第5讲 不等式的性质与解法

合集下载

第5讲 一元一次不等式

第5讲 一元一次不等式
年份
2010 2011 2012 2013 填空题 选择题
试题类型
知识点
无考 无考 解一元一次不等式 不等式的性质、解一元一次不等式, 并在数轴上表示其解集
分值
4分 6分
中山市溪角初级中学
1.从近几年广东省命题地区的考试内容来看,本讲内容命题难 度适中,考查的重点是一元一次不等式的解法、不等式解集的数轴 表示. 2.题型以解答题为主. 3.2014 年考查重点可能是一元一次不等式的解法、不等式解 集的数轴表示、不等式的整数解、列不等式解决实际问题的应用题.
解:⑴设购买一个足球需要 x 元,则购买一个排球也需要 x 元,购买一个篮球 y 元, 由题意得:
x=50 2x+3y=340 ,解得: 4x+5y=600 y=80 答:购买一个足球需要 50 元,购买一个篮球需要 80 元; ⑵设该中学购买篮球 m 个 由题意得:80m+50(100-m)≤6000 1 解得:m≤33 3 ∵m 是整数 ∴m 最大可取 33 答:这所中学最多可以购买篮球 33 个.
中山市溪角初级中学
5.某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮 球, 排球和足球的单价相同, 同一种球的单价相同, 若购买 2 个足球和 3 个篮球共需 340 元,购买 4 个排球和 5 个篮球共需 600 元. ⑴求购买一个足球,一个篮球分别需要多少元? ⑵该中学根据实际情况,需从体育用品商店一次性购买三种球共 100 个,且购买三种球 的总费用不超过 6000 元,求这所中学最多可以购买多少个篮球?
中山市溪角初级中学
★课堂精讲★
考点 1.不等式的性质 1.已知实数 a、b,若 a>b,则下列结论正确的是( A.a-5<b-5 B.2+a<2+b

2023届高考数学一轮复习讲义:第5讲 基本不等式

2023届高考数学一轮复习讲义:第5讲 基本不等式

第5讲 基本不等式1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0.(2)等号成立的条件:当且仅当 时取等号.(3)其中 称为正数a ,b 的算术平均数, 称为正数a ,b 的几何平均数. 2.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当 时,x +y 有最小值是 .(简记:积定和最小)(2)如果和x +y 是定值s ,那么当且仅当 时,xy 有最大值是 .(简记:和定积最大)常用结论 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号.➢考点1 利用基本不等式求最值[名师点睛]1.通过配凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以配凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提. 2.常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式; (4)利用基本不等式求解最值. 3.消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.但应注意保留元的范围. [典例]1.(2022·河北·高三阶段练习)已知实数a ,b 满足条件33ba b ++,则22a b +的最小值为( ) A .8B .6C .4D .22.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为( ) A .3B .2C .1D .03.(多选)(2022·河北石家庄·二模)设正实数m ,n 满足2m n +=,则下列说法正确的是( ) A .11m n+上的最小值为2 B .mn 的最大值为1C 4D .22m n +的最小值为544.[2021河南平顶山模拟]若对于任意x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为( )A .⎣⎡⎭⎫15,+∞B .⎝⎛⎭⎫15,+∞C .⎝⎛⎭⎫-∞,15D .⎝⎛⎦⎤-∞,15 [举一反三]1.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为( )A .8B .7C .6D .52.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是( )A .1B .2C .4D .63.(2022·全国·模拟预测)已知a ,b 为非负数,且满足26a b +=,则()()2214a b ++的最大值为( ) A .40B .1674C .42D .16944.(2022·重庆巴蜀中学高三阶段练习)已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是( )A .2B .2C .2D .65.(多选)(2022·河北保定·一模)下面描述正确的是( ) A .已知0a >,0b >,且1a b +=,则22log log 2a b +≤-B .函数()lg f x x =,若0a b <<,且()()f a f b =,则2+a b 的最小值是C.已知()1210,012x y x x y+=>>++,则3x y +的最小值为2+ D .已知()22200,0x y x y xy x y +---+=>>,则xy 的最小值为7126.(多选)(2022·重庆八中高三阶段练习)设001a b a b >>+=,,,则下列不等式中一定成立的是( ) A .114a b+≥B .2212a b +≥C D .10b +<7.(2022·天津市西青区杨柳青第一中学高三阶段练习)已知a ,b 为正实数,且2a b +=,则2221a b a b +++的最小值为____________,此时=a ____________. 8.(2022·浙江·镇海中学模拟预测)已知1x y >>,则()41x y x y xy y-+++-的最小值为___________.9.(2022·天津·大港一中高三阶段练习)设0m n >>,那么()41m m n n+-的最小值是___________.10.(2022·天津河北·一模)已知0a >,0b >,且1a b +=,则11a ba b +++的最大值为__________.11.(2022·全国·高三专题练习)已知0,0,0,233x y z x y z >>>++=,求222111()(2)(3)462x y z y z x+++++ 的最小值;➢考点2 利用基本不等式证明不等式[典例](2022·全国·高三专题练习)已知,,a b c 都是正数,求证: (1)()()24a b ab cabc ++≥;(2)若1a b c ++=,则11192a b b c c a ++≥+++.[举一反三]1.(2022·云南·昆明一中高三阶段练习(文))已知a ,b ,c 为正数. (1)求24a a +的最小值; (2)求证:bc ac ab a b c a b c++≥++.2.(2022·陕西·西安工业大学附中高三阶段练习(文))已知0,0a b >>. (1)若2a b +=,求1411+++a b的最小值; (2)求证:2222(1)++≥++a b a b ab a b .3.(2022·河南开封·二模(文))已知,,R a b c +∈,且abc =1. (1)求证:222111a b c a b c++++≥;(2)若a =b +c ,求a 的最小值.4.(2022·全国·高三专题练习)已知正数a ,b ,c 满足3a b c ++=. (1)求abc 的最大值;(2)证明:3333a b b c c a abc ++≥.➢考点3 基本不等式中的恒成立问题[典例]1.(2022·全国·高三专题练习)若对任意220,1xx a x x >≥++恒成立,则实数a 的取值范围是( ) A .[1,)-+∞B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞2.(2022·全国·高三专题练习)设,a b c >>,n N ∈,且2110n a b b c a c+≥---恒成立,则n 的最大值是( ) A .2 B .3 C .4 D .5[举一反三]1.(2021·重庆梁平·高三阶段练习)已知正实数a ,b 满足191a b +=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是( )A .[)3,+∞B .(],3-∞C .(],6-∞D .[)6,+∞2.(2021·浙江·模拟预测)对任意正实数,a b 不等式2(1)2a b ab a bλλ+-++则( ) A .实数λ有最小值1 B .实数λ有最大值1 C .实数λ有最小值12D .实数λ有最大值123.(多选)(2022·全国·高三专题练习)当0x >,0y >,R m ∈时,2222y xm m k x y+>-++恒成立,则k 的取值可能是( ) A .2-B .1-C .1D .24.(2022·全国·高三专题练习)不等式22221122xy yz a a x y z ++-++≤对任意正数x ,y ,z 恒成立,则a 的最大值是__________.5.(2021·重庆一中高三阶段练习)已知对任意正实数x ,y ,恒有()2222x y a x xy y +-+≤,则实数a 的最小值是___________.6.(2022·全国·高三专题练习)若不等式()22x x y a x y +≤+对一切正实数,x y 恒成立,则实数a 的最小值为_____.➢考点4 基本不等式与其他专题综合[名师点睛]有关函数最值的实际问题的解题技巧1.根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值. 2.解应用题时,一定要注意变量的实际意义及其取值范围.3.在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解. [典例]1.(2022·安徽安庆·二模(文))若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.2.[2021湖北鄂东南联考]方程(x 2 018+1)(1+x 2+x 4+…+x 2 016)=2 018x 2 017的实数解的个数为________.3.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为( )(精确到1米)A .8米B .9米C .10米D .11米[举一反三]1.(2022·北京·101中学高三阶段练习)已知某产品的总成本C (单位:元)与年产量Q (单位:件)之间的关系为23300010C Q =+.设该产品年产量为Q 时的平均成本为f (Q )(单位:元/件),则f (Q )的最小值是( ) A .30B .60C .900D .18002.(多选)(2022·重庆·模拟预测)已知ABC 为锐角三角形,且sin sin sin A B C =,则下列结论中正确的是( ) A .tan tan tan tan B C B C += B .tan tan tan tan tan tan A B C A B C =++ C .41tan 3A <≤D .tan tan tan A B C 的最小值为43.(2021·全国·高三专题练习)如图,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =,3AD =,那么当BM =_______时,矩形花坛的AMPN 面积最小,最小面积为______.第5讲 基本不等式1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数.2.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24.(简记:和定积最大)常用结论 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号.(4)b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号.➢考点1 利用基本不等式求最值[名师点睛]1.通过配凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以配凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提. 2.常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式; (4)利用基本不等式求解最值. 3.消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.但应注意保留元的范围. [典例]1.(2022·河北·高三阶段练习)已知实数a ,b 满足条件336a ba b ++,则22a b +的最小值为( ) A .8B .6C .4D .2【答案】D【解析】因为33ba b ++≥33a b=,即a b =时取等号,所以643a b a b ++≥⋅,所以24a b +≥,2a b +≥,()222122a b a b +≥+=,当且仅当1a b ==时等号成立,所以22a b +的最小值为2 故选:D.2.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为( ) A .3 B .2 C .1 D .0【答案】D【解析】因为2x >-,所以20x +>,102x >+,利用基本不等式可得11222022x x x x +=++-≥=++, 当且仅当122x x +=+即1x =-时等号成立.故选:D.3.(多选)(2022·河北石家庄·二模)设正实数m ,n 满足2m n +=,则下列说法正确的是( ) A .11m n+上的最小值为2 B .mn 的最大值为1C 4D .22m n +的最小值为54【答案】AB【解析】∵0,0,2m n m n >>+=,∴()1111111222222n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当n mm n=,即1m n ==时等号成立,故A 正确;2m n +=≥∴1mn ≤,当且仅当1m n ==时,等号成立,故B 正确;(22224m ⎡⎤+≤+=⎢⎥⎣⎦,2=,当且仅当1m n ==时等号成立,最大值为2,故C 错误;()22222m n m n ++≥=,当且仅当1m n ==时等号成立,故D 错误.故选:AB4.[2021河南平顶山模拟]若对于任意x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为( )A .⎣⎡⎭⎫15,+∞B .⎝⎛⎭⎫15,+∞C .⎝⎛⎭⎫-∞,15 D .⎝⎛⎦⎤-∞,15 [答案] A [解析] 由x >0,x x 2+3x +1=1x +1x +3,令t =x +1x,则t ≥2x ·1x=2, 当且仅当x =1时,t 取得最小值2. x x 2+3x +1取得最大值15,所以对于任意的x >0,不等式x x 2+3x +1≤a 恒成立,则a ≥15.[举一反三]1.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为( )A .8B .7C .6D .5【答案】D【解析】因为13x >,所以3x -1>0,所以()443311153131y x x x x =+=-++≥=--, 当且仅当43131x x -=-,即x =1时等号成立, 故函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为5. 故选:D .2.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是( )A .1B .2C .4D .6【答案】C【解析】解:因为0x >,0y >,22x y +=,所以()1211214122244222y x x y x y x y x y ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当4y x x y =,即12x =,1y =时取等号;故选:C3.(2022·全国·模拟预测)已知a ,b 为非负数,且满足26a b +=,则()()2214a b ++的最大值为( ) A .40 B .1674C .42D .1694【答案】D 【解析】()()222222222214444444a b ab a b a b ab ab a b ++=+++=++-++()()()22222362a b ab ab =++-=+-,又2112902()2222a b ab a b +≤=⋅⋅≤=,当且仅当3,32a b ==时取“=”,则22916936(2)36(2)24ab +-≤+-=,所以当3,32a b ==时,()()2214a b ++的最大值为1694. 故选:D4.(2022·重庆巴蜀中学高三阶段练习)已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是( )A .2B .2C .2D .6【答案】B【解析】由220ab a +-=,得22a b =+,所以()a b b b b b b +=+=++-⋅=+++888422222222,当且仅当,a b b b ==+++28222,即a b ==2取等号. 故选:B.5.(多选)(2022·河北保定·一模)下面描述正确的是( ) A .已知0a >,0b >,且1a b +=,则22log log 2a b +≤-B .函数()lg f x x =,若0a b <<,且()()f a f b =,则2+a b 的最小值是C .已知()1210,012x y x x y+=>>++,则3x y +的最小值为2+D .已知()22200,0x y x y xy x y +---+=>>,则xy 的最小值为712【答案】AC【解析】对于选项A ,∵0a >,0b >,1a b +=,∴1a b =+≥∴14ab ≤,当且仅当12a b ==时取等号,∴22221log log log log 24a b ab +=≤=-,∴A 正确;对于选项B :因为1ab =,所以22a b a a+=+,又01a <<,所以由对勾函数的单调性可知函数()2=+h a a a在()0,1上单调递减,所以()()3,h a ∈+∞,即23+>a b ,故B 不正确; 对于选项C ,根据题意,已知()()3121x y x x y +=+++-,则()()()2112212331212x x y x x y x x y x x y +⎛⎫+++++=++≥+⎡⎤ ⎪⎣⎦++++⎝⎭()21212++=++x x y x x y,即1==x y时,等号成立,所以32x y +≥+C 正确;对于选项D ,()()2222032x y x y xy x y x y xy +---+=⇒+-+=-,令0x y t +=>,所以214t t -≥-,所以1732412xy xy -≥-⇒≥,此时1,2712x y xy ⎧+=⎪⎪⎨⎪=⎪⎩无解,所以选项D 不正确,故选:AC .6.(多选)(2022·重庆八中高三阶段练习)设001a b a b >>+=,,,则下列不等式中一定成立的是( ) A .114a b+≥B .2212a b +≥ CD .10b +<【答案】AB【解析】对于A :因为001a b a b >>+=,,,所以()11111124b a a b a b a b a b ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当b a a b =,即12a b ==时取等号,所以114a b+≥成立.故A 正确;对于B :因为001a b a b >>+=,,,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时取等号.所以()22212122a b a b ab ab +=+-=-≥成立.故B 正确; 对于C :因为001a b a b >>+=,,,所以()()113a b +++=,所以()()311a b =+++≥记u =0u >,所以21111336u ab b =+++++≤+=,所以0u <≤故C 错误;对于D :因为0,b >所以10+>b .故D 错误. 故选:AB7.(2022·天津市西青区杨柳青第一中学高三阶段练习)已知a ,b 为正实数,且2a b +=,则2221a b a b +++的最小值为____________,此时=a____________. 【答案】 6-3【解析】a ,b 为正实数, 且2a b +=,222221111a b b a a b a b +-+∴+=++++2111a b a b =++-++2111a b =+++ ()()1211131a b a b ⎛⎫=++++ ⎪+⎝⎭()2111331ba ab ⎛⎫+=+++ ⎪+⎝⎭ (1133≥++=当且仅当()2112b aa b a b ⎧+=⎪⎨+⎪+=⎩即6a =-4b =时取“=”故答案为:6-38.(2022·浙江·镇海中学模拟预测)已知1x y >>,则()41x y x y xy y-+++-的最小值为___________. 【答案】9 【解析】()()()()41414411911x y x y x y x y x y xy yx y x y -+⎡⎤-+⎛⎫⎡⎤⎣⎦++=++=-++++ ⎪⎢⎥---⎣⎦⎝⎭≥, 当且仅当32x y =⎧⎨=⎩时等号成立,取等条件满足1x y >>,所以()41x y x y xy y -+++-的最小值为9.故答案为:99.(2022·天津·大港一中高三阶段练习)设0m n >>,那么()41m m n n+-的最小值是___________.【答案】8【解析】解:0m n >>,所以()()2224m n n m m n n ⎡⎤-+-≤=⎢⎥⎣⎦,当且仅当m n n -=,即2m n =时取等号;所以214()m n n m ≥-,所以()()42422448114m m m m n nm m +≥+-⨯≥+==,当且仅当2244m m =,即1m =时取等号,所以()481m m n n+≥-,当且仅当1m =、12n =时取等号;故答案为:810.(2022·天津河北·一模)已知0a >,0b >,且1a b +=,则11a b a b +++的最大值为__________. 【答案】23【解析】1111111111211111111a b a b a b a b a b a b +-+-⎛⎫+=+=-+-=-+ ⎪++++++++⎝⎭. 因为0a >,0b >,且1a b +=,所以()1111111111311a b a b a b ⎛⎫⎛⎫+⋅=++++ ⎪ ⎪++++⎝⎭⎝⎭()1111142222311333b a a b ⎛++⎛⎫=++≥+=+= ⎪ ++⎝⎭⎝,当且仅当11111b a a b a b ++⎧=⎪++⎨⎪+=⎩即12a b ==时取等.所以114222111133a b a b a b ⎛⎫+=-+≤-= ⎪++++⎝⎭.,即11a b a b +++的最大值为23. 故答案为:23.11.(2022·全国·高三专题练习)已知0,0,0,233x y z x y z >>>++=,求222111()(2)(3)462x y z y z x+++++ 的最小值;【答案】274【解析】由222111[()(2)(3)]462x y z y z x+++++ 222(111)++2111[()1(2)1(3)1]462x y z y z x ≥+⨯++⨯++⨯2111[(23)()]462x y z y z x=+++++21232323[3()]623x y z x y z x y z x y z++++++=+++212332[3(3)]62323y x z x z y x y x z y z =+++++++2381(3)24≥+=.所以222111()(2)(3)462x y z y z x +++++≥274,当且仅当231x y z ===时等号成立,综上,222111()(2)(3)462x y z y z x +++++的最小值为274.➢考点2 利用基本不等式证明不等式[典例](2022·全国·高三专题练习)已知,,a b c 都是正数,求证: (1)()()24a b ab cabc ++≥;(2)若1a b c ++=,则11192a b b c c a ++≥+++. 【解】(1)()()2222244a b ab c abc a b ac ab bc abc ++-=+++-()()()()22222222b a ac c a b bc c b a c a b c =-++-+=-+-,∵,,a b c 都是正数,∴()()220b a c a b c -+-≥, 当且仅当“a b c ==”时等号成立,∴()()24a b ab c abc ++≥.(2)()()()11111112a b b c c a a b b c c a a b b c c a ⎛⎫++=+++++++⎡⎤ ⎪⎣⎦++++++⎝⎭132a b b c b c c a c a a b b c a b c a b c a b c a ⎡++++++⎤⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎝⎭⎣⎦132⎛≥+ ⎝ ()19322222=+++=, 当且仅当“13a b c ===”时等号成立,∴11192a b b c c a ++≥+++. [举一反三]1.(2022·云南·昆明一中高三阶段练习(文))已知a ,b ,c 为正数. (1)求24a a +的最小值; (2)求证:bc ac ab a b c a b c++≥++. 【解】(1)因为24a a+24=322a a a ++≥,当且仅当“2a =”时等号成立,所以当2a =时,24a a+的最小值为3.(2)因为2bc ac c a b +≥=,同理2ac ab a b c +≥,2bc ab b a c +≥, 所以三式相加得22()bc ac ab a b c a bc ⎛⎫++≥++ ⎪⎝⎭,所以bc ac aba b c a b c++≥++,当且仅当“a b c ==”时等号成立 2.(2022·陕西·西安工业大学附中高三阶段练习(文))已知0,0a b >>. (1)若2a b +=,求1411+++a b的最小值; (2)求证:2222(1)++≥++a b a b ab a b .【解】(1)因为0,0a b >>,所以10,10a b +>+>, 又2a b +=,所以1++14a b +=,所以14114114(1)19()[(1)(1)][5](54)1141141144b a a b a b a b a b +++=++++=++≥+=++++++ 当且仅当14(1)112b a a b a b ++⎧=⎪++⎨⎪+=⎩,即1353a b ⎧=⎪⎪⎨⎪=⎪⎩时取等号,所以1411+++a b 的最小值为94.(2)因为22222a b a a b +≥①,222a b ab +≥②,22222a b b ab +≥③,所以,由①②③,同向不等式相加可得:222222222222a b a b a b ab ab ++≥++,当且仅当ab a b ==,即1a b ==时取等号. 即2222(1)++≥++a b a b ab a b 成立.3.(2022·河南开封·二模(文))已知,,R a b c +∈,且abc =1. (1)求证:222111a b c a b c++++≥;(2)若a =b +c ,求a 的最小值. 【解】(1)111abc abc abcbc ac ab a b c a b c++=++=++ 222222222222b c a c a b a b c +++≤++=++,当且仅当1a b c ===时等号成立. (2)依题意,,R a b c +∈,11,abc bc a==,所以a b c =+≥=b c =时等号成立. 所以23322,2a a ≥≥,所以a 的最小值为232,此时23222a b c ===.4.(2022·全国·高三专题练习)已知正数a ,b ,c 满足3a b c ++=. (1)求abc 的最大值;(2)证明:3333a b b c c a abc ++≥.【解】(1)由a b c ++≥,当且仅当a b c ==时,取得等号. 又3a b c ++=,所以3313abc ⎛⎫≤= ⎪⎝⎭.故当且仅当1a b c ===时,abc 取得最大值1.(2)证明:要证3333a b b c c a abc ++≥,需证2223a b c c a b++≥.因为()222222a b c a b c a b c c a b c a b c a b ⎛⎫⎛⎫⎛⎫+++++=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()26a b c ≥=++=,即2223a b c c a b++≥,当且仅当1a b c ===时取得等号.故3333a b b c c a abc ++≥.➢考点3 基本不等式中的恒成立问题[典例]1.(2022·全国·高三专题练习)若对任意220,1xx a xx >≥++恒成立,则实数a 的取值范围是( ) A .[1,)-+∞ B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞【答案】C【解析】解:因为0x >,所以22221131x x x x x ==++++,当且仅当1x x =即1x =时取等号,因为221x a x x ≥++恒成立,所以23a ≥,即2,3a ⎡⎫∈+∞⎪⎢⎣⎭; 故选:C2.(2022·全国·高三专题练习)设,a b c >>,n N ∈,且2110n a b b c a c+≥---恒成立,则n 的最大值是( ) A .2 B .3 C .4 D .5【答案】C【解析】解:2110n a b b c a c+≥---等价于2110()a c n a b b c ⎛⎫+-≥⎪--⎝⎭, ()110110()a c a b b c a b b c a b b c ⎛⎫⎛⎫+-=+-+- ⎪ ⎪----⎝⎭⎝⎭10()111111b c a b a b b c --=++≥++--故得到211,n n N +∈则n 的最大值是4.故选:C. [举一反三]1.(2021·重庆梁平·高三阶段练习)已知正实数a ,b 满足191a b +=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是( )A .[)3,+∞B .(],3-∞C .(],6-∞D .[)6,+∞【答案】D【解析】因为0a >,0b >,191a b+=,所以()199101016a a b a b a b a b b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当9b a a b =,即4a =,12b =时取等号.由题意,得241186x x m ≥-++-,即242x x m --≥-对任意的实数x 恒成立,又()2242266x x x --=--≥-,所以6m -≥-,即6m ≥. 故选:D .2.(2021·浙江·模拟预测)对任意正实数,a b不等式2(1)2a b ab a bλλ+-++则( ) A .实数λ有最小值1 B .实数λ有最大值1 C .实数λ有最小值12D .实数λ有最大值12【答案】C【解析】2(1)2a b ab a b λλ+-++故222a b ab ab a b a b λ+⎛⎫- ⎪++⎝⎭,()()22022a b a b ab a b a b -+-=≥++, 当a b =时,不等式恒成立;当ab时,222aba b a b ab a bλ+≥=+-+12=,a b =时等号成立,a b12=,故12λ≥. 故选:C.3.(多选)(2022·全国·高三专题练习)当0x >,0y >,R m ∈时,2222y x m m k x y+>-++恒成立,则k 的取值可能是( )A .2-B .1-C .1D .2【答案】AB【解析】因为0x >,0y >,所以222y x x y +≥=,当且仅当2x y =时,等号成立. 因为()222111m m k m k k -++=--++≤+.若2222y xm m k x y+>-++恒成立,则12k +<,解得1k <. 故选:AB.4.(2022·全国·高三专题练习)不等式22221122xy yz a a x y z ++-++≤对任意正数x ,y ,z 恒成立,则a 的最大值是__________. 【答案】1 【解析】因为222222212222xy yz xy yz xy yz x y z x y y z xy yz +++==++++++≤,当x y z ==时取等号,所以 2222xy yz x y z +++的最大值是12,即211122a a +-≥, 解得112a -≤≤,所以a 的最大值是1.故答案为:15.(2021·重庆一中高三阶段练习)已知对任意正实数x ,y ,恒有()2222x y a x xy y +-+≤,则实数a 的最小值是___________. 【答案】2【解析】解:因为0,0x y >>,则()2220x xy y x y xy -+=-+>, 则()2222x y a x xy y +-+≤,即2222x y a x xy y+-+≤, 又22222211x y xy x xy y x y +=-+-+, 因为222x y xy +≥,所以22112xy x y -≥+,所以22121xy x y≤-+, 即22222x y x xy y +≤-+,当且仅当x y =时,取等号,所以2222max2x y x xy y ⎛⎫+= ⎪-+⎝⎭, 所以2a ≥,即实数a 的最小值是2. 故答案为:2.6.(2022·全国·高三专题练习)若不等式()2x x y a x y +≤+对一切正实数,x y 恒成立,则实数a 的最小值为_____. 【答案】2【解析】()()22222=22x x y a x y x x y x x y x y +≤+∴+≤+++,当且仅当=2x y 时取等号,0,0x y >>0x y ∴+>()22x x y a x y +≤+max2x ya y ⎫∴≥⎪⎪⎝⎭ 22222x x y x yx y x y ++≤=++max2=2x y a y ⎫∴≥⎪⎪⎝⎭,a ∴的最小值为2 故答案为:2➢考点4 基本不等式与其他专题综合[典例]1.(2022·安徽安庆·二模(文))若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________. 【答案】[ 【解析】因函数()f x 在(),-∞+∞内单调递增,则R x ∀∈,42()cos 2sin 033f x x a x '=--≥,即42sin cos 233a x x ≤-,整理得242sin sin 33a x x ≤+, 当sin 0x =时,则203≤成立,R a ∈, 当sin 0x >时,42sin 33sin a x x ≤+,而42214sin (2sin )233sin 3sin 3x x x x +=+≥, 当且仅当12sin sin x x=,即2sin 2x 时取“=”,则有423a ≤, 当sin 0x <时,42sin 33sin a x x ≥+,而42214sin [(2sin )]233sin 3sin 3x x x x +=--+≤--, 当且仅当12sin sin x x -=-,即2sin 2x =-时取“=”,则有423a ≥-, 综上得,424233a -≤≤所以实数a 的取值范围是4242[,]33-. 故答案为:4242,33⎡⎤-⎢⎥⎣⎦2.[2021湖北鄂东南联考]方程(x 2 018+1)(1+x 2+x 4+…+x 2 016)=2 018x 2 017的实数解的个数为________.[答案] 1 [解析] 由题意知x >0,∴(x 2 018+1)(1+x 2+x 4+…+x 2 016)≥ 2x 2 018·1×12(21·x 2 016+2x 2·x 2 014+…+2x 2 016·1)=2 018x 2 017,当且仅当x =1时等号成立,因此实数解的个数为1.3.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为( )(精确到1米)A .8米B .9米C .10米D .11米【答案】C【解析】由题意知,8,12PB QB ==,设,,PMB QMB BM x ∠=∠==αβ,则812tan ,tan x x==αβ,所以()212844tan tan 12896961x x x PMQ x x x x x -∠=-===≤=++⋅+βα,当且仅当96x x =,即x =10,所以BM 大约为10米.故选:C. [举一反三]1.(2022·北京·101中学高三阶段练习)已知某产品的总成本C (单位:元)与年产量Q (单位:件)之间的关系为23300010C Q =+.设该产品年产量为Q 时的平均成本为f (Q )(单位:元/件),则f (Q )的最小值是( ) A .30 B .60C .900D .1800【答案】B【解析】23300010()Q C f Q Q Q +==3300010Q Q =+23060≥=⨯=,当且仅当3300010Q Q =,即当100Q =时等号成立. 所以f (Q )的最小值是60. 故选:B.2.(多选)(2022·重庆·模拟预测)已知ABC 为锐角三角形,且sin sin sin A B C =,则下列结论中正确的是( ) A .tan tan tan tan B C B C += B .tan tan tan tan tan tan A B C A B C =++ C .41tan 3A <≤D .tan tan tan A B C 的最小值为4【答案】ABC【解析】解:因为()sin sin sin cos sin cos sin sin A B C B C C B B C =+=+=, 两边同除cos cos B C 得tan tan tan tan B C B C +=,故A 正确;由均值不等式tan tan tan tan B C B C +=≥tan tan 4B C ≥当且仅当tan tan 2B C ==时取等号,()tan tan tan tan 1tan tan B CA B C B C+=-+=--,所以tan tan tan tan tan tan A B C A B C ++=,故B 正确;tan tan 1tan 1tan tan 1tan tan 1B C A B C B C ==+--,由tan tan 4B C ≥,所以110tan tan 13B C <≤-,所以得31tan 1ta 1n tan 14A B C =+≤-<,故C 正确;22tan tan 1tan tan 12tan tan t 1ta t n t 1a n t n a n an a A B C B C B C B B C C ==-++--,由tan tan 13B C -≥且1y x x =+在[)3,+∞上单调递增,所以tan tan tan A B C 的最小值为163,故D 错误. 故选:ABC3.(2021·全国·高三专题练习)如图,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =,3AD =,那么当BM =_______时,矩形花坛的AMPN 面积最小,最小面积为______.【答案】 4 48 【解析】解:设BM x =,则34x x AN =+,则123AN x=+, 则()12484843324232448AMPN S x x x x x x ⎛⎫=++=++⋅= ⎪⎝⎭, 当且仅当483x x=,即4x =时等号成立,故矩形花坛的AMPN 面积最小值为48. 即当4BM =时,矩形花坛的AMPN 面积最小,最小面积为48. 故答案为:4;48.。

第5讲 第2课时 利用导数证明不等式

第5讲 第2课时 利用导数证明不等式
证明:法一:由题意知,即证 exln x-ex2-ex+2ex≤0, 从而等价于 ln x-x+2≤eexx. 设函数 g(x)=ln x-x+2,x>0, 则 g′(x)=1x-1.
17
突破核心命题 10拓展提能 限时规范训练
∴当x∈(0,1)时,g′(x)>0, 当x∈(1,+∞)时,g′(x)<0, 故 g(x) 在 (0 , 1) 上 单 调 递 增 , 在 (1 , + ∞) 上 单 调 递 减 , 从 而 g(x) 在 (0,+∞)上的最大值为g(1)=1.
15
突破核心命题 10拓展提能 限时规范训练
反思感悟
如果要证明的不等式由指数函数、对数函数、多项式函数组合而 成,往往进行指对分离,转化为证明g(x)≥h(x),分别求g(x)min,h(x)max进 行证明.
16
突破核心命题 10拓展提能 限时规范训练
训练2 (2024·衡水模拟改编)已知函数f(x)=eln x-ex,证明:xf(x)- ex+2ex≤0.
5
突破核心命题 10拓展提能 限时规范训练
可得x=-ln a,当x变化时,f(x)与f′(x)变化如下表:
x
(-∞,-ln a)
-ln a
(-ln a,+∞)
f′(x)

0

f(x)
单调递减
极小值
单调递增
当 x∈-∞,-ln a时,f′(x)<0,f(x)单调递减, 当 x∈(-ln a,+∞)时,f′(x)>0,f(x)单调递增. 综上,当 a≤0 时,fx在 R 上单调递减; 当 a>0 时,fx在-∞,-ln a上单调递减,在-ln a,+∞上单调递 增.
23
ห้องสมุดไป่ตู้

第5讲 一元一次不等式组的解及参数问题

第5讲 一元一次不等式组的解及参数问题

第5讲 一元一次不等式组的解及参数问题二、方法剖析与提炼(一)一元一次不等式组的解法1.数轴法 例1.(2015怀化)解不等式组⎩⎪⎨⎪⎧x -2≤0,①2(x -1)+(3-x)>0,②【解答】解不等式①,得 .解不等式②,得 .把不等式①、②的解集在数轴上的表示如下:∴原不等式组的解为 .【解析】先分别求出不等式组中各个不等式的解集并表示在数轴上,再求出它们的公共部分,就得到不等式组的解集.当它们没有公共部分时,我们称这个不等式组无解.【解法】一元一次不等式的解法、一元一次不等式组的解法.【解释】需要正确解出不等式组中的每一个不等式,准确无误地把每一个不等式的解表示在数轴上,最后找出它们的公共部分.借助数轴求解,虽略嫌繁琐,但有利于学生深刻理解不等式组解的概念.2.口诀法例2.(2015温州)不等式组⎩⎨⎧≤->+2121x x 的解是( ) A. 1<x B. x ≥3 C. 1≤x <3 D. 1<x ≤3【解答】解不等式12x +>,得 .解不等式12x -≤,得 .根据口诀“大小小大取中间”, ∴原不等式组的解为 .【解析】先分别求出不等式组中各个不等式的解,然后利用口诀得出不等式组的解.解不等式组的常用方法有数轴法和口诀法,解题时可灵活选择.【解法】一元一次不等式的解法、一元一次不等式组的解法.【解释】一元一次不等式组的分类及解如下(a <b ):(二)一元一次不等式组中的参数问题 1.根据不等式组的解集求参数的取值例3.如果关于x 的一元一次不等式组3x x a>⎧⎨>⎩的解集为3x >,那么a 的取值范围是 .【解答】3x x a >⎧⎨>⎩的解集为3x >,由“大大取大”显然有3a >,令a =3,则3x x a >⎧⎨>⎩的解集为3x >,符合题意.综上分析,得3a ≤【解析】首先可以根据口诀“大大取大”,初步确定3a >,然后单独分析a =3是否符合题意,从而得出答案.【解法】一元一次不等式组的解法.【解释】解答此类问题,出现错误的原因一般都是没有考虑到a =3情形.当然这种类型的题目也可借助数轴,利用数形结合解题.2.根据不等式组有解(或无解)确定参数的取值例4.(1)若关于x 的一元一次不等式组0122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是 .【解答】解不等式组0122x a x x ->⎧⎨->-⎩,得1x a x >⎧⎨<⎩,由“大小小大取中间”,得1a x <<,而由题目条件知不等式组无解,故1a x <<不成立,则1a >,接着考虑1a =的情形,若1a =,则有11x <<,此不等式不成立,故符合题意.(1)对于⎩⎪⎨⎪⎧x >a ,x >b ,它的解为x >b .口诀:“大大取大”. (2)对于⎩⎪⎨⎪⎧x <a ,x <b ,它的解为x <a .口诀:“小小取小”. (3)对于⎩⎪⎨⎪⎧x >a ,x <b ,它的解为a <x <b .口诀:“大小小大取中间”. (4)对于⎩⎪⎨⎪⎧x <a ,x >b ,无解.口诀:“大大小小则无解”.综上分析,a的取值范围是1a≥.【解析】解答这种题型时,只需先依“一大一小取中间”初步确定不等式组的解,而不等式组无解,显然该不等式不成立,故当不等式不成立时,确定参数满足何条件就成为解题的关键.在确定参数范围时,一般分两步,第一步确定出简单情形,最后对参数取等号的情形进行单独分析.【解法】一元一次不等式的解法、一元一次不等式组的解法.【解释】这是一道“一大一小”无解的题型,具有一定的难度,很多同学解答这种题型时往往束手无策.本解答不失为一种好解法,除了用上述方法求解,还可以借助数轴来解决,不管用何方法,都应该对参数取等号的情形进行单独分析.(2)若关于x的一元一次不等式组1240x ax+>⎧⎨-≤⎩有解,则a的取值范围是.【解答】解不等式组1240x ax+>⎧⎨-≤⎩,得12x ax>-⎧⎨≤⎩,根据口诀“一大一小取中间”,得12a x-<≤,而不等式组有解,故12a x-<≤成立,则12a-<,考虑12a-=的情形,则22x<≤,此不等式不成立,故不符合题意.综上分析,12a-<,解得3a<,故a的取值范围是3a<.【解析】这是一道“一大一小”有解的题型,解题步骤与“一大一小”无解题型基本相同.【解法】一元一次不等式的解法、一元一次不等式组的解法.【解释】对参数取等号的情形进行单独分析这一步必不可少,这也是多数同学出现错误的原因所在.3.根据不等式组的特殊解(整数解的个数)确定参数的取值例5.(2016凉山州)已知关于x的不等式组423()23(2)5x x ax x+>+⎧⎨>-+⎩仅有三个整数解,则a的取值范围是.【解答】解不等式组423()23(2)5x x ax x+>+⎧⎨>-+⎩,得321x ax>-⎧⎨<⎩根据口诀“一大一小取中间”,得321a x-<<,而由题目条件知不等式组仅有三个整数解,故它们分别为-2,-1,0,易知32a-介于-2和-3之间,即3322a-<-<-,下面考虑取等情形:若3a-2=-3,则31x-<<,恰有三个整数解-2,-1,0,符合题意;若3a-2=-2,则21x-<<,仅有两个整数解-1,0,不符合题意.综上分析,得3322a-≤-<-,解得13a-≤<.【解析】这是一道“一大一小”情形与整数解的题型,一般步骤是:(1)解不等式组中的两个不等式,然后根据“一大一小取中间”初步确定出不等式组的解;(2)根据已知条件确定出满足要求的整数解;(3)探讨满足条件的参数范围,分以下几步:先确认参数介于何值之间,后对是否取等进行单独分析,最后综合求出参数范围;【解法】一元一次不等式的解法、一元一次不等式组的解法.【解释】对参数取等号的情形进行单独分析这一步必不可少.当然这种类型的题目也可借助数轴,利用数形结合解题.三、能力训练与拓展1.(2015湖州)解不等式组2<421>1xx-⎧⎨-⎩.2.(2015宁波)解一元一次不等式组⎪⎩⎪⎨⎧≤-->+131221xx,并把解在数轴上表示出来.3.(2015丽水)如图,数轴上所表示关于x的不等式组的解集是().A. x≥2B. x>2C. x>-1D. -1<x≤24.若不等式组220x ab x->⎧⎨->⎩的解集是11x-<<,则()2016a b+=.5.若关于x的不等式组2xx m>⎧⎨>⎩的解集是2x>,则m的取值范围是.6.若关于x的不等式组262x a xxa+≤⎧⎪⎨-≥⎪⎩有解,则a的取值范围是.7.已知关于x的不等式组212x ax a-≥⎧⎨+<⎩无解,则a的取值范围是().A.3a≤-B.3a<- C.3a≥- D.3a>-8.已知关于x的不等式组721x mx-<⎧⎨-≤⎩的整数解共有4个,则m的取值范围是().A.67m<<B.67m≤< C.67m≤≤ D.67m<≤四、微课提示与指导1.方法剖析与提炼例5微视频2.能力训练与拓展第8题微视频3.例题讲解PPT4.相关链接:易良斌工作室--名师教你学解题/index.php?r=studio/index&sid=169五、参考答案与解答。

第05讲 一元二次不等式与其他常见不等式解法(十大题型)(课件)高考数学一轮复习(新教材新高考)

第05讲 一元二次不等式与其他常见不等式解法(十大题型)(课件)高考数学一轮复习(新教材新高考)
(2)解关于的不等式:() < − 1.
【解析】(1)() ≥ −2对一切实数x恒成立,等价于∀ ∈ R, 2 + (1 − ) + ≥ 0
恒成立.当 = 0时,不等式可化为 ≥ 0,不满足题意.
1
>0
>0
当 ≠ 0,有
,即
,解得 ≥ 3
Δ≤0
32 + 2 − 1 ≥ 0
【典例2-2】已知关于的一元二次不等式 2 + + > 0的解集为
−∞, −2 ⋃ 1, +∞ .
(1)求和的值;
(2)求不等式 2 − 2 + + 2 + 1 − 2 < 0的解集.
【解析】(1)由题意知−2和1是方程 2 + + = 0的两个根且 > 0,
∴ < 0,且1,2是方程 2 + + = 0的两个实数根,

1+2=−
1×2=




,解得 = −3, = 2,其中 < 0;
∴不等式 2 + + > 0化为2 2 − 3 + > 0,
1
1
2
即2 − 3 + 1 < 0,解得 ∈ 2 , 1 ,因此所求不等式的解集为 | 2 < < 1 .
>

<
6、已知关于的一元二次不等式 + + > 的解集为,则一定满足
<


7、已知关于的一元二次不等式 + + < 的解集为,则一定满足

北师大版八年级(下)数学第5讲:不等式的性质(教师版)——王琪

北师大版八年级(下)数学第5讲:不等式的性质(教师版)——王琪

不等式的性质一、不等式:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。

1、能使不等式成立的未知数的值,叫做不等式的解.2、不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集.3、求不等式解集的过程叫解不等式.4、由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组.5、不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分.6、等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的基本性质性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。

)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.1.贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t℃,则下面表示气温之间的不等关系正确的是()A.18<t<27 B.18≤t<27 C.18<t≤27 D.18≤t≤27解:∵贵阳市今年5月份的最高气温为27℃,最低气温为18℃,某一天的气温为t℃,∴18≤t≤27.故选D.2.式子:①2>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个 B.2个 C.3个 D.4个解:①是用“>”连接的式子,是不等式;②是用“≤”连接的式子,是不等式;③是等式,不是不等式;④没有不等号,不是不等式;⑤是用“>”连接的式子,是不等式;∴不等式有①②⑤共3个,故选C.3.2015年2月1日宿迁市最高气温是8℃,最低气温是﹣2℃,则当天宿迁市气温变化范围t(℃)是()A.t>8 B.t<2 C.﹣2<t<8 D.﹣2≤t≤8解:由题意得﹣2≤t≤8.故选:D.4.下面给出了5个式子:①3>0,②4x+3y>O,③x=3,④x﹣1,⑤x+2≤3,其中不等式有()A.2个 B.3个 C.4个 D.5个解:根据不等式的定义,只要有不等符号的式子就是不等式,所以①②⑤为不等式,共有3个.故选B.5.式子:①3<5;②4x+5>0;③x=3;④x2+x;⑤x≠﹣4;⑥x+2≥x+1.其中是不等式的有()A.2个B.3个 C.4个 D.5个解:①3<5;②4x+5>0;⑤x≠﹣4;⑥x+2≥x+1是不等式,∴共4个不等式.故选C.6.下列不等式变形正确的是()A.由a>b,得ac>bc B.由a>b,得a﹣2<b﹣2C.由﹣>﹣1,得﹣>﹣a D.由a>b,得c﹣a<c﹣b解:A、由a>b,得ac>bc(c>0),故此选项错误;B、由a>b,得a﹣2>b﹣2,故此选项错误;C、由﹣>﹣1,得﹣>﹣a(a>0),故此选项错误;D、由a>b,得c﹣a<c﹣b,此选项正确.故选:D.7.若a>b,则下列各式中一定成立的是()A.a+2<b+2 B.a﹣2<b﹣2 C.>D.﹣2a>﹣2b解:(A)a+2>b+2,故A错误;(B)a﹣2>b﹣2,故B错误;(D)﹣2a<﹣b,故D错误;故选(C)8.若a<b,则下列各式中一定正确的是()A.ab<0 B.ab>0 C.a﹣b>0 D.﹣a>﹣b解:因为a<bA、ab不一定小于0,本选项错误;B、ab不一定大于0,本选项错误;C、a﹣b<0,故本选项错误;D、﹣a>﹣b不等式两边都乘﹣1,不等号的方向改变,正确;故选:D.9.当x<a<0时,x2与ax的大小关系是()A.x2>ax B.x2≥ax C.x2<ax D.x2≤ax解:∵x<a<0,∴两边都乘以x得:x2>ax,故选A.10.如果a>b,则下列各式中不成立的是()A.a+4>b+4 B.2+3a>2+3b C.a﹣6>b﹣6 D.﹣3a>﹣3b解:根据不等式的基本性质3可知:不等式两边乘(或除以)同一个负数,不等号的方向改变;即﹣3a<3b,故D错误;故选D.11.学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x辆,租用30座客车y辆,则不等式“45x+30y≥500”表示的实际意义是()A.两种客车总的载客量不少于500人B.两种客车总的载客量不超过500人C.两种客车总的载客量不足500人D.两种客车总的载客量恰好等于500人解:不等式“45x+30y≥500”表示的实际意义是两种客车总的载客量不少于500人,故选:A.12.给出下面5个式子:①3>0;②4x+3y≠0;③x=3;④x﹣1;⑤x+2≤3,其中不等式有()A.2个B.3个C.4个D.5个解:①3>0;②4x+3y≠0;⑤x+2≤3是不等式,故选:B.13.下列给出四个式子,①x>2;②a≠0;③5<3;④a≥b,其中是不等式的是()A.①④ B.①②④C.①③④D.①②③④解:①x>2;②a≠0;③5<3,④a≥b,是不等式,故选:D.14.已知x+3与y﹣5的和是负数,以下所列关系式正确的是()A.(x+3)+(y﹣5)>0 B.(x+3)+(y﹣5)<0C.(x+3)﹣(y﹣5)>0 D.(x+3)+(y﹣5)≤0解:∵x+3与y﹣5的和是负数,∴(x+3)+(y﹣5)<0,故选:B.15.x是不大于5的正数,则下列表示正确的是()A.0<x<5 B.0<x≤5 C.0≤x≤5 D.x≤5解:∵x是不大于5的正数,∴0<x≤5,故选B.16.若3x>﹣3y,则下列不等式中一定成立的是()A.x+y>0 B.x﹣y>0 C.x+y<0 D.x﹣y<0解:两边都除以3,得x>﹣y,两边都加y,得x+y>0,故选:A.17.若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<12解:∵x+5>0,∴x>﹣5,A、根据x+1<0得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0得出x<1,故本选项不符合题意;C、根据<﹣1得出x<﹣5,故本选项不符合题意;D、根据﹣2x<12得出x>﹣6,故本选项符合题意;故选D.18.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选D.19.已知a>b,下列关系式中一定正确的是()A.a2<b2B.2a<2b C.a+2<b+2 D.﹣a<﹣b解:A,a2<b2,错误,例如:2>﹣1,则22>(﹣1)2;B、若a>b,则2a>2b,故本选项错误;C、若a>b,则a+2>b+2,故本选项错误;D、若a>b,则﹣a<﹣b,故本选项正确;故选:D.20.若a>b,则下列式子中一定成立的是()A.a﹣2<b﹣2 B.>C.2a>b D.3﹣a>3﹣b解:A、由不等式的性质1可知A错误;B、由不等式的性质2可知B正确;C、不符合不等式的基本性质,故C错误;D、先由不等式的性质3得到﹣a<﹣b,然后由不等式的性质1可知3﹣a<2﹣b,故D错误.故选:B.基础演练1.下列各式是不等式的有()个.①﹣3<0 ②4x+3y>0 ③x=4 ④x+y ⑤x≠5 ⑥x+2>y+3.A.1 B.2 C.3 D.4解:根据不等式的定义可知,符号不等式定义的有①②⑤⑥.故选D.2.若m是非负数,则用不等式表示正确的是()A.m<0 B.m>0 C.m≤0 D.m≥0解:非负数即正数或0,即>或等于0的数,则m≥0.故选D.3.下列式子:①﹣2<0;②2x+3y<0;③x=3;④x+y中,是不等式的个数有()A.1个B.2个C.3个D.4个解:①﹣2<0;②2x+3y<0是用不等号连接的式子,故是不等式.故选B.4.下列数学表达式中:①﹣2<0,②2x+3y>0,③x=2,④x2+2xy+y2,⑤x≠3,⑥x+1>2中,不等式有()A.1个B.2个 C.3个 D.4个解:不等式是指不等号来连接不等关系的式子,如<,>,≤,≥,≠,则不等式有:①②⑤⑥.故选D5.某种品牌的八宝粥,外包装标明:净含量为330±10g,表明了这罐八宝粥的净含量x的范围是()A.320<x<340 B.320≤x<340 C.320<x≤340 D.320≤x≤340解:净含量的合格范围是330﹣10≤x≤330+10,即320≤x≤340,故选:D.6.已知a<b,则下列四个不等式中,不正确的是()A.a﹣2<b﹣2 B.﹣2a<﹣2b C.2a<2b D.a+2<b+2解:A、若a<b,则a﹣2<b﹣2,故A选项正确;B、若a<b,则﹣2a>﹣2b,故B选项错误;C、若a<b,则2a<2b,故C选项正确;D、若a<b,则a+2<b+2,故D选项正确.故选:B.7.已知a>b,下列不等式中错误的是()A.a+1>b+1 B.a﹣2>b﹣2 C.﹣4a<﹣4b D.2a<2b解:A、B、不等式的两边都加或都减同一个整式,不等号的方向不变,故A、B正确;C、不等式的两边都乘或除以同一个负数,不等号的方向改变,故C正确;D、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故D错误;故选:D.8.若a>b,则下列式子正确的是()A.﹣5a>﹣5b B.a﹣3>b﹣3 C.4﹣a>4﹣b D.a< b解:A、不等式两边都乘﹣5,不等号的方向改变,故错误;B、不等式两边都加﹣3,不等号的方向不变,正确;C、不等式两边都乘﹣1,得到﹣a<﹣b,则4﹣a<4﹣b,不等号的方向改变,故错误;D、不等式两边都乘以,不等号的方向不变,故错误;故选:B.9.若a<b,则下列不等式中成立的是()A.a+5>b+5 B.﹣5a>﹣5b C.3a>3b D.解:A、∵a<b,∴a+5<b+5,本选项错误;B、∵a<b,∴﹣5a>﹣5b,本选项正确;C、∵a<b,∴3a<3b,本选项错误;D、∵a<b,∴<,本选项错误,故选B10.若a<b,则下列不等式一定成立的是()A.a﹣3>b﹣3 B.a+m<b+n C.m2a<m2b D.c﹣a>c﹣b解:A、不等式a<b的两边同时减去3,可得a﹣3<b﹣3,不符合题意;B、只有在不等式a<b的两边加上同一个数,不等号的方向才不变,m≠n时不等式不成立,不符合题意;C、当m=0时,不等式a<b的两边同时乘以m2,可得m2a=m2b,不符合题意;D、不等式a<b的两边同时乘以﹣1,可得﹣a>﹣b,再两边同时加上c,可得c﹣a>c﹣b,符合题意.故选D.巩固提高11.某地夏天的最低气温是13℃,最高气温是30℃,则这天气温是t(℃)的取值范围是()A.t<13 B.t>30 C.13<t<30 D.13≤t≤30解:由题意,得13≤t≤30,故选:D.12.在式子﹣3<0,x≥2,x=a,x2﹣2x,x≠3,x+1>y中,是不等式的有()A.2个B.3个C.4个D.5个解:﹣3<0是不等式,x≥2是不等式,x=a是等式,x2﹣2x是代数式,x≠3是不等式,x+1>y是不等式.不等式共有4个.故选:C.13.下列数学表达式中,①﹣8<0;②4a+3b>0;③a=3;④a+2>b+3,不等式有()A.1个B.2个C.3个D.4个解:不等式有,①﹣8<0;②4a+3b>0;④a+2>b+3,共3个,故选:C.14.数x不小于3是指()A.x≤3 B.x≥3 C.x>3 D.x<3解:数x不小于3是指x≥3,故选:B.15.下列式子:①﹣2<0;②2x﹣3y<0;③x=3;④x+y.其中不等式的个数有()A.1 B.2 C.3 D.4解:①﹣2<0;②2x﹣3y<0是用不等号连接的式子,故是不等式.故选:B.16.已知x>y,若对任意实数a,以下结论:甲:ax>ay;乙:a2﹣x>a2﹣y;丙:a2+x≤a2+y;丁:a2x≥a2y其中正确的是()A.甲B.乙C.丙D.丁解:甲:ax>ay,a≤0,不成立;乙:a2﹣x>a2﹣y两边都乘以﹣1,不等号的方向不改变,不成立;丙:a2+x≤a2+y两边都加同一个整式,不等号的方向不变,不成立;丁:a2x≥a2y两边都乘以非负数,不等号的方向不变,成立,故选:D.17.若a<b,则下列式子中一定成立的是()A.a﹣3<b﹣3 B.> C.3a>2b D.3+a>3+b解:A、由不等式的性质1可知A选项正确,符合题意;B、由不等式的性质2可知B错误,不合题意;C、不符合不等式的基本性质,故C错误;D、由不等式的性质1可知D选项正确,不符合题意.故选:A.18.若a<b,则下列各式中,错误的是()A.a﹣3<b﹣3 B.﹣a<﹣b C.﹣2a>﹣2b D.a< b解:A、两边都减3,不等号的方向不变,故A不符合题意;B、两边都乘以﹣1,不等号的方向改变,故B符合题意;C、两边都乘以﹣2,不等号的方向改变,故C不符合题意;D、两边都除以3,不等号的方向不变,故D不符合题意;故选:B.19.若﹣a≥b,则a≤﹣2b,其根据是()A.不等式的两边都加上(或减去)同一个整式,不等号的方向不变B.不等式的两边都乘以(或除以)同一个正数,不等号的方向不变C.不等式的两边都乘以(或除以)同一个负数,不等号的方向改变D.以上答案均不对解:若﹣a≥b,则a≤﹣2b,其根据是不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,故选:C.20.如果a<b,那么下列不等式中一定成立的是()A.a2<ab B.ab<b2C.a2<b2D.a﹣2b<﹣b解:∵a<b,∴a﹣2b<b﹣2b,即a﹣2b<﹣b,故选D.1.下面给出了6个式子:①3>0;②4x+3y>0;③x=3;④x﹣1;⑤x+2≤3;⑥2x≠0,其中不等式有()A.2个B.3个C.4个D.5个解:其中是不等式的有:①3>0;②4x+3y>0;⑤x+2≤3;⑥2x≠0.共4个.故选C.2.下面给出5个式子:①3x>5;②x+1;③1﹣2y≤0;④x﹣2≠0;⑤3x﹣2=0.其中是不等式的个数有()A.2个B.3个C.4个D.5个解:不等式有::①3x>5;③1﹣2y≤0;④x﹣2≠0共3个.故选B.3.下面给出了6个式子:①3>0;②4x+3y>0;③x=3;④x﹣1;⑤x+2≤3;⑥2x≠0.其中不等式有()A.2个B.3个C.4个D.5个解:①3>0;②4x+3y>0;⑤x+2≤3;⑥2x≠0是不等式,故选:C.4.下列式子①<y+5;②1>2;③3m﹣1≤4;④a+2≠a﹣2中,不等式有()个.A.2 B.3 C.4 D.1解:①<y+5;②1>2;③3m﹣1≤4;④a+2≠a﹣2是不等式,故选:C.5.今年昭通市4月5日,这一天最低气温8℃,最高气温26℃,则昭通市这一天气温t(℃)的变化范围是()A.t>8 B.t≤26 C.8<t<26 D.8≤t≤26解:根据题意可得:8≤t≤26,故选D6.若3x>﹣3y,则下列不等式中一定成立的是()A.x+y>0 B.x﹣y>0 C.x+y<0 D.x﹣y<0解:两边都除以3,得x>﹣y,两边都加y,得x+y>0,故选:A.7.若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<12解:∵x+5>0,∴x>﹣5,A、根据x+1<0得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0得出x<1,故本选项不符合题意;C、根据<﹣1得出x<﹣5,故本选项不符合题意;D、根据﹣2x<12得出x>﹣6,故本选项符合题意;故选D.8.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选D.9.已知a>b,下列关系式中一定正确的是()A.a2<b2B.2a<2b C.a+2<b+2 D.﹣a<﹣b解:A,a2<b2,错误,例如:2>﹣1,则22>(﹣1)2;B、若a>b,则2a>2b,故本选项错误;C、若a>b,则a+2>b+2,故本选项错误;D、若a>b,则﹣a<﹣b,故本选项正确;故选:D.10.若a>b,则下列式子中一定成立的是()A.a﹣2<b﹣2 B.>C.2a>b D.3﹣a>3﹣b解:A、由不等式的性质1可知A错误;B、由不等式的性质2可知B正确;C、不符合不等式的基本性质,故C错误;D、先由不等式的性质3得到﹣a<﹣b,然后由不等式的性质1可知3﹣a<2﹣b,故D错误.故选:B.1.无论x取什么数,下列不等式总成立的是()A.x+5>0 B.x+5<0 C.x2<0 D.x2≥0解:A、当x≤﹣5时,不等式不成立,故此选项错误;B、当x≥﹣5时,不等式不成立,故此选项错误;C、当x=0时,不等式不成立,故此选项错误;D、无论x为何值,不等式总成立,故此选项正确;故选:D.2.数学表达式①﹣5<7;②3y﹣6>0;③a=6;④2x﹣3y;⑤a≠2;⑥7y﹣6>y+2,其中是不等式的有()A.2个B.3个C.4个D.5个解:数学表达式①﹣5<7;②3y﹣6>0;⑤a≠2;⑥7y﹣6>y+2是不等式,故选:C.3.下列式子:①3>0;②4x+3y>0;③x=3;④x﹣1≠5;⑤x+2≤3是不等式的有()A.2个B.3个C.4个D.5个解:根据不等式的定义,只要有不等符号的式子就是不等式,所以:①3>0;②4x+3y>0;④x﹣1≠5;⑤x+2≤3为不等式,共有4个.故选:C.4.下列式子中,是不等式的有()①2x=7;②3x+4y;③﹣3<2;④2a﹣3≥0;⑤x>1;⑥a﹣b>1.A.5个B.4个C.3个D.1个解:①2x=7是等式;②3x+4y不是不等式;③﹣3<2是不等式;④2a﹣3≥0是不等式;⑤x>1是不等式;⑥a﹣b>1是不等式,故选B5.今年西安市4月份最低气温4℃,最高气温33℃,则西安市该月份气温t(℃)的变化范围是()A.t>4 B.t≤33 C.4<t<33 D.4≤t≤33解:∵西安市4月份最低气温4℃,最高气温33℃,∴西安市该月份气温t(℃)的变化范围是:4≤t≤33.故选:D.6.如果a>b,则下列不等式中不正确的是()A.a+2>b+2 B.a﹣2>b﹣2 C.﹣2a>﹣2b D.解:根据不等式的性质,可得,A、∵a>b,∴a+2>b+2,故本选项正确,B、∵a>b,∴a﹣2>b﹣2,故本选项正确,C、∵a>b,∴﹣2a<﹣2b,故本选项错误,D、∵a>b,∴a>b,故本选项正确.故选C.7.若a>b,则下列不等式正确的是()A.2a<2b B.a﹣2>b﹣2 C. D.a﹣b<0解:A、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故A错误;B、D、不等式的两边都加或都减同一个整式,不等号的方向不变,故B正确,D错误;C、不等式的两边都乘或除以同一个负数,不等号的方向改变,故C错误;故选:B.8.如果c为有理数,且c≠0,下列不等式中正确的是()A.3c>2c B.C.3+c>2+c D.﹣3c<﹣2c解:A、在不等式3>2的两边同时乘以不为零的正有理数c,不等式仍成立,即3c>2c.但是,当c<0时,不等式3c<2c.故本选项错误;B、在不等式3>2的两边同时除以不为零的正有理数c,不等式仍成立,即.但是,当c<0时,不等式.故本选项错误;C、在不等式3>2的两边同时加上有理数c,不等式仍成立,即3+c>2+c.故本选项正确;D、在不等式﹣3<﹣2的两边同时乘以负有理数c,则﹣3c>﹣2c.故本选项错误;故选:C.9.设a>b>0,c为常数,给出下列不等式①a﹣b>0;②ac>bc;③<;④b2>ab,其中正确的不等式有()A.1个B.2个C.3个D.4个解:①∵a>b,∴a﹣b>0.故①正确;②若c≤0时,ac≤bc.故②错误;③∵a>b>0,∴<.故③正确;④∵a>b>0,∴0<b<a,则b•b<ab,即b2<ab.故④错误.综上所述,正确的不等式是①③,共2个.故选:B.10.若a<b,则下列各式正确的是()A.3a>3b B.﹣3a>﹣3b C.a﹣3>b﹣3 D.>解:A、∵a<b,∴3a<3b,故本选项错误;B、∵a<b,∴﹣a>﹣b,∴﹣3a>﹣3b,故本选项正确;C、∵a<b,∴a﹣3<b﹣3,故本选项错误;D、∵a<b,∴<,故本选项错误.故选B.11.“a<b”的反面是()A.a≠b B.a>b C.a=b D.a≥b解:a<b的反面是a=b或a>b,即a≥b.故选;D.12.生物兴趣小组在同一温箱里培育甲、乙两种菌种,如果甲菌种生长温度x℃的范围是34≤x≤37,乙菌种生长温度y℃的范围是33≤y≤35.那么温箱里应设置温度T℃的范围是()A.34≤T≤37 B.34≤T≤35 C.33≤T≤35 D.35≤T≤37解:∵甲菌种生长温度x℃的范围是34≤x≤37,乙菌种生长温度y℃的范围是33≤y≤35,∴温箱里应设置温度T℃的范围是:34≤T≤35.故选:B.13.2015年深圳空气质量优良指数排名入围全国城市前十,空气污染指数API值不超过50时,说明空气质量为优,相当于达到国家空气质量一级标准,其中API值不超过50时可以表示为()A.API≤50 B.API≥50 C.API<50 D.API>50解:2015年深圳空气质量优良指数排名入围全国城市前十,空气污染指数API值不超过50时,说明空气质量为优,相当于达到国家空气质量一级标准,其中API值不超过50时可以表示为API≤50,故选A14.据我市气象台报道,今天的气温t的范围是19℃≤t≤21℃,则今天的最低气温是()A.19℃ B.19.1℃C.18.9℃D.21℃解:据我市气象台报道,今天的气温t的范围是19℃≤t≤21℃,则今天的最低气温是19℃,故选A15.下列各式中,不是不等式的是()A.3x+2y﹣1>0 B.﹣2x>5 C.3+2=5 D.x2﹣4x+5>0解:A、是不等式,故A不符合题意;B、是不等式,故B不符合题意;C、是等式,故C符合题意;D、是不等式,故D不符合题意;故选:C.16.已知a>b,若c是任意实数,则下列不等式中总成立的是()A.a+c<b+c B.a﹣c>b﹣c C.ac<bc D.ac>bc解:A、∵a>b,c是任意实数,∴a+c>b+c,故本选项错误;B、∵a>b,c是任意实数,∴a﹣c>b﹣c,故本选项正确;C、当a>b,c<0时,ac<bc,而此题c是任意实数,故本选项错误;D、当a>b,c>0时,ac>bc,而此题c是任意实数,故本选项错误;故选B.17.若m>n,下列不等式一定成立的是()A.m﹣2>n+2 B.2m>2n C.﹣> D.m2>n2解:A、左边减2,右边2,故A错误;B、两边都乘以2,不等号的方向不变,故B正确;C、左边除以﹣2,右边除以2,故C错误;D、两边乘以不同的数,故D错误;故选:B.18.如果a<b,下列各式中正确的是()A.ac2<bc2B.>C.﹣3a>﹣3b D.>解:A、c=0时,ac2<bc2不成立,故本选项错误;B、若a、b异号则ab<0,不等式两边都除以ab得,>,所以,<,故本选项错误;C、a<b不等式两边都乘以﹣3得,﹣3a>﹣3b,故本选项正确;D、a<b不等式两边都除以4得,<,故本选项错误.故选C.19.若0<x<1,则下列不等式成立的是()A.x2>>x B.>x2>x C.x>>x2D.>x>x2解:可以取x=0.1代入x2和求出值,从而得到>x>x2,故选D.20.若x>y,则下列式子中错误的是()A.x+>y+B.x﹣3>y﹣3 C.>D.﹣3x>﹣3y 解:A、根据不等式的性质1,可得x+>y+,故A选项正确;B、根据不等式的性质1,可得x﹣3>y﹣3,故B选项正确;C、根据不等式的性质2,可得>,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.。

5不等式和它的基本性质

5不等式和它的基本性质

不等式和它的基本性质一、考点扫描:1.了解不等式的意义。

2.掌握不等式的三条基本性质,并会运用这些基本性质将不等式变形。

二、名师精讲:1.不等式的概念:用不等号把两个代数式连接起来,表示不等关系的式子,叫做不等式。

2.不等式的基本性质(1)不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

用式子表示:如果a>b,那a+c>b+c(或a–c>b–c)(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

用式子表示:如果a>b,且c>0,那么ac>bc(或> )(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

用式子表示:如果a>b,且c<0,那么ac<BC(< SPAN>或< )3.不等式的基本性质是对不等式变形的重要依据。

不等式的性质与等式的性质类似,但等式的结论是“仍是等式”,而不等式的结论则是“不等号方向不变或改变”。

在运用性质(2)和性质(3)时,要特别注意不等式的两边乘以或除以同一个数,首先认清这个数的性质符号,从而确定不等号的方向是否改变。

三、例题分析第一阶梯[例1]我们已经学过的等式,方程是用"="连接式子,它表示数量间的相等关系,例如2+3=5,3x-1=2x+7, a+b=b+a等。

事实上,在实际生活中,同类量之间具有不相等关系的例子是大量的,普遍的,例如:某天的气温最低是-2℃,最高是3℃说明气温不相等,两个同学们体重分别是95斤和87斤,也不相等,上述两个例子我们可以分别表示成-2<3,95>87,像这种用不等号表示不等关系的式子,叫做不等式,常用的不等号有">""<"">""≥""≤""≠"。

根据不等式的概念,请指出下列各式哪些是不等式:①x+y=y+x②4+x>5③-3<0④a+b≤c+b⑤a≠0⑥2x-7=5x+4提示:什么叫做不等式?常用的不等号有哪些?参考答案:②③④⑤是不等式。

七年级数学拓展第五讲不等式与不等式组讲义

七年级数学拓展第五讲不等式与不等式组讲义
例 19. 已 知 x1, x2 ,, x7 为 正 整 数 , 且 x1 x2 x3 x6 x7 , 如 果 x1 x2 x3 x7 2012 ,那么 x1 x2 x3 的最大可能值是多少?
例 16.(2010 江苏)近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称为“蒜你狠”、“豆 你玩”.以绿豆为例,5 月上旬某市绿豆的市场价已达 16 元/千克。市政府决定采取价格临时 干预措施,调进绿豆以平抑市场价格。经市场调硏预测,该市每调进 100 吨绿豆,市场价格 就下降 1 元/千克。为了即能平抑绿豆的市场价格,又要保护豆农的生产积极性,绿豆的市 场价格控制在 8 元汘千克到 10 元/汘克之间(含 8 元/千克和 10 元/千克)。问调进绿豆的吨 数应在什么范围内为宜?
例 17.某工厂现有甲种原料 36 千克,乙种原料 20 千克,计划用这两种原料生产 A、B 两种 产品共 12 件。已知生产一件 A 种产品需甲种原料 3 千克,乙种原料 1 千克;生 B 种产品需 甲种原料 2 千克乙种原料 5 千克 (1)设生产 x 件 A 种产品,写出 x 应满足的不等式组 (2)请你设计出符合题意的几种生产方案
第五讲 不等式与不等式组
不等式的概念
1.不等式的概念
用不等号表示不相等关系的式子,叫做不等式,例如:
5 2, a 3 4 1, x 1 0,| x | 0,3a 4a
等都是不等式
常见的不等号有 5 种: " "," "," "," "," "
2.不等式的性质
(1)基本性质 1:不等式两边都加上(或减去)同一个数或是同一个整式,不等号方向不 变
其中空心点用来表示“>”和“<”,实心点用来表示“≥”和“≤”

不等式怎么解

不等式怎么解

不等式怎么解在我们的生活中,很多问题都是通过函数来求解。

函数具有的许多性质使得我们能够快速的解决问题。

今天我们来学习函数的应用。

函数的应用范围很广,而且有很多重要的应用。

我们今天主要讲的就是关于不等式处理的方法。

很多人都觉得不难,其实这句话是没有任何问题的。

只要掌握了函数的一些基本性质就可以轻松地解决问题了。

在函数的应用当中常常出现一些不等式或者不等式。

这就是由于不等式不等式的性质不一样导致的运用。

但是如何正确的使用这个方法呢?首先要掌握函数的概念。

简单易懂的解释是当某个函数在一个解以后会用到这两个函数时才出现不等式解这个问题。

不等式解就是解函数之前要记住两个关键词“x=2、y= a+ b”和“y= b”!两个函数是互相变化关系,我们可以根据这个关系直接去运用这两个不等式就可以了。

但是如果我们想知道不等式要怎么解?首先我们需要了解一下函数的定义以及它的解法跟我们人类所知道的不等式是一样的吗?下面我们就来看一下具体介绍吧!一、方程和不等式的解法这是解等式中常见的方法之一。

首先,我们需要记住: x=2、 y= a+ b (2)=0!当然不同种类的数根也是不同的概念。

所以“x=2”的含义应该是 x=2这只是一个表达式而已。

下面我们要着重介绍“X=2”这部分内容。

那么方程和不等式是怎样求解的呢?这里有一个非常重要的特征:用 y= a+ b求解方程。

首先我们需要知道2=2并且要记住这两个关键词“x=2”和“y= b”!两个词之间有一个区别和联系那就是“x=2”和“y= a+ b”。

也就是说你要知道自己所求出来的是哪一个值!也就是说不等式解必须是两个不等式解。

所以对于上面这样两种类型不等式解我们要记住这两个关键词“x=2”还有一个比较容易混淆是“1”或者是两个“1”加起来。

我们也可以将其称为“x=2”、“y= b”或者“y=a+ b”。

二、代入法当不等式满足形式 f (x)=(x+1)/2和 f (x)时,我们就可以通过代入法来解决。

5 第5讲 绝对值不等式

5 第5讲 绝对值不等式

第5讲 绝对值不等式1.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集 a >0 a =0 a <0 |x |<a {x |-a <x <a } ∅∅ |x |>a{x |x >a 或x <-a }{x |x ∈R 且x ≠0}R①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c . 2.绝对值三角不等式定理1:如果a ,b 是实数,那么|a +b |≤|a |+|b |.当且仅当ab ≥0时,等号成立. 定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |.当且仅当(a -b )(b -c )≥0时,等号成立.上述定理还可以推广得到以下几个不等式: (1)|a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |; (2)||a |-|b ||≤|a +b |≤|a |+|b |; (3)||a |-|b ||≤|a -b |≤|a |+|b |.[疑误辨析]判断正误(正确的打“√”,错误的打“×”) (1)若|x |>c 的解集为R ,则c ≤0.( ) (2)不等式|x -1|+|x +2|<2的解集为∅.( )(3)对|a +b |≥|a |-|b |当且仅当a >b >0时等号成立.( ) (4)对|a |-|b |≤|a -b |当且仅当|a |≥|b |时等号成立.( ) (5)对|a -b |≤|a |+|b |当且仅当ab ≤0时等号成立.( ) 答案:(1)× (2)√ (3)× (4)× (5)√ [教材衍化]1.(选修4-5P20T7改编)不等式3≤|5-2x |<9的解集为________.解析:由题意得⎩⎪⎨⎪⎧|2x -5|<9,|2x -5|≥3,即⎩⎪⎨⎪⎧-9<2x -5<9,2x -5≥3或2x -5≤-3, 解得⎩⎪⎨⎪⎧-2<x <7,x ≥4或x ≤1,所以不等式的解集为(-2,1]∪[4,7). 答案:(-2,1]∪[4,7)2.(选修4-5P20T8改编)不等式|x -1|-|x -5|<2的解集是________.解析:①当x ≤1时,原不等式可化为1-x -(5-x )<2,所以-4<2,不等式恒成立,所以x ≤1;②当1<x <5时,原不等式可化为x -1-(5-x )<2,所以x <4,所以1<x <4; ③当x ≥5时,原不等式可化为x -1-(x -5)<2,该不等式不成立. 综上,原不等式的解集为{x |x <4}. 答案:{x |x <4} [易错纠偏](1)含参数的绝对值不等式讨论不清; (2)存在性问题不能转化为最值问题求解.1.若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =________.解析:因为|kx -4|≤2,所以-2≤kx -4≤2,所以2≤kx ≤6.因为不等式的解集为{x |1≤x ≤3},所以k =2.答案:22.若关于x 的不等式|a |≥|x +1|+|x -2|存在实数解,则实数a 的取值范围是________. 解析:由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3,所以|x +1|+|x -2|的最小值为3.要使原不等式有解,只需|a |≥3,则a ≥3或a ≤-3. 答案:(-∞,-3]∪[3,+∞)绝对值不等式的解法(1)(2020·嘉兴市高考模拟)已知f (x )=x -2,g (x )=2x -5,则不等式|f (x )|+|g (x )|≤2的解集为________;|f (2x )|+|g (x )|的最小值为________.(2)解不等式|x +3|-|2x -1|<x2+1.【解】 (1)因为f (x )=x -2,g (x )=2x -5, 所以|f (x )|+|g (x )|≤2, 即|x -2|+|2x -5|≤2,x ≥52时,x -2+2x -5≤2,解得52≤x ≤3, 2<x <52时,x -2+5-2x ≤2,解得x ≥1,即2<x <52,x ≤2时,2-x +5-2x ≤2,解得x ≥53,即53≤x ≤2.综上,不等式的解集是[53,3];|f (2x )|+|g (x )|=|2x -2|+|2x -5|≥|2x -2-2x +5|=3,故|f (2x )|+|g (x )|的最小值是3. 故填[53,3],3.(2)①当x <-3时,原不等式化为-(x +3)-(1-2x )<x2+1,解得x <10,所以x <-3.②当-3≤x <12时,原不等式化为(x +3)-(1-2x )<x 2+1,解得x <-25,所以-3≤x <-25.③当x ≥12时,原不等式化为(x +3)-(2x -1)<x2+1,解得x >2,所以x >2.综上可知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-25或x >2.|x -a |+|x -b |≥c (或≤c )型不等式的解法(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集.(2)几何法:利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体,|x -a |+|x -b |≥|x -a -(x -b )|=|a -b |.(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.设函数f (x )=|x -a |.(1)当a =2时,解不等式f (x )≥7-|x -1|;(2)若f (x )≤1的解集为[0,2],求a 的值. 解:(1)当a =2时,不等式为|x -2|+|x -1|≥7,所以⎩⎪⎨⎪⎧x <1,2-x +1-x ≥7或⎩⎪⎨⎪⎧1≤x ≤2,2-x +x -1≥7或⎩⎨⎧x >2x -2+x -1≥7, 所以不等式的解集为(-∞,-2]∪[5,+∞). (2)f (x )≤1即|x -a |≤1,解得a -1≤x ≤a +1,而f (x )≤1的解集是[0,2],所以⎩⎪⎨⎪⎧a -1=0a +1=2,解得a =1.绝对值不等式性质的应用(1)(2020·宁波市九校联考)已知f (x )=|x +1x -a |+|x -1x-a |+2x -2a (x >0)的最小值为32,则实数a =________.(2)(2020·宁波效实中学高三模拟)确定“|x -a |<m 且|y -a |<m ”是“|x -y |<2m ”(x ,y ,a ,m ∈R )的什么条件.【解】 (1)f (x )=|x +1x -a |+|x -1x -a |+2x -2a ≥|(x +1x -a )-(x -1x -a )|+2x -2a=|2x |+2x -2a =2x +2x -2a ≥22x·2x -2a =4-2a . 当且仅当2x =2x ,即x =1时,上式等号成立.由4-2a =32,解得a =54.故填54.(2)因为|x -y |=|(x -a )-(y -a )|≤|x -a |+|y -a |<m +m =2m , 所以“|x -a |<m 且|y -a |<m ”是“|x -y |<2m ”的充分条件.取x =3,y =1,a =-2,m =2.5,则有|x -y |=2<5=2m ,但|x -a |=5,不满足|x -a |<m=2.5,故“|x-a|<m且|y-a|<m”不是“|x-y|<2m”的必要条件.故为充分不必要条件.两数和与差的绝对值不等式的性质(1)对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.(2)该定理可强化为||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.1.若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是________.解析:由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以只需a≤3即可.故a的取值范围为(-∞,3].答案:(-∞,3]2.(2020·温州模拟)已知a,b,c∈R,若|a cos2x+b sin x+c|≤1对x∈R成立,则|a sin x +b|的最大值为________.解析:由题意,设t=sin x,t∈[-1,1],则|at2-bt-a-c|≤1恒成立,不妨设t=1,则|b+c|≤1;t=0,则|a+c|≤1,t=-1,则|b-c|≤1,若a,b同号,则|a sin x+b|的最大值为|a+b|=|a+c+b-c|≤|a+c|+|b-c|≤2;若a,b异号,则|a sin x+b|的最大值为|a-b|=|a+c-b-c|≤|a+c|+|b+c|≤2;综上所述,|a sin x+b|的最大值为2.答案:2绝对值不等式的综合应用与证明(2020·杭州学军中学高三模拟)已知函数f(x)=ax2+bx+c(a,b,c∈R),当x∈[-1,1]时,|f(x)|≤1.(1)求证:|b|≤1;(2)若f(0)=-1,f(1)=1,求实数a的值.【解】(1)证明:由题意知f(1)=a+b+c,f (-1)=a -b +c , 所以b =12[f (1)-f (-1)].因为当x ∈[-1,1]时,|f (x )|≤1, 所以|f (1)|≤1,|f (-1)|≤1, 所以|b |=12|f (1)-f (-1)|≤12[|f (1)|+|f (-1)|]≤1. (2)由f (0)=-1,f (1)=1可得c =-1,b =2-a , 所以f (x )=ax 2+(2-a )x -1.当a =0时,不满足题意,当a ≠0时, 函数f (x )图象的对称轴为x =a -22a ,即x =12-1a. 因为x ∈[-1,1]时,|f (x )|≤1,即|f (-1)|≤1,所以|2a -3|≤1,解得1≤a ≤2. 所以-12≤12-1a ≤0,故|f ⎝⎛⎭⎫12-1a |= |a ⎝⎛⎭⎫12-1a 2+(2-a )⎝⎛⎭⎫12-1a -1|≤1. 整理得|(a -2)24a+1|≤1,所以-1≤(a -2)24a +1≤1,所以-2≤(a -2)24a ≤0,又a >0,所以(a -2)24a ≥0,所以(a -2)24a=0,所以a =2.(1)研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,转化为分段函数,然后数形结合解决是常用的思维方法.(2)对于求y =|x -a |+|x -b |或y =|x -a |-|x -b |型的最值问题利用绝对值三角不等式更方便.形如y =|x -a |+|x -b |的函数只有最小值,形如y =|x -a |-|x -b |的函数既有最大值又有最小值.(3)证明含有绝对值的不等式的思路:①充分利用含绝对值的不等式的性质;②证题过程还应考虑添、拆项的技巧,以上两步骤用活,此类问题可快速破解.1.设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A .(1)求a 的值;(2)求函数f (x )=|x +a |+|x -2|的最小值. 解:(1)因为32∈A ,且12∉A .所以⎪⎪⎪⎪32-2<a , 且⎪⎪⎪⎪12-2≥a , 解得12<a ≤32,又因为a ∈N *,所以a =1.(2)因为f (x )=|x +1|+|x -2|≥|(x +1)-(x -2)|=3. 当且仅当(x +1)(x -2)≤0即-1≤x ≤2时取到等号, 所以f (x )的最小值为3.2.设f (x )=x 2-x +b ,|x -a |<1,求证:|f (x )-f (a )|<2(|a |+1). 证明:f (x )-f (a )=x 2-x -a 2+a =(x -a )(x +a -1),所以|f (x )-f (a )|=|(x -a )(x +a -1)|=|x -a |·|x +a -1|<|x +a -1|=|x -a +2a -1|≤|x -a |+|2a -1|≤|x -a |+2|a |+1<2|a |+2=2(|a |+1).所以|f (x )-f (a )|<2(|a |+1).[基础题组练]1.(2020·嘉兴期中)不等式1≤|2x -1|<2的解集为( ) A.⎝⎛⎭⎫-12,0∪⎣⎡⎭⎫1,32 B.⎝⎛⎭⎫-12,32 C.⎝⎛⎦⎤-12,0∪⎣⎡⎭⎫1,32 D .(-∞,0]∪[1,+∞)解析:选C.由题意得,⎩⎪⎨⎪⎧-2<2x -1<22x -1≥1或2x -1≤-1,解得:-12<x ≤0或1≤x <32,故不等式的解集是⎝⎛⎦⎤-12,0∪⎣⎡⎭⎫1,32,故选C. 2.(2020·温州高三第二次适应性考试)不等式|x -1|+|x +1|<4的解集是( ) A .{x |x >-2} B .{x |x <2} C .{x |x >0或x <-2}D .{x |-2<x <2}解析:选D.根据题意,原不等式等价于⎩⎪⎨⎪⎧x ≤-1,1-x -x -1<4或⎩⎪⎨⎪⎧-1<x ≤1,1-x +x +1<4或⎩⎪⎨⎪⎧x >1,x -1+x +1<4,解之取并集即得原不等式的解集为{x |-2<x <2}.3.(2020·绍兴高三质量检测)对任意实数x ,若不等式|x +2|+|x +1|>k 恒成立,则实数k 的取值范围是( )A .(-∞,0)∪[2,+∞)B .[-2,-1]∪(0,+∞)C .(-∞,1)D .(-∞,1]解析:选C.因为|x +2|+|x +1|≥|x +2-x -1|=1,所以当且仅当k <1时,不等式|x +2|+|x +1|>k 恒成立.4.(2020·绍兴市诸暨市高考模拟)已知f (x )=x 2+3x ,若|x -a |≤1,则下列不等式一定成立的是( )A .|f (x )-f (a )|≤3|a |+3B .|f (x )-f (a )|≤2|a |+4C .|f (x )-f (a )|≤|a |+5D .|f (x )-f (a )|≤2(|a |+1)2解析:选B.因为f (x )=x 2+3x ,所以f (x )-f (a )=x 2+3x -(a 2+3a )=(x -a )(x +a +3),所以|f (x )-f (a )|=|(x -a )(x +a +3)|=|x -a ||x +a +3|,因为|x -a |≤1,所以a -1≤x ≤a +1,所以2a +2≤x +a +3≤2a +4,所以|f (x )-f (a )|=|x -a ||x +a +3|≤|2a +4|≤2|a |+4,故选B.5.(2020·绍兴市柯桥区高三期中)已知x ,y ∈R ,( ) A .若|x -y 2|+|x 2+y |≤1,则(x +12)2+(y -12)2≤32B .若|x -y 2|+|x 2-y |≤1,则(x -12)2+(y -12)2≤32C .若|x +y 2|+|x 2-y |≤1,则(x +12)2+(y +12)2≤32D .若|x +y 2|+|x 2+y |≤1,则(x -12)2+(y +12)2≤32解析:选B.对于A ,|x -y 2|+|x 2+y |≤1,由(x +12)2+(y -12)2≤32化简得x 2+x +y 2-y ≤1,二者没有对应关系;对于B ,由(x 2-y )+(y 2-x )≤|x 2-y |+|y 2-x |=|x -y 2|+|x 2-y |≤1,所以x 2-x +y 2-y ≤1,即(x -12)2+(y -12)2≤32,命题成立;对于C ,|x +y 2|+|x 2-y |≤1,由(x +12)2+(y +12)2≤32化简得x 2+x +y 2+y ≤1,二者没有对应关系;对于D ,|x +y 2|+|x 2+y |≤1,化简(x -12)2+(y +12)2≤32得x 2-x +y 2+y ≤1,二者没有对应关系.故选B.6.不等式|x -1|+|x +2|≥5的解集为________.解析:由⎩⎪⎨⎪⎧x ≤-2,-(x -1)-(x +2)≥5得x ≤-3;由⎩⎪⎨⎪⎧-2<x <1,-(x -1)+(x +2)≥5得无解; 由⎩⎪⎨⎪⎧x ≥1,(x -1)+(x +2)≥5得x ≥2. 即所求的解集为{x |x ≤-3或x ≥2}. 答案:{x |x ≤-3或x ≥2}7.对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为________. 解析:|x -2y +1|=|(x -1)-2(y -1)|≤|x -1|+|2(y -2)+2|≤1+2|y -2|+2≤5,即|x -2y +1|的最大值为5.答案:58.(2020·温州市高三高考模拟)若关于x 的不等式|x |+|x +a |<b 的解集为(-2,1),则实数对(a ,b )=________.解析:因为不等式|x |+|x +a |<b 的解集为(-2,1),所以⎩⎪⎨⎪⎧2+|-2+a |=b 1+|1+a |=b,解得a =1,b =3.答案:(1,3)9.(2020·绍兴市柯桥区高三模拟)对任意x ∈R 不等式x 2+2|x -a |≥a 2恒成立,则实数a 的取值范围是________.解析:因为不等式x 2+2|x -a |≥a 2对任意的x ∈R 恒成立, ①x ≥a 时,(x +a )(x -a )+2(x -a )≥0, (x -a )(x +a +2)≥0,因为x -a ≥0,因此只需x +a +2≥0,x ≥-(a +2), -(a +2)≤a ,解得a ≥-1. ②x <a 时,(x +a )(x -a )-2(x -a )≥0, (x -a )(x -2+a )≥0,因为x -a <0,只需x ≤2-a ,2-a ≥a ,解得a ≤1. 综上所述:-1≤a ≤1. 答案:[-1,1]10.(2020·宁波市六校联盟模拟)已知函数f (x )=|x +a |+|x -2|.当a =-4时,不等式f (x )≥6的解集为________;若f (x )≤|x -3|的解集包含[0,1],则实数a 的取值范围是________.解析:当a =-4时,f (x )≥6,即|x -4|+|x -2|≥6,即⎩⎨⎧x ≤24-x +2-x ≥6或⎩⎨⎧2<x <44-x +x -2≥6或⎩⎨⎧x ≥4x -4+x -2≥6,解得x ≤0或x ≥6.所以原不等式的解集为(-∞,0]∪[6,+∞). 由题可得f (x )≤|x -3|在[0,1]上恒成立. 即|x +a |+2-x ≤3-x 在[0,1]上恒成立,即-1-x ≤a ≤1-x 在[0,1]上恒成立.即-1≤a ≤0. 答案:(-∞,0]∪[6,+∞) [-1,0]11.若函数f (x )=|x +1|+2|x -a |的最小值为5,求实数a 的值.解:由于f (x )=|x +1|+2|x -a |,当a >-1时,f (x )=⎩⎪⎨⎪⎧-3x +2a -1,x <-1,-x +2a +1,-1≤x ≤a ,3x -2a +1,x >a .作出f (x )的大致图象如图所示,由函数f (x )的图象可知f (a )=5,即a +1=5,所以a =4.同理,当a ≤-1时,-a -1=5,所以a =-6.所以实数a 的值为4或-6.12.已知函数f (x )=|x -3|-|x -a |.(1)当a =2时,解不等式f (x )≤-12; (2)若存在实数x ,使得不等式f (x )≥a 成立,求实数a 的取值范围.解:(1)因为a =2,所以f (x )=|x -3|-|x -2|=⎩⎪⎨⎪⎧1,x ≤2,5-2x ,2<x <3,-1,x ≥3,所以f (x )≤-12等价于 ⎩⎪⎨⎪⎧x ≤2,1≤-12或⎩⎪⎨⎪⎧2<x <3,5-2x ≤-12或⎩⎪⎨⎪⎧x ≥3,-1≤-12,解得114≤x <3或x ≥3,所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥114. (2)由不等式的性质可知f (x )=|x -3|-|x -a |≤|(x -3)-(x -a )|=|a -3|,所以若存在实数x ,使得不等式f (x )≥a 成立,则|a -3|≥a ,解得a ≤32,所以实数a 的取值范围是⎝⎛⎦⎤-∞,32. [综合题组练]1.已知a ∈R ,函数f (x )=⎪⎪⎪⎪x +4x -a +a 在区间[1,4]上的最大值是5,则a 的取值范围是________.解析:因为x ∈[1,4],所以x +4x ∈[4,5],①当a ≤92时,f (x )max =|5-a |+a =5-a +a =5,符合题意;②当a >92时,f (x )max =|4-a |+a =2a -4=5,所以a =92(矛盾),故a 的取值范围是⎝⎛⎦⎤-∞,92. 答案:⎝⎛⎦⎤-∞,92 2.(2020·浙江省五校协作体联考)已知函数f (x )=|2x -a |+a .(1)若不等式f (x )≤6的解集为{x |-2≤x ≤3},求实数a 的值;(2)在(1)的条件下,若存在实数t ,使f ⎝⎛⎭⎫t 2≤m -f (-t )成立,求实数m 的取值范围.解:(1)由|2x -a |+a ≤6,得|2x -a |≤6-a ,所以a -6≤2x -a ≤6-a ,即a -3≤x ≤3,所以a -3=-2,所以a =1.(2)因为f ⎝⎛⎭⎫t 2≤m -f (-t ),所以|t -1|+|2t +1|+2≤m ,令y =|t -1|+|2t +1|+2,则y =⎩⎨⎧-3t +2,t ≤-12,t +4,-12<t <1,3t +2,t ≥1.所以y min =72,所以m ≥72. 3.(2020·杭州高考科目教学质检)已知函数f (x )=|x -4|+|x -a |(a <3)的最小值为2.(1)解关于x 的方程f (x )=a ;(2)若存在x ∈R ,使f (x )-mx ≤1成立,求实数m 的取值范围.解:(1)由f (x )=|x -4|+|x -a |≥|x -4-(x -a )|=|a -4|(当(x -4)(x -a )≤0时取等号),知|a -4|=2,解得a =6(舍去)或a =2.方程f (x )=a 即|x -4|+|x -2|=2,由绝对值的几何意义可知2≤x ≤4.(2)不等式f (x )-mx ≤1即f (x )≤mx +1,由题意知y =f (x )的图象至少有一部分不在直线y=mx +1的上方,作出对应的图象观察可知,m ∈(-∞,-2)∪⎣⎡⎭⎫14,+∞.4.(2020·温州校级月考)已知函数f (x )=x 2+|x -t |.(1)当t =1时,求不等式f (x )≥1的解集;(2)设函数f (x )在[0,2]上的最小值为h (t ),求h (t )的表达式.解:(1)当t =1时,f (x )=x 2+|x -1|.因为f (x )≥1,所以当x ≥1时,x 2+x -1≥1,所以x ≥1或x ≤-2.所以x ≥1.当x <1时,x 2-x +1≥1,所以x ≥1或x ≤0.所以x ≤0.综上,不等式的解集为{x |x ≥1或x ≤0}.(2)因为f (x )=x 2+|x -t |,x ∈[0,2],所以当t ≥2时,f (x )=x 2-x +t ,h (t )=f ⎝⎛⎭⎫12=t -14, 当t ≤0时,f (x )=x 2+x -t ,h (t )=f (0)=-t ,当0<t <2时,f (x )=⎩⎪⎨⎪⎧x 2-x +t ,x ∈[0,t ]x 2+x -t ,x ∈(t ,2]. 所以h (t )=⎩⎨⎧t -14,12≤t <2t 2,0<t <12. 所以h (t )=。

第5讲 一元一次不等式八年级数学下册同步讲义(北师大版)

第5讲 一元一次不等式八年级数学下册同步讲义(北师大版)

第5讲一元一次不等式1.掌握不等式的基本性质并能正确运用它们将不等式变形;2.理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法;3.掌握解一元一次不等式的方法和步骤并准确地求出不等式的解集.知识点01 不等式的相关概念1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种:“≠”、“>” 、“<” 、“≥”、“≤”.2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点:解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左.3.解不等式求不等式的解集的过程或证明不等式无解的过程,叫做解不等式.要点诠释:不等式的解与一元一次方程的解是有区别的:不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值.【知识拓展】(2021春•萍乡期末)“实数x不小于6”是指()A.x≤6 B.x≥6 C.x<6 D.x>6【即学即练】(2021春•建平县期末)据天气预报,2021年7月5日建平县最高气温是25℃,最低气温是22℃,则当天我县气温t(℃)的变化范围是()A.t>25 B.t≤22 C.22<t<25 D.22≤t≤25知识点02 不等式的性质性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,即如a>b,那么a±c>b±c.性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,c>0,那么ac>bc(或a c>bc).知识精讲目标导航性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,即如果a >b ,c <0,那么ac <bc (或a c<b c). 要点诠释:(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号. (2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c . 【知识拓展1】(2021春•饶平县校级期末)若2a +3b ﹣1>3a +2b ,试比较a ,b 的大小.【即学即练1】(2021•梁园区校级一模)若a >b >0,c >d >0,则下列式子不一定成立的是( ) A .a ﹣c >b ﹣dB .C .ac >bcD .ac >bd【即学即练2】(2021秋•澧县期末)若a >b ,则﹣2a ﹣2b .(用“<”号或“>”号填空) 【即学即练3】(2021春•万柏林区校级月考)利用不等式的性质,解答下列问题. (1)①如果a ﹣b <0,那么a b ; ②如果a ﹣b =0,那么a b ; ③如果a ﹣b >0,那么a b ; (2)比较2a 与a 的大小. (3)若a >b ,c >d . ①比较a +c 与b +d 的大小; ②比较a ﹣d 与b ﹣c 的大小.【即学即练4】(2021春•未央区校级月考)若m<n,且(a﹣5)m>(a﹣5)n,求a的取值范围.【即学即练5】(2021春•饶平县校级期末)根据要求,回答下列问题:(1)由2x>x﹣,得2x﹣x>﹣,其依据是;(2)由x>x﹣,得2x>6x﹣3,其依据是;(3)不等式x>(x﹣1)的解集为.【即学即练6】(2021•连州市模拟)已知a>b,则下列结论正确的是()A.﹣2a>﹣2b B.a+c>b+c C.3a<3b D.ac>bc【即学即练7】(2021春•潍坊期末)若a>b,则下列不等式一定成立的是.A.a+2>b+2 B.<C.﹣2a<﹣2b D.a2<b2【即学即练8】(2021•内江)已知非负实数a,b,c满足==,设S=a+2b+3c的最大值为m,最小值为n,则的值为.知识点03 一元一次不等式1.一元一次不等式的概念只含有一个未知数,且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式.其标准形式:ax+b>0(a≠0)或ax+b≥0(a≠0) ,ax+b<0(a≠0)或ax+b≤0(a≠0).2.一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似,•但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向.解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1.要点诠释:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.【知识拓展1】(2021春•皇姑区校级期中)若x2m﹣1>5是关于x的一元一次不等式,则m=.【即学即练1】(2021春•饶平县校级期末)已知(b+2)x b+1<﹣3是关于x的一元一次不等式,试求b的值,并解这个一元一次不等式.【即学即练2】(2021春•平川区校级期末)在数学表达式:﹣4<0,2x+y>0,x=1,x2+2xy+y2,x≠5,x+2>y+3中,是一元一次不等式的有()A.1个B.2个C.3个D.4个【即学即练3】(2021•南岗区校级开学)下列各式中,是一元一次不等式的有()(1)x+2+x2<2x﹣5+x2;(2)2x+xy+y;(3)3x﹣4y≥0;(4)﹣5<x;(5)x≠0;(6)a2+1>5.A.1个B.2个C.3个D.4个【即学即练4】(2021春•甘孜州期末)下列不等式中,是一元一次不等式的是()A.x<y B.a2+b2>0 C.>1 D.<0【即学即练5】(2021春•冠县期末)若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=.【知识拓展2】(2021秋•肇源县期末)若不等式组无解,则a的取值范围是.【即学即练1】(2021•滕州市一模)下列各数中,不是不等式2(x﹣3)+3<0的一个解的是()A.﹣3 B.C.D.2【即学即练2】(2021•河南模拟)用三个不等式x>﹣4,x<﹣1,x>1中的两个组成不等式组,其中有解集的个数为()A.0 B.1 C.2 D.3【即学即练3】(2021•新野县三模)已知关于x的不等式组有实数解,则m的取值范围是.【即学即练4】(2021春•沭阳县期末)如图,是关于x的不等式的解集示意图,则该不等式的解集为.【即学即练5】(2021春•陆河县校级期末)如图,此不等式的解集为.【即学即练6】(2021春•天津期末)分别用含x的不等式表示如图数轴中所表示的不等式的解集:②;②.【即学即练7】(2021•潮阳区模拟)把某个关于x的不等式的解集表示在数轴上如图所示,则该不等式的解集是()A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣2【即学即练8】(2021春•抚州期末)在实数范围内规定新运算“*”,基本规则是a*b=a﹣2b,已知不等式x*m≤3的解集在数轴上表示如图所示,则m的值为.【即学即练9】(2021春•饶平县校级期末)解不等式7﹣2x>(1﹣)2,把它的解集在数轴上表示出来,并求出它的正整数解.【即学即练10】(2019•衢江区二模)如图,在数轴上,点A、B分别表示数1和﹣2x+3.(1)求x的取值范围;(2)将x的取值范围在数轴上表示出来.【知识拓展3】(2021秋•龙凤区校级期末)若不等式(3a﹣2)x+2<3的解集是x<2,那么a必须满足()A.a=B.a>C.a<D.a=﹣【即学即练1】(2021秋•济南期末)不等式﹣3x≤6的解集为.【即学即练2】(2021秋•鹿城区校级期中)若不等式(m﹣3)x>m﹣3,两边同除以(m﹣3),得x<1,则m的取值范围为.【即学即练3】(2021秋•肇源县期末)若关于x的方程x+k=2x﹣1的解是负数,则k的取值范围是()A.k>﹣1 B.k<﹣1 C.k≥﹣1 D.k≤﹣1【即学即练4】(2021•安徽模拟)解不等式≤.【即学即练5】(2021•永定区模拟)解不等式:7x﹣2≤5x,并把解集在数轴上表示出来.【即学即练6】(2021秋•清镇市期中)已知点M(﹣6,3﹣a)是第二象限的点,则a的取值范围是.【知识拓展4】(2021•陕西)求不等式﹣x+1>﹣2的正整数解.【即学即练1】(2021•长兴县模拟)整数x满足不等式2x+1<8,则x的值可能是.(写出一个符合的值即可)【即学即练2】(2021春•聊城期末)解不等式,并写出它的负整数解.【即学即练3】(2021春•鞍山期末)解不等式(1﹣2x )≥;并写出它所有的非负整数解.【即学即练4】(2021秋•朝阳区校级期中)不等式4(x ﹣2)<2x ﹣3的非负整数解的个数为( ) A .2个B .3个C .4个D .5个1.比较a b +和a b -的大小.2.等式()()52186117x x -+<-+的最小整数解是方程24x ax -=的解,求a 的值.3.解不等式:11315111x x x x ++>+-++.能力拓展分层提分题组A 基础过关练一.选择题(共4小题)1.(2021秋•龙凤区校级期末)若不等式(3a﹣2)x+2<3的解集是x<2,那么a必须满足()A.a=B.a>C.a<D.a=﹣2.(2021•锦江区校级开学)若a>b,则下列不等式不一定成立的是()A.﹣2a<﹣2b B.am<bm C.a﹣3>b﹣3 D.3.(2021秋•龙凤区期末)已知a<b,则下列不等式错误的是()A.a﹣7<b﹣7 B.ac2<bc2C.D.1﹣3a>1﹣3b4.(2021秋•杜尔伯特县期末)若m<n,则下列各式正确的是()A.﹣2m<﹣2n B.C.1﹣m>1﹣n D.m2<n2二.填空题(共6小题)5.(2021秋•肇源县期末)若不等式组无解,则a的取值范围是.6.(2021秋•瓯海区月考)根据“3x与5的和是负数”可列出不等式.7.(2021秋•青羊区校级期中)﹣<x<的所有整数的和是.8.(2021秋•济南期末)不等式﹣3x≤6的解集为.9.(2021秋•澧县期末)若a>b,则﹣2a﹣2b.(用“<”号或“>”号填空)10.(2020秋•开化县期末)若x<y,且(a﹣3)x≥(a﹣3)y,则a的取值范围是.三.解答题(共2小题)11.(2021春•澄城县期末)已知(k+3)x|k|﹣2+5<k﹣4是关于x的一元一次不等式,求这个不等式的解集.12.(2021春•秦都区月考)解不等式:3x ﹣4<4+2(x ﹣2).题组B 能力提升练一、单选题1.在数学表达式:30-<,+a b ,3x =,222x xy y ++,5x ≠,23x y +>+中,是一元一次不等式的有( ). A .1个B .2个C .3个D .4个2.不等式x ﹣3≤3x+1的解集在数轴上表示如下,其中正确的是( ) A .B .C .D .3.不等式2﹣3x≥2x﹣8的非负整数解有( ) A .1个B .2个C .3个D .4个4.如图,是关于x 的不等式2x ﹣a≤﹣1的解集,则a 的取值是( )A .a≤﹣1B .a≤﹣2C .a=﹣1D .a=﹣25.已知关于x 的不等式(1)2a x ->的解集为21x a<-,则a 的取值范围是( ) A .0a >B .1a >C .0a <D .1a <6.若方程3(1)1(3)5m x m x x ++=--的解是正数,则m 的取值范围是( )A .54m >B .54m <C .54m >-D .54m <-7.若关于x 的不等式mx m nx n +<-+的解集为23x >-,则关于x 的不等式2mx m nx n ->-的解集是( ) A .43x >B .43x <C .43x >-D .43x <-二、填空题8.不等式5x-9≤3(x+1)的解集是________.9.已知不等式3x -0a ≤的正整数解恰是1,2,3,4,那么a 的取值范围是_________________. 10.不等式112943x x ->+的正整数解的个数为___________________. 11.当x _____________时,21x -的值小于32x +的值. 12.不等式442x x ->-的最小整数解为_____. 13.(1)已知x a <的解集中的最大整数为3,则a 的取值范围是________. (2)已知x a >的解集中最小整数为-2,则a 的取值范围是________.14.若不等式2113x -≤中的最大值是m ,不等式317x --≤-中的最小值为n ,则不等式nx mn mx +<的解集是________. 三、解答题15.解一元一次不等式532122x x ++-<.16.解不等式,并把不等式的解集在数轴上表示出来. (1)6327x x ->-; (2)21123x x -+-≤.17.已知,关于x的不等式(2a-b)x+a-5b>0的解集为x<10 7.(1)求ba的值.(2)求关于x的不等式ax>b的解集.题组C 培优拔尖练1.列式计算:求使的值不小于的值的非负整数x.2.已知不等式5(x﹣2)﹣9>7(x﹣11)+36,它的最大整数解恰好是方程x﹣ax=20的解,求a的值.3.为了保护环境,池州海螺集团决定购买10台污水处理设备,现有H和G两种型号设备,其中每台价格及月处理污水量如下表:H G价格(万元/台)1512处理污水量(吨/月)250220经预算,海螺集团准备购买设备的资金不高于130万元.(1)请你设计该企业有几种购买方案?(2)哪种方案处理污水多?。

高中数学必修五《不等式的基本性质》教案

高中数学必修五《不等式的基本性质》教案

不等式的基本性质教学设计教学设计思想本节主要学习了不等式的三个基本性质,重点是不等式的基本性质,难点是不等式性质3的探索及运用,讲解时要将不等式的基本性质与等式的基本性质加以对比,弄清它们之间的相同点与不同点,这样有助于加深理解不等式的基本性质。

对于不等式的基本性质3,采用通过学生自己动手实践、观察、归纳猜想结论、验证等环节来突破的。

并在理解的基础上加强练习,以期达到学生巩固所学知识的目的.教学目标(一)教学知识点1.探索并掌握不等式的基本性质;2.理解不等式与等式性质的联系与区别.(二)能力训练要求通过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力.(三)情感与价值观要求通过大家对不等式性质的探索,培养大家的钻研精神,同时还加强了同学间的合作与交流.教学重点探索不等式的基本性质,并能灵活地掌握和应用.教学难点能根据不等式的基本性质进行化简.教学方法类推探究法即与等式的基本性质类似地探究不等式的基本性质.教具准备投影片两张第一张:(记作§1.2 A)第二张:(记作§1.2 B)课时安排1课时教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了等式,并掌握了等式的基本性质,大家还记得等式的基本性质吗?[生]记得.等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.[师]不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证.Ⅱ.新课讲授1.不等式基本性质的推导[师]等式的性质我们已经掌握了,那么不等式的性质是否和等式的性质一样呢?请大家探索后发表自己的看法.[生]∵3<5∴3+2<5+23-2<5-23+a<5+a3-a<5-a所以,在不等式的两边都加上(或减去)同一个整式,不等号的方向不变.[师]很好.不等式的这一条性质和等式的性质相似.下面继续进行探究.[生]∵3<5∴3×2<5×23×a<5×b.所以,在不等式的两边都乘以同一个数,不等号的方向不变.[生]不对.如3<53×(-2)>5×(-2)所以上面的总结是错的.[师]看来大家有不同意见,请互相讨论后举例说明.[生]如3<43×3<4×33×5<4×53×(-3)>4×(-3)3×(-4)>4×(-4)3×(-5)>4×(-5)由此看来,在不等式的两边同乘以一个正数时,不等号的方向不变;在不等式的两边同乘以一个负数时,不等号的方向改变.[师]非常棒,那么在不等式的两边同时除以某一个数时(除数不为0),情况会怎样呢?请大家用类似的方法进行推导.[生]当不等式的两边同时除以一个正数时,不等号的方向不变;当不等式的两边同时除以一个负数时,不等号的方向改变.[师]因此,大家可以总结得出性质2和性质3,并且要学会灵活运用.2.用不等式的基本性质解释(l/4)2>π?(l/2π)2的正确性.[师]在上节课中,我们知道周长为l的圆和正方形,它们的面积分别为(l/4)2和π?(l/2π)2,且有(l/4)2>π?(l/2π)2存在,你能用不等式的基本性质来解释吗?[生]∵4π<16∴1/4π>1/16根据不等式的基本性质2,两边都乘以l 2得(l/4)2>π?(l/2π)23.例题讲解将下列不等式化成“x>a”或“x<a”的形式:(1)x-5>-1;(2)-2x>3;(3)3x<-9.[生](1)根据不等式的基本性质1,两边都加上5,得x>-1+5即x>4;(2)根据不等式的基本性质3,两边都除以-2,得x<-2/3;(3)根据不等式的基本性质2,两边都除以3,得x<-3.说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否.4.议一议投影片(§ 1.2 A)讨论下列式子的正确与错误.(1)如果a<b,那么a+c<b+c;(2)如果a<b,那么a-c<b-c;(3)如果a<b,那么ac<bc;(4)如果a<b,且c≠0,那么ac>bc.[师]在上面的例题中,我们讨论的是具体的数字,这种题型比较简单,因为要乘以或除以某一个数时就能确定是正数还是负数,从而能决定不等号方向的改变与否.在本题中讨论的是字母,因此首先要决定的是两边同时乘以或除以的某一个数的正、负.本题难度较大,请大家全面地加以考虑,并能互相合作交流..[生](1)正确∵a<b,在不等式两边都加上c,得a+c<b+c;∴结论正确.同理可知(2)正确.(3)根据不等式的基本性质2,两边都乘以c,得ac<bc;所以正确.(4)根据不等式的基本性质2,两边都除以c,得ac<bc.所以结论错误.[师]大家同意这位同学的做法吗?[生]不同意.[师]能说出理由吗?[生]在(1)、(2)中我同意他的做法,在(3)、(4)中我不同意,因为在(3)中有a<b,两边同时乘以c时,没有指明c的符号是正还是负,若为正则不等号方向不变,若为负则不等号方向改变,若c=0,则有ac=bc,正是因为c的不明确性,所以导致不等号的方向可能是变、不变,或应改为等号.而结论ac<bc.只指出了其中一种情况,故结论错误.在(4)中存在同样的问题,虽然c≠0,但不知c是正数还是负数,所以不能决定不等号的方向是否改变,若c>0,则有a<b ,若 c<0,则有a>b ,而他只说出了一种情况,所以结果错误.[师]通过做这个题,大家能得到什么启示呢?[生]在利用不等式的性质2和性质3时,关键是看两边同时乘以或除以的是一个什么性质的数,从而确定不等号的改变与否.[师]非常棒.我们学习了不等式的基本性质,而且做过一些练习,下面我们再来研究一下等式和不等式的性质的区别和联系,请大家对比地进行.[生]不等式的基本性质有三条,而等式的基本性质有两条.区别:在等式的两边同时乘以或除以同一个数(除数不为0)时,所得结果仍是等式;在不等式的两边同时乘以或除以同一个数(除数不为0)时会出现两种情况,若为正数则不等号方向不变,若为负数则不等号的方向改变.联系:不等式的基本性质和等式的基本性质,都讨论的是在两边同时加上(或减去),同时乘以(或除以,除数不为0)同一个数时的情况.且不等式的基本性质1和等式的基本性质1相类似.Ⅲ.课堂练习1.将下列不等式化成“x>a”或“x<a”的形式.(1)x-1>2(2)-x<3[生]解:(1)根据不等式的基本性质1,两边都加上1,得x>3(2)根据不等式的基本性质3,两边都乘以-1,得x>-3.2.已知x>y,下列不等式一定成立吗?(1)x-6<y-6;(2)3x<3y;(3)-2x<-2y.解:(1)∵x>y,∴x-6>y-6.∴不等式不成立;(2)∵x>y,∴3x>3y∴不等式不成立;(3)∵x>y,∴-2x<-2y∴不等式一定成立.投影片(§ 1.2 B)3.设a>b,用“<”或“>”号填空.(1)a+1 b+1;(2)a-3 b-3;(3)3a 3b;(4)a/4 b/4;(5)-1/2a-1/2b;(6)-a-b.分析:∵a>b根据不等式的基本性质1,两边同时加上1或减去3,不等号的方向不变,故(1)、(2)不等号的方向不变;在(3)、(4)中根据不等式的基本性质2,两边同时乘以3或除以4,不等号的方向不变;在(5)、(6)中根据不等式的基本性质3,两边同时乘以-1/2或-1,不等号的方向改变.解:(1)a+1>b+1;(2)a-3>b-3;(3)3a>3b;(4) a/4>;(5)-1/2<-1/2;(6)-a<-b.Ⅳ.课时小结1.本节课主要用类推的方法探索出了不等式的基本性质.2.利用不等式的基本性质进行简单的化简或填空.Ⅴ.课后作业习题1.2Ⅵ.活动与探究1.比较a与-a的大小.解:当a>0时,a>-a;当a=0时,a=-a;当a<0时,a<-a.说明:解决此类问题时,要对字母的所有取值进行讨论.2.有一个两位数,个位上的数字是a,十位上的数是b,如果把这个两位数的个位与十位上的数对调,得到的两位数大于原来的两位数,那么a与b哪个大哪个小?解:原来的两位数为10b+a.调换后的两位数为10a+b.根据题意得10a+b>10b+a.根据不等式的基本性质1,两边同时减去a,得9a+b>10b两边同时减去b,得9a>9b根据不等式的基本性质2,两边同时除以9,得a>b.板书设计§1.2不等式的基本性质1.不等式的基本性质的推导.2.用不等式的基本性质解释>.3.例题讲解.4.议一议练习小结作业备课资料参考练习1.根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:(1)x-2<3;2)6x<5x-1;(3) x>5;(4)-4x>3.2.设a>b.用“<”或“>”号填空.(1)a-3 b-3;(2);(3)-4a-4b;(4)5a 5b;(5)当a>0,b 0时,ab>0;(6)当a>0,b 0时,ab<0;(7)当a<0,b 0时,ab>0;(8)当a<0,b 0时,ab<0.参考答案:1.(1)x<5;(2)x<-1;(3)x>10;(4)x<-.2.(1)>(2)>(3)<(4)>(5)>(6)<(7)<(8)>.。

第五讲 不等式性质及解法

第五讲 不等式性质及解法

博通教育辅导讲义年 级 高一辅导科目 数学 学科教师 课次数 课 题第五讲 不等式的基本性质及解法主管审核教 学 内 容知识点及例题精讲一.不等式的性质:1.同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a bc d>);3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >或n n a b >;4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b>。

[例1](1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若; ②b a bc ac >>则若,22;③22,0b ab a b a >><<则若; ④ba b a 11,0<<<则若;⑤baa b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦bc ba c ab ac ->->>>则若,0; ⑧11,a b a b >>若,则0,0a b ><。

其中正确的命题是______(2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(3)已知c b a >>,且,0=++c b a 则ac的取值范围是______ 二、一元二次不等式解法1.一元二次不等式(1)一元二次不等式经过变形,可以化成如下标准形式: ①ax 2+bx+c >0(a >0);②ax 2+bx+c <0(a >0).2.一元二次函数的图像、一元二次方程的根、一元二次不等式的解集对比表二次函数△情况一元二次方程一元二次不等式y=ax2+bx+c(a>0) △=b2-4ac ax2+bx+c=0(a>0)ax2+bx+c>0(a>0)ax2+bx+c<0(a>0)图像与解△>0x1=x2=不等式解集为{x|x<x1或x>x2=不等式解集为{x|x1<x<x2=△=0x1=x2=x0=不等式解集{x|x≠x0,x∈R}解集为△<0 方程无解不等式解集为R(一切实数)解集为a<0的情况自己完成3.一元n次不等式(x-a1)(x-a2)…(x-a n)>0,(x-a1)(x-a2)…(x-a n)<0,其中a1<a2<…<a n.把a1,a2,…a n按大小顺序标在数轴上,则不等式的解的区间如图所示:综合可知,一元二次不等式的解法充分运用了“函数与方程”,“数形结合”及“化归”的数学思想,一元二次方程ax2+bx+c=0的根就是使二次函数y=ax2+bx+c的函数值为零时对应的x值,一元二次不等式ax2+bx+c>0,ax2+bx+c<0的解就是使二次函数y=ax2+bx+c的函数值大于零或小于零时x的取值范围,因此解一元二次方程ax2+bx+c>0,ax2+bx+c<0一般要画与之对应的二次函数y=ax2+bx+c的图像.例1解下列关于x的不等式:(1)2x+3-x2>0;(2)x(x+2)-1≥x(3-x);(3)x2-2x+3>0;(4)x2+6(x+3)>3;例2解不等式≥2.例3若函数f(x)=ax2+bx+c(a>0)对任意的实数t,都有f(2+t)=f(2-t),下列不等式成立的是( ) A.f(1)<f(2)<f(4) B.f(2)<f(1)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)例4已知不等式ax2+bx+2>0的解为-<x<,求a,b值.例5若x2+qx+q>0的解集是{x|2<x<4},求实数p、q的值.例6设A={x|-2<x<-1,或x>1},B={x|x2+ax+b≤0},已知A∪B={x|x>-2},A∩B={x|1<x≤3},试求a,b 的值.例7已知f(x)=x2+2(a-2)x+4.(1)如果对一切x∈R,f(x)>0恒成立,求实数a的取值范围.(2)如果对x∈〔-3,1〕,f(x)>0成立,求实数a的取值范围.例8公园要建造一个圆形喷水池.在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,OA=1.25米,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上抛物线路径如下左图所示.为使水流形状较为漂亮,设计成水流在到OA距离为1米处达到距水平最大高度为2.25米,如果不计其他因素,那么水池半径至少要多少米,才能使喷出的水流不致落到池外?巩固练习与随堂测验一、选择题1.已知集合A={x|x2-2x-3<0 ,B={x||x|<a ,若B A,则实数a的取值范围是( )A.0<a≤1;B.a≤1;C.-1<a≤3;D.a<1.2.集合A={x|x2-3x-10≤0,x∈Z},B={x|2x2-x-6>0,x∈Z},则A∩B的子集的个数为( )A.16;B.8;C.15;D.7.3.不等式≥0的解集是( )A.{x|-1≤x≤3}B.{x|x≤-1,或x>3}C.{x|x≤-1,或x≥3}D.{x|-1≤x<3}4.若对于任何实数,二次函数y=ax2-x+c的值恒为负,那么a、c应满足( )A.a>0且ac≤B.a<0且ac<C.a<0且ac>D.a<0且ac<0二、填空题2.不等式ax2+bx+2>0的解集是{x|- <x<,则a+b=________ .3.不等式≤1的解集是 __________________ .4.不等式-4≤x2-3x<18的整数解为____________________ .5.已知关于x的方程ax2+bx+c<0的解集为{x|x<-1或x>2}.则不等式ax2-bx+c>0的解集为___________________________________ .三、解答题1.求不等式x2-2x+2m-m2>0的解集.4.已知a>1解关于x的不等式组5.解不等式课后作业1.解关于x的不等式x2-x-a2+a>02.已知函数y=(k2+4k-5)x2+4(1-k)x+3的图像都在x轴上方,求实数k的取值范围.3.已知A={x|x2-3x+2≤0},B={x|x2-(a+1)x+a≤0}.(1)若A B,求a的取值范围;(2)若B A,求a的取值范围;(3)若A∩B为仅含有一个元素的集合,求a的值.4不等式>1解集是 .5如下图,铁路线上AB段长100千米,工厂C到铁路的距离CA为20千米.现要在AB上某一点D处向C修一条公路,已知铁路每吨千米的运费与公路每吨千米的运费之比为3∶5.为了使原料从供应站B运到工厂C的运费最少,D点应选在何处?6要在墙上开一个上半部为半圆形,下部为矩形的窗户(如下图所示),在窗框为定长的条件下,要使窗户能够透过最多的光线,窗户应设计成怎样的尺寸?。

第5讲含有绝对值的不等式的性质(学生版)

第5讲含有绝对值的不等式的性质(学生版)

第5讲 含有绝对值不等式的性质【课型】新授课【学习目标】【预习清单】【知识梳理】1.含有绝对值的不等式的性质(1)如果a ,b 是实数,则 ≤|a+b |≤ ,当且仅当ab ≤0时,左边等号成立;当且仅当ab ≥0时,右边等号成立.(1) 如果a ,b 是实数,则 ≤|a-b |≤ ,当且仅当ab ≥0时,左边边等号成立;当且仅当ab ≤0时,右边等号成立;2.利用含有绝对值的不等式的性质处理最值问题(1)b a b a ±≥+,即=+min )(b a |(2)b a b a +≤±,即≤±max b a(3)b a b a ±≤-,即 ≤-≤b a【引导清单】考向一: 利用含有两个绝对值的性质求最值【例1】(1)对任意x ,y ∈R ,求|x -1|+|x |+|y -1|+|y +1|的最小值.(2)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,求|x -y +1|的最大值.考向二: 利用含有两个绝对值的性质处理恒成立与能成立问题【例2】(1)若存在实数x 使|x -a |+|x -1|≤3成立,求实数a 的取值范围.(2)若关于x 的不等式|2022-x |+|2023-x |≤d 有解,求d 的取值范围.【训练清单】【变式训练1】(1)求|x -1|-|x+5|的最大值。

(1)求⎪⎪⎪⎪⎪⎪x +1a +|x -a |(a >0)的最小值.【变式训练2】(1)若关于x 的不等式|a |≥|x +1|+|x -2|有解,求实数a 的取值范围。

(2)已知函数f (x )=|x -a 2|+|x -2a +1|,若f (x )≥4恒成立,求a 的取值范围.【巩固清单】1.已知函数f(x)=|x+3|-|x-2|.(1)求不等式f(x)≥3的解集;(2)若f(x)≥|a-4|有解,求a的取值范围.2.已知函数f(x)=|x+m|-|5-x|(m∈R).(1)当m=3时,求不等式f(x)>6的解集;(2)若不等式f(x)≤10对任意实数x恒成立,求m的取值范围.3.已知函数f(x)=|x-2|-|x-5|.(1)证明:-3≤f(x)≤3;(2)求不等式f(x)≥x2-8x+15的解集.。

第5讲一元二次不等式课件——2025届高三数学一轮复习+

第5讲一元二次不等式课件——2025届高三数学一轮复习+

___∅___
___∅___
2.与一元二次不等式有关的恒成立问题
(1) 一元二次不等式 ax2+bx+c>0 的解集为 R 的条件是aΔ><00,.
(2) 一元二次不等式 ax2+bx+c<0 的解集为 R 的条件是aΔ<<00,.
解不等式
举题说法
1 解下列关于x的不等式. (1) -6x2-5x+1<0;
【解答】原不等式转化为 6x2+5x-1>0,因为方程 6x2+5x-1=0 的解为 x1=16,x2
= - 1 , 所 以 根 据 二 次 函 数 y = 6x2 + 5x - 1 的 图 象 可 得 原 不 等 式 的 解 集 为
xx<-1或x>16.
解下列关于x的不等式. 1 (2) ax2-(a+1)x+1<0(a∈R);
【解答】若a=0,原不等式转化为-x+1<0,即x>1.
若 a<0,原不等式转化为x-1a(x-1)>0,此时对应方程x-1a(x-1)=0 的两个根为 x1=1a,x2=1,所以原不等式的解集为 xx<1a或x>1. 若 a>0,原不等式转化为x-1a(x-1)<0,此时对应方程x-1a(x-1)=0 的两个根为
6,所以实数 x 的取值范围是(-∞,
-3- 6]∪[-3+ 6,+∞).
1.不等式 x2+19≤23x的解集为
随 堂练习
(A)
A.13 C.13,1
B.[-1,1) D.(1,3)
【解析】由题知不等式为 x2+19≤23x,即 9x2-6x+1≤0,即(3x-1)2≤0,解得 x=13,
所以解集为13.
0<a<1
时,原不等式的解集为
x1<x<1a;当
a=1
时,原不
等式的解集为∅;当

第5讲不等式及其性质

第5讲不等式及其性质

第五讲:不等式及其性质【主干知识整合】不等式是研究数学问题的重要工具,是培养学生推理论证能力的重要内容,它渗透在高中数学的各个章节。

纵观近几年高考试题,涉及不等式的试题形式多样,但单独考查不等式内容的试题不多见,更多的是与函数、数列、导数、解析几何等相互融合,交叉渗透在知识的交汇点处命题,主要以不等式为工具解决较复杂的综合问题。

因此在复习中要以解不等式、不等式的证明及不等式的应用为主。

【经典真题感悟】1、(某某)已知a ,b 都是实数,那么“22b a >”是“a b >”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件2、(某某)已知1230a a a >>>,则使得2(1)1i a x -<(1,2,3)i =都成立的x 取值X 围是A.(0,11a ) B. (0,12a ) C. (0,31a ) D. (0,32a ) 3、(某某)已知,,x y z R +∈,230x y z -+=,则2y xz的最小值.4、(某某)已知a ∈R ,若关于x 的方程2104x x a a ++-+=有实根,则a 的取值X 围是. 【考点热点探究】 考点一。

不等式的性质例1:若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是A .1122a b a b +B .1212a a b b +C .1221a b a b +D .12考点二。

均值不等式例2:(1)已知b a ,是正实数,10<<x ,则xb x a 221+-的最小值为_________变式:已知函数1()3(01)x f x aa a +=->≠且,它的反函数的图象恒过定点A ,且点A 在直线10mx ny ++=,若0,0m n >>,则12m n+的最小值为.考点三。

不等式的性质

不等式的性质

不等式的基本性质
性质1:对称性 :a>b b<a 性质2:传递性 : a>b,且b>c⇒ a>c 性质3:加法法则: a>b ⇒ a+c>b+c
同向可加性: a>b, c>d ⇒ a+c>b+d 性质4:乘法法则: a>b,且c>0 ⇒ac>bc a>b,且c<0⇒ac<bc 同向可乘性: a>b >0,且c>d>0⇒ac>bd
a<b a-b<0
由此可见,要比较两个数的大小,就只要比较 它们的差与0的大小.
1、比较两个数大小的方法:作差比较法 2、例题讲解 例1、比较(a+3)(a-5)与(a+2)(a-4)的大小。
解:∵(a+3)(a-5)-(a+2)(a-4) =(a2-2a-15)-(a2-2a-8) =-7<0 ∴ (a+3)(a-5)<(a+2)(a-4)
例1.已知a>0,b>0,且a+b=6,求ab的最大值。
解:根据均值定理,得
ab 6 3, ab 2 2
从而
ab≤9.
当且仅当a=b 时等号成立。 因此a=b时, 由于a+b=6, 有 2a=6,从而a=3, 此时ab达到最大值9。
例2.已知a>0,b>0,且ab=16,求a+b的最小值。
常用的基本不等式
1.a2 ≥0
2.一般地,对于任意实数a、b,我们有
a b 2ab
2 2
当且仅当a=b时,等号成立
此不等式称为重要不等式
3. 对于任意两个正实数a、b,有

高中数学 必修1 第5讲-一元二次不等式与分式不等式

高中数学 必修1 第5讲-一元二次不等式与分式不等式

第5讲 一元二次不等式与分式不等式的解法姓名: 学校: 年级:【知识要点】1、一元二次不等式的概念:我们把只含有一个未知数,并且未知数最高次数是2的不等式,称为一元二次不等式.2、一元二次不等式的解法步骤:一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002>=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:0>∆0=∆0<∆一元二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax{}21x x xx <<∅∅口诀:大于取两边,小于取中间3、 .解一元二次不等式的基本步骤:(1) 整理系数,使最高次项的系数为正数; (2) 尝试用“十字相乘法”分解因式;(3) 计算ac b 42-=∆(4) 结合二次函数的图象特征写出解集。

4、对于分式不等式:0)()(>x g x f ,它等价于0)()(>⋅x g x f0)()(=x g x f ,它等价于0)(0)(≠=x g x f 且0)()(<x g x f ,它等价于0)()(<⋅x g x f 【典型例题】例1、 求下列不等式的解集(1)01442>+-x x (2)0322>-+-x x例2、已知032>++a x x 的解集是}12{->-<x x x 或,求不等式012102<+-x ax 的解集.例3、解不等式(1)032<+-x x (2)254≤-+x x例4、自变量x 在什么取值范围时,下列函数的值等于0?大于0?小于0? (1)2632+-=x x y (2)225x y -=例5、函数3222)(a b x a ax x f -++=,当0)(),,6()2,(,0)(),6,2(<+∞--∞∈>-∈x f x x f x 当,求)(x f 的解析式;例6、集合}1222{<-+=x x x A }054{2>-+=x x x B ,},11{R m m x m x C ∈+<<-= (1)求B A (2)若B A C ⊆,求m 的取值范围.例7、求不等式)12(2+-x x 0)532(2<--x x 的解集例8、解关于x 的一元二次不等式2(3)30x a x a -++>【经典练习】1、如果62--x x 有意义,那么x 的取值范围是 .2、若012<-+bx ax 的解集为{}21<<-x x ,则a =________,b =________. 3、解下列一元二次不等式(1) )3)(1(x x --<x 25- (2) )11(+x x ≥2)1(3+x (3)031≥+-x x (4)3115<++x x4、已知关于x 的不等式220ax x c ++>的解集为11(,)32-,求220cx x a -+->的解集5、不等式22214x a x ax ->++对一切∈x R 恒成立,则实数a 的取值范围【课后作业】1、若10<<a ,那么不等式)1)((ax a x --0<的解是 ( ) A .a x a 1<< B .a x a <<1 C .a x a x 1<>或 D .a x ax <>或12、若关于x 的方程0)1(2=-+-m x m x 有两个不相等的实数根,那么m 的取值范围是 .3、不等式0)1)(2(22<+--x x x 的解集为___________________________ 4、自变量x 在什么取值范围时,下列函数的值等于0?大于0?小于0? (1)1062++=x x y (2)121232-+-=x x y5、已知集合}016{2<-=x x A ,集合}034{2>+-=x x x B ,求B A6、已知=A }0145{2<--x x x ,求=B },2{A y y x x ∈-=,求B A ,B A .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5讲 不等式的性质与解法
一、知识概要
不等式在中学数学地位及其重要,因此学习它是有必要的,本讲的主要内容为不等式性质与不等式的解法,不等式性质主要有对称性,传递性可加性,可乘性,加法法则,乘法法则,开方法则,倒数法则等(熟悉即可),另外我们需要掌握比较实数的大小常用的手段(作商与做差)。

中学数学常见的不等式求解的形式主要有:有理不等式,无理不等式,指对数不等式,绝对值不等式,不同形式的不等式其解法有所不同。

解不等式的本质就是一个同解变形的过程,在具体解题中,会经常涉及到分类整合,数形结合数学思想,同时需要注意不等式与方程,函数及其他知识的联系,本讲的主要学习目标是:灵活运用不等式性质解题,熟悉不等式求解的常用方法,并能领悟经典方法所蕴含的数学思想。

二、解题指导
1.不等式的性质
例1.已知0a b <<
,x =
y =,
,则,x y 的大小如何?
例2.设,0a b >且a b ≠,比较a b a b 与b a a b 的大小, 比较a b c a b c 与3()
a b c abc ++的大小,
例3.已知31317a b a +=,5711a b b +=,试比较实数,a b 的大小.
例4.若正数,,a b c 满足不等式组: 1126352
351124c a b c
a c
b a b a
c b ⎧<+<⎪⎪⎪<+<⎨⎪⎪<+<⎪⎩
,试比较,,a b c 的大小.
2.不等式的解法
(1)数轴标根法解高次不等式
例6 .解不等式 2(1)(1)(2)(5)0x x x x x -++->.
例7.解不等式 2221011168
x x x x -+≤-+. (2) 利用函数单调性解不等式
例8.
函数()f x ax =,0a >.
①解不等式()1f x ≤;
②求a 的取值范围,使得函数()f x 在区间[)0,+∞上单调函数.
例9.已知函数121()log 12x f x x x =++-,试解不等式11()22f x x ⎡⎤->⎢⎥⎣
⎦. (3) 代数恒等变换解不等式
例10.
2x ≥-
例11.解不等式121086422log (3531)1log (1)x x x x x ++++>++.(200年高中联赛)
(4)不等式恒成立与能成立问题
例12.若在闭区间[]0,1上不等式,32(1)(1)31(1)(1)px x x x x qx x ++≤+++≤++恒
成立,试求p 与q 的取值范围.
例13.函数22(1)(3)(28)()(21)(1)(4)
k x k x k f x k x k x k ++++-=-+++-的定义域用D表示,则使()0f x >,对于任意x D ∈均成立的实数k 的集合是什么?
三、习题演练
1. 若0 1a a >≠且,5log (1)a p a a =++,2log (1)a q a a =++,则,p q 关系如 何?
2. 解不等式1x x e e --+≥-.
3. 12>
4. 20001999>
5.2
29x <+
6x 恒成立,求a 的取值范围。

相关文档
最新文档