上海市闸北区2014年中考一模(即期末)数学试题

合集下载

2014上海中考数学模拟测试参考答案(2014.6)

2014上海中考数学模拟测试参考答案(2014.6)

2014年上海市初中毕业生统一学业考试模拟测试数学试卷参考答案 (2014.6)说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做到这一步可得到的分数; 4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原.则上不超过后继部分应得分数的一半................. 一、填空题(本大题共6题,每题4分,满分24分)1. B ;2. A ;3. A ;4. B ;5. C ;6. C . 二、选择题(本大题共12题,每题4分,满分48分)7.⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+23234x x ; 8.3->x ; 9.1-; 10.75; 11.︒1440; 12.1)2(22+-=x y ; 13.554或3148; 14.b a 6161+; 15.12; 16.213±; 17.如1-=k 等,不唯一; 18.()a 12±.三、解答题(本大题共7题,满分78分) 19.解:原式aba b a b a b b a +⋅-+-+=))((………………………………………………………(3分) ba -=1………………………………………………………………………(6分) 将2=a 、1=b 代入,上式12121+=-=……………………………(10分)20.解:1232322--=+-x x x x …………………………………………………………(2分) 0322=-+x x ……………………………………………………………………(3分) ()()0132=-+x x …………………………………………………………………(5分)解得:231-=x ,12=x …………………………………………………………(7分) 经检验,当1=x 时,方程无解,舍去……………………………………………(9分)故原方程的解为23-=x …………………………………………………………(10分) 21.解:(1)22……………………………………………………………………………(2分) (2) 过O 作AB OD ⊥、过C 作OB CE ⊥,D 、E 为垂足 由题意可知:︒=∠=∠45B A22)32(2222222=+⋅==∴AO OD ……………………………(3分))32,2(A 3232tan ==∠AOC ︒=∠︒=∠∴30,60COB AOC设x EB CE ==,则x EO 3=,x OB )13(+=4)13(=+∴x 解得)13(2-=x ………………………………………(4分) )13(42-==∴x OC426sin +==∠OC OD OCA ………………………………………………(5分) (3) 过A 、B 分别作x 轴的垂线,D 、E 为垂足;过O 作AB OF ⊥,F 为垂足 ︒=90AOB ︒=∠+∠∴90COB AOC 又︒=∠+∠90OAD AOC OAD COB ∠=∠∴易证BOE OAD ∆≅∆,m BE OD ==、n OE AD ==),(m n B -∴ ……………………………………………………………………(6分)因而可求得直线AB 解析式为n m nm x n m n m y -+-⎪⎭⎫ ⎝⎛-+=22…………………(7分) 令0=y 则n m n m x ++=22 即nm n m OC ++=22……………………………… (8分)又由(2)同理可得2222n m OF +⋅=)(2)()(2sin 2222n m n m n m OC OFOCA ++⋅+==∠∴……………………………(10分)22.证明:连接GE ;过A 作BC AH ⊥,H 为垂足 47103422=+⋅=+=BC AD S AH ABCD ,3=-=AD BC BH ……………………(2分)522=+=∴BH AH AB ……………………………………………………(3分) F 为AE 中点xyOABC DExyOABC DE FEF AF =∴易证EBF AGF ∆≅∆,BE AG =……………………………………………(4分) E 为BC 中点, AB BE ==∴5ABEG ∴为菱形,GBC ABG ∠=∠,︒=∠90BFE ……………………(6分) 又CE AG //且CE AG =AECG ∴为平行四边形,GC AE //……(7分) D BFE BGC ∠=︒=∠=∠∴90……(8分) GCB DGC ∠=∠CBG GCD ∠=∠∴…………(9分) GCD ABC ∠=∠∴2………(10分) 23.解:(1) 当100≤≤x 时,设函数解析式为)0(2≠++=a c bx ax y将点)20,0(、)39,5(、)48,10(代入⎪⎩⎪⎨⎧=+=+=28101001952520b a b a c 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=2052451c b a20524512++-=∴x x y ……………………………………………………(1分) 当2010≤≤x 时,由于函数图像为平行于x 轴的线段,故函数解析式为48=y ………………………………………………………(2分)当20≥x 时,设函数解析式为)0(≠=k xky 将点)48,20(代入解得960=k xy 960=∴……………………………………………………………………(3分) 画图正确………………………………………………………………………(4分)(2) 将6=x 代入20524512++-=x x y ,解得5208=y ……………………(5分) 将25=x 代入x y 960=,解得5192=y ……………………………………(6分)51925208> 故第6分钟学生的听课注意力更集中………………………………………(8分)(3) 把36=y 代入20524512++-=x x y 解得41=x ,202=x (不符题意,舍去)……………………………………(9分)F ABCEGDH把36=y 代入x y 960= 解得380=x ……………………………………(10分) 243684380<=-∴…………………………………………………………(11分) 故老师无法经过适当的安排,从而能使学生在听这道题时的听课注意力指数都不 低于36.…………………………………………………………………………(12分)25.解:(1)ADEF的值保持不变,证明过程如下:………………………………………(1分) 【解法一】延长FO 、DB ,相交于点G BD AB = ,D A ∠=∠∴ 易证AFO RT ∆∽DFG RT ∆DGAODF AF =∴,G AOF ∠=∠……………………………………………(2分) 又BOG AOF ∠=∠,G BOG ∠=∠∴,5==BO BG ………………(3分)315105=+=+=∴BG DB AO DF AF 又由垂径定理可知EF AF =41=+=∴DF AF AF AD EF ,是定值…………………………………………(4分) 【解法二】连接OE 、BE OB OE AO ==AEO EAB ∠=∠∴、EBO OEB ∠=∠︒=∠+∠=∠∴90OEB AEO AEB …………………………………………(2分) 又BD AB =E ∴为AD 中点,ED AE =………………………………………………(3分) 由垂径定理可知EF AF =4142===∴EF EF AE EF AD EF ,是定值………………………………………(4分). OA BCF E DG. OABCFE D(2) 连接AC 、CE ,并过E 作CD EG ⊥,G 为垂足 由(1)同理可证︒=∠90ACD 又由(1)可知E 为AD 中点【注:若上述结论在(1)中未证明,则需在(2)中给予证明】ED AD CE ==∴21…………………………………………………………(5分) y CD DG 2121==∴…………………(6分) 易证AFO RT ∆∽DGE RT ∆AODEAF DG =∴………………(7分) 5221x x y=∴ 整理得254x y =……………(9分)(3) 若圆F 与圆D 相切,这里只存在外切的可能……………………………(10分) 若两圆外切,则DE DC =易证DCE ∆为等边三角形,︒=∠60DABD ∆∴也为等边三角形,10==BD AD ………………………………(11分)521===∴AD AE BC ……………………………………………………(12分) 故当50<<BC 时,圆F 与圆D 相交;…………………………………(13分) 当5=BC 时,圆F 与圆D 相切;当105<<BC 时,圆F 与圆D 相离.…………………………………(14分). OA BCF ED G。

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).; (C) ; (D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109; (C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么DE=_______________(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为____________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分101382-+.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y (2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD 、CB 相交于点H 、E ,AH =2CH . (1)求sinB 的值;(2)如果CD ,求BE 的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .24.(本题满分12分,每小题满分各4分)在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标; (3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B 二、 填空题7、2a a +; 8、1x ≠; 9、34x ; 10、352 ; 11、1k ; 12、26 ;13、13; 14、1(0y k x =-即可); 15、23a b - ; 16、乙; 17、-9; 18、. 三、 解答题 19、解:原式=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)37.5 22、,sinB sinCAE B DCB CAE ∠=∠=∠∴==5;cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=23、(1)求证:四边形ACED 是平行四边形;,//DE //,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DFGB DB=.//,;,,;DG AD DF ADAD BC GB BE FB BCDF AD DF ADFB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为 24、.25、。

上海中考一模数学2014年25题汇编(含答案)

上海中考一模数学2014年25题汇编(含答案)

2014年上海一模25题集锦1、(2014年一模宝山26题)、如图△ABC 中,0090305cm C A BC ∠=∠==,,;△DEF 中,090D ∠=,045E ∠=,3cm DE =. 现将△DEF 的直角边DF 与△AB C 的斜边AB 重合在一起,并将△DEF 沿AB 方向移动(如图).在移动过程中,D 、F 两点始终在AB 边上(移动开始时点D 与点A 重合,一直移动至点F 与点B 重合为止).(1)在△DEF 沿AB 方向移动的过程中,有人发现:E 、B 两点间的距离随AD 的变化而变化,现设,AD x BE y ==,请你写出y 与x 之间的函数关系式及其定义域.(2)请你进一步研究如下问题:问题①:当△DEF 移动至什么位置,即AD 的长为多少时,E 、B 的连线与AC 平行? 问题②:在△DEF 的移动过程中,是否存在某个位置,使得022.5EBD ∠= ?如果存在,求出AD 的长度;如果不存在,请说明理由.问题③:当△DEF 移动至什么位置,即AD 的长为多少时,以线段AD 、EB 、BC 的长度为三边长的三角形是直角三角形? (本题6+8=14分)2、(2014年一模崇明25题)(本题满分14分,其中第1、2小题各5分,第3小题4分) 如图,在△ABC 中,AB =8,BC =10,3cos 4C =,2ABC C ∠=∠,BD 平分∠ABC 交AC 边于点D ,点E 是BC 边上的一个动点(不与B 、C 重合),F 是AC 边上一点,且∠AEF =∠ABC ,AE 与BD 相交于点G 。

(1)求证:AB BGCE CF=; (2)设BE =x ,CF =y ,求y 与x 之间的函数关系式,并写出x 的取值范围; (3)当△AEF 是以AE 为腰的等腰三角形时,求BE 的长。

25、(1)证明:∵BD 平分ABC ∠∴2ABC ABD ∠=∠ ∵2ABC C ∠=∠∴ABD C ∠=∠∵AEC ABC BAE ∠=∠+∠ 即AEF FEC ABC BAE ∠+∠=∠+∠ ∵AEF ABC ∠=∠∴BAE FEC ∠=∠∴△ABG ∽△ECF ∴AB BGCE CF=B(2)过点A 作BC 的平行线交BD 的延长线于点M ∵AM ∥BC ∴∠M =∠DBC∵∠ABD =∠DBC ∴∠M =∠ABD ∴AM =AB =8 过点A 作AN MB ⊥,垂足为N∵3,cos ,4ABD C C AB AC ∠=∠==∴6,12BN MN BM === ∵AM ∥BC ∴AM MG BE BG =∴812BG x BG -=∴128xBG x =+ ∵AB BGCE CF =∴128810x x xy +=- ∴()2303010216x x y x x -=<<+(3)当△AEF 是以AE 为腰的等腰三角形时存在以下两种情况: 1°AE AF =,则AEF AFE ∠=∠易证明FE FC y ==, 又∵3cos 4C =易得32EC y =, 又∵10EC x =- ∴2023x y -=又∵2303216x x y x -=+解得()126.4,10x x ==舍去即BE 的长为6.42°EA EF =作线段CF 的垂直平分线交BC 于点H ,交FC 于点K ,联结HF 则易证△ABE ≌△EHF ,HF =HC ∴8,AB EH BE FH HC x =====∴2810x += ∴1x =即BE 的长为1综上所述,当△AEF 是以AE 为腰的等腰三角形时,BE 的长为6.4或1。

2014年上海市中考数学试卷(附答案与解析)

2014年上海市中考数学试卷(附答案与解析)

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前上海市2014年初中毕业统一学业考试数 学本试卷满分150分,考试时间100分钟.第Ⅰ卷(选择题 共24分)一、选择题(本大题共6小题,每小题4分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算23⨯的结果是( )A .5B .6C .23D .322.据统计,2013年上海市全社会用于环境保护的资金约为60800000000元,这个数用科学记数法表示为( )A .860810⨯B .960.810⨯C .106.0810⨯D .116.0810⨯3.如果将抛物线2y x =向右平移1个单位,那么所得新抛物线的表达式是 ( )A .21y x =-B .21y x =+C .2(1)y x =-D .2(1)y x =+4.如图,已知直线,a b 被直线c 所截,那么1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠5.某市测得一周 2.5PM 的日均值(单位:微克/立方米)如下:50,40,73,50,37,50,40,这组数据的中位数和众数分别是( )A .50和50B .50和40C .40和50D .40和406.如图,已知AC BD ,是菱形ABCD 的对角线,那么下列结论一定正确的是( )A .ABD △与ABC △的周长相等B .ABD △与ABC △的面积相等C .菱形ABCD 的周长等于两条对角线长之和的两倍 D .菱形ABCD 的面积等于两条对角线长之积的两倍第Ⅱ卷(非选择题 共126分)二、填空题(本大题共12小题,每小题4分,共48分.请把答案填在题中的横线上) 7.计算:(1)a a += .8.函数11y x =-的定义域是 . 9.不等式组12,28x x -⎧⎨⎩><的解集是 .10.某文具店二月份共销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份共销售各种水笔 支.11.如果关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,那么k 的取值范围是 .12.已知传送带与水平面所成斜坡的坡度1:2.4i =,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为 米.13.如果从初三(1),(2),(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是 . 14.已知反比例函数ky x=(k 是常数,0k ≠),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式可以是 (只需写一个). 15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且3AB EB =.设=AB a BC b =,,那么=DE (结果用,a b 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投掷的成绩如图所示,那么三人中成绩最稳定的是 .17.一组数:2,1,3,,7,,23x y ,…,满足“从第三个数起,前两个数依次为,a b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221⨯-”得到的,那么这组数中y 表示的数为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页)数学试卷 第4页(共22页)18.如图,已知在矩形ABCD 中,点E 在边BC 上,=2BE CE ,将矩形沿着过点E 的直线翻折后,点,C D 分别落在边BC 下方的点C ,D ''处,且点,,C D B ''在同一条直线上,折痕与边AD 交于点,F D F '与BE 交于点G .设AB t =,那么EFG △的周长为 (用含t 的代数式表示).三、解答题(本大题共7小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)计算:131128|23|3--+-.20.(本小题满分10分) 解方程:2121111x x x x +-=--+.21.(本小题满分10分)已知水银体温计的读数()y ℃与水银柱的长度(cm)x 之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表1记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度(cm)x4.2 … 8.2 9.8体温计的读数()y ℃ 35.0 … 40.0 42.0 (1)求y 关于x 的函数解析式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本小题满分10分)如图,已知Rt ABC △中,°90,ACB CD ∠=是斜边AB 上的中线,过点A 作AE CD ⊥,AE 分别与,CD CB 相交于点,,=2H E AH CH . (1)求sin B 的值;(2)如果5CD =,求BE 的长.23.(本小题满分12分)已知:如图,梯形ABCD 中,,=AD BC AB DC ∥,对角线,AC BD 相交于点F ,点E 是边BC 延长线上一点,且=CDE ABD ∠∠. (1)求证:四边形ACED 是平行四边形; (2)连接AE ,交BD 于点G .求证:DG DFGB DB=.数学试卷 第5页(共22页) 数学试卷 第6页(共22页)24.(本小题满分12分)在平面直角坐标系xOy 中(如图),已知抛物线223y x bx c =++与x 轴交于点(1,0)A -和点B ,与y 轴交于点(0,2)C -.(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点(,0)P t ,且3t >,如果BDP △和CDP △的面积相等,求t 的值.25.(本小题满分14分)如图所示,已知在平行四边形ABCD 中,45,8,cos 5AB BC B ===,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点,E F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长;(2)连接AP ,当AP CG ∥时,求弦EF 的长; (3)当AGE △是等腰三角形时,求圆C 的半径长.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共22页)数学试卷 第8页(共22页)上海市2014年初中毕业统一学业考试数学答案解析第Ⅰ卷一、选择题 1.【答案】BB . 【考点】二次根式的乘法运算法则. 2.【答案】C【解析】科学记数法是将一个数写成10n a ⨯的形式,其中110a <≤,n 为整数.当原数的绝对值大于等于10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值小于1时,几为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位上的零).即1060800000000 6.0810=⨯,故选C . 【考点】科学记数法. 3.【答案】C【解析】抛物线2y x =的顶点坐标为(0,0),把点(0,0)向右平移1个单位得到顶点的坐标为(1,0),所以所得的抛物线的表达式为2(1)y x =-,故选C . 【考点】二次函数图像的平移 4.【答案】D【解析】根据同位角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,可得1∠的同位角是5∠,故选D . 【考点】同位角的识别. 5.【答案】A【解析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,众数可能不止一个.从小到大排列此数据为37,40,40,50,50,50,73,数据50出现次数最多,所以50为众数,处在第4位是中位数50,故选A . 【考点】中位数,众数. 6.【答案】B【解析】选项A ,∵四边形ABCD 是菱形,∴AB BC AD ==,∵AC BD ≠,∴ABD △与ABC △的周长5 / 11不相等,A 错误;选项B ,∵12ABD ABCD S S =棱形△,12ABC ABCD S S =棱形△,∴ABD △与ABC △的面积相等,B 正确;选项C ,菱形的周长与两条对角线之和不存在固定的数量关系,C 错误;选项D ,菱形的面积等于两条对角线之积的12,D 错误,故选B. 【考点】菱形的性质应用.第Ⅱ卷二、填空题 7.【答案】2a a +【解析】利用代数式的乘法运算的法则计算得原式2a a =+,故答案为2a a +. 【考点】代数式的乘法运算. 8.【答案】1x ≠【解析】根据分母不等式0得10x -≠,解得1x ≠,故答案为1x ≠. 【考点】函数自变量的取值范围. 9.【答案】34x <<【解析】先求出不等式组中每一个不等式的解集,它们的公共部分就是不等式组的解集.即1228x x ->⎧⎨<⎩①,②,由①得3x >,由②得4x <,则不等式组的解集是34x <<,故答案为34x <<. 【考点】解一元一次不等式组. 10.【答案】352【解析】三月份销售各种水笔的支数比二月份增长了10%,即三月份销售的水笔支数是二月份的()110%+,由此得出三月份销售各种水笔()320110%320 1.1352⨯+=⨯=(支),故答案为352. 【考点】解应用题,列出算式解决问题. 11.【答案】1k <【解析】∵关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,∴0∆>,即()22410k --⨯⨯>,解得1k <,∴k 的取值范围为1k <,故答案为1k <. 【考点】一元二次根的判定式. 12.【答案】26【解析】如图,由题意得斜坡AB 的1:2.4i =,10AE =(米)AE BC ⊥,∵12.4AE i BE ==,∴24BE =(米),∴在Rt ABE △中,26AB =(米),故答案为26.数学试卷 第11页(共22页)数学试卷 第12页(共22页)【考点】解直角三角形的应用——坡度问题.13.【答案】13【解析】初三(1)(2)(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,恰好抽到初三(1)班的概率是13,故答案为13.【考点】概率公式的应用.14.【答案】1y x =-(答案不唯一)【解析】对于反比例函数ky x=,当0k >时,在每一个象限内,函数值y 随自变量x 的增大而减小;当0k <时,在每一个象限内,函数值y 随自变量x 增大而增大.根据题意只要令0k <即可,可取1k =-,则反比例函数的解析式是1y x =-,故答案是1y x =-.【考点】反比例函数的性质.15.【答案】23a b -【解析】∵3,AB EB AB a ==,∴2233AE AB a ==,∵在平行四边形ABCD 中,BC b =,∴AD BC b ==,∴23DE AE AD a b =-=-,故答案是23a b -.【考点】平面向量. 16.【答案】乙【解析】数据波动越小,数据越稳定,根据图形可得乙的乘积波动最小,数据最稳定,则三人中成绩最稳定的是乙,故答案为乙. 【考点】方差,折线统计图. 17.【答案】9-【解析】∵从第三个数起0,前两个数依次为,a b ,紧随其后的数就是2a b -,∴7223y ⨯-=,解得9y =-,故答案为9-. 【考点】数字的变化规律. 18.【答案】7 / 11【解析】如图,连接BD ',由翻折的性质得CE C E '=,∵2BE CE =,∴2BE C E '=, 又∵90C C '∠=∠=︒,∴30EBC '∠=︒.∵90FD C D ''∠=∠=︒,∴=60BGD '∠︒, ∴60FGE BGD '∠=∠=︒,∴AD BC ∥,∴60AFG FGE ∠=∠=︒,∵()()11180180606022EFG AFG ∠=︒-∠=︒-︒=︒,∴EFG △是等边三角形,∵AB t =,∴EF t ==,∴EFG △的周长3==,故答案为.【考点】翻折变换的性质. 19.【解析】原式22=+ 【考点】实数的综合运算能力. 三、解答题20.【答案】解:去分母,整理得20x x +=. 解方程,得121,0x x =-=.经检验:11x =-是增根,舍去;20x =是原方程的根. 所以原方程的根是0x =. 【考点】解分式方程.21.【答案】解:(1)设y 关于x 的函数解析式为()y kx b k =+≠0.由题意,得 4.235,8.240.k b k b +=⎧⎨+=⎩解得5,4119.4k b ⎧=⎪⎪⎨⎪=⎪⎩ 所以y 关于x 的函数解析式为511944y x =+. (2)当 6.2x =时,37.5y =. 答:此时该体温计的读数为37.5℃.数学试卷 第15页(共22页)数学试卷 第16页(共22页)【考点】待定系数法求一次函数的解析式,根据自变量的值求函数值的运用. 22.【答案】(1(2)3【解析】解:(1)∵在Rt ABC △中,90ACB ∠=︒,CD 是斜边AB 上的中线,∴22AB CD BD ==,所以DCB B ∠=∠.∵AH CD ⊥,∴90AHC CAH ACH ∠=∠+∠=︒.又∵90DCB ACH ∠+∠=︒,∴CAH DCB B ∠=∠=∠.∴ABC CAH ~△△.∴AC CHBC AH =. 又∵2AH CH =,∴2BC AC =.可设,2AC k BC k ==, 在Rt ABC △中,AB ==∴sin AC B AB ==. (2)∵2,AB CD CD ==AB =. 在Rt ABC △中,sin 2AC AB B =⋅===. ∴24BC AC ==.在Rt ACE △和Rt AHC △中,1tan 2CE CH CAE AC AH ∠===. ∴112CE AC ==,∴3BE BC CE =-=. 【考点】解直角三角形,直角三角形斜边上的中线.24.【答案】(1)证明:∵四边形ABCD 是梯形,,AD BC AB DC =∥,∴ADC DAB ∠=∠. ∵AD BE ∥,∴ADC DCE ∠=∠,∴DAB DCE ∠=∠. 在ABD △和CDE △中,,,,DAB DCE AB CD ABD CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABD CDE ≅△△,∴AD CE =.又∵AD CE ∥,∴四边形ACDE 是平行四边形.(2)证明:∵四边形ACED 是平行四边形,∴FC DE ∥. ∴DF CEDB BE =. ∵AD BE ∥,∴DG ADGB BE=.9 / 11又∵AD CE =,∴DG DFGB DB=. 【考点】比例的性质,平行四边形的判定及其应用. 24.【答案】(1)1x = (2)()1,4 (3)5【解析】(1)∵点()1,0A -和点()0,2C -在抛物线223y x bx c =++上, ∴210,32,b c c ⎧⨯-+=⎪⎨⎪=-⎩ 解得4,32.b c ⎧=-⎪⎨⎪=-⎩ ∴该抛物线的表达式为224233y x x =--,对称轴为直线1x =. (2)∵点E 为该抛物线的对称轴与x 轴的交点,∴()1,0E . ∵四边形ACEF 为梯形,AC 与y 轴交于点C , ∴AC 与EF 不平行,在AF CE ∥.∴FAE OEC ∠=∠.在Rt AEF △中,90,tan EFAEF FAE AE ∠=︒∠=, 同理,在Rt OEC △中,tan OC OEC OE ∠=,∴EF OCAE OE=. ∵2,1,2OC OE AE ===,得4EF =. ∴点F 的坐标是()1,4.(3)该抛物线的顶点D 的坐标是81,3⎛⎫- ⎪⎝⎭,点B 的坐标是()3,0.由点(),0P t ,且3t >,得点P 在点B 的右侧(如下图).数学试卷 第19页(共22页)数学试卷 第20页(共22页)()18434233BOD S t t =⨯-⨯=-△ ()1812111121232323CDP S t t t =⨯+⨯-⨯-⨯⨯=+△.∵BOD CDP S S =△△,∴414133t t -=+.解得5t =.即符合条件的t 的值是5.【考点】待定系数法求抛物线的表达式,待定系数法求直线的解析式,两条平行的直线之间的关系,三角形面积,分类思想的运用. 25.【答案】(1)5 (2)74(3【解析】(1)过点A 作AH BC ⊥,垂足为点H .连接AC .在Rt AHB △中,90AHB ∠=︒,4cos ,55BH B AB AB ===, ∴4BH =.∵8BC =,∴AH 垂直平分BC . ∴5AC AB ==.∵圆C 经过点A ,∴5CP AC ==. (2)过点C 作CM AD ⊥,垂足为点M . 设圆C 的半径长为x .∵四边形ABCD 是平行四边形, ∴,,AB DC AD BC B D ==∠=∠ 可得4,3DM CM ==.在Rt EMC △中,90EMC ∠=︒,EM ==又∵点F 在点E右侧,∴4DE EM DM =+=∴4AE AD DE =-=-由,AD BC AP CG ∥∥,得四边形APCE 是平行四边形.∴AE CP =,即4x -=.解得258x =.11 / 11经检验:258x =是原方程的根,且符合题意.∴78EM == 在圆C 中,由CM EF ⊥得724EF EM ==. ∴当AP CG ∥时,弦EF 的长为74. (3)设圆C 的半径长为x ,则CE x =,又∵点F 在点E的右侧,∴4DE =.∵四边形ABCD 是平行四边形,∴AB DC ∥.∴AGE DCE △△由AGE △是等腰三角形,可得DCE △是等腰三角形.①若GE GA =,即CE CD =,又∵CD CA =,∴CE CA = 又∵点,A E 在线段AD 的垂直平分线CM 的同侧,∴点E 与点A 重合,舍去.②若AG AE =,即DC DE =45=.解得x =x =不符合题意,舍去.∴x =③若GE AE =,即CE DE =4x =. 解得258x =,不符合题意,舍去. 综上所述,当AGE △是等腰三角形时,圆C【考点】相似三角形的判定与性质,勾股定理,锐角三角函数关系.。

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).(A); (B); (C)(D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60。

8×109;(C) 6。

08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A)y=x2-1;(B)y=x2+1;(C)y=(x-1)2; (D)y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2; (B)∠3;(C)∠4;(D) ∠5.15.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40;(C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么=_______________(结果用、表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.317.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ",例如这组数中的第三个数“3”是由“2×2-1"得到的,那么这组数中y 表示的数为____________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分10分)计算13128233-+.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm)4。

2014年上海中考数学试题(含答案)

2014年上海中考数学试题(含答案)

2014年上海市初中毕业统一学业考试数学试卷一、选择题(每小题4分,共24分)1).(A) (B) (C) ;(D) .2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1;(B) y=x2+1;(C) y=(x-1)2;(D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40 ,这组数据的中位数和众数分别是().(A)50和50;(B)50和40;(C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题(每小题4分,共48分)7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是____________.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设A B a=,BC b=,那么DE=_______________(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为____________.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为________(用含t的代数式表示).三、解答题(本题共7题,满分78分)19.(本题满分101382-+.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y 关于x 的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD 、CB 相交于点H 、E ,AH =2CH .(1)求sinB 的值;(2)如果CD BE 的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .24.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图参考答案:1-6, BCCAAB ,7,2a a + 8,1x ≠ 9,34x 10,352 11,1k 12,26 13,1314,1(0y k x =-即可) 15,23a b - 16,乙 17,-918,19,=20,0;1(x x ==舍) 21,(1) 1.2529.75y x =+, (2)37.52,sinB sinCAE B DCB CAE ∠=∠=∠∴==5;5cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=23,求证:四边形ACED 是平行四边形;,//DE //,,ABCD ADB DAC A CDE ABDCDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DFGB DB=. //,;,,;DG AD DF ADAD BC GB BE FB BCDF AD DF ADFB BC DFFB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为24,。

上海市闸北区2014届初三第二次模拟考试数学试题

上海市闸北区2014届初三第二次模拟考试数学试题

N M HD CFE O图1上海市闸北区2014届初三第二次模拟考试数学试题(满分150分,考试时间100分钟)(2014. 4)考生注意:1、本试卷含三个大题,共25题;2、答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3、除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、 选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.9的平方根是……………………………………………………………………( ▲ ) (A )3; (B )-3; (C )3和-3; (D )9. 2.下列实数中,是无理数的是……………………………………………………( ▲ ) (A(B; (C )722; (D )cos 60. 3.在下列二次根式中,( ▲ )(A(B; (C; (D4.下列方程有实数根的是 ………………………………………………………( ▲ ) (A )210x x -+=; (B )40x =; (C )111x x x =--; (D0=. 5.某中学篮球队14名队员的年龄情况如下表,则这些队员年龄的众数和中位数分别是…………………………………………………………………………………………( ▲ ) (A )15,16; (B )16,16; (C )16,16.5; (D )17,16.5. 6.如图1,EF 是⊙O 的直径,CD 交⊙O 于M 、N ,H 为MN 的中点,EC ⊥CD于点C ,FD ⊥CD 于点D ,则下列结论错误的是……( ▲ ) (A )CM ﹦DN ; (B ) CH ﹦HD ;(C )OH ⊥CD ; (D )EC OHOH FD=.图3图6 DCB A图5二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】7.我国最长的河流长江全长约为6300千米,用科学记数法表示为 ▲ 千米. 8.计算:4nn xx ÷= ▲ .9.因式分解:2a 2-2= ▲ . 10.化简221(1)(1)x x x ---的结果是 ▲ . 112=的解是 ▲ .12.已知反比例函数y =m -1x 的图象如图2所示,则实数m 的取值范围是 ▲ .13.从等边三角形、平行四边形、矩形、菱形、圆、等腰梯形共6个图形中任选一个图形,选出的图形恰好是中心对称图形的概率为 ▲ .14.某校对初中学生开展的四项课外活动进行了一 次抽样调查(每人只参加其中的一项活动),调查结果如图3 所示.根据图示所提供的样本数据,可得学生参加科技活动 的频率是 ▲ .15.已知3,5a b ==,且b 与a 反向,则用向量b 表示向量a ,即a = ▲ b . 16.如图4,自动扶梯AB 段的长度为20米,倾斜角A 为α, 高度BC 为 ▲ 米.(结果用含α的三角比表示)17.如图5,在四边形ABCD 中,点M ,N 分别在AB 、BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD , FN ∥DC ,则∠B = ▲ 度.18.如图6,等腰△ABC 的顶角A 的度数是36°,点D 是腰AB 的 黄金分割点(AD >BD ),将△BCD 绕着点C 按照顺时针方向旋转一个角 度后点D 落在点E 处,联结AE ,当AE ∥CD 时,这个旋转角是 ▲ 度.图4三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:12021tan 6014π-⎛⎫+++ ⎪+⎝⎭(-1).20.(本题满分10分)解不等式组:⎪⎩⎪⎨⎧≤--+<+-.1312412x x x x , ,并把解集在数轴上表示出来.21.(本题满分10分,第(1)小题5分,第(2)小题5分) 已知:如图7,在梯形ABCD 中,DF 平分∠D ,若以点D 为 圆心,DC 长为半径作弧,交边AD 于点E ,联结EF 、BE 、EC .(1) 求证:四边形EDCF 是菱形;(2) 若点F 是BC 的中点,请判断线段BE 和EC 的位置关系,并证明你的结论.22.(本题满分10分,第(1)小题2分,第(2)小题4分,第(3)小题4分) 全面实现低碳生活已逐渐成为人们的共识.某企业为了发展低碳经济,采用技术革新,减少二氧化碳的排放.随着排放量的减少,企业相应获得的利润也有所提高,且相应获得的利润y (万元)与月份x (月)(1≤x ≤6)的函数关系如图8(1) 根据图像,请判断:y 与x (1≤x ≤6)的变化规律应该 符合 函数关系式;(填写序号:①反比例函数、②一次函数、③二次函数);(2) 求出y 与x (1≤x ≤6)的函数关系式(不写取值范围);(3) 经统计发现,从6月到8月每月利润的增长率相同, 且8月份的利润为151.2万元,求这个增长率.①② 图7)23.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 已知:如图9,点D 是线段BC 上的任意一点, △ABD 和△DCE 都是等边三角形,AD 与BE 交于点F .(1)求证:△BDE ≌△ADC ; (2)求证:AB 2 = BC AF ;(3)若BD =12,CD =6,求∠ABF 的正弦值.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 已知:如图10,二次函数y =ax 2+4的图像与 x 轴交于点A 和点B (点A 在点B 的左侧),与y轴交于点C ,且cos ∠CAO=2. (1)求二次函数的解析式;(2)若以点O 为圆心的圆与直线AC 相切于点D ,求点D 的坐标;(3)在(2)的条件下,抛物线上是否存在点P 使得以P 、A 、D 、O 为顶点的四边形是直角梯形....,若存在,请求出点P 坐标;若不存在,请说明理由.25.(本题满分14分,第(1)小题6分,第(2)小题4分,第(3)小题4分)已知:如图11—①,△ABC 中,AB=AC=6,BC=4,点D 在BC 的延长线上,联结AD ,以AD 为一边作△ADE ,使点E 与点B 位于直线AD 的两侧,且AD=AE ,∠DAE=∠BAC.(1)如果AE//BC ,请判断四边形ABDE 的形状并证明;(2)如图11—②,设M 是BC 中点,N 是DE 中点,联结AM 、AN 、MN , 求证:△ABD ∽△AMN ;(3)设BD=x ,在(2)的前提下,以BC 为直径的⊙M 与以DE 为直径的⊙N 存在着哪些位置关系?并求出相应的x 的取值范围(直接写出结论).图11—②MABCD EN图9ABCDE F10ABCDE图11—①上海市闸北区2014届初三第二次模拟考试数学试题答案及评分参考(考试时间:100分钟,满分:150分)一. 选择题(本大题共6题,每题4分,满分24分)二、填空题(本大题共12题,每题4分,满分48分) 7、36.310⨯. 8、3n x . 9、2(1)(1)a a +-. 10、11x -. 11、x=3. 12、1m >. 13、23. 14、0.2.15、35-. 16、20sin α.17、95.18、72或者108. 三. 解答题(本大题共7题,满分78分)19、(本题满分10分) 解:原式12+ …………………………………………………(5分) 13 ………………………………………………………(3分) =2 .……………………………………………………………(2分) 20.(本题满分10分)解:由①得:33x -<……………………………………………………………(2分)解得1x >-…………………………………………………………(1分)由②得:32(1)6x x --≤…………………………………………………(3分) 解得4x ≤ …………………………………………………………(1分)所以不等式组的解集是14x -<≤ .………………………………………(1分) ………………………………………(2分)21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵DF 平分∠D∴∠ EDF=∠CDF ……………………………(1分) ∵作弧∴ED=DC …………………………………(1分) 在△EDF 与△CDF 中,图7ED DC EDF CDF DF DF =⎧⎪∠=∠⎨⎪=⎩∴△EDF ≌△CDF ……………………………………………………………………(1分) ∴EF=CF ………………………………………………………………………………(1分) ∵梯形ABCD ∴ AD ∥BC ∴∠ EDF=∠ DFC ∴∠ DFC=∠ CDF ∴CF=CD∴ED=DC=CF=EF ………………………………………………………………………(1分) ∴四边形EDCF 是菱形.(2)线段BE 和EC 的位置关系是垂直. …………………………………………(1分) ∵点F 是BC 的中点 ∴BF=CF∴BF=ED ………………………………………………………………………………(1分) ∵ED ∥BF∴四边形BEDF 是平行四边形………………………………………………………(1分) ∴BE ∥DF ……………………………………………………………………………(1分) ∵菱形EDCF∴EC ⊥DF ……………………………………………………………………………(1分) ∴BE ⊥EC .22.(本题满分10分,第(1)小题2分,第(2)小题4分,第(3)小题4分)(1)②………………………………………………………………………………………(2分) (2)设y =kx +b (a ≠0),将(1,80)、(4,95)代入得:80495k b k b +=⎧⎨+=⎩ ………………………………………………………………………(2分) 解得: 575k b =⎧⎨=⎩………………………………………………………………………(1分)∴y =5x +75.………………………………………………………………………(1分) (3)把x=6代入y =5x +75得y=105 ……………………………………………………………………………(1分) 设这个增长率是a ,则:105(a+1)2=151.2 ……………………………………(2分) 解得a=20%答:这个增长率是20%.…………………………………………………………(1分) 23.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) (1)证明:∵△ABD 和△DCE 都是等边三角形∴BD =AD ,DE =DC ,∠FAB =∠ABC =∠ADB =∠EDC =60°…………………(2分) ∴∠BDE =∠ADC . ……………………………………………………………………(1分) 在△BDE 和△ADC 中BD AD BDE ADC DE DC =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△ADC .………………………………………………………………………(1分) (2)证明:∵△BDE ≌△ADC ∴∠DBE =∠DAC∵∠ABC =∠ADB =60° ∴∠ABF =∠BCA∵∠FAB =∠ABC ,∠ABF =∠BCA …………………………………………………………(2分)∴△FAB ∽△ABC ………………………………………………………………………………(1分) ∴AF ABAB BC= 即AB 2 = BC ⋅AF ………………………………………………………………………………(1分)(3)∵△FAB ∽△ABC∴∠ABF=∠ACB ………………………………………………………………………………(1分)过A 作AM ⊥BC 于点M ……………………………………………………………………(1分)∵△ABC 是等边三角形,BD=12 ∴MD=6,AM=在Rt △AMC 中,12==………………………………(1分) ∴sin ∠ACB=AM AC ==即sin∠1分)24. (本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 解:(1)∵二次函数y =ax 2+4的图像与y 轴交于点C ∴点C 的坐标为(0,4).………………………………………………………………(1分)∵二次函数y =ax 2+4的图像与x 轴交于点A ,cos∠CAO =2∴∠CAO =45°…………………………………………………………………………(1分) ∴OA =OC =4,∴点A 的坐标为(-4,0) ………………………………………(1分)图9ABCDEFM∴0=a (-4)2+4,∴a =-41 ∴这二次函数的解析式为y =-41x 2+4. …………………………………………(1分)(2)连接OD ,作DE ∥y 轴,交x 轴于点E ,DF ∥x 轴,交y 轴于点F (如图一).∵⊙O 与直线AC 相切于点D ,∴OD ⊥AC .………(1∵OA =OC =4,∴点D 是AC 的中点………………(1∴DE =21OC =2,DF =21OA =2,∴点D 的坐标为(-2,2). ………………………(2分)(3)直线OD 的解析式为y =-x (如图二),则经过点A 且与直线OD 平行的直线的解析式为y =-x -分)解方程组⎪⎩⎪⎨⎧+-=--=44142x y x y , 消去y ,得x 2-4x -32=0,即(x -8)(x +4)=0,∴x 1=8, x 2=-4(舍去),∴y =-12,∴点P 1的坐标为(8,-12).……………(1分)直线AC 的解析式为y =x +4,则经过点O 且与直线AC 平行的直线的解析式为y =x . ……………………………(1分) 解方程组⎪⎩⎪⎨⎧+-==4412x y xy , 消去y ,得x 2+4x -16=0,即x =-2+25,∴x 1=-2-25,x 2=-2+25(舍去),∴y =-2-25,∴点P 2的坐标为(-2-25,-2-25).………………………………………(1分) 25.(本题满分14分,第(1)小题6分,第(2)小题4分,第(3)小题4分)解:(1)四边形ABDE 是平行四边形…………(1分) 如图(1)∵ ∠ BAC=∠ DAE ,AB=AC ,AD=AE∴ △ABC ~△ADE ……………………………(2分) ∴ ∠ E=∠ ACB=∠ B ∵ AE//BC∴ ∠ EAB+∠ E=∠ EAB+∠ B=180º……(1分) ∴ AB//ED ……………………………………(2分) ∴ 四边形ABDE 是平行四边形 (2)证明:∵ AB=AC ,M 是BC 中点ABE N(图一)(图二)EBAC D图(1)∴ AM ⊥BC ,AM 平分∠ BAC ………………(1分) 同理AN ⊥DE ,AN 平分∠ DAE ……………(1分) ∵∠ MAN=∠ MAC+∠ CAD+∠ DAN ∠ BAD=∠ BAM+∠ MAC+∠ CAD∴∠ MAN=∠ BAD …………………………(1分) ∵△ABC ~△ADE ∴ANAMAD AB =……………………………………………………………………(1分) 在△ABD 和△AMN 中∴AB ADAM AN MAN BAD⎧=⎪⎨⎪∠=∠⎩ ∴△ABD ~△AMN .………………………………………………………………(1分) (3)当74224x -=两圆外切 ………………………………………………(2分)当4x ≤<1分);74224x ->两圆外离. (1)。

2014年上海市中考数学试卷与答案(Word版)

2014年上海市中考数学试卷与答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25 题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共 6 题,每题 4 分,满分24 分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.计算2 3 的结果是().(A) 5 ;(B)6;(C)2 3; (D)3 2.2.据统计, 2013 年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608 ×10 8;(B) 60.8 ×10 9;(C) 6.08 ×10 10;(D) 6.08 ×10 11.3.如果将抛物线y= x2向右平移1个单位,那么所得的抛物线的表达式是().(A)y=x2-1;(B)y= x2+1;(C)y=( x-1)2;(D)y=( x+1)2.4.如图,已知直线a、 b 被直线 c 所截,那么∠1 的同位角是().(此题图可能有问题)(A)∠2;(B)∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75,50, 37, 50, 40,这组数据的中位数和众数分别是().(A)50 和 50;(B)50和40;(C)40和50;(D)40和 40.6.如图,已知AC、BD是菱形 ABCD的对角线,那么下列结论一定正确的是().(A) △ABD与△ABC的周长相等;(B) △ABD与△ABC的面积相等;(C) 菱形的周长等于两条对角线之和的两倍;(D) 菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题 4 分,共 48 分)【请将结果直接填入答题纸的相应位置】7.计算:a( a+ 1) =____________ .8.函数y1的定义域是_______________.x 19.不等式组x 12,的解集是 _____________ .2 x810.某文具店二月份销售各种水笔320 支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x 的方程 x2-2x+k=0( k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10 米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、( 2)、( 3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三( 1)班的概率是 __________ .14.已知反比例函数y ky 的值随着 x 的值的增大而( k 是常数, k≠0),在其图像所在的每一个象限内,x增大,那么这个反比例函数的解析式是________________ (只需写一个).15.如图,已知在平行四边形中,点E 在边AB上,且=3 .设 AB a , BC b ,那么 DE =ABCD AB EB _______________ (结果用 a 、 b 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数: 2, 1 , 3 ,x, 7 ,y, 23 ,, ,满足“从第三个数起,前两个数依次为a、 b,紧随其后的数就是2-”,例如这组数中的第三个数“ 3”是由“ 2×2-1”得到的,那么这组数中y 表示的数为a b____________ .18.如图,已知在矩形中,点E 在边上,= 2 ,将矩形沿着过点E的直线翻折后,点、D分别落ABCD BC BE CE C 在边 BC下方的点 C′、 D′处,且点 C′、 D′、 B 在同一条直线上,折痕与边AD交于点 F, D′F 与 BE交于点 G.设 AB=t ,那么△ EFG的周长为________(用含 t 的代数式表示)三、解答题:(本题共 7 题,满分78 分)1119.(本题满分 10 分)计算: 1283 2 3 .320.(本题满分 10 分)解方程:x121.x1x2 1x121.(本题满分10 分,第( 1)小题满分7 分,第( 2)小题满分 3 分)已知水银体温计的读数y(℃)与水银柱的长度x( cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x 4.2,8.29.8(cm)体温计的读数y35.0,40.042.0(℃)(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2 cm,求此时体温计的读数.22.(本题满分10 分,每小题满分各 5 分)如图,已知Rt△ABC中,∠ ACB=90°, CD是斜边 AB上的中线,过点A作 AE⊥ CD,AE分别与 CD、 CB相交于点 H、 E, AH=2CH.(1)求sinB的值;(2)如果CD= 5 ,求BE的值.23.(本题满分 12 分,每小题满分各 6 分)已知:如图,梯形中,//,=,对角线、相交于点,点E 是边延长线上一点,且ABCD AD BC AB DC AC BD F BC∠CDE=∠ ABD.24.(本题满分 12 分,每小题满分各 4 分)在平面直角坐标系中(如图),已知抛物线y2x2bx c 与x轴交于点A( - 1,0) 和点B,与y轴交于点3C(0,-2).( 1)求该抛物线的表达式,并写出其对称轴;( 2)点E为该抛物线的对称轴与x 轴的交点,点 F 在对称轴上,四边形 ACEF为梯形,求点 F 的坐标;( 3)点D为该抛物线的顶点,设点P( t , 0),且 t >3,如果△ BDP和△ CDP的面积相等,求t 的值.25.(本题满分 14 分,第( 1)小题满分 3 分,第( 1)小题满分 5 分,第( 1)小题满分 6 分)如图 1,已知在平行四边形中,= 5,= 8,=4,点P是边上的动点,以为半径的ABCD AB BC cosB5BC CP 圆C与边 AD交于点 E、 F(点 F 在点 E 的右侧),射线 CE与射线 BA交于点 G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP// CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1备用图2014 年上海市初中毕业统一学业考试数学试卷参考答案一、选择题1、 B;2、 C;3、C;4、 A;5、 A;6、B二、填空题7、a2 a ;8、x 1 ;9、3x 4 ;10、352;11、k 1;12、26;13、1; 14、y1(k0即可);15、2 a b ;16、乙;17、 -9 ;18、2 3t.3x3三、解答题19、解:原式23 320、x0; x1(舍)21、 (1)y 1.25 x 29.75 ,(2)37.522、CD5;AB 2 55BC 2 5 cos B4; AC2 5 sin B 2BDCBCAE, sinB sinCAE5CE AC tanCAE1BE BC CE323、( 1)求证:四边形ACED是平行四边形;ABCD为等腰梯形, ADB DACABD DCA,=ABD CDEDCA CDE,AC / /DE AD / /CE,ADEC 为(2)联结AE,交BD于点G,求证:DG DF.GB DBAD / /BC,DG AD ;DF ADGBBE FB BC DFADDF ADFB ,DF FB AD BCBC ADEC 为 , AD CE;AD BC BE DFADDF AD DF FB AD BC DBBEDG DF GB DB24、25、。

2014年上海市闸北区中考数学一模试卷

2014年上海市闸北区中考数学一模试卷

2014年上海市闸北区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)(下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.)1.(4分)(2014•闸北区一模)对一个图形进行放缩时,下列说法中正确的是()A.图形中线段的长度与角的大小都保持不变B.图形中线段的长度与角的大小都会改变C.图形中线段的长度保持不变、角的大小可以改变D.图形中线段的长度可以改变、角的大小保持不变【考点】M33N 相似三角形的应用【难度】容易题【分析】根据相似图形的性质得出相似图形的对应边成比例,对应角相等,即可得出对一个图形进行收缩时,图形中线段的长度改变,角的大小不变,故选D.【解答】D.【点评】本题主要考查对相似图形的性质的理解和掌握,能熟练地根据相似图形的性质进行说理是解此题的关键.2.(4分)(2014•闸北区一模)已知点C是线段AB上的一个点,且满足AC2=BC•AB,则下列式子成立的是()A.B.C.D.【考点】M226 二次根式的加、减、乘、除及其混合运算M241 一元二次方程的概念、解法M33K 黄金分割【难度】中等题【分析】把AB当作已知数求出AC,求出BC,再分别求出各个比值,根据结果判断即可.具体为:AC2=BC•AB,AC2﹣BC•AB=0,AC2﹣(AB﹣AC)AB=0,AC2+AB•AC﹣AB2=0,AC=,∵边长为正值,∴AC=AB,BC=AB﹣AC=,∴==,===,==,即选项A、C、D错误,只有选项B正确;故选B.【解答】B.【点评】本题考查了解一元二次方程和黄金分割的应用,要求学生要有较强的计算能力.3.(4分)(2014•闸北区一模)下列关于抛物线和的关系说法中,正确的是()A.它们的形状相同,开口也相同B.它们都关于y轴对称C.它们的顶点不相同D.点(﹣3,3)既在抛物线上也在上【考点】M442 二次函数的图象、性质M443 二次函数的关系式【难度】容易题【分析】根据两个函数知道其二次项系数a的绝对值相等,则开口方向相反,都关于y轴对称,顶点都为原点,故A、C错误,B正确,故选B.【解答】B.【点评】本题考查了二次函数的性质,解题的关键是了解形如y=ax2的抛物线的性质.4.(4分)(2014•闸北区一模)下列关于向量的说法中,不正确的是()A. B.C.若,则或D.【考点】M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】容易题【分析】A、,故本选项正确;B、,故本选项正确;C、若,无法判定与的关系,因为向量有方向性;故本选项错误;D、,故本选项正确.故选C.【解答】C.【点评】此题考查了平面向量的定义与运算.此题比较简单,注意理解平面向量的定义是解此题的关键.5.(4分)(2014•闸北区一模)已知α、β都是锐角,如果sinα=cosβ,那么α与β之间满足的关系是()A.α=βB.α+β=90°C.α﹣β=90° D.β﹣α=90°【考点】M361 锐角的三角比的概念(正切、余切、正弦、余弦)【难度】容易题【分析】根据α、β都是锐角,sinα=cosβ,则sinα=cos(90°﹣α)=cosβ,可得α、β互为余角,故选:B.【解答】B.【点评】本题考查了互为余角两三角函数的关系,两角都是锐角,一角的正弦等于另一角的余弦,这两个锐角互余.6.(4分)(2014•闸北区一模)如图,平行四边形ABCD中,F是CD上一点,BF交AD 的延长线于G,则图中的相似三角形对数共有()A.8对B.6对C.4对D.2对【考点】M33F 全等三角形概念、判定、性质M33M 相似三角形性质、判定M344 平行四边形(包括矩形、菱形、正方形)的判定与性质【难度】中等题【分析】根据平行四边形的性质,得到平行四边形的对边平行,即AD∥BC,AB∥CD;再根据相似三角形的判定方法:平行于三角形一边的直线与三角形另两边或另两边的延长线所构成的三角形相似,得△BEC∽△GEA,△ABE∽△CEF,△GDF∽△GAB,△DGF∽△BCF,进而得△GAB∽△BCF,还有△ABC≌△CDA(是特殊相似),∴共有6对.故选:B.【解答】B.【点评】此题考查了相似三角形的判定方法(平行于三角形一边的直线与三角形另两边或另两边的延长线所构成的三角形相似)与平行四边形的性质(平行四边形的对边平行).解题的关键是要注意数形结合思想的应用,注意做到不重不漏.二、填空题(本大题共12题,每题4分,满分48分)7.(4分)(2014•闸北区一模)已知a:b=3:2,则(a﹣b):a=.【考点】M33H 比例的性质【难度】容易题【分析】根据两內项之积等于两外项之积用a表示出b=a,然后代入比例式进行计算即(a﹣b):a=(a﹣a):a=1:3.【解答】1:3.【点评】本题考查了比例的性质,用a表示出b是解题的关键.8.(4分)(2014•闸北区一模)如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F,如果DE:EF=3:5,AC=24,则BC=.【考点】M33I 平行线分线段成比例定理【难度】容易题【分析】根据平行线分线段成比例定理得出==,再根据BC=AC×代入计算得BC=24×=15,故答案为:15.【解答】15.【点评】本题考查平行线分线段成比例定理,关键是找出对应的比例线段,写出比例式,用到的知识点是平行线分线段成比例定理.9.(4分)(2014•闸北区一模)在Rt△ABC和Rt△DEF中,∠C=∠F=90°,当AC=3,AB=5,DE=10,EF=8时,Rt△ABC和Rt△DEF是的.(填“相似”或者“不相似”)【考点】M33E 勾股定理M33M 相似三角形性质、判定【难度】容易题【分析】如图所示:首先利用勾股定理得出BC==4,DF==6,则可得==,又∠C=∠F=90°,进而利用相似三角形的判定得出Rt△ABC∽Rt△DEF.故答案为:相似.【解答】相似.【点评】此题主要考查了勾股定理以及相似三角形的判定,根据已知得出==是解题关键.10.(4分)(2014•闸北区一模)两个相似三角形对应边的比为2:3,则它们的周长比为.【考点】M33M 相似三角形性质、判定【难度】容易题【分析】根据相似三角形周长的比等于相似比进行解答即得它们对应周长的比为2:3.故答案为:2:3.【解答】2:3.【点评】本题考查的是相似三角形的性质,关键是要知道相似三角形周长的比等于相似比.11.(4分)(2014•闸北区一模)化简:=.【考点】M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】容易题【分析】直接利用三角形法则求解,即=+=.故答案为:.【解答】.【点评】此题考查了平面向量的知识.此题比较简单,注意掌握三角形法则的应用.12.(4分)(2014•闸北区一模)如图,某人在塔顶的P处观测地平面上点C处,经测量∠P=35°,则他从P处观察C处的俯角是度.【考点】M364 解直角三角形M365 仰角、俯角、坡度、坡角【难度】容易题【分析】过P作平行于地平面的直线PO,∵∠P=35°,∴∠CPO=90°﹣∠P=55°,∵从P处观察C处的俯角即为∠CPO,∴从P处观察C处的俯角为55°.故答案为:55.【解答】55.【点评】本题考查了解直角三角形的应用,解答本题的关键掌握俯角是向下看的视线与水平线的夹角.13.(4分)(2014•闸北区一模)将二次函数y=x2﹣2x+m的图象向下平移1个单位后,它的顶点恰好落在x轴上,则m=.【考点】M232 一元一次方程的概念、解法M41A 函数图像的几何变换M442 二次函数的图象、性质【难度】容易题【分析】把二次函数解析式整理成顶点式形式y=(x﹣1)2+m﹣1,再根据向下平移横坐标不变,纵坐标减写出平移后的解析式y=(x﹣1)2+m﹣2,然后根据顶点在x轴上,纵坐标为0列式m﹣2=0,解得m=2.故答案为:2.【解答】2.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.14.(4分)(2014•闸北区一模)在Rt△ABC中,∠C=90°,CD⊥AB于点D,若AD=9,BD=4,则AC=.【考点】M228 算术平方根、立方根M33D 直角三角形的性质和判定M33E 勾股定理M33M 相似三角形性质、判定【难度】中等题【分析】根如图所示:∵Rt△ABC中∠C=90°,CD⊥AB,∴∠A+∠B=90°,∠A+∠ACD=90°,∠B+∠BCD=90°,∴∠A=∠BCD,∴△ACD∽△CBD,∴=,即CD2=AD•BD=9×4=36,解得CD=6,在Rt△ACD中,∵AD=9,CD=6,∴AC===.故答案为:.【解答】.【点评】本题主要考查的是相似三角形的判定与性质,属于中考高频考点,考生要注意掌握;对于本题熟知相似三角形的对应边成比例是解答此题的关键.15.(4分)(2014•闸北区一模)一个边长为3厘米的正方形,若它的边长增加x厘米,面积随之增加y平方厘米,则y关于x的函数解析式是.(不写定义域)【考点】M256 列方程(组)解应用题M348 四边形周长、面积M443 二次函数的关系式【难度】容易题【分析】原边长为3厘米的正方形面积为:3×3=9(平方厘米),边长增加x厘米后边长变为:x+3,则面积为:(x+3)2平方厘米,∴y=(x+3)2﹣9=x2+6x.故答案为:y=x2+6x.【解答】y=x2+6x.【点评】此题主要考查了根据实际问题列二次函数关系式,关键是正确表示出正方形的面积.16.(4分)(2014•闸北区一模)如图,在平行四边形ABCD中,AB=12,AD=18,∠BAD 的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF 的周长是.【考点】M339 等腰三角形的性质和判定M33E 勾股定理M33M 相似三角形性质、判定M344 平行四边形(包括矩形、菱形、正方形)的判定与性质【难度】中等题【分析】先计算出△ABE的周长,然后根据相似比的知识进行解答即可.具体为:解:∵在▱ABCD中,AB=CD=12,AD=BC=18,∠BAD的平分线交BC于点E,∴△ADF是等腰三角形,AD=DF=18;∵AB=BE=12,∴CF=6;∴在△ABG中,BG⊥AE,AB=12,BG=8,可得:AG=4,又∵BG⊥AE,∴AE=2AG=8,∴△ABE的周长等于32,又∵▱ABCD,∴△CEF∽△BEA,相似比为1:2,∴△CEF的周长为16.故答案为16.【解答】16.【点评】本题意在综合考查平行四边形、相似三角形和勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,相似三角形的周长比等于相似比,难度较大.17.(4分)(2014•闸北区一模)如图,点G是Rt△ABC的重心,过点G作矩形GECF,当GF:GE=1:2时,则∠B的正切值为.【考点】M33L 三角形重心、内心、外心M33M 相似三角形性质、判定M344 平行四边形(包括矩形、菱形、正方形)的判定与性质M361 锐角的三角比的概念(正切、余切、正弦、余弦)【难度】中等题【分析】连接AG并延长交BC于点H,因为点G是Rt△ABC的重心,所以BH=CH,=,又GE∥BC,则由相似三角形的判定定理可知△AGE∽△AHC,故可得出==,设GE=2x,则CH=3x,再根据GF:GE=1:2可知,GF=HF=x,由于四边形GECF是矩形,故CE=GF=x,所以AC=2CE=3x,则tan∠B===.【解答】.【点评】本题主要考查的是三角形的重心,涉及相似三角形性质、判定,矩形性质等知识点;熟知重心到顶点的距离与重心到对边中点的距离之比为2:1是解答此题的关键.18.(4分)(2014•闸北区一模)如图,已知等腰△ABC,AD是底边BC上的高,AD:DC=1:3,将△ADC绕着点D旋转,得△DEF,点A、C分别与点E、F对应,且EF与直线AB重合,设AC与DF相交于点O,则S△AOF:S△DOC=.【考点】M339 等腰三角形的性质和判定M33O 三角形面积M33E 勾股定理M33M 相似三角形性质、判定M361 锐角的三角比的概念(正切、余切、正弦、余弦)M372 图形的旋转与旋转对称图形【难度】较难题【分析】作DG⊥AB于G,∵AB=AC,AD⊥BC,∴∠ADB=∠ADC=90°,∠BAD=∠CAD,∠B=∠C.设AD=x,则BD=3x,由勾股定理,得AB=x,∴AC=x.∴,∴,∴GD=.∵==tan∠C.∴tan∠B=.∵∠ADG+∠GAD=90°,∠B+∠GAD=90°,∴∠ADG=∠B.∴tan∠ADG=,∴,∴AG=.∵△FDE是由△CDA旋转得来的,∴△FDE≌△CDA,∴DE=DA.∠F=∠C.∵DG⊥AB,∴AG=EG.∴AE=2AG,∴AE=.∴AF==.∵∠AOF=∠DOC,∠F=∠C,∴△AFO∽△DCO,∴S△AOF:S△DOC==()2.=.故答案为:.【解答】.【点评】本题考查了等腰三角形的性质的运用,勾股定理的运用,旋转的性质的运用,三角函数值的运用,相似三角形的判定与性质的运用,三角形面积公式的运用,涉及知识点较多且均属于中考常考知识点,考生要注意掌握!解答时证明三角形相似是关键.三、解答题19.(10分)(2014•闸北区一模)已知:抛物线y=﹣x2+bx+c经过A(﹣1,0)、B(5,0)两点,顶点为P.求:(1)求b,c的值;(2)求△ABP的面积;(3)若点C(x1,y1)和点D(x2,y2)在该抛物线上,则当0<x1<x2<1时,请写出y1与y2的大小关系.【考点】M414 用待定系数法求函数关系式M417 不同位置的点的坐标的特征M442 二次函数的图象、性质M443 二次函数的关系式M444 二次函数的应用M33O 三角形面积【难度】容易题【分析】(1)利用交点式得到y=﹣(x+1)(x﹣5),然后展开即可得到b和c的值;(2)先把抛物线的解析式配成顶点式得到P点坐标为(2,9),然后根据三角形面积公式计算即可;(3)由于抛物线的对称轴为直线x=2,开口向下,则根据二次函数的性质可确定y1与y2的大小关系.【解答】解:(1)设抛物线的解析式为y=﹣(x+1)(x﹣5), (1)所以y=﹣x2+4x+5,所以b=4,c=5; (3)(2)y=﹣x2+4x+5=﹣(x﹣2)2+9,P点坐标为(2,9), (5)所以△ABP的面积=×6×9=27; (7)(3)抛物线的对称轴为直线x=2,开口向下,所以当0<x1<x2<1时,y1<y2. (10)【点评】本题考查了待定系数法求二次函数关系式:要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.20.(10分)(2014•闸北区一模)已知:如图,EF是△ABC的中位线,设,.(1)求向量、(用向量、表示);(2)在图中求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)【考点】M334 三角形中位线定理M344 平行四边形(包括矩形、菱形、正方形)的判定与性质M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】容易题【分析】(1)由EF是△ABC的中位线,设,,利用三角形的中位线的性质,即可求得,然后由三角形法则,求得;(2)利用平行四边形法则,即可求得向量在、方向上的分向量.【解答】解:(1)∵EF是△ABC的中位线,.∴==, (3)∵,∴=﹣=﹣; (5)(2)如图,过点E作EM∥AC, (7)则与即为向量在、方向上的分向量. (10)【点评】此题考查了平面向量的知识.此题比较简单,属于向量方面的常规题型,注意掌握三角形法则与平行四边形法则的应用.21.(10分)如图,在夕阳西下的傍晚,某人看见高压电线的铁塔在阳光的照射下,铁塔的影子的一部分落在小山的斜坡上,为了测得铁塔的高度,他测得铁塔底部B到小山坡脚D 的距离为2米,铁塔在小山斜坡上的影长DC为3.4米,斜坡的坡度i=1:1.875,同时他测得自己的影长NH﹦336cm,而他的身长MN为168cm,求铁塔的高度.【考点】M241 一元二次方程的概念、解法M33E 勾股定理M33M 相似三角形性质、判定M364 解直角三角形M365 仰角、俯角、坡度、坡角【难度】中等题【分析】作AC的延长线交BD的延长线于E,作CF⊥DE,垂足为F.利用勾股定理和相似三角形的性质求出DF,FE,从而得到BE的长,再用相似三角形的性质求出AB即可.【解答】解:作AC的延长线交BD的延长线于E,作CF⊥DE,垂足为F.在Rt△CFD中,i=1:1.875,即CF:DF=1:1.875=8:15; (2)设CF=8x米,则DF=15x米, (3)由勾股定理可得,(8x)2+(15x)2=CD2,∴CD=17x=3.4,∴x=0.2, (5)∴DF=15×0.2=3米,CF=8×0.2=1.6米. (6)∵FE:CF=NH:NM,∴FE:1.6=336:168,∴FE=3.2,∴BE=BD+DF+FE=2+3+3.2=8.2米. (8)∴AB:BE=MN:NH,∴AB:8.2=168:336,∴AB=4.1米.答:铁塔高度为4.1米. (10)【点评】本题是解直角三角形+坡度与坡角应用问题,是历年中考常考题型,考生要注意;本还涉及相似三角形的应用,对于本题构造直角三角形是解题的关键.22.(10分)(2014•闸北区一模)已知:如图,在△ABC中,已知点D在BC上,联结AD,使得∠CAD=∠B,DC=3且S△ACD:S△ADB﹦1﹕2.(1)求AC的值;(2)若将△ADC沿着直线AD翻折,使点C落点E处,AE交边BC于点F,且AB∥DE,求的值.【考点】M226 二次根式的加、减、乘、除及其混合运算M228 算术平方根、立方根M253 分式方程M323 平行线的判定、性质M33O 三角形面积M33M 相似三角形性质、判定M373 图形的翻折与轴对称图形【难度】容易题【分析】(1)根据等高的三角形的面积的比等于底边的比求出BD=2CD,然后求出BC,再根据两组角对应相等两三角形相似求出△ABC和△DAC相似,然后根据相似三角形对应边成比例可得=,代入数据计算即可得解;(2)根据翻折的性质可得∠E=∠C,DE=CD,再根据两直线平行,内错角相等可得∠B=∠EDF,然后求出∠EDF=∠CAD,再根据两组角对应相等两三角形相似求出△EFD和△ADC相似,根据相似三角形面积的比等于相似比的平方求解即可.【解答】解:(1)∵S△ACD:S△ADB﹦1:2,∴BD=2CD,∵DC=3,∴BD=2×3=6, (2)∴BC=BD+DC=6+3=9, (3)∵∠CAD=∠B,∠C=∠C,∴△ABC∽△DAC,∴=,即=,解得AC=3; (5)(2)由翻折的性质得,∠E=∠C,DE=CD=3,∵AB∥DE,∴∠B=∠EDF, (6)∵∠CAD=∠B,∴∠EDF=∠CAD,∴△EFD∽△ADC, (8)∴=()2=()2=. (10)【点评】本题考查了相似三角形的判定与性质,翻折变换的性质,以及平行线的性质,等高的三角形的面积的比等于底边的比,难点在于利用两组角对应相等,两三角形相似确定出相似的三角形.23.(12分)(2014•闸北区一模)小华同学学习了第二十五章《锐角三角比》后,对求三角形的面积方法进行了研究,得到了新的结论:(1)如图1,已知锐角△ABC.求证:;(2)根据题(1)得到的信息,请完成下题:如图2,在等腰△ABC中,AB=AC=12厘米,点P从A点出发,沿着边AB移动,点Q从C点出发沿着边CA移动,点Q的速度是1厘米/秒,点P的速度是点Q速度的2倍,若它们同时出发,设移动时间为t秒,问:当t为何值时,?【考点】M241 一元二次方程的概念、解法M243 一元二次方程的应用M339 等腰三角形的性质和判定M33O 三角形面积M361 锐角的三角比的概念(正切、余切、正弦、余弦)M364 解直角三角形【难度】中等题【分析】(1)首先过点C作CE⊥AB于点E,则sinA=,进而得出EC的长,即可得出答案;此问简单(2)首先表示出△APQ的面积,进而得出△ABC的面积,进而利用求出t的值即可.此问中等【解答】解:(1)如图1,过点C作CE⊥AB于点E, (1)sinA=, (2)∴EC=ACsinA, (3)S△ABC=EC×AB=AB×ACsinA; (5)(2)如图2,过点P作PE⊥AC于点E,过点B作BF⊥AC于点F,设移动时间为t秒,则AP=2t,CQ=t,∴PE=APsinA,BF=12sinA, (7)S△APQ=AQ×PE=×(12﹣t)×APsinA=×(12﹣t)×2t×sinA=t(12﹣t)sinA,S△ABC=BF×AC=×12×12sinA=72sinA, (9)当,∴=, (11)∴整理得出:t2﹣12t+27=0,解得:t1=3,t2=9(不合题意舍去),∴当t=3秒时,. (12)【点评】此题主要考查了解直角三角形的应用和一元二次方程的解法,根据已知表示出△APQ的面积是解题关键.24.(12分)(2014•闸北区一模)已知:如图,抛物线与y轴交于点C,与x轴交于点A、B,(点A在点B的左侧)且满足OC=4OA.设抛物线的对称轴与x轴交于点M:(1)求抛物线的解析式及点M的坐标;(2)联接CM,点Q是射线CM上的一个动点,当△QMB与△COM相似时,求直线AQ 的解析式.【考点】M233 二元一次方程(组)的概念、解法M241 一元二次方程的概念、解法M33E 勾股定理M33M 相似三角形性质、判定M414 用待定系数法求函数关系式M415 动点问题的函数图像M416 函数图像的交点问题M41B 平面直角坐标系M442 二次函数的图象、性质M443 二次函数的关系式M444 二次函数的应用M422 一次函数的的图象、性质M423 一次函数的关系式M424 一次函数的应用【难度】较难题【分析】(1)令x=0求出点C的坐标,再求出OA的长度,然后写出点A的坐标,代入抛物线求出m的值,即可得解,再利用对称轴解析式求出点M的坐标即可;此问简单(2)求出OM的长,再利用勾股定理列式求出CM,令y=0,解关于x的一元二次方程求出点B的坐标,得到OB的长度,再求出BM,然后分①∠BQM=90°时,△COM和△BQM 相似,利用相似三角形对应边成比例列式求出BQ,过点Q作QD⊥x轴于D,解直角三角形求出BD、QD,然后求出OD,从而写出点Q的坐标,再利用待定系数法求一次函数解析式解答;②∠MBQ=90°时,△COM和△QBM相似,利用相似三角形对应边成比例列式求出BQ,再写出点Q的坐标,然后利用待定系数法求一次函数解析式解答.此问较难【解答】解:(1)令x=0,则y=4,∴点C(0,4),OC=4,∵OC=4OA,∴OA=1,.∴点A(﹣1,0),把点A坐标代入抛物线y=﹣x2+mx+4得,﹣×(﹣1)2+m×(﹣1)+4=0,解得m=, (2)∴抛物线解析式为y=﹣x2+x+4,∵抛物线的对称轴为直线x=﹣=2,∴点M的坐标为(2,0); (4)(2)∵OM=2,OC=4,∴CM==2,令y=0,则﹣x2+x+4=0,整理得x2﹣4x﹣5=0,解得x1=﹣1,x2=5, (5)∴点B的坐标为(5,0),∴OB=5,∴BM=OB﹣OM=5﹣2=3, (6)如图,①∠BQM=90°时,△COM和△BQM相似,∴=,即=,解得BQ=,过点Q作QD⊥x轴于D,则BD=BQ•cos∠QBM=×=,QD=BQ•sin∠QBM=×=,∴OD=OB﹣BD=5﹣=,∴点Q的坐标为(,﹣), (8)设直线AQ的解析式为y=kx+b(k≠0),则,解得,∴直线AQ的解析式为y=﹣x﹣; (9)②∠MBQ=90°时,△COM和△QBM相似,∴=,即=,解得BQ=6,∴点Q的坐标为(5,﹣6), (10)设直线AQ的解析式为y=kx+b(k≠0),则,解得,∴直线AQ的解析式为y=﹣x﹣1;综上所述,当△QMB与△COM相似时,直线AQ的解析式为y=﹣x﹣或y=﹣x﹣1. (12)【点评】本题是二次函数综合题型,主要利用了抛物线与坐标轴的交点坐标的求法,待定系数法求二次函数解析式,待定系数法求一次函数解析式,相似三角形的性质,解直角三角形,难点在于(2)要分情况讨论,考生要注意,以防漏解。

2014年上海市中考数学试卷及答案Word版

2014年上海市中考数学试卷及答案Word版

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).; (C) ; (D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么DE=_______________(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为____________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分1013128233-+.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.24.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B二、 填空题7、2a a +; 8、1x ≠; 9、34x ; 10、352 ; 11、1k ; 12、26 ;13、13; 14、1(0y k x =-即可); 15、23a b - ; 16、乙; 17、-9;18、.三、 解答题19、解:原式=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)37.522、 5,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=23、(1)求证:四边形ACED 是平行四边形;,//DE//,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DF GB DB=. //,;,,;DG AD DF AD AD BC GB BE FB BCDF AD DF AD FB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BEDG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为24、25、。

2014年上海数学中考试卷+答案

2014年上海数学中考试卷+答案

2014年上海市初中毕业统一学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共24分)一、选择题(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的. 1.计算√2×√3的结果是( )A.√5B.√6C.2√3D.3√22.据统计,2013年上海市全社会用于环境保护的资金投入约为60 800 000 000元,这个数用科学记数法表示为( )A.608×108B.60.8×109C.6.08×1010D.6.08×10113.如果将抛物线y=x 2向右平移1个单位,那么所得新抛物线的表达式是( )A.y=x 2-1B.y=x 2+1C.y=(x-1)2D.y=(x+1)24.如图,已知直线a 、b 被直线c 所截,那么∠1的同位角是( )A.∠2B.∠3C.∠4D.∠55.某市测得上一周PM2.5的日均值(单位:微克/立方米)如下:50,40,73,50,37,50,40,这组数据的中位数和众数分别是( )A.50和50B.50和40C.40和50D.40和406.如图,已知AC 、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是( )A.△ABD 与△ABC 的周长相等B.△ABD 与△ABC 的面积相等C.菱形ABCD 的周长等于两条对角线长之和的两倍D.菱形ABCD 的面积等于两条对角线长之积的两倍第Ⅱ卷(非选择题,共126分)二、填空题(本大题共12题,每题4分,满分48分)7.计算:a(a+1)= .8.函数y=1x -1的定义域是 .9.不等式组{x -1>2,2x <8的解集是 .10.某文具店二月份共销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份共销售各种水笔 支.11.如果关于x 的方程x 2-2x+k=0(k 为常数)有两个不相等的实数根,那么k 的取值范围是 .12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为 米. 13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是 . 14.已知反比例函数y=x x(k 是常数,k≠0),在其图象所在的每个象限内,y 的值随着x 的值增大而增大,那么这个反比例函数的解析式可以是(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设xx⃗⃗⃗⃗⃗⃗⃗ =a,xx⃗⃗⃗⃗⃗⃗⃗ =b,那么xx⃗⃗⃗⃗⃗⃗⃗ = (结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投掷的成绩如图所示,那么三人中成绩最稳定的是.17.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C'、D'处,且点C'、D'、B在同一直线上,折痕与边AD交于点F,D'F与BE交于点G.设AB=t,那么△EFG的周长为(用含t的代数式表示).三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:√12-√3-813+|2-√3|.20.(本题满分10分)解方程:x+1x-1-2x2-1=1x+1.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),下表记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm)4.2 …8.2 9.8体温计的读数y(℃)35.0 …40.0 42.0(1)求y关于x的函数解析式(不需要写出函数定义域);(2)用该体温计测体温时,水银柱的长度为6.2 cm,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sin B的值;(2)如果CD=√5,求BE的长.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)连结AE,交BD于点G.求证:xxxx =xxxx.24.(本题满分12分,每小题满分各4分)x2+bx+c与x轴交于点A(-1,0)和点B,与在平面直角坐标系xOy中(如图),已知抛物线y=23y轴交于点C(0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F 的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分),点P是边BC上的动点,以CP为如图所示,已知在平行四边形ABCD中,AB=5,BC=8,cos B=45半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连结AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.答案全解全析:一、选择题1.B √2×√3=√2×3=√6.2.C 60 800 000 000的整数位有11位,所以用科学记数法表示为6.08×1010.3.C 抛物线的平移规律是“左加右减,上加下减”,如当抛物线y=ax 2向右平移h(h>0)个单位时,所得新抛物线的解析式为y=a(x-h)2,所以当抛物线y=x 2向右平移1个单位时,所得新抛物线的解析式为y=(x-1)2.4.D ∠1在直线a 的下方,且在直线c 的左边,∠5在直线b 的下方,也在直线c 的左边,所以它们是同位角,选D.5.A 把这组数据按照从小到大的顺序排列为:37,40,40,50,50,50,73,共有七个数,中位数是50,其中50出现的次数最多,所以众数为50.故选A.6.B 解法一:由题图可知S △ABD =12S 菱形ABCD ,S △ABC =12S 菱形ABCD ,所以S △ABD =S △ABC .解法二:△ABC 和△ABD 是同底等高的两个三角形,所以S △ABC =S △ABD .二、填空题7.答案 a 2+a解析 a(a+1)=a 2+a.评析 本题考查单项式与多项式的乘法. 8.答案 x≠1解析 要使分式1x -1有意义,则分母x-1≠0,即x≠1.评析 本题考查函数的定义域. 9.答案 3<x<4解析 解不等式x-1>2得x>3,解不等式2x<8得x<4,所以原不等式组的解集是3<x<4. 10.答案 352解析 根据题意列式为:320×(1+10%)=320×1.1=352(支). 11.答案 k<1解析 因为方程有两个不相等的实数根,所以Δ>0,即(-2)2-4×1×k=4-4k>0,解得k<1. 评析 本题考查一元二次方程的根的判别式. 12.答案 26解析 如图,斜坡AB 的坡度i=1∶2.4=AC∶BC=10∶BC,所以BC=24米,所以AB=√102+242=26米.13.答案13解析 初三(1)、(2)、(3)班被抽到的机会均等,共3种可能,恰好抽到初三(1)班的概率是13. 14.答案 y=-1x (答案不唯一)解析 因为反比例函数y=xx(k≠0)的图象在每个象限内y 的值随着x 的值增大而增大,所以k<0,即只需满足k<0即可,此题答案不唯一. 15.答案 23a-b解析 如图,过点E 作EF∥AD,因为AB=3EB=3FC,所以xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-b,xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23a,所以xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23a-b.16.答案 乙解析 从折线统计图可以看出,甲、丙两人成绩浮动较大,极差分别为7、6,而乙的成绩较稳定,极差为2.所以成绩最稳定的是乙. 17.答案 -9解析 根据题意得,x=2×1-3=-1,y=2x-7=-2-7=-9. 18.答案 2√3t解析 连结BD',∵点C'、D'、B 在同一直线上,∴∠D=∠FD'C'=∠GD'B=90°,由翻折知,CE=C'E, ∴BE=2CE=2C'E,∴∠EBC'=30°,∠BGD'=60°, ∵∠BGD'=∠FGE,∴∠FGE=60°. ∵AD∥BC,∴∠AFG=∠BGD'. ∴∠AFG=60°, 易得∠GFE=60°,∴△EFG 为等边三角形. ∵AB=t,∴FG=23√3t, ∴C △EFG =2√3t. 三、解答题19.解析 原式=2√3-√33-2+2-√3=2√33. 20.解析 去分母,整理得x 2+x=0.解方程,得x 1=-1,x 2=0.经检验:x 1=-1是增根,舍去;x 2=0是原方程的根. 所以原方程的根是x=0.评析 此题考查可化为一元二次方程的分式方程的解法,易错点是忽视验根. 21.解析 (1)设y 关于x 的函数解析式为y=kx+b(k≠0). 由题意,得{4.2x +x =35,8.2x +x =40,解得{x =54,x =1194. 所以y 关于x 的函数解析式为y=54x+1194.(2)当x=6.2时,y=37.5.答:此时该体温计的读数为37.5 ℃.评析 第(1)问考查待定系数法求一次函数解析式,第(2)问是代入自变量的值求函数值. 22.解析 (1)∵在Rt△ABC 中,∠ACB=90°,CD 是斜边AB 上的中线, ∴AB=2CD=2BD,∴∠DCB=∠B.∵AH⊥CD,∴∠AHC=∠CAH+∠ACH=90°.又∵∠DCB+∠ACH=90°,∴∠CAH=∠DCB=∠B.∴△ABC∽△CAH.∴xx xx =xxxx.又∵AH=2CH,∴BC=2AC.可设AC=k,BC=2k, 在Rt△ABC 中,AB=√xx 2+B x 2=√5k. ∴sin B=xx xx =√55. (2)∵AB=2CD,CD=√5,∴AB=2√5.在Rt△ABC 中,AC=AB·sin B=2√5×√55=2. ∴BC=2AC=4.在Rt△ACE 和Rt△AHC 中,tan∠CAE =xx xx =xx xx =12. ∴CE=12AC=1. ∴BE=BC -CE=3.23.证明 (1)∵四边形ABCD 是梯形,AD∥BC,AB=DC, ∴∠ADC=∠DAB.∵AD∥BE,∴∠ADC=∠DCE.∴∠DAB=∠DCE. 在△ABD 和△CDE 中, ∵{∠xxx =∠xxx ,xx =xx ,∠xxx =∠xxx , ∴△ABD≌△CDE,∴AD=CE.又∵AD∥CE,∴四边形ACED 是平行四边形. (2)∵四边形ACED 是平行四边形,∴FC∥DE. ∴xx xx =xx xx .∵AD∥BE,∴xx xx =xxxx.又∵AD=CE,∴xx xx =xxxx . 24.解析 (1)∵点A(-1,0)和点C(0,-2)在抛物线y=23x 2+bx+c 上, ∴{23×1-b +c =0,x =-2,解得{x =-43,x =-2.∴该抛物线的表达式为y=23x 2-43x-2,对称轴为直线x=1.(2)∵点E 为该抛物线的对称轴与x 轴的交点,∴E(1,0).∵四边形ACEF 为梯形,AC 与y 轴交于点C,∴AC 与EF 不平行. ∴AF∥CE.∴∠FAE=∠OEC.在Rt△AEF 中,∠AEF=90°,tan∠FAE=xxxx , 同理,在Rt△OEC 中,tan∠OEC=xx xx ,∴xx xx =xxxx. ∵OC=2,OE=1,AE=2,∴EF=4,∴点F 的坐标是(1,4). (3)该抛物线的顶点D 的坐标是(1,-83),点B 的坐标是(3,0).由点P(t,0),且t>3,得点P 在点B 的右侧(如图).S △BPD =12×(t -3)×83=43t-4.S △CDP =12×(1+t)×83-12×1×23-12×t×2=13t+1.∵S △BPD =S △CDP ,∴43t-4=13t+1.解得t=5.即符合条件的t 的值是5.评析 此题第(2)问难点是根据已知条件确定出AF∥CE.第(3)问关键是根据已知条件分别用含t 的代数式表示出△BPD 与△CDP 的面积.考查学生灵活运用知识的能力,难度较大. 25.解析 (1)过点A 作AH⊥BC,垂足为点H.连结AC. 在Rt△AHB 中,∠AHB=90°,cos B=xx xx =45,AB=5,∴BH=4.∵BC=8,∴AH 垂直平分BC. ∴AC=AB=5.∵圆C 经过点A,∴CP=AC=5.(2)过点C 作CM⊥AD,垂足为点M.设圆C 的半径长为x.∵四边形ABCD 是平行四边形,∴AB=DC=5,AD=BC=8,∠B=∠D. 又由cos B=45,得DM=4,CM=3.在Rt△EMC中,∠EMC=90°,EM=√xx2-C x2=√x2-9. 又∵点F在点E的右侧,∴DE=EM+DM=√x2-9+4.∴AE=AD-DE=4-√x2-9.由AD∥BC,AP∥CG,得四边形APCE是平行四边形.∴AE=CP,即4-√x2-9=x.解得x=258.经检验:x=258是原方程的根,且符合题意.∴EM=√(258)2-32=78.在圆C中,由CM⊥EF,得EF=2EM=74.∴当AP∥CG时,弦EF的长为74.(3)设圆C的半径长为x,则CE=x,又∵点F在点E的右侧,∴DE=√x2-9+4.∵四边形ABCD是平行四边形,∴AB∥DC.∴△AGE∽△DCE.由△AGE是等腰三角形,可得△DCE是等腰三角形.①若GE=GA,则CE=CD,又由(1)知CD=CA,∴CE=CA.又∵点A、E在线段AD的垂直平分线CM的同侧,∴点E与点A重合,舍去.②若AG=AE,则DC=DE,得√x2-9+4=5.解得x=±√10,则x=-√10不符合题意,舍去.∴x=√10.③若GE=AE,则CE=DE,得√x2-9+4=x.解得x=258,不符合题意,舍去.综上所述,当△AGE是等腰三角形时,圆C的半径长为√10.评析此题是圆、平行四边形、锐角三角函数、等腰三角形的综合题,考查学生运用变化的观点分析问题的能力.。

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.计算23的结果是().(A) 5; (B) 6; (C) 23; (D) 32.2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108; (B) 60.8×109; (C) 6.08×1010; (D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2; (B) ∠3; (C) ∠4; (D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等; (B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分) 【请将结果直接填入答题纸的相应位置】 7.计算:a (a +1)=____________.8.函数11y x =-的定义域是_______________.9.不等式组12,28x x ->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数ky x=(k 是常数,k ≠0),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设AB a =u u u r r ,BC b =u u u r r ,那么DE u u u r=_______________(结果用a r 、b r表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为____________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分) 19.(本题满分1013128233-+.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm)4.2 …8.2 9.8体温计的读数y(℃)35.0 …40.0 42.0(1)求y(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .24.(本题满分12分,每小题满分各4分)在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标; (3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B 二、 填空题7、2a a +; 8、1x ≠; 9、34x p p ; 10、352 ; 11、1k p ; 12、26 ;13、13; 14、1(0y k x=-p 即可); 15、23a b -r r ; 16、乙; 17、-9; 18、23t .三、 解答题 19、解:原式233=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)37.5 22、5,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=Q g g g23、(1)求证:四边形ACED 是平行四边形;,//DE //,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴Q Q Q Y=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DF GB DB=.//,;,,;DG AD DF ADAD BC GB BE FB BCDF AD DF AD FB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=Q Q Q Y 为24、25、。

闸北区初三数学2014年1月一模试卷答案

闸北区初三数学2014年1月一模试卷答案

闸北区九年级数学学科期末练习卷(2014年1月)答案及评分参考(考试时间:100分钟,满分:150分)二、填空题(本大题共12题,每题4分,满分48分)7、13. 8、15. 9、相似. 10、2:3.11、AD . 12、55. 13、2. 14、15、26y x x =+. 16、16. 17、12. 18、3245.三、解答题(本大题共12题,满分78分) 19、(本题满分10分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分2分) 解:(1)把点A (1-,0)、B (5,0)分别代入2y x b x c =-++,得010255b cb c =--+⎧⎨=-++⎩…………………………………………………………(1+1分) 解得45b c =⎧⎨=⎩. …………………………………………………………(1+1分) (2)由(1)得抛物线解析式245y x x =-++∴2(2)9y x =--+ ∴P (2,9) …………………………………………………………(2分) ∵A (1-,0)、B (5,0)∴AB=6 …………………………………………………………(1分)∴169272ABP S ∆=⨯⨯=. …………………………………………………………(1分)(3)∵抛物线开口向下∴在对称轴直线x=2的左侧y 随着x 的增大而增大∴1y <2y . …………………………………………………………(2分)20、(本题满分10分,第(1)小题满分6分,第(2)小题满分4分) (1)∵EF 是△ABC 的中位线∴EF ∥BC ,EF=12BC ………………………………………………………(2分)∵BC b =∴EF 12b =………………………………………………………(1分) ∵EA EF FA =+,AF a = ………………………………………………………(2分)∴12EA b a =- . ………………………………………………………(1分)CFE123 (2)所以EA、ED是EF在AB和AC方向上的分向量.……………………………(2分)(评分说明:准确作出向量EA、ED各得1分,结论2分)21、(本题满分10分)解:过点C作CE⊥BD于点E,延长AC交BD延长线于点F ………………(1分)在Rt△CDE中,11.875i=:∴181.87515CEDE==………………………(1分)设CE=8x ,DE=15x ,则CD=17x∵DC=3.4米∴CE=1.6米,DE=3米………………………(2分)在Rt△MNH中,tan∠MHN16813362MNNH===…………………(1分)∴在Rt△ABF中,tan∠F1.6CEEF EF===tan∠MHN12=…………………………(1分)∴EF=3.2米…………………………(1分)即BF=2+3+3.2=8.2米…………………………(1分)∴在Rt△CEF中,tan∠F12ABBF==∴AB=4.1米…………………………(1分)答:铁塔的高度是4.1米.…………………………(1分)22、(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)解:(1)∵ACD ADBS S∆∆:﹦1﹕2∴CD:BD=1:2 ……………………………(1分)∵DC=3 ∴BD=6 ……………………………(1分)在△ACD和△BCA中,∠CAD=∠B,∠C=∠C∴△ACD∽△BCA ……………………………(1分)∴CD ACAC CB=即2AC CD CB=…………………………………………………(1分)∴AC=…………………………………………………(1分)(2)∵翻折∴∠C=∠E,∠1=∠2,DE=DC=3 …………………………………………………(1分)∵AB∥DE∴∠3=∠B ……………………………………………………………………(1分)∵∠1=∠B∴∠1=∠3…………………………………………………(1分)∴△ACD∽△DEF …………………………………………………(1分)∴21()3EFDADCS DES AC∆∆==.…………………………………………………(1分)FEDCBA图9DCBA 图1023.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)解:(1)如图10,过点C 作CD ⊥ AB 于点D ……………(1分)在Rt △ADC 中,sinA=CDAC……………………………(1分) ∴CD=AC.sinA ……………………………(1分) ∵12ABC S AB CD ∆= ……………………………(1分) ∴1sin 2ABCS AB AC A ∆= .……………………………(1分) (2)根据题意:AP=2t 厘米 ,CQ=t 厘米∴AQ=(12—t )厘米 ………………………………(1分) 由(1)得:1sin 2APQS AP AQ A ∆= …………………(1分) ∴1sin 2(12)32112128sin 2APQ ABC AP AQ A S t t S AB AC A ∆∆-===⨯…………(1分) 化简得:212270t t -+=…………………………………(1分) 解得19t =(舍),23t = …………………………………(2+1分)即当t=3秒时,38APQ ABC S S ∆∆=. 24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6解:(1)根据题意:C (0,4)……………………………(1∵OC=4OA∴A (1-,0)………………………………………………(1把点A 代入得0=445m --+ ……………………………(1解得16=5m………………………………………………(1∴抛物线的解析式2416455y x x =-++…………………(12416455y x x =-++24362)55x =--+(∴ (20)M ,………………………………………………(1分) (2)根据题意得:BM=3,tan ∠CMO= 2,直线CM :y=2-(i )当∠COM=∠MBQ=90°时,△COM ∽△QBM ∴tan ∠BMQ=2BQBM= ∴BQ=6即Q (5,6-) ……………………………………(2分) ∴AQ :1y x =-- ……………………………………(1分) (i i )当∠COM=∠BQM=90°时,△COM ∽△BQM同理Q (13655,-) …………………………………(2分) ∴AQ :1133y x =-- …………………………………(1分)BC图1125.(本题满分14分,第(1)小题满分6分,第(2)小题满分4分,第(3)小题满分4分)(1)证明:∵△ACB 是等腰直角三角形∴∠CAB =∠B=45° ∵CP//AB ∴∠DCA =∠CAB=45° …………………………………………………(1分) ∴∠DCA =∠B …………………………………………………(1分) ∵∠ DAE=45° ∴∠ DAC+∠ CAE=∠ CAE+∠ EAB ∴∠ DAC =∠ EAB …………………………………………………(1分) ∴△DCA ∽△EAB …………………………………………………(1分)∴AD ACAE AB = 即AD AEAC AB =且∠ DAE =∠ CAB=45° ……………………………(1分) ∴△ADE ∽△ACB . ……………………………………………(1分) (2)过点E 作EH ⊥AB 于点H ……………………………………(1分) 由(1)得△DCA ∽△EAB ∴DC ACEB AB =∵△ACB 是等腰直角三角形,且CD=x ∴…………………(1分) ∴EH=BH= x ∴AH=4—x在Rt △AEH 中,tan ∠BAE =EH AH即y =4xx -………………………………………………………(1分)定义域0<x <2. ………………………………………………………(1分)(3)若△COD 与△BEA 相似,又△BEA 与相似△DCA 即△COD 与△DCA 相似∴只有△DCO ∽△ACD ……………………………………………(1分) ∴2CD CO CA = ∵∠DAO =∠CEO ∴∠CEO =∠EAB ∴tan ∠CEO =y 即y COCE=∴()4xCO x =- …………………………………………(1分) ∴2x=()224xx- 解得 14x =-24x =+……………………………(1分) 经检验12,x x 都是原方程的实数根,24x =+…(1分) ∴当CD=4-,△COD 与△BEA 相似.图13PDOC B AH。

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).(A)(C);(D).2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为( ).(A)608×108; (B) 60。

8×109; (C) 6。

08×1010;(D)6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B)y=x2+1;(C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是( ).(此题图可能有问题)(A) ∠2;(B) ∠3; (C)∠4;(D) ∠5.15.某事测得一周PM2。

5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是( ).(A)△ABD与△ABC的周长相等; (B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2。

2014中考数学模拟试卷含答案(20200612024042).pdf

2014中考数学模拟试卷含答案(20200612024042).pdf


2
1 ( A ) a e ; ( B) a 2e ;
2
(C) a
1 e;
2
( D) a 2e .
3.将抛物线 y = x2 向右平移 1个单位,所得新抛物线的函数解析式是(

( A ) y = (x +1)2;
( B ) y (x 1)2 ;
( C) y = x2 +1 ;
(D) y x2 1.
4.在 Rt△ ABC 中,∠ A=90 °,如果把这个直角三角形的各边长都扩大
19.(本题满 分 10 分)
计算: 2sin 2 60 cos2 45 cos30 tan30
tan 60 cot 45
20.(本题满分 10 分, 其中第( 1)小题 6 分,第( 2)小题 4 分)
已知一个二次函数 y x2 b x c 的图像经过点( 4, 1)和( 1 ,6).
(1)求这个二次函数的解析式;
直角三角形中,∠ B 的正切值(

( A )扩大 2 倍; ( B )缩小 2 倍;
( C)扩大 4 倍;
2 倍,那么所得到的 ( D)大小不变 .
5.已知在 Rt△ ABC 中,∠ C=90 °,∠ A= a ,BC=m,那么 AB 的长为(

( A ) m sin ; ( B) m cos ; ( C) m ; sin
18.在 Rt△ ABC 中,∠ C=90 °, cosB 3 ,
A
5
把这个直角三角形绕顶点 C 旋转后得到
D
B'
Rt△ A'B'C ,其中点 B' 正好落在 AB 上,
A'B' 与 AC 相交于点 D ,那么 B D

2014年上海市中考数学试卷及答案word版

2014年上海市中考数学试卷及答案word版

2014年上海市初中毕业统一学业考试数学试卷一、选择题(每小题4分,共24分)1.计算23⋅的结果是().(A) 5;(B) 6;(C) 23;(D) 32.2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1;(B) y=x2+1;(C) y=(x-1)2;(D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(A) ∠2;(B)∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40 ,这组数据的中位数和众数分别是().(A)50和50;(B)50和40;(C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的周长相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题(每小题4分,共48分)7.计算:a(a+1)=_________.8.函数11yx=-的定义域是_________.9.不等式组12,28xx->⎧⎨<⎩的解集是_________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三鱼粉销售各种水笔_________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是_________.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_________.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是_________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么DE=_________(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是_________.17.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为__________.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为______________(用含t的代数式表示).三、解答题(本题共7题,满分78分) 19.(本题满分10分) 计算:131128233--+-.20.(本题满分10分)解方程:2121111x x x x +-=--+. 21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x (cm )4.2… 8.2 9.8 体温计的读数y (℃) 35.0…40.042.0(1)求y 关于x 的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD 、CB 相交于点H 、E ,AH =2CH . (1)求sin B 的值;(2)如果CD =5,求BE 的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD . (1)求证:四边形ACED 是平行四边形; (2)联结AE ,交BD 于点G ,求证:DG DFGB DB=.24.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴; (2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD 中,AB =5,BC =8,cos B =45,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长;(2)联结AP ,当AP //CG 时,求弦EF 的长;(3)当△AGE 是等腰三角形时,求圆C 的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案选择题:1.B2.C3.C4.D5.A6.B填空题:7.a2+a8.x≠19.3<x<410.35211.k<112.2620.x=021. 37.522.BE=3 23题24题数学试卷及试题25题数学试卷及试题11。

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).(A)(C);(D).2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为( ).(A)608×108; (B) 60。

8×109; (C) 6。

08×1010;(D)6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B)y=x2+1;(C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是( ).(此题图可能有问题)(A) ∠2;(B) ∠3; (C)∠4;(D) ∠5.15.某事测得一周PM2。

5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是( ).(A)△ABD与△ABC的周长相等; (B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

闸北区九年级数学学科期末练习卷(2014年1月)(考试时间:100分钟,满分:150分)考生注意:1、本试卷含三个大题,共25题;2、答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3、除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、 选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.对一个图形进行放缩时,下列说法中正确的是………………………………………( ▲ )A .图形中线段的长度与角的大小都会改变;B .图形中线段的长度与角的大小都保持不变;C .图形中线段的长度保持不变、角的大小可以改变;D .图形中线段的长度可以改变、角的大小保持不变.2.已知点C 是线段AB 上的一个点,且满足2AC BC AB =⋅,则下列式子成立的是……( ▲ )A .AC BC = B .AC AB = C .BC AB =; D .CB AC = 3.下列关于抛物线213y x =和213y x =-的关系说法中,正确的是 ……………………( ▲ ) A .它们的形状相同,开口也相同; B .它们都关于y 轴对称;C .它们的顶点不相同;D .点(3-,3)既在抛物线213y x =上也在213y x =-上.4.下列关于向量的说法中,不正确...的是 …………………………………………………( ▲ ) A .2()22a b a b +=+; B .22a a = ;C .若2a b = ,则2a b = 或2a b =- ;D .()()m na mn = a .5.已知α、β都是锐角,如果sin cos αβ=,那么α与β之间满足的关系是 ……( ▲ )A .αβ= ;B . 90αβ+=°;C .90αβ-=°;D .90βα-=°.图1F GED C BA 图2l 2l 1F ED C BA图3D CP图5图4GDEFCBA6.如图1,平行四边形ABCD 中,F 是CD 上一点,BF 交AD 的 延长线于G ,则图中的相似三角形对数共有………………( ▲ )A .8对;B . 6对;C .4对;D .2对. 二、填空题(本大题共12题,每题4分,满分48分)7.已知:3:2a b =,则():a b a -= ▲ .8.如图2,已知AD ∥BE ∥CF ,它们依次交直线1l 、2l 于 点A 、B 、C 和点D 、E 、F ,如果DE :EF =3:5,AC=24, 则BC = ▲ .9.在Rt △ABC 和Rt △DEF 中,∠ C =∠ F =90°,当AC =3,AB =5,DE =10,EF =8时, Rt △ABC 和Rt △DEF 是 ▲ 的.(填“相似”或者“不相似”)10.如果两个相似三角形的对应边上的高之比是2:3,则它们的周长比是 ▲ .11.化简:CD AB BC ++=▲ .12.如图3,某人在塔顶的P 处观测地平面上点C 处,经测量∠ P =35°, 则他从P 处观察C 处的俯角是 ▲ 度.13.将二次函数22y x x m =-+的图像向下平移1个单位后,它的顶点 恰好落在x 轴上,则m = ▲ .14.在Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,若AD =9,BD =4,则AC = ▲ . 15.一个边长为3厘米的正方形,若它的边长增加x 厘米,面积随之增加 y 平方厘米,则y 关于x 的函数解析式是 ▲ .(不写定义域) 16.如图4,在平行四边形ABCD 中,AB =12,AD =18, ∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG =,则△CEF 的周长是 ▲ . 17.如图5,点G 是Rt △ABC 的重心,过点G 作矩形GECF , 当GF :GE =1:2时,则∠ B 的正切值为 ▲ . 18.如图6,已知等腰△ABC ,AD 是底边BC 上的高, AD :DC =1:3,将△ADC 绕着点D 旋转,得△DEF ,点A 、C 分别与点E 、F 对应,且EF 与直线AB 重合, 设AC 与DF 相交于点O ,则:AOF DOC S S ∆∆= ▲ .图6DCBA三、解答题(本大题共7题,满分78分)19.(本题满分10分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分2分) 已知:抛物线2y x b x c =-++经过A (1-,0)、B (5,0)两点,顶点为P . 求:(1)求b ,c 的值; (2)求△ABP 的面积;(3)若点C (1x ,1y )和点D (2x ,2y )在该抛物线上,则当1201x x <<<时, 请写出1y 与2y 的大小关系.20.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知:如图7, EF 是△ABC 的中位线,设AF a = ,BC b =.(1)求向量EF 、EA (用向量a 、b表示);(2)在图中求作向量EF 在AB 、AC方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)21.(本题满分10分)如图8,在夕阳西下的傍晚,某人看见高压电线的铁 塔在阳光的照射下,铁塔的影子的一部分落在小山的斜坡 上,为了测得铁塔的高度,他测得铁塔底部B 到小山坡脚 D 的距离为2米,铁塔在小山斜坡上的影长DC 为3.4米, 斜坡的坡度11.875i =:,同时他测得自己的影长NH ﹦336cm , 而他的身长MN 为168cm ,求铁塔的高度.22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)已知:如图9,在△ABC 中,已知点D 在BC 上,联结AD , 使得CAD B ∠=∠,DC =3且ACD ADB S S ∆∆: ﹦1﹕2. (1)求AC 的值;(2)若将△ADC 沿着直线AD 翻折,使点C 落点E 处,AE 交边BC 于点F ,且AB ∥DE ,求EFDADCS S ∆∆的值.图7图8FEDCBA图9图10C BA23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)小华同学学习了第二十五章《锐角三角比》后,对求三角形 的面积方法进行了研究,得到了新的结论: (1)如图10,已知锐角△ABC .求证:1sin 2ABCS AB AC A ∆= ; (2)根据题(1)得到的信息,请完成下题:如图11,在等腰 △ABC 中,AB=AC =12厘米,点P 从A 点出发,沿着边AB 移动, 点Q 从C 点出发沿着边CA 移动,点Q 的速度是1厘米/秒,点P 的速度是点Q 速度的2倍,若它们同时出发,设移动时间为t 秒,问:当t 为何值时,38APQ ABCS S ∆∆=?24.(本题满分12分,第(1)小题满分6分,第(2)小题满分已知:如图12,抛物线2445y x mx =-++与y 轴交于点C 与x 轴交于点A 、B ,(点A 在点B 的左侧)且满足OC =4OA . 设抛物线的对称轴与x 轴交于点M : (1)求抛物线的解析式及点M 的坐标;(2)联接CM ,点Q 是射线CM 上的一个动点,当 △QMB 与△COM 相似时,求直线AQ 的解析式.25.(本题满分14分,第(1)小题满分6分,第(2)小题满分4分,第(3)小题满分4分) 已知:如图13,在等腰直角△ABC 中, AC = BC ,斜边AB 的长为4,过点C 作射线CP //AB ,D 为射线CP 上一点,E 在边BC 上(不与B 、C 重合),且∠DAE =45°,AC 与DE 交于点O .(1)求证:△ADE ∽△ACB ;(2)设CD =x ,tan ∠BAE = y ,求y 关于x 的函数解析式,并写出它的定义域;(3)如果△COD 与△BEA 相似,求CD 的值.CBA图11图13PD O ECBA九年级数学学科期末练习卷(2014年1月)答案及评分参考(考试时间:100分钟,满分:150分)二、填空题(本大题共12题,每题4分,满分48分)7、13. 8、15. 9、相似. 10、2:3.11、AD. 12、55. 13、2. 14、.15、26y x x =+. 16、16. 17、12. 18、3245.三、解答题(本大题共12题,满分78分) 19、(本题满分10分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分2分) 解:(1)把点A (1-,0)、B (5,0)分别代入2y x b x c =-++,得010255b cb c =--+⎧⎨=-++⎩…………………………………………………………(1+1分) 解得45b c =⎧⎨=⎩ . …………………………………………………………(1+1分)(2)由(1)得抛物线解析式245y x x =-++∴2(2)9y x =--+ ∴P (2,9) …………………………………………………………(2分) ∵A (1-,0)、B (5,0)∴AB=6 …………………………………………………………(1分)∴169272ABP S ∆=⨯⨯=. …………………………………………………………(1分)(3)∵抛物线开口向下∴在对称轴直线x=2的左侧y 随着x 的增大而增大∴1y <2y . …………………………………………………………(2分)20、(本题满分10分,第(1)小题满分6分,第(2)小题满分4分) (1)∵EF 是△ABC 的中位线∴EF ∥BC ,EF=12BC ………………………………………………………(2分)∵BC b = ∴EF 12b =………………………………………………………(1分)∵EA EF FA =+ ,AF a =………………………………………………………(2分) ∴12EA b a =-. ………………………………………………………(1分)CFE123 (2)所以EA、ED是EF在AB和AC方向上的分向量.……………………………(2分)(评分说明:准确作出向量EA、ED各得1分,结论2分)21、(本题满分10分)解:过点C作CE⊥BD于点E,延长AC交BD延长线于点F ………………(1分)在Rt△CDE中,11.875i=:∴181.87515CEDE==………………………(1分)设CE=8x ,DE=15x ,则CD=17x∵DC=3.4米∴CE=1.6米,DE=3米………………………(2分)在Rt△MNH中,tan∠MHN16813362MNNH===…………………(1分)∴在Rt△ABF中,tan∠F1.6CEEF EF===tan∠MHN12=…………………………(1分)∴EF=3.2米…………………………(1分)即BF=2+3+3.2=8.2米…………………………(1分)∴在Rt△CEF中,tan∠F12ABBF==∴AB=4.1米…………………………(1分)答:铁塔的高度是4.1米.…………………………(1分)22、(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)解:(1)∵ACD ADBS S∆∆:﹦1﹕2∴CD:BD=1:2 ……………………………(1分)∵DC=3 ∴BD=6 ……………………………(1分)在△ACD和△BCA中,∠CAD=∠B,∠C=∠C∴△ACD∽△BCA ……………………………(1分)∴CD ACAC=即2AC CD CB= …………………………………………………(1分)∴AC=…………………………………………………(1分)(2)∵翻折∴∠C=∠E,∠1=∠2,DE=DC=3 …………………………………………………(1分)∵AB∥DE∴∠3=∠B ……………………………………………………………………(1分)∵∠1=∠B∴∠1=∠3…………………………………………………(1分)∴△ACD∽△DEF …………………………………………………(1分)∴21()3EFDADCS DES AC∆∆==.…………………………………………………(1分)FEDCBA图9DCBA 图1023.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)解:(1)如图10,过点C 作CD ⊥ AB 于点D ……………(1分)在Rt △ADC 中,sinA=CD AC……………………………(1分)∴CD=AC.sinA ……………………………(1分) ∵12ABC S AB CD ∆= ……………………………(1分) ∴1sin 2ABCS AB AC A ∆= .……………………………(1分) (2)根据题意:AP=2t 厘米 ,CQ=t 厘米∴AQ=(12—t )厘米 ………………………………(1分) 由(1)得:1sin 2APQS AP AQ A ∆= …………………(1分) ∴1sin 2(12)32112128sin 2APQ ABC AP AQ A S t t S AB AC A ∆∆-===⨯ …………(1分) 化简得:212270t t -+=…………………………………(1分) 解得19t =(舍),23t = …………………………………(2+1分)即当t=3秒时,38APQ ABC S S ∆∆=. 24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6解:(1)根据题意:C (0,4)……………………………(1∵OC=4OA∴A (1-,0)………………………………………………(1把点A 代入得0=445m --+ ……………………………(1解得16=5m………………………………………………(1∴抛物线的解析式2416455y x x =-++…………………(12416455y x x =-++24362)55x =--+( ∴ (20)M , ………………………………………………(1分) (2)根据题意得:BM=3,tan ∠CMO= 2,直线CM :y=2-(i )当∠COM=∠MBQ=90°时,△COM ∽△QBM ∴tan ∠BMQ=2BQBM= ∴BQ=6即Q (5,6-) ……………………………………(2分) ∴AQ :1y x =-- ……………………………………(1分) (i i )当∠COM=∠BQM=90°时,△COM ∽△BQM 同理Q (13655,-) …………………………………(2分) B图11∴AQ :1133y x =-- …………………………………(1分)25.(本题满分14分,第(1)小题满分6分,第(2)小题满分4分,第(3)小题满分4分) (1)证明:∵△ACB 是等腰直角三角形∴∠CAB =∠B=45° ∵CP//AB ∴∠DCA =∠CAB=45° …………………………………………………(1分) ∴∠DCA =∠B …………………………………………………(1分) ∵∠ DAE=45°∴∠ DAC+∠ CAE=∠ CAE+∠ EAB∴∠ DAC =∠ EAB …………………………………………………(1分) ∴△DCA ∽△EAB …………………………………………………(1分)∴AD ACAE AB =即AD AE AC AB =且∠ DAE =∠ CAB=45° ……………………………(1分) ∴△ADE ∽△ACB . ……………………………………………(1分) (2)过点E 作EH ⊥AB 于点H ……………………………………(1分) 由(1)得△DCA ∽△EAB ∴DC ACEB AB =∵△ACB 是等腰直角三角形,且CD=x ∴x …………………(1分) ∴EH=BH= x ∴AH=4—x在Rt △AEH 中,tan ∠BAE =EH AH即y =4x x -………………………………………………………(1分)定义域0<x <2. ………………………………………………………(1分)(3)若△COD 与△BEA 相似,又△BEA 与相似△DCA 即△COD 与△DCA 相似∴只有△DCO ∽△ACD ……………………………………………(1分)∴2CD CO CA = ∵∠DAO =∠CEO ∴∠CEO =∠EAB ∴tan ∠CEO =y 即y COCE=∴()4xCO x =- …………………………………………(1分) ∴2x=()4x x- 解得14x =-,24x =+……………………………(1分)经检验12,x x都是原方程的实数根,24x =+…(1分)图13PDOC B AH∴当CD=4 ,△COD与△BEA相似.。

相关文档
最新文档