上海市2019年初中毕业统一学业考试数学试卷

合集下载

2019年上海市中考数学试卷-答案

2019年上海市中考数学试卷-答案

上海市2019年初中毕业统一学业考试 数学答案解析一、选择题1.【答案】B2.【答案】D3.【答案】A4.【答案】A5.【答案】D6.【答案】C二.填空题7.【答案】64a8.【答案】09.10.【答案】14m >11.【答案】1312.【答案】5613.【答案】62y x =-+14.【答案】9015.【答案】12016.【答案】2a b +17.【答案】218.【答案】53三、解答题19.【答案】原式1243--+-=-。

20.【答案】解:去分母,得22282x x x -=-。

移项、整理得2280x x +-=。

解这个方程,得12x =,24x =-。

经检验:12x =是增根,舍去;24x =-是原方程的根。

所以,原方程的根是4x =-。

21.【答案】解:(1)设一次函数解析式为y kx b =+(0k ≠)。

一次函数的图像平行于直线12y x =,12k ∴=。

又 一次函数的图像经过点()2,3A ,1322b ∴=⨯+,解得2b =。

所以,所求一次函数的解析式是122y x =+。

(2)由122y x =+,令0y =,得1202x +=,解得4x =-。

∴一次函数的图像与x 轴的交点为()4,0B -。

点C 在y 轴上,∴设点C 的坐标为()0,y 。

由AC BC =12y =-。

经检验:12y =-是原方程的根。

∴点C 的坐标是10,2⎛⎫- ⎪⎝⎭。

22.【答案】解:(1)过点D '作D H BC '⊥,垂足为点H ,交AD 于点F 。

由题意,得90 AD AD '==(厘米),60DAD '∠= 。

四边形ABCD 是矩形,AD BC ∴ ,90AFD BHD ''∴∠=∠= 。

在Rt AD F '△中,sin 90sin 60D F AD DAD '''=∠=⨯= (厘米)。

又40 CE = (厘米),30 DE =(厘米),70 FH DC DE CE ∴==+=(厘米)。

2019上海市中考数学真题试卷-含答案

2019上海市中考数学真题试卷-含答案

半径长是( )
A.11
B.10
C.9
D.8
【知识考点】圆与圆的位置关系.
【思路分析】如图,设⊙A,⊙B,⊙C 的半径为 x,y,z.构建方程组即可解决问题.
【解题过程】解:如图,设⊙A,⊙B,⊙C 的半径为 x,y,z.
由题意:

解得 ,
故选:C.
【总结归纳】本题考查两圆的位置关系,解题的关键是学会利用参数构建方程组解决问题,
属于中考常考题型.
二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)
7.计算:(2a2)2=

【知识考点】幂的乘方与积的乘方.
【思路分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算
即可.
【解题过程】解:(2a2)2=22a4=4a4.
【总结归纳】主要考查积的乘方的性质,熟练掌握运算性质是解题的关键.
D.8.
【请将结果直接填入答题纸的相应位置上】
—1—
7.计算: (2a3 )2

8.计算: f (x) x2 1 ,那么 f (1)

9.如果一个正方形的面积是 3,那么它的边长是

10.如果关于 x 的方程 x2 x m 0 没有实数根,那么实数 m 的取值范围是

11.一枚材质均匀的骰子,六个面的点数分别是 1,2,3,4,5,6,投这个骰子,掷得的点
过程中,箱盖 ADE 可以绕点 A 逆时针方向旋转,当旋转角为 60°时,箱盖 ADE 落在 ADE 的位置(如图 7-2 所示).已知 AD=90 厘米,DE=30 厘米,EC=40 厘米.
(1)求点 D 到 BC 的距离; (2)求 E、 E 两点的距离.

2019年上海中考数学试卷(版+答案)

2019年上海中考数学试卷(版+答案)

2019年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷共25题.2.试卷满分150分,考试时间100分钟.3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.4.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确的代号并填涂在答题纸的相应位置上】1.下列运算正确的是()A.2325xx xB.32x xxC. 326x x xD. 2323x x2.如果m n ,那么下列结论错误的是()A.22m n B.22m n C.22m nD.22mn3.下列函数中,函数值y 随自变量x 的值增大而增大的是()A.3x yB. 3x yC. 3yxD. 3yx4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图1所示,下列判断正确的是()A.甲的成绩比乙稳定;B.甲的最好成绩比乙高;C.甲的成绩的平均数比乙大;D.甲的成绩的中位数比乙大.5.下列命题中,假命题是()A. 矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等6.已知A 与B 外切,C 与A 、B 都内切,且AB =5,AC =6,BC =7,那么C的半径长是()A.11B.10C.9D.8二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.计算:22(2)a = . 8.已知2()1f x x,那么(1)f = .9.如果一个正方形的面积是3,那么它的边长是.10.如果关于x 的方程20xx m 没有实数根,那么实数m 的取值范围是 .(图1)111098765五四三二一乙甲成绩(个数)次序11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数之和大于4的概率是 . 12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛。

2019年上海市初中毕业生统一学业考试数学试卷及答案

2019年上海市初中毕业生统一学业考试数学试卷及答案

2019年上海市初中毕业生统一学业考试数学试卷(满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24分) 1.下列式子中,属于最简二次根式的是( ) (A ) 9; (B )7 ; (C ) 20 ; (D )13. 2.下列关于x 的一元二次方程有实数根的是( )(A )210x +=;(B )210x x ++=;(C )210x x -+= ;(D )210x x --=. 3.如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( ) (A )2(1)2y x =-+;(B )2(1)2y x =++; (C )21y x =+;(D )23y x =+. 4.数据 0,1,1,3,3,4 的中位线和平均数分别是( )(A ) 2和2.4 ; (B )2和2 ; (C )1和2; (D )3和2. 5.如图1,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点, DE ∥BC ,EF ∥AB ,且AD ∶DB = 3∶5,那么CF ∶CB 等于( ) (A ) 5∶8 ; (B )3∶8 ; (C ) 3∶5 ; (D )2∶5. 6.在梯形ABCD 中,AD ∥BC ,对角线AC 和BD 交于点O ,下列条件中, 能判断梯形ABCD 是等腰梯形的是( )(A )∠BDC =∠BCD ;(B )∠ABC =∠DAB ;(C )∠ADB =∠DAC ;(D )∠AOB =∠BOC .二、填空题:(本大题共12题,每题4分,满分48分) 7.因式分解:21a - = _____________.8.不等式组1023x x x->⎧⎨+>⎩ 的解集是____________.9.计算:23b aa b⨯= ___________. 10.计算:2 (a ─b ) + 3b = ___________.11.已知函数 ()231x f x =+,那么f = __________.12.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子图1上,任取一张,那么取到字母e 的概率为___________.13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图2所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为___________.14.在⊙O 中,已知半径长为3,弦AB 长为4,那么圆心O 到AB 的距离为___________.15.如图3,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是____________.(只需写一个,不添加辅助线) 16.李老师开车从甲地到相距240千米的乙地,如果邮箱剩余油量 y (升)与行驶里程 x (千米)之间是一次函数关系,其图像如图4所示,那么到达乙地时邮箱剩余油量是__________升.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为__________.18.如图5,在△ABC 中,AB AC =,8BC =, tan C = 32 ,如果将△ABC沿直线l 翻折后,点B 落在边AC 的中点处,直线l 与边BC 交于点D , 那么BD 的长为__________.三、解答题:(本大题共7题,满分78分)(本大题共7题,19~22题10分,23、24题12分,25题14分,满分48分) 190111()2π--+ .20.解方程组: 22220x y x xy y -=-⎧⎨--=⎩.21.已知平面直角坐标系xoy (如图6),直线 12y x b =+经过第一、二、三象限,与y 轴交于点B ,图2)y (升)图4图5点A (2,t )在这条直线上,联结AO ,△AOB 的面积等于1. (1)求b 的值; (2)如果反比例函数ky x=(k 是常量,0k ≠) 的图像经过点A ,求这个反比例函数的解析式.22.某地下车库出口处“两段式栏杆”如图7-1所示,点A 是栏杆转动的支点,点E 是栏杆两段的连接点.当车辆经过时,栏杆AEF 升起后的位置如图7-2所示,其示意图如图7-3所示,其中AB ⊥BC ,EF ∥BC ,0143EAB ∠=, 1.2AB AE ==米,求当车辆经过时,栏杆EF 段距离地面的高度(即直线EF 上任意一点到直线BC 的距离).(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75.)23.如图8,在△ABC 中, 90=∠ACB , B A ∠>∠,点D 为边AB 的中点,DE BC ∥交AC 于点E ,CF AB ∥交DE 的延长线于点F .图7-1 图7-2图7-3A EFAEFA E FBC(1)求证:DE EF =;(2)联结CD ,过点D 作DC 的垂线交CF 的 延长线于点G ,求证:B A DGC ∠=∠+∠.24.如图9,在平面直角坐标系xoy 中,顶点为M 的抛物线2(0y ax bx a =+>)经过点A 和x 轴正半轴上的点B ,AO OB == 2,0120AOB ∠=. (1)求这条抛物线的表达式; (2)联结OM ,求AOM ∠的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.25.在矩形ABCD 中,点P 是边AD 上的动点,联结BP ,线段BP 的垂直平分线交边BC 于点Q , 垂足为点M ,联结QP (如图10).已知13AD =,5AB =,设AP x BQ y ==,. (1)求y 关于x 的函数解析式,并写出x 的取值范围;图9(2)当以AP 长为半径的⊙P 和以QC 长为半径的⊙Q 外切时,求x 的值;(3)点E 在边CD 上,过点E 作直线QP 的垂线,垂足为F ,如果4EF EC ==,求x 的值.图10备用图。

2019上海市中考数学及答案

2019上海市中考数学及答案

经典精品试卷2019年上海市初中毕业统一学业考试数学卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.计算32()a 的结果是(B ) A .5aB .6aC .8aD .9a2.不等式组1021x x +>⎧⎨-<⎩,的解集是( C )A .1x >-B .3x <C .13x -<<D .31x -<<3.用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是( A ) A .230y y +-= B .2310y y -+=C .2310y y -+=D .2310y y --=4.抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( B ) A .()m n ,B .()m n -,C .()m n -,D .()m n --,5.下列正多边形中,中心角等于内角的是( C )A .正六边形B .正五边形C .正四边形 C .正三边形6.如图1,已知AB CD EF ∥∥,那么下列结论正确的是(A)A .AD BCDF CE=B .BC DFCE AD =C .CD BCEF BE= D .CD ADEF AF= 二、填空题:(本大题共12题,每题4分,满分48分) 7.分母有理化:81=的根是 x=2 .9.如果关于x 的方程20x x k -+=(k 为常数)有两个相等的实数根,那么k =.A B D C E F图1=1410.已知函数1()1f x x =-,那么(3)f = —1/2 . 11.反比例函数2y x=图像的两支分别在第 I III 象限.12.将抛物线2y x =向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是 .13.如果从小明等6名学生中任选1名作为“世博会”志愿者,那么小明被选中的概率是 1/6 .14.某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m ,那么该商品现在的价格是100*(1—m)^2 元(结果用含m 的代数式表示).15.如图2,在ABC △中,AD 是边BC 上的中线,设向量 , 如果用向量a ,b 表示向量AD ,那么AD =a +(b /2).16.在圆O 中,弦AB 的长为6,它所对应的弦心距为4,那么半径OA = 5 .17.在四边形ABCD 中,对角线AC 与BD 互相平分,交点为O .在不添加任何辅助线的前提下,要使四边形ABCD 成为矩形,还需添加一个条件,这个条件可以是AC=BD 或者有个内角等于90度 .18.在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上的点,联结AM (如图3所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是 2 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:22221(1)121a a a a a a +-÷+---+. = —120.(本题满分10分) 解方程组:21220y x x xy -=⎧⎨--=⎩,①.②(X=2 y=3 ) (x=-1 y=0) 21.(本题满分10分,每小题满分各5分)如图4,在梯形ABCD 中,86012AD BC AB DC B BC ==∠==∥,,°,,联结AC . (1)求tan ACB ∠的值;(2)若M N 、分别是AB DC 、的中点,联结MN ,求线段MN 的长. (1) 二分之根号3 图2AA 图3B M CA D2y x =BC b =AB a =(2)8 22.(本题满分10分,第(1)小题满分2分,第(2)小题满分3分,第(3)小题满分2分,第(4)小题满分3分)为了了解某校初中男生的身体素质状况,在该校六年级至九年级共四个年级的男生中,分别抽取部分学生进行“引体向上”测试.所有被测试者的“引体向上”次数情况如表一所示;各年级的被测试人数占所有被测试人数的百分率如图5所示(其中六年级相关数据未标出).根据上述信息,回答下列问题(直接写出结果): (1)六年级的被测试人数占所有被测试人数的百分率是 20% ;(2)在所有被测试者中,九年级的人数是 6 ; (3)在所有被测试者中,“引体向上”次数不小于6的人数所占的百分率是 35% ;(4)在所有被测试者的“引体向上”次数中,众数是 5 .23.(本题满分12分,每小题满分各6分)已知线段AC 与BD 相交于点O ,联结AB DC 、,E 为OB的中点,F 为OC 的中点,联结EF (如图6所示).(1)添加条件A D ∠=∠,OEF OFE ∠=∠,求证:AB DC =. 证明:由已知条件得:2OE=2OC OB=OC 又 A D ∠=∠角AOB=角DOC 所以三角形ABO 全等于三角形DOC 所以AB DC =(2)分别将“A D ∠=∠”记为①,“OEF OFE ∠=∠”记为②,“AB DC =”记为③,添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是 真 命题,命题2是 假 命题(选择“真”或“假”填入空格). 24.(本题满分12分,每小题满分各4分) 在直角坐标平面内,O 为原点,点A 的坐标为(10),,点C 的坐标为(04),,直线CM x ∥轴(如图7所九年级 八年级 七年级六年级 25%30%25% 图5 图6 O D CAB E F b示).点B 与点A 关于原点对称,直线y x b =+(b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD .(1)求b 的值和点D 的坐标;(2)设点P 在x 轴的正半轴上,若POD △是等腰三角形,求点P 的坐标; (3)在(2)的条件下,如果以PD 为半径的圆P 与圆O 外切,求圆O 的半径. 解:(1)点B (—1,0),代入得到 b=1 直线BD : y=x+1 Y=4代入 x=3 点D (3,1) (2)1、PO=OD=5 则P (5,0)2、PD=OD=5 则PO=2*3=6 则点P (6,0)3、PD=PO 设P (x ,0) D (3,4)则由勾股定理 解得 x=25/6 则点P (25/6,0)(3)由P ,D 两点坐标可以算出:1、r=5—2、PD=5 r=13、PD=25/6 r=025.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知9023ABC AB BC AD BC P ∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足PQ ADPC AB=(如图8所示). (1)当2AD =,且点Q 与点B 重合时(如图9所示),求线段PC 的长; (2)在图8中,联结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQ PBCS y S =△△,其中APQ S △表示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域;(3)当AD AB <,且点Q 在线段AB 的延长线上时(如图10所示),求QPC ∠的大小.2019年上海市初中毕业统一学业考试数学卷答案要点与评分标准说明:1. 解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2. 第一、二大题若无特别说明,每题评分只有满分或零分;ADPCBQ 图8DAPCB(Q ) 图9图10CADPBQ3. 第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4. 评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半; 5. 评分时,给分或扣分均以1分为基本单位.一.选择题:(本大题共6题,满分24分)1. B ; 2.C ; 3.A; 4.B; 5.C; 6.A . 二.填空题:(本大题共12题,满分48分)7.55; 8.2=x ; 9.14; 10.-12; 11.一、三;12.21y x =-; 13.16; 14.2)1(100m -; 15.b a 21+;16.5; 17.AC BD =(或︒=∠90ABC 等); 18. 2.三.解答题:(本大题共7题,满分78分)19.解:原式=2)1()1)(1(111)1(2-+--+⋅-+a a a a a a ··········································· (7分) =1112-+--a a a ······································································· (1分) =11--a a·············································································· (1分)=1-. ················································································ (1分) 20.解:由方程①得1+=x y , ③ ························································ (1分)将③代入②,得02)1(22=-+-x x x , ·········································· (1分)整理,得022=--x x , ······························································ (2分) 解得1221x x ==-,, ·································································· (3分) 分别将1221x x ==-,代入③,得1230y y ==,, ·························· (2分)所以,原方程组的解为1123x y =⎧⎨=⎩,;2210.x y =-⎧⎨=⎩,····································· (1分) 21.解:(1) 过点A 作BC AE ⊥,垂足为E . ··········································· (1分)在Rt △ABE 中,∵︒=∠60B ,8=AB , ∴460cos 8cos =︒⨯=⋅=B AB BE , ·············································· (1 分)3460sin 8sin =︒⨯=⋅=B AB AE . ·················································· (1分)∵12=BC ,∴8=EC . ······························································· (1 分) 在Rt △AEC 中,23834tan ===∠EC AE ACB . ··································· (1分) (2) 在梯形ABCD 中,∵DC AB =,︒=∠60B ,∴︒=∠=∠60B DCB . ········································································ (1分) 过点D 作BC DF ⊥,垂足为F ,∵︒=∠=∠90AEC DFC ,∴DF AE //. ∵BC AD //,∴四边形AEFD 是平行四边形.∴EF AD =. ···················· (1分) 在Rt △DCF 中, 460cos 8cos =︒⨯=∠⋅=DCF DC FC , ···················· (1分) ∴4=-=FC EC EF .∴4=AD .∵M 、N 分别是AB 、DC 的中点,∴821242=+=+=BC AD MN . ······· (2分)22.(1) %20; ················································································· (2分) (2) 6; ··················································································· (3分) (3) %35; ················································································ (2分) (4) 5. ······················································································ (3分)23.(1) 证明:OFE OEF ∠=∠ ,∴OF OE =. ··································································· (1分) ∵E 为OB 的中点,F 为OC 的中点, ∴OE OB 2=,OF OC 2=. ············································· (1分) ∴OC OB =. ··································································· (1分) ∵D A ∠=∠,DOC AOB ∠=∠,∴△AOB ≌△DOC . ························································ (2分) DC AB =∴. ··································································· (1分) (2) 真; ························································································ (3分) 假. ··························································································· (3分)24.解:(1) ∵点A 的坐标为(10),,点B 与点A 关于原点对称,∴点B 的坐标为(10)-,. ································································· (1分) ∵直线b x y +=经过点B ,∴01=+-b ,得1=b . ··························· (1分) ∵点C 的坐标为(04),,直线x CM //轴,∴设点D 的坐标为(4)x ,. ······· (1分) ∵直线1+=x y 与直线CM 相交于点D ,∴3=x .∴D 的坐标为(34),.…(1分)(2) ∵D 的坐标为(34),,∴5=OD . ··············································· (1分) 当5==OD PD 时,点P 的坐标为(60),; ····································· (1分) 当5==OD PO 时,点P 的坐标为(50),, ····································· (1分) 当PD PO = 时,设点P 的坐标为(0)x ,)0(>x ,∴224)3(+-=x x ,得625=x ,∴点P 的坐标为25(0)6,. ··········· (1分) 综上所述,所求点P 的坐标是(60),、(50),或25(0)6,. (3) 当以PD 为半径的圆P 与圆O 外切时, 若点P 的坐标为(60),,则圆P 的半径5=PD ,圆心距6=PO , ∴圆O 的半径1=r . ····································································· (2分) 若点P 的坐标为(50),,则圆P 的半径52=PD ,圆心距5=PO ,∴圆O 的半径525-=r . ·························································· (2分) 综上所述,所求圆O 的半径等于1或525-.25.解:(1) ∵BC AD //, ∴DBC ADB ∠=∠.∵2==AB AD ,∴ADB ABD ∠=∠.∴ABD DBC ∠=∠. ∵︒=∠90ABC .∴︒=∠45PBC . ················································ (1分)∵ABADPC PQ =,AB AD =,点Q 与点B 重合,∴PC PQ PB ==. ∴︒=∠=∠45PBC PCB . ······························································ (1分)∴︒=∠90BPC . ········································································· (1分)在Rt △BPC 中,22345cos 3cos =︒⨯=⋅=C BC PC . ···················· (1分) (2) 过点P 作BC PE ⊥,AB PF ⊥,垂足分别为E 、F . ···················· (1分)∴︒=∠=∠=∠90BEP FBE PFB .∴四边形FBEP 是矩形. ∴BC PF //,BF PE =.∵BC AD //,∴AD PF //.∴ABADBF PF =. ∵23=AD ,2=AB ,∴43=PE PF . ················································ (1分) ∵x QB AB AQ -=-=2,3=BC ,∴22APQ x S PF -=△,32PBC S PE =△.∴42x S S PBC APQ -=∆∆,即42x y -= . ················································· (2分) 函数的定义域是0≤x ≤87. ··························································· (1分)(3) 过点P 作BC PM ⊥,AB PN ⊥,垂足分别为M 、N .易得四边形PNBM 为矩形,∴BC PN //,BN PM =,︒=∠90MPN .∵BC AD //,∴AD PN //.∴AB AD BN PN =.∴ABADPM PN =. ·············· (1分) ∵AB AD PC PQ =,∴PCPQ PM PN =. ······················································ (1分) 又∵︒=∠=∠90PNQ PMC ,∴Rt △PCM ∽Rt △PQN . ··············· (1分) ∴QPN CPM ∠=∠. ··································································· (1分) ∵︒=∠90MPN ,∴︒=∠=∠+∠=∠+∠90MPN QPM QPN QPM CPM , 即︒=∠90QPC . ········································································· (1分)文档说明(Word文档可以删除这部分)专注于精品小学试卷教案合同协议施工组织设计、期中、期末等测试文档解放你双手,时间就是生命,工作之外我们应该拥有更多享受生活的时间,本文档目的是为了节省读者的工作时间,提高读者的工作效率,读者可以放心下载文档进行编辑使用.文档来源网络,由于文档太多,审核有可能疏忽,如果有错误或侵权,请联系本店马上删除。

2019年上海市初中数学毕业统一学业考试模拟试题(含答案解析)

2019年上海市初中数学毕业统一学业考试模拟试题(含答案解析)

2019年上海市初中数学毕业统一学业考试模拟试题 考生注意:1.本试卷共25题.2.试卷满分150分,考试时间100分钟.3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.4.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)1. 下列数中是无理数的是……………………………………………………………………(▲)A. 3.1415B. 81C. cos 30°D. 827 2. 如果将一个二次函数图像沿着坐标轴向左平移3个单位,向下平移4个单位后得到的是 y = 2(x - 6)2 + 4,则原函数解析式是……………………………………………………(▲)A. y =(x - 9)2 + 8B. y = 2(x - 6)2C. y = 2(x - 3)2 + 8D. y = 2(x - 9)2 + 83. 某商店9月份的销售额为a 万元,在10月份与11月份这两个月份中,此商店的销售额平均每月增长x %,那么下列11月份此商店的销售额正确的是…………………………(▲)A. a (1 + x %)B. (1 + x %)2C. a (x %)2D. a (1 + x %)24. 在一组数据中的每项数据后加10,则该组数据的哪个数值不会发生变化………… (▲)A . 标准差 B. 平均数 C. 中位数 D. 众数5. 如图,已知Rt △ABC ,AC =8,AB =4,以点B 为圆心作圆,当⊙B 与线段AC 只有一个交点时,则⊙B 的半径的取值范围是…………………………………………………………(▲)A. r B =32B. 4 < r B ≤34C. r B =32 或4 < r B ≤34D. r B 为任意实数 第5题图6. 如果二元一次方程x 2 - mx + 2 = 0的解为两个不相等的负实数根,则m 的取值范围是(▲)A. m > 22B. m < 22-C. m > 22或 m < 22-D. 无解二、填空题(本大题共12题,每题4分,满分48分)7. 计算:38--= ▲ .8. 分解因式:a 2 - 2a - 3 = ▲ .9. 方程组⎩⎨⎧=+-=+096322y xy x y x 的解是 ▲ . 10. 已知一次函数y = kx + b 图像不经过第二象限,那么b 的取值范围是 ▲ .11. 与b a +互为有理化因式的是 ▲ .12. 将两枚骰子同时抛出,得到的两个点中,一个能被另一个整除的概率为 ▲ .13. 如图,已知⊙A 、⊙B 、⊙C 两两相切,连接圆心构成△ABC ,如果AC =3,BC =5,AB =6,那么⊙C 的半径长为 ▲ .14. 近期,某区与某技术支持单位合作,组织策划了该区“低碳先锋行动”,开展低碳测量和排行活动.根据调查数据制作了频数分布直方图和扇形统计图,图(1)中从左到右各矩形的高度之比为2 : 8 : 9 : 7 : 3 : 1,那么在下图(2)中碳排放值5≤x <7(千克/平方米·月)部分的圆心角为 ▲ 度.第13题图 第14题图15. 如图,在△ABC 中,点D 在边AB 上,且BD = 2AD ,点E 是边AC 的中点,设=,=,那么= ▲ .(用与来表示)16. 在△ABC 中,AB = AC = 5,tanB =34. 若⊙O 的半径为10,且⊙O 经过点B 与C ,那么线段OA 的长等于 ▲ .17. 对于平面直角坐标系xOy 中的点P 和图形G ,给出如下定义:在图形G 上若存在两点M ,N ,使△PMN 为正三角形,则称图形G 为点P 的T 型线,点P 为图形G 的T 型点,△PMN 为图形G 关于点P 的T 型三角形.如图,已知点A (0,-3),B (3,0),以原点O 为圆心的⊙O 的半径为1. 在A ,B 两点中,⊙O 的T 型点是 ▲ .18. 如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =2.作△ABC 的高CD ,作△CDB 的高DC 1,作△DC 1B 的高C 1D 1,……,如此下去,那么得到的所有阴影三角形的面积之和为 ▲ .第15题图 第17题图 第18题图三、解答题(共7题,满分78分)19. 求不等式组⎪⎩⎪⎨⎧≥-+->-225312x x x 的正整数解.20. 先化简,再求值:⎪⎭⎫ ⎝⎛++÷-+-x x x x x 21121222,其中x =22-.21. 如图,在△ABC 中,AB =AC ,点D 在边AB 上,以点A 为圆心,线段AD 的长为半径的⊙A 与边AC 相交于点E ,AF ⊥DE ,垂足为点F ,AF 的延长线与边BC 相交于点G ,联结GE .已知DE =10,cos ∠BAG =1312,21=DB AD . 求 :(1)⊙A 的半径AD 的长;(2)∠EGC 的余切值.22. 周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地,小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y (km )与小明离家时间x (h )的函数图象,已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度为 ▲ km /h .在甲地游玩的时间为▲ h .;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.第22题图第21题图23.如图,△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交线段DE的延长线相交于F点,取AF的中点G,如果BC=2AB.求证:(1)四边形ABDF是菱形;(2)AC=2DG.第23题图24. 如果两个二次函数的图象关于y 轴对称,我们就称这两个二次函数互为“关于y 轴对称二次函数”,如图所示二次函数y 1 = x 2 + 2x + 2与y 2 = x 2 - 2x + 2是“关于y 轴对称二次函数”.(1)二次函数y = 2(x + 2)2 + 1的“关于y 轴对称二次函数”解析式为 ▲ ;二次函数y = a (x - h )2 + k 的“关于y 轴对称二次函数”解析式为 ▲ ;(2)如备用图,平面直角坐标系中,记“关于y 轴对称二次函数”的图象与y 轴的交点为A ,它们的两个顶点分别为B ,C ,且BC =6,顺次连接点A ,B ,O ,C 得到一个面积为24的菱形,求“关于y 轴对称二次函数”的函数表达式.(3)在第(2)题的情况下,如果M 是两个抛物线上的一点,以点A ,O ,C ,M 为顶点能否构成梯形. 若能,求出此时M 坐标;若不能,说明理由.第24题图 备用图25. 在Rt △ABC 中,∠BAC =90°,BC =10,tan ∠ABC =43,点O 是AB 边上动点,以O 为圆心,OB 为半径的⊙O 与边BC 的另一交点为D ,过点D 作AB 的垂线,交⊙O 于点E ,联结BE 、AE(1)如图(1),当AE ∥BC 时,求⊙O 的半径长;(2)设BO =x ,AE =y ,求y 关于x 的函数关系式,并写出定义域;(3)若以A 为圆心的⊙A 与⊙O 有公共点D 、E ,当⊙A 恰好也过点C 时,求DE 的长.图(1)备用图备用图第25题图2019年上海市初中数学毕业统一学业考试模拟试题参考答案一、选择题:(每题4分)1. C解析:cos 30°=23,是无理数 2. C解析:二次函数平移左加右减,上加下减,即把y = 2(x - 6)2 + 4向右平移3个单位,向上平移个单位3. D解析:考察平均增长率公式4. A解析:在一组数据中的每项数据后加或减去一个常数,方差和标准差不会改变5. C解析:⊙B 与线段AC 只有一个交点,即⊙B 与AC 相切或AB <r B <BC6. B解析:若方程有两个不相等实数解,则m 2 - 8 > 0,通过数形结合可知m > 22或 m <22- 。

2019年上海市中考数学试卷解析版

2019年上海市中考数学试卷解析版

2019年上海市中考数学试卷解析版一、选择题:(本大题共6题.每题4分,满分24)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x•2x=6x D.3x÷2x=2 3【解答】解:(A)原式=5x,故A错误;(C)原式=6x2,故C错误;(D)原式=32,故D错误;故选:B.2.(4分)如果m>n,那么下列结论错误的是()A.m+2>n+2B.m﹣2>n﹣2C.2m>2n D.﹣2m>﹣2n 【解答】解:∵m>n,∴﹣2m<﹣2n,故选:D.3.(4分)下列函数中,函数值y随自变量x的值增大而增大的是()A.y=x3B.y=−x3C.y=3x D.y=−3x【解答】解:A、该函数图象是直线,位于第一、三象限,y随x的增大而增大,故本选项正确.B、该函数图象是直线,位于第二、四象限,y随x的增大而减小,故本选项错误.C、该函数图象是双曲线,位于第一、三象限,在每一象限内,y随x的增大而减小,故本选项错误.D、该函数图象是双曲线,位于第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.故选:A.4.(4分)甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A .甲的成绩比乙稳定B .甲的最好成绩比乙高C .甲的成绩的平均数比乙大D .甲的成绩的中位数比乙大【解答】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为15×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4; 乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为15×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低, 故选:A .5.(4分)下列命题中,假命题是( )A .矩形的对角线相等B .矩形对角线交点到四个顶点的距离相等C .矩形的对角线互相平分D .矩形对角线交点到四条边的距离相等【解答】解:A 、矩形的对角线相等,正确,是真命题;B 、矩形的对角线的交点到四个顶点的距离相等,正确,是真命题;C 、矩形的对角线互相平分,正确,是真命题;D 、矩形的对角线的交点到一组对边的距离相等,故错误,是假命题,故选:D .6.(4分)已知⊙A 与⊙B 外切,⊙C 与⊙A 、⊙B 都内切,且AB =5,AC =6,BC =7,那么⊙C 的半径长是( )A .11B .10C .9D .8【解答】解:如图,设⊙A ,⊙B ,⊙C 的半径为x ,y ,z .由题意:{x +y =5z −x =6z −y =7,解得{x =3y =2z =9,故选:C .二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答纸的相应位置上】7.(4分)计算:(2a 2)2= 4a 4 .【解答】解:(2a 2)2=22a 4=4a 4.8.(4分)已知f (x )=x 2﹣1,那么f (﹣1)= 0 .【解答】解:当x =﹣1时,f (﹣1)=(﹣1)2﹣1=0.故答案为:0.9.(4分)如果一个正方形的面积是3,那么它的边长是 √3 .【解答】解:∵正方形的面积是3,∴它的边长是√3.故答案为:√310.(4分)如果关于x 的方程x 2﹣x +m =0没有实数根,那么实数m 的取值范围是 m >14 .【解答】解:由题意知△=1﹣4m <0,∴m >14.故填空答案:m >14.11.(4分)一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是 13 .【解答】解:∵在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为26=13, 故答案为:13. 12.(4分)《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛56 斛米.(注:斛是古代一种容量单位)【解答】解:设1个大桶可以盛米x 斛,1个小桶可以盛米y 斛,则{5x +y =3x +5y =2, 故5x +x +y +5y =5,则x +y =56.答:1大桶加1小桶共盛56斛米. 故答案为:56. 13.(4分)在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x 千米时,所在位置的气温是y ℃,那么y 关于x 的函数解析式是 y =﹣6x +2 .【解答】解:由题意得y 与x 之间的函数关系式为:y =﹣6x +2.故答案为:y =﹣6x +2.14.(4分)小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约 90 千克.【解答】解:估计该小区300户居民这一天投放的可回收垃圾共约30050×100×15%=90(千克),故答案为:90.15.(4分)如图,已知直线11∥l 2,含30°角的三角板的直角顶点C 在l 1上,30°角的顶点A 在l 2上,如果边AB 与l 1的交点D 是AB 的中点,那么∠1= 120 度.【解答】解:∵D 是斜边AB 的中点,∴DA =DC ,∴∠DCA =∠DAC =30°,∴∠2=∠DCA +∠DAC =60°,∵11∥l 2,∴∠1+∠2=180°,∴∠1=180°﹣60°=120°.故答案为120.16.(4分)如图,在正六边形ABCDEF 中,设BA →=a →,BC →=b →,那么向量BF →用向量a →、b →表示为 2a →+b →.【解答】解:连接CF .∵多边形ABCDEF 是正六边形,AB ∥CF ,CF =2BA ,∴CF →=2a →,∵BF →=BC →+CF →,∴BF →=2a →+b →,故答案为2a →+b →.17.(4分)如图,在正方形ABCD 中,E 是边AD 的中点.将△ABE 沿直线BE 翻折,点A落在点F 处,联结DF ,那么∠EDF 的正切值是 2 .【解答】解:如图所示,由折叠可得AE =FE ,∠AEB =∠FEB =12∠AEF ,∵正方形ABCD 中,E 是AD 的中点,∴AE =DE =12AD =12AB ,∴DE =FE ,∴∠EDF =∠EFD ,又∵∠AEF 是△DEF 的外角,∴∠AEF =∠EDF +∠EFD ,∴∠EDF =12∠AEF ,∴∠AEB =∠EDF ,∴tan ∠EDF =tan ∠AEB =AB AE =2.故答案为:2.18.(4分)在△ABC 和△A 1B 1C 1中,已知∠C =∠C 1=90°,AC =A 1C 1=3,BC =4,B 1C 1=2,点D 、D 1分别在边AB 、A 1B 1上,且△ACD ≌△C 1A 1D 1,那么AD 的长是 53 .【解答】解:如图,∵在△ABC 和△A 1B 1C 1中,∠C =∠C 1=90°,AC =A 1C 1=3,BC =4,B 1C 1=2,∴AB =√32+42=5,设AD =x ,则BD =5﹣x ,∵△ACD ≌△C 1A 1D 1,∴C 1D 1=AD =x ,∠A 1C 1D 1=∠A ,∠A 1D 1C 1=∠CDA ,∴∠C 1D 1B 1=∠BDC ,∵∠B =90°﹣∠A ,∠B 1C 1D 1=90°﹣∠A 1C 1D 1,∴∠B 1C 1D 1=∠B ,∴△C 1B 1D 1∽△BCD ,∴BDC 1D 1=BC C 1B 1,即5−x x =2, 解得x =53,∴AD 的长为53,故答案为53.三、解答题(本大题共7题,满分78分)19.(10分)计算:|√3−1|−√2×√6+12−3823 【解答】解:|√3−1|−√2×√612−√3−823 =√3−1﹣2√3+2+√3−4=﹣320.(10分)解方程:2x x−2−8x 2−2x =1【解答】解:去分母得:2x 2﹣8=x 2﹣2x ,即x 2+2x ﹣8=0,分解因式得:(x ﹣2)(x +4)=0,解得:x =2或x =﹣4,经检验x =2是增根,分式方程的解为x =﹣4.21.(10分)在平面直角坐标系xOy 中(如图),已知一次函数的图象平行于直线y =12x ,且经过点A (2,3),与x 轴交于点B .(1)求这个一次函数的解析式;(2)设点C 在y 轴上,当AC =BC 时,求点C 的坐标.【解答】解:(1)设一次函数的解析式为:y =kx +b ,∵一次函数的图象平行于直线y=12x,∴k=1 2,∵一次函数的图象经过点A(2,3),∴3=12×2+b,∴b=2,∴一次函数的解析式为y=12x+2;(2)由y=12x+2,令y=0,得12x+2=0,∴x=﹣4,∴一次函数的图形与x轴的解得为B(﹣4,0),∵点C在y轴上,∴设点C的坐标为(0,y),∵AC=BC,∴√(2−0)2+(3−y)2=√(−4−0)2+(0−y)2,∴y=−1 2,经检验:y=−12是原方程的根,∴点C的坐标是(0,−1 2).22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE 落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.【解答】解:(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD′=∠BHD′=90°.在Rt△AD′F中,D′F=AD′•sin∠DAD′=90×sin60°=45√3厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(45√3+70)厘米.答:点D′到BC的距离为(45√3+70)厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE.∵四边形ABCD是矩形,∴∠ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,∴AE=√AD2+DE2=30√10厘米,∴EE′=30√10厘米.答:E、E′两点的距离是30√10厘米.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.【解答】证明:(1)如图1,连接BC,OB,OC,∵AB、AC是⊙O的两条弦,且AB=AC,∴A在BC的垂直平分线上,∵OB =OA =OC ,∴O 在BC 的垂直平分线上,∴AO 垂直平分BC ,∴BD =CD ;(2)如图2,连接OB ,∵AB 2=AO •AD ,∴AB AO =AD AB ,∵∠BAO =∠DAB ,∴△ABO ∽△ADB ,∴∠OBA =∠ADB ,∵OA =OB ,∴∠OBA =∠OAB ,∴∠OAB =∠BDA ,∴AB =BD ,∵AB =AC ,BD =CD ,∴AB =AC =BD =CD ,∴四边形ABDC 是菱形.24.(12分)在平面直角坐标系xOy 中(如图),已知抛物线y =x 2﹣2x ,其顶点为A .(1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”. ①试求抛物线y =x 2﹣2x 的“不动点”的坐标;②平移抛物线y =x 2﹣2x ,使所得新抛物线的顶点B 是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.【解答】解:(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1),当x>1,y随x的增大而增大,当x<1,y随x增大而减小;(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,解得:t=0或3,故“不动点”坐标为(0,0)或(3,3);②当OC∥AB时,∵新抛物线顶点B为“不动点”,则设点B(m,m),∴新抛物线的对称轴为:x=m,与x轴的交点C(m,0),∵四边形OABC是梯形,∴直线x=m在y轴左侧,∵BC与OA不平行,∴OC∥AB,又∵点A(1,﹣1),点B(m,m),∴m=﹣1,故新抛物线是由抛物线y=x2﹣2x向左平移2个单位得到的;当OB∥AC时,同理可得:抛物线的表达式为:y=(x﹣2)2+2=x2﹣4x+6,当四边形OABC是梯形,字母顺序不对,故舍去,综上,新抛物线的表达式为:y=(x+1)2﹣1.25.(14分)如图1,AD 、BD 分别是△ABC 的内角∠BAC 、∠ABC 的平分线,过点A 作AE ⊥AD ,交BD 的延长线于点E .(1)求证:∠E ═12∠C ; (2)如图2,如果AE =AB ,且BD :DE =2:3,求cos ∠ABC 的值;(3)如果∠ABC 是锐角,且△ABC 与△ADE 相似,求∠ABC 的度数,并直接写出S △ADE S △ABC的值.【解答】(1)证明:如图1中,∵AE ⊥AD ,∴∠DAE =90°,∠E =90°﹣∠ADE ,∵AD 平分∠BAC ,∴∠BAD =12∠BAC ,同理∠ABD =12∠ABC ,∵∠ADE =∠BAD +∠DBA ,∠BAC +∠ABC =180°﹣∠C ,∴∠ADE =12(∠ABC +∠BAC )=90°−12∠C ,∴∠E =90°﹣(90°−12∠C )=12∠C .(2)解:延长AD 交BC 于点F .∵AB =AE ,∴∠ABE =∠E ,BE 平分∠ABC ,∴∠ABE =∠EBC ,∴∠E =∠CBE ,∴AE ∥BC ,∴∠AFB =∠EAD =90°,BF AE =BD DE , ∵BD :DE =2:3,∴cos ∠ABC =BF AB =BF AE =23.(3)∵△ABC 与△ADE 相似,∠DAE =90°, ∴∠ABC 中必有一个内角为90°∵∠ABC 是锐角,∴∠ABC ≠90°.①当∠BAC =∠DAE =90°时,∵∠E =12∠C ,∴∠ABC =∠E =12∠C ,∵∠ABC +∠C =90°,∴∠ABC =30°,此时S △ADES △ABC =2−√3.②当∠C =∠DAE =90°时,∠E =12∠C =45°,∴∠EDA =45°,∵△ABC 与△ADE 相似,∴∠ABC =45°,此时S △ADES △ABC =2−√2.综上所述,∠ABC =30°或45°,S △ADES △ABC =2−√3或2−√2.。

2019年上海市中考数学试题及参考答案(word解析版)

2019年上海市中考数学试题及参考答案(word解析版)

2019年上海市初中毕业统一学业考试数学试卷(试卷满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x•2x=6x D.3x÷2x=2.如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n3.下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=﹣C.y=D.y=﹣4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大5.下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等6.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11 B.10 C.9 D.8二、填空题:(本大题共12题,每题4分,满分48分)7.计算:(2a2)2=.8.已知f(x)=x2﹣1,那么f(﹣1)=.9.如果一个正方形的面积是3,那么它的边长是.10.如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)13.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是.14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.15.如图,已知直线11∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么∠1=度.16.如图,在正边形ABCDEF中,设=,=,那么向量用向量、表示为.17.如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.18.在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.三、解答题(本大题共7题,满分78分)19.(10分)计算:|﹣1|﹣×+﹣820.(10分)解方程:﹣=121.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.25.(14分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.参考答案与解析一、选择题:(本大题共6题,每题4分,满分24)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x•2x=6x D.3x÷2x=【知识考点】整式的混合运算.【思路分析】根据整式的运算法则即可求出答案.【解题过程】解:(A)原式=5x,故A错误;(C)原式=6x2,故C错误;(D)原式=,故D错误;故选:B.【总结归纳】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.2.如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n【知识考点】不等式的性质.【思路分析】根据不等式的性质即可求出答案.【解题过程】解:∵m>n,∴﹣2m<﹣2n,故选:D.【总结归纳】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.3.下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=﹣C.y=D.y=﹣【知识考点】正比例函数的性质;反比例函数的性质.【思路分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大.【解题过程】解:A、该函数图象是直线,位于第一、三象限,y随x的增大而增大,故本选项正确.B、该函数图象是直线,位于第二、四象限,y随x的增大而减小,故本选项错误.C、该函数图象是双曲线,位于第一、三象限,在每一象限内,y随x的增大而减小,故本选项错误.D、该函数图象是双曲线,位于第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.故选:A.【总结归纳】本题考查了一次函数、反比例函数的增减性;熟练掌握一次函数、反比例函数的性质是关键.4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大【知识考点】算术平均数;中位数;方差.【思路分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解题过程】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:A.【总结归纳】本题考查了方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了中位数.5.下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等【知识考点】命题与定理.【思路分析】利用矩形的性质分别判断后即可确定正确的选项.【解题过程】解:A、矩形的对角线相等,正确,是真命题;B、矩形的对角线的交点到四个顶点的距离相等,正确,是真命题;C、矩形的对角线互相平分,正确,是真命题;D、矩形的对角线的交点到一组对边的距离相等,故错误,是假命题,故选:D.【总结归纳】本题考查了命题与定理的知识,解题的关键是了解矩形的性质,难度不大.6.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11 B.10 C.9 D.8【知识考点】圆与圆的位置关系.【思路分析】如图,设⊙A,⊙B,⊙C的半径为x,y,z.构建方程组即可解决问题.【解题过程】解:如图,设⊙A,⊙B,⊙C的半径为x,y,z.由题意:,解得,故选:C.【总结归纳】本题考查两圆的位置关系,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:(2a2)2=.【知识考点】幂的乘方与积的乘方.【思路分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.【解题过程】解:(2a2)2=22a4=4a4.【总结归纳】主要考查积的乘方的性质,熟练掌握运算性质是解题的关键.8.已知f(x)=x2﹣1,那么f(﹣1)=.【知识考点】函数值.【思路分析】根据自变量与函数值的对应关系,可得答案.【解题过程】解:当x=﹣1时,f(﹣1)=(﹣1)2﹣1=0.故答案为:0.【总结归纳】本题考查了函数值,把自变量的值代入函数解析式是解题关键.9.如果一个正方形的面积是3,那么它的边长是.【知识考点】算术平方根.【思路分析】根据算术平方根的定义解答.【解题过程】解:∵正方形的面积是3,∴它的边长是.故答案为:【总结归纳】本题考查了二次根式的应用,主要利用了正方形的性质和算术平方根的定义.10.如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.【知识考点】根的判别式.【思路分析】由于方程没有实数根,则其判别式△<0,由此可以建立关于m的不等式,解不等式即可求出m的取值范围.【解题过程】解:由题意知△=1﹣4m<0,∴m>.故填空答案:m>.【总结归纳】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根(3)△<0⇔方程没有实数根.11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.【知识考点】列表法与树状图法.【思路分析】先求出点数大于4的数,再根据概率公式求解即可.【解题过程】解:∵在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为=,故答案为:.【总结归纳】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)【知识考点】二元一次方程组的应用.【思路分析】直接利用5个大桶加上1个小桶可以盛米3斛,1个大桶加上5个小桶可以盛米2斛,分别得出等式组成方程组求出答案.【解题过程】解:设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则,故5x+x+y+5y=5,则x+y=.答:1大桶加1小桶共盛斛米.故答案为:.【总结归纳】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.13.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是.【知识考点】函数关系式.【思路分析】根据登山队大本营所在地的气温为2℃,海拔每升高1km气温下降6℃,可求出y 与x的关系式.【解题过程】解:由题意得y与x之间的函数关系式为:y=﹣6x+2.故答案为:y=﹣6x+2.【总结归纳】本题考查根据实际问题列一次函数式,关键知道气温随着高度变化,某处的气温=地面的气温﹣降低的气温.14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.【知识考点】用样本估计总体;扇形统计图.【思路分析】求出样本中100千克垃圾中可回收垃圾的质量,再乘以可得答案.【解题过程】解:估计该小区300户居民这一天投放的可回收垃圾共约×100×15%=90(千克),故答案为:90.【总结归纳】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.也考查了用样本估计总体.15.如图,已知直线11∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么∠1=度.【知识考点】平行线的性质;直角三角形斜边上的中线.【思路分析】根据直角三角形斜边上的中线性质得到DA=DC,则∠DCA=∠DAC=30°,再利用三角形外角性质得到∠2=60°,然后根据平行线的性质求∠1的度数.【解题过程】解:∵D是斜边AB的中点,∴DA=DC,∴∠DCA=∠DAC=30°,∴∠2=∠DCA+∠DAC=60°,∵11∥l2,∴∠1+∠2=180°,∴∠1=180°﹣60°=120°.故答案为120.【总结归纳】本题考查了直接三角形斜边上的中线:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点).也考查了平行线的性质.16.如图,在正边形ABCDEF中,设=,=,那么向量用向量、表示为.【知识考点】*平面向量.【思路分析】连接CF.利用三角形法则:=+,求出即可.【解题过程】解:连接CF.∵多边形ABCDEF是正六边形,AB∥CF,CF=2BA,∴=2,∵=+,∴=2+,故答案为2+.【总结归纳】本题考查平面向量,正六边形的性质等知识,解题的关键是熟练掌握三角形法则,属于中考常考题型.17.如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.【知识考点】正方形的性质;翻折变换(折叠问题);解直角三角形.【思路分析】由折叠可得AE=FE,∠AEB=∠FEB,由折叠的性质以及三角形外角性质,即可得到∠AEB=∠EDF,进而得到tan∠EDF=tan∠AEB==2.【解题过程】解:如图所示,由折叠可得AE=FE,∠AEB=∠FEB=∠AEF,∵正方形ABCD中,E是AD的中点,∴AE=DE=AD=AB,∴DE=FE,∴∠EDF=∠EFD,又∵∠AEF是△DEF的外角,∴∠AEF=∠EDF+∠EFD,∴∠EDF=∠AEF,∴∠AEB=∠EDF,∴tan∠EDF=tan∠AEB==2.故答案为:2.【总结归纳】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.【知识考点】全等三角形的性质.【思路分析】根据勾股定理求得AB=5,设AD=x,则BD=5﹣x,根据全等三角形的性质得出C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,即可求得∠C1D1B1=∠BDC,根据等角的余角相等求得∠B1C1D1=∠B,即可证得△C1B1D∽△BCD,根据其性质得出=2,解得求出AD的长.【解题过程】解:如图,∵在△ABC和△A1B1C1中,∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,∴AB==5,设AD=x,则BD=5﹣x,∵△ACD≌△C1A1D1,∴C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,∴∠C1D1B1=∠BDC,∵∠B=90°﹣∠A,∠B1C1D1=90°﹣∠A1C1D1,∴∠B1C1D1=∠B,∴△C1B1D∽△BCD,∴=,即=2,解得x=,∴AD的长为,故答案为.【总结归纳】本题考查了全等三角形的性质,勾股定理的应用,三角形相似的判定和性质,证得△C1B1D∽△BCD是解题的关键.三、解答题(本大题共7题,满分78分)19.(10分)计算:|﹣1|﹣×+﹣8【知识考点】实数的运算;分数指数幂.【思路分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解题过程】解:|﹣1|﹣×+﹣8=﹣1﹣2+2+﹣4=﹣3【总结归纳】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.(10分)解方程:﹣=1【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解题过程】解:去分母得:2x2﹣8=x2﹣2x,即x2+2x﹣8=0,分解因式得:(x﹣2)(x+4)=0,解得:x=2或x=﹣4,经检验x=2是增根,分式方程的解为x=﹣4.【总结归纳】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.【知识考点】待定系数法求一次函数解析式;两条直线相交或平行问题.【思路分析】(1)设一次函数的解析式为y=kx+b,解方程即可得到结论;(2)求得一次函数的图形与x轴的解得为B(﹣4,0),根据两点间的距离公式即可得到结论.【解题过程】解:(1)设一次函数的解析式为:y=kx+b,∵一次函数的图象平行于直线y=x,∴k=,∵一次函数的图象经过点A(2,3),∴3=+b,∴b=2,∴一次函数的解析式为y=x+2;(2)由y=x+2,令y=0,得x+2=0,∴x=﹣4,∴一次函数的图形与x轴的解得为B(﹣4,0),∵点C在y轴上,∴设点C的坐标为(﹣4,y),∵AC=BC,∴=,∴y=﹣,经检验:y=﹣是原方程的根,∴点C的坐标是(0,﹣).【总结归纳】本题考查了两直线相交与平行问题,待定系数法求函数的解析式,正确的理解题意是解题的关键.22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.【知识考点】矩形的性质;解直角三角形的应用.【思路分析】(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,利用旋转的性质可得出AD′=AD=90厘米,∠DAD′=60°,利用矩形的性质可得出∠AFD′=∠BHD′=90°,在Rt△AD′F中,通过解直角三角形可求出D′F的长,结合FH=DC=DE+CE及D′H=D′F+FH可求出点D′到BC的距离;(2)连接AE,AE′,EE′,利用旋转的性质可得出AE′=AE,∠EAE′=60°,进而可得出△AEE′是等边三角形,利用等边三角形的性质可得出EE′=AE,在Rt△ADE中,利用勾股定理可求出AE的长度,结合EE′=AE可得出E、E′两点的距离.【解题过程】解:(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD′=∠BHD′=90°.在Rt△AD′F中,D′F=AD′•sin∠DAD′=90×sin60°=45厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(45+70)厘米.答:点D′到BC的距离为(45+70)厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE.∵四边形ABCD是矩形,∴∠ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,∴AE==30厘米,∴EE′=30厘米.答:E、E′两点的距离是30厘米.【总结归纳】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F的长度;(2)利用勾股定理求出AE的长度.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.【知识考点】菱形的判定;圆心角、弧、弦的关系;圆周角定理;相似三角形的判定与性质.【思路分析】(1)连接BC,根据AB=AC,OB=OA=OC,即可得出AD垂直平分BC,根据线段垂直平分线性质求出即可;(2)根据相似三角形的性质和判定求出∠ABO=∠ADB=∠BAO,求出BD=AB,再根据菱形的判定推出即可.【解题过程】证明:(1)如图1,连接BC,OB,OC,∵AB、AC是⊙O的两条弦,且AB=AC,∴A在BC的垂直平分线上,∵OB=OA=OC,∴O在BC的垂直平分线上,∴AO垂直平分BC,∴BD=CD;(2)如图2,连接OB,∵AB2=AO•AD,∴=,∵∠BAO=∠DAB,∴△ABO∽△ADB,∴∠OBA=∠ADB,∵OA=OB,∴∠OBA=∠OAB,∴∠OAB=∠BDA,∴AB=BD,∵AB=AC,BD=CD,∴AB=AC=BD=CD,∴四边形ABDC是菱形.【总结归纳】本题考查了相似三角形的性质和判定,圆心角、弧、弦之间的关系,线段垂直平分线的性质,菱形的判定,垂径定理等知识点,能综合运用知识点进行推理是解此题的关键.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.【知识考点】二次函数综合题.【思路分析】(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,即可求解;②新抛物线顶点B为“不动点”,则设点B(m,m),则新抛物线的对称轴为:x=m,与x轴的交点C(m,0),四边形OABC是梯形,则直线x=m在y轴左侧,而点A(1,﹣1),点B(m,m),则m=﹣1,即可求解.【解题过程】解:(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,解得:t=0或3,故“不动点”坐标为(0,0)或(3,3);②∵新抛物线顶点B为“不动点”,则设点B(m,m),∴新抛物线的对称轴为:x=m,与x轴的交点C(m,0),∵四边形OABC是梯形,∴直线x=m在y轴左侧,∵BC与OA不平行,∴OC∥AB,又∵点A(1,﹣1),点B(m,m),∴m=﹣1,故新抛物线是由抛物线y=x2﹣2x向左平移2个单位得到的,∴新抛物线的表达式为:y=(x+1)2﹣1.【总结归纳】本题为二次函数综合运用题,涉及到二次函数基本知识、梯形基本性质,此类新定义题目,通常按照题设顺序,逐次求解即可.25.(14分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.【知识考点】相似形综合题.【思路分析】(1)由题意:∠E=90°﹣∠ADE,证明∠ADE=90°﹣∠C即可解决问题.(2)延长AD交BC于点F.证明AE∥BC,可得∠AFB=∠EAD=90°,=,由BD:DE=2:3,可得cos∠ABC===.(3)因为△ABC与△ADE相似,∠DAE=90°,所以∠ABC中必有一个内角为90°因为∠ABC 是锐角,推出∠ABC≠90°.接下来分两种情形分别求解即可.【解题过程】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°﹣∠ADE,∵AD平分∠BAC,∴∠BAD=∠BAC,同理∠ABD=∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°﹣∠C,∴∠ADE=(∠ABC+∠BAC)=90°﹣∠C,∴∠E=90°﹣(90°﹣∠C)=∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,=,∵BD:DE=2:3,∴cos∠ABC===.(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E=∠C,∴∠ABC=∠E=∠C,∵∠ABC+∠C=90°,∴∠ABC=30°,此时=2﹣.②当∠C=∠DAE=90°时,∠∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°,此时=2﹣.综上所述,∠ABC=30°或45°,=2﹣或2﹣.【总结归纳】本题属于相似形综合题,考查了相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.21。

2019年上海中考数学试卷(word版+答案)

2019年上海中考数学试卷(word版+答案)

2019年上海市初中毕业统一学业考试数学试卷考生注意: 1.本试卷共25题.2.试卷满分150分,考试时间100分钟.3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.4.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确的代号并填涂在答题纸的相应位置上】1.下列运算正确的是( )A .2325x x x +=B .32x x x -=C . 326x x x =D . 2323x x ÷= 2.如果m n >,那么下列结论错误的是( )A .22m n +>+B . 22m n ->-C . 22m n >D .22m n ->- 3.下列函数中,函数值y 随自变量x 的值增大而增大的是( ) A .3x y =B . 3x y =-C . 3y x =D . 3y x=- 4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图1所示,下列判断正确的是( ) A .甲的成绩比乙稳定; B .甲的最好成绩比乙高; C .甲的成绩的平均数比乙大;D .甲的成绩的中位数比乙大.5.下列命题中,假命题是( )A . 矩形的对角线相等B .矩形对角线交点到四个顶点的距离相等C .矩形的对角线互相平分D .矩形对角线交点到四条边的距离相等6.已知A 与B 外切,C 与A 、B 都内切,且AB =5,AC =6,BC =7,那么C 的半径长是( )A .11B .10C .9D .8 二、填空题(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.计算:22(2)a = .8.已知2()1f x x =-,那么(1)f -= .9.如果一个正方形的面积是3,那么它的边长是 .10.如果关于x 的方程20x x m -+=没有实数根,那么实数m 的取值范围是 .(图1)1098765成绩(个数)11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数之和大于4的概率是 . 12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛。

2019年上海市初中毕业统一学业考试数学试卷含答案

2019年上海市初中毕业统一学业考试数学试卷含答案

都内切,且AB=5,AC=6,BC=1,那么。

的半径长是( )二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】7, 计算:(2a2)2= ----8, 己知f (x ) =¥-1.那么/(-I ) =9, 如果一个正方形的面积是3,那么它的边长是.10.如果关于x 的方程x 2-x+lll =0没有实数根,那么实数以的取值范围是2019年上海市初中毕业统一学业考试数学试卷 考生注意:1.本试卷共25題.2.试卷满分150分.考试时间100分钟.3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.4.除第一、二大题外,其余各題如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤 一、选择题:(本大题共6题,每题4分,满分24分)【下列各題的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答題纸的相应位置上】1.下列运算正确的是()B. 3x-2x = x2.如果m> n ,那么下列结论错误的是()B. in-2> n- 2 D. -2m > -2n 3.下列函数中,函数值a 随自变量x 的值增大而增大的是(C. y = - 4.甲、乙两名同学本学期五次引体向上的测试成绩(个数) 成绩如图1所示,下列判断正确的是( A.甲的成绩比乙稳定 B.甲的最好成绩比乙高;C,甲的成绩的平均数比乙大; D,甲的成绩的中位数比乙大 5.下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等A. 11B. 10D. 86.己知与<38外切,0C 与GM 、11. 一枚材质均匀的骰子,六个面的点数分别是1. 2, 3, 4, 5, 6.投这个骰子,掷的的点数之和大于4的概率是12,《九章算术》中有一道題的条件是:“今有大器五一容三斛,大器一小器五容二斛。

2019年上海中考数学试卷(word版+答案)

2019年上海中考数学试卷(word版+答案)

2019 年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷共25 题..100 分钟试卷满分150 分,考试时间2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.4.6 题,每题 4 分,满分24 分)一、选择题(本大题共【下列各题的四个选项中,有且只有一个选项是正确的,选择正确的代号并填涂在答题纸的相应位置上】1. 下列运算正确的是()22xx3x3x 2x 6x5x3x2x2x23x B. A. D.C.3mn ,那么下列结论错误的是(2. 如果)m2n 2m2n 22m 2n2m2n B. A. D.C.的值增大而增大的是(随自变量3. 下列函数中,函数值x y )xx33yyy B. A. C.D.y33xx4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩(个数)成绩如图1 所示,下列判断正确)的是(11甲的成绩比乙稳定;A. 10甲甲的最好成绩比乙高;B. 9乙8甲的成绩的平均数比乙大;C.7甲的成绩的中位数比乙大D..6)5.下列命题中,假命题是(5A.矩形的对角线相等次序五一三四二矩形对角线交点到四个顶点的距离相等B.C.矩形的对角线互相平分(图1)矩形对角线交点到四条边的距离相等D.A B C A B C,那么7,BC5,AC与=外切,、与=都内切,且6AB=已知6.的半径长是()C.9D.8A.11B.10二、填空题(本大题共12题,每题 4 分,满分48 分)【请将结果直接填入答题纸的相应位置上】22) (2a.计算:=7.2x 1 f ( 1) f (x),那么已知=.8.,那么它的边长是3如果一个正方形的面积是.9.2x0 x m 10. 如果关于x 的方程的取值范围是那么实数m没有实数根,.111.一枚材质均匀的骰子,六个面的点数分别是,投这个骰子,掷的点数,6,4,51,2,3之和大于 4 的概率是.12. 《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛。

2019年上海市中考(初中毕业统一学业考试)数学试题(教师版含解析)

2019年上海市中考(初中毕业统一学业考试)数学试题(教师版含解析)

2019年上海市中考数学试卷参考答案与试题解析一、选择题:(本大题共6题.每题4分,满分24【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.【解答】解:(A )原式=5x ,故A 错误;(C )原式=6x 2,故C 错误;(D )原式=32,故D 错误;故选:B .2.【解答】解:∵m >n ,∴﹣2m <﹣2n ,故选:D .3.【解答】解:A 、该函数图象是直线,位于第一、三象限,y 随x 的增大而增大,故本选项正确. B 、该函数图象是直线,位于第二、四象限,y 随x 的增大而减小,故本选项错误.C 、该函数图象是双曲线,位于第一、三象限,在每一象限内,y 随x 的增大而减小,故本选项错误.D 、该函数图象是双曲线,位于第二、四象限,在每一象限内,y 随x 的增大而增大,故本选项错误. 故选:A .4.【解答】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为15×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4; 乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为15×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:A .5.【解答】解:A 、矩形的对角线相等,正确,是真命题;B 、矩形的对角线的交点到四个顶点的距离相等,正确,是真命题;C 、矩形的对角线互相平分,正确,是真命题;D 、矩形的对角线的交点到一组对边的距离相等,故错误,是假命题,故选:D .6.【解答】解:如图,设⊙A ,⊙B ,⊙C 的半径为x ,y ,z .由题意:{x +y =5z −x =6z −y =7, 解得{x =3y =2z =9,故选:C .二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答纸的相应位置上】7.【解答】解:(2a 2)2=22a 4=4a 4.8.【解答】解:当x =﹣1时,f (﹣1)=(﹣1)2﹣1=0.故答案为:0.9.【解答】解:∵正方形的面积是3,∴它的边长是√3.故答案为:√310.【解答】解:由题意知△=1﹣4m <0,∴m >14.故填空答案:m >14.11.【解答】解:∵在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为26=13, 故答案为:13. 12.【解答】解:设1个大桶可以盛米x 斛,1个小桶可以盛米y 斛,则{5x +y =3x +5y =2, 故5x +x +y +5y =5,则x +y =56.答:1大桶加1小桶共盛56斛米. 故答案为:56. 13.【解答】解:由题意得y 与x 之间的函数关系式为:y =﹣6x +2.故答案为:y =﹣6x +2.14.【解答】解:估计该小区300户居民这一天投放的可回收垃圾共约30050×100×15%=90(千克),故答案为:90.15.【解答】解:∵D 是斜边AB 的中点,∴DA =DC ,∴∠DCA =∠DAC =30°,∴∠2=∠DCA +∠DAC =60°,∵11∥l 2,∴∠1+∠2=180°,∴∠1=180°﹣60°=120°.故答案为120.16.【解答】解:连接CF .∵多边形ABCDEF 是正六边形,AB ∥CF ,CF =2BA ,∴CF →=a →,∵BF →=BC →+CF →,∴BF →=2a →+b →,故答案为2a →+b →.17.【解答】解:如图所示,由折叠可得AE =FE ,∠AEB =∠FEB =12∠AEF , ∵正方形ABCD 中,E 是AD 的中点,∴AE =DE =12AD =12AB ,∴DE =FE ,∴∠EDF =∠EFD ,又∵∠AEF 是△DEF 的外角,∴∠AEF =∠EDF +∠EFD ,∴∠EDF =12∠AEF ,∴∠AEB =∠EDF ,∴tan ∠EDF =tan ∠AEB =AB AE =2.故答案为:2.18.【解答】解:如图,∵在△ABC 和△A 1B 1C 1中,∠C =∠C 1=90°,AC =A 1C 1=3,BC =4,B 1C 1=2,∴AB =√32+42=5,设AD =x ,则BD =5﹣x ,∵△ACD ≌△C 1A 1D 1,∴C 1D 1=AD =x ,∠A 1C 1D 1=∠A ,∠A 1D 1C 1=∠CDA ,∴∠C 1D 1B 1=∠BDC ,∵∠B =90°﹣∠A ,∠B 1C 1D 1=90°﹣∠A 1C 1D 1,∴∠B 1C 1D 1=∠B ,∴△C 1B 1D ∽△BCD ,∴BDC 1D 1=BC C 1B 1,即5−x x =2, 解得x =53,∴AD 的长为53, 故答案为53.三、解答题(本大题共7题,满分78分)19.【解答】解:|√3−1|−√2×√6+2−√3823 =√3−1﹣2√3+2+√3−4=﹣320.【解答】解:去分母得:2x 2﹣8=x 2﹣2x ,即x 2+2x ﹣8=0,分解因式得:(x ﹣2)(x +4)=0,解得:x =2或x =﹣4,经检验x =2是增根,分式方程的解为x =﹣4.21.【解答】解:(1)设一次函数的解析式为:y =kx +b , ∵一次函数的图象平行于直线y =12x , ∴k =12,∵一次函数的图象经过点A (2,3), ∴3=12×2+b ,∴b =2, ∴一次函数的解析式为y =12x +2;(2)由y =12x +2,令y =0,得12x +2=0, ∴x =﹣4,∴一次函数的图形与x 轴的解得为B (﹣4,0),∵点C在y轴上,∴设点C的坐标为(﹣4,y),∵AC=BC,∴√(2−0)2+(3−y)2=√(−4−0)2+(0−y)2,∴y=−12,经检验:y=−12是原方程的根,∴点C的坐标是(0,−12).22.【解答】解:(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD′=∠BHD′=90°.在Rt△AD′F中,D′F=AD′•sin∠DAD′=90×sin60°=45√3厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(45√3+70)厘米.答:点D′到BC的距离为(45√3+70)厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE.∵四边形ABCD是矩形,∴∠ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,∴AE=√AD2+DE2=30√10厘米,∴EE′=30√10厘米.答:E、E′两点的距离是30√10厘米.23.【解答】证明:(1)如图1,连接BC,OB,OD,∵AB、AC是⊙O的两条弦,且AB=AC,∴A在BC的垂直平分线上,∵OB=OA=OD,∴O在BC的垂直平分线上,∴AO垂直平分BC,∴BD=CD;(2)如图2,连接OB,∵AB 2=AO •AD ,∴AB AO =AD AB ,∵∠BAO =∠DAB ,∴△ABO ∽△ADB ,∴∠OBA =∠ADB ,∵OA =OB ,∴∠OBA =∠OAB ,∴∠OAB =∠BDA ,∴AB =BD ,∵AB =AC ,BD =CD ,∴AB =AC =BD =CD ,∴四边形ABDC 是菱形.24.【解答】解:(1)∵a =1>0,故该抛物线开口向上,顶点A 的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t ,t ),则t =t 2﹣2t , 解得:t =0或3,故“不动点”坐标为(0,0)或(3,3);②∵新抛物线顶点B 为“不动点”,则设点B (m ,m ), ∴新抛物线的对称轴为:x =m ,与x 轴的交点C (m ,0), ∵四边形OABC 是梯形,∴直线x =m 在y 轴左侧,∵BC 与OA 不平行,∴OC ∥AB ,又∵点A(1,﹣1),点B(m,m),∴m=﹣1,故新抛物线是由抛物线y=x2﹣2x向左平移2个单位得到的,∴新抛物线的表达式为:y=(x+1)2﹣1.25.【解答】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°﹣∠ADE,∵AD平分∠BAC,∴∠BAD=12∠BAC,同理∠ABD=12∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°﹣∠C,∴∠ADE=12(∠ABC+∠BAC)=90°−12∠C,∴∠E=90°﹣(90°−12∠C)=12∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E =∠CBE ,∴AE ∥BC ,∴∠AFB =∠EAD =90°,BF AF =BD DE , ∵BD :DE =2:3,∴cos ∠ABC =BF AB =BF AE =23.(3)∵△ABC 与△ADE 相似,∠DAE =90°, ∴∠ABC 中必有一个内角为90°∵∠ABC 是锐角,∴∠ABC ≠90°.①当∠BAC =∠DAE =90°时,∵∠E =12∠C ,∴∠ABC =∠E =12∠C ,∵∠ABC +∠C =90°,∴∠ABC =30°,此时S △ADES △ABC =2−√3.②当∠C =∠DAE =90°时,∠E =12∠C =45°,∴∠EDA =45°,∵△ABC 与△ADE 相似,∴∠ABC =45°,此时S △ADES △ABC =2−√2.综上所述,∠ABC =30°或45°,S △ADES △ABC =2−√3或2−√2.。

_上海市2019年数学学业考试试卷_

_上海市2019年数学学业考试试卷_

第1页,总23页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………上海市2019年数学学业考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共6题))A . m +2﹥n +2B . m -2﹥n -2C . 2m ﹥2nD . -2m ﹥-2n2. 甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是( )A . 甲的成绩比乙稳定B . 甲的最好成绩比乙高C . 甲的成绩的平均数比乙大D . 甲的成绩的中位数比乙大3. 已知⊙A 与⊙B 外切,⊙C 与⊙A 、⊙B 都内切,且AB =5,AC =6,BC =7,那么⊙C 的半径长是( ) A . 11 B . 10 C . 9 D . 84. 下列运算正确的是( )A . 3x +2x =5x 2B . 3x -2x =xC . 3x ·2.x =6.xD . 3.x ÷2x =5. 下列函数中,函数值y 随自变量x 的值增大而增大的是( ) A .B .C .D .答案第2页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………6. 下列命题中,假命题是( )A . 矩形的对角线相等B . 矩形对角线交点到四个顶点的距离相等C . 矩形的对角线互相平分D . 矩形对角线交点到四条边的距离相等第Ⅱ卷 主观题第Ⅱ卷的注释评卷人得分一、填空题(共12题)1. 如图,在正边形ABCDEF 中,设,,那么向量用向量表示为 .2. 如图,已知直线l 1⊙l 2 , 含30°角的三角板的直角顶点C 在l 1上,30°角的顶点A 在l 2上,如果边AB 与l 1的交点D 是AB 的中点,那么⊙1= 度.3. 如图,在正方形ABCD 中,E 是边AD 的中点.将⊙ABE 沿直线BE 翻折,点A 落在点F 处,联结DF ,那么⊙EDF 的正切值是 .4. 计算:(2a 2)2= .第3页,总23页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………5. 已知f (x )=x 2-1,那么f (-1)= .6. 在登山过程中,海拔每升高1千米,气温下降6⊙,已知某登山大本营所在的位置的气温是2⊙,登山队员从大本营出发登山,当海拔升高x 千米时,所在位置的气温是y ⊙,那么y 关于x 的函数解析式是 .7. 如果关于x 的方程x 2-x +m =0没有实数根,那么实数m 的取值范围是 .8. 一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的的点数大于4的概率是 .9. 小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该校区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约 千克.10. 《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛。

2019年上海市初中毕业生统一学业考试数学试卷及答案

2019年上海市初中毕业生统一学业考试数学试卷及答案

2019年上海市初中毕业生统一学业考试数学试卷(满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24分) 1.下列式子中,属于最简二次根式的是( ) (A ) 9; (B )7 ; (C ) 20 ; (D )13. 2.下列关于x 的一元二次方程有实数根的是( )(A )210x +=;(B )210x x ++=;(C )210x x -+= ;(D )210x x --=. 3.如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( ) (A )2(1)2y x =-+;(B )2(1)2y x =++; (C )21y x =+;(D )23y x =+. 4.数据 0,1,1,3,3,4 的中位线和平均数分别是( )(A ) 2和2.4 ; (B )2和2 ; (C )1和2; (D )3和2. 5.如图1,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点, DE ∥BC ,EF ∥AB ,且AD ∶DB = 3∶5,那么CF ∶CB 等于( ) (A ) 5∶8 ; (B )3∶8 ; (C ) 3∶5 ; (D )2∶5. 6.在梯形ABCD 中,AD ∥BC ,对角线AC 和BD 交于点O ,下列条件中, 能判断梯形ABCD 是等腰梯形的是( )(A )∠BDC =∠BCD ;(B )∠ABC =∠DAB ;(C )∠ADB =∠DAC ;(D )∠AOB =∠BOC .二、填空题:(本大题共12题,每题4分,满分48分) 7.因式分解:21a - = _____________.8.不等式组1023x x x->⎧⎨+>⎩ 的解集是____________.9.计算:23b aa b⨯= ___________. 10.计算:2 (a ─b ) + 3b = ___________.11.已知函数 ()231x f x =+,那么f = __________.12.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子图1上,任取一张,那么取到字母e 的概率为___________.13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图2所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为___________.14.在⊙O 中,已知半径长为3,弦AB 长为4,那么圆心O 到AB 的距离为___________.15.如图3,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是____________.(只需写一个,不添加辅助线) 16.李老师开车从甲地到相距240千米的乙地,如果邮箱剩余油量 y (升)与行驶里程 x (千米)之间是一次函数关系,其图像如图4所示,那么到达乙地时邮箱剩余油量是__________升.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为__________.18.如图5,在△ABC 中,AB AC =,8BC =, tan C = 32 ,如果将△ABC沿直线l 翻折后,点B 落在边AC 的中点处,直线l 与边BC 交于点D , 那么BD 的长为__________.三、解答题:(本大题共7题,满分78分)(本大题共7题,19~22题10分,23、24题12分,25题14分,满分48分) 190111()2π--+ .20.解方程组: 22220x y x xy y -=-⎧⎨--=⎩.21.已知平面直角坐标系xoy (如图6),直线 12y x b =+经过第一、二、三象限,与y 轴交于点B ,图2)y (升)图4图5点A (2,t )在这条直线上,联结AO ,△AOB 的面积等于1. (1)求b 的值; (2)如果反比例函数ky x=(k 是常量,0k ≠) 的图像经过点A ,求这个反比例函数的解析式.22.某地下车库出口处“两段式栏杆”如图7-1所示,点A 是栏杆转动的支点,点E 是栏杆两段的连接点.当车辆经过时,栏杆AEF 升起后的位置如图7-2所示,其示意图如图7-3所示,其中AB ⊥BC ,EF ∥BC ,0143EAB ∠=, 1.2AB AE ==米,求当车辆经过时,栏杆EF 段距离地面的高度(即直线EF 上任意一点到直线BC 的距离).(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75.)23.如图8,在△ABC 中, 90=∠ACB , B A ∠>∠,点D 为边AB 的中点,DE BC ∥交AC 于点E ,CF AB ∥交DE 的延长线于点F .图7-1 图7-2图7-3A EFAEFA E FBC(1)求证:DE EF =;(2)联结CD ,过点D 作DC 的垂线交CF 的 延长线于点G ,求证:B A DGC ∠=∠+∠.24.如图9,在平面直角坐标系xoy 中,顶点为M 的抛物线2(0y ax bx a =+>)经过点A 和x 轴正半轴上的点B ,AO OB == 2,0120AOB ∠=. (1)求这条抛物线的表达式; (2)联结OM ,求AOM ∠的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.25.在矩形ABCD 中,点P 是边AD 上的动点,联结BP ,线段BP 的垂直平分线交边BC 于点Q , 垂足为点M ,联结QP (如图10).已知13AD =,5AB =,设AP x BQ y ==,. (1)求y 关于x 的函数解析式,并写出x 的取值范围;图9(2)当以AP 长为半径的⊙P 和以QC 长为半径的⊙Q 外切时,求x 的值;(3)点E 在边CD 上,过点E 作直线QP 的垂线,垂足为F ,如果4EF EC ==,求x 的值.图10备用图。

上海市2019年数学学业考试试卷

上海市2019年数学学业考试试卷

上海市2019年数学学业考试试卷一、单选题(共6题;共12分)1.下列运算正确的是()A. 3x+2x=5x2B. 3x-2x=xC. 3x·2.x=6.xD. 3.x÷2x=232.如果m﹥n,那么下列结论错误的是()A. m+2﹥n+2B. m-2﹥n-2C. 2m﹥2nD. -2m﹥-2n3.下列函数中,函数值y随自变量x的值增大而增大的是()A. y=x3B. y=−x3C. y=3xD. y=−3x4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A. 甲的成绩比乙稳定B. 甲的最好成绩比乙高C. 甲的成绩的平均数比乙大D. 甲的成绩的中位数比乙大5.下列命题中,假命题是()A. 矩形的对角线相等B. 矩形对角线交点到四个顶点的距离相等C. 矩形的对角线互相平分D. 矩形对角线交点到四条边的距离相等6.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A. 11B. 10C. 9D. 8二、填空题(共12题;共12分)7.计算:(2a2)2=________.8.已知f(x)=x2-1,那么f(-1)=________.9.如果一个正方形的面积是3,那么它的边长是=________.10.如果关于x的方程x2-x+m=0没有实数根,那么实数m的取值范围是________.11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的的点数大于4的概率是________.12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛。

”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛=________斛米.(注:斛是古代一种容量单位)13.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是________.14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该校区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约________千克.15.如图,已知直线l1∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB 与l1的交点D是AB的中点,那么∠1=________度.16.如图,在正边形ABCDEF中,设BA⇀=a⇀,BC⇀=b⇀,那么向量BF⇀用向量a⇀、b⇀表示为________.17.如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是________.18.在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≅△C1A1D1,那么AD的长是________.三、解答题(共7题;共65分)19.计算:|√3−1|−√2×√62−382320.解方程:2xx−2−8x2−2x=1x,且经过点A(2,3),21.在平面直角坐标系xoy中(如图),已知一次函数的图像平行于直线y=12与x轴交于点B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前上海市2019年初中毕业统一学业考试数学试卷试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.下列运算正确的是( ) A.3x +2x =5x 2 B.3x -2x =x C.3x ·2.x =6.x D.3.x ÷2x =23【答案】B 【解析】 【分析】根据合并同类项及单项式的乘法,单项式的除法进行选择即可. 【详解】A. 错误,3x+2x=5x ;B. 正确,3x-2x=x ;C. 错误,3x ⋅2x=6x 2 ;D. 错误,3x÷2x=32故选B. 【点睛】此题考查合并同类项,单项式的乘法,单项式的除法,掌握运算法则是解题关键 2.如果m ﹥n ,那么下列结论错误的是( ) A .m +2﹥n +2 B .m -2﹥n -2 C .2m ﹥2n D .-2m ﹥-2n【答案】D 【解析】 【分析】试卷第2页,总21页根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案. 【详解】A. 两边都加2,不等号的方向不变,故A 正确;B. 两边都减2,不等号的方向不变,故B 正确;C. 两边都乘以2,不等号的方向不变,故C 正确;D. 两边都乘以-2,不等号的方向改变,故D 错误; 故选:D. 【点睛】此题考查不等式的性质,解题关键在于掌握运算法则3.下列函数中,函数值y 随自变量x 的值增大而增大的是( ) A .3xy =B .-3x y = C .3y x=D .3y x=-【答案】A 【解析】 【分析】一次函数当0a >时,函数值y 总是随自变量x 的增大而增大,反比例函数当k 0<时,在每一个象限内,y 随自变量x 增大而增大. 【详解】A 、该函数图象是直线,位于第一、三象限,y 随x 增大而增大,故本选项正确;B 、该函数图象是直线,位于第二、四象限,y 随x 增大而减小,故本选项错误;C 、该函数图象是双曲线,位于第一、三象限,在每一象限内,y 随x 增大而减小,故本选项错误;D 、该函数图象是双曲线,位于第二、四象限,在每一象限内,y 随x 增大而增大,故本选项错误. 故选:A . 【点睛】本题考查了一次函数、反比例函数的增减性;熟练掌握一次函数、反比例函数的性质是关键.4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是( )…………○………………○……A .甲的成绩比乙稳定B .甲的最好成绩比乙高C .甲的成绩的平均数比乙大D .甲的成绩的中位数比乙大【答案】A 【解析】 【分析】分别计算出两人成绩的平均数、中位数、方差可得出答案. 【详解】甲同学的成绩依次为:7、8、8、8、9, 则其中位数为8,平均数为8,方差为()()()222178388980.45⎡⎤-+⨯-+-=⎣⎦; 乙同学的成绩依次为:6、7、8、9、10, 则其中位数为8,平均数为8,方差为()()()()()2222216878889810825⎡⎤-+-+-+-+-=⎣⎦, ∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低.故选:A . 【点睛】本题考查了方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均数的离散程度越小,稳定性越好.也考查了中位数.5.下列命题中,假命题是( ) A .矩形的对角线相等 B .矩形对角线交点到四个顶点的距离相等C .矩形的对角线互相平分D .矩形对角线交点到四条边的距离相等【答案】D 【解析】 【分析】利用矩形的性质分别判断后即可确定正确的选项. 【详解】试卷第4页,总21页A 、矩形的对角线相等,正确,是真命题;B 、矩形的对角线的交点到四个顶点的距离相等,正确,是真命题;C 、矩形的对角线互相平分,正确,是真命题;D 、矩形的对角线的交点到一组对边的距离相等,故错误,是假命题.故选:D . 【点睛】本题考查了命题与定理的知识.解题的关键是了解矩形的性质,难度不大.6.已知⊙A 与⊙B 外切,⊙C 与⊙A 、⊙B 都内切,且AB =5,AC =6,BC =7,那么⊙C 的半径长是( ) A.11 B.10C.9D.8【答案】C 【解析】 【分析】通过外切、内切的性质,列出方程组求解. 【详解】设⊙A 的半径为X,⊙B 的半径为Y,⊙C 的半径为Z.567X Y Z X Z Y +=⎧⎪-=⎨⎪-=⎩解得932Z X Y =⎧⎪=⎨⎪=⎩故选:C 【点睛】此题考查相切两圆的性质,解题关键在于列出方程第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题7.计算:(2a 2)2= . 【答案】4a 4 【解析】 【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可. 【详解】解:(2a 2)2=22a 4=4a 4. 故答案为:4a 4.8.已知f (x )=x 2-1,那么f (-1)=________________. 【答案】0 【解析】 【分析】根据自变量与函数值的对应关系,可得答案. 【详解】当1x =-时,()()21110f -=--=. 故答案为:0. 【点睛】本题考查了函数值,把自变量的值代入函数解析式是解题关键. 9.如果一个正方形的面积是3,那么它的边长是=_______. 【解析】 【分析】正方形的面积公式:S=a 2,所以,求出这个正方形的边长,即可解答. 【详解】设正方形的边长为a ,则有 a 2=3∴边长为试卷第6页,总21页【点睛】此题考查正方形的面积,掌握运算公式是解题关键10.如果关于x 的方程x 2-x +m =0没有实数根,那么实数m 的取值范围是______. 【答案】14m > 【解析】 【分析】根据方程x 2-x +m =0没有实数根得到△=(-1)2-4m <0,求出m 的取值范围即可. 【详解】∵关于x 的方程x 2-x +m =0没有实数根, ∴△<0, ∴(−1) 2−4m <0, ∴14m >, 故答案为:14m > 【点睛】此题考查解一元一次不等式组,掌握运算法则是解题关键11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的的点数大于4的概率是______________. 【答案】13【解析】 【分析】先求出点数大于4的数,再根据概率公式求解即可. 【详解】在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为2163=. 故答案为:13. 【点睛】本题考查的是概率公式,熟记随机事件A 的概率()P A =事件A 可能出现的结果数所有可能出现的结果数的商是解答此题的关键.12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛。

”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛=________斛米.(注:斛是古代一种容量单位)【答案】5 6【解析】【分析】设一个大桶盛酒x斛,一个小桶盛酒y斛,根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”即可得出关于x、y的二元一次方程组,解之即可得出x、y值,将其相加即可得出结论.【详解】设一个大桶盛酒x斛,一个小桶盛酒y斛,根据题意得:5352x yx y+=⎧⎨+=⎩,解得:1324724 xy⎧=⎪⎪⎨⎪=⎪⎩.∴x+y=75+=2134246.故答案为:5 6【点睛】此题考查二元一次方程组的应用,解题关键在于列出方程13.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是______.【答案】y=-6x+2【解析】【分析】根据海拔每升高1km气温下降6℃,可得登山队员由大本营向上登高xkm时,气温下降6x℃;接下来运用“登山队大本营所在地的气温为2℃”即可求出y与x函数关系式.【详解】试卷第8页,总21页…………外…订…………○…内※※答※※题※※…………内…订…………○…根据题意得y=-6x+2 故答案为:y=-6x+2 【点睛】此题考查一次函数的解析式,解题关键在于根据题意列出方程组14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该校区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约____千克.【答案】90 【解析】 【分析】根据题意先算出50户家庭可回收垃圾为15千克,再用300户家庭除以50户家庭乘以15即可解答 【详解】100×15%=15千克 30050×15=90千克 故答案为:90千克 【点睛】此题考查扇形统计图,解题关键在于看懂图中数据15.如图,已知直线l 1∥l 2,含30°角的三角板的直角顶点C 在l 1上,30°角的顶点A 在l 2上,如果边AB 与l 1的交点D 是AB 的中点,那么∠1=___________________度.【答案】120 【解析】………○……○…………订学校:_______班级:___________考………○……○…………订【分析】根据直角三角形斜边上的中线性质得到DA DC =,则30DCA DAC ∠=∠=︒,再利用三角形外角性质得到260∠=︒,然后根据平行线的性质求1∠的度数. 【详解】D 是斜边AB 的中点, ∴DA DC =,∴30DCA DAC ∠=∠=︒, ∴260DCA DAC ∠=∠+∠=︒,12l l //,∴12180∠+∠=︒, ∴118060120∠=︒-︒=︒.故答案为:120.【点睛】本题考查了直角三角形斜边上的中线:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点).也考查了平行线的性质.16.如图,在正边形ABCDEF 中,设BA a =,BC b = ,那么向量BF 用向量a b 、表示为________________.【答案】2a b + 【解析】 【分析】连接CF .利用三角形法则:BF BC CF =+,求出CF 即可. 【详解】试卷第10页,总21页………装………线…………○※※不※※要※※在………装………线…………○连接CF ,多边形ABCDEF 是正六边形,//AB CF ,2CF BA =,∴2CF a =,BF BC CF =+,∴2BF a b =+.故答案为:2a b +. 【点睛】本题考查平面向量,正六边形的性质等知识,解题的关键是熟练掌握三角形法则,属于中考常考题型.17.如图,在正方形ABCD 中,E 是边AD 的中点.将△ABE 沿直线BE 翻折,点A 落在点F 处,联结DF ,那么∠EDF 的正切值是________________.【答案】2 【解析】 【分析】由折叠可得AE FE =,AEB FEB ∠=∠,由折叠的性质以及三角形外角性质,即可得到AEB EDF ∠=∠,进而得到tan tan 2ABEDF AEB AE∠=∠==. 【详解】如图所示,由折叠可得AE FE =,12AEB FEB AEF ∠=∠=∠,线…………○……线…………○……正方形ABCD 中,E 是AD 的中点,∴1122AE DE AD AB ===, ∴DE FE =, ∴EDF EFD ∠=∠,又AEF ∠是DEF 的外角,∴AEF EDF EFD ∠=∠+∠, ∴12EDF AEF ∠=∠, ∴AEB EDF ∠=∠, ∴tan tan 2ABEDF AEB AE∠=∠==. 故答案为:2. 【点睛】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的性状和大小不变,位置变化,对应边和对应角相等.18.在△ABC 和△A 1B 1C 1中,已知∠C =∠C 1=90°,AC =A 1C 1=3,BC =4,B 1C 1=2,点D 、D 1分别在边AB 、A 1B 1上,且111ACD C A D ≅,那么AD 的长是_________________. 【答案】53【解析】 【分析】根据勾股定理求得5AB =,设AD x =,则5BD x =-,根据全等三角形的性质得出11C D AD x ==,111AC D A ∠=∠,111A D C CDA ∠=∠,即可求得111C D B BDC ∠=∠,根据等角的余角相等求得111B C D B ∠=∠,即可证得111C B D BCD ~,根据其性质得出52xx-=,解答求出AD 的长. 【详解】……线……………线………如图,在ABC△和111A B C△中,190C C∠=∠=︒,113AC AC==,4BC=,112B C=,∴5AB==,设AD x=,则5BD x=-,111ACD C A D≅,∴11C D AD x==,111AC D A∠=∠,111A D C CDA∠=∠,∴111C D B BDC∠=∠,90B A∠=︒-∠,11111190B C D AC D∠=︒-∠,∴111B C D B∠=∠,∴111C BD BCD~,∴1111BD BCC D C B=,即52xx-=,解得53x=,∴AD的长为53.故答案为:53.【点睛】本题考查了全等三角形的性质,勾股定理的应用,三角形相似的判定和性质,证得11C BD BCD~是解题的关键.三、解答题192318-【答案】-3.试卷第12页,总21页……○…………外………○…………内…【解析】 【分析】根据绝对值的性质,二次根式的混合运算,进行运算即可 【详解】1243-+=- 【点睛】此题考查二次根式的混合运算,解题关键在于掌握运算法则 20.解方程:228122x x x x-=-- 【答案】x =-4. 【解析】 【分析】首先去分母,化为整式方程, 求出解,然后合并同类项,把未知数的系数化为1,最后检验求得的结果是否使原分式有意义,即可得到结果 【详解】去分母,得2x 2-8=x 2-2x 移项、整理得x 2+2x -8=0. 解这个方程,得x 1=2,x 2=-4.经检验:x =2是增根,舍去;x =-4是原方程的根。

相关文档
最新文档