标志码:C 文章编号:1006-1533(2024)05-0014-05引用本文沈范玲子, 王瑞平. 决策树模型在临床研究数据分析中的应用[J]. 上海医药, 2024, 45(5): 14-18.Application of decision tree modeling in clinical research data analysisSHEN Fanlingzi1, WANG Ruiping1,2(1. School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;2. Clinical Research & Innovation Center, Shanghai Skin Disease Hospital, Shanghai 200443, China)ABSTRACT Decision tree model is a supervised machine learning method and its classification rules usually take the form of IF-THEN, the analysis results are often presented in the form of tree diagrams, with the advantages of solid interpretability and ease understanding, and it has been widely used in the fields of disaster prediction, environmental monitoring, clinical diagnosis and treatment decision-making. This article starts from the concept of decision tree model, introduces the general construction steps of decision tree model, the application of classification and regression tree (CART) decision tree model in the analysis of clinical research data, and the construction process and realization method of CART decision tree model using the SPSS software example, so as to provide a better solution for clinical researchers to use decision tree model for data analysis.KEY WORDS decision trees; clinical research; CART algorithm; SPSS software临床医学研究中,在探讨多个自变量和因变量之间关系时,常采用多元线性回归、logistic回归、Cox回归分析、广义线性模型等经典统计分析方法。
(1)数据包络分析法(DEA)概述
(1) 数据包络分析法(DEA)概述数据包络分析(Data Envelopment Analysis,简称DEA)方法是运用数学工具评价经济系统生产前沿面有效性的非参数方法,它适应用于多投入多产出的多目标决策单元的绩效评价。
这种方法以相对效率为基础,根据多指标投入与多指标产出对相同类型的决策单元进行相对有效性评价。
应用该方法进行绩效评价的另一个特点是,它不需要以参数形式规定生产前沿函数,并且允许生产前沿函数可以因为单位的不同而不同,不需要弄清楚各个评价决策单元的输入与输出之间的关联方式,只需要最终用极值的方法,以相对效益这个变量作为总体上的衡量标准,以决策单元(DMU)各输入输出的权重向量为变量,从最有利于决策的角度进行评价,从而避免了人为因素确定各指标的权重而使得研究结果的客观性收到影响。
这种方法采用数学规划模型,对所有决策单元的输出都“一视同仁”。
这些输入输出的价值设定与虚拟系数有关,有利于找出那些决策单元相对效益偏低的原因。
该方法以经验数据为基础,逻辑上合理,故能够衡量个决策单元由一定量大投入产生预期的输出的能力,并且能够计算在非DEA有效的决策单元中,投入没有发挥作用的程度。
最为重要的是应用该方法还有可能进一步估计某个决策单元达到相对有效时,其产出应该增加多少,输入可以减少多少等。
1978年由著名的运筹学家查恩斯(A.Charnes),库伯(W.W.Cooper)和罗兹(E.Rhodes)首先提出数据包络分析(Data Envelopment Analysis,简称DEA)的方法,DEA有效性的评价是对已有决策单元绩效的比较评价,属于相对评价,它常常被用来评价部门间的相对有效性(又称之为DEA有效)。
他们的第一个数学模型被命名为CCR模型,又称为模型。
从生产函数角度看,这一模型是用来研究具有多项输入、特别是具有多项输出的“生产部门”时衡量其“规模有效”和“技术有效”较为方便而且是卓有成效的一种方法和手段。
质量基础设施支撑县域经济高质量发展的作用研究
2024年第2期品牌与标准化Research on the Role of Quality Infrastructurein Supporting High Quality Development of County EconomyZHENG Yongyue ,YANG Yulin ,LIU Zhiyong ,QIU Lianqiang ,LI Nan(Liaoning Inspection,Examination &Certification Centre,Shenyang 110036,China)Abstract :This paper focuses on the county-level economy and uses data envelopment analysis modeling method to measure input-output efficiency,analyses the impact of quality infrastructure on the development of county-level economy by dividing into two-stage.Keywords :quality infrastructure;data envelopment analysis;county-level economy质量基础设施支撑县域经济高质量发展的作用研究郑勇跃,杨宇林,刘智勇,邱连强,李楠(辽宁省检验检测认证中心,辽宁沈阳110036)【摘要】本文面向县域经济,通过数据包络分析建模方法测量投入产出效率,细化两阶段分析质量基础设施对县域经济发展的作用影响。
【关键词】质量基础设施;数据包络分析;县域经济【DOI 编码】10.3969/j.issn.1674-4977.2024.02.0310引言质量基础设施是对计量、标准和合格评定(合格评定包括认证认可和检验检测)等与质量相关的基础设施总称,是促进产业发展、科技创新、国际贸易和实现可持续发展的重要技术基础,在推进经济高质量发展中发挥重要作用。
肿瘤患者术前术中使用氨甲环酸止血有效性和安全性的Meta分析
瘤患者为发生静脉血栓栓塞症(venous thromboembo‐lism,VTE)的高危人群,其VTE发生率较非肿瘤患者高4~7倍[4]。
氨甲环酸(tranexamic acid,TXA)作为临床应用广泛的止血药物,能通过可逆地阻断纤维蛋白分子上的赖氨酸结合位点,来发挥抗纤维蛋白溶解作用,最终达到强效止血的目的[5]。
TXA可有效减少手术、创伤和出血性疾病的失血量[6―8],并于2011年列入WHO基本药物清单[9]。
有研究发现,TXA可能会导致VTE或动脉血栓栓塞症,从而增加血栓事件发生率[10]。
但在肿瘤患者手术使用TXA的临床研究中,很少有研究将VTE作为结局指标[11―12]。
因此肿瘤患者使用TXA的安全性值得关注。
虽然TXA已在骨科、脊柱外科及妇科手术中得到充分应用[13―15],但结果存在争议[16―17]。
基于此,本研究采用Meta分析的方法系统评价了肿瘤患者术前术中使用TXA止血的有效性和安全性,旨在为临床用药提供循证依据。
1 资料与方法1.1 纳入与排除标准1.1.1 研究类型本研究纳入的文献为国内外公开发表的随机对照试验(randomized controlled trial,RCT)。
1.1.2 研究对象本研究纳入的患者为行手术治疗的肿瘤患者。
1.1.3 干预措施试验组患者给予TXA;对照组患者给予0.9%氯化钠注射液、乳酸钠林格氏液、复方电解质溶液或安慰剂。
两组患者的给药时间、周期、剂量均不限。
1.1.4 结局指标本研究的结局指标包括:(1)总失血量;(2)输血率;(3)红细胞悬液输注量;(4)术后引流量;(5)血栓事件发生率(包括VTE发生率和动脉血栓栓塞症发生率);(6)术后病死率。
1.1.5 排除标准本研究的排除标准为:(1)无法获取完整数据的研究;(2)重复发表的研究;(3)结局指标不一致或无相应结果数据的研究。
1.2 文献检索策略计算机检索PubMed、Embase、the Cochrane Library、中国知网、维普网、万方数据。
全分析集包括违反
全分析集包括违反
全分析集(FAS)
指合格病例和脱落病例的集合,但不包括剔除病例。
主要疗效指标缺失时,根据意向性分析(intention to treat,ITT分析),用前一次结果结转。
违反方案的受试者都不应纳入分析,但是目前绝大多数的新药试验都会同时分析itt及“符合方案集”。
可比性分析和次要疗效指标的缺失值不作结转,根据实际获得的数据分析。
尽可能接近符合ITT原则的理想的受试者人群。
几乎包括所有的随机化后的受试者。
可以从FAS中排除的情况:
1.不符合入选标准的受试者。
2.在入组后没有任何随访记录的受试者。
符合方案集(PPS)
指符合纳入标准、不符合排除标准、完成治疗方案的病例集合,即对符合试验方案、依从性好、完成CRF规定填写内容的病例进行分析(PP分析)。
其是FAS的一个子集,在这个数据集中每位受试者是依从性好,不违背方案,主要指标的基线值完备;未使用违背方案的药物。
DEA方法简介详解
• 利用线性规划的最优解来定义决策单元j0的有效性,从 模型可以看出,该决策单元j0的有效性是相对其他所有决 策单元而言的。
• 对于CCR模型可以用规划P表达,而线性规划一个重要 的有效理论是对偶理论,通过建立对偶模型更容易从理论 和经济意义上作深入分析
2021/8/2
• 规划P的对偶规划为规划D/:
DMU3,DMU5,DMU6,DMU8,DMU10 • (3)非DEA有效的DMU按定理3进行投影计算结果如后
2021/8/2
投影分析结果:
2021/8/2
四、 DEA软件介绍
✓ 1.DEAP-Version 2.1(Win4deap 1.1.2)
.au/econometrics/cepa.htm
➢ DEA与其它方法的结合应用于综合评价: 1.DEA与模糊数学理论的结合 2.DEA与主成分析法(因子分析法)的结合 3. DEA与计量经济方法的结合(计量模型、Tobit分析)
2021/8/2
七、 DEA主要参考文献
• 1.魏权龄. 数据包络分析.[M]北京:科学出版社,2006 • 2.盛昭翰.DEA理论、方法与应用.[M]北京:科学出版社,
定义:
权系数
1 2 3 … j …n
v1
1 x11 x12 x13 … x1j … x1n
v2
2 x21 x22 x23 … x2j … x2n
. . . . . . ….
vi
.. .
.
. Xij … .
. . . . . . ….
vm
m xm1 xm2 xm3 … xmj … xmn
n个 决策单元 (DMU)
2021/8/2
三、 DEA应用案例
参考文献_系统工程:原理与实务_[共2页]
[1] 汪应洛.系统工程(第4版).北京:机械工业出版社.2011.[2] 赵雪岩,李卫华,孙鹏.系统建模与仿真.北京:国防工业出版社.2015.[3] 钟永光,贾晓菁,钱颖等.系统动力学(第二版).北京:科学出版社.2013.[4] [美]斯特曼·J D.商务动态分析方法:对复杂系统的系统思考与建模.朱岩,钟永光,等译.北京:清华大学出版社,2008.6.[5] 张炳江.层次分析法及其应用案例[M].北京:电子工业出版社.2014.[6] 孙宏才.网络层次分析法与决策科学[M].北京:国防工业出版社.2011.[7] 郭齐胜.系统建模[M].北京:国防工业出版社.2006.[8] 汪应洛.系统工程理论、方法和应用[M].北京:高等教育出版社.1992.[9] 汪应洛.系统工程导论[M].北京:机械工业出版社.1982.[10] Charnes A,Cooper W W, Rhodes E. Measuring the efficiency of decisionmaking units[J]. European journal of operational research, 1978, 2(6): 429-444.[11] 魏权龄.数据包络分析[M].北京:科学出版社.2004.[12] 盛昭翰,朱乔,吴广谋.DEA 理论,方法及应用[M].北京:科学出版社.1996.[13] 分式规划.百度百科./item/%E5%88%86%E5%BC%8F%E8%A7%84%E5%88%92.[14] Banker R D, Charnes A, Cooper W W. Some models for estimating technicaland scale inefficiencies in data envelopment analysis[J]. Management science, 1984, 30(9): 1078-1092.[15] Kao C, Hwang S N. Efficiency decomposition in two-stage data envelopmentanalysis: An application to non-life insurance companies in Taiwan[J].European Journal of Operational Research, 2008, 185(1): 418-429. [16] Yang Y, Ma B, Koike M. Efficiency-measuring DEA model for productionsystem with k independent sub-systems[J]. Journal of the Operations Research Society of Japan, 2000, 43(3): 343-3.[17] 曾嵘.中国电信固定电话业务生命周期研究[D].南京邮电大学硕士论文,2012.[18] 王俊杰.基于霍尔三维系统的中国保险营销系统开发研究[D].东南大学硕士论文,2005.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Data Envelopment Analysis in Retail BankingSince 1983 the Australian financial services sector has undergone extensive deregulation. Increasingly, this has resulted in the need to re-examine and re-design existing bank structures, with a view to coping with increased competition and reducing costs.This study was undertaken by Dr Necmi K Avkiran, a Senior Lecturer in Financial Studies at the University of Queensland, Australia. Necmi is a member of the Australian Society for Operations Research, the Academy of Management and other professional associations such as the Australasian Institute of Banking and Finance. He has published articles in the Journal of Banking and Finance, Journal of Economics and Finance, International Journal of Human Resource Management, and many others. As a consultant Necmi’s clients include Sinclair, Knight and Merz, and John P. Young & Associates. Data envelopment analysis (DEA) was chosen for this study because, ultimately, it would help with the bank restructuring process and promote DEA as a versatile managerial decision making tool within the client organisation.The ProblemThe study aimed to assess the productivity of retail activities in 60 branches of an Australian trading bank (the name is withheld for reasons of confidentiality). The services provided by these branches include telling, customer services, housing loans, personal loans, and small business lending.DEA was chosen as the analysis technique for a number of reasons, including the fact that:. There is no restriction on the types of variables which can be included in the analysis.. When using DEA the variables can be measured in different units.. DEA measures technical efficiency, defined as the successful implementation of a production plan, therefore any deviations from the plan are noticeable.Model DesignDuring the model design phase, the first step was to identify the key performance outcomes (reflecting the corporate objectives) and then to select the factors (variables) that lead to these outcomes. A correlation analysis was conducted as part of the design process to remove highly correlated variables from the data set. The final variables used and their classification were as follows:. Number of teller windows (controllable input). Tangible convenience (controllable input). Customer service quality instrument (controllable input). Managerial competence of branch manager (controllable input). Average annual family income (non-controllable input). Proportion of private dwellings rented (non-controllable input). Number of small business establishments (non-controllable input). Total number of new deposit accounts (output). Total number of new lending accounts (output). Fee income (output)The variables tangible convenience, customer service quality instrument and managerial competence of branch manager were introduced as composite variables. For example, tangible convenience consisted of five items: (1) location at regional shopping centre, (2) location adjacent to or within walking distance of a regional shopping centre, (3) number of automatic teller machines, (4) presence of a free car park and (5) proximity to public transportation. Branch customers rated customer service quality on a questionnaire comprising 17 items. Managerial competence was rated by the immediate subordinates of branch managers based on a questionnaire comprising 45 items.The next step was to decide whether the analysis would focus on input minimisation or output maximisation. As the focus was on cost reduction, input minimisation was deemed to be the most appropriate choice. Output maximisation would be appropriate if the expansion of the market was considered important. As part of the analysis three productivity models were run. The first used all variables, under input minimisation (model 1). The second used only the controllable inputs with the outputs, run under input minimisation (model 2). The third used the uncontrollable inputs with the outputs under output maximisation (model 3). To determine whether the model should be set to constant or variable returns to scale, the relationship between scale of operations and efficiency scores was investigated. From the variables used, the number of teller windows was the best proxy measure of branch size. The correlation between this and the efficiency score was investigated and found to be -0.05, so all three models were run under constant returns to scale.ResultsDespite the advantages of DEA, care is still needed when interpreting the results of the analysis. A branch reported as being 100% efficient is not necessarily producing maximum outputs for the inputs used, rather the branch is 100% efficient relative to its peers. Also, the units (branches) in the analysis should be homogenous so that they can be directlycomparable with each other. The efficiency scores derived from the first two models were almost identical with the exception of 4 units. These units appeared as 100% efficient in model 1 but were less efficient in model 2. From this it was apparent that the results from model 1 could not be used in the same decision making context as model 2. When comparing the results of model 1 with model 3, more variation was observed between the scores. This indicated that the scores were sensitive to the specification of productivity model and highlighted the need to select a model that ties in with corporate objectives.By looking at reference set frequency information in Frontier Analyst it was possible to identify a global leader that other branches could emulate. When doing this it is important to look for an efficient unit which has the most similar input/output characteristics to the inefficient unit rather than just taking the most frequently occurring peer as the unit to emulate.One of the results of the analysis was a suggested reduction in customer service quality. Clearly, caution and common sense are needed in interpreting and applying such results since reducing customer service quality is likely to cause a backlash from customers. This result may show that the role of customer quality in generating the outputs is overrated in this case.ConclusionsThe analysis conducted allowed for more informed decisions to be made with respect to the branch network. Any type of restructuring calls for the identification of poor performers (which might be closed down orre-engineered), as well as star performers. The DEA approach can also help in establishing the structure of new branches by providing insight into the configuration of successful units and helping with effective allocation of resources. When interpreting the potential improvements indicated by DEA, they should be examined closely to assess whether certain key variables or environmental factors have been excluded from the optimisation process. This is where weight restrictions can also be introduced. Perhaps the most valuable lesson to be learned is that DEA is part of a continual process. Although it can identify performance targets, it does not tell us how to achieve these targets. This is where your knowledge as a manager comes in.Source: The above case study summarises Chapter 4 in Avkiran, N.K. (2000) Productivity Analysis in the Services Sector with Data Envelopment Analysis, first edition revised, pp.45-63, Queensland, Australia: N K Avkiran. Printed with permission of the author.With thanks to Necmi Avkiran, for his time and co-operation in the preparation of this case study。