考试必备-高中理科数学试题分类汇编8:直线与圆 Word版含-含答案
(完整版)全国高考数学直线与圆的方程试题汇编
全国高考数学试题汇编——直线与圆的方程一、选择题:1.(全国Ⅱ卷文科3)原点到直线052=-+y x 的距离为( D )A .1B .3C .2D .52.(福建文科2)“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的( C )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.(四川理科4文科6)将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所得到的直线为( A )A .1133y x =-+B .113y x =-+C .33y x =-D .113y x =+解析:本题有新意,审题是关键.旋转90︒则与原直线垂直,故旋转后斜率为13-.再右移1得1(1)3y x =--. 选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换.4.(全国I 卷理科10)若直线1x ya b+=通过点(cos sin )M αα,,则 ( B )A .221a b +≤B .221a b +≥C .22111a b+≤D .22111a b +≥ 5.(重庆理科7)若过两点P 2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12PP 所成的 比λ的值为( A )A .-13B .-15C .15D .13(重庆文科4)若点P 分有向线段AB 所成的比为-13,则点B 分有向线段PA 所成的比是( A )A .-32B .-12C .12D .36.(安徽理科8文科10)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( C )A .[B .(C .[D .( 7.(辽宁文、理科3)圆221x y +=与直线2y kx =+没有..公共点的充要条件是 ( C )A .(k ∈B .(,)k ∈-∞⋃+∞C .(k ∈D .(,)k ∈-∞⋃+∞8.(陕西文、理科5)0y m -+=与圆22220x y x +--=相切,则实数m 等于( C )A B . C .- D .-9.(安徽文科11)若A为不等式组0,0,2xyy x⎧⎪⎨⎪-⎩≤≥≤表示的平面区域,则当a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为( C )A.34B.1C.74D.210.(湖北文科5)在平面直角坐标系xOy中,满足不等式组,1x yx⎧⎪⎨<⎪⎩≤的点(,)x y的集合用阴影表示为下列图中的( C )11.(辽宁文科9)已知变量x、y满足约束条件10,310,10,y xy xy x+-⎧⎪--⎨⎪-+⎩≤≤≥则z=2x+y的最大值为( B ) A.4 B.2 C.1 D.-412.(北京理科5)若实数x,y满足10x yx yx-+⎧⎪+⎨⎪⎩≥≥≤,则z=3x+y的最小值是( B )A.0 B.1 C.3D.9(北京文科6)若实数x,y满足10x yx yx-+⎧⎪+⎨⎪⎩≥≥≤,则z=x+2y的最小值是( A )A.0 B.21C.1 D.213.(福建理科8)若实数x、y满足错误!,则错误!的取值范围是( C )A.(0,1) B.(0,1]C.(1,+∞) D.[1,+∞)(福建文科10)若实数x、y满足20,0,2,x yxx-+⎧⎪>⎨⎪⎩≤≤则yx的取值范围是( D )A.(0,2)B.(0,2)C.(2,+∞) D.[2,+∞)14.(天津理科2文科3)设变量y x ,满足约束条件0121x y x y x y -⎧⎪+⎨⎪+⎩≥≤≥,则目标函数y x z +=5的最大值为A .2B .3C .4D .5 ( D )15.(广东理科4)若变量x 、y 满足24025000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,则32z x y =+的最大值是( C )A .90B .80C .70D .4016.(湖南理科3)已知变量x 、y 满足条件1,0,290,x x y x y ⎧⎪-⎨⎪+-⎩≥≤≤则x+y 的最大值是( C )A .2B .5C .6D .8(湖南文科3)已知变量x 、y 满足条件120x y x y ⎧⎪⎨⎪-⎩≥≤≤,,,则x +y 是最小值是( C )A .4B .3C .2D .117.(全国Ⅱ卷理科5文科6)设变量x ,y 满足约束条件:,22,2y x x y x ⎧⎪+⎨⎪-⎩≥≤≥则y x z 3-=的最小值为( D )A .-2B 。
理科数学高考真题分类汇编 直线与圆答案
c = 5 ,故所求直线的方程为2x + y + 5 = 0 或 2x + y − 5 = 0 .
8.C【解析】设过 A, B,C 三点的圆的方程为 x2 + y2 + Dx + Ey + F = 0 ,
D + 3E + F +10 = 0 则 4D + 2E +F +20 = 0 ,解得 D = −2, E = 4, F = −20 ,
专题九 解析几何
第二十五讲 直线与圆
答案部分
2019 年
1.解析 由直线 l 的参数方程消去 t,可得其普通方程为 4x − 3y + 2 = 0 .
则点(1,0)到直线 l 的距离是 d = 41− 3 0 + 2 = 6 .故选 D.
42 + (−3)2 5
2.
解析
解法一:由
y=
x+ 4 x
(x
D − 7 E + F + 50 = 0 所求圆的方程为 x2 + y2 − 2x + 4 y − 20 = 0 ,令 x = 0 ,得 y2 + 4 y − 20 = 0 ,
设 M (0, y1) ,N (0, y2 ) ,则 y1 + y 2 = −4 , y1 y2 = −20 , 所以 | MN |=| y1 − y2 |= ( y1 + y2 )2 − 4 y1 y2 = 4 6 . 9.C【解析】圆 C 标准方程为 (x − 2)2 + ( y −1)2 = 4 ,圆心为 C(2,1) ,半径为 r = 2,
2 2 = 1. 22
3.C【解析】由题意可得 d = | cos − msin − 2 | = | msin − cos + 2 |
高考数学一轮复习精选试题:直线与圆(选择与填空) Word版含答案
直线与圆01一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.两直线与平行,则它们之间的距离为( )A .B C D【答案】D2.圆:和圆:交于两点,则直线的的方程是( )A .B .C .D . 【答案】A3.已知三点A (-2,-1)、B (x ,2)、C (1,0)共线,则x 为( )A .7B .-5C .3D .-1 【答案】A4.“m=”是“直线(m+2)x+3my+1=0与直线(m -2)x+(m+2)y -3=0相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 【答案】B5.过点(1,2)且与原点的距离最大的直线方程是( )A .2x+y-4=0B . x+2y-5=0C .x+3y-7=0D .3x+y-5=0 【答案】B330x y +-=610x my ++=421313513267102006422=+-+y x y x 0622=-+x y x ,A B AB 30x y +=3+0x y =30x y -=350y x -=216.已知直线与直线相互垂直,则实数的值为( )A .9B .—9C .4D .—4【答案】D7.若表示圆,则的取值范围是( ) A . B . C . D .R【答案】C8.如果两条直线l 1:与l 2:平行,那么 a 等于( )A .1B .-1C .2D . 【答案】B9.直线与直线之间的距离是( )A .B .2C .D . 【答案】C10.已知圆:+=1,圆与圆关于直线对称,则圆的方程为( )A .+=1B .+=1C .+=1D .+=1 【答案】B1:2310l x y +-=2:650l x my ++=m 22(1)20x y x y λλλ++-++=λ(0)+,∞114⎡⎤⎢⎥⎣⎦,1(1)()5+-,∞∞,260ax y ++=(1)30x a y +-+=233470x y +-=6830x y ++=5417101751C 2(1)x +2(1)y -2C 1C 10x y --=2C 2(2)x +2(2)y -2(2)x -2(2)y +2(2)x +2(2)y +2(2)x -2(2)y -11.曲线|x ―1|+|y ―1|=1所围成的图形的面积为( )A .1B .2C .4D .【答案】B12.设直线过点,且与圆相切,则的斜率是( ) A . B . C . D .【答案】A二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.点分别在直线上,则线段长度的最小值是 .【答案】14.已知曲线y =3x2+2x 在点(1,5)处的切线与直线2ax -y -6=0平行,则a = .【答案】415.已知圆交于A 、B 两点,则AB 所在的直线方程是 。
高中数学直线与圆精选题目(附答案)
高中数学直线与圆精选题目(附答案)一、两直线的位置关系1.求直线斜率的基本方法(1)定义法:已知直线的倾斜角为α,且α≠90°,则斜率k =tan α. (2)公式法:已知直线过两点P 1(x 1,y 1),P 2(x 2,y 2),且x 1≠x 2,则斜率k =y 2-y 1x 2-x 1.2.判断两直线平行的方法(1)若不重合的直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1=k 2⇔l 1∥l 2.(2)若不重合的直线l 1与l 2的斜率都不存在,其倾斜角都为90°,则l 1∥l 2. 3.判断两直线垂直的方法(1)若直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1·k 2=-1⇔l 1⊥l 2. (2)已知直线l 1与l 2,若其中一条直线的斜率不存在,另一条直线的斜率为0,则l 1⊥l 2.1.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. [解] (1)∵l 1⊥l 2, ∴a (a -1)-b =0,① 又l 1过点(-3,-1), ∴-3a +b +4=0.②解①②组成的方程组得⎩⎨⎧a =2,b =2.(2)∵l 2的斜率存在,l 1∥l 2, ∴直线l 1的斜率存在. ∴k 1=k 2,即ab =1-a .③又∵坐标原点到这两条直线的距离相等,l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,即4b =-(-b ).④由③④联立,解得⎩⎨⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2.经检验此时的l 1与l 2不重合,故所求值为 ⎩⎨⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23 ,b =2.注:已知两直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0(1)对于l 1∥l 2的问题,先由A 1B 2-A 2B 1=0解出其中的字母值,然后代回原方程检验这时的l 1和l 2是否重合,若重合,舍去.(2)对于l 1⊥l 2的问题,由A 1A 2+B 1B 2=0解出字母的值即可. 2.直线ax +2y -1=0与直线2x -3y -1=0垂直,则a 的值为( ) A .-3 B .-43 C .2D .3解析:选D 由2a -6=0得a =3.故选D.3.已知直线x +2ay -1=0与直线(a -1)x +ay +1=0平行,则a 的值为( ) A.32 B.32或0 C .0D .-2解析:选A 当a =0时,两直线的方程化为x =1和x =1,显然重合,不符合题意;当a ≠0时,a -11=a 2a ,解得a =32.故选A.二、直线方程1.直线方程的五种形式2.常见的直线系方程(1)经过两条直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中λ是待定系数.在这个方程中,无论λ取什么实数,都不能得到A 2x +B 2y +C 2=0,因此它不能表示直线l 2.(2)平行直线系方程:与直线Ax +By +C =0(A ,B 不同时为0)平行的直线系方程是Ax +By +λ=0(λ≠C ).(3)垂直直线系方程:与直线Ax +By +C =0(A ,B 不同时为0)垂直的直线系方程是Bx -Ay +λ=0.4.过点A (3,-1)作直线l 交x 轴于点B ,交直线l 1:y =2x 于点C ,若|BC |=2|AB |,求直线l 的方程.[解] 当直线l 的斜率不存在时,直线l :x =3, ∴B (3,0),C (3,6).此时|BC |=6,|AB |=1,|BC |≠2|AB |, ∴直线l 的斜率存在.设直线l 的方程为y +1=k (x -3), 显然k ≠0且k ≠2. 令y =0,得x =3+1k , ∴B ⎝ ⎛⎭⎪⎫3+1k ,0,由⎩⎨⎧y =2x ,y +1=k (x -3),得点C 的横坐标x C =3k +1k -2.∵|BC |=2|AB |,∴|x B -x C |=2|x A -x B |,∴⎪⎪⎪⎪⎪⎪3k +1k -2-1k -3=2⎪⎪⎪⎪⎪⎪1k , ∴3k +1k -2-1k -3=2k 或3k +1k -2-1k -3=-2k , 解得k =-32或k =14.∴所求直线l 的方程为3x +2y -7=0或x -4y -7=0. 注:求直线方程时,要根据给定条件,选择恰当的方程,常用以下两种方法求解:(1)直接法:直接选取适当的直线方程的形式,写出结果;(2)待定系数法:先以直线满足的某个条件为基础设出直线方程,再由直线满足的另一个条件求出待定系数,从而求得方程.5.已知直线l 1:3x -2y -1=0和l 2:3x -2y -13=0,直线l 与l 1,l 2的距离分别是d 1,d 2,若d 1∶d 2=2∶1,求直线l 的方程.解:由直线l 1,l 2的方程知l 1∥l 2,又由题意知,直线l 与l 1,l 2均平行(否则d 1=0或d 2=0,不符合题意).设直线l :3x -2y +m =0(m ≠-1且m ≠-13),由两平行直线间的距离公式,得d 1=|m +1|13,d 2=|m +13|13,又d 1∶d 2=2∶1,所以|m +1|=2|m +13|,解得m =-25或m =-9.故所求直线l 的方程为3x -2y -25=0或3x -2y -9=0. 6.已知直线l :3x -y +3=0,求: (1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程.解:设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′). ∵k PP ′·k l =-1,即y ′-yx ′-x×3=-1.① 又PP ′的中点在直线3x -y +3=0上, ∴3×x ′+x 2-y ′+y2+3=0.②由①②得⎩⎪⎨⎪⎧x ′=-4x +3y -95, ③y ′=3x +4y +35. ④(1)把x =4,y =5代入③④得x ′=-2,y ′=7, ∴P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 的对称直线方程为-4x +3y -95-3x +4y +35-2=0, 化简得7x +y +22=0.三、圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2 (2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(3)若圆经过两已知圆的交点或一已知圆与一已知直线的交点,求圆的方程时可用相应的圆系方程加以求解:①过两圆C 1:x 2+y 2+D 1x +E 1y +F 1=0,C 2:x 2+y 2+D 2x +E 2y +F 2=0交点的圆系方程为x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ为参数,λ≠-1),该方程不包括圆C 2;②过圆C :x 2+y 2+Dx +Ey +F =0与直线l :Ax +By +C =0交点的圆系方程为x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0(λ为参数,λ∈R).7.在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-3,0),B (2,0),C (0,-4),经过这三个点的圆记为M .(1)求BC 边的中线AD 所在直线的一般式方程; (2)求圆M 的方程.[解] (1)法一:由B (2,0),C (0,-4),知BC 的中点D 的坐标为(1,-2). 又A (-3,0),所以直线AD 的方程为y -0-2-0=x +31+3,即中线AD 所在直线的一般式方程为x +2y +3=0. 法二:由题意,得|AB |=|AC |=5, 则△ABC 是等腰三角形, 所以AD ⊥BC .因为直线BC 的斜率k BC =2, 所以直线AD 的斜率k AD =-12,由直线的点斜式方程,得y -0=-12(x +3), 所以直线AD 的一般式方程为x +2y +3=0. (2)设圆M 的方程为x 2+y 2+Dx +Ey +F =0.将A (-3,0),B (2,0),C (0,-4)三点的坐标分别代入方程,得⎩⎨⎧9-3D +F =0,4+2D +F =0,16-4E +F =0,解得⎩⎪⎨⎪⎧D =1,E =52,F =-6.所以圆M 的方程是x 2+y 2+x +52y -6=0. 注:利用待定系数法求圆的方程(1)若已知条件与圆的圆心和半径有关,可设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值.(2)若已知条件没有明确给出圆的圆心或半径,可选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,从而求出D ,E ,F 的值.8.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的方程为( ) A .(x +1)2+(y +1)2=2 B .(x -1)2+(y -1)2=2 C .(x +1)2+(y +1)2=8 D .(x -1)2+(y -1)2=8解析:选B 直径的两端点分别为(0,2),(2,0),∴圆心为(1,1),半径为2,故圆的方程为(x -1)2+(y -1)2=2.9.已知圆C 经过点A (2,-3),B (-2,-5),且圆心在直线l :x -2y -3=0上,求圆C 的方程.解:设圆C 的方程为(x -a )2+(y -b )2=r 2.由题意,得⎩⎨⎧(2-a )2+(-3-b )2=r 2,(-2-a )2+(-5-b )2=r 2,a -2b -3=0,解得⎩⎨⎧a =-1,b =-2,r 2=10.所以圆C 的方程为(x +1)2+(y +2)2=10.10.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆C 的方程.解:联立两圆的方程得方程组 ⎩⎨⎧x 2+y 2-12x -2y -13=0,x 2+y 2+12x +16y -25=0,相减得公共弦所在直线的方程为4x +3y -2=0.再由⎩⎨⎧4x +3y -2=0,x 2+y 2-12x -2y -13=0解得两圆交点坐标为(-1,2),(5,-6).∵所求圆以公共弦为直径,∴圆心C 是公共弦的中点(2,-2),半径长为12 (5+1)2+(-6-2)2=5.∴圆C 的方程为(x -2)2+(y +2)2=25.四、直线与圆的位置关系1.直线与圆位置关系的判断方法(1)几何法:设圆心到直线的距离为d ,圆的半径长为r .若d <r ,则直线和圆相交;若d =r ,则直线和圆相切;若d >r ,则直线和圆相离.(2)代数法:联立直线方程与圆的方程组成方程组,消元后得到一个一元二次方程,其判别式为Δ.Δ=0⇔直线与圆相切;Δ>0⇔直线与圆相交;Δ<0⇔直线与圆相离.2.过圆外一点(x 0,y 0)与圆相切的切线方程的求法①当切线斜率存在时,设切线方程为y -y 0=k (x -x 0),化成一般式kx -y +y 0-kx 0=0,利用圆心到直线的距离等于半径长,解出k ;②当切线斜率存在时,设切线方程为y -y 0=k (x -x 0),与圆的方程(x -a )2+(y -b )2=r 2联立,化为关于x 的一元二次方程,利用判别式为0,求出k .当切线斜率不存在时,可通过数形结合思想,在平面直角坐标系中作出其图象,求出切线的方程.3.圆中弦长的求法(1)直接求出直线与圆或圆与圆的交点坐标,再利用两点间的距离公式求解. (2)利用圆的弦长公式l =1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2(其中x 1,x 2为两交点的横坐标).(3)利用垂径定理:分别以圆心到直线的距离d 、圆的半径r 与弦长的一半l 2为线段长的三条线段构成直角三角形,故有l =2r 2-d 2.4.圆与圆的位置关系:(1)利用圆心间距离与两半径和与差的大小关系判断两圆的位置关系. (2)若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交.则两圆方程相减后得到的新方程:(D 1-D 2)x +(E 1-E 2)y +(F 1-F 2)=0表示的是两圆公共弦所在直线的方程.11.(1)直线x +y -2=0与圆(x -1)2+(y -2)2=1相交于A ,B 两点,则|AB |=( )A.22B.32C. 3D. 2(2)若直线x -my +1=0与圆x 2+y 2-2x =0相切,则m 的值为( ) A .1 B .±1 C .±3D. 3(3)已知圆C :(x -3)2+(y -4)2=4,直线l 过定点A (1,0). ①若l 与圆C 相切,求l 的方程;②若l 与圆C 相交于P ,Q 两点,且|PQ |=22,求此时直线l 的方程. [解析] (1)∵圆心(1,2)到直线x +y -2=0的距离d =22,∴|AB |=212-⎝ ⎛⎭⎪⎫222=2,故选D.(2)由x 2+y 2-2x =0,得圆心坐标为(1,0),半径为1,因为直线与圆相切,所以圆心到直线的距离等于半径,即|1-0+1|1+m2=1,解得m =±3. 答案:(1)D (2)C(3)解:①若直线l的斜率不存在,则直线l:x=1,符合题意.若直线l的斜率存在,设直线l的方程为y=k(x-1),即kx-y-k=0.由题意知,圆心(3,4)到直线l的距离等于2,即|3k-4-k|k2+1=2,解得k=34,此时直线l的方程为3x-4y-3=0.综上可得,所求直线l的方程是x=1或3x-4y-3=0.②由直线l与圆C相交可知,直线l的斜率必定存在,且不为0,设直线l的方程为k0x-y-k0=0,圆心(3,4)到直线l的距离为d,因为|PQ|=24-d2=22,所以d=2,即|3k0-4-k0|k20+1=2,解得k0=1或k0=7,所以所求直线l的方程为x-y-1=0或7x-y-7=0.注:研究直线与圆位置关系综合问题时易忽视直线斜率k不存在情形,要注意作出图形进行判断.12.由直线y=x+1上的一点向圆x2-6x+y2+8=0引切线,则切线长的最小值为()A.1 B.2 2C.7 D.3解析:选C切线长的最小值在直线y=x+1上的点与圆心距离最小时取得,圆心(3,0)到直线的距离为d=|3-0+1|2=22,圆的半径为1,故切线长的最小值为d2-r2=8-1=7.13.P是直线l:3x-4y+11=0上的动点,P A,PB是圆x2+y2-2x-2y+1=0的两条切线,C是圆心,那么四边形P ACB面积的最小值是()A. 2 B.2 2C. 3 D.2 3解析:选C圆的标准方程为(x-1)2+(y-1)2=1,圆心C(1,1),半径r=1.根据对称性可知四边形P ACB的面积等于2S△APC =2×12×|P A|×r=|P A|=|PC |2-r 2=|PC |2-1.要使四边形P ACB 的面积最小,则只需|PC |最小,最小值为圆心C 到直线l :3x -4y +11=0的距离d =|3-4+11|32+42=105=2,所以四边形P ACB面积的最小值为4-1= 3.14.已知圆C :x 2+y 2-2x +4y -4=0.问是否存在斜率为1的直线l ,使l 被圆C 截得的弦AB 满足:以AB 为直径的圆经过原点.解:假设存在且设l :y =x +m ,圆C 化为(x -1)2+(y +2)2=9,圆心C (1,-2),则过圆心C 垂直弦AB 的直线为y +2=-x +1,解方程组⎩⎨⎧y =x +m ,y +2=-x +1得AB 的中点N 的坐标为⎝ ⎛⎭⎪⎫-m +12,m -12,由于以AB 为直径的圆过原点,所以|AN |=|ON |. 又|AN |=|CA |2-|CN |2= 9-2×⎝⎛⎭⎪⎫m +322, |ON |=⎝⎛⎭⎪⎫-m +122+⎝ ⎛⎭⎪⎫m -122.所以9-2×⎝⎛⎭⎪⎫3+m 22=⎝ ⎛⎭⎪⎫-m +122+⎝ ⎛⎭⎪⎫m -122, 解得m =1或m =-4.所以存在直线l ,其方程为x -y +1=0和x -y -4=0,并可以检验,这时l 与圆是相交于两点的.。
历年高三数学高考考点之直线与圆必会题型及答案
历年高三数学高考考点之<直线与圆>必会题型及答案体验高考1.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A.2x +y +5=0或2x +y -5=0 B.2x +y +5=0或2x +y -5=0 C.2x -y +5=0或2x -y -5=0 D.2x -y +5=0或2x -y -5=0 答案 A解析 设所求直线方程为2x +y +c =0,依题意有|0+0+c |22+12=5,解得c =±5,所以所求直线方程为2x +y +5=0或2x +y -5=0,故选A.2.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则|MN |等于( ) A.26B.8C.46D.10 答案 C解析 由已知,得AB →=(3,-1),BC →=(-3,-9),则AB →·BC →=3×(-3)+(-1)×(-9)=0,所以AB →⊥BC →,即AB ⊥BC ,故过三点A ,B ,C 的圆以AC 为直径,得其方程为(x -1)2+(y +2)2=25,令x =0得(y +2)2=24,解得y 1=-2-26,y 2=-2+26,所以|MN |=|y 1-y 2|=46,选C.3.一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A.-53或-35B.-32或-23C.-54或-45D.-43或-34答案 D解析 由已知,得点(-2,-3)关于y 轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k , 则反射光线所在直线的方程为y +3=k (x -2), 即kx -y -2k -3=0.由反射光线与圆相切,则有d =|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34,故选D.4.已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距离为______. 答案255解析 d =|1+1|22+12=255. 5.已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若|AB |=23,则|CD |=________. 答案 4解析 设AB 的中点为M ,由题意知, 圆的半径R =23,|AB |=23, 所以|OM |=3,解得m =-33, 由⎩⎨⎧x -3y +6=0,x 2+y 2=12解得A (-3,3),B (0,23),则AC 的直线方程为y -3=-3(x +3),BD 的直线方程为y -23=-3x ,令y =0,解得C (-2,0),D (2,0), 所以|CD |=4.高考必会题型题型一 直线方程的求法与应用例1 (1)若点P (1,1)为圆(x -3)2+y 2=9的弦MN 的中点,则弦MN 所在直线的方程为( ) A.2x +y -3=0 B.x -2y +1=0 C.x +2y -3=0 D.2x -y -1=0答案 D解析 由题意知圆心C (3,0),k CP =-12.由k CP ·k MN =-1,得k MN =2,所以弦MN 所在直线的方程是2x -y -1=0.(2)已知△ABC 的顶点A (3,-1),AB 边上的中线所在直线方程为6x +10y -59=0,∠B 的平分线所在直线方程为x -4y +10=0,求BC 边所在直线的方程. 解 设B (4y 1-10,y 1),由AB 中点在6x +10y -59=0上,可得:6·4y 1-72+10·y 1-12-59=0,y 1=5,∴B (10,5).设A 点关于x -4y +10=0的对称点为A ′(x ′,y ′),则有⎩⎪⎨⎪⎧x ′+32-4·y ′-12+10=0,y ′+1x ′-3·14=-1⇒A ′(1,7),∵点A ′(1,7),B (10,5)在直线BC 上,∴y -57-5=x -101-10,故BC 边所在直线的方程是2x +9y -65=0. 点评 (1)两条直线平行与垂直的判定①若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1; ②判定两直线平行与垂直的关系时,如果给出的直线方程中存在字母系数,不仅要考虑斜率存在的情况,还要考虑斜率不存在的情况. (2)求直线方程的常用方法①直接法:直接选用恰当的直线方程的形式,写出结果;②待定系数法:先由直线满足的一个条件设出直线方程,使方程中含有一个待定系数,再由题给的另一条件求出待定系数.变式训练1 已知直线l 经过直线3x +4y -2=0与直线2x +y +2=0的交点P ,且垂直于直线x -2y -1=0. (1)求直线l 的方程;(2)求直线l 关于原点O 对称的直线方程.解 (1)由⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0解得⎩⎪⎨⎪⎧x =-2,y =2.所以点P 的坐标是(-2,2),又因为直线x -2y -1=0, 即y =12x -12的斜率为k ′=12,由直线l 与x -2y -1=0垂直可得k l =-1k ′=-2, 故直线l 的方程为:y -2=-2(x +2),即2x +y +2=0.(2)直线l 的方程2x +y +2=0在x 轴、y 轴上的截距分别是-1与-2,则直线l 关于原点对称的直线在x 轴、y 轴上的截距分别是1与2, 所求直线方程为x 1+y2=1,即2x +y -2=0.题型二 圆的方程例2 (1)如图,已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.①圆C 的标准方程为________________.②圆C 在点B 处的切线在x 轴上的截距为________.答案 ①(x -1)2+(y -2)2=2 ②-2-1解析 ①由题意,设圆心C (1,r )(r 为圆C 的半径),则r 2=⎝ ⎛⎭⎪⎫|AB |22+12=2,解得r = 2.所以圆C 的方程为(x -1)2+(y -2)2=2.②方法一 令x =0,得y =2±1,所以点B (0,2+1).又点C (1,2),所以直线BC 的斜率为k BC =-1,所以过点B 的切线方程为y -(2+1)=x -0,即y =x +(2+1). 令y =0,得切线在x 轴上的截距为-2-1.方法二 令x =0,得y =2±1,所以点B (0,2+1).又点C (1,2),设过点B 的切线方程为y -(2+1)=kx ,即kx -y +(2+1)=0.由题意,得圆心C (1,2)到直线kx -y +(2+1)=0的距离d =|k -2+2+1|k 2+1=r =2,解得k =1.故切线方程为x -y +(2+1)=0.令y =0,得切线在x 轴上的截距为-2-1.(2)已知圆C 经过点A (2,-1),并且圆心在直线l 1:y =-2x 上,且该圆与直线l 2:y =-x +1相切. ①求圆C 的方程;②求以圆C 内一点B ⎝ ⎛⎭⎪⎫2,-52为中点的弦所在直线l 3的方程. 解 ①设圆的标准方程为(x -a )2+(y -b )2=r 2,则⎩⎪⎨⎪⎧(2-a )2+(-1-b )2=r 2,b =-2a ,|a +b -1|2=r ,解得⎩⎨⎧a =1,b =-2,r = 2.故圆C 的方程为(x -1)2+(y +2)2=2. ②由①知圆心C 的坐标为(1,-2), 则k CB =-52-(-2)2-1=-12.设直线l 3的斜率为k 3,由k 3·k CB =-1,可得k 3=2. 故直线l 3的方程为y +52=2(x -2),即4x -2y -13=0.点评 求圆的方程的两种方法(1)几何法:通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程.(2)代数法:用待定系数法先设出圆的方程,再由条件求得各系数.变式训练2 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解 (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4,故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ),连接BN . 在Rt △PBQ 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0. 题型三 直线与圆的位置关系、弦长问题例3 (1)(2015·重庆)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( ) A.2B.42C.6D.210 答案 C解析 根据直线与圆的位置关系求解.由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1). ∴|AC |2=36+4=40.又r =2,∴|AB |2=40-4=36. ∴|AB |=6.(2)已知圆C :x 2+y 2-2x +4y -4=0.①写出圆C 的标准方程,并指出圆心坐标和半径大小;②是否存在斜率为1的直线m ,使m 被圆C 截得的弦为AB ,且OA ⊥OB (O 为坐标原点).若存在,求出直线m 的方程;若不存在,请说明理由. 解 ①圆C 的标准方程为(x -1)2+(y +2)2=9, 则圆心C 的坐标为(1,-2),半径为3. ②假设存在这样的直线m , 根据题意可设直线m :y =x +b .联立直线与圆的方程⎩⎪⎨⎪⎧x 2+y 2-2x +4y -4=0,y =x +b得2x 2+2(b +1)x +b 2+4b -4=0, 因为直线与圆相交,所以Δ>0, 即b 2+6b -9<0,且满足x 1+x 2=-b -1,x 1x 2=b 2+4b -42,设A (x 1,y 1),B (x 2,y 2), 则y 1=x 1+b ,y 2=x 2+b ,由OA ⊥OB 得OA →·OB →=x 1x 2+y 1y 2=0,所以x 1x 2+(x 1+b )(x 2+b )=2x 1x 2+b (x 1+x 2)+b 2=0, 即b 2+3b -4=0得b =-4或b =1, 且均满足b 2+6b -9<0,故所求的直线m 存在,方程为y =x -4或y =x +1. 点评 研究直线与圆位置关系的方法(1)研究直线与圆的位置关系的最基本的解题方法为代数法,将几何问题代数化,利用函数与方程思想解题.(2)与弦长有关的问题常用几何法,即利用圆的半径r ,圆心到直线的距离d 及半弦长l2,构成直角三角形的三边,利用其关系来处理.变式训练3 已知以点C (t ,2t)(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若|OM |=|ON |,求圆C 的方程. (1)证明 ∵圆C 过原点O ,且|OC |2=t 2+4t2.∴圆C 的方程是(x -t )2+(y -2t )2=t 2+4t2,令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t ,∴S △OAB =12|OA |·|OB |=12×|4t |×|2t |=4,即△OAB 的面积为定值.(2)解 ∵|OM |=|ON |,|CM |=|CN |, ∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12.∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),|OC |=5, 此时C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),|OC |=5, 此时C 到直线y =-2x +4的距离d =95> 5.圆C 与直线y =-2x +4不相交, ∴t =-2不符合题意,舍去. ∴圆C 的方程为(x -2)2+(y -1)2=5.高考题型精练1.已知x ,y 满足x +2y -5=0,则(x -1)2+(y -1)2的最小值为( ) A.45B.25C.255 D.105 答案 A解析 (x -1)2+(y -1)2表示点P (x ,y )到点Q (1,1)的距离的平方.由已知可得点P 在直线l :x +2y -5=0上,所以|PQ |的最小值为点Q 到直线l 的距离,即d =|1+2×1-5|1+22=255, 所以(x -1)2+(y -1)2的最小值为d 2=45.故选A.2.“m =3”是“直线l 1:2(m +1)x +(m -3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案 A解析 由l 1⊥l 2得2(m +1)(m -3)+2(m -3)=0, ∴m =3或m =-2.∴m =3是l 1⊥l 2的充分不必要条件.3.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( ) A.32B.22C.33D.4 2 答案 A解析 依题意知AB 的中点M 的集合是与直线l 1:x +y -7=0和l 2:x +y -5=0的距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离, 设点M 所在直线的方程为l :x +y +m =0, 根据平行线间的距离公式得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2.4.(2016·山东)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A.内切B.相交C.外切D.相离 答案 B解析 ∵圆M :x 2+(y -a )2=a 2, ∴圆心坐标为M (0,a ),半径r 1=a , 圆心M 到直线x +y =0的距离d =|a |2,由几何知识得⎝⎛⎭⎪⎫|a |22+(2)2=a 2,解得a =2. ∴M (0,2),r 1=2.又圆N 的圆心坐标N (1,1),半径r 2=1,∴|MN |=(1-0)2+(1-2)2=2,r 1+r 2=3,r 1-r 2=1.∴r 1-r 2<|MN |<r 1+r 2,∴两圆相交,故选B.5.与圆x 2+y 2=1和圆x 2+y 2-8x +7=0都相切的圆的圆心轨迹是( ) A.椭圆B.椭圆和双曲线的一支C.双曲线和一条直线(去掉几个点)D.双曲线的一支和一条直线(去掉几个点) 答案 D解析 设所求圆圆心为M (x ,y ),半径为r , 圆x 2+y 2-8x +7=0⇒(x -4)2+y 2=9,圆心设为C (4,0),由题意得当动圆与两定圆外切时, 即|MO |=r +1,|MC |=r +3,从而|MC |-|MO |=2<|OC |, 因此为双曲线的一支,当动圆与两定圆一个外切一个内切时, 必切于两定圆切点,即M 必在x 轴上, 但需去掉O ,C 及两定圆切点,因此选D.6.(2015·课标全国Ⅱ)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53B.213 C.253 D.43 答案 B解析 由点B (0,3),C (2,3),得线段BC 的垂直平分线方程为x =1,① 由点A (1,0),B (0,3),得线段AB 的垂直平分线方程为y -32=33⎝⎛⎭⎪⎫x -12,②联立①②,解得△ABC 外接圆的圆心坐标为⎝ ⎛⎭⎪⎫1,233,其到原点的距离为12+⎝ ⎛⎭⎪⎫2332=213.故选B.7.(2016·山东)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________. 答案 34解析 由已知得,圆心(5,0)到直线y =kx 的距离小于半径,∴|5k |k 2+1<3,解得-34<k <34,由几何概型得P =34-⎝ ⎛⎭⎪⎫-341-(-1)=34.8.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0). 由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43.故k 的最大值是43.9.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且仅有三个点到直线12x -5y +c =0的距离为1,则实数c 的值为________. 答案 ±13解析 因为圆心到直线12x -5y +c =0的距离为|c |13,所以由题意得|c |13=1,c =±13.10.已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是________________. 答案 (-24,24) 解析 因为已知直线过点(-2,0),那么圆的方程x 2+y 2=2x 配方为(x -1)2+y 2=1,表示的是圆心为(1,0),半径为1的圆, 设过点(-2,0)的直线的斜率为k , 则直线方程为y =k (x +2), 则点到直线距离等于圆的半径1, 有d =|k -0+2k |k 2+1=1,化简得8k 2=1, 所以k =±24, 然后可知此时有一个交点,那么当满足题意的时候, 可知斜率的取值范围是(-24,24),故答案为(-24,24). 11.已知过点A (0,1),且方向向量为a =(1,k )的直线l 与圆C :(x -2)2+(y -3)2=1相交于M ,N 两点.(1)求实数k 的取值范围;(2)若O 为坐标原点,且OM →·ON →=12,求k 的值.解 (1)∵直线l 过点A (0,1)且方向向量为a =(1,k ),∴直线l 的方程为y =kx +1. 由|2k -3+1|k 2+1<1,得4-73<k <4+73.(2)设M (x 1,y 1),N (x 2,y 2),将y =kx +1代入方程(x -2)2+(y -3)2=1,得(1+k 2)x 2-4(1+k )x +7=0,∴x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2,∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8=12,∴4k (1+k )1+k 2=4,解得k =1.12.已知圆M ∶x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点.(1)若Q (1,0),求切线QA ,QB 的方程;(2)求四边形QAMB 面积的最小值;(3)若|AB |=423,求直线MQ 的方程.解 (1)设过点Q 的圆M 的切线方程为x =my +1,则圆心M 到切线的距离为1,∴|2m +1|m 2+1=1,∴m =-43或0,∴切线QA ,QB 的方程分别为3x +4y -3=0和x =1.(2)∵MA ⊥AQ ,∴S 四边形MAQB =|MA |·|QA |=|QA | =|MQ |2-|MA |2=|MQ |2-1 ≥|MO |2-1= 3.∴四边形QAMB 面积的最小值为 3.(3)设AB 与MQ 交于点P ,则MP ⊥AB .∵MB ⊥BQ ,∴|MP |=1-⎝ ⎛⎭⎪⎫2232=13.在Rt △MBQ 中,|MB |2=|MP |·|MQ |,即1=13|MQ |,∴|MQ |=3.设Q (x ,0),则x 2+22=9,∴x =±5,∴Q (±5,0),∴直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.。
2024届全国高考(统考版)理科数学复习历年好题专项(直线与圆、圆与圆的位置关系)练习(附答案)
2024届全国高考(统考版)理科数学复习历年好题专项(直线与圆、圆与圆的位置关系)练习命题范围:直线与圆、圆与圆的位置关系.[基础强化]一、选择题1.圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是()A.相切 B.相交但不过圆心C.相交过圆心D.相离2.[2023ꞏ山西吕梁一模]已知圆C:x2+y2-4x=0,过点M(1,1)的直线被圆截得的弦长的最小值为()A.2B.22C.1D.23.[2023ꞏ广西联考模拟]过圆x2+y2=1上一点A作圆(x-4)2+y2=4的切线,切点为B,则|AB|的最小值为()A.2 B.5C.6D.74.两圆C1:x2+y2-4x+2y+1=0与C2:x2+y2+4x-4y-1=0的公切线有() A.4条B.3条C.2条D.1条5.[2023ꞏ江西省南昌中学月考]倾斜角为45°的直线l将圆C:x2+y2=4分割成弧长的比值为12的两段弧,则直线l在y轴上的截距为()A.1 B.2C.±1 D.±26.已知直线l经过点(0,1)且与圆(x-1)2+y2=4相交于A、B两点,若|AB|=22,则直线l的斜率k的值为()A.1 B.-1或1C.0或1 D.17.已知⊙M:x2+y2-2x-2y-2=0,直线l:2x+y+2=0,P为l上的动点.过点P 作⊙M的切线P A,PB,切点为A,B,当|PM|ꞏ|AB|最小时,直线AB的方程为() A.2x-y-1=0 B.2x+y-1=0C .2x -y +1=0D .2x +y +1=08.[2023ꞏ江西省九校联考]已知圆C :(x -2)2+y 2=4,直线l :2x -y +4=0,点P 为直线l 上任意一点,过P 作圆C 的一条切线,切点为A ,则切线段P A 的最小值为( )A .855 B .2555 C .2 D .49.若直线l 与曲线y =x 和圆x 2+y 2=15 都相切,则l 的方程为( ) A .y =2x +1 B .y =2x +12 C .y =12 x +1 D .y =12 x +12 二、填空题10.直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是________.11.已知直线l :kx -y -k +2=0与圆C :x 2+y 2-2y -7=0相交于A ,B 两点,则|AB |的最小值为________.12.过点P (1,-3)作圆C :(x -4)2+(y -2)2=9的两条切线,切点分别为A ,B ,则切线方程为______________.[能力提升]13.若在圆x 2+y 2-2x -6y =0内过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .52B .102C .152D .20214.已知直线l :ax +by -r 2=0与圆C :x 2+y 2=r 2,点A (a ,b ),则下列说法错误的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切15.[2023ꞏ山东青岛一中高三测试]已知圆C 1:x 2+y 2=4和圆C 2:(x -2)2+(y -2)2=4,若点P (a ,b )(a >0,b >0)在两圆的公共弦上,则1a +9b 的最小值为________.16.[2023ꞏ贵州省普通高中测试]如图,圆O :x 2+y 2=4交x 轴的正半轴于点A .B 是圆上一点,M 是弧AmB 的中点,设∠AOM =θ(0<θ<π),函数f (θ)表示弦AB 长与劣弧AM 长之和.当函数f (θ)取得最大值时,点M 的坐标是________.参考答案1.B 圆心(1,-2)到直线2x +y -5=0的距离d =|2-2-5|22+12=5 <6 , ∴两圆相交但不过圆心.2.B 若过点M (1,1)的直线被圆截得的弦的长度最小, 则点M (1,1)为该弦的中点, 由x 2+y 2-4x =0,得(x -2)2+y 2=4, 所以若要弦长最小,只要圆心到直线的距离即为圆心到定点M (1,1)的距离, 由|CM |=2 ,所以弦长=24-2 =22 .3.B 设圆x 2+y 2=1与圆(x -4)2+y 2=4的圆心分别为O ,C ,则|AB |=|AC |2-4 ,当|AC |最小时,|AB |最小,由于点A 在圆O 上,则|AC |的最小值为|OC |-1=4-1=3,所以|AB |的最小值为5 .4.B 圆C 1:(x -2)2+(y +1)2=4,圆C 2:(x +2)2+(y -2)2=9,∴圆心C 1(2,-1),C 2(-2,2),半径r 1=2,r 2=3,圆心距|C 1C 2|=(-2-2)2+(2+1)2 =5,r 1+r 2=5,∴|C 1C 2|=r 1+r 2,∴两圆C 1与C 2外切,∴它们有3条公切线. 5.D设原点为O ,直线l 与圆C 交于点A ,B ,由题意,得∠AOB =120°.过 O 作OH ⊥AB 于点H ,则|OH |=1;设直线l 的方程为y =x +b ,由|OH |=1,得|b |2=1,解得b =±2 ,所以直线l 在y 轴上的截距为±2 .6.D 由题意得圆心(1,0)到直线l :y =kx +1的距离d 为d =|k +1|k 2+1=4-(2)2 ,得(k +1)2=2(k 2+1),得k =1.7.D 如图,由题可知,AB ⊥PM ,|PM |ꞏ|AB |=2S 四边形APBM =2(S △P AM +S △PBM )=2(|P A |+|PB |), ∵|P A |=|PB |, ∴|PM |ꞏ|AB |=4|P A | =4|PM |2-|AM |2 =4|PM |2-4 ,当|PM |最小时,|PM |ꞏ|AB |最小,易知|PM |min =54+1=5 , 此时|P A |=1,AB ∥l ,设直线AB 的方程为y =-2x +b (b ≠-2), 圆心M 到直线AB 的距离为d =|3-b |5 , |AB |=4|P A ||PM | =45 ,∴d 2+⎪⎪⎪⎪AB 2 2=|MA |2, 即(3-b )25+45 =4,解得b =-1或b =7(舍). 综上,直线AB 的方程为y =-2x -1,即2x +y +1=0.故选D. 8.B 圆C 的圆心为C (2,0),则|P A |=|PC |2-r 2 ,其中r 2=4, |PC |的最小值为点C 到直线l 的距离,即|2×2-0+4|22+(-1)2=85 ,所以当|PC |取最小时,|P A |也取最小,即2555 .9.D 解法一(直接计算法):由题可知直线l 的斜率存在且不为0,设直线l 为y =kx +m ,直线l 与曲线y =x 的切点为A (x 0,y 0).由导数的几何意义可知12x 0=k ,即x 0 =12k ,点A 既在直线l 上,又在曲线y =x 上,∴⎩⎨⎧y 0=kx 0+m ,y 0=x 0.∴kx 0+m =x 0 ,即k ꞏ⎝⎛⎭⎫12k 2 +m =12k ,化简可得m =14k ,又∵直线l 与圆x 2+y 2=15 相切,∴|m |1+k2 =5 ,将m =14k 代入化简得16k 4+16k 2-5=0,解得k 2=14 或k 2=-54 (舍去).∵y =x 的图像在第一象限,∴k >0,∴k =12 ,∴m =12 ,∴l 的方程为y =12 x +12 .故选D.解法二(选项分析法):由选项知直线l 的斜率为2或12 ,不妨假设为2,设直线l 与曲线y =x 的切点为P (x 0,y 0),则12 x 0-12 =2.解得x 0=116 ,则y 0=14 ,即P ⎝⎛⎭⎫116,14 ,显然点P 在圆x 2+y 2=15 内,不符合题意,所以直线l 的斜率为12 ,又直线l 与圆x 2+y 2=15 相切,所以只有D 项符合题意,故选D.10.相交答案解析:解法一:(代数法)由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5, 消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0,因为Δ=16m 2+20>0,所以直线l 与圆相交.解法二:(几何法)由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5 ,故直线l 与圆相交.解法三:(点与圆的位置关系法)直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆相交.11.26答案解析:x 2+y 2-2y -7=0可化为x 2+(y -1)2=8,∴圆心(0,1)到直线kx -y -k +2=0的距离d =|-1-k +2|k 2+1 =|1-k |k 2+1 ,∴|AB |=28-k 2-2k +1k 2+1=27+2kk 2+1又-1≤2kk 2+1 ≤1,∴|AB |min =26 . 12.x =1或8x -15y -53=0答案解析:当切线的斜率不存在时,切线方程为x =1, 当切线的斜率存在时,设切线方程为y +3=k (x -1), 即:kx -y -k -3=0,由题意得 |4k -2-k -3|k 2+1 =3,得k =815 , ∴切线方程为8x -15y -53=0.13.B 圆的标准方程为(x -1)2+(y -3)2=10,其圆心的坐标为(1,3),记为P .因为(0-1)2+(1-3)2=5<10,所以点E 在圆内,且|PE |=5 ,则最长弦AC 为过点E 的直径,|AC |=210 ,最短弦BD 为过点E 且与AC 垂直的弦,|BD |=210-5 =25 ,可知四边形ABCD 的对角线互相垂直,所以四边形ABCD 的面积为12 ×210 ×25 =102 ,故选B.14.C 圆心C (0,0)到直线l 的距离d =r 2a 2+b 2 ,若点A (a ,b )在圆C 上,则a 2+b 2=r 2,所以d =r 2a 2+b 2 =|r |,则直线l 与圆C 相切,故A 正确;若点A (a ,b )在圆C 内,则a 2+b 2<r 2,所以d =r 2a 2+b 2 >|r |,则直线l 与圆C 相离,故B 正确;若点A (a ,b )在圆C 外,则a 2+b 2>r 2,所以d =r 2a 2+b 2 <|r |,则直线l 与圆C 相交,故C 错误;若点A (a ,b )在直线l 上,则a 2+b 2-r 2=0, 即a 2+b 2=r 2,所以d =r 2a 2+b 2 =|r |,则直线l 与圆C 相切,故D 正确.15.8答案解析:由题意将两圆的方程相减,可得公共弦方程为x +y =2.点P (a ,b )(a >0,b >0)在两圆的公共弦上,∴a +b =2,∴1a +9b =12 (1a +9b )(a +b )=12 (10+b a +9a b )≥12 ×(10+6)=8,当且仅当b a =9a b ,即b =3a 时取等号,所以1a +9b 的最小值为8.16.(-1,3)答案解析:由题意知:圆半径为2,OM ⊥AB ,故AB =2×2sin θ=4sin θ,f (θ)=4sin θ+2θ,则f ′(θ)=4cos θ+2,令f ′(θ)=0,解得cos θ=-12 ,又0<θ<π,当θ∈(0,2π3 )时,f ′(θ)>0,f (θ)单调递增;当θ∈(2π3 ,π)时,f ′(θ)<0,f (θ)单调递减;故当θ=2π3 时,f (θ)取得最大值,此时M (2ꞏcos 2π3 ,2ꞏsin 2π3 ),即(-1,3 ).。
高考数学分项汇编 专题08 直线与圆(含解析)
专题8 直线与圆一.选择题1. 【2007年普通高等学校招生全国统一考试湖北卷8】由直线y=x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为( ) A.1B.22C.7D.32.【2010年普通高等学校招生全国统一考试湖北卷9】若直线y x b =+与曲线234y x x =--有公共点,则b 的取值范围是( ) A.[122-,122+] B.[12-,3] C.[-1,122+]D.[122-,3]3.【2012年普通高等学校招生全国统一考试湖北卷5】过点(1,1)P 的直线,将圆形区域22{(,)|4}x y x y +≤分为两部分,使得这两部分的面积之差最大,则该直线的方程为( ) A .20x y +-= B .10y -= C .0x y -=D .340x y +-=二.填空题1.【2006年普通高等学校招生全国统一考试湖北卷13】若直线y =kx +2与圆(x -2)2+(y -3)2=1有两个不同的交点,则k 的取值范围是 . 【答案】)34,0( 【解析】试题分析:由直线y =kx +2与圆(x -2)2+(y -3)2=1有两个不同的交点可得直线与圆的位置关系是相交,故圆心到直线的距离小于圆的半径,即2|232|1k k -++<1,解得k ∈(0,34). 2. 【2008年普通高等学校招生全国统一考试湖北卷15】圆34cos ,()24sin x C y θθθ=+⎧⎨=-+⎩为参数的圆心坐标为 ,和圆C 关于直线0x y -=对称的圆C ′的普通方程是 . 【答案】15.(3,-2),(x +2)2+(y -3)2=16(或x 2+y 2+4x -6y -3=0) 【解析】试题分析:将圆的参数方程转化为标准方程为:22(3)(2)4x y -++=,可知圆C 的圆为(3,-2);要求关于直线对称的圆,关键在求圆心的坐标,显然(3,-2)关于直线0x y -=对称的点的坐标是(-2,3),所以要求的圆的方程是(x +2)2+(y -3)2=16(或x 2+y 2+4x -6y -3=0).3. 【2009年普通高等学校招生全国统一考试湖北卷14】过原点O 作圆x 2+y 2--6x -8y +20=0的两条切线,设切点分别为P 、Q ,则线段PQ 的长为 . 【答案】4 【解析】试题分析:可得圆方程是22(3)(4)5x y -+-=又由圆的切线性质及在三角形中运用正弦定理得4PQ =.4. 【2011年普通高等学校招生全国统一考试湖北卷14】过点)2,1(--的直线l 被圆012222=+--+y x y x 截得的弦长为2,则直线l 的斜率为 .5. 【2013年普通高等学校招生全国统一考试湖北卷14】已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = . 【答案】1 【解析】试题分析:由题意圆心到该直线的距离为1,而圆半径为5>2,故圆上有4个点到该直线的距离为1.6. 【2014年普通高等学校招生全国统一考试湖北卷17】已知圆1:22=+y x O 和点)0,2(-A ,若定点)2)(0,(-≠b b B 和常数λ满足:对圆O 上那个任意一点M ,都有||||MA MB λ=,则:(1)=b ; (2)=λ .【答案】(1)21-;(2)21【解析】7. 【2015高考湖北,文16】如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =. (Ⅰ)圆C 的标准..方程为_________; (Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________. 【答案】(Ⅰ)22(1)(2)2x y -+-=;(Ⅱ)12--.【解析】设点C 的坐标为00(,)x y ,则由圆C 与x 轴相切于点(1,0)T 知,点C 的横坐标为1,即01x =,半径0r y =.又因为2AB =,所以222011y +=,即02y r =,所以圆C 的标准方程为22(1)(2)2x y -+=,令0x =得:21)B .设圆C 在点B 处的切线方程为(21)kx y -=,则圆心C 到其距离为:xO yTCAB第16题图222121k d k -++==+,解之得1k =.即圆C 在点B 处的切线方程为x (21)y =++,于是令0y =可得x 21=--,即圆C 在点B 处的切线在x 轴上的截距为12--,故应填22(1)(2)2x y -+-=和12--.【考点定位】本题考查圆的标准方程和圆的切线问题, 属中高档题。
【备战2020】(四川版)高考数学分项汇编 专题8 直线与圆(含解析)理
第八章 直线与圆一.基础题组1.【2007四川,理15】已知⊙O 的方程是x 2+y 2-2=0, ⊙O ’的方程是x 2+y 2-8x +10=0,由动点P 向⊙O 和⊙O ’所引的切线长相等,则动点P 的轨迹方程是.2.【2010四川,理14】直线250x y -+=与圆228x y +=相交于A 、B 两点,则AB∣∣=.二.能力题组1.【2007四川,理11】如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2间的距离是1, l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是( ) (A )32 (B )364 (C )4173 (D )3212 【答案】DED2.【2008四川,理4】直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( ) (A)1133y x =-+ (B)113y x =-+ (C)33y x =- (D)113y x =+【点评】:此题重点考察互相垂直的直线关系,以及直线平移问题;【突破】:熟悉互相垂直的直线斜率互为负倒数,过原点的直线无常数项;重视平移方法:“左加右减”; 3.【2008四川,理14】已知直线:40l x y -+=与圆()()22:112C x y -+-=,则C 上各点到l 的距离的最小值为_______.【点评】:此题重点考察圆的标准方程和点到直线的距离;【突破】:数形结合,使用点C 到直线l 的距离距离公式.4.【2009四川,理9】已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点p 到直线1l 和直线2l 的距离之和的最小值是( ) (A )2 (B )3 (C )115 (D )3716【考点定位】本小题考查抛物线的定义、点到直线的距离,综合题.5.【2009四川,理14】若⊙221:5O x y +=与⊙222:()20()O x m y m R -+=∈相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是6.【2014四川,理14】设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB 的最大值是 .。
高考试题分类汇编数学( 理科)之专题直线与圆( word解析版)
20XX 年高考试题数学(理科)直线与圆一、选择题:1.(20XX 年高考江西卷理科9)若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是 A .(3-,3) B .(3-,0)∪(0,3) c .[3-,3] D .(-∞,3-)∪(3,+∞) 答案:B解析:曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是⎪⎪⎭⎫⎝⎛⋃⎪⎪⎭⎫ ⎝⎛-33,00,33 2.(20XX 年高考重庆卷理科8)(8)在圆22260x y x y +--=内,过点()0,1E 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为(A )52 (B )102 (C )152 (D )202二、填空题:1.(20XX 年高考安徽卷理科15)在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是_____________(写出所有正确命题的编号). ①存在这样的直线,既不与坐标轴平行又不经过任何整点 ②如果k 与b 都是无理数,则直线y kx b =+不经过任何整点 ③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点④直线y kx b =+经过无穷多个整点的充分必要条件是:k 与b 都是有理数 ⑤存在恰经过一个整点的直线【命题意图】本题考查直线方程、直线过定点、充分必要条件、存在性问题、命题真假的判定,考查学生分析、判断、转化、解决问题能力,此类问题正确的命题要给出证明,错误的要给出反例,此题综合性较强,难度较大.【答案】①③⑤【解析】①正确,设122y x =+,当x 是整数时,y 是无理数,(x ,y )必不是整点.②不正确,设k 2,b =2,则直线y 2(1)x -过整点(1,0).③正确,直线l 经过无穷多个整点,则直线l 必然经过两个不同整点,显然成立;反之成立,设直线l 经过两个整点111(,)P x y ,222(,)P x y ,则l 的方程为211211()()()()x x y y y y x x --=--,令x =121()x k x x +-(k Z ∈),则x ∈Z ,且y =211()k y y y -+也是整数,故l 经过无穷多个整点.④不正确,由③知直线l 经过无穷多个整点的充要条件是直线经过两个不同的整点,设为111(,)P x y ,222(,)P x y ,则l 的方程为211211()()()()x x y y y y x x --=--,∵直线方程为y kx b =+的形式,∴12x x ≠,∴y =2112212121y y y x y x x x x x x --+--,∴k ,b ∈Q ,反之不成立,如1134y x =+,则334x y =-,若y ∈Z ,则334x y =-∉Z ,即k ,b ∈Q ,得不到y kx b =+经过无穷个整点.⑤正确,直线y 1)x -只过整点(1,0).2.(20XX 年高考重庆卷理科15)设圆C 位于抛物线22y x =与直线3x =所组成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为1。
2021-2022年高考数学分项汇编 专题08 直线与圆(含解析)理
2021-2022年高考数学分项汇编专题08 直线与圆(含解析)理
一.基础题组
1. 【xx全国3,理2】已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为()
A.0 B.-8 C.2 D.10
【答案】B
2. 【xx全国2,理15】过点(1,2)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k= .
【答案】:
3. 【xx全国2,理13】圆心为且与直线相切的圆的方程为_____________________.
【答案】
【解析】所求圆的半径就是圆心(1,2)到直线的距离:,
所以圆的方程为:.
二.能力题组
1. 【xx新课标,理16】设点M(,1),若在圆O:上存在点N,使得∠OMN=45°,则的取值范围是________. 【答案】
2. 【xx高考新课标2,理7】过三点,,的圆交y轴于M,N两点,则( ) A.2 B.8 C.4 D.10
【答案】C
【考点定位】圆的方程.31726 7BEE 篮21288 5328 匨23689 5C89 岉21457 53D1 发22265 56F9 囹33790 83FE 菾z26284 66AC 暬Y(G0H!。
直线与圆(06-09全国高考数学真题分类汇编)
普通高等学校招生全国统一考试数学分类汇编第七章《直线与圆》一、选择题(共17题)1.(安徽卷)如果实数x y 、满足条件⎪⎩⎪⎨⎧≤++≥+≥+-01,01,01y x y y x 那么2x y -的最大值为A .2B .1C .2-D .3-解:当直线2x y t -=过点(0, -1)时, t 最大, 故选B 。
2.(安徽卷)直线1x y +=与圆2220(0)x y ay a +-=>没有公共点, 则a 的取值范围是A.1) B.1) C.(1) D.1)解:由圆2220(0)x y ay a +-=>的圆心(0,)a 到直线1x y +=大于a , 且0a >, 选A 。
3.(福建卷)已知两条直线2y ax =-和(2)1y a x =++互相垂直, 则a 等于(A )2 (B )1 (C )0 (D )1- 解析:两条直线2y ax =-和(2)1y a x =++互相垂直, 则(2)1a a +=-, ∴ a =-1, 选D.4.(广东卷)在约束条件0024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下, 当35x ≤≤时, 目标函数32z x y =+的最大值的变化范围是A.[6,15]B.[7,15] C. [6,8] D. [7,8]解析:由⎩⎨⎧-=-=⇒⎩⎨⎧=+=+42442s y sx x y s y x 交点为)4,0(),,0(),42,4(),2,0(C s C s s B A '--,(1)当43<≤s 时可行域是四边形OABC , 此时, 87≤≤z (2)当54≤≤s 时可行域是△OA C '此时, 8max =z , 故选D.5.(湖北卷)已知平面区域D 由以(1,3),(5,2),(3,1)A B C 为顶点的三角形内部&边界组成。
若在区域D 上有无穷多个点(,)x y 可使目标函数z=x +my 取得最小值, 则m=A .-2B .-1C .1D .4 解:依题意, 令z =0, 可得直线x +my =0的斜率为-1m, 结合可行域可知当直线x +my =0与直线AC 平行时, 线段AC 上的任意一点都可使目标函数z =x +my 取得最小值, 而直线AC 的斜率为-1, 所以m =1, 选C 6.(湖南卷)若圆2244100x y x y +---=上至少有三个不同点到直线l :0ax by +=的距离为则直线l 的倾斜角的取值范围是( ) A.[,124ππ] B.[5,1212ππ] C.[,]63ππD.[0,]2π解析:圆0104422=---+y x y x整理为222(2)(2)x y -+-=, ∴圆心坐标为(2, 2), 半径为32,要求圆上至少x +y有三个不同的点到直线0:=+by ax l 的距离为22, 则圆心到直线的距离应小于等于2, ∴, ∴2()4()1a a b b ++≤0, ∴2()2a b --≤, ()ak b =-, ∴22+k ≤ 直线l 的倾斜角的取值范围是]12512[ππ,, 选B.7.(湖南卷)圆0104422=---+y x y x上的点到直线014=-+y x 的最大距离与最小距离的差是A .36B . 18 C. 26 D . 25解析:圆0104422=---+y x y x的圆心为(2, 2), 半径为32, 圆心到直线014=-+y x=2, 圆上的点到直线的最大距离与最小距离的差是2R =62, 选C.8.(江苏卷)圆1)3()1(22=++-y x的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0【正确解答】直线ax+by=022(1)(1x y -++=与相切,1=, 由排除法,选C,本题也可数形结合, 画出他们的图象自然会选C,用图象法解最省事。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国高考理科数学试题分类汇编8:直线与圆
一、选择题
1 ①
(上海市春季高考数学试卷(含答案))直线2310x y -+=的一个方向向量是
( )
A ① (2 3)-,
B ① (2 3),
C ① (3 2)-,
D ?(3 2),
【答案】D
2 ①
(普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知点
(1,0),(1,0),(0,1)A B C -,直线(0)y ax b a =+>将△ABC 分割为面积相等的两部分,
则b 的取值范围是 ( )
A ①
(0,1)
B ①
1(1)2-
( C) 1
(1]23
- D ?11[,)32
【答案】B
3 ①
(普通高等学校招生统一考试山东数学(理)试题(含答案))过点(3,1)作圆
22
(1)1x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为
( )
A ①
230x y +-= B ①
230x y --= C ①
430x y --= D ①
430x y +-=
【答案】A
4 ①
(普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知点
()()()30,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有
( )
A ①
3
b a =
B ①
3
1
b a a
=+
C ①
(
)3
3
10b a b a a ⎛⎫
---
= ⎪⎝
⎭
D ①
3
3
1
0b a b a a
-+--
= 【答案】C
5 ①
(高考江西卷(理))如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线,12,l l 之间
l //1l ,l 与半圆相交于F,G 两点,与三角形ABC 两边相交于E,D 两点,设弧FG 的长为
(0)x x π<<,y EB BC CD =++,若l 从1l 平行移动到2l ,则函数()y f x =的图像大
致是
【答案】D
6 ①
(高考湖南卷(理))在等腰三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的
一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图1)①
若光线QR 经过
ABC ∆的中心,则AP 等
( )
A ①
2
B ①
1
C ①
8
3
D ①
43
【答案】D 二、解答题
7 ①
(普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小
题满分14分①
如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l ,设圆C
的半径为1,圆心在l 上①
(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围①
【答案】解:(1)由⎩⎨
⎧-=-=1
4
2x y x y 得圆心C 为(3,2),∵圆C 的半径为1
∴圆C 的方程为:1)2()3(22=-+-y x
显然切线的斜率一定存在,设所求圆C 的切线方程为3+=kx y ,即03=+-y kx
∴
11
3
232=++-k k ∴1132+=+k k ∴0)34(2=+k k ∴0=k 或者43
-=k
∴所求圆C 的切线方程为:3=y 或者34
3
+-
=x y 即3=y 或者01243=-+y x (2)解:∵圆C 的圆心在在直线42:-=x y l 上,所以,设圆心C 为(a,2a-4) 则圆C 的方程为:[]1)42()(2
2=--+-a y a x
又∵MO MA 2=∴设
M 为(x,y)则
22222)3(y x y x +=-+整理
得:4)1(2
2
=++y x 设为圆D
∴点M 应该既在圆C 上又在圆D 上 即:圆C 和圆D 有交点 ∴[]12)1()42(122
2+≤---+≤
-a a
由08852
≥+-a a 得R x ∈
由01252
≤-a a 得5
120≤
≤x 终上所述,a 的取值范围为:⎥⎦
⎤
⎢⎣⎡512,。