含参量积分习题新解法
含参变量的积分例题详解

含参变量的积分例题详解一、引言在数学中,含参变量的积分是一个重要的概念,它涉及到函数的整体性质。
理解并掌握含参变量的积分对于解决各种实际问题具有深远的意义。
下面,我们将通过一个具体的例题来详解含参变量的积分。
二、例题详解假设我们要求解这样一个积分:∫(上限a,下限0)e^(-x)*x^2dx。
这是一个典型的含参变量的积分问题,其中参数为x,被积函数含有x^2。
我们需要根据这个问题的特点,灵活运用积分的各种方法,包括换元法、分部积分法等,来解决它。
首先,我们考虑换元法。
将x换元为t,令t=a-x,则原积分可以改写为:∫(上限a,下限0)e^(a-x)*x^2dx。
注意到e^(a-x)是一个常数,因此我们可以将积分区间变为[0,a],这样原积分就变成了一个简单的定积分。
接下来,我们使用分部积分法对被积函数进行化简。
被积函数中的x^2可以分解为x的导数乘以x,即x*(x-1)。
因此,原积分的被积函数可以表示为e^(a-x)*(x-1)*x。
对这部分进行积分,我们可以得到∫(上限a,下限0)e^(a-x)*(x-1)*xdx=e^(a-x)*(x^2-x)|(上限a,下限0)=a^3/3-a^2/2。
最后,我们将两部分相加得到最终结果:∫(上限a,下限0)e^(-x)*x^2dx=a^3/3-a^2/2+C,其中C为常数。
三、总结通过这个例题,我们可以看到含参变量的积分需要我们灵活运用各种积分方法,包括换元法和分部积分法等。
同时,我们需要对被积函数进行适当的化简,以便更好地理解和求解含参变量的积分。
需要注意的是,当参数或者被积函数含有复杂的形式时,我们需要更深入地理解和分析问题,才能找到合适的解决方法。
总的来说,含参变量的积分是数学中的一个重要概念,它涉及到函数的整体性质和变化规律。
通过理解和掌握含参变量的积分,我们可以更好地解决各种实际问题,为我们的学习和工作提供有力的支持。
13-高等数学第十三讲 含参量的积分

387第十三讲 含参量积分§13.1 含参量正常积分一、知识结构 1、含参积分 定义含参积分 ⎰=dcdy y x f x I ),()(和⎰=)()(),()(x d x c dy y x f x F .含参积分提供了表达函数的又一手段 .我们称由含参积分表达的函数为含参积分. (1)含参积分的连续性 定理1 若函数),(y x f 在区域] , [ ] , [d c b a D ⨯=上连续, 则函数⎰=dcdy y x f x I ),()(在] , [b a 上连续.定理2 若函数),(y x f 在矩形域{}b x a x d y x c y x D ≤≤≤≤=),()( ),(上连续, 函数)(x c 和)(x d 在] , [b a 上连续,则函数⎰=)()(),()(x d x c dy y x f x F 在] , [b a 上连续.(2)含参积分的可微性定理3 若函数),(y x f 及其偏导数x f 都在矩形域] , [ ] , [d c b a D ⨯=上连续, 则函数⎰=dcdy y x f x I ),()(在] , [b a 上可导, 且⎰⎰=dcdcx dy y x f dy y x f dxd ),(),(.即积分和求导次序可换.定理4 设函数),(y x f 及其偏导数x f 都在矩形域] , [ ] , [q p b a D ⨯=上连续, 函数)(x c 和)(x d 定义在] , [b a 上其值域含于] , [q p 上的可微函数, 则函数⎰=)()(),()(x d x c dy y x f x F 在] , [b a 上可微, 且 ()())()(,)()(,),()()()(x c x c x f x d x d x f dy y x f x F x d x c x '-'+='⎰.(3) 含参积分的可积性定理5 若函数),(y x f 在区域] , [ ] , [d c b a D ⨯=上连续, 则函数388⎰=dcdy y x f x I ),()(和⎰=badx y x f y J ),()(分别在] , [b a 上和] , [ d c 上可积.定理6 若函数),(y x f 在区域] , [ ] , [d c b a D ⨯=上连续, 则⎰⎰⎰⎰=badcdcbadx y x f dy dy y x f dx ),(),(.即在连续的情况下累次积分可交换求积分的次序. 二、解证题方法例1 求⎰+→++αααα122.1limx dx例2 计算积分 dx xx I ⎰++=121)1ln(.例3 设函数)(x f 在点0=x 的某邻域内连续. 验证当||x 充分小时, 函数⎰---=xn dt t f t x n x 01)()()!1(1)(φ的1-n 阶导数存在, 且 )()()(x f x n =φ.§13.2 含参量反常积分一、知识结构 1、含参无穷积分含参无穷积分: 函数),(y x f 定义在) , [] , [∞+⨯c b a 上 (] , [b a 可以是无穷区间) .以⎰+∞=cdy y x f x I ),()(为例介绍含参无穷积分表示的函数)(x I .2. 含参无穷积分的一致收敛性逐点收敛(或称点态收敛)的定义:∈∀x ] , [b a ,c M >∃>∀ , 0ε,使得ε<⎰+∞Mdy y x f ),(.定义 1 (一致收敛性)设函数),(y x f 在) , [] , [∞+⨯c b a 上有定义.若对389c N >∃>∀ , 0ε, 使得当N M >,∈∀x ] , [b a 都有ε<-⎰Mcx I dy y x f )(),(即ε<⎰+∞Mdy y x f ),( 成立, 则称含参无穷积分⎰+∞cdy y x f ),(在] , [b a 上(关于x )一致收敛.定理1(Cauchy 收敛准则) 积分⎰+∞=cdy y x f x I ),()(在] , [b a 上一致收敛⇔,0>∀εM A A M >∀>∃21, , 0 , ∈∀x ] , [b a⇒ε<⎰21),(A A dy y x f 成立 .3、含参无穷积分与函数项级数的关系 定理2 积分⎰+∞=c dy y x f x I ),()(在] , [b a 上一致收敛⇔对任一数列}{n A )(1c A =,n A ↗∞+, 函数项级数∑⎰∑∞=∞=+=111)(),(n A A n nn nx udy y x f 在] , [b a 上一致收敛.4、含参无穷积分一致收敛判别法定理3(Weierstrass M 判别法)设有函数)(y g ,使得在) , [] , [∞+⨯c b a 上有)(|),(|y g y x f ≤.若积分∞+<⎰+∞)( cdy y g , 则积分⎰+∞cdy y x f ),(在] , [b a 一致收敛.定理4(Dirichlet 判别法) 设⑴对一切实数,c N >含参量积分⎰Ncdy y x f ),(对参量x在] , [b a 上一致有界; ⑵对每个x ∈] , [b a ,函数),(y x g 关于y 是单调递减且当+∞→y 时,对参量x ,),(y x g 一致地收敛于0,则含参量反常积分⎰+∞),(),(dy y x g y x f 在] , [b a 上一致收敛.定理5(Abel 判别法) 设⑴含参量积分⎰+∞cdy y x f ),(在] , [b a 上一致收敛; ⑵对每个x ∈] , [b a ,函数),(y x g 为y 的单调函数且对参量x ,),(y x g 在] , [b a 上一致有界,则含390参量反常积分⎰+∞),(),(dy y x g y x f 在] , [b a 上一致收敛.5、含参无穷积分的解析性质含参无穷积分的解析性质实指由其所表达的函数的解析性质. (1)连续性定理6 设函数),(y x f 在) , [] , [∞+⨯c b a 上连续.若积分⎰+∞=cdy y x f x I ),()(在] , [b a 上一致收敛, 则函数)(x I 在] , [b a 上连续. (化为级数进行证明或直接证明)推论 在定理6的条件下, 对∈∀0x ] , [b a , 有 ⎰⎰⎰∞+∞+∞+→→⎪⎭⎫ ⎝⎛==cccx x x x dy y x f dy y x f dy y x f .),(lim ),(),(lim000 (2)可微性定理7 设函数f 和x f 在) , [] , [∞+⨯c b a 上连续.若积分⎰+∞=cdy y x f x I ),()(在] , [b a 上收敛,积分⎰+∞cx dy y x f ),(在] , [b a 一致收敛.则函数)(x I 在] , [b a 上可微,且⎰+∞='cx dy y x f x I ),()(.(3)可积性定理8 设函数),(y x f 在) , [] , [∞+⨯c b a 上连续.若积分⎰+∞=cdy y x f x I ),()(在] , [b a 上一致收敛, 则函数)(x I 在] , [b a 上可积, 且有⎰⎰⎰⎰+∞+∞=baccbady y x f dy dy y x f dx ),(),(.定理9 设函数),(y x f 在) , []) , [∞+⨯∞+c a 上连续.若⑴⎰+∞adx y x f ),(关于y 在任何闭区间] , [d c 上一致收敛,⎰+∞cdy y x f ),(在任何闭区间] , [b a 上一致收敛;⑵积分⎰⎰+∞+∞acdy y x f dx ),(与⎰⎰+∞+∞cadx y x f dy ),(中有一个收敛,则另一个也收敛,且391⎰⎰⎰⎰+∞+∞+∞+∞=accady y x f dy dy y x f dx ),(),(.6、含参瑕积分简介(略)二、解证题方法例1 证明含参量非正常积分⎰+∞sin dy yxy 在) , [∞+δ上一致收敛,其中0>δ.但在区间) , 0 (∞+内非一致收敛.例2 证明含参无穷积分⎰∞++021cos dx xxy 在+∞<<∞-y 内一致收敛.例3 证明含参量反常积分⎰+∞-0sin dx xx exy在] , 0 [d 上一致收敛.例4 证明:若函数),(y x f 在) , [] , [∞+⨯c b a 上连续,又⎰+∞cdy y x f ),(在) , [b a 上收敛,但在b x =处发散,则⎰+∞cdy y x f ),(在) , [b a 上不一致收敛.例5 计算积分⎰+∞->>-=) , 0 ( , sin sin a b p dx xaxbx eI px例6 计算积分.sin 0dx xax ⎰+∞例7 计算积分⎰+∞-=0.cos )(2rxdx er xϕ例8(北京理工大学2008年)请分别用两种不同方法求()dx xx xI cos 1cos 1lncos 12αααπ-+⋅=⎰,1<α。
含参量积分的若干解法

含参量积分的若干解法
含参量积分是在几何常数不变的情况下求解数值问题的一种实用方法。
它可以把连续时间和空间中的相关概念和参量转化为密集的数值解,从而解决许多计算学上复杂的问题。
含参量积分的解法有许多,其中最常用的是高斯—勒让德(Gauss—Legendre)积分、拉格朗日(Lagrange)积分和拉波拉斯(Laplace)积分。
高斯—勒让德(Gauss—Legendre)积分是一种经典而通用的多维求积分的方法。
它可以计算出多元函数的积分,并且和参数数量无关。
它首先将参量空间划分为一系列等分的子区域,称为梯度,然后可以使用此梯度计算出含有参量的积分。
拉格朗日(Lagrange)积分是一种常用的数值求解含参量积分的方法,它可以用来计算二维函数的积分。
它的方法是先把被积函数的参量空间分割成若干等分的子区域,然后把每个子区域内的函数表示为拉格朗日指标函数之和,然后积分每个拉格朗日指标函数,最后把积分结果累加起来作为该参数空间积分的值。
最后,拉波拉斯(Laplace)积分则是另一种实用的多维求积分的解法,它可以用于计算多维参量空间中任意复杂的参量空间积分,而且具有很强的鲁棒性。
它的基本思想是把整个参量空间划分成若干梯度,然后求每个梯度的参量空间积分,最后将各梯度的积分结果累加作为总的积分值。
总的来说,含参量积分的解法有很多,它们的精度都非常高。
而在实际应用中,要根据需求选择合适的解法。
不管是哪一种解法,在使用时都要注意数值正确性,以确保可靠性。
含参变量积分(课件+例题+论文)

含参量反常积分
0
cos 1
xy x2
dx
在 (,) 上一致收敛.
例2 : 证明含参量反常积分 e xy sin x dx
0
x
在 [0,d] 上一致收敛.
证 : 由于反常积分 sin xdx 收敛
0x
(当然,对于参量y,它在[0, d ]上一致收敛)
函数g(x, y) exy对每个x [0, d ]单调且对任何
u 一致收敛的柯西准则:
含参量反常积分 f (x, y)dy 在 [a,b]上一致收敛的充要 c
条件是 0, M c,A1, A2 M ,x [a,b],都有
A2 f (x, y)dy . A1
u 一致收敛的充要条件;
含参量反常积分 f (x, y)dy 在 [a,b]上一致收敛的充要 c
解 :
记I ( )
1
1
dx x2
2
.
由于
,1
,
1
1 x2
2
都是和x的连续函数,
所以I( )在 0处连续,从而
lim
0
1
dx
1 x2 2
I(0)
1 dx 0 1 x2
. 4
例2 : 解:
求 I 1 xb x a dx (b a 0).
c
f
( x,
y)g( x,
y)dy
在[a , b]上一致收敛 .
例1 :
证明反常积分
0
cos 1
xy x2
dx
在 (,)上一致收敛.
证:
由于y R有
高考中含参问题的通用解法,一种不会做也能让你多考几分的方法

高考中含参问题的通用解法,一种不会做也能让你多考几分的
方法
作者:云中海,浙江大学数学系硕士毕业
生,前浙江省高考数学阅卷教师。
致力于尽己
所能为学子们培育数学慧眼、提升数学思维、
提高数学素养、成就数学精英!在2019年高
考即将迎来决战之际,我将为大家重点介绍
选择题
、
填空题
的解题技巧,帮助大家在最短的时间、用
最有效的方法在高考大战中提升自己的数学成
绩!
距离2019年高考还有3天...
关于函数、不等式和方程的含参问题历来是高考中一个长考不衰的命题,尤其是恒成立、能成立问题,选择填空题中考,解答题中也考,变着花样考;但是由于含有参数,对很多学生来说,常常会感到束手无策,因为含参数问题往往牵涉到分类讨论,而分类讨论又恰好是个难点和痛点。
下面我总结了分离参数法在含参问题中的通用解法,希望用最典型的例题让大家学会这种方法。
由于本人文字和公式编辑水平有限,可能存在个别错字或疏漏,欢迎大家留言区批评指正和讨论。
用一道题讲清楚分离参数法
分享是一种智慧,转载是一种美德。
如果您觉得本文内容有价值,希望你能转给身边即将参加高考的亲友,您的一次转发可能会对ta产生无价的帮助!。
含参变量积分法求定积分

含参变量积分法求定积分一、引言在数学中,定积分是求解曲线下面的面积的一种方法。
含参变量积分法是一种特殊的积分方法,它能够解决一类带有参数的定积分问题。
本文将详细介绍含参变量积分法的原理和应用。
二、含参变量积分法的原理含参变量积分法是通过引入一个参数,将原本的定积分问题转化为一个关于参数的函数的积分问题。
通过对这个参数的求导和积分操作,可以得到原问题的解。
三、含参变量积分法的步骤使用含参变量积分法求解定积分问题的一般步骤如下:1. 引入参数将原问题中的变量替换为参数,并引入一个新的变量。
2. 求导对引入的参数进行求导操作,得到关于参数的导函数。
3. 积分对导函数进行积分操作,得到关于参数的积分函数。
4. 求解参数解关于参数的积分函数,得到参数的值。
5. 求解原问题将参数的值代入原问题中,得到原问题的解。
四、含参变量积分法的实例应用现在我们通过一个实例来说明含参变量积分法的应用。
实例:求解定积分 ∫x n 1+x 10dx1. 引入参数我们将指数 n 替换为参数 t ,得到 ∫x t 1+x 10dx 。
2. 求导对参数 t 求导,得到导函数 d dt (∫x t 1+x 10dx)。
3. 积分对导函数进行积分操作,得到积分函数 F (t )=∫d dt (∫x t 1+x 10dx)dt 。
4. 求解参数解关于参数的积分函数 F (t ),得到参数的值。
5. 求解原问题将参数的值代入原问题中,得到原问题的解。
五、含参变量积分法的优点和局限性含参变量积分法具有以下优点: - 可以解决一类带有参数的定积分问题。
- 可以通过引入参数,简化定积分的计算过程。
然而,含参变量积分法也存在一些局限性: - 只适用于特定类型的定积分问题。
- 对于复杂的问题,可能需要进行多次求导和积分操作,增加了计算的复杂性。
六、总结含参变量积分法是一种求解带有参数的定积分问题的方法。
通过引入参数、求导、积分、求解参数和求解原问题的步骤,可以得到定积分的解。
数学分析19.2含参量积分之含参量反常积分(含习题及参考答案)

第十九章 含参量积分 2含参量反常积分一、一致收敛性及其判别法概念1:设函数f(x,y)定义在无界区域R={(x,y)|x ∈I, c ≤y<+∞}上,I 为一区间,若对每一个固定的x ∈I, 反常积分⎰+∞c dy y x f ),(都收敛,则它的值是x 在I 上取值的函数, 记φ(x)=⎰+∞c dy y x f ),(, x ∈I, 称⎰+∞c dy y x f ),(为定义在I 上的含参量x 的无穷限反常积分,简称含参量反常积分.定义1: 若含参量反常积分⎰+∞c dy y x f ),(与函数φ(x)对任给ε>0, 总存在某实数N>c, 使当M>N 时, 对一切x ∈I, 都有)(),(x dy y x f Mc Φ-⎰<ε, 即⎰+∞M dy y x f ),(<ε, 则称含参量反常积分在I 上一致收敛于φ(x), 简单地说含参量积分⎰+∞c dy y x f ),(在I 上一致收敛.定理19.7:(一致收敛的柯西准则)含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:对任给正数ε, 总存在某一实数M>c, 使得当A 1, A 2>M 时,对一切x ∈I, 都有⎰21),(A A dy y x f <ε.定理19.8:含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:+∞→A lim F(A)=0, 其中F(A)=⎰+∞∈AIx dy y x f ),(sup .例1:证明含参量反常积分⎰+∞0sin dy yxy在[δ,+∞)上一致收敛(δ>0),但在(0,+∞)上不一致收敛.解:令u=xy, 则⎰+∞A dy y xysin =⎰+∞Ax du uu sin (A>0). ∵⎰+∞Axdu uusin 收敛,∴∀ε>0, ∃M>0, 使当A ’>M 时,就有⎰∞+'A du u u sin <ε. 取A δ>M, 则当A>δM时,对一切x ≥δ>0,有xA>M, ∴⎰∞+Axdu uusin <ε, 即⎰∞+Ady y xysin <ε, ∴+∞→A lim F(A)=⎰∞++∞∈+∞→A x A dy y xy sin sup lim ),(δ=0, 由定理19.8知 ⎰+∞sin dy yxy在[δ,+∞)上一致收敛. 又 F(A)=⎰∞++∞∈Ax dy yxysin sup ),0(=⎰∞++∞∈Ax x du u u sin sup ),0(≥⎰∞+0sin du u u =2π. ∴⎰+∞0sin dy yxy在(0,+∞)上不一致收敛.注:若对任意[a,b]⊂I, 含参量反常积分在[a,b]上一致收敛,则称在I 上内闭一致收敛.定理19.9:含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:对任一趋于+∞的递增数列{A n }(其中A 1=c), 函数项级数∑⎰∞=+11),(n A A n ndy y x f =∑∞=1)(n n x u 在I 上一致收敛.证:[必要性]若⎰+∞c dy y x f ),(在I 上一致收敛, 则∀ε>0, ∃M>c, 使 当A ”>A ’>M 时,对一切x ∈I, 总有⎰'''A A dy y x f ),(<ε.又A n →+∞(n →∞), ∴对正数M, ∃正整数N, 只要当m>n>N 时,就有 A m >A n >M. ∴对一切x ∈I, 就有|u n (x)+…+u m (x)|=⎰⎰+++⋯+11),(),(n nm mA A A Ady y x f dy y x f =⎰+1),(m nA Ady y x f <ε.∴∑∞=1)(n n x u 在I 上一致收敛.[充分性]若∑∞=1)(n n x u 在I 上一致收敛, 而⎰+∞c dy y x f ),(在I 上不一致收敛,则存在某正数ε0, 使对任何实数M>c, 存在相应的A ”>A ’>M 和x ’∈I, 使得⎰''''A A dy y x f ),(≥ε0; 现取M 1=max{1,c}, 则存在A 2>A 1>M 1, 及x 1∈I, 使得⎰21),(1A A dy y x f ≥ε0; 一般地, 取M n =max{n,A 2(n-1)} (n ≥2), 则有A 2n >A 2n-1>M n , 及x n ∈I, 使得⎰-nn A An dy y x f 212),(≥ε0.由上述所得数列{A n }为递增数列, 且∞→n lim A n =+∞, 而对级数∑∞=1)(n nx u=∑⎰∞=+11),(n A A n ndy y x f , 存在正数ε0, 对任何正整数N,只要n>N, 就有某个x n ∈I, 使得|u 2n (x n )|=⎰-nn A An dy y x f 212),(≥ε0,与级数∑∞=1)(n n x u 在I 上一致收敛矛盾. ∴⎰+∞c dy y x f ),(在I 上一致收敛.魏尔斯特拉斯M 判别法:设函数g(y), 使得 |f(x,y)|≤g(y), (x,y)∈I ×[c,+∞). 若⎰+∞c dy y g )(收敛, 则⎰+∞cdy y x f ),(在I 上一致收敛.狄利克雷判别法:设(1)对一切实数N>c, 含参量正常积分⎰Nc dy y x f ),(对参量x 在I 上一致有界, 即存在正数M, 对一切N>c 及一切x ∈I, 都有⎰Nc dy y x f ),(≤M. (2)对每一个x ∈I, 函数g(x,y)关于y 是单调递减且当y →+∞时, 对参量x, g(x,y)一致收敛于0.则含参量反常积分⎰+∞c dy y x g y x f ),(),(在I 上一致收敛.阿贝尔判别法:设(1)⎰+∞c dy y x f ),(在I 上一致收敛.(2)对每一个x ∈I, 函数g(x,y)为y 的单调函数, 且对参量x, g(x,y)在I 上一致有界.则含参量反常积分⎰+∞c dy y x g y x f ),(),(在I 上一致收敛.例2:证明含参量反常积分⎰+∞+021cos dx xxy在(-∞,+∞)上一致收敛. 证:∵对任何实数y, 有21cos x xy +≤211x +, 又反常积分⎰+∞+021xdx收敛. 由魏尔斯特拉斯M 判别法知, 含参量反常积分⎰+∞+021cos dx x xy在(-∞,+∞)上一致收敛.例3:证明含参量反常积分⎰+∞-0sin dx xxe xy 在[0,+∞)上一致收敛. 证:∵反常积分⎰+∞sin dx xx收敛, ∴对于参量y, 在[0,+∞)上一致收敛. 又函数g(x,y)=e -xy 对每个y ∈[0,+∞)单调, 且对任何0≤y<+∞, x ≥0, 都有|g(x,y)|=|e -xy |≤1. 由阿贝尔判别法知, 含参量反常积分⎰+∞-0sin dx xxe xy 在[0,+∞)上一致收敛.例4:证明含参量积分⎰+∞+121sin dy y xyy 在(0,+∞)上内闭一致收敛.证:若[a,b]⊂(0,+∞), 则对任意x ∈[a,b],⎰Naxydy sin =Nax xycos -≤a 2. 又'⎪⎪⎭⎫ ⎝⎛+21y y =()22211yy +-≤0, 即21y y +关于y 单调减, 且当y →+∞时, 21yy+→0(对x 一致), 由狄利克雷判别法知, 含参量积分⎰+∞+121sin dy y xyy 在[a,b]上一致收敛. 由[a,b]的任意性知, ⎰+∞+121sin dy yxyy 在(0,+∞)上内闭一致收敛.二、含参量反常积分的性质定理19.10:(连续性)设f(x,y)在I ×[c,+∞)上连续,若含参量反常积分φ(x)=⎰+∞c dy y x f ),(在I 上一致收敛,则φ(x)在I 上连续. 证:由定理19.9,对任一递增且趋于+∞的数列{A n } (A 1=c), 函数项级数φ(x)=∑⎰∞=+11),(n A An ndy y x f =∑∞=1)(n n x u 在I 上一致收敛.又由f(x,y)在I ×[c,+∞)上连续,∴每个u n (x)都在I 上连续. 由函数项级数的连续性定理知,函数φ(x)在I 上连续.推论:设f(x,y)在I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上内闭一致收敛,则φ(x)在I 上连续.注:在一致收敛的条件下,极限运算与积分运算可以交换,即:⎰+∞→cx x dy y x f ),(lim0=⎰+∞c dy y x f ),(0=⎰+∞→cx x dy y x f ),(lim 0.定理19.11:(可微性)设f(x,y)与f x (x,y)在区域I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上收敛,⎰+∞c x dy y x f ),(在I 上一致收敛,则φ(x)在I 上可微,且φ’(x) =⎰+∞c x dy y x f ),(.证:对任一递增且趋于+∞的数列{A n } (A 1=c),令u n (x)=⎰+1),(n nA A dy y x f .由定理19.3推得u n ’(x)=⎰+1),(n nA A x dy y x f .由⎰+∞c x dy y x f ),(在I 上一致收敛及定理19.9,可得函数项级数∑∞='1)(n n x u =∑⎰∞=+11),(n A A x n ndy y x f 在I 上一致收敛.根据函数项级数的逐项求导定理,即得:φ’(x) =∑∞='1)(n nx u =∑⎰∞=+11),(n A Ax n ndy y x f =⎰+∞cx dy y x f ),(.或写作⎰+∞c dy y x f dxd ),(=⎰+∞c x dy y x f ),(.推论:设f(x,y)与f x (x,y)在区域I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上收敛,⎰+∞c x dy y x f ),(在I 上内闭一致收敛,则φ(x)在I 上可微,且φ’(x) =⎰+∞c x dy y x f ),(.定理19.12:(可积性)设f(x,y)在[a,b]×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在[a,b]上一致收敛,则φ(x)在[a,b]上可积,且⎰⎰+∞cbady y x f dx ),( =⎰⎰+∞bacdx y x f dy ),(.证:由定理19.10知φ(x)在[a,b]上连续,从而在[a,b]上可积. 又函数项级数φ(x)=∑⎰∞=+11),(n A An ndy y x f =∑∞=1)(n n x u 在I 上一致收敛,且各项u n (x)在[a,b]上连续,根据函数项级数逐项求积定理,有⎰Φbadx x )(=∑⎰∞=1)(n ban dx x u =∑⎰⎰∞=+11),(n baA A n ndy y x f dx =∑⎰⎰∞=+1),(1n baA A dx y x f dy n n,即⎰⎰+∞cbady y x f dx ),( =⎰⎰+∞bacdx y x f dy ),(.定理19.13:设f(x,y)在[a,+∞)×[c,+∞)上连续,若(1)⎰+∞a dx y x f ),(关于y 在[c,+∞)上内闭一致收敛,⎰+∞c dy y x f ),(关于x 在[a,+∞)上内闭一致收敛;(2)积分⎰⎰+∞+∞c a dy y x f dx |),(|与⎰⎰+∞+∞a c dx y x f dy |),(|中有一个收敛. 则⎰⎰+∞+∞cady y x f dx ),(=⎰⎰+∞+∞acdx y x f dy ),(.证:不妨设⎰⎰+∞+∞c a dy y x f dx |),(|收敛,则⎰⎰+∞+∞c a dy y x f dx ),(收敛. 当d>c 时,记Jd =|⎰⎰+∞a dc dx y x f dy ),(-⎰⎰+∞+∞c a dy y x f dx ),(| =|⎰⎰+∞a dc dx y x f dy ),(-⎰⎰+∞dc a dy y x f dx ),(-⎰⎰+∞+∞d a dy y x f dx ),(|. 由条件(1)及定理19.12可推得:J d =|⎰⎰+∞+∞d a dy y x f dx ),(|≤|⎰⎰+∞d Aa dy y x f dx ),(|+⎰⎰+∞+∞d A dy y x f dx |),(|. 由条件(2),∀ε>0, ∃G>a ,使当A>G 时,有⎰⎰+∞+∞d A dy y x f dx |),(|<2ε. 选定A 后,由⎰+∞c dy y x f ),(的一致收敛性知,∃M>a ,使得当d>M 时, 有|⎰+∞d dy y x f ),(|<)(2a A -ε. ∴J d <2ε+2ε=ε,即有+∞→d lim J d =0,∴⎰⎰+∞+∞c a dy y x f dx ),(=⎰⎰+∞+∞a c dx y x f dy ),(.例5:计算:J=⎰+∞--0sin sin dx xaxbx e px (p>0,b>a). 解:∵xax bx sin sin -=⎰ba xydy cos ,∴J=⎰⎰+∞-0cos b a pxxydy dx e =⎰⎰+∞-0cos ba px xydy e dx .由|e -px cosxy|≤e -px 及反常积分⎰+∞-0dx e px 收敛, 根据魏尔斯特拉斯M 判别法知,含参量反常积分⎰+∞-0cos xydx e px 在[a,b]上一致收敛.又e -px cosxy[0,+∞)×[a,b]上连续,根据定理19.12交换积分顺序得: J=⎰⎰+∞-0cos xydx e dy px ba =⎰+bady y p p22=arctan p b - arctan p a .例6:计算:⎰+∞sin dx xax. 解:利用例5的结果,令b=0,则有F(p)=⎰+∞-0sin dx xaxe px=arctan p a (p>0).由阿贝尔判别法可知含参量反常积分F(p)在p ≥0上一致收敛, 又由定理19.10知,F(p)在p ≥0上连续,且F(0)=⎰+∞sin dx xax . 又F(0)=)(lim 0p F p +→=+→0lim p arctan p a =2πagn a. ∴⎰+∞0sin dx xax =2πagn a.例7:计算:φ(r)=⎰+∞-0.cos 2rxdx e x .解:∵|2x e -cosrx|≤2x e -对任一实数r 成立且反常积分⎰+∞-02dx e x 收敛, ∴含参量反常积分φ(r)=⎰+∞-0cos 2rxdx e x 在(-∞,+∞)上收敛. 考察含参量反常积分⎰+∞-'0)cos (2dx rx er x =⎰+∞--0sin 2rxdx xe x ,∵|-x 2x e -sinrx|≤x 2x e -对一切x ≥0, r ∈(-∞,+∞)成立且⎰+∞-02dx e x 收敛, 根据魏尔斯特拉斯M 判别法知, 含参量反常积分⎰+∞-'0)cos (2dx rx er x 在(-∞,+∞)上一致收敛.由定理19.11得φ’(r)=⎰+∞--0sin 2rxdx xex =⎰-+∞→-Ax A rxdxxesin lim2=⎪⎭⎫⎝⎛-⎰--+∞→A x Ax A rxdx e r rx e 00cos 2sin 21lim 22=⎰--A x rxdx e r 0cos 22=2r -φ(r). ∴φ(r)=c 42r e -. 又φ(0)=⎰+∞-02dx e x =2π=c. ∴φ(r)=422πr e-.概念2:设f(x,y)在区域R=[a,b]×[c,d)上有定义,若对x 的某些值,y=d 为函数f(x,y)的瑕点,则称⎰dc dy y x f ),(为含参量x 的无界函数反常积分,或简称为含参量反常积分. 若对每一个x ∈[a,b],⎰dc dy y x f ),(都收敛,则其积分值是x 在[a,b]上取值的函数.定义2:对任给正数ε, 总存在某正数δ<d-c, 使得当0<η<δ时, 对一切x ∈[a,b], 都有⎰-dd dy y x f η),(<ε, 则称含参量反常积分⎰dc dy y x f ),(在[a,b]上一致收敛.习题1、证明下列各题 (1)⎰∞++-122222)(dx y x x y 在(-∞,+∞)上一致收敛;(2)⎰+∞-02dy eyx 在[a,b] (a>0)上一致收敛;(3)⎰+∞-0sin dt tate t在0<a<+∞上一致收敛; (4)⎰+∞-0dy xe xy (i)在[a,b] (a>0)上一致收敛,(ii)在[0,b]上不一致收敛; (5)⎰10)ln(dy xy 在[b1,b](b>1)上一致收敛;(6)⎰1px dx(i)在(-∞,b] (b<1)上一致收敛,(ii)在(-∞,1]内不一致收敛; (7)⎰---1011)1(dx x x q p 在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛.证:(1)∵22222)(y x x y +-≤22222)(y x x y ++≤21x ,且⎰+∞12x dx 收敛,∴⎰∞++-122222)(dx y x x y 在(-∞,+∞)上一致收敛. (2)∵当0<a ≤x ≤b 时,yx e2-=yx e21≤ya e21,且⎰+∞12ya edy 收敛,∴⎰+∞-02dy e y x 在[a,b] (a>0)上一致收敛.(3)对任何N>0,∵⎰-Nt atdt e 0sin ≤⎰-Nt dt e 0≤1,即⎰-Nt atdt e 0sin 一致有界. 又t1关于在(0,+∞)单调,且t1→0 (t →∞),由狄利克雷判别法知,⎰+∞-0sin dt tate t在0<a<+∞上一致收敛. (4)(i)∵当0<a ≤x ≤b 时,|xe -xy|≤be -ay,且⎰+∞0ay -be 收敛, ∴⎰+∞-0dy xe xy 在[a,b] (a>0)上一致收敛. (ii)方法一:取ε0=21e<0, 则对任何M>0, 令A 1=M, A 2=2M, x 0=M 1, 有 ⎰-2100A A y x dy e x =MM yx e 20-=21e e ->21e=ε0,∴⎰+∞-0dy xe xy 在 [0,b]上不一致收敛. 方法二:∵⎰+∞-0dy xe xy =⎩⎨⎧≤<=bx x 0,10,0,且xe -xy 在[0,b]×(0,+∞)内连续,由连续性定理知⎰+∞-0dy xe xy 在 [0,b]上不一致收敛.(5)∵在[b1,b]×(0,1] (b>1)内, |ln(xy)|=|lnx+lny|≤|lnx|+|lny|≤lnb-lny, 且⎰-10)ln (ln dy y b 收敛, ∴⎰10)ln(dy xy 在[b1,b](b>1)上一致收敛.(6)(i)∵当p ≤b<1, x ∈(0,1]时,p x 1≤b x 1,又⎰10b xdx 收敛,∴⎰1px dx在(-∞,b] (b<1)上一致收敛.(ii)当p=1时,⎰1xdx发散,∴对任何A<1,在[A,1]内不一致收敛,即 ⎰1p xdx在(-∞,1]内不一致收敛. (7)记⎰---1011)1(dx x xq p =⎰---21011)1(dx x xq p +⎰---12111)1(dx x x q p =I 1+I 2.对I 1在0≤x ≤21, 0<p 0≤p<+∞, 0<q 0≤q<+∞上, ∵|x p-1(1-x)q-1|≤1100)1(---q p x x且⎰---210110)1(dx x x q p 收敛,∴I 1在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛; 同理可证I 2在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛. ∴⎰---1011)1(dx x x q p 在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛.2、从等式⎰-ba xydy e =x e e by ay ---出发,计算积分⎰∞+---0dx xe e byay (b>a>0). 解:∵⎰-ba xy dy e=x e e by ay ---,∴⎰∞+---0dx xe e byay=⎰⎰-+∞b a xy dy e dx 0. 又 e -xy 在[0,+∞)×[a,b]内连续,由M 判别法知, ⎰+∞-0dx e xy 在[a,b]内一致收敛.∴⎰∞+---0dx x e e by ay =⎰⎰+∞-0dx e dy xyb a =⎰b a dy y 1=ln ab .3、证明函数F(y)=⎰+∞--0)(2dx e y x 在(-∞,+∞)上连续. (提示:利用⎰+∞-02dx e x =2π) 证:令x-y=u, 则F(y)=⎰+∞-yu du e2=⎰-02yu du e+⎰+∞-02du eu =⎰-02yu du e +2π. ∵关于y 的积分下限函数⎰-02y u du e 在(-∞,+∞)上连续, ∴F(y)=⎰+∞--0)(2dx e y x 在(-∞,+∞)上连续.4、求下列积分: (1)⎰∞+---022222dx x e e xb xa(提示:利用⎰+∞-02dx ex =2π); (2)⎰+∞-0sin dt t xt e t;(3)⎰+∞--02cos 1dx x xye x . 解:(1)∵22222x e e xbxa---=⎰-ba x y dy ye 222,∴⎰∞+---022222dx x e e xb xa=⎰⎰+∞-0222bax y dy ye dx ,由M 判别法知⎰+∞-0222dx ye x y 在[a,b]内一致收敛,∴⎰∞+---022222dx x e e xb xa=⎰⎰+∞-0222dx yedy x y ba=⎰⎰+∞-0)(222xy d edy x y ba =⎰bady π=(b-a)π.(2)利用例5结果:⎰+∞--0sin sin dt tatbt e pt=arctan p b - arctan p a . (p>0,b>a).当p=1, a=0, b=x 时,有⎰+∞-0sin dt txte t=arctanx. (3)∵2cos 1x xy e x --=⎰-y x dt x xt e 0sin ,∴⎰⎰-+∞yx dt x xt e dx 00sin . 由x xt e x x sin lim 0-→=t 知, x=0不是xxte x sin -的瑕点,又 含参量非正常积分⎰+∞-0sin dx xxte x 在t ∈[0,M]上一致收敛, ∴由(2)有2cos 1x xy e x--=⎰⎰+∞-00sin dx xxt e dt x y =⎰y tdt 0arctan =yarctany-21ln(1+y 2).5、回答下列问题: (1)对极限⎰+∞-→+0022limdy xyexy x 能否运用极限与积分运算顺序的交换求解?(2)对⎰⎰+∞--132)22(dx e xy y dy xy 能否运用积分顺序交换来求解?(3)对F(x)=⎰+∞-032dy e x y x 能否运用积分与求导运算顺序交换来求解? 解:(1)∵F(x)=⎰+∞-022dy xye xy =⎩⎨⎧=>0,00,1x x , ∴F(x)lim 0+→x =1,但⎰+∞-→+022lim dy xye xy x =0,即交换运算后不相等,∴对极限⎰+∞-→+0022limdy xyexy x 不能运用极限与积分运算顺序的交换求解.注:⎰+∞-022dy xye xy =⎰+∞-0du xe xu 在[0,b]上不一致收敛,并不符合连续性定理的条件.(2)∵⎰⎰+∞--10032)22(dx exy y dy xy =⎰∞+-122dy xyexy =⎰10dy =0;⎰⎰-+∞-1032)22(dy exy y dx xy =⎰+∞-0122dx ey xy =⎰-1dx e x =1;∴对⎰⎰+∞--10032)22(dx e xy y dy xy 不能运用积分顺序交换来求解.注:⎰+∞--032)22(dx e xy y xy =0且⎰+∞--M xy dx e xy y 2)22(3=-2My 2My e -. 对ε0=1,不论M 多大,总有y 0=M1∈[0,1],使得⎰+∞--M xy dx e xy y 2)22(3=2M e 1->1,∴⎰+∞--032)22(dx e xy y xy 在[0,1]不一致收敛,不符合可积性定理的条件. (3)∵F(x)=⎰+∞-032dy e x y x =x, x ∈(-∞,+∞),∴F ’(x)≡1. 但y x e x x23-∂∂=(3x 2-2x 4y)y x e 2-, 而当x=0时,⎰+∞--0422)23(dy e y x x y x =0. ∴对F(x)=⎰+∞-032dy e x y x 不能运用积分与求导运算顺序交换来求解. 注:∵⎰+∞--0422)23(dy ey x x yx =⎩⎨⎧=≠0,00,1x x ,∴⎰+∞--0422)23(dy ey x x yx 在[0,1]上不一致收敛,不符合可微性定理的条件.6、应用:⎰+∞-02dx e ax =212π-a (a>0),证明: (1)⎰+∞-022dt e t at=234π-a ;(2)⎰+∞-022dt e t at n =⎪⎭⎫⎝⎛+--212!)!12(2πn n a n .证:(1)方法一:∵⎰+∞-022dt e t at 在任何[c,d]上(c>0)一致收敛, ∴⎰+∞-02dt e da d at =⎰+∞-02dt e dad at =-⎰+∞-022dte t at . 又⎰+∞-02dt e da d at =⎪⎪⎭⎫ ⎝⎛-212πa da d =-234π-a . ∴⎰+∞-02dx e ax =234π-a . 方法二:⎰+∞-022dt et at =-⎰+∞-0221at tdea =-⎪⎭⎫ ⎝⎛-⎰+∞-∞+-02221dt ete a at at=⎰+∞-0221dt e aat =234π-a .(2)方法一:∵⎰+∞-022dt e t at n 在任何[c,d]上(c>0)一致收敛,∴⎰∞+-02dt eda d at nn=⎰∞+-02dt e da d at nn =(-1)n ⎰+∞-022dt e t at n . 又⎰∞+-02dt e dad atnn =⎪⎪⎭⎫ ⎝⎛-212πa dad nn=(-1)n ⎪⎭⎫⎝⎛+--212!)!12(2πn n a n . ∴⎰+∞-022dt e t atn =⎪⎭⎫⎝⎛+--212!)!12(2πn nan . 方法二:记I n =⎰+∞-022dt e t at n , n=0,1,2,…,(1)中已证I 1=⎪⎭⎫⎝⎛+--⨯2112)112(2πa=a 2)112(-⨯I 0. 可设I k =a k 2)12(-⨯I k-1,则 I k+1=⎰+∞-+0)1(22dt e t at k =-⎰+∞-+012221at k de t a =-⎪⎭⎫ ⎝⎛-⎰+∞+-∞+-+0120122221k at at k dt e e t a=⎰+∞-+022212dt e t a k at k =ak 21)1(2-+I k=2)2()12](1)1(2[a k k --+I k-1=…= 1)2(!]!1)1(2[+-+k a k I 0=211)2(!]!1)1(2[2π-+-+a a k k .当n=k+1时,有I n =⎰+∞-022dt e t at n =21)2(!)!12(2π--a a k n =⎪⎭⎫⎝⎛+--212!)!12(2πn na n . 7、应用⎰+∞+022a x dx =a2π,求()⎰+∞++0122n a x dx.解:记A=a 2, ∵()⎰+∞++012n Axdx在任何[c,d]上(c>0)一致收敛,∴⎰∞++02A x dx dA d nn =⎰∞+⎪⎭⎫ ⎝⎛+021dx A x dA d n n=(-1)nn!()⎰+∞++012n A x dx . 又⎰∞++02A x dx dAd nn =⎪⎭⎫ ⎝⎛A dA d n n 2π=(-1)n 212!)!12(2π---n n A n . ∴()⎰+∞++012n Axdx=212!!)!12(2π---n n A n n =12!)!2(!)!12(2π---n a n n .8、设f(x,y)为[a,b]×[c,+∞)上连续非负函数,I(x)=dy y x f ⎰+∞0),(在[a,b]上连续,证明:I(x)在[a,b]上一致收敛.证:任取一个趋于的∞递增数列{A n } (其中A 1=c),考察级数∑⎰∞=+11),(n A A n ndy y x f =∑∞=1)(n n x u .∵f(x,y)在[a,b]×[c,+∞)上非负连续, ∴u n (x)在[a,b]上非负连续. 由狄尼定理知,∑∞=1)(n n x u 在[a,b]上一致收敛,从而∑⎰∞=+11),(n A A n ndy y x f 在[a,b]上一致收敛. 又I(x)=dy y x f ⎰+∞),(在[a,b]上连续.∴I(x)=dy y x f ⎰+∞0),(=∑⎰∞=∞→+11),(lim n A An n ndy y x f [a,b]上一致收敛.9、设在[a,+∞)×[c,d]内成立不等式|f(x,y)|≤F(x,y). 若dx y x F ⎰+∞0),(在y ∈[c,d] 上一致收敛,证明:dx y x f ⎰+∞),(在y ∈[c,d] 上一致收敛且绝对收敛.证:∵dx y x F ⎰+∞0),(在y ∈[c,d] 上一致收敛,∴∀ε>0, ∃M>0,对任何A2>A1>M和一切y∈[c,d],都有⎰21) , (A AdxyxF<ε.∵|f(x,y)|≤F(x,y),∴⎰21) , (A Adxyxf≤⎰21),(AAdxyxf≤⎰21),(AAdxyxF<ε,∴dxyxf⎰+∞0),(在y∈[c,d] 上一致收敛且绝对收敛.。
数学分析19.2含参量积分之含参量反常积分(含习题及参考答案)

第十九章 含参量积分 2含参量反常积分一、一致收敛性及其判别法概念1:设函数f(x,y)定义在无界区域R={(x,y)|x ∈I, c ≤y<+∞}上,I 为一区间,若对每一个固定的x ∈I, 反常积分⎰+∞c dy y x f ),(都收敛,则它的值是x 在I 上取值的函数, 记φ(x)=⎰+∞c dy y x f ),(, x ∈I, 称⎰+∞c dy y x f ),(为定义在I 上的含参量x 的无穷限反常积分,简称含参量反常积分.定义1: 若含参量反常积分⎰+∞c dy y x f ),(与函数φ(x)对任给ε>0, 总存在某实数N>c, 使当M>N 时, 对一切x ∈I, 都有)(),(x dy y x f Mc Φ-⎰<ε, 即⎰+∞M dy y x f ),(<ε, 则称含参量反常积分在I 上一致收敛于φ(x), 简单地说含参量积分⎰+∞c dy y x f ),(在I 上一致收敛.定理19.7:(一致收敛的柯西准则)含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:对任给正数ε, 总存在某一实数M>c, 使得当A 1, A 2>M 时,对一切x ∈I, 都有⎰21),(A A dy y x f <ε.定理19.8:含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:+∞→A lim F(A)=0, 其中F(A)=⎰+∞∈AIx dy y x f ),(sup .例1:证明含参量反常积分⎰+∞0sin dy yxy在[δ,+∞)上一致收敛(δ>0),但在(0,+∞)上不一致收敛.解:令u=xy, 则⎰+∞A dy y xysin =⎰+∞Ax du uu sin (A>0). ∵⎰+∞Axdu uusin 收敛,∴∀ε>0, ∃M>0, 使当A ’>M 时,就有⎰∞+'A du u u sin <ε. 取A δ>M, 则当A>δM时,对一切x ≥δ>0,有xA>M, ∴⎰∞+Axdu uusin <ε, 即⎰∞+Ady y xysin <ε, ∴+∞→A lim F(A)=⎰∞++∞∈+∞→A x A dy y xy sin sup lim ),(δ=0, 由定理19.8知 ⎰+∞sin dy yxy在[δ,+∞)上一致收敛. 又 F(A)=⎰∞++∞∈Ax dy yxysin sup ),0(=⎰∞++∞∈Ax x du u u sin sup ),0(≥⎰∞+0sin du u u =2π. ∴⎰+∞0sin dy yxy在(0,+∞)上不一致收敛.注:若对任意[a,b]⊂I, 含参量反常积分在[a,b]上一致收敛,则称在I 上内闭一致收敛.定理19.9:含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:对任一趋于+∞的递增数列{A n }(其中A 1=c), 函数项级数∑⎰∞=+11),(n A A n ndy y x f =∑∞=1)(n n x u 在I 上一致收敛.证:[必要性]若⎰+∞c dy y x f ),(在I 上一致收敛, 则∀ε>0, ∃M>c, 使 当A ”>A ’>M 时,对一切x ∈I, 总有⎰'''A A dy y x f ),(<ε.又A n →+∞(n →∞), ∴对正数M, ∃正整数N, 只要当m>n>N 时,就有 A m >A n >M. ∴对一切x ∈I, 就有|u n (x)+…+u m (x)|=⎰⎰+++⋯+11),(),(n nm mA A A Ady y x f dy y x f =⎰+1),(m nA Ady y x f <ε.∴∑∞=1)(n n x u 在I 上一致收敛.[充分性]若∑∞=1)(n n x u 在I 上一致收敛, 而⎰+∞c dy y x f ),(在I 上不一致收敛,则存在某正数ε0, 使对任何实数M>c, 存在相应的A ”>A ’>M 和x ’∈I, 使得⎰''''A A dy y x f ),(≥ε0; 现取M 1=max{1,c}, 则存在A 2>A 1>M 1, 及x 1∈I, 使得⎰21),(1A A dy y x f ≥ε0; 一般地, 取M n =max{n,A 2(n-1)} (n ≥2), 则有A 2n >A 2n-1>M n , 及x n ∈I, 使得⎰-nn A An dy y x f 212),(≥ε0.由上述所得数列{A n }为递增数列, 且∞→n lim A n =+∞, 而对级数∑∞=1)(n nx u=∑⎰∞=+11),(n A A n ndy y x f , 存在正数ε0, 对任何正整数N,只要n>N, 就有某个x n ∈I, 使得|u 2n (x n )|=⎰-nn A An dy y x f 212),(≥ε0,与级数∑∞=1)(n n x u 在I 上一致收敛矛盾. ∴⎰+∞c dy y x f ),(在I 上一致收敛.魏尔斯特拉斯M 判别法:设函数g(y), 使得 |f(x,y)|≤g(y), (x,y)∈I ×[c,+∞). 若⎰+∞c dy y g )(收敛, 则⎰+∞cdy y x f ),(在I 上一致收敛.狄利克雷判别法:设(1)对一切实数N>c, 含参量正常积分⎰Nc dy y x f ),(对参量x 在I 上一致有界, 即存在正数M, 对一切N>c 及一切x ∈I, 都有⎰Nc dy y x f ),(≤M. (2)对每一个x ∈I, 函数g(x,y)关于y 是单调递减且当y →+∞时, 对参量x, g(x,y)一致收敛于0.则含参量反常积分⎰+∞c dy y x g y x f ),(),(在I 上一致收敛.阿贝尔判别法:设(1)⎰+∞c dy y x f ),(在I 上一致收敛.(2)对每一个x ∈I, 函数g(x,y)为y 的单调函数, 且对参量x, g(x,y)在I 上一致有界.则含参量反常积分⎰+∞c dy y x g y x f ),(),(在I 上一致收敛.例2:证明含参量反常积分⎰+∞+021cos dx xxy在(-∞,+∞)上一致收敛. 证:∵对任何实数y, 有21cos x xy +≤211x +, 又反常积分⎰+∞+021xdx收敛. 由魏尔斯特拉斯M 判别法知, 含参量反常积分⎰+∞+021cos dx x xy在(-∞,+∞)上一致收敛.例3:证明含参量反常积分⎰+∞-0sin dx xxe xy 在[0,+∞)上一致收敛. 证:∵反常积分⎰+∞sin dx xx收敛, ∴对于参量y, 在[0,+∞)上一致收敛. 又函数g(x,y)=e -xy 对每个y ∈[0,+∞)单调, 且对任何0≤y<+∞, x ≥0, 都有|g(x,y)|=|e -xy |≤1. 由阿贝尔判别法知, 含参量反常积分⎰+∞-0sin dx xxe xy 在[0,+∞)上一致收敛.例4:证明含参量积分⎰+∞+121sin dy y xyy 在(0,+∞)上内闭一致收敛.证:若[a,b]⊂(0,+∞), 则对任意x ∈[a,b],⎰Naxydy sin =Nax xycos -≤a 2. 又'⎪⎪⎭⎫ ⎝⎛+21y y =()22211yy +-≤0, 即21y y +关于y 单调减, 且当y →+∞时, 21yy+→0(对x 一致), 由狄利克雷判别法知, 含参量积分⎰+∞+121sin dy y xyy 在[a,b]上一致收敛. 由[a,b]的任意性知, ⎰+∞+121sin dy yxyy 在(0,+∞)上内闭一致收敛.二、含参量反常积分的性质定理19.10:(连续性)设f(x,y)在I ×[c,+∞)上连续,若含参量反常积分φ(x)=⎰+∞c dy y x f ),(在I 上一致收敛,则φ(x)在I 上连续. 证:由定理19.9,对任一递增且趋于+∞的数列{A n } (A 1=c), 函数项级数φ(x)=∑⎰∞=+11),(n A An ndy y x f =∑∞=1)(n n x u 在I 上一致收敛.又由f(x,y)在I ×[c,+∞)上连续,∴每个u n (x)都在I 上连续. 由函数项级数的连续性定理知,函数φ(x)在I 上连续.推论:设f(x,y)在I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上内闭一致收敛,则φ(x)在I 上连续.注:在一致收敛的条件下,极限运算与积分运算可以交换,即:⎰+∞→cx x dy y x f ),(lim0=⎰+∞c dy y x f ),(0=⎰+∞→cx x dy y x f ),(lim 0.定理19.11:(可微性)设f(x,y)与f x (x,y)在区域I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上收敛,⎰+∞c x dy y x f ),(在I 上一致收敛,则φ(x)在I 上可微,且φ’(x) =⎰+∞c x dy y x f ),(.证:对任一递增且趋于+∞的数列{A n } (A 1=c),令u n (x)=⎰+1),(n nA A dy y x f .由定理19.3推得u n ’(x)=⎰+1),(n nA A x dy y x f .由⎰+∞c x dy y x f ),(在I 上一致收敛及定理19.9,可得函数项级数∑∞='1)(n n x u =∑⎰∞=+11),(n A A x n ndy y x f 在I 上一致收敛.根据函数项级数的逐项求导定理,即得:φ’(x) =∑∞='1)(n nx u =∑⎰∞=+11),(n A Ax n ndy y x f =⎰+∞cx dy y x f ),(.或写作⎰+∞c dy y x f dxd ),(=⎰+∞c x dy y x f ),(.推论:设f(x,y)与f x (x,y)在区域I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上收敛,⎰+∞c x dy y x f ),(在I 上内闭一致收敛,则φ(x)在I 上可微,且φ’(x) =⎰+∞c x dy y x f ),(.定理19.12:(可积性)设f(x,y)在[a,b]×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在[a,b]上一致收敛,则φ(x)在[a,b]上可积,且⎰⎰+∞cbady y x f dx ),( =⎰⎰+∞bacdx y x f dy ),(.证:由定理19.10知φ(x)在[a,b]上连续,从而在[a,b]上可积. 又函数项级数φ(x)=∑⎰∞=+11),(n A An ndy y x f =∑∞=1)(n n x u 在I 上一致收敛,且各项u n (x)在[a,b]上连续,根据函数项级数逐项求积定理,有⎰Φbadx x )(=∑⎰∞=1)(n ban dx x u =∑⎰⎰∞=+11),(n baA A n ndy y x f dx =∑⎰⎰∞=+1),(1n baA A dx y x f dy n n,即⎰⎰+∞cbady y x f dx ),( =⎰⎰+∞bacdx y x f dy ),(.定理19.13:设f(x,y)在[a,+∞)×[c,+∞)上连续,若(1)⎰+∞a dx y x f ),(关于y 在[c,+∞)上内闭一致收敛,⎰+∞c dy y x f ),(关于x 在[a,+∞)上内闭一致收敛;(2)积分⎰⎰+∞+∞c a dy y x f dx |),(|与⎰⎰+∞+∞a c dx y x f dy |),(|中有一个收敛. 则⎰⎰+∞+∞cady y x f dx ),(=⎰⎰+∞+∞acdx y x f dy ),(.证:不妨设⎰⎰+∞+∞c a dy y x f dx |),(|收敛,则⎰⎰+∞+∞c a dy y x f dx ),(收敛. 当d>c 时,记Jd =|⎰⎰+∞a dc dx y x f dy ),(-⎰⎰+∞+∞c a dy y x f dx ),(| =|⎰⎰+∞a dc dx y x f dy ),(-⎰⎰+∞dc a dy y x f dx ),(-⎰⎰+∞+∞d a dy y x f dx ),(|. 由条件(1)及定理19.12可推得:J d =|⎰⎰+∞+∞d a dy y x f dx ),(|≤|⎰⎰+∞d Aa dy y x f dx ),(|+⎰⎰+∞+∞d A dy y x f dx |),(|. 由条件(2),∀ε>0, ∃G>a ,使当A>G 时,有⎰⎰+∞+∞d A dy y x f dx |),(|<2ε. 选定A 后,由⎰+∞c dy y x f ),(的一致收敛性知,∃M>a ,使得当d>M 时, 有|⎰+∞d dy y x f ),(|<)(2a A -ε. ∴J d <2ε+2ε=ε,即有+∞→d lim J d =0,∴⎰⎰+∞+∞c a dy y x f dx ),(=⎰⎰+∞+∞a c dx y x f dy ),(.例5:计算:J=⎰+∞--0sin sin dx xaxbx e px (p>0,b>a). 解:∵xax bx sin sin -=⎰ba xydy cos ,∴J=⎰⎰+∞-0cos b a pxxydy dx e =⎰⎰+∞-0cos ba px xydy e dx .由|e -px cosxy|≤e -px 及反常积分⎰+∞-0dx e px 收敛, 根据魏尔斯特拉斯M 判别法知,含参量反常积分⎰+∞-0cos xydx e px 在[a,b]上一致收敛.又e -px cosxy[0,+∞)×[a,b]上连续,根据定理19.12交换积分顺序得: J=⎰⎰+∞-0cos xydx e dy px ba =⎰+bady y p p22=arctan p b - arctan p a .例6:计算:⎰+∞sin dx xax. 解:利用例5的结果,令b=0,则有F(p)=⎰+∞-0sin dx xaxe px=arctan p a (p>0).由阿贝尔判别法可知含参量反常积分F(p)在p ≥0上一致收敛, 又由定理19.10知,F(p)在p ≥0上连续,且F(0)=⎰+∞sin dx xax . 又F(0)=)(lim 0p F p +→=+→0lim p arctan p a =2πagn a. ∴⎰+∞0sin dx xax =2πagn a.例7:计算:φ(r)=⎰+∞-0.cos 2rxdx e x .解:∵|2x e -cosrx|≤2x e -对任一实数r 成立且反常积分⎰+∞-02dx e x 收敛, ∴含参量反常积分φ(r)=⎰+∞-0cos 2rxdx e x 在(-∞,+∞)上收敛. 考察含参量反常积分⎰+∞-'0)cos (2dx rx er x =⎰+∞--0sin 2rxdx xe x ,∵|-x 2x e -sinrx|≤x 2x e -对一切x ≥0, r ∈(-∞,+∞)成立且⎰+∞-02dx e x 收敛, 根据魏尔斯特拉斯M 判别法知, 含参量反常积分⎰+∞-'0)cos (2dx rx er x 在(-∞,+∞)上一致收敛.由定理19.11得φ’(r)=⎰+∞--0sin 2rxdx xex =⎰-+∞→-Ax A rxdxxesin lim2=⎪⎭⎫⎝⎛-⎰--+∞→A x Ax A rxdx e r rx e 00cos 2sin 21lim 22=⎰--A x rxdx e r 0cos 22=2r -φ(r). ∴φ(r)=c 42r e -. 又φ(0)=⎰+∞-02dx e x =2π=c. ∴φ(r)=422πr e-.概念2:设f(x,y)在区域R=[a,b]×[c,d)上有定义,若对x 的某些值,y=d 为函数f(x,y)的瑕点,则称⎰dc dy y x f ),(为含参量x 的无界函数反常积分,或简称为含参量反常积分. 若对每一个x ∈[a,b],⎰dc dy y x f ),(都收敛,则其积分值是x 在[a,b]上取值的函数.定义2:对任给正数ε, 总存在某正数δ<d-c, 使得当0<η<δ时, 对一切x ∈[a,b], 都有⎰-dd dy y x f η),(<ε, 则称含参量反常积分⎰dc dy y x f ),(在[a,b]上一致收敛.习题1、证明下列各题 (1)⎰∞++-122222)(dx y x x y 在(-∞,+∞)上一致收敛;(2)⎰+∞-02dy eyx 在[a,b] (a>0)上一致收敛;(3)⎰+∞-0sin dt tate t在0<a<+∞上一致收敛; (4)⎰+∞-0dy xe xy (i)在[a,b] (a>0)上一致收敛,(ii)在[0,b]上不一致收敛; (5)⎰10)ln(dy xy 在[b1,b](b>1)上一致收敛;(6)⎰1px dx(i)在(-∞,b] (b<1)上一致收敛,(ii)在(-∞,1]内不一致收敛; (7)⎰---1011)1(dx x x q p 在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛.证:(1)∵22222)(y x x y +-≤22222)(y x x y ++≤21x ,且⎰+∞12x dx 收敛,∴⎰∞++-122222)(dx y x x y 在(-∞,+∞)上一致收敛. (2)∵当0<a ≤x ≤b 时,yx e2-=yx e21≤ya e21,且⎰+∞12ya edy 收敛,∴⎰+∞-02dy e y x 在[a,b] (a>0)上一致收敛.(3)对任何N>0,∵⎰-Nt atdt e 0sin ≤⎰-Nt dt e 0≤1,即⎰-Nt atdt e 0sin 一致有界. 又t1关于在(0,+∞)单调,且t1→0 (t →∞),由狄利克雷判别法知,⎰+∞-0sin dt tate t在0<a<+∞上一致收敛. (4)(i)∵当0<a ≤x ≤b 时,|xe -xy|≤be -ay,且⎰+∞0ay -be 收敛, ∴⎰+∞-0dy xe xy 在[a,b] (a>0)上一致收敛. (ii)方法一:取ε0=21e<0, 则对任何M>0, 令A 1=M, A 2=2M, x 0=M 1, 有 ⎰-2100A A y x dy e x =MM yx e 20-=21e e ->21e=ε0,∴⎰+∞-0dy xe xy 在 [0,b]上不一致收敛. 方法二:∵⎰+∞-0dy xe xy =⎩⎨⎧≤<=bx x 0,10,0,且xe -xy 在[0,b]×(0,+∞)内连续,由连续性定理知⎰+∞-0dy xe xy 在 [0,b]上不一致收敛.(5)∵在[b1,b]×(0,1] (b>1)内, |ln(xy)|=|lnx+lny|≤|lnx|+|lny|≤lnb-lny, 且⎰-10)ln (ln dy y b 收敛, ∴⎰10)ln(dy xy 在[b1,b](b>1)上一致收敛.(6)(i)∵当p ≤b<1, x ∈(0,1]时,p x 1≤b x 1,又⎰10b xdx 收敛,∴⎰1px dx在(-∞,b] (b<1)上一致收敛.(ii)当p=1时,⎰1xdx发散,∴对任何A<1,在[A,1]内不一致收敛,即 ⎰1p xdx在(-∞,1]内不一致收敛. (7)记⎰---1011)1(dx x xq p =⎰---21011)1(dx x xq p +⎰---12111)1(dx x x q p =I 1+I 2.对I 1在0≤x ≤21, 0<p 0≤p<+∞, 0<q 0≤q<+∞上, ∵|x p-1(1-x)q-1|≤1100)1(---q p x x且⎰---210110)1(dx x x q p 收敛,∴I 1在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛; 同理可证I 2在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛. ∴⎰---1011)1(dx x x q p 在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛.2、从等式⎰-ba xydy e =x e e by ay ---出发,计算积分⎰∞+---0dx xe e byay (b>a>0). 解:∵⎰-ba xy dy e=x e e by ay ---,∴⎰∞+---0dx xe e byay=⎰⎰-+∞b a xy dy e dx 0. 又 e -xy 在[0,+∞)×[a,b]内连续,由M 判别法知, ⎰+∞-0dx e xy 在[a,b]内一致收敛.∴⎰∞+---0dx x e e by ay =⎰⎰+∞-0dx e dy xyb a =⎰b a dy y 1=ln ab .3、证明函数F(y)=⎰+∞--0)(2dx e y x 在(-∞,+∞)上连续. (提示:利用⎰+∞-02dx e x =2π) 证:令x-y=u, 则F(y)=⎰+∞-yu du e2=⎰-02yu du e+⎰+∞-02du eu =⎰-02yu du e +2π. ∵关于y 的积分下限函数⎰-02y u du e 在(-∞,+∞)上连续, ∴F(y)=⎰+∞--0)(2dx e y x 在(-∞,+∞)上连续.4、求下列积分: (1)⎰∞+---022222dx x e e xb xa(提示:利用⎰+∞-02dx ex =2π); (2)⎰+∞-0sin dt t xt e t;(3)⎰+∞--02cos 1dx x xye x . 解:(1)∵22222x e e xbxa---=⎰-ba x y dy ye 222,∴⎰∞+---022222dx x e e xb xa=⎰⎰+∞-0222bax y dy ye dx ,由M 判别法知⎰+∞-0222dx ye x y 在[a,b]内一致收敛,∴⎰∞+---022222dx x e e xb xa=⎰⎰+∞-0222dx yedy x y ba=⎰⎰+∞-0)(222xy d edy x y ba =⎰bady π=(b-a)π.(2)利用例5结果:⎰+∞--0sin sin dt tatbt e pt=arctan p b - arctan p a . (p>0,b>a).当p=1, a=0, b=x 时,有⎰+∞-0sin dt txte t=arctanx. (3)∵2cos 1x xy e x --=⎰-y x dt x xt e 0sin ,∴⎰⎰-+∞yx dt x xt e dx 00sin . 由x xt e x x sin lim 0-→=t 知, x=0不是xxte x sin -的瑕点,又 含参量非正常积分⎰+∞-0sin dx xxte x 在t ∈[0,M]上一致收敛, ∴由(2)有2cos 1x xy e x--=⎰⎰+∞-00sin dx xxt e dt x y =⎰y tdt 0arctan =yarctany-21ln(1+y 2).5、回答下列问题: (1)对极限⎰+∞-→+0022limdy xyexy x 能否运用极限与积分运算顺序的交换求解?(2)对⎰⎰+∞--132)22(dx e xy y dy xy 能否运用积分顺序交换来求解?(3)对F(x)=⎰+∞-032dy e x y x 能否运用积分与求导运算顺序交换来求解? 解:(1)∵F(x)=⎰+∞-022dy xye xy =⎩⎨⎧=>0,00,1x x , ∴F(x)lim 0+→x =1,但⎰+∞-→+022lim dy xye xy x =0,即交换运算后不相等,∴对极限⎰+∞-→+0022limdy xyexy x 不能运用极限与积分运算顺序的交换求解.注:⎰+∞-022dy xye xy =⎰+∞-0du xe xu 在[0,b]上不一致收敛,并不符合连续性定理的条件.(2)∵⎰⎰+∞--10032)22(dx exy y dy xy =⎰∞+-122dy xyexy =⎰10dy =0;⎰⎰-+∞-1032)22(dy exy y dx xy =⎰+∞-0122dx ey xy =⎰-1dx e x =1;∴对⎰⎰+∞--10032)22(dx e xy y dy xy 不能运用积分顺序交换来求解.注:⎰+∞--032)22(dx e xy y xy =0且⎰+∞--M xy dx e xy y 2)22(3=-2My 2My e -. 对ε0=1,不论M 多大,总有y 0=M1∈[0,1],使得⎰+∞--M xy dx e xy y 2)22(3=2M e 1->1,∴⎰+∞--032)22(dx e xy y xy 在[0,1]不一致收敛,不符合可积性定理的条件. (3)∵F(x)=⎰+∞-032dy e x y x =x, x ∈(-∞,+∞),∴F ’(x)≡1. 但y x e x x23-∂∂=(3x 2-2x 4y)y x e 2-, 而当x=0时,⎰+∞--0422)23(dy e y x x y x =0. ∴对F(x)=⎰+∞-032dy e x y x 不能运用积分与求导运算顺序交换来求解. 注:∵⎰+∞--0422)23(dy ey x x yx =⎩⎨⎧=≠0,00,1x x ,∴⎰+∞--0422)23(dy ey x x yx 在[0,1]上不一致收敛,不符合可微性定理的条件.6、应用:⎰+∞-02dx e ax =212π-a (a>0),证明: (1)⎰+∞-022dt e t at=234π-a ;(2)⎰+∞-022dt e t at n =⎪⎭⎫⎝⎛+--212!)!12(2πn n a n .证:(1)方法一:∵⎰+∞-022dt e t at 在任何[c,d]上(c>0)一致收敛, ∴⎰+∞-02dt e da d at =⎰+∞-02dt e dad at =-⎰+∞-022dte t at . 又⎰+∞-02dt e da d at =⎪⎪⎭⎫ ⎝⎛-212πa da d =-234π-a . ∴⎰+∞-02dx e ax =234π-a . 方法二:⎰+∞-022dt et at =-⎰+∞-0221at tdea =-⎪⎭⎫ ⎝⎛-⎰+∞-∞+-02221dt ete a at at=⎰+∞-0221dt e aat =234π-a .(2)方法一:∵⎰+∞-022dt e t at n 在任何[c,d]上(c>0)一致收敛,∴⎰∞+-02dt eda d at nn=⎰∞+-02dt e da d at nn =(-1)n ⎰+∞-022dt e t at n . 又⎰∞+-02dt e dad atnn =⎪⎪⎭⎫ ⎝⎛-212πa dad nn=(-1)n ⎪⎭⎫⎝⎛+--212!)!12(2πn n a n . ∴⎰+∞-022dt e t atn =⎪⎭⎫⎝⎛+--212!)!12(2πn nan . 方法二:记I n =⎰+∞-022dt e t at n , n=0,1,2,…,(1)中已证I 1=⎪⎭⎫⎝⎛+--⨯2112)112(2πa=a 2)112(-⨯I 0. 可设I k =a k 2)12(-⨯I k-1,则 I k+1=⎰+∞-+0)1(22dt e t at k =-⎰+∞-+012221at k de t a =-⎪⎭⎫ ⎝⎛-⎰+∞+-∞+-+0120122221k at at k dt e e t a=⎰+∞-+022212dt e t a k at k =ak 21)1(2-+I k=2)2()12](1)1(2[a k k --+I k-1=…= 1)2(!]!1)1(2[+-+k a k I 0=211)2(!]!1)1(2[2π-+-+a a k k .当n=k+1时,有I n =⎰+∞-022dt e t at n =21)2(!)!12(2π--a a k n =⎪⎭⎫⎝⎛+--212!)!12(2πn na n . 7、应用⎰+∞+022a x dx =a2π,求()⎰+∞++0122n a x dx.解:记A=a 2, ∵()⎰+∞++012n Axdx在任何[c,d]上(c>0)一致收敛,∴⎰∞++02A x dx dA d nn =⎰∞+⎪⎭⎫ ⎝⎛+021dx A x dA d n n=(-1)nn!()⎰+∞++012n A x dx . 又⎰∞++02A x dx dAd nn =⎪⎭⎫ ⎝⎛A dA d n n 2π=(-1)n 212!)!12(2π---n n A n . ∴()⎰+∞++012n Axdx=212!!)!12(2π---n n A n n =12!)!2(!)!12(2π---n a n n .8、设f(x,y)为[a,b]×[c,+∞)上连续非负函数,I(x)=dy y x f ⎰+∞0),(在[a,b]上连续,证明:I(x)在[a,b]上一致收敛.证:任取一个趋于的∞递增数列{A n } (其中A 1=c),考察级数∑⎰∞=+11),(n A A n ndy y x f =∑∞=1)(n n x u .∵f(x,y)在[a,b]×[c,+∞)上非负连续, ∴u n (x)在[a,b]上非负连续. 由狄尼定理知,∑∞=1)(n n x u 在[a,b]上一致收敛,从而∑⎰∞=+11),(n A A n ndy y x f 在[a,b]上一致收敛. 又I(x)=dy y x f ⎰+∞),(在[a,b]上连续.∴I(x)=dy y x f ⎰+∞0),(=∑⎰∞=∞→+11),(lim n A An n ndy y x f [a,b]上一致收敛.9、设在[a,+∞)×[c,d]内成立不等式|f(x,y)|≤F(x,y). 若dx y x F ⎰+∞0),(在y ∈[c,d] 上一致收敛,证明:dx y x f ⎰+∞),(在y ∈[c,d] 上一致收敛且绝对收敛.证:∵dx y x F ⎰+∞0),(在y ∈[c,d] 上一致收敛,∴∀ε>0, ∃M>0,对任何A2>A1>M和一切y∈[c,d],都有⎰21) , (A AdxyxF<ε.∵|f(x,y)|≤F(x,y),∴⎰21) , (A Adxyxf≤⎰21),(AAdxyxf≤⎰21),(AAdxyxF<ε,∴dxyxf⎰+∞0),(在y∈[c,d] 上一致收敛且绝对收敛.。
数学分析19.1含参量积分之含参量正常积分(含练习及答案)

第十九章 含参量积分 1含参量正常积分概念:1、设f(x,y)是定义在矩形区域R=[a,b]×[c,d]上的二元函数. 当x 取[a,b]上某定值时,函数f(x,y)则是定义在[c,d]上以y 为自变量的一元函数. 若这时f(x,y)在[c,d]上可积,则其积分值是x 在[a,b]上取值的函数,记作φ(x)=⎰dc dy y x f ),(, x ∈[a,b].2、设f(x,y)是定义在区域G={(x,y)|c(x)≤y ≤d(x), a ≤x ≤b}上的二元函数, 其中c(x),d(x)为定义在[a,b]上的连续函数,若对于[a,b]上每一固定的x 值,f(x,y)作为y 的函数在闭区间[c(x),d(x)]上可积,则其积分值是x 在[a,b]上取值的函数,记为F(x)=⎰)()(),(x d x c dy y x f , x ∈[a,b].3、上面两个函数通称为定义在[a,b]上含参量x 的(正常)积分,或简称含参量积分.定理19.1:(连续性)若二元函数f(x,y)在矩形区域R=[a,b]×[c,d]上连续,则函数φ(x)=⎰dc dy y x f ),(在[a,b]上连续.证:设x ∈[a,b], 对充分小的△x, 有x+△x ∈[a,b] (若x 为区间端点, 则只考虑△x >0或△x<0), 于是 φ(x+△x)-φ(x)=⎰-∆+d c dy y x f y x x f )],(),([.∵f(x,y)在有界闭域R 上连续,从而一致连续,即∀ε>0, ∃δ>0, 对R 内任意两点(x 1,y 1)与(x 2,y 2),只要|x 1-x 2|<δ, |y 1-y 2|<δ, 就有|f(x 1,y 1)-f(x 2,y 2)|<ε. ∴当|△x |<δ时, |φ(x+△x)-φ(x)|≤⎰-∆+d c dy y x f y x x f |),(),(|<⎰dc dy ε=ε(d-c). 得证!注:1、同理:若f(x,y)在R 上连续,则含参量y 的积分ψ(y)=⎰ba dx y x f ),(在[c,d]上连续.2、若f(x,y)在R 上连续,则对任何x 0∈[a,b], 有⎰→dcx x dy y x f ),(lim0=⎰→dc x x dy y x f ),(lim 0.定理19.2:(连续性)设区域G={(x,y)|c(x)≤y ≤d(x), a ≤x ≤b}, 其中c(x),d(x)为定义在[a,b]上的连续函数. 若二元函数f(x,y)在G 上连续,则函数F(x)=⎰)()(),(x d x c dy y x f 在[a,b]上连续.证:令y=c(x)+t(d(x)-c(x)),∵y ∈[c(x),d(x)],∴t ∈[0,1],且dy=(d(x)-c(x))dt, ∴F(x)=⎰)()(),(x d x c dy y x f =⎰--+10))()()))(()(()(,(dt x c x d x c x d t x c x f . 由 被积函数f(x,c(x)+t(d(x)-c(x)))(d(x)-c(x))在矩形区域[a,b]×[0,1]上连续知, F(x)在[a,b]上连续.定理19.3:(可微性)若函数f(x,y)与其偏导数x∂∂f(x,y)都在矩形区域 R=[a,b]×[c,d]上连续,则φ(x)=⎰dc dy y x f ),(在[a,b]上可微, 且⎰dcdy y x f dx d ),(=⎰∂∂d c dy y x f x ),(. 证:设任一x ∈[a,b], 对充分小的△x, 有x+△x ∈[a,b] (若x 为区间端点, 则只考虑△x >0或△x<0), 则xx x x ∆-∆+)()(ϕϕ=⎰∆-∆+dcdy xy x f y x x f ),(),(. 由拉格朗日中值定理及f x (x,y)在有界闭域R 上连续(从而一致连续), ∀ε>0, ∃δ>0, 只要|△x|<δ,就有),(),(),(y x f xy x f y x x f x -∆-∆+=|f x (x+θ△x,y)-f x (x,y)|<ε, θ∈(0,1).∴⎰-∆∆d cx dy y x f x ),(ϕ≤⎰-∆-∆+d c x dy y x f x y x f y x x f ),(),(),(<ε(d-c). 即 对一切x ∈[a,b], 有⎰dc dy y x f dxd ),(=⎰∂∂d c dy y x f x),(.定理19.4:(可微性)设f(x,y), f x (x,y)在R=[a,b]×[p,q]上连续,c(x), d(x)为定义在[a,b]上其值含于[p,q]内的可微函数,则函数F(x)=⎰)()(),(x d x c dy y x f 在[a,b]上可微,且F ’(x)=⎰)()(),(x d x c x dy y x f +f(x,d(x))d ’(x)-f(x,c(x))c ’(x). 证:作复合函数F(x)=H(x,c,d)=⎰dc dy y x f ),(, c=c(x), d=d(x). 由复合函数求导法则及变上限积分的求导法则有:F ’(x)=H x +H c c ’(x)+H d d ’(x)=⎰)()(),(x d x c x dy y x f +f(x,d(x))d ’(x)-f(x,c(x))c ’(x).定理19.5:(可积性)若f(x,y)在矩形区域R=[a,b]×[c,d]上连续,则 φ(x)=⎰dc dy y x f ),(和ψ(y)=⎰ba dx y x f ),(分别在[a,b]和[c,d]上可积.注:即在f(x,y)连续性假设下,同时存在两个求积顺序不同的积分:⎰⎰⎥⎦⎤⎢⎣⎡ba d c dx dy y x f ),(与⎰⎰⎥⎦⎤⎢⎣⎡d c b a dy dx y x f ),(,或⎰⎰b a d c dy y x f dx ),(与⎰⎰d c b a dx y x f dy ),(.它们统称为累次积分,或二次积分.定理19.6:若f(x,y)在矩形区域R=[a,b]×[c,d]上连续,则⎰⎰bad cdy y x f dx ),(=⎰⎰d cbadx y x f dy ),(.证:记φ1(u) =⎰⎰ua dc dy y x f dx ),(, φ2(u) =⎰⎰dc ua dx y x f dy ),(, u ∈[a,b], 则φ1’(u)=⎰uc dx x dud )(ϕ=φ(u). 令H(u,y)=⎰u a dx y x f ),(, 则φ2(u) =⎰d c dy y u H ),(,∵H(u,y)与H u (u,y)=f(u,y)都在R 上连续, ∴φ2’(u)=⎰dc dy y u H dud ),(=⎰d c u dy y u H ),(=⎰d c dy y u f ),(=φ(u). ∴φ1’(u)=φ2’(u), ∴对一切u ∈[a,b], 有φ1(u)=φ2(u)+k (k 为常数). 当u=a 时,φ1(a)=φ2(a)=0, ∴k=0, 即得φ1(u)=φ2(u), u ∈[a,b]. 取u=b, 证得:⎰⎰ba dc dy y x f dx ),(=⎰⎰dc ba dx y x f dy ),(.例1:求⎰+→++aaa a x dx12201lim .解:记φ(a)=⎰+++a a a x dx 1221, ∵a, 1+a, 2211ax ++都是a 和x 的连续函数, 由定理19.2知φ(a)在a=0处连续, ∴)(lim 0a a ϕ→=φ(0)=⎰+1021xdx =4π.例2:设f(x)在x=0的某个邻域U 上连续, 验证当x ∈U 时, 函数φ(x)=⎰---x n dt t f t x n 01)()()!1(1的各阶导数存在, 且φ(n)(x)=f(x). 证:∵F(x,t)=(x-t)n-1f(t)及其偏导数F x (x,t)在U 上连续,由定理19.4可得:φ’(x)=⎰----x n dt t f t x n n 02)())(1()!1(1+)()()!1(11x f x x n n --- =⎰---x n dt t f t x n 02)()()!2(1. 同理φ”(x)=⎰---x n dt t f t x n 03)()()!3(1. 如此继续下去,求得k 阶导数为φ(k)(x)=⎰-----x k n dt t f t x k n 01)()()!1(1.当k=n-1时,有φ(n-1)(x)=⎰xdt t f 0)(. ∴φ(n)(x)=f(x).例3:求I=⎰-1ln dx xx x ab . (b>a>0)解:∵⎰baydy x =x x x ab ln -, ∴I=⎰⎰b a y dy x dx 10. 又x y 在[0,1]×[a,b]上满足定理19.6的条件, ∴I=⎰⎰10dx x dy y ab =⎰+ab dy y 11=ln ab ++11.例4:计算积分I=⎰++121)1ln(dx xx . 证:记φ(a)=⎰++1021)1ln(dx x ax , 则有φ(0)=0, φ(1)=I, 且函数21)1ln(x ax ++在R=[0,1]×[0,1]上满足定理19.3的条件,于是φ’(a)=⎰++102)1)(1(dx ax x x =⎰⎪⎭⎫ ⎝⎛+-+++10221111dx ax a x xa a =⎪⎭⎫ ⎝⎛+-++++⎰⎰⎰10101022211111dx ax a dx x x dx x a a =⎥⎦⎤⎢⎣⎡+++++10102102)1ln()1ln(21arctan 11ax x x a a =⎥⎦⎤⎢⎣⎡+-++)1ln(2ln 214112a a aπ. ∴⎰'1)(da a ϕ=⎰⎥⎦⎤⎢⎣⎡+-++102)1ln(2ln 21411da a a a π=102)1ln(8a +π+10arctan 2ln 21a -I =2ln 4π-I. 又⎰'10)(da a ϕ=φ(1)-φ(0)=I, ∴I=2ln 4π-I, 解得I=2ln 8π.习题1、设f(x,y)=sgn(x-y), 试证由含参量积分F(y)=⎰10),(dx y x f 所确定的函数在(-∞,+∞)上连续,并作函数F(y)的图像.证:∵x ∈[0,1], ∴当y<0时, f(x,y)=1; 当y>1时, f(x,y)=-1; 当0≤y ≤1时, F(y)=⎰ydx y x f 0),(+⎰1),(y dx y x f =⎰-y dx 0)1(+⎰1y dx =1-2y.∴F(y)=⎪⎩⎪⎨⎧>-≤≤-<11102101y ,y y ,y ,在(-∞,+∞)上连续,图像如图:2、求下列极限:(1)⎰-→+11220lim dx a x a ;(2)⎰→220cos lim axdx x a . 解:(1)∵函数f(x,a)=22a x +在矩形区域R=[-1,1]×[-1,1]上连续,∴⎰-→+11220lim dx a x a =⎰-→+11220lim dx a x a =⎰-11||dx x =1. (2)∵函数f(x,a)=x 2cosax 在矩形区域R=[0,2]×[-1,1]上连续,∴⎰→2020cos lim axdx x a =⎰→2020cos lim axdx x a =⎰202dx x =38.3、设F(x)=⎰-22x x xy dy e , 求F ’(x). 解:F ’(x)=-⎰-222x x y x dy e y +2x 5x e --3x e -.4、应用对参量的微分法,求下列积分:(1)⎰+202222)cos sin ln(πdx x b x a (a 2+b 2≠0);(2)⎰+-π02)cos 21ln(dx a x a .解:(1)若a=0, 则b ≠0,原式=⎰2022)cos ln(πdx x b =πln|b|+2⎰20)ln(cos πdx x =πln|b|-πln2=πln 2||b ; 同理,若b=0, 则a ≠0, 原式=πln 2||a ; 若a ≠0,b ≠0, 可设 I(b)=⎰+202222)cos sin ln(πdx x b x a , 则 I ’(b)=⎰+2022222cos sin cos ||2πdx x b x a x b =⎰⎪⎪⎭⎫⎝⎛+22tan 1||2πx b a dx b . 记u=ba, t=utanx, 则 I ’(b)=⎰∞+⋅+022211||2dt t u u t b =⎰∞⎪⎭⎫ ⎝⎛+-+-022222111)1(2dt t u t u b u =||||b a +π.又I(0)=⎰2022)sin ln(πdx x a =πln2||a , I(x)=⎰+x dt t a 0||π+πln 2||a =πln(|a|+x)-πln2. ∴⎰+202222)cos sin ln(πdx x b x a =πln(|a|+|b|)-πln2=πln 2||||b a +. (2)设I(a)=⎰+-π02)cos 21ln(dx a x a .当|a|<1时,1-2acosx+a 2≥1-2|a|+a 2=(1-|a|)2>0,∴ln(1-2acosx+a 2)为连续函数,且具有连续导数, ∴I ’(a)=⎰+--π2cos 21cos 22dx ax a x a =⎰⎪⎪⎭⎫ ⎝⎛+--+π022cos 21111dx a x a a a =a π-⎰⎪⎭⎫ ⎝⎛+-++-π222cos 121)1(1x a a dx a a a =a π-π02tan 11arctan 2⎪⎭⎫⎝⎛-+x aa a =0. ∴当|a|<1时,I(a)=c(常数),又I(0)=0, ∴I(a)=0. 当|a|<1时,令b=a1, 则|b|<1,有I(b)=0, 于是 I(a)=⎰⎪⎪⎭⎫⎝⎛+-π221cos 2ln dx b x b b =I(b)-2πln|b|=2πln|a|. 当|a|=1时,I(1)=⎰-π0)2cos ln 22ln 2(dx x=0; 同理I(-1)=0, ∴I(a)=⎩⎨⎧>≤1||||ln 21||0a ,a a ,π .注:由(2)或推出(1), 即⎰+202222)cos sin ln(πdx x b x a =⎰-++202222)2cos 22ln(πdx x b a b a=⎰-++π02222)cos 22ln(21dt t b a b a=⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-++--π02||||||||cos ||||||||21ln 21dt b a b a t b a b a +πln 2||||b a +=πln 2||||b a +.5、应用积分号下的积分法,求下列积分:(1)⎰-⎪⎭⎫ ⎝⎛10ln 1ln sin dx x x x x a b (b>a>0);(2)⎰-⎪⎭⎫ ⎝⎛10ln 1ln cos dx x xx x ab (b>a>0). 解:(1)记g(x)=xxx x ab ln 1ln sin -⎪⎭⎫ ⎝⎛, ∵+→0lim x g(x)=0,∴令g(0)=0时,g(x)在[0,1]连续,于是有I=⎰10)(dx x g =⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛101ln sin dx dy x x b a y =⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛101ln sin dx dy x x b a y .记f(x,y)=x y sin ⎪⎭⎫⎝⎛x 1ln (x>0), f(0,y)=0, 则f(x,y)在[0,1]×[a,b]上连续,∴I=⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛101ln sin dx dy x x b a y =⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛b a y dy dx x x 101ln sin =⎰⎰⎥⎦⎤⎢⎣⎡∞+-b a t y dydt t e 0)1(sin=⎰⎰⎥⎦⎤⎢⎣⎡∞+-ba t y dy dt t e 0)1(sin =⎰++b a y dy 2)1(1=arctan(1+b)-arctan(1+a). (2)类似于(1)题可得:⎰-⎪⎭⎫ ⎝⎛10ln 1ln cos dx x x x x ab =⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛b a ydy dx x x 101ln cos =dy y y b a ⎰+++2)1(11=2222ln 2122++++a a b b .6、试求累次积分:⎰⎰+-102222210)(dy y x y x dx 与⎰⎰+-102222210)(dx y x y x dy ,并指出,它们为什么与定理19.6的结果不符.解:∵22222)(y x y x +-=-⎪⎪⎭⎫ ⎝⎛+∂∂22y x x x ,22222)(y x y x +-=-⎪⎪⎭⎫⎝⎛+∂∂22y x y y , ∴⎰⎰+-102222210)(dy y x y x dx =⎰⎪⎪⎭⎫⎝⎛+-101022dy y x x=-⎰+1021y dy =-4π.∵22222)(y x y x +-在点(0,0)不连续,∴与定理19.6的结果不符.7、研究函数F(y)=⎰+1022)(dx y x x yf 的连续性,其中f(x)在闭区间[0,1]上是正的连续函数.解:∵f(x)在[0,1]上是正的连续函数, ∴存在正数m, 使得f(x)≥m>0, x ∈[0,1]. 当y>0时, F(y)=⎰+1022)(dx y x x yf ≥m ⎰+1022dx y x y=marctan y 1; 当y<0时, F(y)=⎰+122)(dx y x x yf ≤m ⎰+1022dx y x y =marctan y 1; ∴+→0lim y F(y)≥+→0lim y marctan y 1=2πm >0, -→0lim y F(y)≤-→0lim y marctan y 1=-2πm <0.∵+→0lim y F(y)≠-→0lim y F(y), ∴F(y)在y=0处不连续. 又当0∉[c,d]时,22)(y x x yf +在[0,1]×[c,d]上连续,∴当y ≠0时,F(y)连续.8、设函数f(x)在闭区间[a,A]上连续,证明:⎰-+→xah dt t f h t f h )]()([1lim0=f(x)-f(a) (a<x<A). 证:⎰-+xa dt t f h t f )]()([=⎰++hx h a dt t f )(-⎰xa dt t f )(=⎰++hx h a dt t f )(-⎰+xh a dt t f )(-⎰+ha a dt t f )(=⎰+hx xdt t f )(-⎰+ha adt t f )(=hf(ξ1)-hf(ξ2), x ≤ξ1≤x+h, a ≤ξ2≤a+h. 当h →0时,ξ1→x, ξ2→a, ∴⎰-+→xa h dt t f h t f h )]()([1lim 0=0lim →h [f(ξ1)-f(ξ2)]=f(x)-f(a).9、设F(x,y)=⎰-xyyx dz z f yz x )()(, 其中f(z)为可微函数, 求F xy (x,y).解:F x (x,y)=⎰xyyxdz z f )(+(x-xy 2)f(xy)y-(x-y·y x )f(y x )·y 1=⎰xy yx dz z f )(+xy(1-y 2)f(xy).F xy (x,y)=xf(xy)+f(y x )·2yx +x(1-y 2)f(xy)-2xy 2f(xy)+x 2y(1-y 2)f ’(xy).10、设E(k)=⎰-2022sin 1πϕϕd k , F(k)=⎰-2022sin 1πϕϕk d . 其中0<k<1.(这两个积分称为完全椭圆积分)(1)试求E(k)与F(k)的导数,并以E(k)与F(k)来表示它们; (2)证明E(k)满足方程:E ”(k)+k1E ’(k)+211k -E(k)=0. (1)解:E ’(k)=-⎰-20222sin 1sin πϕϕϕd k k =-⎰⎪⎪⎭⎫ ⎝⎛----20222222sin 1sin 1sin 111πϕϕϕϕd k k k k =- ⎝⎛-⎰2022sin 111πϕϕd k k +⎪⎪⎭⎫-⎰2022sin 1πϕϕd k =k 1E(k)-k 1F(k). F ’(k)=ϕϕϕπd k k ⎰-203222)sin 1(sin =⎰-20322)sin 1(1πϕϕk d k -⎰-2022sin 11πϕϕk d k . 又322)sin 1(1ϕk -=ϕ222sin 111k k ---ϕϕϕϕ2222sin 1cos sin 1k d d k k --. ∴⎰-20322)sin 1(πϕϕk d =⎰--2222sin 111πϕϕd k k =211k-E(k). 从而有F ’(k)=)1(12k k -E(k)-k1F(k).(2)证:∵E ”(k)=[k 1E(k)-k 1F(k)]’=-21k E(k)+21k F(k)+k 1E ’(k)-k 1F ’(k),k 1E ’(k)=21k E(k)-21kF(k), ∴E ”(k)=-k 1F ’(k). 又F ’(k)=)1(12k k -E(k)-k 1F(k)=)1(12k k -E(k)+E ’(x)-k 1E(k)=E ’(x)+21k k -E(k).∴E ”(k)=-k 1E ’(x)-211k -E(k), 即E ”(k)+k 1E ’(k)+211k -E(k)=0.。
广义积分和含参数的积分习题选解

广义积分和含参数的积分习题选解广义积分是微积分中的一个重要概念,它可以看作是原函数不可求导造成的补救措施。
含参数的积分即在积分过程中引入参数,通过改变参数的取值来研究积分的特性。
下面是一些关于广义积分和含参数的积分的习题。
1. 计算广义积分∫(0,∞) dx/x^n ,其中n>1解析:对于这种形式的广义积分,我们可以采用定积分的思路。
将积分限分别取为a和t,代入积分式中得到∫(a,t) dx/x^n = [(1-n)x^(1-n)]/(1-n) , (a,t) = (t^(1-n)-a^(1-n))/(1-n)。
由于n>1,所以t^(1-n)→0 当t→∞,所以可以将积分限从(0,∞)化简为(0,a),计算上式并令a→0,得到∫(0,∞) dx/x^n = 1/(n-1)。
2. 若函数f(x)在[a,b]上连续,证明方程∫(a,x) f(t) dt = x^2/2 - ax + a^2/2 在[a,b]上恒成立。
解析:根据题目要求,我们需要证明对于任意x∈[a,b],都有∫(a,x) f(t) dt = x^2/2 - ax + a^2/2、我们可以直接对右侧进行微分,得到(x^2/2 - ax + a^2/2)’ = x - a = ∫(a,x) f(t) dt’。
由于f(x)在[a,b]上连续,积分的上限函数是连续函数,所以右侧的导数存在并且等于积分式的极限。
所以原方程右侧的导数等于左侧的导数,从而证明了该方程在[a,b]上恒成立。
3. 求解含参数的积分∫(0,π/2) sin(x+a) dx ,其中a为参数。
解析:对于这种含参数的积分,我们可以通过先求解不含参数的积分,然后通过讨论参数取值的方式进行分析。
在这个问题中,我们可以将sin(x+a)展开为sinx*cosa+cosx*sina。
然后分别计算这两个项的积分,得到∫(0,π/2) sinx*cosa dx 和∫(0,π/2) cosx*sina dx。
数学分析19.1含参量积分之含参量正常积分(含练习及答案)

第十九章 含参量积分 1含参量正常积分概念:1、设f(x,y)是定义在矩形区域R=[a,b]×[c,d]上的二元函数. 当x 取[a,b]上某定值时,函数f(x,y)则是定义在[c,d]上以y 为自变量的一元函数. 若这时f(x,y)在[c,d]上可积,则其积分值是x 在[a,b]上取值的函数,记作φ(x)=⎰dc dy y x f ),(, x ∈[a,b].2、设f(x,y)是定义在区域G={(x,y)|c(x)≤y ≤d(x), a ≤x ≤b}上的二元函数, 其中c(x),d(x)为定义在[a,b]上的连续函数,若对于[a,b]上每一固定的x 值,f(x,y)作为y 的函数在闭区间[c(x),d(x)]上可积,则其积分值是x 在[a,b]上取值的函数,记为F(x)=⎰)()(),(x d x c dy y x f , x ∈[a,b].3、上面两个函数通称为定义在[a,b]上含参量x 的(正常)积分,或简称含参量积分.定理19.1:(连续性)若二元函数f(x,y)在矩形区域R=[a,b]×[c,d]上连续,则函数φ(x)=⎰dc dy y x f ),(在[a,b]上连续.证:设x ∈[a,b], 对充分小的△x, 有x+△x ∈[a,b] (若x 为区间端点, 则只考虑△x >0或△x<0), 于是 φ(x+△x)-φ(x)=⎰-∆+d c dy y x f y x x f )],(),([.∵f(x,y)在有界闭域R 上连续,从而一致连续,即∀ε>0, ∃δ>0, 对R 内任意两点(x 1,y 1)与(x 2,y 2),只要|x 1-x 2|<δ, |y 1-y 2|<δ, 就有|f(x 1,y 1)-f(x 2,y 2)|<ε. ∴当|△x |<δ时, |φ(x+△x)-φ(x)|≤⎰-∆+d c dy y x f y x x f |),(),(|<⎰dc dy ε=ε(d-c). 得证!注:1、同理:若f(x,y)在R 上连续,则含参量y 的积分ψ(y)=⎰ba dx y x f ),(在[c,d]上连续.2、若f(x,y)在R 上连续,则对任何x 0∈[a,b], 有⎰→dcx x dy y x f ),(lim0=⎰→dc x x dy y x f ),(lim 0.定理19.2:(连续性)设区域G={(x,y)|c(x)≤y ≤d(x), a ≤x ≤b}, 其中c(x),d(x)为定义在[a,b]上的连续函数. 若二元函数f(x,y)在G 上连续,则函数F(x)=⎰)()(),(x d x c dy y x f 在[a,b]上连续.证:令y=c(x)+t(d(x)-c(x)),∵y ∈[c(x),d(x)],∴t ∈[0,1],且dy=(d(x)-c(x))dt, ∴F(x)=⎰)()(),(x d x c dy y x f =⎰--+10))()()))(()(()(,(dt x c x d x c x d t x c x f . 由 被积函数f(x,c(x)+t(d(x)-c(x)))(d(x)-c(x))在矩形区域[a,b]×[0,1]上连续知, F(x)在[a,b]上连续.定理19.3:(可微性)若函数f(x,y)与其偏导数x∂∂f(x,y)都在矩形区域 R=[a,b]×[c,d]上连续,则φ(x)=⎰dc dy y x f ),(在[a,b]上可微, 且⎰dcdy y x f dx d ),(=⎰∂∂d c dy y x f x ),(. 证:设任一x ∈[a,b], 对充分小的△x, 有x+△x ∈[a,b] (若x 为区间端点, 则只考虑△x >0或△x<0), 则xx x x ∆-∆+)()(ϕϕ=⎰∆-∆+dcdy xy x f y x x f ),(),(. 由拉格朗日中值定理及f x (x,y)在有界闭域R 上连续(从而一致连续), ∀ε>0, ∃δ>0, 只要|△x|<δ,就有),(),(),(y x f xy x f y x x f x -∆-∆+=|f x (x+θ△x,y)-f x (x,y)|<ε, θ∈(0,1).∴⎰-∆∆d cx dy y x f x ),(ϕ≤⎰-∆-∆+d c x dy y x f x y x f y x x f ),(),(),(<ε(d-c). 即 对一切x ∈[a,b], 有⎰dc dy y x f dxd ),(=⎰∂∂d c dy y x f x),(.定理19.4:(可微性)设f(x,y), f x (x,y)在R=[a,b]×[p,q]上连续,c(x), d(x)为定义在[a,b]上其值含于[p,q]内的可微函数,则函数F(x)=⎰)()(),(x d x c dy y x f 在[a,b]上可微,且F ’(x)=⎰)()(),(x d x c x dy y x f +f(x,d(x))d ’(x)-f(x,c(x))c ’(x). 证:作复合函数F(x)=H(x,c,d)=⎰dc dy y x f ),(, c=c(x), d=d(x). 由复合函数求导法则及变上限积分的求导法则有:F ’(x)=H x +H c c ’(x)+H d d ’(x)=⎰)()(),(x d x c x dy y x f +f(x,d(x))d ’(x)-f(x,c(x))c ’(x).定理19.5:(可积性)若f(x,y)在矩形区域R=[a,b]×[c,d]上连续,则 φ(x)=⎰dc dy y x f ),(和ψ(y)=⎰ba dx y x f ),(分别在[a,b]和[c,d]上可积.注:即在f(x,y)连续性假设下,同时存在两个求积顺序不同的积分:⎰⎰⎥⎦⎤⎢⎣⎡ba d c dx dy y x f ),(与⎰⎰⎥⎦⎤⎢⎣⎡d c b a dy dx y x f ),(,或⎰⎰b a d c dy y x f dx ),(与⎰⎰d c b a dx y x f dy ),(.它们统称为累次积分,或二次积分.定理19.6:若f(x,y)在矩形区域R=[a,b]×[c,d]上连续,则⎰⎰bad cdy y x f dx ),(=⎰⎰d cbadx y x f dy ),(.证:记φ1(u) =⎰⎰ua dc dy y x f dx ),(, φ2(u) =⎰⎰dc ua dx y x f dy ),(, u ∈[a,b], 则φ1’(u)=⎰uc dx x dud )(ϕ=φ(u). 令H(u,y)=⎰u a dx y x f ),(, 则φ2(u) =⎰d c dy y u H ),(,∵H(u,y)与H u (u,y)=f(u,y)都在R 上连续, ∴φ2’(u)=⎰dc dy y u H dud ),(=⎰d c u dy y u H ),(=⎰d c dy y u f ),(=φ(u). ∴φ1’(u)=φ2’(u), ∴对一切u ∈[a,b], 有φ1(u)=φ2(u)+k (k 为常数). 当u=a 时,φ1(a)=φ2(a)=0, ∴k=0, 即得φ1(u)=φ2(u), u ∈[a,b]. 取u=b, 证得:⎰⎰ba dc dy y x f dx ),(=⎰⎰dc ba dx y x f dy ),(.例1:求⎰+→++aaa a x dx12201lim .解:记φ(a)=⎰+++a a a x dx 1221, ∵a, 1+a, 2211ax ++都是a 和x 的连续函数, 由定理19.2知φ(a)在a=0处连续, ∴)(lim 0a a ϕ→=φ(0)=⎰+1021xdx =4π.例2:设f(x)在x=0的某个邻域U 上连续, 验证当x ∈U 时, 函数φ(x)=⎰---x n dt t f t x n 01)()()!1(1的各阶导数存在, 且φ(n)(x)=f(x). 证:∵F(x,t)=(x-t)n-1f(t)及其偏导数F x (x,t)在U 上连续,由定理19.4可得:φ’(x)=⎰----x n dt t f t x n n 02)())(1()!1(1+)()()!1(11x f x x n n --- =⎰---x n dt t f t x n 02)()()!2(1. 同理φ”(x)=⎰---x n dt t f t x n 03)()()!3(1. 如此继续下去,求得k 阶导数为φ(k)(x)=⎰-----x k n dt t f t x k n 01)()()!1(1.当k=n-1时,有φ(n-1)(x)=⎰xdt t f 0)(. ∴φ(n)(x)=f(x).例3:求I=⎰-1ln dx xx x ab . (b>a>0)解:∵⎰baydy x =x x x ab ln -, ∴I=⎰⎰b a y dy x dx 10. 又x y 在[0,1]×[a,b]上满足定理19.6的条件, ∴I=⎰⎰10dx x dy y ab =⎰+ab dy y 11=ln ab ++11.例4:计算积分I=⎰++121)1ln(dx xx . 证:记φ(a)=⎰++1021)1ln(dx x ax , 则有φ(0)=0, φ(1)=I, 且函数21)1ln(x ax ++在R=[0,1]×[0,1]上满足定理19.3的条件,于是φ’(a)=⎰++102)1)(1(dx ax x x =⎰⎪⎭⎫ ⎝⎛+-+++10221111dx ax a x xa a =⎪⎭⎫ ⎝⎛+-++++⎰⎰⎰10101022211111dx ax a dx x x dx x a a =⎥⎦⎤⎢⎣⎡+++++10102102)1ln()1ln(21arctan 11ax x x a a =⎥⎦⎤⎢⎣⎡+-++)1ln(2ln 214112a a aπ. ∴⎰'1)(da a ϕ=⎰⎥⎦⎤⎢⎣⎡+-++102)1ln(2ln 21411da a a a π=102)1ln(8a +π+10arctan 2ln 21a -I =2ln 4π-I. 又⎰'10)(da a ϕ=φ(1)-φ(0)=I, ∴I=2ln 4π-I, 解得I=2ln 8π.习题1、设f(x,y)=sgn(x-y), 试证由含参量积分F(y)=⎰10),(dx y x f 所确定的函数在(-∞,+∞)上连续,并作函数F(y)的图像.证:∵x ∈[0,1], ∴当y<0时, f(x,y)=1; 当y>1时, f(x,y)=-1; 当0≤y ≤1时, F(y)=⎰ydx y x f 0),(+⎰1),(y dx y x f =⎰-y dx 0)1(+⎰1y dx =1-2y.∴F(y)=⎪⎩⎪⎨⎧>-≤≤-<11102101y ,y y ,y ,在(-∞,+∞)上连续,图像如图:2、求下列极限:(1)⎰-→+11220lim dx a x a ;(2)⎰→220cos lim axdx x a . 解:(1)∵函数f(x,a)=22a x +在矩形区域R=[-1,1]×[-1,1]上连续,∴⎰-→+11220lim dx a x a =⎰-→+11220lim dx a x a =⎰-11||dx x =1. (2)∵函数f(x,a)=x 2cosax 在矩形区域R=[0,2]×[-1,1]上连续,∴⎰→2020cos lim axdx x a =⎰→2020cos lim axdx x a =⎰202dx x =38.3、设F(x)=⎰-22x x xy dy e , 求F ’(x). 解:F ’(x)=-⎰-222x x y x dy e y +2x 5x e --3x e -.4、应用对参量的微分法,求下列积分:(1)⎰+202222)cos sin ln(πdx x b x a (a 2+b 2≠0);(2)⎰+-π02)cos 21ln(dx a x a .解:(1)若a=0, 则b ≠0,原式=⎰2022)cos ln(πdx x b =πln|b|+2⎰20)ln(cos πdx x =πln|b|-πln2=πln 2||b ; 同理,若b=0, 则a ≠0, 原式=πln 2||a ; 若a ≠0,b ≠0, 可设 I(b)=⎰+202222)cos sin ln(πdx x b x a , 则 I ’(b)=⎰+2022222cos sin cos ||2πdx x b x a x b =⎰⎪⎪⎭⎫⎝⎛+22tan 1||2πx b a dx b . 记u=ba, t=utanx, 则 I ’(b)=⎰∞+⋅+022211||2dt t u u t b =⎰∞⎪⎭⎫ ⎝⎛+-+-022222111)1(2dt t u t u b u =||||b a +π.又I(0)=⎰2022)sin ln(πdx x a =πln2||a , I(x)=⎰+x dt t a 0||π+πln 2||a =πln(|a|+x)-πln2. ∴⎰+202222)cos sin ln(πdx x b x a =πln(|a|+|b|)-πln2=πln 2||||b a +. (2)设I(a)=⎰+-π02)cos 21ln(dx a x a .当|a|<1时,1-2acosx+a 2≥1-2|a|+a 2=(1-|a|)2>0,∴ln(1-2acosx+a 2)为连续函数,且具有连续导数, ∴I ’(a)=⎰+--π2cos 21cos 22dx ax a x a =⎰⎪⎪⎭⎫ ⎝⎛+--+π022cos 21111dx a x a a a =a π-⎰⎪⎭⎫ ⎝⎛+-++-π222cos 121)1(1x a a dx a a a =a π-π02tan 11arctan 2⎪⎭⎫⎝⎛-+x aa a =0. ∴当|a|<1时,I(a)=c(常数),又I(0)=0, ∴I(a)=0. 当|a|<1时,令b=a1, 则|b|<1,有I(b)=0, 于是 I(a)=⎰⎪⎪⎭⎫⎝⎛+-π221cos 2ln dx b x b b =I(b)-2πln|b|=2πln|a|. 当|a|=1时,I(1)=⎰-π0)2cos ln 22ln 2(dx x=0; 同理I(-1)=0, ∴I(a)=⎩⎨⎧>≤1||||ln 21||0a ,a a ,π .注:由(2)或推出(1), 即⎰+202222)cos sin ln(πdx x b x a =⎰-++202222)2cos 22ln(πdx x b a b a=⎰-++π02222)cos 22ln(21dt t b a b a=⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-++--π02||||||||cos ||||||||21ln 21dt b a b a t b a b a +πln 2||||b a +=πln 2||||b a +.5、应用积分号下的积分法,求下列积分:(1)⎰-⎪⎭⎫ ⎝⎛10ln 1ln sin dx x x x x a b (b>a>0);(2)⎰-⎪⎭⎫ ⎝⎛10ln 1ln cos dx x xx x ab (b>a>0). 解:(1)记g(x)=xxx x ab ln 1ln sin -⎪⎭⎫ ⎝⎛, ∵+→0lim x g(x)=0,∴令g(0)=0时,g(x)在[0,1]连续,于是有I=⎰10)(dx x g =⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛101ln sin dx dy x x b a y =⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛101ln sin dx dy x x b a y .记f(x,y)=x y sin ⎪⎭⎫⎝⎛x 1ln (x>0), f(0,y)=0, 则f(x,y)在[0,1]×[a,b]上连续,∴I=⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛101ln sin dx dy x x b a y =⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛b a y dy dx x x 101ln sin =⎰⎰⎥⎦⎤⎢⎣⎡∞+-b a t y dydt t e 0)1(sin=⎰⎰⎥⎦⎤⎢⎣⎡∞+-ba t y dy dt t e 0)1(sin =⎰++b a y dy 2)1(1=arctan(1+b)-arctan(1+a). (2)类似于(1)题可得:⎰-⎪⎭⎫ ⎝⎛10ln 1ln cos dx x x x x ab =⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛b a ydy dx x x 101ln cos =dy y y b a ⎰+++2)1(11=2222ln 2122++++a a b b .6、试求累次积分:⎰⎰+-102222210)(dy y x y x dx 与⎰⎰+-102222210)(dx y x y x dy ,并指出,它们为什么与定理19.6的结果不符.解:∵22222)(y x y x +-=-⎪⎪⎭⎫ ⎝⎛+∂∂22y x x x ,22222)(y x y x +-=-⎪⎪⎭⎫⎝⎛+∂∂22y x y y , ∴⎰⎰+-102222210)(dy y x y x dx =⎰⎪⎪⎭⎫⎝⎛+-101022dy y x x=-⎰+1021y dy =-4π.∵22222)(y x y x +-在点(0,0)不连续,∴与定理19.6的结果不符.7、研究函数F(y)=⎰+1022)(dx y x x yf 的连续性,其中f(x)在闭区间[0,1]上是正的连续函数.解:∵f(x)在[0,1]上是正的连续函数, ∴存在正数m, 使得f(x)≥m>0, x ∈[0,1]. 当y>0时, F(y)=⎰+1022)(dx y x x yf ≥m ⎰+1022dx y x y=marctan y 1; 当y<0时, F(y)=⎰+122)(dx y x x yf ≤m ⎰+1022dx y x y =marctan y 1; ∴+→0lim y F(y)≥+→0lim y marctan y 1=2πm >0, -→0lim y F(y)≤-→0lim y marctan y 1=-2πm <0.∵+→0lim y F(y)≠-→0lim y F(y), ∴F(y)在y=0处不连续. 又当0∉[c,d]时,22)(y x x yf +在[0,1]×[c,d]上连续,∴当y ≠0时,F(y)连续.8、设函数f(x)在闭区间[a,A]上连续,证明:⎰-+→xah dt t f h t f h )]()([1lim0=f(x)-f(a) (a<x<A). 证:⎰-+xa dt t f h t f )]()([=⎰++hx h a dt t f )(-⎰xa dt t f )(=⎰++hx h a dt t f )(-⎰+xh a dt t f )(-⎰+ha a dt t f )(=⎰+hx xdt t f )(-⎰+ha adt t f )(=hf(ξ1)-hf(ξ2), x ≤ξ1≤x+h, a ≤ξ2≤a+h. 当h →0时,ξ1→x, ξ2→a, ∴⎰-+→xa h dt t f h t f h )]()([1lim 0=0lim →h [f(ξ1)-f(ξ2)]=f(x)-f(a).9、设F(x,y)=⎰-xyyx dz z f yz x )()(, 其中f(z)为可微函数, 求F xy (x,y).解:F x (x,y)=⎰xyyxdz z f )(+(x-xy 2)f(xy)y-(x-y·y x )f(y x )·y 1=⎰xy yx dz z f )(+xy(1-y 2)f(xy).F xy (x,y)=xf(xy)+f(y x )·2yx +x(1-y 2)f(xy)-2xy 2f(xy)+x 2y(1-y 2)f ’(xy).10、设E(k)=⎰-2022sin 1πϕϕd k , F(k)=⎰-2022sin 1πϕϕk d . 其中0<k<1.(这两个积分称为完全椭圆积分)(1)试求E(k)与F(k)的导数,并以E(k)与F(k)来表示它们; (2)证明E(k)满足方程:E ”(k)+k1E ’(k)+211k -E(k)=0. (1)解:E ’(k)=-⎰-20222sin 1sin πϕϕϕd k k =-⎰⎪⎪⎭⎫ ⎝⎛----20222222sin 1sin 1sin 111πϕϕϕϕd k k k k =- ⎝⎛-⎰2022sin 111πϕϕd k k +⎪⎪⎭⎫-⎰2022sin 1πϕϕd k =k 1E(k)-k 1F(k). F ’(k)=ϕϕϕπd k k ⎰-203222)sin 1(sin =⎰-20322)sin 1(1πϕϕk d k -⎰-2022sin 11πϕϕk d k . 又322)sin 1(1ϕk -=ϕ222sin 111k k ---ϕϕϕϕ2222sin 1cos sin 1k d d k k --. ∴⎰-20322)sin 1(πϕϕk d =⎰--2222sin 111πϕϕd k k =211k-E(k). 从而有F ’(k)=)1(12k k -E(k)-k1F(k).(2)证:∵E ”(k)=[k 1E(k)-k 1F(k)]’=-21k E(k)+21k F(k)+k 1E ’(k)-k 1F ’(k),k 1E ’(k)=21k E(k)-21kF(k), ∴E ”(k)=-k 1F ’(k). 又F ’(k)=)1(12k k -E(k)-k 1F(k)=)1(12k k -E(k)+E ’(x)-k 1E(k)=E ’(x)+21k k -E(k).∴E ”(k)=-k 1E ’(x)-211k -E(k), 即E ”(k)+k 1E ’(k)+211k -E(k)=0.。
含参变量积分求导例题

含参变量积分求导例题
当我们求含参变量的积分求导时,我们需要使用链式法则和基本的微积分规则。
下面我将以一个例题来说明。
假设我们要求函数 $f(x) = \int_{0}^{x} e^{t^2} dt$ 的导数。
首先,我们可以将积分写成定积分的形式:
$$f(x) = \int_{0}^{x} e^{t^2} dt = F(x) F(0),$$。
其中 $F(x)$ 是原函数,即 $F'(x) = e^{x^2}$。
接下来,我们可以使用基本的微积分规则来求导。
根据定积分的性质,我们可以得到:
$$f'(x) = F'(x) F'(0).$$。
根据链式法则,我们知道 $F'(x) = e^{x^2}$,而 $F'(0)$ 则是常数。
因此,我们可以得到:
$$f'(x) = e^{x^2} F'(0).$$。
至此,我们求得了含参变量积分的导数。
请注意,$F'(0)$ 是一个常数,可以通过计算 $F(x)$ 在 $x=0$ 处的导数来确定具体的值。
总结起来,对于函数 $f(x) = \int_{0}^{x} e^{t^2} dt$,它的导数为 $f'(x) = e^{x^2} F'(0)$,其中 $F(x)$ 是原函数,满足 $F'(x) = e^{x^2}$。
希望这个例题能够帮助你理解含参变量积分的求导过程。
如果你还有其他问题,请随时提问。
广义积分和含参数的积分 习题选解

广义积分和含参数的积分习题选解广义积分(GeneralizedIntegral)是一种常见的数学方法,在各类领域中都有着广泛的应用,特别是在解决含参数的积分问题上。
在学习这种方法之前,我们首先需要了解什么是含参数的积分问题,以及它们之间的联系。
其实,含参数的积分问题是指在求解积分过程中,在自变量中引入参数的积分问题。
这种积分问题一般比普通积分问题更难处理,因为在求解过程中,会出现许多不同的参数,需要找出适当的方法来解决。
而广义积分就可以有效地解决这种含参数的积分问题。
它的本质是将参数的问题转化为单变量的积分问题,从而可以较容易地求解出解析解。
下面,我们就以一些实例来深入剖析广义积分是如何解决参数问题的。
例1:求解 $∮_c(x^2+1)dx$解:首先,我们先将参数转化为单变量$t=x^2+1$,从而可以将上式转化为$∮_c(t)dt$,接着,将$dt$积分后,得$∮_c tdt=t|_a^b$,将起止点代入即可得出结果:$t|_a^b=x_b^2 + 1 - x_a^2 -1=∮_c(x^2 + 1)dx$例2:求解 $int_a^b e^{-x^2}dx$解:和上题一样,先将参数转化为单变量:$t=e^{-x^2}$,将上式转化为$∮_c(t)dt$,积分后,得$∮_c tdt=t|_a^b$,将起止点代入即可得出结果:$t|_a^b=e^{-x_b^2} - e^{-x_a^2}=∮_ce^{-x^2}dx$以上就是广义积分解决参数积分问题的两个实例,希望能帮助大家更好地理解这种方法。
即使是复杂的含参数的积分问题,也可以应用广义积分来完成。
下面,我们以一道含参数的积分习题来进一步剖析这种方法。
例:求解 $int_1^{sqrt{e}}e^{x^2}dx$解:首先,将参数转化为单变量$t=e^{x^2}$,从而可以将上式转化为$∮_c(t)dt$,接着,将$dt$积分后,得$∮_c tdt=t|_a^b$,将起止点代入即可得出结果:$t|_1^{sqrt{e}}=e^{sqrt{e}^2} -e^1=∮_1^{sqrt{e}} e^{x^2}dx$以上就是使用广义积分求解含参数积分问题的举例,可以看出,运用广义积分特别实用,可以将含参数的积分问题转化成更为容易解决的单变量的积分问题。
数分第十九章含参量积分练习题

第十九章 含参量积分一.填空题1、=+⎰-→dx a x 11220lim α___________ 答案:12、⎰+→=++αααα12201lim x dx ____________ 答案:4π 3. =⎰→xdx x ααcos lim 2020____________ 答案:38 4.设⎰-=22)(x x xy dy e x F ,则)(x F '=答案:352222x x xy x x e xe dy e y ----+-⎰5.设dy e x F xy x x221)(-+⎰=, 则=)('x F _________________________. 答案:()322221212x x x xy x xe xe dy e y -+--+-+-⎰6、若⎰=20)(x xy dy e x I ,则=)('x I ___________.二. 证明题1. 证明:含参量反常积分dx xxy ⎰+∞+021sin 在),(+∞-∞上一致收敛. 证明:因为对任意的),(+∞-∞∈y ,),0(+∞∈x 有:22111sinxy x x +≤+ 又因为:2arctan 11002π==+∞++∞⎰x dx x 收敛所以由M —判别法可知dx xxy ⎰+∞+021sin 在),(+∞-∞上一致收敛. 2.证明含参量反常积分dx x xy ⎰+∞+021cos 在),(+∞-∞上一致收敛. 证明:因为对任意的),(+∞-∞∈y ,),0(+∞∈x 有:22111cosx y x x +≤+ 又因为:2arctan 11002π==+∞++∞⎰x dx x 收敛 所以由M 判别法可知dx x xy ⎰+∞+021cos 在),(+∞-∞上一致收敛. 3.证明含参量反常积分()dx y x x y ⎰+∞+-122222在),(+∞-∞上一致收敛. 答案:证明 [)()+∞∞-∈+∞∈∀,,,1y x ()()222222222222211x y x y x y x y x x y ≤+=++≤+- 而 111112=∞+-=⎰+∞x dx x 收敛 由M 判别法知含参量反常积分()dx y x x y ⎰+∞+-122222在),(+∞-∞上一致收敛4.证明:含参量反常积分dy xe xy ⎰+∞-0在[]()0,>a b a 上一致收敛.答案:证明 []0,0,,≥>∈∀y a b a x有ay ay xy xy be xe xe xe ----≤≤=而a b e a b dy be ay ay =-=+∞-+∞-⎰00收敛由M 判别法知含参量反常积分⎰+∞-0dy xe xy 在[])0( ,>a b a 上一致收敛.5.证明⎰+∞-02dy e y x 在[])0( ,>a b a 上一致收敛. 答案: []0,,≥∈∀y b a x 有y a y x y x e ee 222---≤= 而20201122a e a dy ey a y a =-=+∞-+∞-⎰收敛由M 判别法知含参量反常积分⎰+∞-02dy e y x 在[])0( ,>a b a 上一致收敛. 6.证明⎰+∞-02dy ey x 在[]2,1上一致收敛.答案: []0,2,1≥∈∀y x 有y y x y x e e e ---≤=22 而100=-=∞+-+∞-⎰y y e dy e收敛由M 判别法知含参量反常积分⎰+∞-02dy ey x 在[]2,1上一致收敛.注意:5题与6题基本上是一样的。
第九章 含参变量积分

第九章 含参变量积分例1 研究函数 ⎰+=10 22)()(dx y x x yf y F 的连续性,其中)(x f 是]1,0[上连续且为正的函数。
解 令22)(),(yx x yf y x g +=,则),(y x g 在],[]1,0[d c ⨯连续,其中],[0d c ∉。
从而)(y F 在0≠y 连续。
当0=y 时,0)0(=F当0>y 时,记 0)(min ]1,0[>=∈x f m x ,则⎰+=10 22)()(dx y x x yf y F ⎰+≥1 0 22dx y x ym ym 1arctan = 若)(lim 0y F y +→存在,则 ≥+→)(lim 0y F y ym y 1a r c t a n lim 0+→)0(02F m =>=π故)(y F 在0=y 不连续。
或用定积分中值定理,当0>y 时, ]1,0[∈∃ξ,使 ⎰+=10 22)()(dx y x x yf y F ⎰+=1 0 22)(dx y x yf ξ yf yxf 1arctan )(arctan)(1ξξ==若)(lim 0y F y +→存在,则 =+→)(lim 0y F y yf y 1a r c t a n )(l i m 0ξ+→02>≥m π故)(y F 在0=y 不连续。
问题1 上面最后一个式子能否写为y f y 1arctan )(lim 0ξ→0)(2>=ξπf 。
事实上,ξ是依赖于y 的,极限的存在性还难以确定。
例2 设)(x f 在],[b a 连续,求证⎰-=xc dt t x k t f kx y )(sin )(1)( (其中 ],[,b a c a ∈) 满足微分方程 )(2x f y k y =+''。
证 令)(sin )(),(t x k t f t x g -=,则)(cos )(),(t x k t kf t x g x -=,)(sin )(),(2t x k t f k t x g xx --=它们都在],[],[b a b a ⨯上连续,则⎰-='xcdt t x k t f x y )(cos )()()()(sin )()( x f dt t x k t f kx y xc+--=''⎰y k y 2+'')()(sin )( x f dt t x k t f k x c +⎰--=⎰-+xc dt t x k t f k )(sin )()(x f =例 3 设)(x f 为连续函数,ξηηξd d x f x F hh ])([)(00⎰⎰++=求)(x F ''。
数学分析19含参量积分总练习题(含参考答案)

第十九章 含参量积分总练习题1、在区间1≤x ≤3内用线性函数a+bx 近似代替f(x)=x 2,试求a,b 使得积分⎰-+3122)(dx x bx a 取最小值. 解:设f(a,b)=⎰-+3122)(dx x bx a , 由f a (a,b)=2⎰-+312)(dx x bx a =4a+8b-352=0, f b (a,b)=2⎰-+312)(dx x bx a x =8a+352b-40=0, 得驻点a=311-,b=4. 又f aa =2⎰31dx =4, f bb =2⎰312dx x =352, f ab =f ba =2⎰31xdx =8, 即f aa ·f bb -f ab 2=316>0,∴(311-,4)是f 唯一的极小值点,即a=311-,b=4时,积分取最小值.2、设u(x)=⎰10)(),(dy y v y x k ,其中k(x,y)=⎩⎨⎧>-≤-yx x y yx y x ),1(),1(与v(y)为[0,1]上的连续函数,证明:u ”(x)=-v(x).证:当0≤x ≤1时,u(x)=⎰10)(),(dy y v y x k =⎰-x dy y v x y 0)()1(+⎰-1)()1(x dy y v y x . 由各项被积函数及其对x 偏导函数都连续知, u ’(x)=⎰-xdy y yv 0)(+x(1-x)v(x)+⎰-1)()1(xdy y v y -x(1-x)v(x)= -⎰xdy y yv 0)(+⎰-1)()1(x dy y v y . u ”(x)=-xv(x)-(1-x)v(x)=-v(x).3、求函数F(a)=⎰∞+-02)1sin(dx xxa 的不连续点, 并作函数F(a)的图像. 解:由⎰+∞sin dx x ax =2πsgna ,得⎰∞+-02)1sin(dx x x a =2πsgn(1-a 2), 可知其在a=±1处不连续,其图像如图:4、证明:若⎰+∞0),(dt t x f 在x ∈(0,+∞)上一致收敛于F(x),且+∞→x lim f(x,t)=φ(t)对任意t ∈[a,b]⊂(0,+∞)一致地成立,即对任意ε>0,存在M>0,使当x>M 时,|f(x,t)-φ(t)|< ε对任何t ∈[a,b]成立,则有+∞→x lim F(x)=⎰+∞)(dt t ϕ.证:∵⎰+∞0),(dt t x f 在x ∈(0,+∞)上一致收敛,∴∀ε>0, ∃N >0, 对一切A ’, A ”>N 和一切x ∈(0,+∞), 都有⎰''/'AA dt t x f ),(<ε. ∵f(x,t)对任意t ∈[a,b]一致收敛于φ(t), ∴对||AA ''/-'ε>0, ∃X>0, 对一切x ∈(X,+∞)和t ∈[a,b], 都有|f(x,t)-φ(t)|<||AA ''/-'ε, 从而⎰''/'AA dt t )(ϕ≤⎰''/'-A Adt t x f t )),()((ϕ+⎰''/'AAdt t x f ),(<2ε. ∴⎰+∞0)(dt t ϕ收敛.从而对上述的ε, 存在N 1>0,对一切A>N 1有⎰+∞A dt t )(ϕ<3ε. 由⎰+∞0),(dt t x f 一致收敛于F(x)知,对ε, ∃N 2>0,对一切A>N 2和一切x ∈(0,+∞), 都有⎰-Adt t x f x F 0),()(<3ε. 由+∞→x lim f(x,t)=φ(t),对A3ε>0, ∃X>0,对一切x ∈(X,+∞)和t,有|f(x,t)-φ(t)|<A3ε,从而有dt t t x f A))(),((0ϕ-⎰<3ε. 综上, ∀ε>0, ∃X >0, 对一切x ∈(X,+∞),有⎰+∞-0)()(dt x x F ϕ=⎰⎰⎰⎰+∞-+-+-0)()())(),((),()(dt t dt t dt t t x f dt t x f x F AAAϕϕϕ≤⎰-A dt t x f x F 0),()(+dt t t x f A ))(),((0ϕ-⎰+⎰⎰+∞-00)()(dt t dt t A ϕϕ<ε. ∴+∞→x lim F(x)=⎰+∞0)(dt t ϕ.5、设f(x)为二阶可微函数,F(x)为可微函数,证明函数 u(x,t)=21[f(x-at)+f(x+at)]+⎰+-at x at x dz z F a)(21满足弦振动方程:u tt = a 2u xx 及初值条件u(x,0)=f(x), u t (x,0)=F(x). 证:u x =21[f ’(x-at)+f ’(x+at)]+a21[F(x+at)-F(x-at)], u xx =21[f ”(x-at)+f ”(x+at)]+a 21[F ’(x+at)-F ’(x-at)];u t =21[-af ’(x-at)+af ’(x+at)]+a 21[aF(x+at)+aF(x-at)], u tt =21[a 2f ”(x-at)+a 2f ”(x+at)]+21[aF ’(x+at)-aF(x-at)]=a 2u xx .u(x,0)=21[f(x)+f(x)]+⎰xx dz z F a )(21=f(x);u t (x,0)=21[-af ’(x)+af ’(x)]+a21[aF(x)+aF(x)]=F(x).6、证明:(1)⎰-101ln dx x x=62π-;(2)⎰-u dt t t 0)1ln(=∑∞=-12n n nu , 0≤u ≤1.证:(1)由lnx=∑∞=--1)1(n n n x ,得⎰-101ln dx x x =⎰∑∞=---1011)1(dx n x n n =∑∞=-121n n=62π-. (2)⎰-udt t t 0)1ln(=⎰∑⎪⎪⎭⎫⎝⎛-∞=-u n n dt n t 011=∑∞=-12n n n u , 0≤u ≤1.。
多元微积分习题课05解答(含参广义积分)

n
,所以
(2n)!
2t k0 n! 4t
etx2 x2ndx (2n)!
2π 1 2t
1 1 n n! 4t
(2n)! π
n!22n
t
n
1 2
,
etx2 x2ndx (2n)! π 。■
0
n!22n1t
n
1 2
6. eax2 x sin(xy)dx , a 0 。【习题 2.3.1(2)】 0
1/6
习题课 05
换元 x sin , u tan ,得到
11 0 1 t2x2
x1
arctan x 1 t2
1 dx
1 x2
1 x2
1 t2
π
2, 1 t2
x0
π
1 1 1
0 0 1 t2 x2
1 1 x2 dx dt
1 0
2 dt π ln(t
1 t2
2
1
1t2 )
π ln(1
t0 2
2) 。■
注: 上述各题涉及形如 A f (x) g(x)dx ( f (0) 0 )的积分。 0x
A f (x) g(x)dx
A
f
(tx) t1 t 0
g(x)dx
A
1
f (tx)g(x)dt dx
0x
0x
00
但是 A 1 f (tx)g(x)dt dx 1 A f (tx)g(x)dx dt 并不是总成立的,例如
0x
0x
令
g (t ,
x)
sin(tx) x
,
x 0; 则对任意 x
0,
x0
连续性对 x 一致。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导高职高专院校大学生健康成长。
增 强民族 自尊心 、自信 心、自豪感和忧 患意识 , fM】.北京 :中国青年出版社 ,1999:146—149.
以优 化高职 高专 院校大学 生 的心理 素质 以 自强 不 息 的精 神 去奋 斗 。
『61勒 诺 .新 时 期 高校 思 想 政 治 工 作理 论 与 实践
爱 国主义精神 、自强不息的进取精 神 、厚 f21郑永 延 .现 代 思 想 道德 教 育 理 论 与 方 法 『M1.广
德载物 的重德精 神、贵和持中精神是 中国传统 州 :广 东 高 等教 育 出版 社专院校大学生进 f31金 根 山 .高校 思 想 政 治 工作 必 须 树 立 创 新 意
数 的学习中讲到了利用偏积分来 求解二元函数
=
+
原 函数的方法,将利用对 ;例题 的详 解来 说明这 一 类含参量积分 的解法。
, =1n( +l I)+,
解 :令
其 中f(b)J ̄j变元 b的 函数 ,上式 两端 同时对 b
I(a,6)=
三
f ln(a sin
+b COS x ̄x(a +b ≠0) 求
J 0
的偏 导 数 :
[M].北京 :高等教育 出版社,1981.
分 析 :在各类参 考用 书中 ,此 题 的解 法都 Of(a,b)
【2】西安 交通大学 高等数 学教研 室编.复变函数.
是将此含参量积分看做一个变元的参量积分然 a = J。n si n + b cos ~。 = I a l+ l b 第四版[M】.北京 :高等教 育出版社 ,1978.
为 目标 ,培养高职高专院校大学生稳 定的情绪 、 6实施公 民意识教育
【M】.北京:高等教 育出版社 ,2003:162—165.
积极 的心态、健康 的人格 、较强的适应 能力 。高
对 高职 高专 院校 大学 生进行 公 民意 识教
作 者 简 介 :陈冬 丽 (1979~)女 ,汉 族 ,河 南 渑
偏
导
可
得
:,
) 0,既
, );c(常
数
)。
利
用
J 0
讨论 a,b的情况 。
,(0,6)=
=
+ ) )=-M n2
I若 JaJ=0,1bI>0,则
(上接 154页 ) 会调整 自己的不 良清绪和掌 院校大学生热爱祖 国、团结统一 、爱好 和平 、勤 【4】张 耀 灿 .现 代 思 想政 治 教 育 学fM].北 京 :人 民
根据高职高专院校大学生 的心理特点 ,开展 心 规范 自己的言行 ,积极参与学校班级事物。要培
理健康讲座 ,有针对性地讲授心理健康知识 ,开 养高职高专 院校大学生的公民意识 ,培养 他们
展心理辅导或咨询活动,帮助他们解决好情绪 作为公民对 自己的身份和政治角色及其相应 的
调 节 、环境 适 应 、人 格 发 展 、交 友 恋 爱 、 职 择 业 权 利、义务 的认知和社会价值取 向,培养他们具
握适应环境变化的方法 ,增强抵御挫折和适应 劳勇敢、自强不息的精神;帮助广大高职高专 院 出版 社 ,2001:116—119.
社会生活的能力,不断优化 自身的心理品质 ,引 校 大学生把爱 国主义 内化为报效祖 国的信 念 , [5]刘 书林 ,陈立 思.青年 思想政 治教 育 学原理
行优秀传统文化教育过程 中,要培养 高职 高专 识fJJ.江 淮 论 坛 ,200O(5):71—72.
一 155—
等方 面的困惑 ,强化心理健康意识 ,优化心理适 有 参与管理社会公共事务的公民道德 、公 民价
应能力 ,预防和缓 解心理问题 ,帮助解决实际困 值 观、公 民知识和公民参与技 能。要对高职高专
难 。
院校大学生进行权利与责任教育 ,使高职高专
5 深 化 优秀 传 统 文 化 教 育
院校大学生认识到公民是集权利与责任于一身
职高专院校大学生心理健康教育 的首要 目标是 育 ,使高职高专院校大学生明晰 自己作 为国家 池人 ,郑州铁 路职业技 术学院教 师,硕士 ,主要
优化高职高专院校大学生 的心理素质 。以此 目 主人的国民身份和权利 ,在 日常生活中 自觉地 从 事思想政 治教 育研 究。
标为基础进一 步深 化心 理健康教育 的任务 ,即 提升爱 国责任感 ,处处 以“爱 国无小事”的理念
科 l教 I文 l化
科 — 技—黑信龙江总——
含参量积 分 习题 新解 法
曹海 军
(青 岛大学数学科学学院,山 东 青 岛 266000)
摘 要:文章利用复变函数偏积分 求原 函数 的方 法给 出求解一类含参量积分的新的解题方法。 关键词:含参量正常积分 ;偏积分求原 函数法 ;解法
在华东师范大学数学系编 的 《数学分析》 fo ̄1.(b:cos2x = ̄lnlbl-wln2=
优势立于不败之地。进行优秀传统文化教育 ,使 中主人的身份。
广大高职高专院校大学生继承 中华 民族优秀 的
参 考 文献
传统美德 ,增强高职高专 院校大学生人文素质 , [1】余 亚平.思想政 治教育 学新探【M1.上海 :上海
承担 引领 中国先进文化发展的重要职责。
人 民 出版 社 ,2004:63—65.
IJ
下册 P178页习题中有这样一个题 目: 例 :应用对 参量 的微分法求积分
同理若 l6l=o,Inl>o,则 ln(a2 sin2帕 一丌1廿 。 , 6): ( +Ib1)一 2:
参 考 文献
f m(a sin x+b COS x)dx(a + ≠o) 2若 laI>0,IbI>0 ,分别求对 两个 变元 【1]华 东师范大学数学 系编.数学分析.第三版
高举 民族 文化 、传统 文化 的旗帜 ,用 民族 的主体 ,对他们进行公 民权利主体意识教育和
传统文化中的精华来引导 、熏陶、教化广大 高职 公 民责任主体意识 教育 ,对他们进行如何 做国
高专院校大学生 ,增强民族传统文化 和优 秀文 家社会主人的教育 ,充分唤起他们作为国家社
化的吸引力 、凝聚力和战斗力 ,从而保持 自己的 会主人的主体 意识 ,真正实现他们 在社会 生活
后利用对参量的微分法求解结果 !而实际上 ,此
参量 积分本质上是 a,b的二元 函数 ,在 如上求 Ol(a, b)
—
微分 的过程 中必然会丢失与另一个变元的相关
O—b : J0 —a s in x+b COS ~ : —Ial + Ib
信息 ,在做逆运算 的时候难保不失真。在复变函