参数化白车身多目标轻量化优化设计

合集下载

基于Isight软件的白车身多目标优化方法

基于Isight软件的白车身多目标优化方法

基于Isight软件的白车身多目标优化方法基于Isight软件的白车身多目标优化方法随着汽车工业的迅猛发展,车辆质量和性能的要求也越来越高。

在汽车生产中,白车身是汽车生产过程中的一个重要环节。

白车身的设计和优化对整个汽车的质量和性能有着重要的影响。

在过去的几十年里,设计师们通常依靠经验和试错方法来设计优化白车身。

然而,这种方法会消耗大量的时间和资源,并且无法保证最佳的设计方案。

因此,研究人员开始探索使用计算机建模和优化方法来提高白车身设计的效率和性能。

近年来,基于Isight软件的多目标优化方法在白车身设计中受到了广泛关注。

Isight是一种用于多目标优化的软件平台,它能够自动化实验设计、参数化建模和优化分析。

通过结合CAD软件和有限元分析软件,Isight可以实现对白车身结构的全面优化。

首先,在使用Isight软件进行白车身多目标优化之前,需要将整个白车身结构进行参数化建模。

参数化建模是将车身结构的几何形状和性能指标与设计参数进行关联的过程。

通过定义合适的设计参数和变量范围,可以有效地探索设计空间,并寻找最佳的设计方案。

接下来,利用Isight软件自带的优化算法进行多目标优化。

多目标优化可以分为两个主要阶段:初级优化和细化优化。

初级优化通过运用遗传算法、粒子群算法等启发式算法探索设计空间,生成一组不同的设计方案。

然后,通过有限元分析和性能评估,对这些设计方案进行初步筛选和排序。

在初级优化的基础上,进行细化优化。

细化优化是根据初级优化结果,进一步调整设计参数和变量范围,以优化白车身的性能指标。

细化优化可以采用响应面法、Kriging模型等方法来快速评估不同设计方案的性能。

通过迭代优化过程,不断更新设计参数和变量范围,逐步接近最佳设计方案。

最后,使用Isight软件的可视化功能,对多个最优解进行分析和比较。

通过对不同设计方案的性能指标进行权衡,可以选择最佳的设计方案。

相比传统的试错方法,基于Isight软件的白车身多目标优化方法具有以下优势:1. 提高了设计效率。

基于多目标优化的白车身结构轻量化设计

基于多目标优化的白车身结构轻量化设计

基于多目标优化的白车身结构轻量化设计作者:王康曹永晟贺启才赵国栋来源:《时代汽车》2023年第22期摘要:白車身轻量化研究有利于提高整车性能和减少研发成本,首先建立了某乘用车白车身的有限元模型,接着根据仿真模型分别计算出与NVH、静刚度及正面碰撞安全性能相关的参数,模型各项指标均满足要求。

其次,依据综合灵敏度分析思路筛出与碰撞安全无关的设计变量,并且参照能量吸收曲线图选出正面碰撞安全板件的设计变量。

针对白车身非碰撞安全相关板件的轻量化设计,根据试验设计方法设计出样本点,对比各类近似模型的精度,采用了椭圆基近似模型,将白车身质量最小、低阶模态最大作为设计目标,把白车身的静态扭转刚度以及静态弯曲刚度作为设计的约束条件,并采用遗传算法对非碰撞安全板件进行多目标优化。

针对白车身正面碰撞安全相关板件的轻量化设计,根据试验设计方法设计出样本点,对比各种近似模型的精度,采用了响应面模型,将白车身质量最小、乘员舱加速度峰值最小作为设计目标,将一阶弯曲和一阶扭转模态频率、静态弯曲扭转刚度作为设计的约束条件,并采用遗传算法对碰撞安全板件进行多目标优化。

最后,对轻量化前后的性能参数进行比较分析,实现了白车身质量降低13.4kg,降幅3.32%,轻量化系数减小了1,不仅保证了静态弯曲刚度和扭转刚度、白车身的模态频率各项指标基本不变,并且提高了白车身正面碰撞性能。

结果表明基于多目标优化的白车身结构轻量化设计的减重效果较好,对车身的轻量化设计具有一定的参考意义与指导价值。

关键词:白车身灵敏度分析试验设计近似模型多目标优化轻量化1 引言随着新时代的发展,世界汽车保有量不断增加,国家对汽车的安全性能和排放指标也越来越严格。

车辆正朝着安全舒适、持续发展、电动智能的方向发展,白车身轻量化可以对汽车工业所遇到的绿色环保、主被动安全性和能耗等问题的解决有所帮助,白车身是集汽车造型以及性能为一体的关键子系统,汽车轻量化方案的选择中,白车身结构的轻量化备受学术研究者与各大车企的关注。

白车身轻量化的一种混合优化策略

白车身轻量化的一种混合优化策略

w e砌 u s t he t v a r i a b l e v a l u e s S O t h a t B I W w e i g h t r e d u t c i o n c a n r e a c h 7 . 5 1 %f i n a l l y . T h e r e s u l t s h o w s t h a t t h e
W U Zu o z e e i ,F ANG Li q i a o,S HE N C h e n v . e i
( S c h o o l o f Me c h a n i c a l , E l e c t r o n i c a n d C o n t r o l E n g i n e e r i n g , B e i j i n g J i a o t o n g Un i v e r s i t y , B e i j i n g 1 0 0 0 4 4 , C h i n a )
ma n c e r e q u i r e me n t s a b o u t b e n d i n g s t i f f n e s s ,t o r s i o n s t i f f n e s s a n d mo d a 1 . Th i s s t r a t e g y on c si d e r s b il u in d g 印一 p r o x i r n a t i o n mo d e l a n d s e n s i t i v i t y a n a l y s i s p r o c e e d a t he t s a me t i me ,t a k i g n a s i mu l a t i o n v a l i d a t i o n a ou b t t h e

轿车白车身重量目标设定及优化方法介绍

轿车白车身重量目标设定及优化方法介绍
式中:I 一 整车总长 ;w—一 整车总宽;H_一 整车总
作者ቤተ መጻሕፍቲ ባይዱ介 :路遥 ,硕士 ,车体设计_T程师 ,就职于安徽江淮汽车股份 高 ;M1— —为新开发车型重量估算;M——为标杆车 型重量 ;
有 限 公 司 。
Abstract:This thesis simply present two common methods of setting the weight target of Car BIW.1、Projected area
comparison met hod;2、 volume comparison meth od.T h ese methods will be particula rly illustrated to set and optimize the w eight ta r get of our new car.
Of Car BIW W eight Target setting and optim izstion m ethods Presented
LuYao,W u Jiang,HongLian,Liu Feng (Anhui Jianghuai Automobile Co.Ltd.,Anhui Hefei 230601)
引 言
未喷漆 的白皮车身 ,此处主要用来表示车身结构件 和覆 盖件 的焊接总成 ,此外 尚包括前、后板制件与车门,但 不包括车
身附属设备及装饰件等 。)重量 目标估算的常用方法 有:一 : 根据 行业研究及实验表明:整车重量 与燃 油消耗量之 间
投影 面 积 对 比法 ;二 :体 积 对 比法 ; 对 于 以上 两种 方法 要求 存在着正 比关系,汽车整车重量降低 10%,燃油效率可提高

SAE-ChinaJ0703-2013《轿车白车身轻量化设计方法》讲解

SAE-ChinaJ0703-2013《轿车白车身轻量化设计方法》讲解
GB/T 4780-2000《汽车车身术语》;
GB11551-2003《乘用车正面碰撞的乘员保护》;
GB20071-2006《乘用车侧面碰撞的乘员保护》;
GB/T20913-2007《乘用车正面偏置碰撞的乘员保护》;
SAE-China J0702-2013技术规范“普通乘用车白车身弯曲刚度测试方法”;
4.2
按照国家标准GB20071-2006《乘用车侧面碰撞的乘员保护》,进行基于侧面碰撞的白车身结构轻量化设计时,只考虑白车身结构的抗撞性评价指标如侧面压溃量、白车身吸能量、B柱加速度等,不考虑车内假人的伤害指标。
4.3
按照国家标准GB/T20913-2007《乘用车正面偏置碰撞的乘员保护》,进行基于正面偏置碰撞的白车身结构轻量化设计时,只考虑白车身结构的抗撞性评价指标如前端压溃量、白车身吸能量、防火墙侵入量和B柱加速度等,不考虑车内假人的伤害指标。
5.2
在进行整车被动安全性分析模型验证时,考虑到车身的四门两盖和门窗玻璃对整车被动安全性仿真分析结果有重要影响,车身有限元模型中包含四门两盖和门窗玻璃模型。
5.2.1
按照国家标准GB11551-2003《乘用车正面碰撞的乘员保护》,进行刚性壁障整车正面碰撞仿真分析,其假人伤害指标应满足标准规定要求;提取白车身结构抗撞性评价指标,如前端最大压溃量、B柱碰撞加速度曲线、防火墙最大侵入量、白车身吸能量曲线。
3.2
白车身产生单位扭转角所需要的外加扭矩,它表征了白车身抵抗扭转弹性变形的能力。
3.3
使白车身产生单位弯曲变形所需的弯矩,它表征了白车身抵抗弹性弯曲变形的能力。
3.4
指轿车前后轮距的平均值与轴距的乘积。
3.5
指白车身的性能指标,如弯曲刚度、扭转刚度、一阶整体弯曲频率、一阶整体扭转频率等,相对白车身结构设计变量如板厚、梁截面面积和形状尺寸等的一阶导数。

基于全参数化模型的白车身多学科设计优化

基于全参数化模型的白车身多学科设计优化
a piiprm tcm dlo s o yi— ht BW )i b i , n ee et ern eo k yprm t s f I ni l t aa er o e frt b d — w i m c i i n e( I s ul a dt f c v g f e aa ee W t h f i a r oB
sr cu e i e ne s d o hes a illy uto e il tu t r sd f d ba e n t p t a o fv h ce.A u r g t d li r ae h o g h e in o x e — i a s ro ae mo e sc e td t r u h t e d sg fe p f i me t n h fe t fk y p r mee so W tu t r n t e si n s ,vb ain mo e n a sv aey a ea — n ,a d t e ef cso e a a t r fBI sr cu eo h t f e s i r to d sa d p s ie s ft r n f ay e lz d. F n l e i l i l t n i o d td a d a a l h s W t cu e m e tn h e u r me t fmu t- i al v h ce smu ai sc n uce n n e ry p a e BI sr t r ei g t e r q ie nso li y o u
[ 要 ] 在某车型前期开发中 , 入“ 析驱动设计” 摘 引 分 的理 念 , 立 了 隐式 全 参 数 化 白车 身模 型 , 根 据 整 车 的 建 并 空 间 布 置 , 定 了车 身 架 构关 键 参 数 的有 效 变 化 范 围 ; 过 试 验 设 计 建 立 近 似模 型 , 析 了 白车 身 架 构 关 键 参 数 对 设 通 分

基于灵敏度的白车身轻量化优化分析

基于灵敏度的白车身轻量化优化分析
K e w o ds:e stvt BI ;i hweg t y r s n iiiy; W lg t ih
迫 于 竞 争 的 压 力 , 车 制 造 厂 商 不 断 加 强 对 汽
能 顺 利 进 行 。简 言 之 , 敏 度 分 析 就 是 确 定 在 整 灵
成本 的控 制 , 白车 身 的 轻 量 化 是 达 到 该 目的 的重
计 的可行域 , 解生成 优 化方案 ; 求 根据 车身 材料 库 , 行厚度 尺 寸规 格 化 , 进 并通 过 车身 N H、 V 安全 和 耐久 性 能验 证性 计算来 选择 最佳 方案 。实 车验证 表 明 , 用 N s a 应 at n软件 , r 采用 上述 方法 , 不仅保 证 了相 关性 能 , 而且 有效 实现 了 白车身 轻量化 。
要 手 段 。尽 管 可 以通 过 新 材 料 的使 用 来 实 现 减 少
个 设计 空 间 内满 足 设 计 约 束 的 前 提 下 , 个 设 计 各 变 量变 化 对 结 构 响 应 的影 响 程 度 , 而 得 到 合 理 从 的优化 路 径 。 同 时 , 用 灵 敏 度 分 析 的 结 果 也 可 利 以建 立 参 数模 型 , 问 题 参 数 化 , 利 用 优 化 算 法 把 再
Absr c : e BI e st t de s b l a e o Na ta t a t Th W s n ii y mo lwa uitb s d n vi sr n. S n iiiy ures f mo e a d tfn s f BI a u e stvt c v o d n sif e s o W bo t c m p n n hik se r b an d. W i d q a ey c n i e ng s c rt o o o e tt c ne s s we e o t ie t a e u t l o sd r e u y c mpo e t n rtc lc m p n nt h e s— h i i n n sa d c i a o o e s,te f a i i be r go fo i z t n d sg fmo e n t f e s we e s t nd s v r lk n s o c m e r c u rd. Thik s l e inso ptmiai e i n o d la d si n s r e ,a e e a i d fs he swee a q ie o f c ne s sz swe e s e i e t h W t ia tb s ie r p cf d wi t e BI maer ldaa a e,a d o tmie c e sc o e fe ro ma c s o i h n p i z d s h me wa h s n atrpef r n e fNVH ,s ey f a t a r blt r ai td. Vai t n o e ce h ws t a ,usn sr n a b v t o s, t e o a c s r nd du a iiywe e v ldae ldai fv hils s o h t o i g Na ta nd a o e me h d he p r r n e ae f m e ue ns r d,me n ie, BI iht i h sg s a h e e fe tv l a whl W l we g tde in i c iv d efc iey. g

白车身接附点动刚度优化设计

白车身接附点动刚度优化设计

白车身接附点动刚度优化设计白车身接附点动刚度优化设计随着车辆制造技术的不断发展,汽车的安全性能、舒适性能以及使用寿命等方面的要求越来越高,白车身的接附点动刚度优化设计成为了一项非常重要的工作。

接附点动刚度是指车辆受力后在车身车轮接触点产生的位移值与施加的受力的比值,通常也叫做车辆的高速稳定性。

以下介绍一些常见的白车身接附点动刚度优化设计方法。

1、轻质化设计将白车身轻量化是提高接附点动刚度的一种有效方法。

在设计过程中,可以采用高强度钢材、铝合金、碳纤维等轻量化材料来替换传统材料。

轻质化设计不仅可以减少车身重量,提高燃油经济性,而且可以提高车身的接附点动刚度。

2、前后轴重分配设计这是一种有效的设计方法,通过将车辆的前后轴荷载比例调整,使得车辆在行驶时的重心更加稳定,同时减小了车辆的滚动摆动。

前后轴重分配设计需要将引擎舱、乘员室等设备布置合理,实现前后轴重量分配的最佳状态,从而使车辆的接附点动刚度得到优化。

3、悬挂系统设计悬挂系统是车辆接收路面振动的关键部件,同时也是影响车辆接附点动刚度的重要因素。

在设计悬挂系统时,可以通过合理选择弹簧、避震器的硬度和减震器参数来优化车辆的接附点动刚度。

合理设计的悬挂系统可以使车辆在行驶时获得更好的稳定性。

4、结构优化设计通过优化白车身各组成部分的结构设计,有效地提高车辆的接附点动刚度。

例如,在车辆的底盘结构设计中,合理设计受力部位的加强筋和连接结构,可以有效地提高接附点动刚度。

另外,在车辆前后桥结构优化设计中,可以通过增加连接点的数量和降低连接点之间的距离等措施来提高接附点动刚度。

总之,白车身接附点动刚度是汽车制造中非常重要的一项指标,对于提高车辆的安全性能和使用寿命都有非常重要的意义。

通过合理运用以上设计方法,对白车身接附点动刚度进行优化设计,可以为汽车的制造企业提供更加优质的汽车产品,同时满足消费者不断提高的需求。

除了以上介绍的一些常见的白车身接附点动刚度优化设计方法,还有一些其他的设计方法可以帮助优化车辆的稳定性和运行平稳性。

基于组合优化策略的白车身轻量化设计

基于组合优化策略的白车身轻量化设计

10.16638/ki.1671-7988.2018.18.038基于组合优化策略的白车身轻量化设计乔鑫,夏天,刘莹(华晨汽车工程研究院,辽宁沈阳110141)摘要:以某SUV车型为研究对象,对白车身进行轻量化设计。

建立了整车有限元模型,选取关键零件的板厚作为设计变量,以整车模态、刚度、NVH及碰撞性能为优化约束条件,以质量为目标,建立各项性能指标的径向基神经网络近似模型,采用多岛遗传算法及山单纯型法相结合的优化策略对白车身进行多学科联合优化,在保证各项性能满足要求的前提下,使白车身重量降低了9.7kg。

关键词:轻量化;多学科优化;近似模型;多岛遗传算法;下山单纯型法中图分类号:U462 文献标识码:A 文章编号:1671-7988(2018)18-112-05Body-in-White Lightweight Based on Strategy of Combinatorial OptimizationQiao Xin, Xia Tian, Liu Ying(Brilliance Automotive Engineering Research Institute, Liaoning Shenyang 110141)Abstract: This paper takes a SUV as the study object, and the lightweight design of the body-in-white is conducted. First, a finite element model of the SUV is established, and the thickness of key parts is selected as the design variables; the mass is taken as the object; and the constraints include the performance of mode, stiffness, NVH and side impact. Then the Radial basis function approximate models are established for every performance. Finally, optimization is performed using the combination of Multi-Island Genetic Algorithm and Downhill Simplex Algorithm. Results show that the mass of BIW can be reduced by 9.7kg while keeping its performance.Keywords: lightweight; multidisciplinary optimization; approximate model; Multi-Island Genetic Algorithm; Dow- nhill Simplex AlgorithmCLC NO.: U462 Document Code: A Article ID: 1671-7988(2018)18-112-05前言轻量化是汽车发展的重要方向。

白车身轻量化设计分析

白车身轻量化设计分析
中 图 分 类 号 : 4 19 U 6.1 文 献 标 志 码 :A d i1 .9 9ji n 29 o :0 36 /.s .0 5—14 .02 0 . 1 s 2 82 1. 30 0
Li h weg sg nd a a y i fBI g t ihtde i n a n l sso W
 ̄2 卷 第3 -9 , 期
20 1 2年 6月
沈 阳 航 空 航 天 大 学 学 报
y Junl f h n a gAe saeU i e st o ra o e yn r pc n v ri S o
— —
V O1 2 No 3 .9 . J n. 2 0 1 u 2
p e e t e lg t ihtr s a c fe e sif e s c l so e f r a c rfc to l t i h we g e e h a tr t tfn s 、 o l i n p ro m n e ve i ai n. h r h i i
Absr c t a t:A c o d ng t e u r m e tf rc ran v hil e cn i h ,u i E e i v t p i z to ・ c r i o r q ie n o e t i e c er du i g weg t sng F s nst i o tmi ai n a i y
轻量 化 的 目的在于 确保 车体安 全性 、 耐撞性 、 抗振 性及 舒适 性 的前 提 下 , 减轻 车 身骨架 的质量 , 同时汽 车 自身 造价 应不 被提 高来确保 增强 产 品的 竞争 力 。传 统 的轻 量化设 计 问题 都是 依赖 工程 师 的设 计经 验 , 过 反 复 的试 凑 方 法来 得 出最 终 的 通 产 品设计 方案 , 同时 它 还需 要 开 发 和试 制 出一 系 列成 品来 进行 产 品 各种 性 能 的分 析 , 不仅 导 致 这 了开 发周 期长 , 而且 开发 成本 高 , 而使得 产 品失 从

白车身多学科轻量化优化设计应用

白车身多学科轻量化优化设计应用

白车身多学科轻量化优化设计应用面对日益短缺的能源状况和日益恶化的环境状况,无论在传统的内燃机汽车还是新能源汽车领域,轻量化设计都已成为汽车业关注的焦点。

轻量化技术必将成为汽车公司的核心竞争力之一。

目前轻量化设计的主要方法有以下3种:结构轻量化,即采用优化设计方法对车身的拓扑结构、形状尺寸与厚度进行优化设计,实现轻量化;工艺轻量化,即采用特殊的加工工艺方法,如激光拼焊板、柔性轧制差厚板、液压成型技术等;材料轻量化,采用高强度钢板、轻金属材料(如铝、镁)、非金属材料(高强度塑料、碳纤维复合材料等)。

标签:白车身;轻量化;优化设计1、白车身轻量化研究白车身结构轻量化能够达到理想状态,需要做到以下几点:1.1在早期的设计阶段就确定可行的轻量化方案。

通过运用虚拟分析与优化技术掌握各设计参数对各性能和重量的影响规律,做到重量和性能的平衡,不要到车辆开发的后期才考虑减重,这样减重效果并不明显。

目前国内的研究大多集中在车辆研发后期或者小改型设计,仅针对现有车型车身钣金件进行材料强度和厚度的减重优化设计,并没有涉及到车身骨架的开发,鲜有前期就引入结构轻量化的研究。

1.2车身轻量化优化设计需要考虑车身各项性能,是一个多学科的集成优化设计过程,应找到系统整体的最优解。

目前国内轻量化优化设计工况多为单学科,优化后再针对其他学科工况进行验算和结果修正,并没有直接进行多学科的集成优化。

1.3车身各零件的拓扑关系、截面尺寸、位置、材料强度与厚度共同影响着车身各项性能。

目前国内汽车企业主要集中对零件材料强度和厚度进行减重优化,没有综合考虑零件的拓扑关系、截面尺寸等导致轻量化设计的潜能没有完全发挥出来。

本文在车辆早期开发阶段,建立了整车参数化白车身模型。

共定义了60多个设计变量,包括车身关键零件的形状、位置、尺寸、材料与厚度。

根据整车布置空间与工程师经验,确立了设计变量的有效变化范围。

采用试验设计方法产生计算样本点,经仿真计算后汇总结果建立优化近似模型,通过多学科的集成优化,找到满足不同学科不同工况条件下的最轻白车身。

乘用车白车身轻量化设计与评价方法

乘用车白车身轻量化设计与评价方法

文章标题:汽车轻量化设计对乘用车白车身的影响及评价方法探讨一、引言乘用车白车身轻量化设计在现代汽车工业中日益受到重视。

轻量化设计能够减少车辆整体重量,提高燃油效率,减少排放,同时也有利于车辆性能和安全性的提升。

本文将探讨乘用车白车身轻量化设计的影响以及评价方法。

二、轻量化设计的影响1. 燃油效率提升乘用车白车身轻量化设计能够减少整车重量,减轻车辆负荷,从而降低燃油消耗,提高燃油效率。

轻量化设计可以通过材料选用和结构优化等方式实现,例如采用高强度、高韧性的轻质材料,以及优化车身结构,减少材料使用。

2. 减少排放轻量化设计能够减少车辆整体重量,降低对动力系统的负荷,减少燃油消耗,从而降低尾气排放,减少污染。

对于环保意识日益增强的现代社会而言,轻量化设计在减少环境污染方面具有重要意义。

3. 车辆性能提升乘用车白车身轻量化设计还可以提升车辆的操控性、加速性和刹车性能。

减少车辆整体重量可以降低车辆的惯性,增加车辆的灵活性,提升操控性能;同时也能提高车辆的加速性和刹车灵敏度。

4. 安全性能提升轻量化设计可以通过优化车身结构,提高车身刚性,增加吸能结构等方式,提升车辆的安全性能。

轻量化设计并非仅仅降低车辆整体重量,更重要的是要在保证车辆安全性能的前提下进行设计。

三、评价方法1. 材料评价在乘用车白车身轻量化设计中,选用合适的轻质材料是至关重要的。

评价方法可以从材料的密度、强度、韧性、成本等方面进行综合评价。

常见的轻质材料包括铝合金、镁合金、碳纤维复合材料等。

2. 结构评价结构评价是对车身整体结构进行评价,包括刚性、稳定性、振动响应等方面。

通过有限元分析等方法,可以对车身结构进行模拟评价,找出设计中存在的问题并进行优化。

3. 性能评价性能评价是对轻量化设计后车辆整体性能的评价,包括燃油效率、操控性、安全性、舒适性等方面。

通过车辆测试、模拟试验等手段,可以全面评价车辆轻量化设计的效果。

四、个人观点和总结个人观点:乘用车白车身轻量化设计是现代汽车工业发展的必然趋势,它不仅可以提升车辆性能,同时也有利于环保和可持续发展。

家用轿车白车身的轻量化研究

家用轿车白车身的轻量化研究

家用轿车白车身的轻量化研究家用轿车白车身的轻量化研究随着现代科技的进步和社会对环保意识的提高,汽车制造业正积极研究和推广轻量化技术,以降低车辆的油耗和排放,减少对环境的负担。

在这个背景下,家用轿车白车身的轻量化研究变得尤为重要。

本文将探讨家用轿车白车身轻量化的发展趋势、技术手段以及可能带来的益处。

首先,家用轿车白车身轻量化的发展趋势是不可逆转的。

汽车制造商们纷纷加大轻量化技术研发的力度,探索新的材料和制造工艺,以减少车身质量。

白车身是指车辆的基本骨架,减轻其重量可以降低车辆整体质量,并改善操控性能。

轻量化的趋势将会持续下去,更多的先进制造技术和材料将被应用于家用轿车白车身的制造上。

其次,家用轿车白车身轻量化的技术手段主要包括材料选用和设计优化。

在材料选用方面,高强度钢、铝合金和碳纤维等轻量化材料的应用将成为主流。

高强度钢具有优异的韧性和刚度,可以减少零件数量,从而降低车身重量。

铝合金的密度较低,具有良好的加工性能和抗腐蚀性能,被广泛用于车身骨架和关键零部件。

碳纤维具有优异的强度和刚度,重量轻并且不易被腐蚀,是未来轻量化材料的发展方向。

在设计优化方面,采用优化的结构设计和金属成形技术,可以最大限度地利用材料的强度和刚度,避免浪费和冗余。

家用轿车白车身轻量化有着诸多益处。

首先,轻量化能够大幅度降低车辆的燃料消耗和尾气排放,减少对环境的负面影响。

燃料经济性的提升还可以减少车辆运营成本,降低消费者的用车压力。

其次,轻量化可以提高车辆的操控性能和安全性能。

减轻车身质量可以提高加速性能、刹车性能和悬挂系统的响应速度,进而提高驾驶乐趣。

此外,轻量化还可以减少车辆噪音和振动,提高乘坐舒适性和内饰质感。

然而,家用轿车白车身轻量化面临一些挑战。

首先,轻量化材料的成本相对较高。

虽然随着技术的进步,轻量化材料的生产成本在逐渐降低,但仍然比传统材料贵。

其次,轻量化设计和制造需要更高的精确度和复杂的工艺流程,要求严格的质量控制和生产标准,对汽车制造商和供应商提出了更高的要求。

电动汽车白车身轻量化设计及性能分析

电动汽车白车身轻量化设计及性能分析

电动汽车白车身轻量化设计及性能分析摘要:随着全球经济的发展和人们环保意识的不断提高,电动汽车作为新能源汽车的代表,逐渐成为汽车产业的重要发展方向。

与传统燃油汽车相比,电动汽车具有零排放、低噪音、高效节能等优势。

然而,在实际应用中,电动汽车还面临着一系列问题,例如,续航里程不足、使用寿命短、充电速度慢等。

而这些问题都与电动汽车的白车身结构设计和轻量化策略密切相关。

基于此,本文阐述了优化电动汽车白车身轻量化设计的策略,以供参考。

关键词:电动汽车;白车身轻量化设计;优化策略引言汽车白车身轻量化设计是电动汽车的主要组成部分。

对于电动汽车来说,对白车身进行轻量化设计,不仅能够降低对汽车能源的消耗和,还能提高电动汽车的行驶续航力和里程。

因此,对电动汽车白车身进行各种轻量化车型设计,就显得尤为重要。

一、优化电动汽车白车身轻量化设计的意义为发展节能环保的新产业,科技部已经发布了关于新能源电动汽车的重大专项,从长远经济发展、社会效益还是整体经济效益角度进行一个综合衡量考虑,低油耗、低污染排放的电动汽车发展是绿色节约型经济社会汽车发展的大趋势方向,包含纯能源电动汽车在内的多种新能源电动汽车快速发展也将是大势所趋。

与其他传统大型燃油电动汽车产品相比,纯动力电动汽车因为其特殊的传动原理及车身结构,白车身轻量化已经是必然的产业发展战略方向。

电动车白车身轻量化设计是为了提高能源的利用率,从而加强新能源电动车续航能力。

综合考虑人机工程、产品工业工艺技术和设计、成本以及效益等诸多影响因素,确定采用相应的设计生产工艺。

轻量化的技术研究对电动汽车的持续发展来说势在必行,只有真正实现了对于白车身轻量化研究才能大大降低技术开发成本,提高使用性能,从而更加接近国际市场需求。

二、优化电动汽车白车身轻量化设计的策略(一)使用新型的制造材料与传统金属材料相比,新型材料通常更轻、更坚固,因此,在设计和制造电动汽车时,使用新型材料可以将整个车身的重量减轻,从而改善续航里程和节能性。

轿车白车身隐式全参数化建模与多目标轻量化优化

轿车白车身隐式全参数化建模与多目标轻量化优化

轿车白车身隐式全参数化建模与多目标轻量化优化季枫;王登峰;陈书明;刘波;李晓青【摘要】利用SFE-Concept参数化设计软件,建立了某轿车白车身隐式全参数化三维几何模型,在此基础上建立了参数化白车身的有限元模型,计算分析了其低阶固有振动特性和白车身的扭转与弯曲刚度,并通过试验验证了分析结果的有效性.利用相对灵敏度分析方法选出66个白车身零件板厚作为轻量化设计变量,以白车身的总质量、扭转和弯曲刚度为优化目标函数,白车身的1阶弯曲和1阶扭转模态频率为约束条件,利用遗传优化算法对白车身进行了多目标轻量化优化.结果表明,轻量化后的白车身1阶扭转频率和1阶弯曲频率的变化均小于1%,虽然扭转刚度降低了4.5%,弯曲刚度降低了1.8%,但仍满足设计要求.而在不改变用材的情况下,白车身总质量降低了19.4kg,即减轻了6.4%,取得了明显的轻量化效果.【期刊名称】《汽车工程》【年(卷),期】2014(036)002【总页数】5页(P254-258)【关键词】白车身;轻量化设计;隐式参数化;相对灵敏度分析;多目标优化【作者】季枫;王登峰;陈书明;刘波;李晓青【作者单位】吉林大学,汽车仿真与控制国家重点实验室,长春130022;吉林大学,汽车仿真与控制国家重点实验室,长春130022;吉林大学,汽车仿真与控制国家重点实验室,长春130022;长安汽车工程研究院,重庆401120;长安汽车工程研究院,重庆401120【正文语种】中文前言轿车白车身约占整车质量的20%。

因此降低白车身质量对整车轻量化具有重要意义。

轿车大多采用全承载式车身结构,如果改变车身骨架断面结构、减薄各板件的厚度,在使车身结构质量降低的同时,对车身的振动特性和弯扭刚度等会产生一定的影响。

目前,白车身轻量化的途径多为高强与轻质材料的采用,板类零件壁厚的减薄和以质量最小为目标、车身振动频率或刚度为约束的单目标优化设计[1-3]。

对于车身结构的其他性能,如振动、刚度和强度等一般只作为约束条件,待优化结果出来后进行验算,这样得到的轻量化结果并非最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

OriginalArticleProc IMechE Part D:J Automobile Engineering2016,Vol.230(2)273–288ÓIMechE2015Reprints and permissions:/journalsPermissions.navDOI:10.1177/0954407015581937Design and application of lightweightmulti-objective collaborativeoptimization for a parametricbody-in-white structureChuan-Qing Wang,Deng-Feng Wang and Shuai ZhangAbstractThe static bending and torsional stiffnesses,the lower-order modal frequencies of a body-in-white structure and the full frontal-crash and side-impact passive safety performances are simulated with finite element models which are generated on the basis of the implicit parametric model.The implicit parametric model is established through SFE CONCEPT soft-ware.The simulation results are compared with tests to validate the simulation analysis results.It is proposed that the multi-objective optimization is divided into non-safety parts optimization,frontal-crash safety parts optimization and side-impact safety parts optimization,which is computationally more efficient than optimizing the non-safety parts,the frontal-crash safety parts and the side-impact safety parts simultaneously.In this paper,the lightweight multi-objective collaborative optimization design of the body-in-white structure is conducted for a passenger car by optimizing the thick-ness,the beam section shape and the size;while maintaining the performances of the static bending and torsional stiff-nesses,the lower-order modal frequency decreases to less than5%of the initial value,and the full-frontal-crash and side-impact passive safety performances remain almost the same.Structural modifications are applied by means of impli-cit parametric technology,providing changes in the geometry in a fully controllable manner.After comparison between the optimized body-in-white structure and the initial structure,the mass decreased in total by32.41kg(i.e.by as high as 7.63%).The decreases in the performances of the bending and torsional stiffnesses are less than2.54%;the bending and torsional frequencies increased a little,and the frontal-crash and side-impact passive safety performances underwent almost no change.KeywordsImplicit parametric body-in-white structure,lightweight design,multi-objective collaborative optimizationDate received:27October2014;accepted:20March2015IntroductionRecently,laws and regulations on the emissions,the fuel efficiency and the protection of the environment have become stricter.Design of a lightweight vehicle is one of the easiest methods to preserve energy and to reduce gas emissions.The mass of the BIW structure is about30%of the mass of the whole vehicle.1 Therefore,a reduction in the mass of the BIW structure plays an important role in decreasing the mass of the whole vehicle.Although multi-material mixes,assembling tech-niques and new manufacturing are promising areas, one of the main approaches to lightweight design is structure optimization.2Structure optimization often contains topology optimization,size optimization, shape optimization,single-objective optimization and multi-objective optimization.The aim of topology optimization is to improve the allocation efficiency of the material of the structure within the design domain.In recent decades,much State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun,Jilin,People’s Republic of China Corresponding author:Deng-Feng Wang,State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun,Jilin130022,People’s Republic of China.Email:419170738@work has been carried out by topology optimization.3–5 However,topology optimization is mainly focused on the concept design phase,for which the size of the structure is not known accurately.Thus,topology opti-mization,size optimization and shape optimization work together to determine the structure.6The size optimization and shape optimization methods have been extensively studied and utilized.7These methods consider parameters such as the plate thickness and the beam cross-section(e.g.the height and the width)as the design variables to conduct optimization design.8In the process of optimization,some geometrical shapes may be changed.In order to solve this problem,the morphing approach has been applied through software such as MeshWorks.The morphing approach takes the dimensions of the geometrical shape as variables in the process of optimization.It is used as a significant per-formance enhancement tool,which was originally used in the aerospace domain,9–11and then subsequently in the vehicle industry,which attracted much attention.In the vehicle industry,it has been used to improve the performances of the aerodynamics,the static stiffness and the crashworthiness.12,13This technique is rela-tively limited since the quality of the finite element(FE) mesh rapidly decreases as the amount of shape varia-tion increases,and the adjacent parts cannot change with the changing parts.Although remeshing technol-ogy is provided for the changed shape,the quality is poor in comparison with that of the parametric model. The implicit parametric model allows larger geometri-cal modifications,and the adjacent parts change with the shape variation.14The mesh of the implicit para-metric model is generated at each new generation,and so the quality is good.Therefore,the body-in-white (BIW)model used in this paper is an implicit para-metric model which is established by SFE CONCEPT software.Grujicic et al.15introduced topology optimization, size optimization and shape optimization.Then they obtained a new optimal structure with a polymer–metal hybrid material based on the stiffness and the strength, which was subject to bending.They also obtained the optimal structure by linearized eigenvalue buckling analysis and non-linear buckling analysis based on the buckling resistance,which was subject to axial com-pression loading.They found that the difference in the geometrical structure obtained from the linearized anal-ysis and the non-linear analysis is relatively small. Grujicic et al.16presented a multi-disciplinary optimiza-tion methodology,and they considered an inner door panel as an example for carrying out lightweight design based on this methodology.In the process of optimiza-tion,the number and orientation of the composite piles,the thickness of the local laminate and the shape of the panel were taken as variables,and the perfor-mances of noise vibration and harshness(NVH),the durability,the crashworthiness and the manufacturabil-ity were the constraints.Their research studies were divided into conceptual-design optimization and detailed-design multi-disciplinary optimization.In the conceptual-design optimization,they determined the make-up of the local composite laminate and the boundaries between different laminate patches using the free element sizing technique.In the detailed-design multi-disciplinary optimization,they took the car-door panel mass as the objective and made sure that the NVH,the crashworthiness and the durability met the requirements.Finally,they obtained the ply thickness and the inter-patch boundaries of the door panel.These research studies are very helpful in developing a new part structure of new material.So far,most stud-ies of BIW structure optimization have been mainly limited to the field of size optimization and utilize the performance of crashworthiness as the constraint for single-objective or multi-objective optimization.17–19 Studies which employ the thickness,the size and the beam section shape as variables and synthetically con-sider the performances of the static stiffnesses,the low-order natural modal frequencies and the frontal-crash and side-impact passive safety performances of the BIW structure are rare.This may obviously cause some performances of the BIW structure to decrease.While this paper is based on a parametric BIW model in order to conduct lightweight design.The aim is obtained through seeking the optimal combination of the thick-ness,the local section and the geometrical shapes.In the optimization,the BIW model is divided into non-safety parts,frontal-crash safety parts and side-impact safety parts.The optimization includes three phases based on these parts.This method can improve the computational efficiency and is described in more detail in the third section.After each optimization,the optimized model is compared with the initial model.Also,by maintaining the performances of the static bending and torsional stiffnesses,the lower-order modal frequencies decrease by less than5%of the initial values,and the full-fron-tal-crash and side-impact passive safety performances remain almost the same.However,in the process of multi-objective optimization,conflicting objectives arise mostly.Therefore,one performance is increased while another performance may decrease.The non-dominated sorting genetic algorithm(NSGA-II)when used for the multi-objective optimization problem (MOP)is a quite important method,which can deal with the above contradiction efficiently. Performance verification of the implicit parametric BIW modelIn the process of establishing the parametric BIW model,it is usually divided into three processes.The first process is to define the base points and the base-lines to indicate the position of the component ledges. The second process is to define the beam section and to assign the lines to it.Finally,the beams and compo-nents are created,and the corresponding components274Proc IMechE Part D:J Automobile Engineering230(2)are mapped;then the implicit parametric model is fin-ished.The structure can be easily modified by changing some base point coordinates,baselines and local sections.20The implicit parametric BIW model is shown in Figure 1.Before multi-objective collaborative optimiza-tion design,the FE model was generated on the basis of the implicit parametric model.The low-order modal frequencies,the static bending and torsional stiffnesses,the full-frontal-crash and side-impact passive safety performances were simulated and compared with tests to verify that the BIW model was correct.Verification of the low-order modal frequencies of the implicit parametric BIW modelThe low-order modal frequencies of the BIW model were analysed by NASTRAN,and the simulation results were compared with the tests to verify that theimplicit parametric BIW model was correct.In testing,the air pressure of the air spring was adjusted to make sure that the rigid vibration frequency of the BIW on the air spring brackets (shown in Figure 2)was less than 3Hz.The air spring was placed on the testbed,and the BIW structure was made horizontal using a wood block.The BIW object was tested in the frequency range for a burst random signal of 1–256Hz which was gen-erated with an electromagnetic vibrator and amplified with a power amplifier.It helped to analyse the global vibration frequencies and modes through LMS b structure testing software.19The vibrator force was given to two points of the left front longitudi-nal beam and right rear longitudinal beam,which are shown in Figure 3.The rear excitation force was verti-cally upwards,and the front excitation force had a gra-dient angle in the lateral direction and the longitudinal direction,which can fully indicate the three direction modes of the BIW structure.The vibration acceleration response of the BIW structure was collected through 180standard acceler-ometers which were pasted on the BIW.The geometry of the physical BIW structure was created according to the coordinates of 180accelerometers,which are shown in Figure 4.The BIW geometry in Figure 4was able to exhibit vibration modes in the tested BIW.These accel-erometers provided signals in three directions to LMS b.The ‘PolyMAX’of LMS b used the poly-reference least-squares complex frequency-domain method which could construct a stabilization diagram (shown in Figure 5)and identified the vibration modes through stable poles.21A comparison of the results on the principal modal frequencies for the tests and the simulations are shown in Table 1.As can be seen from Table 1,the relative errors of the simulations and the tests were less than 7.00%.Thus,it is acceptable to use this parametric BIW model to conduct modal analysis.The rear torsional mode and the first-order bending mode were overall modal,and the relative errors were very small.Therefore,they were used as constraints for lightweight optimizationdesign.Figure 3.The vibrator location of the BIWstructure.Figure 2.The free support of the BIWstructure.Figure 1.Implicit parametric BIW model.Wang et al.275Verification of the static bending and torsional stiffnesses of the implicit parametric BIW structureThe static bending and torsional stiffnesses of the BIW structure were analysed using NASTRAN,and the simulation results were compared with the tests to ver-ify that the implicit parametric BIW structure was cor-rect.In the simulations of the static bending stiffness,the front suspensions (points A and B)and the rear sus-pensions (points C and D)were all constrained.Static vertical forces of 2kN were exerted on the body floor around the B pillars,as shown in Figure 6.In the simu-lations of the static torsional stiffness,the BIW struc-ture was constrained except for the Z direction of the front suspensions (points A and B)and all the rearsuspensions (points C and D).The equal but opposite forces exerted on the front suspensions (points A and B)are shown in Figure 7.The force was 1703.5N,which is equivalent to a torque of 2kN m.The loca-tions of points A,B,C and D are shown in Figure 8.The bending stiffness and the torsional stiffnesses are expressed asBending stiffness =4000Z 1j j +Z 2j jð1ÞandTorsional stiffness =2000tan À1Z 3j j +Z 4j j L0ð2ÞT able parisons of the results for the major modal frequencies obtained from the tests and the simulations on the BIW structure.Value for the following modesRear torsional modeFrontal torsional mode First-order bending mode Major modal frequency,simulations (Hz)30.3336.1151.54Major modal frequency,tests (Hz)30.2638.8351.84Relative error0.23%7.00%0.58%Figure 5.The stabilizationdiagram.Figure 4.The BIW geometry in LMS Tb.Figure 8.Locations of the constraintpoints.Figure 6.Loading forces of the bendingmode.Figure 7.Loading forces of the torsional mode.276Proc IMechE Part D:J Automobile Engineering 230(2)respectively,where Z 1,Z 2,Z 3and Z 4are the displace-ment values of the loading location and L is the lateral distance between A and B.The test analyses were conducted under the same restrictions and loadings as the simulation analyses.When testing the static bending and torsional stiff-nesses,two adjustable height loading brackets with force sensors were used to constrain the front-suspension shock tower of the BIW structure,and two fixed brackets were used to constrain the rear-suspension spring holder,as shown in Figure 9.The loading brackets were linked with the front suspension through bolts.The fixed brackets were linked through bolts with the rear longitudinal beam,which was adja-cent to the rear suspension.When testing the static tor-sional stiffness,the left loading bracket was adjusted to an upper location,and the right loading bracket to a lower location,to make sure that the values shown by the two force sensors were 1703.5N.When testing the static bending stiffness,it was important to make sure that the BIW structure was horizontal,which kept the values shown by the two force sensors equal.A comparison of the stiffness results for the simula-tions and the tests are shown in Table 2.As can be seen from Table 2,the relative errors of the static bending stiffness and the torsional stiffness were 6.70%and 3.30%respectively.Therefore,the implicit parametric BIW model is acceptable for conducting bending and torsional analyses.Verification of the full-frontal-crash safetyperformance of the implicit parametric BIW modelIn this paper,both simulations and tests on a full fron-tal crash were carried out according to the China NewCar Assessment Program (C-NCAP).A full frontal crash is a vehicle crash into a full-width barrier with a velocity of 50km/h.In the simulations,the parametric BIW structure was connected with the chassis and the powertrain,as shown in Figure 10.The simulation analysis was carried out using LS-DYNA software.The vehicle needed a counterweight so that it could be considered without a body trim decoration,a dummy,etc.After the counterweight was added,com-parisons of the masses and the mass centre positions for the physical vehicle and the FE vehicle are shown in Table 3.As can be seen from Table 3,the relative errors of the masses and the mass centre positions were less than 2.01%,which accorded with the full-frontal-crash requirement.The upper left front-door hinge (ULH)intrusion,the lower left front-door hinge (LLH)intrusion,the upper right front-door hinge (URH)intrusion,the lower right front-door hinge (LRH)intrusion,the deformation mode and the acceleration curves of B pil-lars of both sides of the BIW structure are extracted in the simulations and compared with the tests.Figure 11shows a comparison of the deformation modes for the simulations and the tests.It can be seen that the defor-mation modes were identical.This comparison was only visual.It showed only that the frontal crash had no problems of fatalities.More detailed comparisons are shown in Figure 12and Table 4.As can be seen from Figure 12,the acceleration curves of both sides of the vehicle for the simulations and the tests fitted each other well.The peak value of the acceleration was 33g ,where g is the acceleration due to gravity.The crash time was 78ms.Comparisons of the front-door hinge intrusions for the simulations and the tests are shown in Table 4.AsFigure 9.Constraints of the BIW structure when testing.T able parisons of the results for the stiffnesses obtained from the tests and the simulations.Bending stiffness (N/mm)T orsional stiffness (N m/deg)Simulations 16071.8618308.32T ests15052.2418937.79Relative error6.70%3.30%Figure 10.The vehicle model,the chassis and the powertrain.Wang et al.277can be seen from Table 4,the maximum intrusion was the lower left door intrusion,and the relative errors were less than 9.97%.Therefore,the implicit para-metric BIW model and the connected parts are accepta-ble for conducting full-frontal-crash analysis.Verification of the side-impact safety performance of the implicit parametric BIW modelSide-impact analyses of both simulations and tests were made according to C-NCAP.Because the types and the numbers of dummies in a side impact are different from those in a full frontal crash,therefore,a counterweightwas again needed.After the counterweight was added,comparisons of the masses and the mass centre posi-tionsc for the physical vehicle and the FE model are shown in Table 5.As can be seen from Table 5,the rela-tive errors of the masses and the mass centre positions were less than 4.89%.Therefore,the implicit para-metric BIW model and the connected parts are accepta-ble for conducting side-impact analysis.In this paper,the moving deformable barrier is a commercial model (shown in Figure 13)from Engineering Technology Associates,Inc.Figure 14show a comparison of the deformation modes for the simulations and the tests.This was a visual comparison only to show that there was no prob-lems of fatalities.Therefore,comparisons of the intru-sion velocity curves and the acceleration curves were needed.The intrusion velocity curves,the acceleration curves of the head location,the beltline location,the chest location and the H point of the B pillar and the deformation modes were extracted from the simula-tions and compared with the tests.A comparison of the corresponding points of the B-pillar intrusion velocity curves for the simulations and the tests are shown in Figure 15.As can be seen in Figure 15,the maximum deviation was about 1.5m/s at the location of the H point.The minimum deviation was at the head location of theB pillar.The curves fitted each other well.A comparison of the corresponding points of the B-pillar acceleration curves for the simulations and the tests are shown in Figure 16.As can be seen in Figure 16,before 30ms all the acceleration curves fitted each other well,then the peaks and the troughs did not coin-cide and finally they all tended to zero.The implicit parametric BIW model and the connected parts are acceptable for conducting side-impact analysis.T able parisons of the masses and the mass centre positions of the physical car and the FE model.Value for the followingPhysical vehicleFE model Relative error Mass (kg)1603.801606.010.14%Mass centre coordinate X (mm)1040.761042.49 1.65%Mass centre coordinate Y (mm)7.00 6.86 2.01%Mass centre coordinate Z (mm)203.76203.860.05%FE:finite element.T able parisons of the front-door hinge intrusion values obtained from the tests and the simulations.Intrusion (mm)of the following hingesUHLLHL UHR LHR Simulations 2.86 3.16 1.30 1.77T ests2.683.51 1.19 1.96Relative error6.72%9.97%9.24%9.69%UHL;upper left front-door hinge;LHL:lower left front-door hinge;LHR:lower right front-door hinge;UHR:upper right front-doorhinge.Figure parison of the acceleration curves of the B pillars for the simulations and thetests.Figure parison of the deformation modes for the simulations and the tests.278Proc IMechE Part D:J Automobile Engineering 230(2)Lightweight optimization design for the implicit parametric BIW modelThis paper divided the components of the BIW model into non-safety parts,frontal-crash safety parts and side-impact safety parts.Thus,the optimization can be divided into three phases:non-safety parts optimiza-tion,frontal-crash safety parts optimization and side-impact safety parts optimization.This method can reduce the calculation time in comparison with the cal-culation time when these parts are considered together.For example,in this paper,the method takes only 21.17%of the time requires when the parts are consid-ered together.The number of non-safety part variables is 73,the number of frontal-crash part variables is 13and the number of side-impact part variables is 11.The following times for calculation are required:1.5h for the static bending and torsional stiffnesses;2h for the low-order modal frequencies;15h for the frontal-crash variables;20h for the side-impact variables.If the radial basis functions (RBFs)surrogate modelisFigure parison of the corresponding points of the B-pillar intrusion velocity curves for the simulations and the tests.T able parisons of the masses and the mass centre positions of the the physical car and the FE model.Value for the followingPhysical vehicleFE model Relative error Mass (kg)1551.801548.900.19%Mass centre coordinate X (mm)1150.551137.67 1.12%Mass centre coordinate Y (mm)–100.94–96.64 4.26%Mass centre coordinate Z (mm)234.28222.834.89%FE:finiteelement.Figure parison of the deformation modes for the simulations and thetests.Figure 13.The moving deformable barrier model.Wang et al.279adopted,at least 2n +1sample points are required.Therefore,this method needs a calculation time of only 1589.5h,in contrast with the calculation time of 7507.5h when the parts are considered together.For comprehensive consideration of the structural optimization design for crashworthiness,static stiff-nesses and natural vibration properties,the computa-tion time was extremely expensive.The surrogate model can reduce the computational cost.22The Latin hyper-cube samples (LHSs)were considered to have good space-filling properties and some degree of symmetry.23When the number of samples ranged from 20to 500,the optimal LHS algorithm was recommended.24The optimal LHS method can represent the higher order of non-linearity using relatively fewer sample points.To ensure the uniformity of the sampling points,a combi-natorial optimization algorithm was considered with an entropy criterion to minimize the bias of the mean square error.25Figure 17shows a comparison between the LHS method and the optimal LHS method to illus-trate the sampling strategy.Response surface methodology (RSM)and RBFs are two commonly used methods in constructing a sur-rogate model.Fang at al.26compared RSM and RBFs for multi-objective optimization of a BIW structure in the field of impact and found that RBFs performed bet-ter for optimization of highly non-linear objectives.The RBFs are a series of basic functions that are symmetric and centred at each sampling point and were originally developed for scattered multi-variate data interpola-tion.Let f (x )be the true value of the response function and f 0(x )the approximate value obtained from a classi-cal RBF with the general formf 0x ðÞ=X n i =1l i u x Àx i k k ðÞwhere n is the number of sampling points,x is the vec-tor of design variables,x i is the vector of design vari-ables at the i th sampling point,x Àx i k k is theEuclidean distance,u is a basis function and l i is an unknown weighting coefficient.Therefore,an RBF is in fact a linear combination of n basis functions with weighted coefficients.Some of the most commonly used basis functions include thin-plate spline,Gaussian,multi-quadric and inverse multi-quadric functions.In recent years,the NSGA-II has been widely used when dealing with multi-objective optimization.27Therefore,the optimal LHS was adopted to build RBF neural network surrogate models for each optimiza-tion.The MOP presented in this paper usedaFigure parison of the corresponding points of the B-pillar acceleration curves for the simulations and thetests.Figure 17.The sampling strategy:(a)the LHS method;(b)the optimal LHS method.280Proc IMechE Part D:J Automobile Engineering 230(2)non-normalized method,which was NSGA-II.NSGA-II employs both the elite-preserving strategy as well as an explicit diversity-preserving mechanism.The algo-rithm first randomly generates a population of prede-fined size N ,which undergoes conventional selection,crossover and mutation procedures to produce off-spring for the next generation with better solutions.From the second generation,the parent generation (size N )competes with its offspring generation (size N )to introduce elitism.Multi-objective optimizations of the three phases were carried out through the software ISIGHT.All the solutions were searched for using NSGA-II,which could be evaluated and compared graphically with Pareto frontier sets.28,29ISIGHT can also recommend one solution through a scale factor which was deter-mined by users.Non-safety part optimization for the implicitparametric BIW modelThe variable parts were selected through relative sensi-tivity analysis which was represented by the ratio of the direct sensitivity of the stiffness and the modal fre-quency to the direct sensitivity of the mass,as given byRS b ,RS t ,RS fb ,RS ft ÀÁ=S b ,S t ,S fb ,S ft ÀÁS m ð3Þwhere RS b ,RS t ,RS fb and RS ft are the relative sensitiv-ities of the static bending stiffness,the static torsional stiffness,the first-order bending modal frequency and the first-order torsional modal frequency respectively,S b ,S t ,S fb and S ft are the direct sensitivities of the static bending stiffness,the static torsional stiffness,the first-order bending modal frequency and the first-order tor-sional modal frequency respectively and S m is the direct sensitivity of mass.The non-safety part design variables were selected according to the following criteria.1.Select the intersection set of all the relative sensitiv-ities of these performances.2.Increase the thickness of the design variables to enhance the stiffness and the modal frequency per-formances if the relative sensitivities are high.3.Decrease the thickness of the design variables to reduce the BIW mass if the relative sensitivities are low.4.Do not select as a design variable if the mass of a single part is less than 0.5kg.Through relative sensitivity analysis,the design variables were divided into variables increasing the thickness and variables reducing the thickness.The design variables are shown in Figure 18.The larger relative sensitivity of 61design variables were chosen to reduce the thickness.The MOP for non-safety parts optimization can be expressed as follows.The objective isf x ðÞ=min f M ðÞ½ ,max f T ðÞ½ fg ð4Þand the design variables are given byÀ23t 0i 4t i Àt 0i 413t 0i ð5ÞÀ13t 0i 4t i Àt 0i 423t 0ið6Þsubject to0:95f 1B ðÞ,f 1BM ðÞ,f 1TM ðÞf g 4f B ðÞ,f BM ðÞ,f TM ðÞð7Þwhere f (M)and f (T)are the mass of the BIW and the mass of the static torsion stiffness respectively,t i is the thickness of the components,t 0i is the initial thickness of the components,f 1(B),f 1(BM)and f 1(TM)are the initial static bending stiffness,the initial first-order bending modal frequency and the initial first-order tor-sional modal frequency respectively and f (B),f (BM)and f (TM)are the static bending stiffness,the first-order bending modal frequency and the first-order tor-sional modal frequency of the sample points.The design space is shown in equation (5);the smaller rela-tive sensitivities of 12design variables were chosen to increase the thickness,and the design space is shown in equation (6).The non-safety parts were mainly the panels of the passenger compartment and had little influence on the crashworthiness.When optimizing,the objective functions were defined as the minimum mass and the maximum torsional stiffness in equation (4).The constraint conditions were defined as the static bending stiffness,and the first-order bending modal frequencies were not less than 95%of the initial values,as shown in equation (7).The generation process of the sample points by the design-of-experiments (DOE)method is shown in Figure 19.The frontal crash and the side impact were non-linear,and the maximum acceleration peak and the maximum intrusion were changing with time.Therefore,the performances were summarized into text,and the multi-objective optimization design pro-cess was based on the text,as shown in Figure 20.Although non-safety parts optimization did not con-sider crashworthiness,the multi-objective optimization design process in Figure 20was also adopted.Through iterations the front Pareto sets were obtained.Owing to frontal-crash safety parts optimization and the subse-quent side-impact safety parts optimization,the static stiffnesses were reduced more.Therefore,in this paper the middle location of the torsional stiffness intheFigure 18.Non-safe part design variables.Wang et al.281。

相关文档
最新文档