用液质法检测水和土中的草甘膦及草铵膦
液相色谱——三重四极杆串联质谱联用法测定水中的草甘膦
黧 C I T Y A N D T O W N W A T E R S U P P L Y
・ 水 质 分析 与监 测 ・
液相色谱—— 三重 四极杆 串联 质谱联用法 测 定水 中的草甘膦
罗小勇
( 贵阳北控水务有限责任公 司,贵州贵 阳 5 5 0 0 0 8 )
1 . 1 . 1流 动 相 A : 0 . 1 % 甲酸 的 乙腈 溶 液 ,移 取 l ml 甲酸 于 1 0 0 0 ml 乙腈 溶 液 中 ,混匀 。 1 . 1 . 2流 动 相 B : 称取 0 . 1 5 4 g 无 水 乙酸胺 溶 解 于
适 量水 中加入 l m l 甲酸 ,用 水定 溶 至 l O 0 0 m l 。
2 0 0 g / L、4 0 0 g / L、8 0 0 g / L的标 准系列 。 1 . 4样 品制备
色谱纯 ) ; 乙酸胺 ( 进 口色谱纯 ) ; 甲酸 ( F i s h e r 公 司 ,色 谱纯 ) ; 无水 乙酸 ( 进 口色谱 纯 ) ; 硼 酸钠 ( N a 2 B O . 1 0 H2 0) ; 丙酮 ( 液相 色 谱 纯 ) ; 乙腈 ( F i s h e r 公 司 ,液相 色谱 纯 ) ;甲醇 ( F i s h e r 公 司 ,液 相 色谱
白色 固体 ,大约在 2 3 0 ℃左右熔化 ,并伴随分解。微 溶 于 水 ,不 溶 于 一 般有 机 溶 剂 ,其 异丙 胺盐 完 全 溶 解 于 水 。草 甘 膦 主要 用 于 内吸传 导 型 慢 性 广谱 灭 生 性除草剂 ,人土后很快 与铁 、铝等金属离子结合而 失去活性 ,对土壤 中潜藏 的种子和土壤微生物无不 良影响。新制定的 《 生活饮用水卫生标准 》中 , 增加
HJ1071-2019水质 草甘膦的测定高效液相色谱法方法验证
方法验证报告项目名称:水质草甘膦的测定方法名称:《HJ 1071-2019水质草甘膦的测定高效液相色谱法》报告编写人:参加人员:审核人员:报告日期:1.实验室基本情况1.1 人员情况实验室检测人员已通过《HJ 1071-2019水质草甘膦的测定高效液相色谱法》的培训,熟知标准内容、检测方法及样品数据采集和处理等,考核合格,得到公司技术负责人授权上岗,详见表格1-1。
1-1参加验证的人员情况登记表1.2 检测仪器/设备情况1-2 检测仪器/设备情况详情表1.3 检测用试剂情况详见表格1-3。
1-3 溶液及标准物质详情表1.4 环境设施和条件情况实验室具有检定合格的温湿度计,环境可以控制在标准要求范围内,满足检测环境条件。
另外实验室配备了洗眼器、喷淋设施、护目镜、灭火器等的安全防护措施,符合实验室安全内务的要求。
2.方法简介2.1方法原理及适用范围样品在PH为4-9的条件下加入二合水柠檬酸三钠,经过滤或固相萃取净化后与9-芴甲基氯甲酸酯进行衍生化反应,生成的荧光产物经二氯甲烷萃取净化后去除衍生化副产物后,用具有荧光检测器的高效液相色谱分离检测。
以保留时间和特征波长定性,外标法定量。
当进样体积为20μL时,本方法检出限为2μg/L,测定下限为8μg/L。
2.2样品采集与保存按照HJ91.1、HJ/T91和HJ/T164的相关规定进行样品的采集用棕色采样瓶采集样品,样品满瓶采集。
若采集的样品PH不在4-9之间,用盐酸溶液或氢氧化钠溶液调节其PH至4-9,4℃以下冷藏、避光保存,7d内完成样品分析。
2.3 试样的制备依次用6ml甲醇和6ml水活化固相萃取柱,保证小柱柱头浸润。
量取10ml 样品,加入29.3mg二水合柠檬酸三钠,混合后以约1低/秒的流速通过固相萃取柱,收集净化后的样品,代衍生2.4 衍生化反应取2.00ml净化后的样品于聚乙烯塑料管中,加入0.50ml四硼酸钠溶液,1.00ml9-芴甲基氯甲酸酯乙腈溶液,充分混匀后置于混匀仪上,40℃衍生1h。
高效液相色谱法测定地下水中的草甘膦
(Shandong Jiayu Test Technology Co., Ltd.,Zibo Shandong 255086)
Abstract: In this paper, high performance liquid chromatography is used to verify the determination of glyphosate in groundwater in "Water Quality Determination of Glyphosate by High Performance Liquid Chromatography" (HJ 1071—2019). The results show that the linearity of glyphosate within 0~0.50 μg/mL is good, and the correlation co⁃ efficient R is ≥0.995. The detection limit of glyphosate in groundwater determined by the laboratory is 1.57 μg/mL, the relative standard deviation is 4.48% to 8.22%, and the recovery rate of standard addition is 98.7% to 103.0%, which meets the requirements of the standard. The results confirm that the laboratory has the ability to detect glypho⁃ sate in groundwater Keywords: groundwater;high performance liquid chromatography;glyphosate
高效液相色谱-柱前衍生法测定水中有机磷除草剂
高效液相色谱-柱前衍生法测定水中有机磷除草剂刘铮铮1,李立2,王静1,潘荷芳1(1:浙江省环境监测中心,浙江杭州310012;2:树人大学生物与环境学院,浙江杭州310015)摘要:建立了水样中痕量草甘膦,草铵膦和氨甲基磷酸的FMOC柱前衍生-高效液相色谱-荧光检测分析方法。
草甘膦,草铵膦和氨甲基磷酸的平均加标回收率分别为94.2%、90.8%、98.6%;相对标准偏差分别为4.8%、0.68%、2.8%;方法的定性下限和定量下限分别为:0.05、0.04、0.009μg/L和0.16、0.12、0.03μg/L。
水样放置两天后,水样中的草甘膦,草铵膦分别降解了17.8%和19.5%,而水样经过衍生后在5天内是稳定的。
关键词:草甘膦;草铵膦;氨甲基磷酸;高效液相色谱;荧光;衍生。
中图分类号:X832文献标识码:ADetermination of organophosphorus herbicide in water by high performance liquid chromatography-pre- column derivatizationLIU Zheng-zheng, et al (Zhejiang Environmental Monitoring Center, Hangzhou 310012, China)Abstracts:A method is proposed that allows the simultaneous determination of residue glyphosate, glufosinate and aminomethylphosphonic acid (AMPA) in water samples. The method involves pre-column derivatization step with 9-fluorenylmethylchloroformate (FMOC) in borate buffer and detection based on high performance liquid chromatography (HPLC) coupled with fluorophotomeric detectior. The method produces satisfactory reliability, sensitivity, and accuracy. The mean recovery values are 94.2%, 90.8%, 98.6% for glyphosate, glufosinate and AMPA, respectively, and the relative standard deviation are 4.8%,0.68%,2.8%, respectively. Limits of detection and quantitative lower limits are 0.05, 0.04, 0.009μg/L and 0.16, 0.12, 0.03μg/L for the three compounds. The degradation rate of glyphosate, glufosinate in water are 17.8% and 19.5% after 2 days. The derivatization of these compounds are stable in 5 days.Key woods:Glyphosate; Glufosinate; Aminomethylphosphonic acid; High performance liquid chromatography; Fluorophotomeric; Derivatization草甘膦(Glyphosate)是一种优良的灭生性高效除草剂,也是现在国际上使用最广泛的有机磷除草剂。
草甘磷液相法
草甘磷液相法
草甘磷是一种有机磷杀虫剂,通常作为液体剂型使用。
液相法是一种分析化学方法,可用于草甘磷的检测和分析。
以下是草甘磷的液相法的一般描述:
样品制备:首先,从潜在的草甘磷样品中提取或准备出所需的样品。
这可以涉及到样品的萃取、稀释或准备适合进一步分析的溶液。
液相色谱法:液相法通常使用液相色谱法(Liquid Chromatography,简称LC)进行分析。
这是一种常用于检测和分析有机化合物的方法,包括农药。
检测方法:在液相色谱法中,样品通过柱子或柱床,其中填充了分离柱,通过流动液相进行分离。
分离柱通常包括吸附剂或固定相,用于与草甘磷相互作用,以便分离不同成分。
检测器:分离后的化合物通过检测器,如紫外-可见(UV-Vis)检测器或荧光检测器,以进行定量分析。
这些检测器可以测量草甘磷的浓度或相对浓度。
标准曲线:通常,为了确定草甘磷的浓度,需要通过已知浓度的草甘磷标准品制备标准曲线。
标准曲线是样品浓度与检测器响应之间的关系。
数据分析:收集到的数据可以使用计算机软件进行分析,以确定样品中草甘磷的浓度。
质量控制:在分析过程中,通常要进行质量控制,以确保结果的准确性和可靠性。
液相法是一种常用于农药分析的技术,可以用于监测食品、土壤、水和环境中的草甘磷残留。
这种分析方法对于农业和食品安全非常重要,以确保产品符合法律法规和安全标准。
《水质 草甘膦的测定 高效液相色谱法 HJ 1071-2019》
目次前言 (ii)1 适用范围 (1)2 规范性引用文件 (1)3 方法原理 (1)4 干扰和消除 (1)5 试剂和材料 (1)6 仪器和设备 (2)7 样品 (3)8 分析步骤 (3)9 结果计算与表示 (4)10 精密度和准确度 (5)11 质量保证和质量控制 (6)12 废物处理 (7)i前言为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,保护生态环境,保障人体健康,规范水中草甘膦的测定方法,制定本标准。
本标准规定了测定地表水、地下水、生活污水和工业废水中草甘膦的高效液相色谱法。
本标准为首次发布。
本标准由生态环境部生态环境监测司、法规与标准司组织制订。
本标准起草单位:生态环境部南京环境科学研究所。
本标准验证单位:江苏省环境监测中心、安徽省生态环境监测中心、江苏省南京环境监测中心、江苏省常州环境监测中心、江苏省无锡环境监测中心和江苏省泰州环境监测中心。
本标准生态环境部2019年12月31日批准。
本标准自2020年6月30日起实施。
本标准由生态环境部解释。
水质草甘膦的测定高效液相色谱法警告:实验中使用的部分溶剂及标准品具有一定的毒性,试剂配制和样品前处理过程应在通风橱中进行,操作时应按规定要求佩戴防护器具,避免接触皮肤和衣物。
1 适用范围本标准规定了测定水中草甘膦的高效液相色谱法。
本标准适用于地表水、地下水、生活污水和工业废水中草甘膦的测定。
当进样体积为20 μl时,方法的检出限为2 μg/L,测定下限为8 μg/L。
2 规范性引用文件本标准引用了下列文件或其中的条款。
凡是不注日期的引用文件,其有效版本适用于本标准。
HJ 91.1 污水监测技术规范HJ/T 91 地表水和污水监测技术规范HJ/T 164 地下水环境监测技术规范3 方法原理样品在pH为4~9的条件下加入二水合柠檬酸三钠,经过滤或固相萃取净化后与9-芴甲基氯甲酸酯(FMOC-Cl)进行衍生化反应,生成的荧光产物经二氯甲烷萃取净化去除衍生化副产物后,用具有荧光检测器的高效液相色谱分离检测。
非衍生化高效液相色谱-串联质谱法快速检测生物体液中草甘膦、草铵膦及代谢物
第42卷第-期2201年4月分析测试学报FENXI CESHI XUEBAO ((00031 of WUomoOl Analysis )Vol. 42 Nc. 4371 -375doi : 10. 3969/j. issn. 1004 -4457. 2021. 04・ 014非衍生化高效液相色谱-串联质谱法快速检测生物体液中草甘麟、草钱麟及代谢物张云峰(**,赵 森4 ,常 靖1,任昕昕1 ,王爱华1 ,赵 鹏1 ,收稿日期:2222 -14-39;修回日期:222 - 20 - 23基金项目:公安部科技成果推广引导计划(2222TGYDBGAES2)*通讯作者:张云峰,硕士,副研究员,研究方向:体内药物分析,E - mail : 5226395@ qq. com董林沛1,吴小军4张景然5 ,刘冰洁54.公安部物证鉴定中心,北京100038; 2.浙江警察学院 浙江省毒品防控技术研究重点实验室,浙江杭州3 5053 ; 3.爱博才思亚太应用支持中心,北京5001)摘 要:建立了一种非衍生化高效液相色谱-串联质谱快速检测生物体液中草甘麟、草鞍麟及其代谢物等8种极性农药的方法。
8种极性农药经Metnsep A Supp 5阴离子色谱柱(154 mm x4. 0 mm , 5 p m)分离,以纯 水-200 mmol//碳酸氢鞍溶液(含0.0%氨水)为流动相进行梯度洗脱,负离子多反应监测(MRM)模式进行 检测。
实验结果表明,8种极性农药在0.5~54ng/mL 范围内线性关系良好(0 >0. 29),检岀限(S/NM3)为0.08~0.3 ng/mL ,定量下限(S/NM10)为0.3-1 ng/mL 。
方法的基质效应为86. 5% - 56% ,目标化合物的回收率为81. 5%-114% ,日内相对标准偏差(RSD )为0.30%~2.8%,日间RSD 为0.54%~5.3%。
该方法无需复杂的衍生化过程,简便快速、灵敏度高、稳定性好,适用于生物体液中3种极性农药的检测。
《水质克百威草甘膦的测定液相色谱-质谱法》
《水质克百威草甘膦的测定液相色谱-质谱法》(征求意见稿)编制说明《水质克百威草甘膦的测定液相色谱-质谱法》标准编制组2019年9月26日项目名称:水质克百威草甘膦的测定液相色谱-质谱法项目统一编号:XDBXM 28-2018项目承担单位:西安市水环境监测中心陕西省阔成检测服务有限公司编制组主要成员:目录1 项目背景 (1)1.1 任务来源 (1)1.2 工作过程 (1)2 草甘膦 (2)2.1.1 污染物的理化性质及环境危害 (2)2.1.2 相关环保标准和环保工作的需要 (3)2.1.3 现行方法实施情况及存在问题 (3)2.2.1 主要国家、地区及组织相关分析方法研究 (4)2.3.1 标准制(修)订的基本原则 (5)2.3.2 标准制修订的技术路线 (6)2.3.3 标准的适用范围、主要技术内容 (7)2.4.1 方法研究的目标 (7)2.4.2 方法原理 (7)2.4.3 试剂和材料 (7)2.4.4 仪器和设备 (8)2.4.5 样品 (8)2.4.6 分析步骤 (9)2.4.7 实验室内方法的特性指标的确定 (15)3 克百威 (19)3.1 标准制修订的必要性分析 (19)3.2 国内相关分析方法研究 (21)3.3 标准制修订的基本原则和技术路线 (22)3.4 方法研究报告 (24)3.5 方法验证 (35)4 质量保证与质量控制 (36)4.1 空白试验 (36)4.2 平行样测定 (36)4.3 实际样品加标 (36)4.4 校准曲线核查 (36)4.5 校准曲线 (36)5 与开题报告差异说明 (36)6 标准征求意见情况 (36)7 标准技术审查情况 (37)8 参考文献 (37)《水质克百威草甘膦的测定液相色谱-质谱法》(征求意见稿)编制说明1 项目背景1.1 任务来源2018年12月,西安市质量技术监督局下发《关于下达2018年第四批西安市地方标准制定项目计划的通知》(市质监发[2018]192号),市质监局下达了《水质克百威草甘膦的测定液相色谱-质谱法》标准制修定任务,项目统一编号为XDBXM 28-2018,项目承担单位:西安市水环境监测中心、陕西省阔成检测服务有限公司。
柱前衍生-超高效液相色谱法测定土壤中的草甘膦
柱前衍生-超高效液相色谱法测定土壤中的草甘膦发布时间:2021-06-22T09:52:21.423Z 来源:《基层建设》2021年第8期作者:纪佳娜[导读] 摘要:本研究采用柱前衍生-超高效液相色谱法测定土壤中草甘膦的含量,确定其方法测定下限为0.01mg/kg;精密度为1.12-3.24 %;在0.02-0.1mg/kg添加水平内其回收率为91.1-99.1%。
浙江钱水检测科技有限公司浙江丽水 323000摘要:本研究采用柱前衍生-超高效液相色谱法测定土壤中草甘膦的含量,确定其方法测定下限为0.01mg/kg;精密度为1.12-3.24 %;在0.02-0.1mg/kg添加水平内其回收率为91.1-99.1%。
研究表明柱前衍生-超高效液相色谱法精密度及准确度较高,是较为稳定便捷的测定土壤中草甘膦的方法。
关键字:柱前衍生超高效液相色谱法土壤草甘膦 1 绪论草甘膦,N-(磷酸甲基)甘氨酸,(Glyphosate,CAS1071-83-6),化学式C3H8NO5P,是一种传导型广谱灭生性有机膦类除草剂[1]。
随着近年草甘膦使用量及范围的激增,且其在土壤中具中等持留性(t1/2 在1-174d),其在土壤环境中的污染越发受到关注。
草甘膦会对非靶标植物以及后茬作物产生很大毒性危害,具有广泛生殖毒性、诱突变性等一些环境激素效应,对生态环境和人体的潜在危害极大。
因此加强环境中草甘膦的监控,对于环境质量保障具有重要意义。
草甘膦进入土壤后易与铁、铝等金属离子结合成不溶于水的化合物,提取较难,而草甘膦极易溶于水,难溶于有机试剂,挥发性低,缺少显色基团,难以直接利用常规方法进行检测。
国内外测定草甘膦的方法主要有离子色谱法[3]、分光光度法[4]、气相色谱法[5]、液相色谱法[6]、气相质谱法[7]、液相色谱质谱法[8],各质谱法因仪器昂贵,难以在基层普及,为满足基层推广土壤中草甘膦的检测方法,拟研究采用柱前衍生法-超高效液相色谱法进行检测。
一种液相色谱高分辨质谱测定土壤中草甘膦残留量的方法[发明专利]
专利名称:一种液相色谱高分辨质谱测定土壤中草甘膦残留量的方法
专利类型:发明专利
发明人:任洪强,许柯
申请号:CN201611231116.1
申请日:20161228
公开号:CN106645486A
公开日:
20170510
专利内容由知识产权出版社提供
摘要:本发明公开了一种液相色谱高分辨质谱测定土壤中草甘膦残留量的方法,包括以下步骤:1)土壤样品中草甘膦残留量的氢氧化钾提取;2)样品提取液的分散固相萃取净化;3)使用液相色谱—高分辨质谱仪检测;4)结果分析:包括定性和定量分析。
本发明用氢氧化钾提取土壤中的草甘膦残留,用二氯甲烷除去土壤中的有机物,用CAX小柱净化;用液相色谱‑高分辨质谱对土壤样品中草甘膦的精确质量数进行的定性和定量分析,不仅可以消除其他非目标化合物的干扰,还进一步提高了草甘膦定性的准确性和定量的可靠性。
申请人:南京大学,江苏中宜金大分析检测有限公司
地址:210023 江苏省南京市栖霞区仙林大道163号
国籍:CN
代理机构:贵阳派腾阳光知识产权代理事务所(普通合伙)
代理人:谷庆红
更多信息请下载全文后查看。
法庭科学 生物检材中草甘膦和氨甲基膦酸检验 液相色谱-质谱法
法庭科学生物检材中草甘膦和氨甲基膦酸检验液相
色谱-质谱法
液相色谱质谱法(LC-MS/MS)是一种现代化的检测方法,可用于检测生物检材中的草甘膦和氨甲基膦酸。
草甘膦是一种广泛使用的杀草剂,可用于农业、林业、园艺等领域。
氨甲基膦酸是草甘膦的代谢物,也可以由其他杀菌剂产生。
LC-MS/MS方法可以同时检测草甘膦和氨甲基膦酸,并提供可靠的定量分析结果。
在该方法中,样品先经过色谱分离,然后通过质谱仪进行检测和定量。
这种检测方法具有非常高的灵敏度和准确性,可以检测到非常低浓度的草甘膦和氨甲基膦酸。
在法庭科学应用中,生物检材中的草甘膦和氨甲基膦酸的检测可以帮助揭示可能的毒性或其他身体损害,从而对案件进行更准确的评估和分析。
液相串联质谱法测定水质中的草甘膦和氨甲基膦酸
不稳定,需要高盐流动相。气相色谱或者气相质谱法测定 的 FMOC-OH 也是采用正模式下监测,其对正模式监测产
草甘膦时,需要衍生,增加实验的难度。现在标准采用的 生干扰,而且草甘膦的氨基在衍生后生成酰胺键,削弱了
Fmoc-Cl 衍生是比较有效的方法。本文采用该方法,利用 结合质子的能力,导致其正模式检出限高。因此,采用负
液相色谱条件。Waters ACQUITY UPLC BEH C18 色 好的线性关系,其相关系数 r 均大于 0.9995。检出限一般
谱柱,50 mm x 2.1 mm, 1.7μm;柱温 40℃;进样量 1.0μL; 以方法检出限作为其检出限,按照 10 倍信噪比作为其方
流速为 0.3mL/min;流动相 A 为水溶液,流动相 B 为甲醇, 法检出限,计算其检出限均小于 1ug/L。选用经过测定不
氨甲基膦酸标准溶液,FMOC-Cl 丙酮溶液 ( 1. 0 g /L) : 称取
100 mg FMOC-Cl,用丙酮溶解并定容至 100ml,临用现配;
5% 硼酸钠溶液 : 称取 5 g 硼酸钠,用水溶解并定容至 100
ml,于 4oC 下保存。
线性范围、检出限、回收率、精密度。用草甘膦和氨
样品前处理。取去余氯后的水样 1 ml 于 5 ml 具塞试 甲基膦酸标准混合液配制成 10ug/L、20ug/L、50ug/L、
本方法采用 FMOC-Cl 衍生测定草甘膦和氨甲基膦酸,
模式检测;草甘膦离子对为 390>168、390>150, 氨甲基膦 通过方法的优化,获得良好的线性。
酸离子对为 332>110、332>136。
□□罗羚丰 罗杰鸿 广州京诚检测技术有限公司
·68· 食品安全导刊 2019年1-2月 Copyright©博看网 . All Rights Reserved.
液相色谱串联质谱法检测草铵膦、草甘膦及其代谢物在水和土壤中的残留
液相色谱串联质谱法检测草铵膦、草甘膦及其代谢物在水和土壤中的残留姬乐园;王平平;朱丽珍;毛连纲;张兰;蒋红云;刘新刚【期刊名称】《植物保护》【年(卷),期】2024(50)2【摘要】利用超高效液相色谱-串联质谱仪(UHPLC-MS/MS),结合固相萃取净化建立了在水和土壤中同时快速测定草甘膦、草铵膦及其6种代谢物的多残留分析方法。
前处理采用Oasis MCX和Oasis MAX固相萃取柱提取,2%甲酸甲醇-水(体积比为1∶1)洗脱,旋干后0.1%氨水定容,UHPLC-MS/MS检测。
方法的线性范围为0.02~0.5 mg/L;在水中添加水平为0.0001 mg/L和0.001 mg/L时,草甘膦、草铵膦及其代谢物的回收率为72.8%~94.2%,RSD为2.3%~16.1%;土壤中添加水平为0.001 mg/kg和0.01 mg/kg时,草甘膦、草铵膦及其代谢物的回收率为70.6%~88.5%,RSD为3.6%~12.8%。
本方法准确、灵敏、全面,适用于草甘膦、草铵膦及其代谢物在水土环境中的残留检测及监测。
【总页数】5页(P235-239)【作者】姬乐园;王平平;朱丽珍;毛连纲;张兰;蒋红云;刘新刚【作者单位】中国农业科学院植物保护研究所【正文语种】中文【中图分类】S481.8【相关文献】1.高效液相色谱-串联质谱法检测茶叶中痕量草胺膦、草甘膦及其代谢物氨甲基膦酸残留2.非衍生化高效液相色谱-串联质谱法快速检测生物体液中草甘膦、草铵膦及代谢物3.高效液相色谱-串联质谱法快速同时测定土壤中草甘膦、草铵膦及其代谢物4.超高效液相色谱串联质谱法快速测定生活饮用水中草铵膦、草甘膦及其代谢物氨甲基膦酸残留5.分散固相萃取/衍生化-高效液相色谱-串联质谱法同时测定水和食品中草甘膦、草铵膦和氨甲基膦酸残留因版权原因,仅展示原文概要,查看原文内容请购买。
高效液相色谱法测定水中草甘膦
高效液相色谱法测定水中草甘膦谢旭;赵文志;姜士龙;孟军;方晶晶【期刊名称】《工业微生物》【年(卷),期】2024(54)2【摘要】文章研究利用高效液相色谱法测定水中草甘膦这一分析方法的有效性。
用C_(18)(4.6 mm×250 mm,5μm)色谱柱,以磷酸盐缓冲液、乙腈为磷酸盐缓冲液(35∶65,V/V)为流动相,流速为1.0m L/min,用高效液相色谱法进行测定;检测波长为302 nm。
该方法检出限为0.063μg/L,相对标准偏差为0.10%。
对于试验中草甘膦的回收率表现出了高度准确性,回收率范围达到了97.6%~100.1%。
在10μg/L目标物本底质量浓度下进行加标试验,回收率表现为97.57%;而在100μg/L目标物本底质量浓度下的加标试验中,回收率则显著提高至99.8%;150μg/L目标物本底质量浓度的加标回收率达到了99.2%。
该方法检测结果准确、可靠,且回收率较高,适用于检测水中草甘膦。
【总页数】3页(P128-130)【作者】谢旭;赵文志;姜士龙;孟军;方晶晶【作者单位】中国地质调查局哈尔滨自然资源综合调查中心;湖北国土资源职业学院【正文语种】中文【中图分类】O65【相关文献】1.高效液相色谱法测定草甘膦副产盐渣中草甘膦和双甘膦2.柱前衍生-固相萃取-高效液相色谱法测定饮用水中草甘膦和氨甲基膦酸3.超声辅助衍生-高效液相色谱法测定水中草铵膦、草甘膦及氨甲基膦酸的含量4.柱前衍生-超高效液相色谱法测定水中草甘膦不确定度评定5.超高效液相色谱串联质谱法快速测定生活饮用水中草铵膦、草甘膦及其代谢物氨甲基膦酸残留因版权原因,仅展示原文概要,查看原文内容请购买。
高效液相色谱-质谱法分析(草甘膦)原始记录
按照SN/T 1923-2014对样品进行处理。
样品空白
标准溶液名称/浓度
草甘膦标准溶液浓度:100μg/ml
色谱条件
色谱柱:UPLC-C18
柱温:30℃
流速:0.4mL/min
进样量:10μL
流动相:乙腈+0.1%甲酸水溶液梯度洗脱
质谱条件
离子化模式:ESI+
质谱扫描模式:MRM
母离子
草甘膦
氨甲基膦酸
子离子
草甘膦
氨甲基膦酸
定量离子
草甘膦
氨甲基膦酸
定量方法标准曲线
序号
1
2
3
4
5
6
混标浓度(μg/mL)
草甘膦峰面积(A)
氨甲基膦酸峰面积(A)
回归方程
草甘膦Y=aX+b a=b=r=
氨甲基膦酸Y=aX+b a=b=r=
检出限
/
测定低限
茶叶:0.10mg/kg;其他0.05mg/kg
计算公式
高效液相色谱-质谱法分析(草甘膦)原始记录
第1页,共页
检测项目
草甘膦
检测开始时间年月日源自检测依据SN/T 1923-2007
检测结束时间
年月日
检测方法
高效液相色谱质谱联用法
温度/相对湿度
℃%
仪器名称/型号
PE Qsight220/A30
仪器编号
××/××-070-2
电子天平FA2004
××/××-074-2
偏差(%)
仪器使用情况使用前:使用后:
检验人:复核人:审核人:
用色谱数据处理软件中的外标法或按下式计算试样中药物的残留量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Chromatography A,1081(2005)145–155Residue determination of glyphosate,glufosinate and aminomethylphosphonic acid in water and soil samples by liquidchromatography coupled to electrospray tandem mass spectrometryMar´ıa Ib´a˜n ez,´Oscar J.Pozo,Juan V.Sancho,Francisco J.L´o pez,F´e lix Hern´a ndez∗Research Institute for Pesticides and Water,University Jaume I,E-12071Castell´o n,SpainReceived11February2005;received in revised form3May2005;accepted17May2005AbstractThis paper describes a method for the sensitive and selective determination of glyphosate,glufosinate and aminomethylphosphonic acid (AMPA)residues in water and soil samples.The method involves a derivatization step with9-fluorenylmethylchloroformate(FMOC)in borate buffer and detection based on liquid chromatography coupled to electrospray tandem mass spectrometry(LC–ESI-MS/MS).In the case of water samples a volume of10mL was derivatized and then4.3mL of the derivatized mixture was directly injected in an on-line solid phase extraction(SPE)–LC–MS/MS system using an OASIS HLB cartridge column and a Discovery chromatographic column.Soil samples were firstly extracted with potassium hydroxide.After that,the aqueous extract was10-fold diluted with water and2mL were derivatized.Then, 50L of the derivatized10-fold diluted extract were injected into the LC–MS/MS system without pre-concentration into the SPE cartridge. The method has been validated in both ground and surface water by recovery studies with samples spiked at50and500ng/L,and also in soil samples,spiked at0.05and0.5mg/kg.In water samples,the mean recovery values ranged from89to106%for glyphosate(RSD<9%),from 97to116%for AMPA(RSD<10%),and from72to88%in the case of glufosinate(RSD<12%).Regarding soil samples,the mean recovery values ranged from90to92%for glyphosate(RSD<7%),from88to89%for AMPA(RSD<5%)and from83to86%for glufosinate (RSD<6%).Limits of quantification for all the three compounds were50ng/L and0.05mg/kg in water and soil,respectively,with limits of detection as low as5ng/L,in water,and5g/kg,in soil.The use of labelled glyphosate as internal standard allowed improving the recovery and precision for glyphosate and AMPA,while it was not efficient for glufosinate,that was quantified by external standards calibration.The method developed has been applied to the determination of these compounds in real water and soil samples from different areas.All the detections were confirmed by acquiring two transitions for each compound.©2005Elsevier B.V.All rights reserved.Keywords:Glyphosate;Glufosinate;AMPA;Water;Soil;Liquid chromatography;Electrospray interface;Tandem mass spectrometry;Derivatization1.IntroductionGlyphosate[N-(phosphonomethyl)glycine]and glufos-inate[ammonium dl-homoalanin-4-(methyl)phosphinate] are broad spectrum,nonselective,post-emergence herbicides extensively used in various applications for weed control in aquatic systems and vegetation control in non-crop areas. Aminomethylphosphonic acid(AMPA)is the major degra-dation product of glyphosate found in plants,water and soil ∗Corresponding author.Tel.:+34964728100;fax:+34964728066.E-mail address:hernandf@exp.uji.es(F.Hern´a ndez).[1].Chemical structures of these phosphorus-containing her-bicides are given in Fig.1.Due to the extensive worldwide use of these compounds and the restrictive regulations for water in the European Union,very sensitive methods for the determination of pes-ticide residues are required.However,the determination of these two herbicides at the subg/L level is difficult due to their ionic character,low volatility,low mass and lack of chemical groups that could facilitate their detection.Even more difficult can result the residue determination in soil at low concentration levels(e.g.below0.1mg/kg),due to the complexity of this matrix sample.Most methods developed0021-9673/$–see front matter©2005Elsevier B.V.All rights reserved. doi:10.1016/j.chroma.2005.05.041146M.Ib´a ˜n ez et al./J.Chromatogr.A 1081(2005)145–155Fig.1.Chemical structures of glyphosate,AMPA and glufosinate,and derivatization reaction with FMOC.R:H or alkyl group.until now require derivatization procedures to enable analy-sis by gas chromatography (GC)or high-performance liquidchromatography (HPLC).GC/MS methods involved deriva-tization with different reagents [2–8]to confer volatility to the analytes.Normally,there is quite a lot of sample manip-ulation,and the methods are time-consuming and tedious.Physicochemical characteristics of these compounds fit better with LC analysis,although the lack of adequate chem-ical groups (e.g.chromophores,UV absorption,fluorogenics)hamper their measurement by conventional detectors.For these reasons,both pre-column and post-column derivatiza-tion procedures have been employed.Pre-column procedures are based mainly on derivatization with 9-fluorenylmethyl chloroformate (FMOC)[9–15]to form fluorescent deriva-tives (improve detection)and/or to reduce the polar character of the analytes facilitating the chromatographic retention.In post-column procedures,the most common reaction is with o-phthalaldehyde (OPA)and mercaptoethanol [16]or with OPA and N ,N -dimethyl-2-mercaptoethylamine [17].Nor-mally,HPLC has been used in combination with fluorescence detection after derivatization [11–17],although in a few cases glyphosate has been determined directly by ion chromatogra-phy (IC)with UV detection [18]or suppressed conductivity detection [19],but with limited sensitivity.The potential of capillary electrophoresis combined with mass spectrometry [20]and with indirect fluorescence detection [21]has also been explored,although the lack of sensitivity and/or selec-tivity of these techniques together with the difficulty for preconcentrating the analytes,limited their application in the field of residues.In our research group,we have developed efficient and selective methods based on the use of coupled-column liquid chromatography (LC–LC),which was proved to be an excel-lent way of minimizing sample treatment and improving sen-sitivity in a variety of sample matrices,as water,soil,fruit and vegetables [11,13–15,22].However,the use of conventional fluorescent detection limited the sensitivity required in pesti-cide residue analysis,and also hampered the unequivocal con-firmation of the residues detected,which nowadays is widely accepted that has to be reached by MS techniques.Searching a method that could satisfy the requirements of sensitivity and selectivity,and unequivocal confirmation of glyphosate in water,the use of MS spectrometric techniques in combina-tion with LC has been investigated by several groups.Thus,IC has been applied,due the ionic character of this analyte,coupled to MS with electrospray interface [23],while RPLC has been used in combination with ICP-MS with P detection [24].However,the sensitivity reached with these techniques was not sufficient.Lee et al [9]obtained better results with the combination LC–MS.In this case,the molecular ions of the derivatized glyphosate,AMPA and glufosinate,as well as a fragment ion of each compound,were monitored in negative ionisation mode obtaining detection limits around 0.1g/L.The use of isotope-labelled glyphosate as inter-nal standard minimised derivatization variations and matrix effects.However,although MS based methods could be con-sidered as highly selective methods,the occurrence of false positives might be still possible mainly in the analysis of rel-atively dirty samples,as some interferences can share the same MS properties as the analyte.This may also occur in water sample analysis as it has been reported in some papers,producing constructive discussions on this subject [25].The improved sensitivity and selectivity of tandem MS make this technique ideal for the trace level determination of polar and/or ionic pesticides in water by LC–MS/MS meth-ods,as it has been proved in our laboratory [26–27].This tech-nique was also applied several years ago to the determination of glyphosate and AMPA in water [10],although considerable variation was observed caused by irreproducibility in deriva-tization and fragmentation.4-mL volume was passed through the SPE cartridge,claiming detection limits for glyphosate and AMPA around 0.03g/L.When dealing with more complex matrices,such as soil samples,an important loss in the sensitivity can occur a con-sequence of the ionisation suppression from the co-extracted components of the matrix,hampering correct quantification.This matrix-effect depends on the analyte-sample combina-tion.Different approaches have been used either to minimize or to correct the matrix effect,such as increasing the sample pretreatment,performing matrix-matched calibration,using an isotope labelled standard or simply diluting the sample [28].Thus,the labeled glyphosate has been used as internal standard for the LC–MS determination of this herbicide [9].Confirmation of the identity of residues in unknown sam-ples is of utmost importance in order to avoid reporting falseM.Ib´a˜n ez et al./J.Chromatogr.A1081(2005)145–155147positives.Recently,the European Union has adopted the con-cept of identification points(IPs)as quality criterium for the confirmation of contaminant residues[29].For compounds with an established MRL,a minimum of three IPs is required for satisfactory confirmation of the compound identity.When LC–MS/MS technique is used,the monitoring of two MS/MS transitions,ing one precursor ion and two product ions, allows to earn four IPs,fulfilling the requirements of this cri-terium[25].The aim of this paper is to develop a rapid and robust method for the determination of low concentrations of glyphosate,its principal degradation product,AMPA,and glufosinate in water and soil by SPE–LC–ESI-MS/MS,that fulfil the requirements of excellent sensitivity and unequiv-ocal confirmation of the residues detected according to the European Union guidelines.Following the most widely accepted criteria,four IPs will be achieved,thus avoiding the possibility of reporting false positives.2.Experimental2.1.ChemicalsGlyphosate(98%),glufosinate(99%)and AMPA(99%) reference standards were purchased from Dr Ehrenstorfer (Augsburg,Germany),Riedel-de-H¨a en(Seelze,Germany) and Sigma(St Louis,MO,USA),respectively.Isotope-labeled glyphosate(1,2-13C,15N),used as surrogate inter-nal standard(IS),was purchased from Dr Ehrenstorfer. Analytical reagent-grade disodium tetraborate decahydrate was obtained from Scharlab(Barcelona,Spain)and9-fluorenylmethylchloroformate(FMOC-Cl)was purchased from Sigma.Reagent-grade hydrochloric acid,formic acid, potassium hydroxide(KOH),acetic acid(HAc)and ammo-nium acetate(NH4Ac)as well as LC-grade acetonitrile were purchased from Scharlab.LC-grade water was obtained by purifying demineralised water in a Nanopure II system(Barn-stead Newton,MA,USA).Standard stock solutions were prepared dissolving approx-imately50mg powder,accurately weighted,in100mL of water obtaining afinal concentration of approximately 500mg/L.A50-mg/L composite standard was prepared in water by mixing and diluting the individual standard stock solutions.Standard working solutions for the LC–MS/MS analysis and for fortification of samples were prepared by dilution of the50-mg/L composite standard with water.All standard solutions were stored in nonsilanized glass.The isotope-labeled glyphosate was purchased as1.1mL of100-g/mL stock solution in water.A11-g/mL stan-dard solution was prepared by dissolving1.1mL of the stock solution in10mL of water.Standard working solutions were prepared by diluting the intermediate standard solution with water.Solutions of5%borate buffer(pH approximately9)in HPLC-grade water and solutions containing12,000mg/L of FMOC-Cl in acetonitrile were used for the derivatization step prior to the analysis.2.2.InstrumentationFor the analysis of water samples,the mass spectrometer was interfaced to a LC system based on a233XL autosam-pler with a loop of4.3mL(Gilson,Villiers-le-Bel,France) and2pumps:an Agilent1100(Agilent,Waldbron,Germany) binary pump used to condition and wash the cartridge(P-1) and a Waters Alliance2695(Waters,Milford,MA,USA)qua-ternary pump used for the chomatographic separation(P-2), as can be seen elsewhere[24].The SPE preconcentration was performed using an Oasis HLB cartridge,20mm×2.1mm i.d.(Waters),as C-1.For the LC separation,a Discovery col-umn C18,5m50×2.0mm i.d.(Supelco,Bellefonte,PA, USA),was used as C-2.Mobile phase consisted of water pH 2.5(adjusted with formic acid)in P-1,and mixtures of aque-ous5mM acetic acid/ammonium acetate(pH4.8)water and acetonitrile in P-2.For the analysis of soil samples,the mass spectrometer was directly interfaced to the Waters Alliance2695(Waters) quaternary pump.The mobile phases and the column used were the same as in the case of water samples.A Quattro LC(quadrupole-hexapole-quadrupole)mass spectrometer(Micromass,Manchester,UK)with an orthog-onal Z-spray-electrospray interface was used.Drying gas as well as nebulising gas was nitrogen,generated from pressur-ized air in a NG-7nitrogen generator(Aquilo,Etten-Leur, NL).The nebuliser gasflow was set to approximately80L/h and the desolvation gasflow to800–900L/h.Datastation operating software was MassLynx v4.0.For operation in MS/MS mode,collision gas was Argon 99.995%(Carburos Metalicos,Valencia,Spain)with a pres-sure of approximately1×10−3mbar in the collision cell. Capillary voltage of3.5kV was used in positive ionization mode.The interface temperature was set to350◦C and the source temperature to120◦C.Dwell times of0.17s/scan were chosen.2.3.SPE procedureThe conditioning of the Oasis cartridge was performed with LC-grade water at pH2.5at aflow-rate of1mL/min for7min.An aliquot of4.3mL of water sample was pre-concentrated(1mL/min)into the cartridge and washed with acidified LC-grade water during4min.After washing,the sample was transferred in backflush mode to the C-2column and a gradient in P-2started.2.4.LC procedureTo perform the chromatographic separation,the gra-dient used in P-2was water5mM HAc/NH4Ac(pH 4.8)–acetonitrile,where the percentage of organic modifier was changed as follows:0min,10%;5min,10%;5.1min,148M.Ib´a˜n ez et al./J.Chromatogr.A1081(2005)145–15590%;9min,90%;9.1min,10%;14min,10%.The chro-matographic separations were completed within20min. 2.5.Sample procedureThe derivatization procedure was based on Sancho et al. [14,15](see Fig.1),with slight modifications.2.5.1.Water samplesGround and surface water samples were collected in plas-tic bottles from different sites of the Valencian Mediterranean region and stored in a freezer at−18◦C until analysis.Ten millilitre of water sample was introduced into a glass tube together with100L of isotope-labeled glyphosate standard (110g/L).Samples were derivatised by adding0.6mL of 5%borate buffer(pH9)followed by0.6mL of FMOC-Cl reagent(12000mg/L),and allowing the reaction to take place overnight at room temperature.After that,samples werefiltered through a0.45m syringefilter and acidified with hydrochloric acid until pH1.5.Finally,4.3mL of the acidified derivatized samples were directly injected into the SPE–LC–ESI-MS/MS system.Fortification of surface or ground waters for recovery experiments was performed by adding1mL of5or50ng/mL mixture solutions to100mL of blank water sample in order to yield fortification levels of50or500ng/L,respec-tively.2.5.2.Soil samplesSoil samples was collected from a public garden,sus-pected to have been contaminated by glyphosate.Air-dried soil samples were homogenized and5.0g subsamples were transferred to centrifuge tubes(50mL).Samples were extracted by shaking with0.6M KOH(10mL)on a mechan-ical shaker for30min,and then centrifuged at3500rpm for 30min.The alkaline sample extracted was separated and neu-tralized by adding drops of HCl6M and0.6M until pH7, approximately.After that,the neutralized supernatant was 10-fold diluted with HPLC-grade water.The derivatization step was performed as follows:2-mL of the10-fold diluted supernatant was pipetted into a glass tube together with 120L of the labelled internal standard(1.10mg/L),120L of5%borate buffer(pH9)and120L of FMOC-Cl reagent (12000mg/L).The tube was swirled and left overnight at room temperature.After that,samples werefiltered through a0.45m syringefilter and acidified with hydrochloric acid until pH1.5.Finally,50L of the acidified deriva-tized extract was directly injected into the LC–ESI-MS/MS system.Fortification of soil samples for recovery experiments was performed by adding1mL of250ng/mL or2500ng/mL mix-ture solutions to5.0g of blank soil sample in order to yield fortification levels of0.05mg/kg or0.5mg/kg,respectively. Samples were equilibrated for1h prior to extraction.AMPA and glyphosate were quantified using isotope labelled glyphosate as internal standard,in both water and soil samples.In the case of glufosinate,quantification was performed with external calibration.2.6.Validation studyLinearity of the method was evaluated analysing eight standard solutions by duplicate,in the range25–5000ng/L for water samples,and in the range1–500g/L for soil extracts.Precision(repeatability,expressed as relative standard deviation,in%)and recoveries were determined within day by analysing fortified blank samples in quintupli-cate.This experiment was performed at two spiking lev-els:50and500ng/L in water,and0.05and0.5mg/kg in soil.The limits of detection(LOD),defined as the lowest concentration that the analytical process can reliably dif-ferentiate from background levels,were obtained when the signal was three times the average of background noise in the chromatogram at the lowest analyte concentration assayed.The limits of quantification(LOQ)were estab-lished as the lowest concentration assayed and validated, which gave satisfactory recovery(70–120%)and precision (<15%RSD).The specificity of the method was evaluated by analysing a blank procedure,a processed blank sample,and a blank sam-ple spiked at the lowest fortification level assayed(LOQ),i.e. 50ng/L in water and0.05mg/kg in soil.Under these condi-tions,the response obtained for both the blank procedure and the blank samples should not exceed30%of the response corresponding to the LOQ.2.7.Data evaluationTo ensure the quality of the analysis when processing real-world samples,blank samples fortified at the LOQ and10×LOQ concentration levels(50and500ng/L for waters,and 0.05and0.5mg/kg for soils)were used as quality controls (QC)distributed along the batch of samples every three-four injections.The quantification of the sample batch was con-sidered satisfactory if the QC recoveries were in the range of 70–120%.The values found in real samples were confirmed by means of the two transitions selected for each compound. In this way,quantification was carried out independently with each transition(see MS Optimisation),accepting a deviation of±20%in the concentrations obtained with both transi-tions.3.Results and discussion3.1.MS optimisationFull-scan MS spectra and product-ion MS/MS spectra of the FMOC derivatives of glyphosate,glufosinate and AMPA were recorded in both positive and negative ionisation modes.M.Ib´a ˜n ez et al./J.Chromatogr.A 1081(2005)145–155149Fig.2.The positive ion electrospray full scan mass spectrum (top)and product ion spectra (bottom)of (a)AMPA-FMOC,(b)glyphosate-FMOC and (c)glufosinate-FMOC,obtained from the chromatographic peak of 10mg/L standard solution of each compound,previously derivatizated.Spectra were obtained from the chromatographic peak of 10mg/L standard solution of each compound,previously derivatized.Although these compounds have been traditionally recorded in negative ion mode [9,10],in our work the sensi-tivity in positive ion mode was found to be approximately two times higher.Moreover,the product ions observed in negative ion mode were due to neutral unspecific losses of FMOC,or FMOC plus water.Thus,any isobaric compound that could have been derivatized with FMOC and also presented a water loss,would show the same product ions in its MS/MS spec-tra,being therefore not very selective.For all these reasons,positive ion mode was selected.The positive-ion electrospray full scan spectrum of AMPA-FMOC at a cone of 30V showed a base peak at m /z 334corresponding to the protonated derivatized molecule [M +H]+.The MS/MS spectra showed three abundant frag-ments at m /z 179,156and 112(Fig.2a).As can be seen in Fig.3a,fragments at m /z 179,m /z 156(M-178)and m /z 112(M-222)would appear in any isobaric amine that could have been derivatized with FMOC.As there were not significant differences in the selectivity of these transitions,the criterium applied for their selection was the sensitivity,choosing the two most sensitive ones.The positive-ion electrospray full scan spectrum of glyphosate-FMOC at a cone of 30V showed a peak at m /z 392corresponding to the protonated derivatized molecule [M +H]+.The MS/MS spectra showed abundant fragments at m /z 214,179,170and 88(Fig.2b).The fragments at m /z 179and the fragments at m /z 214(M-178)and m /z 170(M-222)would appear in any isobaric amine that could have been derivatized with FMOC (Fig.3a).Thus,the selected reac-tion monitoring (SRM)transitions chosen were 392→88for quantification as the most selective (see Fig.3b)andTable 1Optimised MS/MS parameters for the FMOC derivatives of glyphosate,AMPA,glufosinate and internal standard,selected for the residue analysis of water and soil Compound Cone voltage (V)Precursor ion (m /z )Product ion (m /z )a Collision energy (eV)Glyphosate-FMOC 30392.0Q 88.120q 214.110Glufosinate-FMOC 30404.0Q 136.125q 208.210AMPA-FMOC30334.0Q 179.120q 112.115Isotope-labeled glyphosate-FMOC30395.0Q 91.120q 217.110aQ ,Transition used for quantification;q :transition used for confirmation.150M.Ib´a ˜n ez et al./J.Chromatogr.A 1081(2005)145–155Fig.3.(a)Common fragmentation pathway for the three derivatised compounds;(b)specific fragmentation pathway for glyphosate and glufosinate.392→214for confirmation as it was the most sensitiveamong the less selective.In the case of glufosinate,the positive-ion electrospray full scan spectrum showed a peak at m /z 404corresponding to the protonated molecule of glufosinate-FMOC.The MS/MS spectrum showed four abundant fragments at m /z 208,182(M-222),179and m /z 136(Fig.2c).We choose the most selective transitions:404→208and 404→136(see Fig.3b)despite their lower sensitivity.The selected reaction monitoring (SRM)transitions cho-sen for the residue determination of the three compounds,as well as the optimised MS/MS parameters,are shown in Table 1.3.2.Method optimisationFirstly,several attempts were carried out in order to deter-mine these compounds directly,i.e.without any previousM.Ib´a˜n ez et al./J.Chromatogr.A1081(2005)145–155151derivatization.For this purpose we checked Hydrophilic Interaction Chromatography using an Atlantis TM HILIC 5m Silica Column(100mm×2.1mm i.d.,Waters).This column offers superior retention for very polar compounds that are not well retained under reversed-phase conditions. Although the retention obtained with this column at acidic pH was satisfactory,we observed poor sensitivity,making necessary a preconcentration step.We did not try to perform such a preconcentration because this step is difficult for sub-ppb levels of glyphosate and forces one to a higher sample manipulation.Additionally,the conditions to obtain satisfac-tory retention and peak shape were very specific and changed drastically when changing either pH of the sample or modifier concentration in the mobile phase,decreasing the robustness of the method.For these reasons,a derivatisation procedure was carried out in order to increase the retention of analytes in the most common RPLC cartridges and to work under no so strict conditions.Derivatization procedures with FMOC-Cl have already been reported in the literature[9–15].Due to the low sol-ubility and stability of FMOC-Cl in water,this reagent is usually prepared in acetonitrile.Normally the high con-centration of FMOC required for the derivatization,makes that the derivatized sample presents a high percentage of acetonitrile.Thus,a dilution step with water is necessary to reduce the organic percentage[14],with the subse-quent loss of sensitivity,to retain glyphosate,glufosinate and AMPA in the cartridge due to the high polar charac-ter of these compounds,even derivatized.In this paper,we decreased the volume of the FMOC solution used but increas-ing its concentration and also the volume of water sample derivatized with the aim of minimizing the dilution factor. The effect of adding different FMOC concentrations with different reaction times was studied.The best results for both,water and soil samples,were obtained after perform-ing the reaction overnight with a FMOC concentration of 12,000mg/L.On the other hand,as the borate solution could not buffer properly the alkaline sample extract,a neutralizing step was necessary before the derivatization.Any attempt offixing the volume of HCl necessary to neutralize the KOH excess failed due to the different nature of the soils.Therefore,this step was done manually adding drops of HCl6M and0.6M until pH around7.Once the derivatization reaction took place overnight, hydrochloric acid was added to stop the reaction,by low-ering the pH.In soil samples,after direct injection of50L of the derivatized acidified extract,recoveries around25%with RSD up to80%were obtained for the three analytes,showing a severe matrix effect in both the MS instrument and/or the derivatization procedure.Among the solutions described to solve this problem(see Section1),the increase of the sample treatment was not considered as the best strategy for monitor-ing programs where rapid methods are preferred.Moreover, the use of matrix-matched standards calibration is not a robust approach when environmental samples are analysed,due to their different origin and composition,making the selection of a blank matrix difficult.Thus,the use of internal stan-dards(IS)was tested,but only isotope-labelled glyphosate was commercially available.As expected,the use of this IS improved accuracy and pre-cision for glyphosate as it compensated the matrix effects,due to the similar chemical behaviour of analyte and IS.However, still ionization inhibition occurred lowering the sensitivity of the overall analytical procedure.In the case of AMPA and glufosinate,although better recoveries were obtained(around 116–127%),the RSDs were still unacceptable(higher than 15%).Therefore,the dilution of soil extracts with LC grade water was assayed as a fast and simple way to minimize matrix interferences.Thus,five soil samples of different origins were fortified at the0.5mg/kg and their extracts derivatized and,10-fold and20-fold diluted with water.According to our results(see Table2),10-and20-fold dilution would be adequate for accurate quantification,even without internal standard.However,the use of internal standard improved the RSDs,especially for glyphosate.In the case of glufosinate, quantification with labelled glyphosate IS did not improve the results.A similar situation has been previously reported in literature,when using analogues IS,demonstrating the dif-ficulty of selecting an adequate IS when the labelled analyte is not available[28].Finally,glyphosate and AMPA were quantified using internal standard meanwhile glufosinate was quantified with external standard calibration.A10-fold dilu-tion of the extract was chosen as it led to the best LODs.In regard to water samples,after injection of4.3mL of the derivatized sample into the SPE–LC–MS/MS,recoveriesTable2Effect of dilution of soil extracts previously to the derivatization step on the recovery and reproducibility of the method(n=5)a Compound Without dilution10-Fold dilution20-Fold dilution%Recovery b (%RSD)%Recovery c(%RSD)%Recovery b(%RSD)%Recovery c(%RSD)%Recovery b(%RSD)%Recovery c(%RSD)Glyphosate25(79)97(6)83(24)98(3)83(23)91(11) AMPA28(46)127(27)87(9)98(11)89(8)98(10) Glufosinate27(56)116(18)94(8)118(19)92(8)107(9)a Five different soil samples,spiked at0.5mg/kg each.b Quantification without internal standard.c Quantification with internal standard.。