第十九中学数学九年级下导学稿1.3
2021年春人教版九年级数学下册全册导学案
第二十六章反比例函数26.1 反比例函数26.1.1 反比例函数——反比例函数的概念和解析式一、新课导入1.课题导入情景:如图,舞台灯光可以瞬间将黑夜变成如白昼般明亮,这样的效果是如何实现的?是通过改变电阻来控制电流的变化实现的.因为当电流I较小时,灯光较暗;反之,当电流I较大时,灯光较亮.问题:电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时,你能用含有R的代数式表示I吗?那么I是R的函数吗?I是R的什么函数呢?本节课我们开始学习反比例函数.(板书课题)2.学习目标(1)理解反比例函数的概念.(2)会求反比例函数式.3.学习重、难点重点:反比例函数的概念,能求反比例函数式.难点:反比例函数的概念.二、分层学习1.自学指导(1)自学内容:教材P2.(2)自学时间:5分钟.(3)自学方法:探究、思考、归纳、总结.(4)自学参考提纲:①形如y=kx(k为常数,k≠0)的函数叫做反比例函数,自变量x的取值范围是x≠0.②由y=kx可得,xy=k,若y=kx-n是反比例函数,则n=1.③反比例函数y=212mx--的比例系数k是122m-2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否会列函数关系式,是否会判断反比例函数.②差异指导:指导学生从形式和自变量的取值范围两个方面对比正比例函数理解反比例函数.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)反比例函数的定义;反比例函数式的变式;自变量x的取值范围;k的值.(2)练习:①写出下列问题中两个变量之间的函数关系式,并指出比例系数k的值.a.一个游泳池的容积为2000 m3,游泳池注满水所用的时间t(单位:h)随注水速度v(单位:m3/h) 的变化而变化;答案:2000,2000. t kv==b.某长方体的体积为1000 m3,长方体的高h(单位:m)随底面积S(单位:m2) 的变化而变化;答案:1000,1000.h kS==c.一个物体重100 N,物体对地面的压强p(N/m2)随该物体与地面的接触面积S(m2)的变化而变化.答案:100,100.p k S== ②下列函数中哪些是反比例函数?哪些是正比例函数?并指出比例系数. y=4xy x =3 y=2x - y=6x+1 y=x 2-1 y=21xxy=123 答案:反比例函数:y=2x-,比例系数为-2;xy=123,比例系数为123. 正比例函数:y=4x ,比例系数为4;yx=3,比例系数为3. ③若函数y=63mx- 是反比例函数,则m 的取值范围是m≠2.1.自学指导(1)自学内容:教材P3例1. (2)自学时间:5分钟.(3)自学方法:先学习例题的方法,然后模仿例题解答自学参考提纲中的问题.(4)自学参考提纲:①已知y 是x 的反比例函数,求其解析式时,一般先设y=kx,再由已知条件求出k 即可.②已知y 是x 的反比例函数,则y 与x 成反比例吗?如果y 与x 2成反比例,怎样设其解析式?y 与x 成反比例.可设y=2k x . ③已知y 与x2成反比例,并且当x=3时,y=4.a.写出y 关于x 的函数解析式;236y x ⎛=⎫ ⎪⎝⎭b.当x=1.5时,求y 的值;(y=16)c.当y=6时,求x 的值.(x=±6) 2.自学:学生可结合自学指导进行自学. 3.助学(1)师助生:①明了学情:关注学生对成反比例与反比例函数的理解. ②差异指导:指导学生辨析反比例函数与成反比例. (2)生助生:同桌之间、小组内交流、研讨. 4.强化:用待定系数法求反比例函数式的要点. 三、评价 1.学生自我评价.2.教师对学生的评价:(1)表现性评价;(2)纸笔评价(评价检测).3.教师的自我评价(教学反思).在学习了一次函数和二次函数后,反比例函数是初中学习阶段的第三种函数类型.在反比例函数教学过程中,应注意将反比例函数和正比例函数进行类比,帮助学生区分其异同,真正理解反比例函数的概念.另外要辨析反比例函数与成反比例的区别,引导学生通过交流研讨来弄清其区别.本节的教学重点是理解反比例函数的概念和求解函数解析式,教学过程中应强调自变量的取值范围以及反比例函数与实际问题的联系.教师最好能够多举实例,联系生活实际,将抽象问题具体化,从而帮助学生理解新知.一、基础巩固(70分)1.(10分)下列等式中,y 是x 的反比例函数的是(B ) A.y=21x 3 C.y=5x+6 D.x=1y2.(10分) 矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解析式为4y x=3.(10分) 面积为30 cm 2的三角形的底y (cm )与底边上的高x (cm )的函数关系式是60y x=4.(10分) 指出下列函数中哪些是反比例函数,并指出k 的值. (1)y=2x(2)y=53x - (3)y=x 2 (4)y=2x+1解:(2)y=53x -是反比例函数,k=53-. 5.(10分) 写出下列函数解析式,并指出它们各是什么函数. (1)体积是常数V 时,圆柱的底面积S 与高h 的关系;(2)柳树乡共有耕地S 公顷,该乡人均耕地面积y 与全乡总人口x 的关系. 解:(1)S=V h ,反比例函数.(2)y=Sx,反比例函数. 6.(10分) 已知y 与x2成反比例,并且当x=6时y=5. (1)写出y 与x 之间的函数解析式; (2)求当x=12时y 的值. 解:(1)设y=2k x ,当x=6时,y=5,∴5=26k ,解得k=180,∴y=2180x. (2)把x=12代入y=2180x ,得y=218012=54 7.(10分) 已知y 与x 的部分取值满足下表:试猜想y 与x 的函数关系可能是你们学过的哪类函数,并写出这个函数的解析式.解:猜想:y 是x 的反比例函数,解析式为y=6x-. 二、综合应用(20分)8.(10分) 如果y 是z 的反比例函数,z 是x 的反比例函数,则y 是x 的什么函数?正比例函数.9.(10分) 如果y 是z 的反比例函数,z 是x 的正比例函数,则y 是x 的什么函数?反比例函数.三、拓展延伸(10分)10.(10分) 已知函数y=y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x=1时,y=4;当x=2时,y=5.(1)求y 与x 的函数关系式; (2)当x=4时,求y 的值.解:(1)设y1=k1x,y2=2k x,则y=k1x+2k x,∵当x=1时,y=4;当x=2时,y=5,∴k1+k2=4,2k1+2k x=5,∴k1=k2=2,∴y=2x+2x.(2)当x=4时,y=2×4+24=172.26.1.2 反比例函数的图象和性质第1课时反比例函数的图象和性质(1)——反比例函数的图象和性质一、新课导入1.课题导入我们都知道一次函数的图象是一条直线,二次函数的图象是抛物线,那么反比例函数的图象是什么样的呢?这节课我们一起来学习反比例函数的图象.2.学习目标(1)会用描点法画反比例函数的图象.(2)根据反比例函数的图象探究其性质.3.学习重、难点反比例函数的图象和性质.二、分层学习1.自学指导(1)自学内容:教材P4例2~P5思考.(2)自学时间:10分钟.(3)自学方法:学生观察、分析及归纳,通过对比理解进行总结.(4)自学参考提纲:①画出反比例函数y=6x与y=12x的图象.列表:描点连线:②观察反比例函数y=6x和y=12x的图象.a.两个函数的图象分别位于哪些象限?b.在每一个象限内,随着x的增大,y如何变化?你能由它们的解析式说明理由吗?③k>0函数y=kx的图象分别位于第一、第三象限在每一个象限内,y随x的增大而减小.2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否会列表,是否理解表中数据的意义以及画图中存在的问题.②差异指导:根据学情分类指导.(2)生助生:同桌之间、小组内交流、研讨.4.强化:k>0函数的图象分别位于第一、第三象限在每一个象限内,y随x的增大而减小.1.自学指导(1)自学内容:教材P5探究~P6归纳.(2)自学时间:5分钟.(3)自学方法:学生回顾、分析、对比及归纳,进行总结.(4)自学参考提纲:①在平面直角坐标系中画出反比例函数y=3x的图象a.函数的图象位于哪些象限?b.在每一象限内,随着x的增大,y如何变化?你能用它们的解析式说明理由吗?②k<0函数y=kx的图象分别位于第二、第四象限在每个象限内,y都随x的增大而增大.③总结反比例函数y=kx的图象和性质.2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否会列表,是否理解表中的数据的意义以及画图中存在的问题.②差异指导:根据学情分类指导.(2)生助生:同桌之间、小组内交流、研讨.4.强化:总结反比例函数的图象和性质.三、评价1.学生自我评价.2.教师对学生的评价:(1)表现性评价;(2)纸笔评价(评价检测).3.教师的自我评价(教学反思).教学过程中指导学生用描点法画出反比例函数图象,学生通过观察图象总结出函数的性质.在教学条件允许的情况下,可借助计算机进行动态演示.这样,学生能够更直观、更清楚地看清函数的变化,从而使学生加深对函数性质的理解、自己总结规律、更好地帮助记忆.通过本课的教学,教师可深刻地体会到运用信息技术可加强数学课堂教学中的灵活性、直观性.虽然制作起来比较麻烦,但能使课堂教学达到预想不到的效果,使课堂教学效率也明显提高一、基础巩固(70分)1.(10分)下列图象中是反比例函数的图象的是(D)2.(10分) 函数y=-2x的图象大致是(A)3.(10分) 如图是下列四个函数中哪一个函数的图象(C)A.y=5xB.y=2x+3C.y=4xD.y=-3x4.(10分) 反比例函数y=5x的图象位于第一、第三象限.5.(10分) 反比例函数y=kx的图象如图所示,则k<0;在图象的每一支上,y随x的增大而增大.6.(20分) 在同一坐标系上画出函数y=4x与y=4x的图象.二、综合应用(20分)7.(20分) 指出下列函数对应的图象:(1)y=2x; (2)y=2x; (3)y=-2x; (4)y=-2x.解:(1)y=2x的图象是D;(2)y=2x的图象是A;(3)y=-2x的图象是C;(4)y=-2x的图象是B.三、拓展延伸(10分)8.(10分) 下表反映了y与x之间存在某种函数关系,现给出了几种可能的函数关系式:y=x+7,y=x-5,y=-6x,y=13x-1.(1)从所给出的几个式子中选出一个你认为满足上表数据关系的函数表达式6yx=-;(2)请说明你选择这个函数表达式的理由.解:∵-6×1=-5×1.2=3×(-2)=4×(-1.5)=-6,∴6yx=-.26.1.2 反比例函数的图象和性质第2课时反比例函数的图象和性质(2)——反比例函数的图象和性质的运用一、新课导入1.课题导入问题:反比例函数的图象是什么?它有哪些性质?在学生回答问题后,提出本节任务,由此导入课题.2.学习目标(1)能灵活运用反比例函数的图象和性质解决一些较综合的问题.(2)领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法.3.学习重、难点重点:利用反比例函数的图象和性质解决综合问题.难点:学会从图象上分析、解决问题.二、分层学习1.自学指导(1)自学内容:教材P7例3.(2)自学时间:5分钟.(3)自学方法:结合自学参考提纲自学.(4)自学参考提纲:①已知反比例函数的图象上一点的坐标,怎样判断其图象位于哪些象限?②若点(a,b)在y=kx的图象上,则ab=k.③怎样运用待定系数法求反比例函数的解析式?④练习:已知一个反比例函数的图象经过点A(3,-4).a.这个函数的图象位于哪些象限?在图象的每一支上,y随x的增大如何变化?这个函数的图象位于第二、第四象限;在图象的每一支上,y随x的增大而增大.b.点B(-3,4),C(-2,6),D(3,4)是否在这个函数的图象上?点B、C在这个函数图象上,点D不在这个函数的图象上.2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否会通过观察图象理解反比例函数的性质.②差异指导:关注学困生和中间层的学生对性质的认识.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)反比例函数的图象上一点的坐标判断其图象所在的象限根据图象说性质.(2)若点(a,b)满足解析式y=kx(即ab=k),则点(a,b)在此函数的图象上.1.自学指导(1)自学内容:教材P7例4.(2)自学时间:6分钟.(3)自学方法:先学习例题中的方法,然后模仿例题解答自学参考提纲中的问题.(4)自学参考提纲:①反比例函数y=kx的图象既是中心对称图形,其对称中心是原点,又是轴对称图形,其对称轴是直线y=x和y=-x②怎样比较反比例函数y=kx的图象上横坐标已知的两点的纵坐标的大小?举例说明.③右图是反比例函数7nyx+=的图象的一支,根据图象回答下列问题:a.图象的另一支位于哪个象限?常数n的取值范围是什么?图象的另一支位于第四象限,n<-7.b.在这个函数图象的某一支上任取点A (a,b)和点B (a′,b′).如果a<a′,那么b和b′有怎样的大小关系?(b<b′)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否会顺利进行图象的位置、k的符号和函数的增减性之间的转换.②差异指导:根据学情分类指导.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)反比例函数图象上点的横纵坐标的积与k的关系;比较两个点的纵坐标的大小的方法.(2)练习:已知点A(x1,y1),B(x2,y2)在反比例函数1yx=的图象上,如果x1<x2,而且x1,x2同号,那么y1和y2有怎样的大小关系?为什么?答案:y1>y2.因为函数1yx=的图象位于第一、第三象限,所以在每个象限内,y随x的增大而减小.因为x1<x2,所以y1>y2.三、评价1.学生自我评价.2.教师对学生的评价:(1)表现性评价;(2)纸笔评价(评价检测).3.教师的自我评价(教学反思).反比例函数的图象和性质是反比例函数的教学重点,本课时的学习让学生掌握反比例函数的图象和性质的应用.学生在学习过程中会存在一些问题,应引导学生类比一次函数和二次函数进行学习,课堂上多一些比较,多一些交流,让学生领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法.一、基础巩固(70分)1.(10分)已知反比例函数2kyx-=的图象位于第一、第三象限,则k的取值范围是(A)A.k>2B.k≥2C.k≤2D.k<22.(10分)如果点(3,-4)在反比例函数y=kx的图象上,那么下列各点中,在此图象上的是(C)A.(3,4)B.(-2,-6)C.(-2,6)D.(-3,-4)3.(10分)关于反比例函数2yx=-的图象,下列说法正确的是(C)A.经过点(-1,-2)B.y随x的增大而增大C.当x<0时,图象在第二象限D.y随x的增大而减小4.(10分)已知函数3yx=(x>0),那么(A)A.函数图象在第一象限内,且y随x的增大而减小B.函数图象在第一象限内,且y随x的增大而增大C.函数图象在第二象限内,且y随x的增大而减小D.函数图象在第二象限内,且y随x的增大而增大5.(10分)(多选)函数y kx=和y=kx(k≠0)的图象在同一平面直角坐标系中大致是(BD)6.(10分)反比例函数23kyx-=的图象在每个象限内,y随x的增大而增大,则k32<.7.(10分)正比例函数y=x 的图象与反比例函数y=kx的图象有一个交点的纵坐标是2,求:(1)当x=-3时,反比例函数y 的值;(2)当-3<x <-1时,反比例函数y 的取值范围解:(1)由题意知:正比例函数与反比例函数图象的一个交点是(2,2),则k=2×2=4,即反比例函数的解析式为4y x =.当x=-3时,4433y ==--. (2)当-3<x <-1时,反比例函数的图象在第三象限,y 随x 的增大而减小,又∵当x=-1时,y=-4,∴-4<y <43-.二、综合应用(20分)8.(20分) 已知反比例函数w y x-=的图象的一支位于第一象限. (1)图象的另一支位于哪个象限?常数w 的取值范围是什么?(2)在这个函数图象的某一支上任取点A(a ,b )和点B(a′,b′).如果b >b′,那么a 和a′有怎样的大小关系?解:(1)图象的另一支位于第三象限,w >2.(2)a <a′. 三、拓展延伸(10分)9.(10分) 已知点A (x 1,y 1)、B (x 2,y 2)是反比例函数y=kx(k >0)图象上的两点,若x 1<0<x 2,则有(A )A.y 1<0<y 2B.y 2<0<y 1C.y 1<y 2<0D.y 2<y 1<026.2 实际问题与反比例函数第1课时实际问题与反比例函数(1)——面积问题与装卸货物问题一、新课导入1.课题导入前面我们结合实际问题讨论了反比例函数,看到了反比例函数在分析和解决问题中所起的作用.这节课我们进一步探讨如何利用反比例函数解决实际问题.2.学习目标(1)掌握常见几何图形的面积(体积)公式.(2)能利用工作总量、工作效率和工作时间的关系列反比例函数解析式.(3)从实际问题中抽象出数学问题,建立函数模型,运用所学的数学知识解决实际问题.3.学习重、难点重点:面积问题与装卸货物问题.难点:分析实际问题中的数量关系,正确写出函数解析式.二、分层学习1.自学指导(1)自学内容:教材P12例1.(2)自学时间:8分钟.(3)自学指导:抓住问题的本质和关键,寻求实际问题中某些变量之间的关系.(4)自学参考提纲:①圆柱的体积=底面积×高,教材P12例1中,圆柱的高即是d,故底面积410Sd .②P12例1的第(2)问实际是已知S=500,求d.③例1的第(3)问实际是已知d=15,求S.④如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m,设AD的长为x m,DC的长为y m.a.求y与x之间的函数关系式;60 yx ⎛=⎫ ⎪⎝⎭b.若围成矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC 的长都是整米数,求出满足条件的所有围建方案.(AD=5 m,DC=12 m;AD=6m,DC=10 m;AD=10 m,DC=6 m.)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否掌握利用面积(体积)公式列反比例函数关系式.②差异指导:辅导关注学困生.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)教材例1的解题思路和解答过程.(2)面积公式与体积公式中的反比例关系.(3)练习:已知某矩形的面积为20 cm2.①写出其长y与宽x之间的函数表达式;②当矩形的长为12 cm时,宽为多少?当矩形的宽为4 cm,长为多少?③如果要求矩形的长不小于8 cm,其宽最多是多少?答案:①20yx=②53cm;5 cm③52cm1.自学指导(1)自学内容:教材P13例2.(2)自学时间:5分钟.(3)自学方法:认真分析例题,积极思考,结合自学参考提纲自学. (4)自学参考提纲:①工作总量、工作时间和工作效率(或速度)之间的关系是怎样的?②教材例2中这艘船共装载货物240吨,卸货速度v(吨/天)与卸货时间t(天)的关系是240 vt =.③如果列不等式求“平均每天至少要卸载多少吨”,你会怎样做?写出你的解答过程.④一司机驾汽车从甲地去乙地,以80千米/小时的平均速度用6小时到达目的地.a.当他按原路匀速返回时,汽车速度v(千米/小时)与时间t(小时)有怎样的函数关系?480 vt⎛=⎫ ⎪⎝⎭b.如果该司机必须在4小时之内返回甲地,则返程时的速度不得低于多少?(120千米/小时)c.若返回时,司机全程走高速公路,且匀速行驶,根据规定:最高车速不得超过120千米/小时,最低车速不得低于60千米/小时,试问返程所用时间的范围是多少?(4~8小时)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否会列函数关系式,是否会根据反比例函数关系解决实际问题.②差异指导:指导学生从形式和自变量的取值范围两个方面对比正比例函数理解反比例函数.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)教材例2的解题思路和解答过程.(2)练习:某学校食堂为方便学生就餐,同时又节约成本,常根据学生多少决定开放多少售饭窗口,假定每个窗口平均每分钟可以售饭给3个学生,开放10个窗口时,需1小时才能对全部学生售饭完毕.①共有多少学生就餐?②设开放x个窗口时,需要y小时才能让当天就餐的同学全部买上饭,试求出y 与x 之间的函数关系式;③已知该学校最多可以同时开放20个窗口,那么最少多长时间可以让当天就餐的学生全部买上饭?答案:①1800个;②10y x=;③30分钟. 三、评价1.学生自我评价.2.教师对学生的评价:(1)表现性评价;(2)纸笔评价(评价检测).3.教师的自我评价(教学反思).函数是初中数学的难点之一,当函数遇到实际应用,可谓是难上加难,但也使解题多了几种途径.对于这些实际问题,要善于运用函数的观点去处理.因此在教学过程要注意培养学生的审题能力,理解文字中隐藏的已知条件,合理地建立函数模型,然后根据模型找出实际生活中的数据与模型中的哪些量相对应.将实际问题置于已有的知识背景中,用数学知识重新解释这是什么,可以是什么,逐步培养解决实际问题的能力.一、基础巩固(70分)1.(10分)某轮船装载货物300吨,到港后,要求船上货物必须不超过5日卸载完毕,则平均每天至少要卸载(B )A.50吨B.60吨C.70吨D.80吨2.(10分) 用规格为50 cm×50 cm 的地板砖密铺客厅恰好需要60块.如果改用规格为a cm×a cm 的地板砖y 块也恰好能密铺该客厅,那么y 与a 之间的关系为(A ) A.2150000y a = B.150000y a = C.y=150000a 2 D.y=150000a3.(10分) 如果以12 m 3/h 的速度向水箱注水,5 h 可以注满.为了赶时间,现增加进水管,使进水速度达到Q (m 3/h ),那么此时注满水箱所需要的时间t (h )与Q (m 3/h )之间的函数关系为(A ) A.60t Q = B.t=60QC. 6012t Q =- D.6012t Q=+ 4.(10分) 如果等腰三角形的底边长为x ,底边上的高为y ,当它的面积为10时,x 与y 的函数关系式为(D )A.10yx= B.5yx= C.20xy= D.20yx=5.(10分) 已知圆锥的体积V=13Sh(其中S表示圆锥的底面积,h表示圆锥的高).若圆锥的体积不变,当h为10 cm时,底面积为30 cm2,则h关于S的函数解析式为300 hS =.6.(10分)小艳家用购电卡购买了1000度电,那么这些电能够使用的天数m 与小艳家平均每天的用电度数n有怎样的函数关系?如果平均每天用电4度,这些电可以用多长时间?解:1000mn=;250天.7.(10分)某农业大学计划修建一块面积为2×106 m2的长方形试验田.(1)试验田的长y(单位:m)关于宽x(单位:m)的函数关系式是什么?(2)如果试验田的长与宽的比为2∶1,则试验田的长与宽分别是多少?解:(1)6210yx⨯=;(2)长:2×103 m,宽:103 m.二、综合应用(20分)8. (10分)某地计划用120~180天(含120天与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万立方米.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万立方米)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000立方米,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万立方米?解:(1)360yx=(2≤x≤3);(2)设原计划每天运送土石方x万立方米,实际每天运送土石方(x+0.5)万立方米.则360360240.5x x+=+().解得x=2.5.因此,原计划每天运送土石方2.5万立方米,实际每天运送土石方3万立方米.9.(10分)正在新建中的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103 m2.(1)所需瓷砖的块数n与每块瓷砖的面积S有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80 cm2,灰、白、蓝瓷砖使用比例为2∶2∶1,则需三种瓷砖各多少块?解:(1)n=5×103S;(2)设需灰、白、蓝三种瓷砖分别为2x、2x、x块.(2x+2x+x)·80=5×103×104x=1.25×105因此,需灰、白、蓝三种瓷砖分别为2.5×105块、2.5×105块、1.25×105块.三、拓展延伸(10分)10.(10分) 水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现这种海产品每天的销售量y(千克)是销售价格x(元/千克)的函数,且这种函数是反比例函数、一次函数中的一种.(1)请你选择一种合适的函数,求出它的函数关系式,并简要说明不选择另外一种函数的理由;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且以后每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?解:(1)12000yx;不选一次函数是因为y与x之间不成正比例关系.(2)30+40+48+12000240+60+80+96+100=504(千克), (2104-504)÷12000150=20(天). (3)(20-15)×12000150÷2=200(千克),12000÷200=60(元/千克).26.2 实际问题与反比例函数第2课时实际问题与反比例函数(2)——杠杆问题和电学问题一、新课导入1.课题导入古希腊科学家阿基米德曾说过:“给我一个支点,我可以把地球撬动.”你认为这可能吗?为什么?2.学习目标(1)探索运用反比例函数来解决物理中的实际问题.(2)能综合运用物理杠杆知识、电学知识和反比例函数的知识解决一些实际问题.3.学习重、难点运用反比例函数的知识解释物理现象.二、分层学习1.自学指导(1)自学内容:教材P14例3.(2)自学时间:10分钟.(3)自学方法:紧扣物理公式建立反比例函数模型.(4)自学参考提纲:①什么是杠杆定律?②教材例3第(2)问如何用不等关系来解决?③用反比例函数的知识解释:在我们使用撬棍时,为什么动力臂越长就越省力?④现在要求取消市场上使用杆秤的呼声越来越高.原因在于,一些不法商贩在卖货时将秤砣挖空或更换较小秤砣,使秤砣变轻,从而欺骗顾客.a.如图1,2所示,对于同一物体,哪个用了较轻的秤砣?b.在称同一物体时,秤砣到支点的距离y与所用秤砣质量x之间满足反比例关系;c.当秤砣变轻时,称得的物体变重,这正好符合哪个函数的哪些性质?。
九年级数学导学案全册
九年级数学导学案全册一、整体介绍九年级数学导学案全册是为了帮助九年级学生系统地学习和掌握数学知识而设计的教学辅助材料。
本导学案旨在以清晰的结构和详细的内容,帮助学生理解和掌握每个知识点,并培养学生的问题解决能力和数学思维。
二、导学目标本导学案的目标是帮助学生在九年级学习阶段掌握以下内容:1. 复习和巩固七、八年级学到的数学知识;2. 学习并理解九年级新引入的数学概念和方法;3. 培养学生的问题解决能力和逻辑思维。
三、具体内容1. 单元一:代数运算本单元将复习和巩固整数、有理数的加减乘除运算,并引入一次、二次方程的解法。
通过练习提高学生的计算能力和代数运算技巧。
2. 单元二:平面几何本单元将复习和巩固平面图形的性质和计算方法,包括三角形、四边形和圆的周长、面积计算。
同时引入椭圆、双曲线等二次曲线的基本性质和计算方法。
3. 单元三:立体几何本单元将复习和巩固立体图形的性质和计算方法,包括球体、圆柱体、圆锥体和棱柱、棱锥的体积和表面积计算。
同时引入三角锥、圆锥、三角棱柱等复杂立体图形的计算方法。
4. 单元四:数据统计与概率本单元将复习和巩固数据统计中的表格、图表的制作和分析方法,同时引入概率的基本概念和计算方法。
通过实际案例和练习,培养学生的数据分析和概率计算能力。
四、学习方法和建议1. 在学习过程中,学生应注意理解每个知识点的定义、性质和计算方法。
2. 学生可以通过课堂讲解、课后习题练习以及自主学习的方式来巩固所学内容。
3. 遇到困难和疑惑时,学生可以寻求老师和同学的帮助,或参考相关的数学学习资料。
五、总结九年级数学导学案全册是九年级学生学习数学的重要辅助材料。
通过学习和掌握本导学案中的知识,学生将能够提高数学思维能力,解决实际问题,并为高中数学的学习打下坚实的基础。
希望本导学案能够帮助九年级学生在数学学习中取得优秀的成绩,为未来的学习和发展打下坚实的基础。
勾股定理导学案一
结论 2:等腰直角三角形三边之间的特殊关系: 斜腰直角三角形有上述性质,其它直角三角形也有这个性质吗? 观察下面两幅图:
C A B B
填表: A 的面积 左图 右图
C A
B 的面积
C 的面积
你是怎样得到正方形 C 的面积的?与同伴交流.
2
鸡西市第十九中学初三数学组
B
(3)已知 c=17,b=8, 求 a。
(4)已知 a:b=1:2,c=5, 求 a。
(5)已知 b=15,∠A=30°,求 a,c。
2、已知 ABC ,AB=17 AC=10,BC 边上高 AD=8,则 BC 长为
3
。
鸡西市第十九中学初三数学组
3、以直角三角形的两条直角边为边向外作正方形,他们它们面积分别是 6 和 3.则斜边长是 。 。 BC= .
【实验探究】 (1) 、 同学们画一个直角边为 3cm 和 4cm 的直角△ABC, 用刻度尺量出 AB 的长。
(2) 、再画一个两直角边为 5 和 12 的直角△ABC,用刻度尺量 AB 的长
问题: 发现 32 + 42 与 52 ,52 + 122 和 132 的关系吗?, 即 32 + 4 2
鸡西市第十九中学初三数学组
鸡西市第十九中学学案
班级 姓名
学科 时间 学习 目标 重点 难点
课题 勾股定理 课型 2014 年 月 日 人教版 1.探索勾股定理,记住勾股定理的内容. 2.能运用勾股定理由直角三角形的已知两边求第三边. 3.能运用勾股定理解一些简单的实际问题 勾股定理的内容及证明。 勾股定理的证明
猜想命题: 如果直角三角形的两条直角边分别为 a 、 b ,斜边为 c ,那么 _________________ 【试着填一填】在 Rt△ABC 中,∠C=90°①若 a=6,b=8,则 c=______; ②若 a=15,c=25,则 b=______; ③若 c=61,b=60,则 a=____ _。 【勾股定理的验证】 (赵爽弦图) 已知:在△ABC 中,∠C=90°,∠A、∠B、∠C 的对边为 a、b、c。
人教版九年级数学下册全册导学案
学科数学课题26.1.2反比例函数的图象和性质班级授课者时间审核者课型学习目标1.通过画反比例函数图象,训练作图能力 2.通过从图象中获取信息.训练识图能力.3.通过对图象性质的研究,训练探索能力和语言组织能力.重点会确定一个单项式的系数和次数;难点会确定一个单项式的系数和次数;探究新知(一)小组合作学习自学主题一:自学教材P4页.做—做观察反比例函数y=x2,y=x4,y=x6的图象它们有什么共同点? 总结它们的共同特征.(1)函数图象分别位于哪几个象限?(2)在每一个象限内,随着x值的增大.y的值是怎样变化的?能说明这是为什么吗?(3)反比例函数的图象可能与x轴相交吗?可能与y轴相交吗?为什么?请大家先独立思考,再互相交流得出结论.对于问题 (3),可能会有学生认为图象在逐渐接近x轴,y轴,所以当自变量取很小或很大的数时,图象能与x轴y轴相交.可以从函数式的定义域、函数与方程等角度进行解释。
总结:当k>0时,函数图象分别位于第象限内,并且在每一个象限内,y随x 的增大而 .主题二:议一议用类推的方法来研究y=-x2,y=-x4,y=-x6的图象有哪些共同特征?结论:反比例函数y =xk的图象,当k>0时,在每一象限内,y 的值随x 值的增大而 ;当k<0时,在每一象限内,y 的值随x 值的增大而 . 对 学对子间检查自学内容并相互讨论 群 学 1、组长带领组员进行讨论上述的相关问题,并检查本组成员的完成情况。
2、组长组织好本组要展示的内容和展示人员的安排。
(二)展示展示一:主题一:反比例函数的图像 展示二:主题一:反比例函数的性质课堂练习1.已知反比例函数xky -=3,分别根据下列条件求出字母k 的取值范围:(1)函数图象位于第一、三象限(2)在第二象限内,y 随x 的增大而增大2.函数y =-ax +a 与xay -=(a ≠0)在同一坐标系中的图象可能是( )3.在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数分析式为课堂小结通过本节课的学习,你有什么收获和体会?还有什么疑惑?课后练习1.若函数x m y )12(-=与xmy -=3的图象交于第一、三象限,则m 的取值范围是 2.反比例函数xy 2-=,当x =-2时,y = ;当x <-2时;y 的取值范围是 ; 当x >-2时;y 的取值范围是学科数学课题27.1图形的相似班级授课者时间审核者课型学习目标1.通过对生活中的事物或图形的观察,从而加以识别相似的图形.2.通过观察、归纳等数学活动,能用所学的知识去解决问题。
北师大版数学九年级下册导学案
解:甲梯中,tan =
乙梯中,tan =
,
∵ tan
tan ,∴
5m
梯更陡.
α 8m
甲
13m 5m
β
乙
第1页 共 165 页
北师大版九年级数学学案 九年级下册数学
例 2:在△ACB 中,∠C = 90°,AC = 6, tan B 3 ,求 BC、AB 的长.
4
分析:通过正切函数的定义求直角三角形其它边的长.
∴△AB1C1∽
∴ B1C1 = AC1
从而说明当锐角 A 大小不变时,∠A 的对边与其邻
边的比值
.
3.正切定义:把∠A 的对边与邻边的比叫做∠A 的正切,记作 tanA,即
tan
A
A的( A的(
) )=
a b
B
B1
A C1
第 2 题图
B
斜边c
A的对边a
α
h
CA
A的邻边b C
l 第 5 题图
第 3 题图
O
B
C
D
A
四、课堂检测
1.某商场有一自动扶梯,其倾斜角为 30°.高为 7 m,扶梯的长度
是
.
2.Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为 a、b、c,则当 a=5、
c=13 时,有 sinA= ,cosA= .
3.Rt△ABC 中,∠C=90°若 sinA= 1 时,tanA=
S
A
O
B
8.如图,某阶梯的形状如图所示,其中线段 AB=BC,AB 部分的坡角为 45,
BC 部分的坡角为 30,AD=1.5m.如果每个台阶的高不超过 20 ㎝,那么 教学反思 这一阶梯至少有多少个台阶?(最后一个台阶的高不足 20 ㎝时,按一个
初三数学导学案(全集)
第一章一元二次方程§1.1 一元二次方程(1)一、学习目标:1.在具体情境中,理解一元二次方程相关概念及其解的概念;2.通过自主探索和小组合作,会列出问题情境中的方程,并学会估算一元二次方程的解;3.积极参与数学学习活动,对数学有好奇心和求知欲,在数学活动中,获得成功的体验,锻炼克服困难的意志,建立自信心。
二、学习重点:一元二次方程的概念.难点:如何把实际问题转化为数学方程.三、学习导航:A、预习感知1.回忆并说出一元一次方程的概念及特征.2.按要求完成下列问题.(1)剪一块面积是150cm2的矩形铁片,使它的长比宽多5cm,这块铁片应该怎样剪?如果设这块铁片的宽为xcm,则长为cm,则可得方程为①(2)一块四周镶有宽度相等的花边的地毯如图所示,它的长为8m,宽为5m, 如果地毯中央长方形图案的面积为18㎡,那么花边有多宽?如果设草坪的宽度为xm,则可得方程为②(3)要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,依据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,请问全校有多少个队参赛?如果设有x个队参加,则可得方程为③B、探索新知:1.整理上述问题中的方程①、②、③并回答下列问题:(1)方程左右两边的代数式是整式吗?(2)分析整理的方程与一元一次方程的异同点.(3)你能类比一元二次方程的定义得到一元二次方程的定义吗?2.一元二次方程的概念:像这样的等号两边都是_____,只含有___个未知数,并且未知数的最高次数是___的方程叫做一元二次方程。
3.一元二次方程的特征: 4.一元二次方程的一般形式为:其中ax 2,bx,c 分别叫二次项,一次项和常数项;a,b 分别称为二次项系数和一次项系数. 5.注意:①任何一个一元二次方程都可以化为一般形式: 二次项系 数、一次项系数、常数项都要包含它前面的符号。
②二次项系数0a ≠是一个重要条件,不能漏掉,为什么? C 、典型例题[例1] 判断下列方程是否是一元二次方程?并说明理由。
最新浙教版九年级数学下册1.3解直角三角形公开课优质教案(1)
h L a1.3解直角三角形教学目标:1、使学生理解直角三角形中五个元素地关系,会运用勾股定理,直角三角形地两个锐角互余及锐角三角函数解直角三角形.2、通过综合运用勾股定理,直角三角形地两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题地能力.3、渗透数形结合地数学思想,培养学生良好地学习习惯.教学重点和难点:重点:直角三角形地解法.难点:三角函数在解直角三角形中地灵活运用.教学过程:一、引入1、已知平顶屋面地宽度L 和坡顶地设计高度h (如图)。
你能求出斜面钢条地长度和倾角a 吗?变:已知平顶屋面地宽度L 和坡顶地设计倾角α(如图)。
你能求出斜面钢条地长度和设计高度h 吗? 2、如图所示,一棵大树在一次强烈地地震中于离地面10米处折断倒下,树顶落在离树根24米处.大树在折断之前高多少?在例题中,我们还可以利用直角三角形地边角之间地关系求出另外两个锐角.二、新课 1、像这样,在直角三角形中,由已知地一些边、角,求出另一些边、角地过程,叫做解直角三角形.C A B3 AB C a b 问:在三角形中共有几个元素?问:直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)三边之间关系:a 2+b 2=c 2(勾股定理) (2)锐角之间关系∠A+∠B=90°. (3)边角之间关系2、例1:如图1—16,在Rt △ABC 中,∠C=90°,∠A=50°,AB=3。
求∠B 和a ,b (边长保留2个有效数字)3、练习1:P161、24、例2:(引入题中)已知平顶屋面地宽度L 为10m ,坡顶地设计高度h 为3.5m ,(或设计倾角a )(如图)。
你能求出斜面钢条地长度和倾角a 。
(长度精确到0.1米,角度精确到1度)5、练: 如图东西两炮台A 、B 相距2000米,同时发现入侵敌舰C ,炮台A 测得敌舰C 在它地南偏东40゜地方向,炮台B 测得敌舰C 在它地正南方,试求敌舰与两炮台地距离.(精确到1米)说明:本题是已知一边,一锐角.6、温馨提示:▲在解直角三角形地过程中,常会遇到近似计算, 本书除特别说明外,边长保留四个有效数字,角度精确到1′. ▲解直角三角形,只有下面两种情况:(1)已知两条边;(2)已知一条边和一个锐角(两个已知元素中至少有一条边)7、 你会求吗?课本P17作业题三、小结:的邻边的对边正切函数:斜边的邻边余弦函数:斜边的对边正弦函数:A A A A A A A ∠∠=∠=∠=tan cos sin在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.四、布置作业:课课通。
人教版九年级数学下册《导学案》全套
人教版九年级数学下册《导学案》全套第二十六章反比例函数26.1 反比例函数26.1.1 反比例函数学习目标:1. 理解并掌握反比例函数的概念. (重点)2. 从实际问题中抽象出反比例函数的概念,能根据已知条件确定反比例函数的解析式. (重点、难点)一、知识链接下列问题中,变量间具有函数关系吗?如果有,请写出它们的解析式.(1) 京沪线铁路全程为1463 km,某次列车的平均速度v (单位:km/h) 随此次列车的全程运行时间t (单位:h) 的变化而变化;(2) 某住宅小区要种植一块面积为1000 m2的矩形草坪,草坪的长y (单位:m) 随宽x (单位:m)的变化而变化;(3) 已知北京市的总面积为1.68×104 km2,人均占有面积S (km2/人) 随全市总人口n (单位:人) 的变化而变化.一、要点探究探究点1:反比例函数的概念问题:观察以上三个解析式,你觉得它们有什么共同特点?【要点归纳】一般地,形如xky=(k为常数,k ≠0) 的函数,叫做反比例函数,其中x 是自变量,y 是函数.思考1:反比例函数xky=(k≠0) 的自变量x的取值范围是什么?思考2:反比例函数除了可以用xky=(k ≠0) 的形式表示,还有没有其他表达方式?【要点归纳】反比例函数有三种表达方式:①xky=(k ≠0);②1-=kxy(k ≠0);③xy=k(k ≠0).【针对训练】下列函数是不是反比例函数?若是,请指出k 的值.①y=3x-1;②13-=xy;③3xy-=;④xy111-=;⑤21xy=.合作探究【典例精析】已知函数()4221-+-=m m x m y 是反比例函数,求 m 的值.【方法总结】已知某个函数为反比例函数,只需要根据反比例函数的 x 的次数为-1,且系数不等于0.【针对训练】1. 当m= 时,22-=m x y 是反比例函数.2. 已知函数()()xk k y 12+-=是反比例函数,则k 必须满足 .探究点2:确定反比例函数的解析式已知 y 是 x 的反比例函数,并且当 x=2时,y=6. (1) 写出 y 关于 x 的函数解析式; (2) 当 x=4 时,求 y 的值.【方法总结】用待定系数法求反比例函数解析式的一般步骤:①设出含有待定系数的反比例函数解析式,②将已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程;③解方程,求出待定系数; ④写出反比例函数解析式.【针对训练】已知 y 与 x+1 成反比例,并且当 x = 3 时,y = 4. (1) 写出 y 关于 x 的函数解析式; (2) 当 x = 7 时,求 y 的值.探究点3:建立简单的反比例函数模型例3 人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体是动态的,车速增加,视野变窄. 当车速为50 km/h 时,视野为80 度,如果视野f (度) 是车速v (km/h) 的反比例函数,求f 关于v 的函数解析式,并计算当车速为100 km/h 时,视野的度数.例4 如图,已知菱形ABCD 的面积为180平方厘米,设它的两条对角线AC,BD的长分别为x,y. 写出变量y与x 之间的函数关系式,并指出它是什么函数.二、课堂小结1. 下列函数中,y 是 x 的反比例函数的是 ( ) A.x y 21-= B.21x y -= C.x y +=21 D.xy 11-= 2. 下列实例中,x 和 y 成反比例函数关系的有 ( ) ① x 人共饮水10 kg ,平均每人饮水 y kg ;②底面半径为 x m ,高为 y m 的圆柱形水桶的体积为10 m ³;③用铁丝做一个圆,铁丝的长为 x cm ,做成圆的半径为 y cm ;④在水龙头前放满一桶水,出水的速度为 x ,放满一桶水的时间 yA. 1个B. 2个C. 3个D. 4个 3. 填空:(1) 若x m y 1-=是反比例函数,则 m 的取值范围是 . (2) 若()xm m y 2+=是反比例函数,则m 的取值范围是 .(3) 若122---=m m xm y 是反比例函数,则m 的值是 . 4. 已知变量 y 与 x 成反比例,且当 x = 3时,y =-4. (1) 写出 y 关于 x 的函数解析式; (2) 当 y=6 时,求 x 的值.5. 小明家离学校 1000 m ,每天他往返于两地之间,有时步行,有时骑车.假设小明每天上学时的平均速度为 v ( m/min ),所用的时间为 t ( min ). (1) 求变量 v 和 t 之间的函数关系式;(2) 小明星期二步行上学用了 25 min ,星期三骑自行车上学用了 8 min ,那么他星期三上学时的平均速度比星期二快多少?参考答案自主学习一、知识链接解:(1) t v 1463= (2)xy 1000= (3) n S 41068.1⨯=合作探究一、要点探究探究点1:反比例函数的概念 【针对训练】解:②是,k=3;④是111-=k . 【典例精析】解:因为()4221-+-=m m xm y 是反比例函数,所以⎩⎨⎧≠--=-+01,1422m m m 解得m =-3.【针对训练】1. ±1 2. k ≠2且k ≠-1 .探究点2:确定反比例函数的解析式解:(1)设x k y =. 因为当 x=2时,y=6,所以有26k =,解得 k =12. 因此x y 12=. (2)把 x=4 代入x y 12=,得3412==y .【针对训练】解:(1) 设1+=x ky ,因为当 x = 3 时,y =4 ,所以有134+=k ,解得 k =16,因此116+=x y .(2) 当 x = 7 时,21716=+=y .探究点3:建立简单的反比例函数模型解:设v k f =. 由题意知,当 v =50时,f =80,所以5080k=解得 k =4000. 因此vf 4000=,当 v=100 时,f =40.所以当车速为100 km/h 时视野为40度.解:因为菱形的面积等于两条对角线长乘积的一半,所以18021==xy S ABCD 菱形.所以变量 y 与 x 之间的关系式为xy 360=,它是反比例函数. 当堂检测1. A2.B3.(1) m ≠1 (2) m ≠0且m ≠-2 (3) -14. 解:(1) 设x k y =. 因为当 x = 3时,y =-4,所以有34k=- ,解得 k =-12. 因此,y 关于 x 的函数解析式为xy 12-=(2) 把 y=6 代入x y 12-=,得x126-=,解得 x =-2.5. 解:(1)tv 1000=(t>0). (2)当 t =25 时,40251000==v ;当 t =8 时,12581000==v ,.125-40=85 ( m/min ).∴k 1=1,k 2=-2.∴y = x -11+-x(2)把 x =21-代入 (1) 中函数关系式,得 y =211-.第二十六章 反比例函数 26.1.2 反比例函数的图象和性质第1课时 反比例函数的图象和性质学习目标:1. 经历画反比例函数的图象、归纳得到反比例函数的图象特征和性质的过程 (重点、难点)2. 会画反比例函数图象,了解和掌握反比例函数的图象和性质. (重点)3. 能够初步应用反比例函数的图象和性质解题. (重点、难点)一、知识链接回顾我们上一课的学习内容,你能写出 200 m 自由泳比赛中,游泳所用的时间 t(s) 和游泳速度v(m/s) 之间的数量关系吗?试一试,你能在坐标轴中画出这个函数的图象吗?二、要点探究探究点1:反比例函数的图象和性质 画出反比例函数x y 6=与xy 12=的图象. 【提示】画函数的图象步骤一般分为:列表→描点→连线. 需要注意的是在反比例函数中自变量 x 不能为 0. 解:列表:描点:以表中各组对应值作为点的坐标,在直角坐标系内描绘出相应的点.连线:用光滑的曲线顺次连接各点,即可得x y 6=与xy 12=的图象.思考 观察这两个函数图象,回答问题: (1)每个函数图象分别位于哪些象限?(2)在每一个象限内, 随着x 的增大,y 如何变化?你能由它们的解析式说明理由吗? (3)对于反比例函数xky =(k >0),考虑问题(1)(2),你能得出同样的结论吗?【要点归纳】反比例函数xky =(k >0) 的图象和性质: 由两条曲线组成,且分别位于第一、三象限,它们与 x 轴、y 轴都不相交; 在每个象限内,y 随 x 的增大而减小. 【针对训练】 反比例函数xy 3=的图象大致是 ( )A. B. C. D.例2 反比例函数xy 8=的图象上有两点 A(x 1,y 1),B(x 2,y 2),且A ,B 均在该函数图象的第一象限部分,若 x 1>x 2,则 y 1与y 2的大小关系为 ( ) A. y 1 > y 2 B. y 1 = y 2 C. y 1 < y 2 D. 无法确定【提示】因为8>0,且 A ,B 两点均在该函数图象的第一象限部分,根据 x 1>x 2,可知y 1,y 2的大小关系观察 当 k =-2,-4,-6时,反比例函数xky =的图象,有哪些共同特征?思考 回顾上面我们利用函数图象,从特殊到一般研究反比例函数xky =(k >0) 的性质的过程,你能用类似的方法研究反比例函数xky =(k <0)的图象和性质吗?【要点归纳】反比例函数xky =(k <0) 的图象和性质: 由两条曲线组成,且分别位于第二、四象限它们与x 轴、y 轴都不相交; 在每个象限内,y 随x 的增大而增大. 【针对训练】点(2,y 1)和(3,y 2)在函数xy 2-=的图象上,则y 1 y 2(填“>”“<”或“=”).例 3 已知反比例函数()721-+-=a a x a y ,在每一个象限内,y 随 x 的增大而增大,求a的值.【针对训练】 已知反比例函数()10283--=m x m y 在每一个象限内,y 随着 x 的增大而减小,求 m 的值.反比例函数xky =(k ≠0) k k > 0k < 0图象 图象位于第一、三象限图象位于第二、四象限性质在每一个象限内,y 随 x 的增大而减小 在每一个象限内,y 随x 的增大而增大1. 反比例函数xy5.1=的图象在 ( )A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限2. 在同一直角坐标系中,函数y = 2x 与xy1-=的图象大致是( )3. 已知反比例函数xmy2-=的图象在第一、三象限内,则m的取值范围是________.4. 下列关于反比例函数xy12-=的图象的三个结论:(1)经过点(-1,12) 和点(10,-1.2);(2)在每一个象限内,y 随x 的增大而减小;(3)双曲线位于第二、四象限.其中正确的是________(填序号).5. 已知反比例函数xky=的图象过点(-2,-3),图象上有两点A (x1,y1),B (x2,y2),且x1 > x2 > 0,则y1-y2________0.6. 已知反比例函数52-=mmxy,它的两个分支分别在第一、第三象限,求m 的值.能力提升:7. 已知点(a-1,y1),(a+1,y2)在反比例函数xky=(k>0)的图象上,若y1<y2,求a的取值范围.当堂检测参考答案合作探究一、要点探究探究点1:反比例函数的图象和性质例1 解:列表:-1 -56 -23 -2 -3 -6 6 3 2 23 561 -2 -512 -3 -4 -6 -12 12 6 4 3 512 2 描点、连线如图所示.【针对训练】 C 例2 C 【针对训练】<例3 解:由题意得a 2+a -7=-1,且a -1<0.解得a=-3.【针对训练】 解:由题意得 m 2-10=-1,且 3m -8>0.解得m=3.当堂检测1.B2. D3. m >24. (1)(3)5. <6. 解:因为反比例函数52-=mmx y 的两个分支分别在第一、第三象限,所以有m 2-5=-1,且m >0,解得m=2. 能力提升:7. 解:由题意知,在图象的每一支上,y 随 x 的增大而减小.① 当这两点在图象的同一支上时,∵y 1<y 2,∴a -1>a+1, 无解; ②当这两点分别位于图象的两支上时, ∵y 1<y 2,∴必有 y 1<0<y 2. ∴a -1<0,a+1>0, 解得-1<a <1.故 a 的取值范围为-1<a <1.26.1.2 反比例函数的图象和性质第2课时反比例函数的图象和性质的综合运用学习目标:1. 理解反比例函数的系数k 的几何意义,并将其灵活运用于坐标系中图形的面积计算中. (重点、难点)2. 能够解决反比例函数与一次函数的综合性问题. (重点、难点)3. 体会“数”与“形”的相互转化,学习数形结合的思想方法,进一步提高对反比例函数相关知识的综合运用能力. (重点、难点)一、知识链接1.反比例函数的图象是什么?2.反比例函数的性质与k 有怎样的关系?三、要点探究探究点1:用待定系数法求反比例函数的解析式已知反比例函数的图象经过点A (2,6).(1) 这个函数的图象位于哪些象限?y 随x 的增大如何变化?(2) 点B(3,4),C(212-,544-),D(2,5)是否在这个函数的图象上?【针对训练】已知反比例函数xky =的图象经过点 A (2,3). (1)求这个函数的表达式;(2)判断点 B (-1,6),C(3,2) 是否在这个函数的图象上,并说明理由; (3) 当 -3< x <-1 时,求 y 的取值范围.探究点2:反比例函数图象和性质的综合 例2 如图,是反比例函数xm y 5-=图象的一支. 根据图象,回答下列问题: (1) 图象的另一支位于哪个象限?常数 m 的取值范围是什么?(2) 在这个函数图象的某一支上任取点 A (x 1,y 1) 和点B (x 2,y 2). 如果x 1>x 2,那么 y 1 和y 2 有怎样的大小关系?【针对训练】如图,是反比例函数xky -=1的图象,则 k 的值可以是 ( ) A .-1 B .3 C .1 D .0探究点3:反比例函数解析式中 k 的几何意义 操作 1. 在反比例函数xy 4=的图象上分别取点P ,Q 向x 轴、y 轴作垂线,围成面积分别为S 1,S 2的矩形,填写下列表格:S 1的值 S 2的值 S 1与S 2的关系 猜想 S 1,S 2 与 k 的关系 P (2,2) ,Q (4,1)2. 若在反比例函数xy 4-=中也用同样的方法分别取 P ,Q 两点,填写表格:S 1的值 S 2的值 S 1与S 2的关系 猜想 S 1,S 2 与 k 的关系 P (-1,4),Q (-2,2)猜想 由前面的探究过程,可以猜想: 若点P 是反比例函数xky =图象上的任意一点,作 PA 垂直于 x 轴,作 PB 垂直于 y 轴,矩形 AOBP 的面积与k 的关系是S 矩形 AOBP =|k|.证明 我们就 k < 0 的情况给出证明:【要点归纳】对于反比例函数xky =,点 Q 是其图象上的任意一点,作 QA 垂直于 y 轴,作QB 垂直于x 轴,矩形AOBQ 的面积与 k 的关系是S 矩形AOBQ = |k|.推理:△QAO 与△QBO 的面积和 k 的关系是S △QAO =S △QBO =2k .【针对训练】如图,在函数xy 1=(x >0)的图象上有三点A ,B ,C ,过这三点分别向 x 轴、y 轴作垂线,过每一点所作的两条垂线与x 轴、 y 轴围成的矩形的面积分别为S A ,S B ,S C ,则( )A. S A >S B >S CB. S A <S B <S CC. S A =S B =S CD. S A <S C <S B【典例精析】例3 如图,点A 在反比例函数xky =的图象上,AC 垂直 x 轴于点 C ,且 △AOC 的面积为 2,求该反比例函数的表达式.【针对训练】1. 如图,过反比例函数xky =图象上的一点 P ,作PA ⊥x 轴于点A. 若△POA 的面积为 6,则 k = .2. 若点 P 是反比例函数图象上的一点,过点 P 分别向x 轴、y 轴作垂线,垂足分别为点 M ,N ,若四边形PMON 的面积为 3,则这个反比例函数的关系式是 .例4 如图,P ,C 是函数xy 4=(x>0) 图象上的任意两点,PA ,CD 垂直于 x 轴. 设 △POA 的面积为 S 1,则(1) S 1 = ;(2)梯形CEAD 的面积为 S 2,则 S 1 与 S 2 的大小关系是 S 1 S 2;(3)△POE 的面积 S 3 和 S 2 的大小关系是S 2 S 3. (填“>”,“<”或者“=”)【针对训练】如图,直线与双曲线交于 A ,B 两点,P 是AB 上的点,△ AOC 的面积 S 1、△ BOD 的面积 S 2、 △ POE 的面积 S 3 的大小关系为 .例5 如图,点 A 是反比例函数xy 2=(x >0)的图象上任意一点,AB//x 轴交反比例函数xy 3-=(x <0) 的图象于点 B ,以 AB 为边作平行四边形 ABCD ,其中点 C ,D 在 x 轴上,则 S ABCD =___.【方法总结】解决反比例函数有关的面积问题,可以把原图形通过切割、平移等变换,转化为较容易求面积的图形.【针对训练】如图,函数 y =-x 与函数xy 4-=的图象相交于 A ,B 两点,过点 A ,B 分别作 y 轴的垂线,垂足分别为C ,D ,则四边形ACBD 的面积为 ( ) A. 2 B. 4 C. 6 D. 8探究点4:反比例函数与一次函数的综合 思考 在同一坐标系中,函数xk y 1=和 y= k 2 x+b 的图象大致如下,则 k 1 、k 2、b 各应满足什么条件?例6 函数 y=kx -k 与xky =(k ≠0)的图象大致是( )【提示】由于两个函数解析式都含有相同的系数 k ,可对 k 的正负性进行分类讨论,得出符合题意的答案.【针对训练】在同一直角坐标系中,函数xay -=与 y = ax+1 (a ≠0) 的图象可能是( )例7 如图是一次函数 y 1=kx+b 和反比例函数xmy =2的图象,观察图象,当 y 1﹥y 2 时,x 的取值范围为 .【针对训练】如图,一次函数 y 1= k 1x + b (k 1≠0) 的图象与反比例函数xk y 22=的图象交于 A ,B 两点,观察图象,当y 1>y 2时,x 的取值范围是 .例8 已知一个正比例函数与一个反比例函数的图象交于点 P (-3,4).试求出它们的解析式,并画出图象.想一想:这两个图象有何共同特点?你能求出另外一个交点的坐标吗?说说你发现了什么?【针对训练】反比例函数xy 12=的图象与正比例函数 y = 3x 的图象的交点坐标为 .二、课堂小结1. 如图,P 是反比例函数xky=的图象上一点,过点P 作PB ⊥x 轴于点B,连接O P ,且△OBP 的面积为2,则k 的值为()A. 4B. 2C. -2D.不确定2. 反比例函数xky=的图象与一次函数y = 2x +1 的图象的一个交点是(1,k),则反比例函数的解析式是____ ___.3. 如图,直线y=k1x + b 与反比例函数xky2=(x>0)交于A,B两点,其横坐标分别为1和5,则不等式k1x +b >xk2的解集是__________.4. 已知反比例函数xky=的图象经过点A (2,-4).(1)求k 的值;当堂检测(2)这个函数的图象分布在哪些象限?y 随 x 的增大如何变化? (3)画出该函数的图象;(4)点 B (1,-8) ,C (-3,5)是否在该函数的图象上?5. 如图,直线 y=ax + b 与双曲线xky =交于A(1,2),B(m ,-4)两点, (1)求直线与双曲线的解析式; (2)求不等式 ax + b >xk的解集.6. 如图,反比例函数xy 8-=与一次函数 y =-x + 2 的图象交于 A ,B 两点. (1)求 A ,B 两点的坐标; (2)求△AOB 的面积.参考答案自主学习一、知识链接1.解:反比例函数的图象是双曲线2.解:当 k > 0 时,两条曲线分别位于第一、三象限,在每个象限内,y 随 x 的增大而减小;当 k < 0 时,两条曲线分别位于第二、四象限,在每个象限内,y 随 x 的增大而增大.合作探究一、要点探究探究点1:用待定系数法求反比例函数的解析式解:(1)因为点 A (2,6) 在第一象限,所以这个函数的图象位于第一、三象限; 在每一个象限内,y 随 x 的增大而减小. (2)设这个反比例函数的解析式为x k y =,因为点 A (2,6)在其图象上,所以有26k=,解得 k =12.所以反比例函数的解析式为xy 12=. 因为点 B ,C 的坐标都满足该解析式,而点 D 的坐标不满足,所以点 B ,C 在这个函数的图象上,点 D 不在这个函数的图象上. 【针对训练】解:(1)∵ 反比例函数xky =的图象经过点 A(2,3), ∴ 把点 A 的坐标代入表达式,得23k =,解得 k = 6.∴ 这个函数的表达式为xy 6=. (2)分别把点 B ,C 的坐标代入反比例函数的解析 式,因为点 B 的坐标不满足该解析式,点 C 的坐标满足该解析式,所以点 B 不在该函数的图象上,点 C 在该函数的图象上. (3)∵ 当 x = -3时,y =-2;当 x = -1时,y =-6,且 k > 0,∴ 当 x < 0 时,y 随 x 的增大而减小,∴ 当 -3 < x < -1 时,-6 < y < -2. 探究点2:反比例函数图象和性质的综合解:(1)因为这个反比例函数图象的一支位于第一象限,所以另一支必位于第三象限.又因为这个函数图象位于第一、三象限,所以m -5>0,解得m >5.(2)因为 m -5 > 0,所以在这个函数图象的任一支上,y 都随 x 的增大而减小, 因此当x 1>x 2时,y 1<y 2. 【针对训练】B探究点3:反比例函数解析式中 k 的几何意义证明 解:设点 P 的坐标为 (a ,b),∵点 P (a ,b) 在函数x k y =的图象上,∴ak b =,即 ab=k.若点 P 在第二象限,则 a<0,b>0,∴ S 矩形 AOBP =PB ·PA=-a ·b=-ab=-k ; 同理,∴ S 矩形 AOBP =PB ·PA=a · (-b)=-ab=-k.综上,S 矩形 AOBP =|k|. 【针对训练】C 【典例精析】例3 解:设点 A 的坐标为(x A ,y A ),∵点 A 在反比例函数xky =的图象上,∴ x A ·y A =k.又∵ S △AOC =21 x A ·y A = 21·k =2,∴ k =4.∴反比例函数的表达式为xy 4=. 【针对训练】1.-12 2. xy x y 33-==或例4 (1) 2 (2) > (3)=【针对训练】S 1 = S 2 < S 3 解析:由反比例函数面积的不变性易知 S 1 = S 2. PE 与双曲线的一支交于点 F ,连接 OF ,易知,S △OFE = S 1 = S 2,而 S 3>S △OFE ,所以 S 1,S 2,S 3的大小关系为S 1 = S 2 < S 3例5 5 【针对训练】D探究点4:反比例函数与一次函数的综合 例6 D 【针对训练】B例7 -2< x <0 或 x >3解析:y1﹥y2 即一次函数图象处于反比例函数图象的上方时. 观察右图,可知-2< x <0 或 x >3.【针对训练】 -1< x <0 或 x >2例8 解:设正比例函数、反比例函数的解析式分别为 y=k 1x 和xk y 2=. 由于这两个函数的图象交于点 P (-3,4),则点 P (-3,4) 是这两个函数图象上的点, 即点 P 的坐标分别满足这两个函数解析式.所以4=-3k 1,342-=k .解得341-=k ,k 2=-12 则这两个函数的解析式分别为x y 34-=和xy 12-=, 它们的图象如图所示.【针对训练】(2,6)或(-2,-6)当堂检测1. A2. xy 3=3. 1<x <54. 解:(1)∵ 反比例函数xky =的图象经过点 A (2,-4),∴ 把点 A 的坐标代入表达式,得24k=-,解得k = -8.(2)这个函数的图象位于第二、四象限,在每一个象限内,y 随 x 的增大而增大. (3)如图所示:(4)该反比例函数的解析式为xy 8-=. 因为点 B 的坐标满足该函数解析式,而点 C 的坐标不满足该函数解析式,所以点 B 在该函数的图象上,点 C 不在该函数的图象上.5. 解:(1)把 A(1,2)代入双曲线解析式中,得 k = 2,故双曲线的解析式为xy 2=. 当y =-4时,m=21-,∴ B (21-,-4).将A(1,2),B (21-,-4)代入 y=ax + b ,得,a=4,b=-2;∴直线的解析式为y=4x-2. (2)根据图象可知,若 ax + b >x k ,则 x >1或21-<x <0. 6. 解:(1)联立两个解析式,解得⎩⎨⎧=-=4,2y x 或⎩⎨⎧-==.2,4y x 所以A(-2,4),B(4,-2). (2)一次函数与x 轴的交点为M (2,0),∴OM=2. 作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则AC=4,BD=2. ∴S △OMB =OM ·BD ÷2=2×2÷2=2, ∴S △OMA =OM ·AC ÷2=2×4÷2=4, ∴S △AOB =S △OMB +S △OMA =2+4=6.26.2 实际问题与反比例函数第1课时实际问题中的反比例函数学习目标:1. 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.2. 能够通过分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步提高运用函数的图象、性质的综合能力. (重点、难点)3. 能够根据实际问题确定自变量的取值范围.一、知识链接、1.如果要把体积为15 cm3的面团做成拉面,你能写出面条的总长度y (单位:cm) 与面条粗细(横截面积) S (单位:cm2)的函数关系式吗?2.你还能举出我们在日常生活、生产或学习中具有反比例函数关系的量的实例吗?四、要点探究探究点1:实际问题与反比例函数【典例精析】市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1) 储存室的底面积S (单位:m2) 与其深度d (单位:m)有怎样的函数关系?(2) 公司决定把储存室的底面积S 定为500 m2,施工队施工时应该向下掘进多深?(3) 当施工队按(2) 中的计划掘进到地下15 m 时,公司临时改变计划,把储存室的深度改为15 m. 相应地,储存室的底面积应改为多少(结果保留小数点后两位)?想一想:第(2) 问和第(3) 问与过去所学的解分式方程和求代数式的值的问题有何联系?【针对训练】1. 矩形面积为6,它的长y 与宽x 之间的函数关系用图象可表示为()2. 如图,某玻璃器皿制造公司要制造一种容积为1升(1升=1立方分米)的圆锥形漏斗.(1) 漏斗口的面积S (单位:dm2)与漏斗的深d (单位:dm) 有怎样的函数关系?(2) 如果漏斗的深为1 dm,那么漏斗口的面积为多少立方分米?(3) 如果漏斗口的面积为60 cm2,则漏斗的深为多少?码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1) 轮船到达目的地后开始卸货,平均卸货速度v (单位:吨/天)与卸货天数t 之间有怎样的函数关系?(2) 由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?【方法总结】在解决反比例函数相关的实际问题中,若题目要求“至多”、“至少”,可以利用反比例函数的增减性来解答.【针对训练】某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1200 立方米的生活垃圾运走.(1) 假如每天能运x 立方米,所需时间为y 天,写出y与x 之间的函数关系式;(2) 若每辆拖拉机一天能运12 立方米,则5 辆这样的拖拉机要用多少天才能运完?(3) 在(2) 的情况下,运了8 天后,剩下的任务要在不超过6 天的时间内完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用6 小时达到乙地.(1) 甲、乙两地相距多少千米?(2) 当他按原路匀速返回时,汽车的速度v 与时间t 有怎样的函数关系?二、课堂小结1. 面积为2 的直角三角形一直角边长为x,另一直角边长为y,则y 与x 的变化规律用图象可大致表示为()2. 体积为20 cm3的滴胶做成圆柱体模型,圆柱体的高度y (单位:cm) 与底面积S (单位:cm2)的函数关系为,若要使做出来的圆柱粗1 cm2,则圆柱的高度是cm.3. A、B两城市相距720千米,一列火车从A城去B城.(1) 火车的速度v (千米/时) 和行驶的时间t (时)之间的函数关系是________.(2) 若到达目的地后,按原路匀速返回,并要求在3 小时内回到A 城,则返回的速度不能低于______.4. 某户现在有若干度电,现在知道:按每天用6度电计算,五个月(按15天计算) 刚好用完. 若每天的耗电量为x 度,那么这些电能维持y 天.(1) 则y 与x 之间有怎样的函数关系?(2) 画出函数的图象;(3) 若每天节约1 度,则这些电能维持多少天?当堂检测5. 王强家离工作单位的距离为3600 米,他每天骑自行车上班时的速度为v 米/分,所需时间为t 分钟.(1) 速度v 与时间t 之间有怎样的函数关系?(2) 若王强到单位用15 分钟,那么他骑车的平均速度是多少?(3) 如果王强骑车的速度最快为300 米/分,那他至少需要几分钟到达单位?6. 在某村河治理工程施工过程中,某工程队接受一项开挖水渠的工程,所需天数y (天) 与每天完成的工程量x (m/天) 的函数关系图象如图所示.(1) 请根据题意,求y 与x 之间的函数表达式;(2) 若该工程队有2 台挖掘机,每台挖掘机每天能够开挖水渠15 m,问该工程队需用多少天才能完成此项任务?(3) 如果为了防汛工作的紧急需要,必须在一个月内(按30 天计算)完成任务,那么每天至少要完成多少m?参考答案合作探究一、要点探究探究点1:实际问题与反比例函数 【典例精析】解:(1)根据圆柱体的体积公式,得Sd =104,∴S 关于d 的函数解析式为dS 410=(2)把 S = 500 代入d S 410=,得d410500=,解得d = 20.如果把储存室的底面积定为 500 m ²,施工时应向地下掘进 20 m 深.(3)根据题意,把 d =15 代入d S 410=,得15104=S 解得S ≈666.67.当储存室的深度为15 m 时,底面积应改为 666.67 m ². 【针对训练】1. B 2. 解:(1)dS 3=. (2)把 d =1 代入解析式,得S =3.所以漏斗口的面积为 3 dm 2.(3)60 cm 2 = 0.6 dm 2,把 S =0.6 代入解析式,得d =5.所以漏斗的深为 5 dm.解:(1)设轮船上的货物总量为 k 吨,根据已知条件得k =30×8=240,所以 v 关于 t 的函数解析式为tv 240=. (2)把 t =5 代入t v 240=,得48240==tv .从结果可以看出,如果全部货物恰好用 5 天卸载完,则平均每天卸载 48 吨. 而观察求得的反比例函数的解析式可知,t 越小,v 越大. 这样若货物不超过 5 天卸载完,则平均每天至少要卸载 48 吨. 【针对训练】解:(1)xy 1200=. (2)x =12×5=60,代入函数解析式得20601200==y 答:若每辆拖拉机一天能运 12 立方米,则 5 辆这样的拖拉机要用 20 天才能运完. (3)运了8天后剩余的垃圾有1200-8×60=720 (立方米),剩下的任务要在不超过6天的时间完成,则每天至少运720÷6=120 (立方米), 所以需要的拖拉机数量是:120÷12=10 (辆),即至少需要增加拖拉机10-5=5 (辆). 例3 解:(1)80×6=480 (千米) 答:甲、乙两地相距 480 千米. (2)由题意,得 vt=480,整理得tv 800=(t >0). 当堂检测1. C2. S y 20=20 3.(1) tv 720=_____ (2) 240千米/时 4. 解:(1)电的总量为6×15=90 (度),根据题意有xy 90=(x >0). (2)如图所示.(3)∵ 每天节约 1度电,∴ 每天的用电量为 6-1=5 (度),1859090===x y , ∴ 这些电能维持 18 天. 5. 解:(1)tv 3600=(2)把 t =15代入函数的解析式,得:240153600==v . 答:他骑车的平均速度是 240 米/分. (3)把 v =300 代入函数解析式得:t3600300=,解得:t =12. 答:他至少需要 12 分钟到达单位. 6. 解:(1)xy 1200=(2)由图象可知共需开挖水渠 24×50=1200 (m),2 台挖掘机需要 1200÷(2×15)=40 (天). (3)1200÷30=40 (m),故每天至少要完成40 m .26.2 实际问题与反比例函数第2课时其他学科中的反比例函数学习目标:1. 通过对“杠杆原理”等实际问题与反比例函数关系的探究,使学生体会数学建模思想和学以致用的数学理念,并能从函数的观点来解决一些实际问题. (重点)2. 掌握反比例函数在其他学科中的运用,体验学科的整合思想. (重点、难点)一、知识链接公元前3世纪,古希腊科学家阿基米德发现:若杠杆上的两物体与支点的距离与其重量成反比,则杠杆平衡. 后来人们把它归纳为“杠杆原理”. 通俗地说,杠杆原理为:阻力×阻力臂=动力×动力臂.试在下图中标出对应的量.五、要点探究探究点1:反比例函数在其他学科中的应用【典例精析】例1 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200 N 和0.5 m. (1) 动力F 与动力臂l有怎样的函数关系? 当动力臂为1.5 m时,撬动石头至少需要多大的力?(2) 若想使动力F 不超过题(1) 中所用力的一半,则动力臂l至少要加长多少?自主学习课堂探究。
北师大版九年级数学下册导学案(全册)
2、如图,某人从山脚下的点A走了200m后到达山顶的点B,已知点B到山脚的垂直距离为55m,求山的坡度.(结果精确到0.001)
3、若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高________米.
4、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tanθ=______.
[问题] 3、cos30°等于多少?tan30°呢?
[问题] 4、我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?
结论:
三anα
30°
45°
60°
[例1]计算:
(1)sin30°+cos45°; (2)sin260°+cos260°-tan45°.
学习难点:
理解正切的意义,并用它来表示两边的比.
学习方法:
引导—探索法.
学习过程:
一、生活中的数学问题:
1、你能比较两个梯子哪个更陡吗?你有哪些办法?
2、生活问题数学化:
⑴如图:梯子AB和EF哪个更陡?你是怎样判断的?
⑵以下三组中,梯子AB和EF哪个更陡?你是怎样判断的?
二、直角三角形的边与角的关系(如图,回答下列问题)
3、在△ABC中,AB=AC=10,sinC= ,则BC=_____.
4、在△ABC中,已知AC=3,BC=4,AB=5,那么下列结论正确的是( )
A.sinA= B.cosA= C.tanA= D.cosB=
5、如图,在△ABC中,∠C=90°,sinA= ,则 等于( )
A. B. C. D.
数学九年级下册全套导学案(pdf版含答案)(1)
人教版数学九年级下册全套导学案26.1.1反比例函数§26.1 反比例函数1.认识反比例函数是描述具有反比例变化规律的数学模型.2.经历由实际问题抽象反比例函数的过程,掌握反比例函数的概念.3.能够根据已知条件求反比例函数的解析式.试一试反比例函数的概念1.回答下列问题(1)京沪线铁路全程为1463km ,某次列车的平均速度v(单位:km/ h )随此次列车的全程运行时间t (单位:h )的变化而变化.问题中有两个变量与,当一个量变化时,另一个量随着它的变化而变化,而且对于的每一个确定的值,都有唯一确定的值与其对应.因此变量间具有函数关系,它的解析式为 .(2)某住宅小区要种植一块面积为1000m2 的矩形草坪,草坪的长y (单位:m )随宽x(单位:m )的变化而变化. 问题中有两个变量与,当一个量变化时,另一个量随着它的变化而变化,而且对于的每一个确定的值,都有唯一确定的值与其对应.因此变量间具有,它的解析式为.(3)已知北京市的总面积为1.68 104 km2 ,人均占有面积S (单位:km2 / 人)随全市总人口n (单位:人)的变化而变化. 问题中有两个变量与,当一个量变化时,另一个量随着它的变化而变化,而且对于的每一个确定的值,都有唯一确定的值与其对应. 因此变量间具有,它的解析式为.答案:1.(1)t,v,t,v,t,v,v1463;(2)x,y,x,y,x,y,函数关系,y t=1000;x1.68 ⨯104 k(3)n,S,n,S,n,S,函数关系,Sk = ;小结:(1) y = ,非零常数; n x(2)x ,y ,x ,不等于 0 的一切实数;(3)分母,无意义;(4)自变量,函数.根据已知条件求反比例函数解析式 1.已知 y 是 x 的反比例函数,并且当 x = 2 时, y = 6 .(1)写出 y 关于 x 的函数解析式;(2)当 x = 4 时,求 y 的值.解:(1)因为 y 是 x 的 ,所以设 .又因为 x = 2 时, y = 6 ,所以有,解得, 因此 y = .(2)把 x = 4 代入,得 y = . 2. 近视眼镜的度数 y (单位:度)与镜片焦距 x (单位:m )成反比例.已知 200 度近视眼镜的镜片焦距为0.5m ,则 y 与 x 之间的函数解析式是. 答案:1.(1)反比例函数,y= ,6 = x试一试k 12,k=12,2 x;(2)y12,3;2.xy 100.x 题组一1.用函数解析式表示下列问题中变量间的对应关系:(1)某厂现有 300 吨煤,这些煤能烧的天数y(单位:天)随平均每天烧的吨数x(吨/天)的变化而变化.那么y 与x 之间的函数关系式是.(2)一个物体重100N,物体对地面的压强p (单位:Pa)随物体与地面的接触面积S(单位:m2 )的变化而变化.那么p 与S 之间的函数关系式是.2.下列函数:① y做一做2x1;②y4=-;③yx⑤ xy =15;⑥y=2,其中y 是x 的反比例函数的是(填序号). x 23.在xy + 2 = 0 中,y 是x 的()A.一次函数B.反比例函数C. 正比例函数D.既不是正比例函数也不是反比例函数答案:1.(1)y300;(2)p x=300;2. ②④⑤;3. B. S题组二1.在温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对气缸壁所产生的压强,如下表:体积 x (mL)100 80 60 40 20压强 y(kPa) 60 75 100 150 300则可以反映y 与x 之间的关系的式子是()3000 6000A. y =3000x做一做B. y 6000xC.y =D. y =x x2.已知y 与x2 成反比例,并且当x = 3 时,y = 4 .(1)写出y 关于x2 的函数解析式;(2)当x = 1.5 时,求y 的值;(3)当y = 4 时,求x 的值.答案:1.D;2.(1)因为y 与x2 成反比例,所以设y =k k. 又因为 x = 3 时, y = 4 ,所以x 2 有4 = ,解得k = 36 ,因此 y =3236;(2)将x=1.5代入y = x36得y 16;(3)将x2 y = 6代入 y = 36得 x = ± 6 .x 1. 若 y = (a +1)xa -2 是反比例函数,则 a 的取值为 .2. 已知函数 y = 能力拓展m + 3 x1-m2-3m是反比例函数,则m2 2m = .3.反比例函数y=k在x = 2 处自变量增加 1,函数值相应地减少了2 x 3小结:(1)反比例函数y = 中 k≠0,自变量 x 的指数为;k x (2) y 与 x 成正比例, x 与 z 成反比例,则 y 与 z 成. 6 ,则 k= .4.若 y 与 x 成正比例, x 与 z 成反比例,且当 z = 2 时, y = -3,则 y 与 z 的函数解析式是 .答案:1. 1;2. 0;3. 4;4. y = -6 ;小结:(1)-1;(2)反比例. x 26.1.2 反比例函数的图像和性质1. 会根据解析式画反比例函数的图像,归纳反比例函数的图像特征和性质.2. 灵活运用反比例函数的图像和性质解决问题.3. 感悟反比例函数的解析式与图像之间的联系,体会数形结合及转化的思想方法. 反比例函数的图像和性质 1. 通过描点法画出下列反比例函数的图像.(1) y = (2) y = 12 x x解:列表表示几组 x 与 y 的对应值(填空):x … -12 -6 -4 -3 -2 -1 1 2 3 4 6 12 … y = 6xy = 12 x图26.1-12. 通过描点法画出下列反比例函数的图像.(1) y = - 6x试一试(2)y =-12 x答案:1. 略;小结(2)一、三,一、三,减小;(3)减小;2. 略;小结:(3)二、四,二、四,上升,增大;(4)二、四,增大.反比例函数的图像和性质的运用1.已知反比例函数的图像经过点A(2,6) .(1)这个函数的图像位于哪些象限?y 随x 的增大如何变化?(2)点B(3,4) ,C(-2试一试1, 4 2k k 14) , D (2,5) 是否在这个函数图像上? 5解:(1)因为点 A (2,6) 在 象限,所以这个函数的图像位于 象限,在每一个象限内, y 随 x 的增大而.(2)设这个反比例函数的解析式为 y = ,因为点 A (2,6) 在其图像上,所以点 A 的坐x标满足 y = ,即 ,解得 k=.所以这个反比例函数的解析式为,x因为点满足该解析式,点 不满足该解析式,所以点在这个函数图像上,点 不在这个函数图像上. 2. 下列反比例函数:① y = - 2x②y =③ 7 y =-103x x④ y3 100x(1)图像位于第一、三象限的是 ; (2)图像位于第二、四象限的是 .小结:1. 如果任意一点的坐标满足函数解析式,那么这个点就在其图像上,否则,就不在其图像上.2. 反比例函数图像的位置以及 y 如何随 x 的变化而变化的情况,只与有关.函数 图像位置 图像变化趋势y = kxk > 0 第一、三象限 在每个象限内, y 随 x 的增大而减小 k < 0第二、四象限在每个象限内, y 随 x 的增大而增大3. 如图 26.1-2,它是反比例函数 y =m - 5 图像的一支.根据图像,回答下列问题:x(1)图像的另一支位于哪个象限?常数 m 的取值范围是什么?(2)在这个函数图像的某一支上任取点 A (x 1,y 1) 和点 B (x 2,y 2 ) ,如果 x 1 > x 2 ,那么y 1和 y 2 有怎样的大小关系?图 26.1-2解:(1)反比例函数的图像只有两种可能:位于象限,或者位于象限.因为这个函数的图像的一支位于第 象限,所以另一支必位于第象限. 因为这个函数位于象限,所以 m-5,解得.(2)因为 m-5 ,所以在这个函数图像的任一支上,y 都随 x 的增大而,因此当 x 1 > x 2 时,.4. A (-1, y ) , B (1, y ) , C (3, y ) 是反比例函数 y = - 1图像上的三点,请你正确排出123xy 1,y 2,y 3 的大小顺序.k 12 答案:1.(1)第一,第一、三,减小;(2) 6 =,12, y =,B 、C ,D ,B 、C ,D ;2.2x(1)②④;(2)①③;小结:2. k 的正负;3,(1)第一、三,第二、四,一,三,一、三, >0,m >5;(2)>0,减小, y 1 < y 2 ;4. y 2 < y 3 < y 1 ;小结:(2)原点.反比例函数的几何意义k1. 如图 26.1-3 所示,反比例函数 y =试一试(k ≠ 0) 的图像上任取一点P(x, y) ,过这一点分别x作x 轴、y 轴的垂线PM ,PN ,垂足分别为点M 、N ,所得的矩形PMON 的面积为多少?图 26.1-3k解:矩形PMON 的面积S = ,因为y =,所以xy =k ,所以S= ,即过x双曲线上任意一点作x 轴、y 轴的垂线,所得的矩形面积为.k2.如图 26.1-3 所示,反比例函数y =k (k ≠ 0) 的图像上任取一点 E (x , y ) ,过 E 作 xEF ⊥ y 轴于点 F ,连接OE ,所得三角形 EOF 的面积为多少? 解:三角形 EOF 的面积 S= ,因为 y = ,所以 xy = k ,所以 S=, x即过双曲线上任意一点作坐标轴的垂线,并将该点与原点相连,所得的三角形的面积为 .答案:1. PM ⋅ PN =y ⋅x =xyk k, , ,k ,k ;2. 1 EF ⋅ OF =1x ⋅ y = 1xy1 1.22 22 2题组一1. 下列图像中是反比例函数图像的是( )(A )(B )2. 填空学习迁移做一做k (C )(D ) 5(1)反比例函数 y =的图像在第象限.x(2)反比例函数 y = 的图像如图 26.1-4 所示,则k0;在图像的每一支上,y 随 xx的增大而.图 26.1-43. 对于反比例函数 y =3 ,下列说法正确的是( )xA.图像经过点(-1,3)a 2B. 图像位于第二、第四象限C. x > 0 时, y 随 x 的增大而增大D. x < 0 时, y 随 x 的增大而减小4.当a ≠ 0 时,函数 y = ax +1与函数 y = 在同一坐标系中的图象可能是()x答案:1.C ;2.(1)一、三;(2)>,减少;3.D ;4.C.题组二k1. 若点 P 1(-1,m ) P 2 (-2, n ) 在反比例函数 y = x(k > 0) 的图像上,则m n (填“>”“<”或“=”) 2. 已知点 A (x 1, y 1) , B (x 2 , y 2 ) , C (x 3, y 3 ) 是函数 y = - xx 1 < 0 < x 2 < x 3 ,则 y 1, y 2 , y 3 的大小关系是3 + 2m图 像 上 的 三 点 , 且3. 已知 A (-1, y 1) , B (2, y 2 ) 两点在双曲线 y = ( )做一做,且y1 >y2 ,则m 的取值范围是xA.m >0B.m 0C.m >-3 2D.m <-3 2答案:1.<;2. y2 <y3 <y1 ;3.D.题组三k1.如图26.1-5 所示,M 为反比例函数y =的图像上的一点,MA⊥y轴,垂足为A,△MAOx的面积为2,则k 的值为.2.如图26.1-6,点A 在函数y =做一做4 4 ( x > 0) 的图象上,且OA = 4 ,过点 A 作 AB ⊥ x 轴于x点 B ,则△ ABO 的周长为.图26.1-5 图26.1-6 3. 如图 26.1-7 所示,A 、B 两点在双曲线 y = ,分别经过 A 、B 两点向坐标轴作垂线段,x已知 S 阴影 = 1,则 S 1+ S 2 等于( ) A. 3B. 4C. 5D.6图 26.1-7图 26.1-84 4. 如图 26.1-8 所示,函数 y = -x 与函数 y = -x6 的图像相交于 A ,B 两点,过 A ,B 两点 分别作 y 轴的垂线,垂足分别为点 C ,D ,则四边形 ACBD 的面积为( ) A. 2 B. 4 C. 6 D. 8 答案:1.4;2. 2 + 4 ;3.D ;4.D. 1. 如图 26.1-9,P 是双曲线 y =4( x > 0) 的一个分支上的一点,以点P 为圆心,1 个点位x长度为半径作⊙P,当⊙P与直线y = 3相切时,点P 的坐标为. 图26.1-9 图26.1-102.如图26.1-10,在平面直角坐标系中,反比例函数y =k( x> 0) 的图像上有一点A(m,4),x过点 A 作AB⊥x轴于点 B,将点 B 向右平移 2 个单位长度得到点 C,过点 C 作y 轴的平行线4交反比例函数的图像于点D,CD =.3(1)点D 的横坐标为(用含m 的式子表示);(2)求反比例函数的解析式.3.如图 26.1-11,四边形ABCO 是平行四边形,OA = 2 ,AB = 6 ,点C 在x 轴的负半轴上,将□ABCO 绕点A 逆时针旋转得到□ADEF,AD 经过点O ,点F 恰好落在x 轴的正半轴k上,若点 D 在反比例函数y =( x< 0) 的图像上,则k 的值为.x图 26.1-11答案:1.(1,4)或(2,2);2.(1)m+2;(2) CD =4,∴点 D 的坐标为(m + 2, 34) . 3点 A (m ,4) ,点 D (m + 2, 4 ) 在函数 y = k 的图像上,∴4m = 4(m + 2) ,解得 m=1,3 x 3∴k = 4m = 4 .∴反比例函数的解析式为 y = 4;3. 4 x§26.2 实际问题与反比例函数1.运用反比例函数的概念、图像、性质解决实际问题.2.经历“实际问题——建立模型——拓展应用”的过程,进一步体会数学建模思想,培养学生的数学应用意识,激发学生学习兴趣.几何问题与反比例函数1.已知矩形面积为36cm 2,相邻的两条边长分别为 x cm 和 y cm ,则 y 与 x 之间的函数图像大致是( )A BC D2.市煤气公司要在地下修建一个容积为104 m 3的圆柱形煤气储存室.(1)储存室的底面积 S (单位: m 2)与其深度d (单位: m )有怎样的函数关系?(2)公司决定把储存室的底面积 S 定为500m 2,施工队施工时应该向地下掘进多深? (3)当施工队按(2)中的计划掘进到地下15m 时,公司临时改变计划,把储存室的深度改为15m .相应地,储存室的底面积应改为多少?(结果保留小数点后两位) 解:(1)根据圆柱的体积公式,得,所以 S 关于d 的函数解析式为 ,其中是常量,是变量, S 是d 的函数.(2)由题意,把储存室的底面积 S 定为500m 2,也即 S = 500 ,将其代入 S 关于d 的函数解析式得,解得d =.因此,如果把储存室的底面积 S 定为500m 2,施工时应向地掘进深.(3)由题意,把储存室的深度改为15m ,也即d = 15 ,将其代入 S 关于d 的函数解析式得,解得 S ≈ .因此,如果把储存室的深度改为15m ,储存室的底面积应改为.4104104 答案:1.A ;2.(1) Sd = 10 , S =,容积, S 、d ,反比例;(2) 500 =,dd3知识建构试一试。
学年九年级上下册数学导学案北师大版(供参考)
第一章特殊平行四边形E F D C B A F ED C BA 第一章 特殊平行四边形课题1.1菱形的性质与判定(第二课时)教师二备一、问题引入1、 叫做菱形.2、菱形的四条边 ,对角线 .3、除了菱形的定义可以判断一个平行四边形是菱形外,还有什么条件可以判断? 二、基础训练1、要使□ABCD 为菱形,下列添加条件中正确的是( )A.AB ⊥BCB.AC ⊥BDC.AC=BDD.∠ABC=∠CDA 2、如图所示,在□ABCD 中,AE,CF 分别是∠BAD 和∠BCD 的平分线,若添加一个条件,仍无法判断四边形AECF 为菱形的是( )A.AE=AFB.EF ⊥ACC.∠B=60°D.AC 是∠EAF 的平分线三、例题展示 例1:如图所示,ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F .求证:四边形AFCE 是菱形.例2:如图所示,AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E,DF ∥AB 交AC 于F,试判断四边形AEDF 的形状,并证明你的结论.第一章特殊平行四边形HEF GCBAD 例2:如图,已知:两条等宽的长纸条倾斜地重叠着,求证:重叠部分为菱形.四、课堂检测1、下列条件中,能判定一个四边形为菱形的条件是( )A.对角线互相平分的四边形B.对角线互相垂直且平分的四边形C.对角线相等的四边形D.对角线相等且互相垂直的四边形2、菱形的边长是2 cm ,一条对角线的长是23 cm ,则另一条对角线的长是( ) A .4cmB .3cmC .2cmD .23cm3、 菱形的周长为16,两邻角度数的比为1∶2,此菱形的面积为( ) A. 43B. 83C. 103D. 1234、如图,菱形ABCD 的对角线AC 、BD 交于点O ,且AC =16cm ,BD =12cm ,求菱形ABCD 的高DH.5、如图,已知在四边形ABCD 中,AD=BC,点E,F,G ,H 分别是AB,CD,AC,BD 的中点,求证:四边形EGFH 是菱形.教学反思C DA B 第4题第一章特殊平行四边形Q P D C B A例2:如图所示,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内. (1) 求证:∠PBA=∠PCQ=30°;(2)求证:PA=PQ 四.课堂检测 1 1、矩形ABCD 的边AD=3cm ,对角线AC 、BD 的夹角∠AOB=120°,则AC= . 2 2、 Rt △ABC 的两直角边长分别为3和4,则斜边上的中线是 ,斜边上的高是 . 3 3、矩形的面积为12cm 2,一条边长为3cm ,则矩形的对角线长为_______ 4 4、已知点E 是矩形ABCD 的边BC 的中点,那么S △AED =(_)ABCD S 矩形A.21B.41C.51D.615 5、矩形ABCD 沿AC 折叠,使点B 落在点E 处, 求证:EF=DF. 66、已知:在矩形ABCD 中,E 为DC 边上一点,BF ⊥AE 于点F ,且BF =BC .求证:AE =AB.7、如图,在矩形ABCD 中,对角线AC 和BD 相交于点O,过顶点C 作BD 的平行线与AB 的延长线相交于点E,求证:△ACE 是等腰三角形教学反思 第5题 第6题F B D C A E 第7题O ED CBA第一章特殊平行四边形第一章 特殊平行四边形课题 1.2矩形的性质与判定(第三课时)教师二备一、问题引入1、矩形的性质定理:除了具有与平行四边形一样的性质之外,矩形所具有的特殊性质是:①矩形的____________________都是直角; ②矩形的对角线___________.2、矩形的判定定理:①有一个角是直角的________________是矩形(定义); ②有_____________________ 是直角的四边形...是矩形; ③对角线_________ ___的平行四边形是矩形. 二、基础训练1、在矩形ABCD 中,对角线AC 、BD 交于点O ,若∠AOB=60°,AB=4㎝,则AC=_______㎝.2、如图所示,已知ABCD ,下列条件:①AC=BD ,②AB=AD ,③∠1=∠2,④AB ⊥BC 中,能说明ABCD 是矩形的有(填写序号).3、如图,矩形的对角线交于点O ,过点O 的直线交AD 、BC 于点E 、F ,AB=2,BC=3,则图中阴影部分的面积为___ _______.三、例题展示例1:在矩形ABCD 中,对角线AC 与BD 相交于点O,AE ⊥BD 于点E,ED=3BE,求AE 的长.第2题 21DCBAO ED CBA四、课堂检测1、如上图1,在矩形ABCD 中,AB=3,AD=4,P 是AD 上一动点,PF ⊥AC 于F,PE ⊥BD 于E,则PE+PF 的值为( )A .125B .135C .52 D .22、已知:如图,在△ABC 中,AB=AC ,D 为BC 的中点,四边形ABDE 是平行四边形, 求证:四边形ADCE 是矩形.3、如图,以△ABC 的三边为边,在BC 的同侧分别作3个等边三角形,即△ABD 、△BCE 、△ACF .请回答问题并说明理由: (1)四边形ADEF 是什么四边形?(2)当△ABC 满足什么条件时,四边形ADEF 是矩形?教学反思E D C B A 第2题图 BA CED F 第3题图第1题图第一章特殊平行四边形第一章特殊平行四边形第一章 特殊平行四边形单元检测一、选择题1、如图,四边形ABCD 的对角线互相平分,要使它变为矩形, 需要添加的条件是( ) A.AB=CD B.AD=BC C.AB=BC D.AC=BD2、在菱形ABCD 中,对角线AC=4,∠BAD=120°,则菱形ABCD 的周长为( ) A.20 B.18 C.16 D.153、(2014•广西玉林市)下列命题是假命题的是( )A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形 4、如图,两张宽度相等的纸条交叉重叠,重合部分是( ) A .平行四边形 B .菱形 C .矩形 D .正方形 5、下列条件 中,不能判定四边形ABCD 为矩形的是( ) A .AB ∥CD ,AB=CD,AC=BD B.∠A=∠B=∠D=90° C.AB=BC,AD=CD,∠C=90° D.AB=CD,AD=BC,∠A=906、如图,菱形ABCD 中,对角线AC 、BC 相交于点O ,H 为AD 边中点, 菱形ABCD 的周长为28,则OH 的长等于( ) A3.5 B. 4 C. 7 D. 147、正方形具有而矩形不一定具有的性质是( ) A .四个角都是直角 B .对角线互相平分 C .对角相等 D .对角线互相垂直8、(2014•孝感)如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上, 点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°, 则旋转后,点D 的对应点D′的坐标是( ) A .(2,10) B.(-2,0) C.(2,10)或(-2,0) D.(10,2)或(-2,0)二、填空题 9、(2014•江苏苏州)已知正方形ABCD 的对角线AC=,则正方形ABCD 的周长为 . 10、(2014•山东淄博)已知□ABCD ,对角线AC ,BD 相交于点O ,请你添加一个适当的条件,使□ABCD 成为一个菱形,你添加的条件是 .11、已知矩形ABCD 的两条对角线相交于点O,∠AOB=60°,AB=4㎝,则矩形的对角线长为 .12、( 2014•福建泉州)如图,Rt △ABC 中,∠ACB =90°,D 为斜边AB 的中点,AB =10cm ,则CD 的长为 cm .第1题图ODC BA第6题图第8题图 第12题图第4题图13、(2014•四川宜宾)菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线长度是 cm .14、(2014年四川资阳)如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE =3,点Q 为对角线AC 上的动点, 则△BEQ 周长的最小值为 . 三.解答题15、( 2014•福建泉州)已知:如图,在矩形ABCD 中,点E ,F 分别在AB ,CD 边上,BE =DF ,连接CE ,AF .求证:AF =CE .16、(2014•四川巴中)如图,在四边形ABCD 中,点H 是BC 的中点,作射线AH ,在线段AH 及其延长线上分别取点E ,F ,连结BE ,CF .(1)请添加一个条件,使得△BEH ≌△CFH ,你添加的条件是 ,并证明. (2)在问题(1)中,当BH 与EH 满足什么关系时,四边形BFCE 是矩形,请说明理由.第14题图第15题图第16题第二章一元二次方程第二章一元二次方程第二章一元二次方程第二章一元二次方程第二章一元二次方程第二章一元二次方程5、(2014德州)方程01222=+++k k kx x 的两个实数根足42221=+x x ,则的值为第二章 一元二次方程课题 2.6 应用一元二次方程(一)教师二备一、问题引入:1、列方程解应用题的一般步骤: (1)“审”,即审题,分清题意,明确题目要求,弄清已知数、未知数以及它们之间的关系; (2)“设”,即设 ,设未知数的方法有直接设未知数和间接设未知数两种; (3)“列”,即根据题中的 关系列方程;(4)“解”,即求出所列方程的 ; (5)“检验”,即验证是否符合题意;(6)“答”,即回答题目中要解决的问题. 重点:找出相等关系的关键是审题,审题是列方程(组)的基础,找出 是列方程(组)解应用题的关键. 二、基础检测:1、(2014年天津市)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( ) A .()28121=+x x B . ()28121=-x xC .()281=+x xD .()281=-x x2、(2014丽水)如图,某小区规划在一个长m 30、宽m 20的长方形ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分种花草.要使每一块花草的面积都为278cm ,那么通道的宽应设计成多少m ?设通道的宽为xm ,由题意列得方程第2题图三、例题展示:例:如图:某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头.小岛F位于BC中点.一艘军舰从A 出发,经B到C匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇,那么相遇时补给船航行了多少海里?(结果精确到0.1海里)分析:(1)图形中线段长表示的量:已知AB= = 海里,DE表示的路程,表示军舰的路程.(2)找出题目中的等量关系即:速度等量:V军舰= 时间等量:t军舰=t补给船根据分析正确设出未知数,写出解题过程.四、课堂检测:1、(2014年山东泰安)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=152、一个矩形的面积是48平方厘米,它的长比宽多8厘米,则矩形的宽x(厘米),应满足方程______ ___ _.3、如图,某小区规划在长32米,宽20米的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?4、(2014新疆,)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?教学反思第二章一元二次方程课题 2.6 应用一元二次方程(二)教师二备一、问题引入:常见应用题类型1、增长率问题:增长率问题分正增长率问题与负增长率问题.台元 元 降价前 降价后根据分析正确设出未知数,在练习本上写出解题过程.四、课堂检测:1、(2014•湖南衡阳)学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求这两年的年平均增长率.2、2、(2013山东泰安)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个;第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x 元销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问:第二周每个旅游纪念品的销售价格为多少元?教学反思第二章 一元二次方程单元检测题(总分100分)一、选择题:(每小题4分,共32分)1、若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( )A .2±=mB .2=mC .2-=mD .2±≠m2、已知m 是方程012=--x x 的一个根,则代数式m m -2的值等于( )A.-1B.0C.1D.2 3、方程x x 22=的解为( )A.2=xB.21-=x ,02=xC. 21=x ,02=xD. 0=x 4、解方程)15(3)15(2-=-x x 的适当方法是( )A.开平方法B.配方法C.公式法D.因式分解法 5、用配方法解下列方程时,配方有错误的是( )A.09922=--x x 化为()10012=-x B.0982=++x x 化为()2542=+xC.04722=--t t 化为1681)47(2=-t D.02432=--y y 化为910)32(2=-y6、如果关于x 的一元二次方程02=++q px x 的两根分别为31=x ,12=x ,那么这个一元二次方程是( )A.0432=++x xB.0342=-+x xC.0342=+-x xD. 0432=-+x x7、一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,则m 等于 ( )A. 6- B. 1 C. 2 D. 6-或18、某型号的手机连续两次降价,每个售价由原来的1225元降到了625元,设平均每次降价的百分率为x ,列出方程正确的是( ) A .()122516252=+x B. ()625112252=+xC. ()122516252=-x D.()625112252=-x二、填空题:(每小题4分,共20分)9、一元二次方程x x 71322=-的二次项系数为: ,一次项系数为: ____ ,常数项为: ___.10、请写出一个一元二次方程使它有一个根为-3, . 11、关于x 的一元二次方程022=+-m mx x 的一个根为1,则方程的另一根为 .12、关于x 的一元二次方程0322=-+k x x 有实数根,则k 的取值范围是 . 13、实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则, 方程()031=*+x 的解为 . 三、解答题:14、解下列方程:(每小题6分,共12分)(1) 01862=--x x (2) 752652x x x15、已知关于的方程(的两根之和为,两根之差为1,其中是△的三边长(1)求方程的根;(2)试判断△的形状.(每小题12分)16、团委准备举办学生绘画展览,在长30cm、宽为20cm的矩形画面的四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等,求彩纸的宽度.(每小题12分)17、果批发商场经销一种高档水果,如果每千克盈利15元,每天可售出500kg,经市场调查发现,在进货价不变的情况下,每涨价1元,日销售量将减少30kg,现该商场要保证每天盈利8250元,同时又要使顾客得到实惠,那么每千克应涨价多少元?(每小题12分)第三章概率的进一步认识课题 3.1用树状图或表格求概率(一)教师二备一、问题引入:A.61B.31C.21D.652、一次抽奖活动中,印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200张,那么第一位抽奖者(仅买一张奖券)中奖的概率是( ).A.501B.252C.51D.1033、三个人站成一排,通过试验可得,甲站在中间的概率为().A.61B.31C.21D.414、甲、乙两人赛跑,则开始起跑时都迈出左腿的概率是()A.1B.21C.31D.415、某校决定从两名男生和两名女生中选出两名同学作为2014年元旦联欢晚会的主持人,则恰好选出一男一女的概率是.6、如图是某地的灌溉系统,一个漂浮物A流到B处的概率为.7、小明说:“我投均匀的一枚硬币2次,会出现两次都为反、一正一反和两次都为正三种情况,所以出现一正一反这种情况的概率是31”,你觉得他的说法有道理吗?说明你的理由.8、有两组卡片,第一组两张卡片上都写着A、B,第二组三张卡片上都写着A、B、C.试用树状图和列表法求出从每组卡片中各抽取一张,两张都是B的概率.教学反思第三章概率的进一步认识课题 3.1用树状图或表格求概率(二)教师二备一、问题引入:有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是.3、一个盒子内装有大小、形状相同的三个球,其中红球、绿球、白球各1个,小明摸出一个球再放回,再摸出一个球,则两次都摸到白球的概率是()A.21B.41C.61D.914、学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲乙两人恰有一人参加此活动的概率是()A.32B.65C.61D.215、在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是()A.83B.21C.85D.436、从分别标有﹣1,1,2的三张卡片中一次抽取2张,卡片上的两个数的乘积为负数的概率是.7、如图,有A、B、C、D 四张卡片,其正面分别写有“寸、又、日”四个偏旁部首,有的能独立成字,有的能组合成字.现四张卡片背面朝上.(1)任意翻过一张卡片,能独立成字的概率为;(2)先任意翻过一张卡片作为左部偏旁,再任意翻过一张与其组合,请用列表或画树状图的方法求翻过的两张卡片恰好能组合成字的概率.教学反思第三章概率的进一步认识课题 3.1用树状图或表格求概率(三)教师二备一、问题引入:1、同时抛掷硬币三次,一共有 种可能出现的结果?求三枚硬币全部正面朝上的概率 .2、用树状图和列表的方法求概率应注意各种结果出现的可能性 . 二、基础训练:1、(1)一个口袋中有4粒糖,1粒红色,1粒黄色,2粒白色,今从中任取一粒,再放回,又取一粒,两粒都是白色的概率为_________.(2)一个口袋中有4粒糖,1粒红色,1粒黄色,2粒白色,今从中任取一粒,不放回,又取一粒,两粒都是白色的概率为_________.2、有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上 (如右图),从中任意一张是数字3的概率是( ) A.61 B.31 C.21 D.323、有长度分别为2cm 、5cm 、7cm 、10cm 的四条线段,从中任取三条线段能够组成三角形的概率是( )A.14 B.12 C.23 D.34三、例题展示:例1、小英和小丽用两个转盘做“配紫色”游戏,配成紫色小英胜,否则小丽胜,用树状图或表格说明这个游戏对双方公平吗?例2:小明准备今年五一到上海参观世博会,但只需要一名家长陪同前往,爸爸、妈妈都很愿意陪同,于是决定用抛掷硬币的方法决定由谁陪同.每次掷一枚硬币,连掷三次.(1)用树状图列举三次抛掷硬币的所有结果;(2)若规定:有两次或两次以上正面向上,由爸爸陪同前往上海;有两次或两次以上反面向上,则由妈妈陪同前往上海.分别求由爸爸陪同小明前往上海和由妈妈陪同小明前往上海的概率. 四、课堂检测:1、一个家庭有3个小孩.这个家庭有3个男孩的概率是 ;2、如图是两个可以自由转动的转盘,转盘均被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),红 黄蓝蓝红 红 黄则转盘停止后指针指向的数字之和为偶数的概率是.3、一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外其它都一样.小亮从布袋中摸出一个球后放回去摇匀,再摸出一个球.请你利用(列表或画树状图)分析并求出小亮两次都能摸到白球的概率.4、有四张不透明的卡片(如图),除正面的数字不同外,其余都相同,现将它们背面向上洗匀,从中任意抽取两张,上面的数字之和恰好为零的概率为().A.15B.14C.13D.125、随机掷一枚均匀的硬币三次,三次正面都朝上的概率是.6、利用下面的转盘做“配紫色”的游戏,用树状图求出“配紫色”的概率.7、在一个不透明的盒子中,放入2个白球和1个红球,这些球除颜色外都相同.(1)搅匀后从中任意摸出2个球,请通过列表或树状图求摸出2个球都是白球的概率;(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋中,再次搅匀后从中任意摸出1个球,则2次摸出的球都是白色的概率为;(3)现有一个可以自由转动的转盘,转盘被等分成60个相等的扇形,这些扇形除颜色外完全相同,其中40个扇形涂上白色,20个扇形涂上红色,转动转盘2次,指针2次都指向白色区域的概率为.教学反思第三章概率的进一步认识课题 3.2用频率估计概率教师二备一、问题引入:能有()A.16个B.15个C.13个D.12个2、随机抛掷一枚图钉10000次,其中针尖朝上的次数为2500次,则抛掷这枚图钉1次,针尖朝上的概率是.3、从一本书中随机抽取若干页,其中“的”出现的频率为0.03,由此可估计这本书中“的”字出现的频率为.4、一水塘里有鲤鱼、鲢鱼共10000尾,一渔民通过多次捕捞实验后发现,鲤鱼出现的频率为31%,则水塘大约有鲢鱼尾.5、一箱灯泡的合格率是87.5%,小刚由箱中任意买一个,则他买到次品的概率是()A.124B.87.5%C.14D.186、小鸡孵化场孵化出1000只小鸡,在60只上做记号,再放入鸡群中让其充分跑散,再任意抓出50只,其中做有记号的大约是()A.40只B.25只C.15只D.3只7、一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、x,甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验,实验数据如表:摸球总次数10 20 30 60 90 120 180 240 330 450“和为8”出现的频数 2 10 13 24 30 37 58 82 110 150“和为8”出现的频率0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是_________.(2)如果摸出的这两个小球上数字之和为9的概率是,那么x的值可以取7吗?请用列表法或画树状图说明理由;如果x的值不可以取7,请写出一个符合要求的x值.教学反思课题第三章概率的进一步认识单元测试教师二备10、在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球实验后,发教学反思现摸到白球的频率约为40%,估计袋中白球有_________个.11、一个口袋里放有三枚除颜色外都相同的棋子,其中有两枚是白色的,一枚是红色的.从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色,两次摸出棋子颜色不同的概率是.12、抛一枚均匀的硬币100次,若出现正面的次数为45次,那么出现正面的频率是_________.13、小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是.14、纸箱里有两双拖鞋,除颜色不同外,其它都相同,从中随机取一只(不放回),再取一只,则两次取出的鞋颜色恰好相同的概率为.三、解答题15、如图所示,有一张“太阳”和两张“月亮”共三张精美卡片,它们除花形外,其余都一样.(1)从三张卡片中一次抽出两张卡片,请通过列表或画树状图的方法,求出两张卡片都是“月亮”的概率;(2)若再添加几张“太阳”卡片后,任意抽出一张卡片,使得抽出“太阳”卡片的概率为2,那么应添加多少张“太阳”卡片?请说明理由.316、小伟和小欣玩一种抽卡片游戏:将背面完全相同,正面分别写有1,2,3,4的四张卡片混合后,小伟从中随机抽取一张.记下数字后放回,混合后小欣再随机抽取一张,记下数字.如果所记的两数字之和大于4,则小伟胜;如果所记的两数字之和不大于4,则小欣胜.(1)请用列表或画树形图的方法.分别求出小伟,小欣获胜的概率;(2)请修改两人获胜的规则,使两人获胜的可能性一样大.第四章图形的相似课题 4.1成比例线段(第1课时)教师二备一、问题引入:(1)如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么就说这两条线段的比AB:CD=m:n,或写成nmCDAB=其中, ________ 叫做这个线段比的前项;________ 叫做这个线段比的后项.如果把nm表示成比值k,那么kCDAB=,或AB=k·CD.两条线段的比实际上就是两个数的比.(2)如图,设小方格的边长为1,四边形ABCD与四边形EFGH的顶点都在格点上,那么AB,CD,EH,EF的长度分别是多少?分别计算.你发现了什么?上图中________________ 是成比例线段,_______________ 也是成比例线段.四条线段a,b,c,d中,如果_______________,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.如果a:b=b:c,则b2=ac,线段b叫做线段a、c的比例中项;归纳比例的基本性质___________________________________________.二、基础训练:1、一条线段的长度是另一条线段长度的5倍,则这两条线段之比是___ ___.2、线段AB=10cm,CD=15cm,则AB:CD=;a=2m,b=10cm,则a:b=.3、已知a、b、c、d是成比线段,a=4cm,b=6cm,d=9cm,则c=____ .4、如果2x=5y,那么yx= .EFEHADABEFADEHAB,,,5、下面四条线段中,不能成比例的是( )A . a =3, b =6, c =2, d =4B . a =4, b =8, c =5, d =10C . a =2, b =22,c= 32 , d=3D . a=2, b=52 , c= 15 ,d=32三、例题展示: 例题1: 如图,一块矩形绸布的长AB=am,AD=1m ,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即AB AD AD AE = ,那么a 的值应当是多少?四、课堂检测:1、若四条线段中a =2,b =6,c =6,且满足dcb a =,那么d =_ ____. 2、线段x 、y 满足5x =3y ,那么x :y = . 3、等腰Rt ΔABC 的直角边与斜边之比是 . 4、若917=+y y x ,则y x =__ ___.5、如图,已知d c b a ==3,则b b a += , dd c += . 6、若41=b a ,则b b a 23+的值为 .7、若532zy x ==,x +y +z =5,那么x = ,y = ,z = . 8、如果754z y x ==,那么zz y x ++= .教学反思a cbd。
九年级数学下册导学案全册
顶点坐标是;对称轴是直线。
2.抛物线 和 的形状,位置。(填“相同”或“不同”)
3.抛物线 是由 如何平移得到的?答:
。
三、合作交流
平移前后的两条抛物线 值变化吗?为什么?
答:。
四、知识梳理
结合上图和课本第9页例3归纳:
(一)抛物线 的特点:
1.当 时,开口向;当 时,开口;
6.若二次函数 的图象过点(1,-2),则 的值是___________.
7.如图,抛物线① ② ③ ④ 开口从小到大排列是___________________________________;(只填序号)其中关于 轴对称的两条抛物线是和。
8.点A( ,b)是抛物线 上的一点,则b=;过点A作x轴的平行线交抛物线另一点B的坐标是。
5.抛物线 向左平移3个单位后,得到的抛物线的表达式为______________.
6.将抛物线 向右平移1个单位后,得到的抛物线解析式为__________.
7.抛物线 与y轴的交点坐标是_______,与x轴的交点坐标为________.
8.写出一个顶点是(5,0),形状、开口方向与抛物线 都相同的二次函数解析式_______________.
4.二次函数 .当x=2时,y=3,则这个二次函数解析式为.
5.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带的BC边长为x m,绿化带的面积为y m2.求y与x之间的函数关系式,并写出自变量x的取值范围___;
④与的交点叫做抛物线的顶点。抛物线 的顶点坐标是;
它是抛物线的最点(填“高”或“低”),即当x=0时,y有最值等于0.
九年级数学初三下册:1.3.1正方形的性质导学案
1.3.1正方形的性质【教学目标】知识与技能1、理解正方形的概念,了解正方形与平行四边形、菱形、矩形的关系.2、掌握正方形的有关性质和判定方法.3、能运用正方形的性质解决有关计算和证明问题.过程与方法1、通过观察、实验、归纳、类比获得数学猜想,发展学生的合情推理能力,进一步提高学生逻辑思维能力.2、通过四边形从属关系的教学,渗透集合思想.情感、态度与价值观1、经历探索正方形有关性质和四边形成为正方形的条件过程,培养学生动手操作的能力、主动探究的习惯和合作交流的意识.2、通过理解特殊的平行四边形之间的内在联系,培养学生辩证观点【教学重难点】教学重点:正方形的定义和性质教学难点:四边形成为正方形的条件【导学过程】【创设情景,引入新课】我们已学习了矩形、菱形,它们都是特殊的平行四边形.让学生根据所准备的模型分别叙述矩形、菱形的定义及其性质.【自主探究】平行四边形,矩形,菱形的内在联系.根据小学学过的正方形的知识,你能说出正方形的意义吗?四条边都相等,四个角都是直角的四边形是正方形.【课堂探究】正方形与矩形、菱形、平行四边形间的关系如图.正方形的性质[交流]根据上述关系可知,正方形既是特殊的矩形、又是特殊的菱形,更是的特殊的平行四边形,你能说出正方形的性质吗?[点拨]从边、角、对角线等方面考虑.边:对边平行、四条边都相等角:四个角都是直角对角线:对角线相等,互相垂直平分,每条对角线平分一组对角[归纳]性质1:正方形的四条边都相等,四个角都是直角.性质2:正方形的两条对角线相等且互相垂直平分,每条对角线平分一组对角.[问题]正方形是中心对称图形吗?如是,对称中心在哪里?正方形是轴对称图形吗?如是,它有几条对称轴?对称性:正方形是中心对称图形;同时还是轴对称图形,它有四条对称轴(两条对角线,两组对边的中垂线.),对称轴通过对称中心.如图正方形具有平行四边形、矩形、菱形的一切性质.【当堂训练】如图,四边形ABCD是正方形,两条对角线相交于点O.(1)一条对角线把它分成_______个全等的________ 三角形;(2)两条对角线把它分成_______个全等的________三角形;图中一共有________个等腰直角三角形;(3)∠AOB=_____度,∠OAB=_____度.(4)AB: AO: AC=________.1、正方形具有而菱形没有的性质是()A、对角线互相平分B、每条对角线平分一组对角C、对角线相等D、对边相等3、正方形是轴对称图形,它的对称轴有()A、 1条B、 2条C、 4条D、无数条4、如图所示,以正方形ABCD中AD边为一边向外作等边ΔADE,则∠AEB=()A、10°B、15°C、20°D、12.5°5、如图,正方形ABCD中,∠DAF=25°,AF交对角线BD于点E,那么∠BECA、 45°B、60°C、70°D、75°6、正方形的对称轴有条,它的对称中心是 .7、正方形的边长为4cm,则周长为,面积为 .第5题图8、正方形的对角线与一边的夹角为 .9、一个正方形的对角线长3cm,则它的面积为 .10、若正方形的面积为42cm,则它的边长为,对角线长为E11、如图所示,E为正方形ABCD外一点,AE=AD,∠ADE=75 .12、以线段AB的两个端点A、B为顶点作位置不同的正方形,一共可作个.。
北师大版九年级数学下册导学案精编
第一章 直角三角形的边角关系 §1.1 从梯子的倾斜程度谈起(第一课时)学习目标:1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tanA 表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算. 学习重点:1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.学习难点:理解正切的意义,并用它来表示两边的比. 学习方法:引导—探索法. 学习过程:一、生活中的数学问题:1、你能比较两个梯子哪个更陡吗?你有哪些办法?2、生活问题数学化:⑴如图:梯子AB 和EF 哪个更陡?你是怎样判断的?⑵以下三组中,梯子AB 和EF 哪个更陡?你是怎样判断的?二、直角三角形的边与角的关系(如图,回答下列问题)⑴Rt △AB 1C 1和Rt△AB 2C 2有什么关系? ⑵222111B AC C B AC C 和有什么关系? ⑶如果改变B 2在梯子上的位置(如B 3C 3)呢?⑷由此你得出什么结论?三、例题:例1、如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?例2、在△ABC 中,∠C=90°,BC=12cm ,AB=20cm ,求tanA 和tanB 的值.四、随堂练习:1、如图,△ABC 是等腰直角三角形,你能根据图中所给数据求出tanC 吗?2、如图,某人从山脚下的点A 走了200m 后到达山顶的点B ,已知点B 到山脚的垂直距离为55m ,求山的坡度.(结果精确到0.001)3、若某人沿坡度i =3:4的斜坡前进10米,则他所在的位置比原来的位置升高________米.4、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tan θ=______.5、如图,Rt △ABC 是一防洪堤背水坡的横截面图,斜坡AB 的长为12 m ,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD ,求DB 的长.(结果保留根号)五、课后练习:1、在Rt △ABC 中,∠C=90°,AB=3,BC=1,则tanA= _______.2、在△ABC 中,AB=10,AC=8,BC=6,则tanA=_______.3、在△ABC 中,AB=AC=3,BC=4,则tanC=______.4、在Rt △ABC 中,∠C 是直角,∠A、∠B、∠C 的对边分别是a 、b 、c,且a=24,c= 25,求tanA 、tanB 的值.5、若三角形三边的比是25:24:7,求最小角的正切值.6、如图,在菱形ABCD 中,AE⊥BC 于E,EC=1,tanB=125, 求菱形的边长和四边形AECD 的周长.E DBAC7、已知:如图,斜坡AB 的倾斜角a,且tan α=34,现有一小球从坡底A 处以20cm/s 的速度向坡顶B 处移动,则小球以多大的速度向上升高?8、探究:⑴、a 克糖水中有b 克糖(a>b>0),则糖的质量与糖水质量的比为_______; 若再添加c 克糖(c>0),则糖的质量与糖水的质量的比为________.生活常识告诉我们: 添加的糖完全溶解后,糖水会更甜,请根据所列式子及这个生活常识提炼出一个不等式: ____________.⑵、我们知道山坡的坡角越大,则坡越陡,联想到课本中的结论:tanA 的值越大, 则坡越陡,我们会得到一个锐角逐渐变大时,它的正切值随着这个角的变化而变化的规律,请你写出这个规律:_____________.⑶、如图,在Rt△ABC 中,∠B=90°,AB=a,BC=b(a>b),延长BA 、BC,使AE=CD=c, 直线CA 、DE 交于点F,请运用(2) 中得到的规律并根据以上提供的几何模型证明你提炼出的不等式.§1.1从梯子的倾斜程度谈起(第二课时)学习目标:1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义.2.能够运用sinA 、cosA 表示直角三角形两边的比.3.能根据直角三角形中的边角关系,进行简单的计算.4.理解锐角三角函数的意义. 学习重点:1.理解锐角三角函数正弦、余弦的意义,并能举例说明.2.能用sinA 、cosA 表示直角三角形两边的比.3.能根据直角三角形的边角关系,进行简单的计算. 学习难点:用函数的观点理解正弦、余弦和正切. 学习方法:探索——交流法. 学习过程:一、正弦、余弦及三角函数的定义 想一想:如图(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系? (2)211122BA C A BA C A 和有什么关系? 2112BA BC BA BC 和呢? (3)如果改变A 2在梯子A 1B 上的位置呢?你由此可得出什么结论?(4)如果改变梯子A1B 的倾斜角的大小呢?你由此又可得出什么结论? 请讨论后回答.B ABDA C E F二、由图讨论梯子的倾斜程度与sinA 和cosA 的关系:三、例题:例1、如图,在Rt △ABC 中,∠B=90°,AC =200.sinA =0.6,求BC 的长.例2、做一做:如图,在Rt △ABC 中,∠C=90°,cosA =1312,AC =10,AB 等于多少?sinB 呢?cosB 、sinA 呢?你还能得出类似例1的结论吗?请用一般式表达.四、随堂练习:1、在等腰三角形ABC 中,AB=AC =5,BC=6,求sinB ,cosB ,tanB.2、在△ABC 中,∠C =90°,sinA =54,BC=20,求△ABC 的周长和面积.3、在△ABC 中.∠C=90°,若tanA=21,则sinA= .4、已知:如图,CD 是Rt △ABC 的斜边AB 上的高,求证:BC 2=AB ·BD.(用正弦、余弦函数的定义证明)五、课后练习:1、在Rt△ABC 中,∠ C=90°,tanA=34,则sinB=_______,tanB=______. 2、在Rt△ABC 中,∠C=90°,AB=41,sinA=941,则AC=______,BC=_______.3、在△ABC 中,AB=AC=10,sinC=45,则BC=_____.4、在△ABC 中,已知AC=3,BC=4,AB=5,那么下列结论正确的是( )DB ACBACA.sinA=34 B.cosA=35 C.tanA=34 D.cosB=355、如图,在△ABC 中,∠C=90°,sinA=35,则BCAC等于( )A.34B.43C.35D.456、Rt△ABC 中,∠C=90°,已知cosA=35,那么tanA 等于( )A.43B.34C.45D.547、在△ABC 中,∠C=90°,BC=5,AB=13,则sinA 的值是A .135 B .1312 C .125 D .5128、已知甲、乙两坡的坡角分别为α、β, 若甲坡比乙坡更徒些, 则下列结论正确的是( )A.tan α<tan βB.sin α<sin β;C.cos α<cos βD.cos α>cos β9、如图,在Rt△ABC 中,CD 是斜边AB 上的高,则下列线段的比中不等于sinA 的是( ) A.CD AC B.DB CB C.CB AB D.CDCB10、某人沿倾斜角为β的斜坡前进100m,则他上升的最大高度是( )m A.100sin βB.100sin βC.100cos β D. 100cos β11、如图,分别求∠α,∠β的正弦,余弦,和正切.12、在△ABC 中,AB=5,BC=13,AD 是BC 边上的高,AD=4.求:CD,sinC.13、在Rt△ABC 中,∠BCA=90°,CD 是中线,BC=8,CD=5.求sin∠ACD,cos∠ACD 和tan∠ACD.14、在Rt△ABC 中,∠C=90°,sinA 和cosB 有什么关系?15、如图,已知四边形ABCD 中,BC=CD=DB,∠ADB=90°,cos ∠ABD=45.求:s △ABD :s △BCDBDAC§1.2 30°、45°、60°角的三角函数值学习目标:1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算.3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小. 学习重点:1.探索30°、45°、60°角的三角函数值.2.能够进行含30°、45°、60°角的三角函数值的计算.3.比较锐角三角函数值的大小. 学习难点:进一步体会三角函数的意义. 学习方法: 自主探索法 学习过程: 一、问题引入[问题]为了测量一棵大树的高度,准备了如下测量工具:①含30°和60°两个锐角的三角尺;②皮尺.请你设计一个测量方案,能测出一棵大树的高度.二、新课[问题] 1、观察一副三角尺,其中有几个锐角?它们分别等于多少度? [问题] 2、sin30°等于多少呢?你是怎样得到的?与同伴交流. [问题] 3、cos30°等于多少?tan30°呢?[问题] 4、我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?(1)sin30°+cos45°; (2)sin 260°+cos 260°-tan45°.[例2]一个小孩荡秋千,秋千链子的长度为2.5 m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)三、随堂练习 1.计算:(1)sin60°-tan45°; (2)cos60°+tan60°;(3) 22sin45°+sin60°-2cos45°; ⑷13230sin 1+-︒;⑸(2+1)-1+2sin30°-8; ⑹(1+2)0-|1-sin30°|1+(21)-1;⑺sin60°+︒-60tan 11; ⑻2-3-(0032+π)0-cos60°-211-.2.某商场有一自动扶梯,其倾斜角为30°.高为7 m ,扶梯的长度是多少?3.如图为住宅区内的两幢楼,它们的高AB =CD=30 m ,两楼问的距离AC=24 m ,现需了解甲楼对乙楼的采光影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?(精确到0.1 m ,2≈1.41,3≈1.73)四、课后练习:1、Rt △ABC 中,8,60=︒=∠c A ,则__________,==b a ; 2、在△ABC 中,若2,32==b c ,,则____tan =B ,面积S = ; 3、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC = 4、等腰三角形底边与底边上的高的比是3:2,则顶角为 ( ) (A )600(B )900(C )1200(D )1505、有一个角是︒30的直角三角形,斜边为cm 1,则斜边上的高为 ( ) (A )cm 41 (B )cm 21 (C )cm 43 (D )cm 23 6、在ABC ∆中,︒=∠90C ,若A B ∠=∠2,则tanA 等于( ). (A )3 (B )33(C )23 (D )217、如果∠a 是等边三角形的一个内角,那么cos a 的值等于( ).(A )21 (B )22(C )23 (D )18、某市在“旧城改造”中计划内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ). (A )450a 元 (B )225a 元 (C )150a 元 (D )300a 元9、计算:︒15020米30米⑴、︒+︒60cos 60sin 22 ⑵、︒︒-︒30cos 30sin 260sin⑶、︒-︒45cos 30sin 2⑷、3245cos 2-+︒⑸、045cos 360sin 2+ ⑹、 130sin 560cos 30-⑺、︒30sin 22·︒+︒60cos 30tan tan60° ⑻、︒-︒30tan 45sin 2210、请设计一种方案计算tan15°的值。
人教版初中九年级下册数学导学案
人教版初中九年级下册数学导学案导学目标:1.通过本单元的学习,能够掌握函数的概念、性质及基本特征。
2.了解一些基本的函数图像,如一次函数、二次函数、指数函数、对数函数等,并能够进行简单的函数图像的绘制。
3.知道函数在实际生活中的应用,并能够灵活运用函数进行简单的实际问题的解决。
知识要点:一、函数及其概念1.自变量和因变量的关系,定义域和值域的含义。
2.函数的符号表示和简单说明。
二、函数的性质和基本特征1.奇偶性、单调性、最值等。
2.函数的图像特征和性质。
三、基本函数类型及其图像1.一次函数、二次函数、指数函数、对数函数、三角函数等。
2.各种函数图像的特征和性质。
四、函数的应用1.函数在实际生活中的应用,如利润函数、人口增长函数、投掷物体高度函数等。
2.函数的应用题目的解决方法。
导学重点:1.了解函数的概念及其性质、基本特征。
2.认识函数图像的特征和性质。
3.了解函数在实际生活中的应用及解题方法。
导学难点:1.准确理解函数的概念,认识它与方程的不同。
2.了解函数图像的特征和性质,并能够进行简单的绘制。
3.掌握函数在实际生活中的应用,能够灵活运用解题。
学习方法:1.拓宽知识视野,学会尝试与创新。
2.多思考、多联系,积累经验与技巧。
3.理论与实践相结合,加强练习。
重要公式:1.函数:y=f(x),x为自变量,y为因变量。
2.一次函数:y=kx+b,y=kx或y=b的图像都是直线。
3.二次函数的标准形式:y=ax^2+bx+c,其中a≠0。
4.指数函数:y=a^x,a为底数,a>0且a≠1。
5.对数函数:y=log_a x,a为底数,a>0且a≠1。
6.三角函数:sinx、cosx、tanx等。
导学提问:1.什么是函数?2.如何表示函数?3.函数的定义域和值域的含义是什么?4.一次函数的图像特征是什么?5.二次函数的标准形式是什么?6.指数函数和对数函数有哪些特点?7.三角函数的周期是多少?如何刻画其图像特征?8.函数在实际生活中有哪些应用?可以举例说明。
九年级数学下册全册精品导学案
第26章反比例函数26.1.1反比例函数的意义【学习目标】1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用【学习重点】理解反比例函数的意义,确定反比例函数的解析式【学习难点】反比例函数的解析式的确定【学法指导】自主、合作、探究【自主学习,基础过关】一、自主学习:(一)复习巩固1.在一个变化的过程中,如果有两个变量x和y,当x在其取值范围内任意取一个值时,y,则称x为,y叫x的.2.一次函数的解析式是:;当时,称为正比例函数.3.一条直线经过点(2,3)、(4,7),求该直线的解析式.以上这种求函数解析式的方法叫:.(二)自主探究提出问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.1、上面问题中,自变量与因变量分别是什么?三个问题的函数表达式分别是什么?(1)(2)(3)2、这三个函数关系式可以叫正比例函数吗?可以叫一次函数吗?(三)归纳总结:12621000 1.68⨯1041、三个函数表达式:t=、y=、S=有什么共同特征?你能用一个v x n一般形式来表示吗?2、对于函数关系式y=1000x,完成下表:⑴y=4x;⑵y=-5A、y=8x102030405080100 y=1000x当x越来越大时y怎样变化?这说明x与y具备怎样的关系?3、类比一次函数的概念给上述新的函数下一个恰当的定义讨论:1、反比例函数y=k中自变量x在分式的什么位置?自变量的取值范围是什么?x2、你能再举出两个反比例函数关系的实例吗?写出函数表达式,与同伴进行交流。
2012九年级数学下册导学案全册.doc
九年级下册数学导学案第一课时建立反比例函数模型主备课人:蒋汉国学习目的1、体会反比例函数的意义2、能根据已知条件确定反比例函数的表达式。
学习重点:反比例函数的概念学习过程:一、预习导学1.形如( )的函数叫正比例函数2.在行程问题中,当路程s一定时,所用的时间t与速度v之间的关系为t= ,当路程为3000m时,所花时间t=这表明:当路程一定时,时间t与速度v成关系因此我们把这样的函数叫做函数。
3.反比例函数的概念:一般地,如果两个变量y与x的关系可以表示为y= ( )的形式,那么称y是x的反比例函数的自变量取值范围是,但是在实际问题中,还要根据具体情况来进一步确定该反比例函数自变量的取值范围。
二、合作探究1.下列函数哪些是一次函数,哪些是反比例函数,并指出k 的值。
(1)x 3y = (2)x 2-y = (3)x2-y = (4)2x 1y = (5)5y x =+ (6)5xy = 2.若是反比例函数,则m= 3.已知y 是x 的反比例函数,当x=5时,y=10(1)请你求出y 与x 的函数关系式(2)当x=3时,求y 的值4.写出下列函数解析式,并指出它们中间哪些是正比例函数,哪些是反比例函数?(1)当速度s m v 3=时,路程s (m )关于时间t (s )的函数;2 - m x 1 - m y ) ( =(2)体积是常数v时,圆柱的底面积S关于高h的函数;(3)当电阻R=10Ω时,电压U(v)关于电流I(A)的函数。
三、课堂检测:1.当矩形的面积为2cm120时,它们相邻的两条边长y(cm)和x(cm)有什么关系?y是x的反比例函数吗?2.若3-m x6y 是反比例函数(1)求m的值(2)若y=3,求x的值3.若y与x-1是反比例,且当x=2时,y=4(1)求y与x的函数关系式(2)求x=-2时,y的值(3)求y=-1时,x 的值第二课时 反比例函数的图案与性质主备课人:蒋汉国学习目的:1.会用描点法绘制反比例函数()0x k y 〉=k 的图象,2.了解反比例函数x ky =当0〉k 时,其图案的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:《1.3. 三角函数的有关计算》
【学习目标】
1.能够使用计算器由已知锐角求出三角函数值;
2.理解俯角、仰角,并借助计算器解决含三角函数的实际问题。
导学过程
【学习过程】
一、自主探究及巩固:
【探究1】利用计算器计算锐角三角函数值(函数值一般都保留三个有效数字)
【自我巩固】
1.用计算器计算(保留三个有效数字)
sin35°=____________;tan46°=_________; sin15°+cos61°+tan76°=__________
2.已知菱形ABCD,AB=10m,∠A=40°,则菱形ABCD的面积为_______
2
cm(结果精确到0.12
cm)
3.亮亮家在盖新房,木工师傅将做好的人字架放在墙边如图所示,亮亮很兴奋,他用尺子量得屋架为等腰三角形,中柱CD=1m,又量得∠A=27°,请你计算跨度AB的长是________。
(结果精确到0.01m)
【探究2】仰角、俯角及其实际应用
【技巧点拨】在解决仰角、俯角有关问题时,一般将问题转化
为由水平线、铅垂线与视线构成的直角三角形的问题,所以在
解题时,应先画出几何图形,辅助线的添助一般是作平行线或
垂线,并借助平行线的性质来转化相等的角,从而进行相关的
计算。
【自我巩固】
4.如图,在高出海平面100米的悬崖顶A处,观测海平面上一艘小船B,并测得它的俯角为45°,则船与观测者之间的水平距离BC=米.
5.如图,某河道要建造一座公路桥,要求桥面离地面高度AC为3米,引桥的坡角∠ABC为15°,则引桥的水平距离BC的长是米(精确到0.1米
) .
6.如图,为了测量某建筑物的高AB,在距离B点25米的D处安置侧倾器,测得点A的仰角 为70°16′,已知侧倾器的高CD=1.52米,求建筑物的高AB(结果精确到0.1m)。
【课内互动】
1.如图,在高80米的瞭望塔顶A处测得其正西两个浮标B、C的俯角分别为27°和
34°,则两浮标间的距离BC≈________米(精确到0.1米)。
2.为倡导“地摊生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图,车架档
AC 与CD 的长分别为45cm ,60cm ,且它们相互垂直,座杆CE
的长为20cm ,点,,A C E 在同一条直线上,且75CAB ∠=︒,如图2.
(1)求车架档AD 的长
(2)求车座点E 到车架档AB 的距离.
(记过精确到1cm ,参考数据:
sin 750.959cos 750.2588tan 75 3.7321︒≈︒≈︒≈,,)。