2003年数学三试题评析1

合集下载

2003年考研数学试题详解及评分参考

2003年考研数学试题详解及评分参考

相互独立,于是 Z 2 ~ c 2 (1) ,从而
c2 n 1 = : F (n,1) . 故选 (C) . X 2 Z2 1
三、 (本题满分 10 分) 过坐标原点作曲线 y = ln x 的切线, 该切线与曲线 y = ln x 及 x 轴围成平面图形 D . (1) 求 D 的面积 A ; (2) 求 D 绕直线 x = e 旋转一周所得旋转体的体积 V . 解 (1) 设切点的横坐标为 x0 ,则曲线 y = ln x 在点 ( x0 , ln x0 ) 处的切线方程是
2
有 a2 =
p p 2 p 2 1 x cos 2 xdx = [ x 2 sin 2 x - ò 2 x sin 2 xdx] ò 0 0 p 0 p
p 1 p [ x cos 2p 0 - ò cos 2 xdx] = 1 . 0 p æ1 ö æ1 ö æ1ö æ1 ö ÷ ç ÷ ç ÷ ç (4) 从 R 2 的基 a 1 = ç , a = 到基 b = , b = 2 1 2 ç 0÷ ç - 1÷ ç1÷ ç 2÷ ÷ 的过渡矩阵为 è ø è ø è ø è ø æ2 3 ö 【答】 应填 ç ç - 1 - 2÷ ÷. è ø
s s za , X + za ) ,由于 za = z0.025 , 1 - 0.025 = 0.975 = F (1.96 ) ,数据代入, n 2 n 2 2 1 1 得置信区间为 (40 ´1.96, 40 + ´ 1.96) = ( 39.51, 40.49 ) 16 16
(X 二、选择题(本题共 6 小题,每小题 4 分,满分 24 分) (1) 设函数 f ( x) 在 (-¥,+¥) 内连续,其导函数的图形如图所示,则 f ( x) 有 (A) 一个极小值点和两个极大值点 (B) 两个极小值点和一个极大值点 (C) 两个极小值点和两个极大值点 (D) 三个极小值点和一个极大值点 【答】 应选 (C). 【解】 在 y 轴左侧,因 f ¢( x) 由正变负再变正,故 f ( x ) 由增变减再变增,从而有一个极 大值点和一个极小值点;而在 y 轴右侧,因 f ¢( x) 由负变正,故 f ( x) 由减变增,从而有 一个极小值点;又在点 x = 0 左右领域, f ¢( x) 由正变负, f ( x) 由增变减,且 f ( x) 在点

2003年全国硕士研究生入学统一考试数学三真题及答案

2003年全国硕士研究生入学统一考试数学三真题及答案

2003年全国硕士研究生入学统一考试数学三试题解析一、填空题(本题共6小题,每题4分,满分24分.把答案填在题中横线上.)(1)设⎪⎩⎪⎨⎧=≠=,0,0,0,1cos )(x x xx x f λ其导函数在0=x 处连续,则λ的取值范围是_________. 【答案】λ>2【考点】分段函数的导数、函数连续的概念、无穷小量的性质 【难易度】★★★【详解】本题涉及到的主要知识点:①分段函数求导时,函数连续部分可直接对函数求导,间断点处的导数需要用导数的定义来求; ②导函数也是函数,函数连续需要满足该处极限值与函数值相等; ③有界函数与无穷小的乘积是无穷小,与无穷大的乘积是无穷大;解析:⎪⎪⎩⎪⎪⎨⎧==--=--≠+=--+='-→→→---,01cos lim 001cos lim 0)0()(lim ,01sin 1cos )1)(1sin (1cos )(20002121x x x x x x x f x f x x x x x x x x x x x f x x x λλλλλλλλ)(x f ' 在0=x 处连续,∴)(lim 0x f x →与)0(f 都存在且相等,当0→x 时,x1cos 、x1sin均为有界函数, ∴若要)1sin 1cos (lim )(lim 2100xx x x x f x x --→→+='λλλ存在,必有0lim ,0lim 2010==-→-→λλλx x x x ,01>-∴λ且02>-λ,即2>λ,同理,若要xxx 1cos lim 2-→λ存在,必有0lim 20=-→λx x ,即2>λ,此时,0)0()(lim 0==→f x f x综上,λ的取值范围是2>λ.(2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为2b =_________.【答案】4a^6【考点】平面曲线的切线 【难易度】★【详解】本题涉及到的主要知识点: ①曲线在切点的斜率为0,即0='y ; ②切点还应满足曲线方程; 解析:由题设,在切点处有0332200=-='=a x y x x ,所以.22a x = 又在此点y 坐标为0,即b x a x +-=023030,故.44)3(6422202202a a a x a x b =⋅=-=(3)设0>a ,⎩⎨⎧≤≤==,,0,10,)()(其他x a x g x f 而D 表示全平面,则⎰⎰=-=Dy x x y g x f I d d )()(_________.【答案】a^2【考点】二重积分的计算 【难易度】★★★【详解】本题涉及到的主要知识点:①若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可;②直接坐标系下,二重积分的运算,可根据被积区域属于X 型还是Y 型来选择适当的方法进行计算; 解析: 只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,212101210,102])1[()()(a dx x x a dy dx a dxdy a dxdy x y g x f I x xx y x D=-+===-=∴⎰⎰⎰⎰⎰⎰⎰+≤-≤≤≤.(4)设n 维向量0,),0,,0,(<=a a a Tα;E 为n 阶单位矩阵,矩阵T TaE B E A αααα1,+=-=, 其中A 的逆矩阵为B ,则=a _________. 【答案】1-【考点】逆矩阵的概念、矩阵的计算 【难易度】★★【详解】解析:)1)((T TaE E AB αααα+-= T T T Ta a E αααααααα⋅-+-=11 TT T T a a E αααααααα)(11-+-=TT T a aE αααααα21-+-=E aa E T=+--+=αα)121(,于是有0121=+--a a ,即0122=-+a a ,解得 .1,21-==a a 已知0a < ,故1a =-.(5)设随机变量X 和Y 的相关系数为9.0,若4.0-=X Z ,则Y 与Z 的相关系数为_________. 【答案】9.0【考点】协方差的性质、相关系数的性质 【难易度】★【详解】本题涉及到的主要知识点:①),cov()4.0,cov(),cov()4.0,cov(),cov(X Y Y X Y X Y Z Y =+=+=; ②相关系数是指随机变量间的线性相关程度; 解析:方法1 9.0),(),(=====XY YX YZ DXDY X Y Cov DZ DY Z Y Cov ρρρ方法2 b aX Z +=,若1=a ,则Z 与X 正线性相关,所以Y 与Z 的相关系数与Y 与X 的 相关系数相等.(6)设总体X 服从参数为2的指数分布,X 1,X 2,…,X n 为来自总体X 的简单随机样本,则当∞→n 时,211i n i n X n Y ∑==依概率收敛于_________.【答案】1/2【考点】常用分布的数字特征、大数定律 【难易度】★★【详解】本题涉及到的主要知识点: ①X 服从参数为λ的指数分布,则21)(,1)(λλ==X D X E ;②一组相互独立且具有有限期望与方差的随机变量n X X X ,,,21 ,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值;解析:22221,,,nX X X 满足大数定律的条件,则根据大数定律有∑==n i i n X n Y 121依概率收敛于21]41)21[(1])[(11)1()(12121212=+=+===∑∑∑∑====n i n i i i n i i n i i n n DX EX n EX n X n E Y E .二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)设)(x f 为不恒等于零的奇函数,且)0('f 存在,则函数xx f x g )()(=( ) (A )在0=x 处左极限不存在. (B )有跳跃间断点0=x . (C )在0=x 处右极限不存在. (D )有可去间断点0=x .【答案】D【考点】函数间断点的类型、导数的概念 【难易度】★【详解】本题涉及到的主要知识点: ①导数的定义公式000)()(lim)(0x x x f x f x f x x --='→;②可去间断点的定义:左右极限存在且相等,但不等于函数值或函数在该点没有定义; 解析:显然0x =为()g x 的间断点,且由()f x 为不恒等于零的奇函数知,(0)0f =.于是有)0(0)0()(lim )(lim)(lim 00f x f x f x x f xg x x x '=--==→→→存在,故0x =为可去间断点. (2)设可微函数),(y x f 在点),(00y x 取得极小值,则下列结论正确的是( ) (A )),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C )),(0y x f 在0y y =处的导数小于零. (D )),(0y x f 在0y y =处的导数不存在. 【答案】A【考点】全微分存在的必要条件 【难易度】★【详解】本题涉及到的主要知识点: ①可微必有偏导数存在;②多元函数取极值的必要条件:0),(,0),(0000='='y x f y x f y x ;解析:可微函数(,)f x y 在点),(00y x 取得极小值,根据取极值的必要条件知0),(00='y x f y ,即),(0y x f 在0y y =处的导数等于零.(3)设2||n n n a a p +=,2||n n n a a q -=,n =2,1…,则下列命题正确的是( ) (A )若n n a∑∞=1条件收敛,则n n p ∑∞=1与n n q∑∞=1都收敛.(B )若n n a∑∞=1绝对收敛,则n n p ∑∞=1与n n q∑∞=1都收敛.(C )若n n a∑∞=1条件收敛,则n n p ∑∞=1与nn q∑∞=1的敛散性都不定.(D )若n n a∑∞=1绝对收敛,则n n p ∑∞=1与n n q∑∞=1的敛散性都不定.【答案】B【考点】绝对收敛与收敛的关系、收敛级数的基本性质 【难易度】★★【详解】本题涉及到的主要知识点: ①如果级数∑∞=1n nu各项的绝对值所构成的正项级数∑∞=1n nu收敛,则称级数∑∞=1n nu绝对收敛;如果级数∑∞=1n nu收敛,而级数∑∞=1n nu发散,则称级数∑∞=1n nu条件收敛;②如果级数∑∞=1n nu绝对收敛,则级数∑∞=1n nu必定收敛;③如果级数∑∞=1n nu和∑∞=1n nv分别收敛于和s 、δ,则级数∑∞=±1)(n n nv u也收敛,且其和为δ±s ;解析:∑∞=1n n a 绝对收敛,即∑∞=1n n a 收敛,当然也有级数∑∞=1n n a 收敛,再根据2nn n a a p +=,2nn n a a q -=及收敛级数的运算性质知,∑∞=1n np与∑∞=1n nq都收敛.(4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩等于1,则必有( ) (A )b a =或02=+b a . (B )b a =或02≠+b a . (C )b a ≠且02=+b a . (D )b a ≠且02≠+b a . 【答案】C 【考点】矩阵的秩 【难易度】★★【详解】本题涉及到的主要知识点:①(2)n n ≥阶矩阵A 与其伴随矩阵A *的秩之间有下列关系:.1)(,1)(,)(,0,1,*)(-<-==⎪⎩⎪⎨⎧=n A r n A r n A r n A r②若n 阶矩阵A 不满秩,则必有0=A ;解析:方法1 根据A 与其伴随矩阵A *秩之间的关系知,秩(A )=2,故有2(2)()0a b bb a b a b a b b b a=+-=,即有02=+b a 或a b =. 但当a b =时,显然秩(A)2≠, 故必有 a b ≠且02=+b a . 方法2 根据A 与其伴随矩阵A *秩之间的关系知,秩(A )=2 将A 作初等行变换00a b b ab b A b a b b a a b b b a b a a b ⎡⎤⎡⎤⎢⎥⎢⎥=→--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦当a b =时,不合题意(排除(A)\(B)) 故a b ≠201100100101001ab b a b b a b b b A b a a b b a a b +⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--→-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦故02=+b a ,且a b ≠时,秩(A )=2.(5)设n ααα 21,均为n 维向量,下列结论不正确...的是( ) (A )若对于任意一组不全为零的数s k k k 21,,都有0221≠+++s s k k k ααα ,则s ααα 21,线性无关.(B )若s ααα 21,线性相关,则对于任意一组不全为零的数s k k k 21,,有0221=+++s s k k k ααα .(C )s ααα 21,线性无关的充分必要条件是此向量组的秩为s . (D )s ααα 21,线性无关的必要条件是其中任意两个向量线性无关. 【答案】B【考点】向量组的线性相关与线性无关 【难易度】★★【详解】解析:(A): 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 必线性无关,因为若s ααα,,,21 线性相关,则存在一组不全为零的数s k k k ,,,21 ,使得 02211=+++s s k k k ααα ,矛盾. 成立.(B): 若s ααα,,,21 线性相关,则存在一组,而不是对任意一组不全为零的数s k k k ,,,21 , 都有.02211=+++s s k k k ααα 不成立.(C) s ααα,,,21 线性无关,则此向量组的秩为s ;反过来,若向量组s ααα,,,21 的秩为s , 则s ααα,,,21 线性无关,成立.(D) s ααα,,,21 线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,成立. (6)将一枚硬币独立地掷两次,引进事件:A 1={掷第一次出现正面},A 2={掷第二次出现正面},A 3={正、反面各出现一次},A 4={正面出现两次},则事件( ) (A )A 1,A 2,A 3相互独立.(B )A 2,A 3,A 4相互独立.(C )A 1,A 2,A 3两两独立. (D )A 2,A 3,A 4两两独立.【答案】C【考点】事件的独立性 【难易度】★★【详解】本题涉及到的主要知识点:①B A ,两事件相互独立的充要条件为:)()()(B P A P AB P = ②,,A B C 三事件相互独立的充要条件为:1),,A B C 两两相互独立;2))()()()(C P B P A P ABC P =. 解析:方法1 因为21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P ,且41)(21=A A P , 41)(31=A A P ,41)(32=A A P ,41)(42=A A P 0)(321=A A A P ,可见有)()()(2121A P A P A A P =,)()()(3131A P A P A A P =,)()()(3232A P A P A A P =, )()()()(321321A P A P A P A A A P ≠,)()()(4242A P A P A A P ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立.方法2 由三事件相互独立的定义可知:相互独立必两两独立;反之,两两独立不一定相互独立. 可见(A )(B )必不正确,因为如果(A )(B )正确,则(C )(D )必也正确,但正确答案不 能有两个因此只要检查(C )和(D ){}{}{}{}{}2342341110244P A A A P P A P A P A φ==≠=,432,,A A A 不两两独立.三、(本题满分8分)设)1(π1πsin 1π1)(x x x x f --+=,)1,21[∈x 试补充定义f (1)使得f (x )在]1,21[上连续. 【考点】函数连续的概念、函数左极限与右极限的概念 【难易度】★★★【详解】解析:])1(π1πsin 1π1[lim )(lim 11x x x x f x x --+=--→→π1)π()π(61lim π1πtsin ππt sin πlim π1]π1πt sin 1[lim π1]π1πt)πsin(1[lim π11])1(π1πsin 1[lim π12300001=+=-+=-+=--+-=--+=++++-→→→→→t t t t t t x t x x t t t t x 由于()f x 在)1,21[上连续,因此定义 π1)1(=f ,使()f x 在]1,21[上连续.四、(本题满分8分)设),(v u f 具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又2(21,[),(x xy f y x g =)]2y -,求 2222y gx g ∂∂+∂∂.【考点】多元复合函数的求导法 【难易度】★★★ 【详解】解析:vfx u f y x v v f x u u f x g ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂,vf y u f x y v v f y u u f yg ∂∂-∂∂=∂∂∂∂+∂∂∂∂=∂∂, vf v f x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂∴2222222222, vf v f y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂2222222222, 12222=∂∂+∂∂vfu f , 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂∴=.22y x + 五、(本题满分8分)计算二重积分y x y x I y x Dd d )sin(e22)π(22+=-+-⎰⎰,其中积分区域}π|),{(22≤+=y x y x D .【考点】二重积分的计算 【难易度】★★★ 【详解】 解析:y x y x I y x Dd d )sin(e22)π(22+=-+-⎰⎰dxdy y x e e Dy x)sin(22)(22+=⎰⎰+-π=.sin 2022dr r re d er ⎰⎰-πππθ令2r t =,则dt t e d e I t ⎰⎰-=πππθ200sin 21.记tdt e A t sin 0⎰-=π,则0sin t t A e tde π--=-⎰=]cos sin [0⎰----ππtdt e t e t t=⎰--πcos ttde =]sin cos [0tdt e te t t⎰--+-ππ=.1A e -+-π因此 )1(21π-+=e A , ⎰+=+=+=--ππππππππθ20).1(2)1(2)1(2121e e e d e e I).1(2)1(2πππππe e e I +=+=-六、(本题满分9分)求幂级数)1|(|2)1(121<-+∑∞=x n x nnn 的和函数)(x f 及其极值.【考点】幂级数的和函数、函数的极值 【难易度】★★★★【详解】本题涉及到的主要知识点:求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数.解析: 等式21()1(1)(1)2nnn x f x x n ∞==+-<∑两边求导得212212211()(1)(1)(1).1nn nn n n n n n xf x xx xx x x∞∞∞--+==='=-=-=-=-+∑∑∑ 上式两边从0到x 积分,得).1ln(211)0()(202x dt t t f x f x+-=+-=-⎰由(0)1f =, 得).1(),1ln(211)(2<+-=x x x f令0)(='x f ,求得唯一驻点0x =. 由于2221()10,(1)x f x x -''=-=-<+01)0(<-=''f ,所以()f x 在0x =处取得极大值,且极大值为(0)1f = 七、(本题满分9分)设)()()(x g x f x F =,其中函数)(),(x g x f 在),(+∞-∞内满足以下条件:)()(x g x f =',)()(x f x g ='且0)0(=f x e x g x f 2)()(=+.(1)求)(x F 所满足的一阶微分方程; (2)求出)(x F 的表达式. 【考点】一阶线性微分方程 【难易度】★★★【详解】本题涉及到的主要知识点:一阶线性微分方程)()(x Q y x P y =+'的解为⎪⎭⎫ ⎝⎛+⎰⎰=⎰-C dx e x Q Ce y dx x p dx x p )()()( 解析:(1)由)()()()()(x g x f x g x f x F '+'='=)()(22x f x g +2[()()]2()()f x g x f x g x =+-=2(2)2()x e F x -可见()F x 所满足的一阶微分方程为.4)(2)(2xe x F x F =+' 相应的初始条件为(0)(0)(0)0Ffg ==.(2)]4[)(222C dx e e e x F dx x dx +⎰⋅⎰=⎰- =]4[42C dx e e x x +⎰- =.22xx Ce e -+将(0)0F =代入上式,得1C =- 所以.)(22x xe ex F --=八、(本题满分8分)设函数)(x f 在]3,0[上连续,在)3,0(内可导,且3)2()1()0(=++f f f ,1)3(=f . 试证必存在)3,0(∈ξ,使0)(='ξf . 【考点】罗尔定理、介值定理 【难易度】★★★【详解】本题涉及到的主要知识点:①介值定理推论 在闭区间上连续的函数必取得介于最大值M 与最小值m 之间的任何值; ②罗尔定理 如果函数)(x f 满足 (1)在闭区间],[b a 上连续 (2)在开区间),(b a 内可导(3)在区间端点处得函数值相等,即)()(b f a f = 那么在),(b a 内至少有一点ξ,使得0)(='ξf .解析: ()f x 在]3,0[上连续,所以()f x 在]2,0[上连续,且在]2,0[上必有最大值M 和最小值m ,∴M f m ≤≤)0(,M f m ≤≤)1(,M f m ≤≤)2(. ∴.3)2()1()0(M f f f m ≤++≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f因为)3(1)(f c f ==, 且()f x 在[,3]c 上连续,在(,3)c 内可导,所以由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf九、(本题满分13分)已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn n n n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中01=/∑=ini a试讨论n a a a ,,,21 和b 满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系. 【考点】齐次线性方程组解的判定 【难易度】★★★ 【详解】解析:方程组的系数行列式b a a a a a b a a a a a b a a a a a b a n n nn++++= 321321321321||A bbb b b b a a a b a n 000000321---+=bb b a a a b an i 0000000032∑+=).(11b a b ni i n +=∑=-(1)当0≠b 且01=/+∑=b aini 时,0≠A ,方程组仅有零解.(2)当0=b 时,原方程组的同解方程组为02211=+++n n x a x a x a . 由01≠∑=ni ia可知,),,2,1(n i a i =不全为零. 不妨设01≠a ,得原方程组的一个基础解系为T a a )0,,0,1,(121 -=α,T a a )0,,1,0,(132 -=α,.)1,,0,0,(,1T n n a a -=α当i n i a b ∑=-=1时,由01=/∑=ini a知b ≠0,系数矩阵可化为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑∑∑∑====n i i n nni inni in ni ia a a a a a a a a a a a a a a a a a a a 1321132131213211(将第1行的-1倍加到其余各行,再从第2行到第n 行同乘以∑=-ni ia11倍)→⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑=1001010100113211 n ni ia a a a a( 将第n 行n a -倍到第2行的2a -倍加到第1行,再将第1行移到最后一行)→.0000100101010011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---由于秩1)(-=n A r ,则0=Ax 的基础解系是T)1,,1,1( =α.十、(本题满分13分)设二次型),0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T其中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (1)求b a ,的值;(2)利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵. 【考点】矩阵的特征值的性质、用正交变换化二次型为标准形 【难易度】★★★★ 【详解】解析:(1)二次型f 的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A 设A 的特征值为).3,2,1(=i i λ 由题设,有1)2(2321=-++=++a λλλ,.12242002002321-=--=-=b a b ba λλλ解得1,2a b ==-. (2) 由矩阵A 的特征多项式)3()2(22202012+-=+----=-λλλλλλA E ,得A 的特征值.3,2321-===λλλ对于,221==λλ解齐次线性方程组0)2(=-x A E ,得其基础解系 T )1,0,2(1=ξ,.)0,1,0(2T=ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,得基础解系.)2,0,1(3T-=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得T )51,0,52(1=η,T )0,1,0(2=η,.)52,0,51(3T -=η令矩阵[]12300100Q ηηη⎤⎥⎥==⎢⎥⎢⎥,则Q 为正交矩阵. 在正交变换X QY =下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T ,且二次型的标准形为.322232221y y y f -+=十一、(本题满分13分)设随机变量X 的概率密度为⎪⎩⎪⎨⎧∈=;,0],8,1[,31)(32其他x x x f)(x F 是X 的分布函数,求随机变量)(x F Y =的分布函数.【考点】连续型随机变量分布函数的计算 【难易度】★★★ 【详解】解析:当1x <时,()0F x =; 当8x > 时,()1F x =.对于]8,1[∈x ,有.131)(3132-==⎰x dt t x F x设()G y 是随机变量()Y F x =的分布函数. 显然,当0<y 时,()G y =0;当1≥y 时,()G y =1. 对于)1,0[∈y ,有})({}{)(y X F P y Y P y G ≤=≤==})1({}1{33+≤=≤-y X P y X P=.])1[(3y y F =+于是,()Y F x =的分布函数为0,0,(),01,1, 1.y G y y y y <⎧⎪=≤<⎨⎪≥⎩若若若 十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫ ⎝⎛7.03.021~X , 而Y 的概率密度为)(y f ,求随机变量Y X U +=的概率密度)(u g .【考点】多个相互独立随机变量简单分布函数的计算 【难易度】★★★【详解】本题涉及到的主要知识点:①求二维随机变量函数的分布,一般用分布函数法转化为求相应的概率.②两个随机变量和的分布,其中一个是连续型一个是离散型,要求用全概率公式进行计算 解析:设()F Y 是Y 的分布函数,则由全概率公式,知U X Y =+的分布函数为}{}{)(u Y X P u U P u G ≤+=≤==}2{7.0}1{3.0=≤++=≤+X u Y X P X u Y X P =}22{7.0}11{3.0=-≤+=-≤X u Y P X u Y P . 由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-=).2(7.0)1(3.0-+-u F u F由此,得U 的概率密度)2(7.0)1(3.0)()(-'+-'='=u F u F u G u g=).2(7.0)1(3.0-+-u f u f。

关于哈市2003年中考数学命题的反思

关于哈市2003年中考数学命题的反思

关于哈市2003年中考数学命题的反思一、考题背景2003年是哈尔滨市中考改革的第一年,考试由原来的两天改为三天,考试科目和往年相比有所变化。

数学是所有学生必考科目之一,而2003年哈市中考的数学考题备受争议。

本文通过对2003年哈市中考数学考题的分析和反思,希望能够找出问题并提出改进建议。

二、考题分析1. 题型设置不合理2003年哈市中考数学试题中,部分题目所占分数过大,而且题型设置不够平衡。

如选择题过多,填空题和解答题的数量相对较少,容易导致时间不够分配,影响考生发挥。

2. 难度不合适试题难度设置不合理,题目涉及的知识点跨度较大,有些题目过于复杂,导致部分学生难以完成,影响了他们的考试成绩。

3. 题目出错有部分试题存在错误,如选项不对称,或者是题目本身存在歧义,导致部分答题人产生困扰,影响了他们的答题心情和答题效果。

三、影响和启示1. 对学生的影响2003年哈市中考数学试题的不合理性直接影响到了学生的心理和发挥,阻碍了他们正常发挥的机会,容易造成学习压力过大、自信心受挫等问题。

2. 对教学改革的启示试题的出题者需要更加贴近教材和教学实际,增强题目的经典性和稳定性,保证考题能够客观公正地考察学生的能力和水平。

四、改进建议1. 试题设置上,应该合理控制题型数量和难度,保持题目平衡,保证学生在考试时间内能够有序完成试卷。

2. 出题者应该更加注重题目的准确性和清晰度,避免错误和歧义的存在,保证试题的客观性和公正性。

五、结语2003年哈市中考数学试题虽然存在一些问题,但正是这些问题的存在,促使我们思考和反思出题的原则和方法,为今后出题提供了宝贵的经验和启示。

希望通过对过去的反思,能够为未来的中考数学命题提供一些建设性的建议。

以上就是对于哈市2003年中考数学命题的反思,希望能够对未来的中考数学出题提供一些借鉴和启示。

2003年哈市中考数学试题的争议引起了社会各界的广泛关注和深入思考。

在教育改革的大背景下,中考数学试题的合理性和公平性成为了备受关注的焦点。

2003数一数三考研数学真题及解析

2003数一数三考研数学真题及解析

2003年全国硕士研究生入学统一考试数学一试题一、填空题(本题共6小题,每小题4分,满分24分.)(1))1ln(12)(cos lim x x x +→= .(2)曲面22y x z+=与平面042=-+z y x 平行的切平面的方程是.(3)设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a =.(4)从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为 .(5)设二维随机变量(,)X Y 的概率密度为,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧= 则=≤+}1{Y X P.(6)已知一批零件的长度X (单位:cm )服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40(cm ),则μ的置信度为0.95的置信区间是.(注:标准正态分布函数值(1.96)0.975,(1.645)0.95.ΦΦ==)二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)设函数()f x 在),(+∞-∞内连续,其导函数的图形如图所示,则()f x 有(A ) 一个极小值点和两个极大值点. (B ) 两个极小值点和一个极大值点. (C ) 两个极小值点和两个极大值点. (D ) 三个极小值点和一个极大值点.(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A ) n n b a <对任意n 成立.(B ) n n c b <对任意n 成立.(C ) 极限n n n c a ∞→lim 不存在.(D ) 极限n n n c b ∞→lim 不存在.(3)已知函数(,)f x y 在点(0,0)的某个邻域内连续,且22200(,)lim1()x y f x y xyx y →→-=+,则 (A ) 点(0,0)不是(,)f x y 的极值点. (B ) 点(0,0)是(,)f x y 的极大值点. (C ) 点(0,0)是(,)f x y 的极小值点.(D ) 根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点.(4)设向量组I:r ααα,,,21 可由向量组II:s βββ,,,21 线性表示,则 (A ) 当s r <时,向量组II 必线性相关.(B ) 当s r>时,向量组II 必线性相关.(C ) 当s r <时,向量组I 必线性相关.(D ) 当s r >时,向量组I 必线性相关.(5)设有齐次线性方程组0Ax =和0Bx =,其中,A B 均为n m ⨯矩阵,现有4个命题: ①若0Ax =的解均是0Bx =的解,则秩(A )≥秩(B ); ②若秩(A )≥秩(B ),则0Ax =的解均是0Bx =的解; ③若0Ax =与0Bx =同解,则秩(A )=秩(B ); ④若秩(A )=秩(B ),则0Ax =与0Bx =同解. 以上命题中正确的是(A ) ①②.(B ) ①③.(C ) ②④.(D ) ③④.(6)设随机变量21),1)((~X Y n n t X =>,则 (A ) )(~2n Yχ.(B ) )1(~2-n Yχ.(C ) )1,(~n F Y .(D ) ),1(~n F Y .过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D . (1)求D 的面积A ;(2)求D 绕直线x e =旋转一周所得旋转体的体积V .四、(本题满分12分)将函数x xx f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n n n 的和.五、(本题满分10分) 已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界.试证:(1)dx ye dy xe dx ye dy xe xLy x Ly sin sin sin sin -=-⎰⎰--; (2).22sin sin π≥--⎰dx ye dy xex Ly六、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层.汽锤每次击打,都将克服土层对桩的阻力而作功.设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为,0k k >).汽锤第一次击打将桩打进地下a (m ).根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数(01)r r <<.问(1)汽锤击打桩3次后,可将桩打进地下多深? (2)若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)七、(本题满分12分)设函数()y y x =在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1)试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程;(2)求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.设函数()f x 连续且恒大于零,222()22()()()()t D t f xy z dVF t f x y d σΩ++=+⎰⎰⎰⎰⎰,22()2()()()D t tt f x y d G t f x dxσ-+=⎰⎰⎰,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1)讨论()F t 在区间),0(+∞内的单调性. (2)证明当0t >时,).(2)(t G t F π>九、(本题满分10分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=322232223A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100101010P ,P A P B *1-=,求2B E +的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.十、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax ,:2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a十一、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放入乙箱后,求:(1)乙箱中次品件数X 的数学期望; (2)从乙箱中任取一件产品是次品的概率.十二、(本题满分8分)设总体X 的概率密度为⎩⎨⎧≤>=--,,,0,2)()(2θθθx x e x f x其中0>θ是未知参数.从总体X 中抽取简单随机样本n X X X ,,,21 ,记12ˆmin(,,,X X θ=L )n X .(1)求总体X 的分布函数()F x ; (2)求统计量θˆ的分布函数)(ˆx F θ;(3)如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2003年考研数学一试题答案与解析一、填空题(1)【分析】 属1∞型. 原式=1cos 1cos 1ln(1)lim[1(cos 1)].x x x x x -⋅-+→+-利用等价无穷小因子替换易求得2121lim)1ln(1)1(cos lim 22020-=-=+⋅-→→x xx x x x , 故原式=12.e -(2)【分析】 曲面在任意点(,,)P x y z 处的法向量{2,2,1}x y =-n ,n 与平面042=-+z y x 的法向量{2,4,1}=-0n 平行,λλ⇔=0n n 为某常数,即22,24,1.x y λλλ==-=- 从而1, 2.x y ==,又点P 在曲面上22(1,2)()5z x y P ⇒=+=⇒点处的{2,4,1}=-n .因此所求切面方程是0)5()2(4)1(2=---+-z y x ,即245x y z +-=.(3)【分析】 这是求傅氏系数的问题. 已知)()(2ππ≤≤-=x x x f 是以2π为周期的偶函数,按傅氏系数计算公式得2220002211cos 2sin 22sin 22a x xdx x d x x xdx ππππππ===-⎰⎰⎰=00111cos 2cos 2cos 2 1.xd x x x xdx ππππππ=-=⎰⎰(4)【分析】 设由基12,αα到基12,ββ的过渡矩阵为C ,则1212(,)(,)C ββαα=,即11212(,)(,).C ααββ-=那么,由111110231023011201120112⎡⎤⎡⎤⎡⎤→→⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ 可知应填:23.12⎡⎤⎢⎥--⎣⎦当然也可先求出11111,0101-⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦再作矩阵乘法而得到过渡矩阵.(5)【分析】 =≤+}1{Y X P 1(,)x y f x y dxdy +≤⎰⎰11206xxdx xdy -=⎰⎰12016(12).4x x dx =-=⎰(6)【分析】 这是一个正态总体方差已知求期望值μ的置信区间问题,该类型置信区间公式为(,),I x x =+其中λ由{}0.95P U λ<=确定(~(0,1))U N 即 1.96λ=.将40,1,16, 1.96x n σλ====代入上面估计公式,得到μ的置信度为0.95的置信区间是(39.51,40.49).二、选择题(1)【分析】 由图,()f x 有三个驻点和一个不可导点0.x ='()f x 在三个驻点处,一个由正变负,两个由负变正,因而这三个驻点中一个是极大值点,两个是极小值点;而点0x =(()f x 的连续点)的左侧'()0f x >,0x =的右侧'()0f x <,0x =是()f x 由增变减的交界点,因而是极大值点.应选(C ).(2)【分析】 (A ),(B )显然不对,因为由数列极限的不等式性质只能得出数列“当n 充分大时”的情况,不可能得出“对任意n 成立”的性质.(C )也明显不对,因为“无穷小⋅无穷大”是未定型,极限可能存在也可能不存在. 故应选(D ).(3)【分析】 由条件000lim[(,)]0lim (,)(0,0)0.x x y y f x y xy f x y f →→→→⇒-=⇒==由极限与无穷小的关系⇒222(,)1(1)()f x y xyo x y -=++ (0).ρ=→⇒2222222(,)()(())()(0).f x y xy x y o x y xy o ρρ=++++=+→ 当y x =时,2(,)(0,0)[1(1)]0f x y f x o -=+>(0ρδ<<时), 当y x =-时,2(,)(0,0)[1(1)]0f x y f x o -=-+<(0ρδ<<时),其中δ是充分小的正数,因此,(0,0)不是(,)f x y 的极值点.应选(A ).(4)【分析】 根据定理“若12,,,s αααL可由12,,,t βββL 线性表出,且s t >,则12,,,s αααL 必线性相关”,即若多数向量可以由少数向量线性表出,则这多数向量必线性相关,故应选(D ).(5)【分析】 显然命题④错误,因此排除(C ),(D ).对于(A )与(B )其中必有一个正确,因此命题①必正确,那么②与③哪一个命题正确呢?由命题①,“若0Ax =的解均是0Bx =的解,则秩(A )≥秩(B )”正确,知“若0Bx =的解均是0Ax =的解,则秩(A )≥秩(B )”正确,可见“若0Ax =与0Bx =同解,则秩(A )=秩(B )”正确.即命题③正确,所以应当选(B ).(6)【分析】 根据t 分布的性质,2~(1,)X F n ,再根据F 分布的性质21~(,1),F n X因此21~(,1)Y F n X=.故应选择(C ).三、【解】(1)曲线ln y x =在点0000(,)(ln )x y y x =处的切线方程为0001();y y x x x -=- 由切线过原点(0,0),得000,y x e ==,所以该切线方程为x y e=.从而,图形的D 面积为(如图)1() 1.2y eA e ey dy =-=-⎰ (2)切线y x e x =、轴与直线x e =所围三角形绕x e =旋转所得圆锥体的体积为211,3V e π=而曲线ln y x x =、轴与直线x e =所围曲边三角形绕x e =的旋转体体积为1222011()(2),22y V e e dy e e ππ=-=-+-⎰或者221112()ln (2).22e V e x xdx e e ππ=-=-+-⎰因此所求旋转体的体积为 212(5123).6V V V e e π=-=-+四、【分析与求解】 (1)因为'()f x 简单,先求'()f x 的展开式,然后逐项积分得()f x 的展开式.因2220112211()()'2(1)4,(,),121214221()12n n nn x f x x x x x x x∞=--'==-=--∈--++++∑ 又(0)4f π=,两边积分得221000(1)411()2(1)42,(,).442122n n x n n nn n n f x t dt x x n ππ∞∞+==-=--=-∈-+∑∑⎰因为()f x 在21=x 连续,21102(1)41(1)21221n n nn x n n xn n ∞∞+===--=++∑∑收敛,所以210(1)411()2,(,].42122n n n n f x x x n π∞+=-=-∈-+∑(2)令21=x ,得21001(1)41(1)()2.24212421n n n n n n f n n ππ∞∞+==--=-⋅=-++∑∑又0)21(=f ,因此0(1).214n n n π∞=-=+∑五、【分析与证明】用格林公式把第二类曲线积分转化为二重积分.(1)由格林公式,有左边曲线积分=sin sin sin sin [()()](),y x y x DDxe ye dxdy e e dxdy x y --∂∂--=+∂∂⎰⎰⎰⎰ 右边曲线积分=sin sin ().y x De e dxdy -+⎰⎰ 因为区域D 关于y x =对称⇒⎰⎰-+Dx y dxdy e e )(sin sin =⎰⎰+-Dxy dxdy e e )(sin sin (x 与y 互换). 因此dx ye dy xe dx ye dy xex Ly x Lysin sin sin sin -=---.①(2)由(1)的结论,有sin sin sin sin sin sin ()()y x y x y yLDDxe dy ye dx e e dxdy e e dxdy ----=+=+⎰⎰⎰⎰⎰Ñ2222.DDdxdy π≥==⎰⎰⎰⎰六、【分析】 设第n 次打击后,桩被打进地下n x ,第n 次打击时,气锤所作的功为),3,2,1( =n W n . 由题设,已知当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,1n n W rW -=要求的是(n x n 3)=及lim .n n x →+∞【解】 通过求1nii W =∑直接求出nx .按功的计算公式:12211011,22x W kxdx kx ka ===⎰2312123,,,.nn x x x n x x x W kxdx W kxdx W kxdx -===⎰⎰⎰L相加得 21201.2nx n n W W W kxdx kx +++==⎰L又 21121n n n n W rW r W r W ---====L ,代入上式得21221111(1),.22n n r r r W kx W ka -++++==L 于是().n x a m ==因此3().x m ==lim ).n n x m →+∞=七、【证明】 (1)实质上是求反函数的一、二阶导数的问题.由反函数求导公式知y dy dx '=1,2211()'()'()'''y y x d x dx dx dy dy y y dy===⋅33''().y dxy y dy ''=-=-' 代入原微分方程,便得常系数的二阶线性微分方程.sin x y y =-''(*)(2)特征方程210r -=的两个根为1,21;r =±由于非齐次项()sin f x x =sin x e x αβ=,0,α=1β=,i i αβ±=±不是特征根,则设(*)的特解*cos sin y a x b x =+,代入(*)求得,10,2a b ==-,故x y sin 21*-=,于是(*)的通解为121()sin .2x x y x C e C e x -=+- 又由初始条件得1,121-==C C ,所求初值问题的解为.sin 21x e e y x x --=-八、【分析与证明】(1)分别作球坐标变换:sin cos ,sin sin ,cos x y z ρϕθϕθρϕ===与极坐标变换:cos ,sin .x r y r θθ==将()F t 中的分子与分母表成定积分,于是222220222()sin 2()().()()ttttd d f drf drF t d f r rdrf r rdrπππθϕρρϕρρθ==⎰⎰⎰⎰⎰⎰⎰下面求'()F t ,由它的符号讨论()F t 的单调性.由变限积分求导法得2222222022()()()()()2(())tttt f t f r rdr t f t f r r drF t f r rdr -'=⎰⎰⎰220220()()()20,[()]tttf t f r r t r drf r rdr -=>⎰⎰(0,)t ∈+∞.因此()F t 在),0(+∞单调增加.(2)如同题(1),先将()G t 表成定积分:22200022()()().2()()ttttd f r rdrf r rdrG t f r rdrf r drπθπ==⎰⎰⎰⎰⎰要证0t >时,2()(),F t G t π>即证2220022()(),()()t t ttf r r dr f r rdr f r rdrf r dr>⎰⎰⎰⎰即证222220()()[()]0.ttt f r dr f r r dr f r rdr ->⎰⎰⎰(*)我们将利用单调性证明这个不等式. 令222220()()()[()],tttt f r dr f r r dr f r rdr Φ=-⎰⎰⎰⇒2222222200'()()()()()2[()]()tttt f t f r r dr f t tf r dr f r rdr f t t Φ=+-⋅⎰⎰⎰2220()()()0t f t f r t r dr =->⎰,(0,)t ∈+∞又()t Φ在0t =处连续⇒()t Φ在[0,)+∞单调增加0t ⇒>时,()(0)0.t ΦΦ>=因此0t >时,).(2)(t G t F π>九、【解】由于322777232232223011E A λλλλλλλλλλ-------=---=--------2111(7)(1)232(1)(7),011λλλλλ=-----=---故A 的特征值为.7,1321===λλλ因为7,i A λ==∏若,A αλα=则.AA ααλ*=所以,A *的特征值为:7,7,1.由于1B P A P -*=,即A *与B 相似,故B 的特征值为7,7,1.从而2B E +的特征值为9,9,3.因为11111()()(),AB P P A P P P A P ααααλ--*--*-===按定义可知矩阵B 属于特征值Aλ的特征向量是1Pα-.因此2B E +属于特征值2+λA的特征向量是1Pα-.由于,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P ,而当1λ=时,由222111()0,222000,222000E A x ---⎡⎤⎡⎤⎢⎥⎢⎥-=---→⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦得到属于1λ=的线性无关的特征向量为111,0α-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦210.1α-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 当7λ=时,由422121(7)0,242011,224000E A x ---⎡⎤⎡⎤⎢⎥⎢⎥-=--→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦ 得到属于7λ=的特征向量为311.1α⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦那么1111,0P α-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦1211,1P α--⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦1301.1P α-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦故2B E +属于特征值9λ=的全部特征向量为121111,01k k -⎡⎤⎡⎤⎢⎥⎢⎥-+-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦12,k k 是不全为零的任意常数. 而2B E +属于特征值3λ=的全部特征向量为301,1k ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,其中3k 为非零的任意常数.十、【解】必要性:若三条直线交于一点,则线性方程组23,23,23ax by c bx cy a cx ay b +=-⎧⎪+=-⎨⎪+=-⎩(*)有唯一解,故()()2r A r A ==.于是0.A =由于23111236()23a bc A b c a a b c b c a c a b c a b--=-=++---2226()()a b c ab c ab ac bc =++++---2223()[()()()],a b c a b b c c a =++-+-+-(* *)由321,,l l l 是三条不同直线,知a b c ==不成立,那么0)()()(222≠-+-+-a c c b b a .故必有.0=++c b a充分性:若0,a b c ++=由(**)知0=A ,故秩() 3.r A <由22222132()2[()]2[()]0,224a b ac b a a b b a b b b c =-=-++=-++≠(否则0a b c ===.)知秩() 2.r A =于是()() 2.r A r A ==因此,方程组(*)有唯一解,即三条直线321,,l l l 交于一点.十一、【解】 (1)易见,X 服从超几何分布,其分布参数为123,3n N N ===,根据超几何分布的期望公式,可直接得到1123.2N EX nN N ==+(2)设A 表示事件“从乙箱中任意取出的一件产品是次品”,由于{0},{1},{2}X X X ===和{3}X =构成完备事件组,因此根据全概率公式,有3300(){}{}{}6k k kP A P X k P A X k P X k =======⋅∑∑3011131{}.66624k kP X k EX =====⋅=∑十二、【解】 (1)2(),1,()().0,x xx e F x f t dt x θθθ---∞≥⎧-==⎨<⎩⎰(2)}),,,{min(}ˆ{)(21ˆx X X X P x P x F n≤=≤=θθ 12121{min(,,,)}1{,,,}n n P X X X x P X x X x X x =->=->>>L L 121{}{}{}n P X x P X x P X x =->>>L1[1()]nF x =--=2(),1,.0,n x x e x θθθ--≥⎧-⎨<⎩(3)ˆθ的概率密度为 2()ˆˆ,2,()'().0,n x x ne f x F x x θθθθθ-->⎧==⎨≤⎩因为2()ˆ1ˆ()2,2n x E xf x dx nxe dx nθθθθθθ+∞+∞---∞===+≠⎰⎰ 所以ˆθ作为θ的矩估计量不具有无偏性.。

2003考研数三真题及解析

2003考研数三真题及解析

2003年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1) 设10,cos ,()0,0,x x f x xx λ⎧≠⎪=⎨=⎪⎩若若 其导函数在0x =处连续,则λ的取值范围是.(2) 已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b .(3) 设0a >,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=.(4) 设n 维向量0,),0,,0,(<=a a a T Λα;E 为n 阶单位矩阵,矩阵T E A αα-=,T aE B αα1+=,其中A 的逆矩阵为B ,则a = .(5) 设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为.(6) 设总体X 服从参数为2的指数分布,n X X X ,,,21Λ为来自总体X 的简单随机样本,则当∞→n 时,∑==n i i n X n Y 121依概率收敛于.二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 设()f x 为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=( ) (A) 在0x =处左极限不存在. (B) 有跳跃间断点0x =. (C) 在0x =处右极限不存在. (D) 有可去间断点0x =.(2) 设可微函数(,)f x y 在点),(00y x 取得极小值,则下列结论正确的是 ( )(A) ),(0y x f 在0y y =处的导数等于零. (B)),(0y x f 在0y y =处的导数大于零.(C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在.(3) 设2nn n a a p +=,2nn n a a q -=,Λ,2,1=n ,则下列命题正确的是 ( )(A) 若∑∞=1n n a 条件收敛,则∑∞=1n n p 与∑∞=1n n q 都收敛.(B) 若∑∞=1n n a 绝对收敛,则∑∞=1n n p 与∑∞=1n n q 都收敛.a b =(C) 若∑∞=1n n a 条件收敛,则∑∞=1n n p 与∑∞=1n n q 敛散性都不定.(D) 若∑∞=1n n a 绝对收敛,则∑∞=1n n p 与∑∞=1n n q 敛散性都不定.(4) 设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 ( )(A) a b =或20a b +=. (B) a b =或20a b +≠.(C) a b ≠且20a b +=. (D) a b ≠且20a b +≠.(5) 设s ααα,,,21Λ均为n 维向量,下列结论不正确的是 ( )(A) 若对于任意一组不全为零的数s k k k ,,,21Λ,都有02211≠+++s s k k k αααΛ,则sααα,,,21Λ线性无关.(B) 若s ααα,,,21Λ线性相关,则对于任意一组不全为零的数s k k k ,,,21Λ,都有.02211=+++s s k k k αααΛ(C) s ααα,,,21Λ线性无关的充分必要条件是此向量组的秩为s.(D) s ααα,,,21Λ线性无关的必要条件是其中任意两个向量线性无关.(6) 将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件( ) (A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立. (C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立.三 、(本题满分8分)设1111(),[,1)sin (1)2f x x x x x πππ=+-∈-,试补充定义(1)f 使得()f x 在]1,21[上连续.四 、(本题满分8分)设(,)f u v 具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=, 求.2222y gx g ∂∂+∂∂五 、(本题满分8分)计算二重积分.)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π其中积分区域22{(,)}.D x y x y π=+≤六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数()f x 及其极值.七、(本题满分9分)设()()()F x f x g x =, 其中函数(),()f x g x 在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且(0)0f =, .2)()(x e x g x f =+(1) 求()F x 所满足的一阶微分方程; (2) 求出()F x 的表达式.八、(本题满分8分)设函数()f x 在[0,3]上连续,在(0,3)内可导,且(0)(1)(2)3,(3)1f f f f ++==. 试证:必存在)3,0(∈ξ,使.0)(='ξf九、(本题满分13分)已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ 其中.01≠∑=ni i a 试讨论n a a a ,,,21Λ和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.十、(本题满分13分)设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T , 中二次型的矩阵A 的特征值之和为1,特征值之积为-12.(1) 求,a b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.十一、(本题满分13分)设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f()F X 是X 的分布函数. 求随机变量()Y F X =的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫ ⎝⎛7.03.021~X ,而Y 的概率密度为()f y ,求随机变量U X Y =+的概率密度()g u .2003年全国硕士研究生入学统一考试数学三试题解析一、填空题 (1)【答案】2>λ【分析】无穷小量乘以有界函数的极限仍是无穷小量. 【详解】λ是参变量,x 是函数()f x 的自变量10001cos()(0)1(0)limlim lim cos 00x x x x f x f x f x x x xλλ-→→→-'====-,要使该式成立,必须10lim 0x x λ-→=,即1λ>.当(,0)(0,)x ∈-∞+∞U 时,1211()cos sin f x x x x xλλλ--'=+要使()0f x '=在0x =处连续,由函数连续的定义应有120011lim ()lim cos sin ()0x x f x x x f x x x λλλ--→→⎛⎫''=+== ⎪⎝⎭ 由该式得出2λ>. 所以()f x '在0x =处右连续的充要条件是2>λ.(2)【答案】64a【详解】设曲线与x 轴相切的切点为0(,0)x ,则00x x y ='=. 而2233y x a '=-,有22033x a =又在此点y 坐标为0(切点在x 轴上),于是有320030x a x b -+=,故 322200003(3)b x a x x x a =-=-,所以 .44)3(6422202202a a a x a x b =⋅=-=(3)【答案】2a【详解】本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,则二重积分只需在积分区域与被积函数不为零的区域的公共部分商积分即可,因此实际上只需在满足此不等式的区域内积分即可.⎰⎰-=Ddxdy x y g x f I )()(=20101x y x a dxdy ≤≤≤-≤⎰⎰=1120x x a dx dy +⎰⎰1220[(1)]a x x dx a =+-=⎰(4)【答案】-1【详解】这里T αα为n 阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.由题设,有)1)((T T a E E AB αααα+-==T T T T a a E αααααααα⋅-+-1111()T T T T E a a αααααααα=-+-=T T T a a E αααααα21-+-1(12)T E a E aαα=+--+=,于是有0121=+--a a ,即0122=-+a a ,解得.1,21-==a a 已知0a <,故1a =-.(5)【答案】0.9.【详解】利用方差和相关系数的性质DX a X D =+)(,(,)(,)Cov X Y a Cov X Y +=,又因为Z 仅是X 减去一个常数,故方差不会变,Z 与Y 的协方差也不会变,因此相关系数也不会变.(,)(,0.4)[((0.4)]()(0.4)Cov Y Z Cov Y X E Y X E Y E X =-=---()0.4()()()0.4()E XY E Y E Y E X E Y =--+ ()()()(,)E XY E Y E X Cov X Y =-=,且()().D Z D X = 又(,)Cov Y Z (,)Cov X Y =,所以0.9.XY ρ===(6)【答案】12. 【分析】本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量n X X X ,,,21Λ,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:).(1111∞→→∑∑==n EX n X n ni i pn i i 【详解】本题中22221,,,n X X X Λ满足大数定律的条件,且22)(i i i EX DX EX +==21)21(412=+, 因此根据大数定律有∑==n i i n X n Y 121依概率收敛于()2111.2n i i E X n ==∑二、选择题(1)【答案】()D【详解】方法1:直接法:由()f x 为奇函数知,(0)0f =;又由xx f x g )()(=,知()g x 在0x =处没定义,显然0x =为()g x 的间断点,为了讨论函数()g x 的连续性,求函数()g x 在0x →的极限.000()()(0)lim ()lim lim (0)0x x x f x f x f g x f x x →→→-'===-导数的定义存在, 故0x =为可去间断点.方法2:间接法:取()f x x =,此时()g x =,0,0,0,1=≠⎩⎨⎧=x x x x 可排除()A ()B ()C 三项.(2)【答案】()A【详解】由函数(,)f x y 在点),(00y x 处可微,知函数(,)f x y 在点),(00y x 处的两个偏导数都存在,又由二元函数极值的必要条件即得(,)f x y 在点),(00y x 处的两个偏导数都等于零. 从而有000(,)(,)(,)0y y x y x y df x y f dyy==∂==∂选项()A 正确.(3)【答案】()B 【详解】由2nn n a a p +=,2nn n a a q -=,知0n n p a ≤≤,0n n q a ≤-≤若∑∞=1n n a 绝对收敛,则∑∞=1n n a 收敛. 再由比较判别法,∑∞=1n n p 与()1n n q ∞=-∑都收敛,后者与1n n q ∞=∑仅差一个系数,故1n n q ∞=∑也收敛,选(B).(4)【答案】(C)【分析】 A 的伴随矩阵的秩为1, 说明A 的秩为2,由此可确定,a b 应满足的条件. 【详解】方法1:根据A 与其伴随矩阵A *秩之间的关系()()()()1101*n r A n r A r A n r A n =⎧⎪==-⎨⎪<-⎩知秩(A )=2,它的秩小于它的列数或者行数,故有11(2)1(2)0010a b b b b b b A b a b a b a b a b a bb b ab aa b==+=+--2(2)()0a b a b =+-=有02=+b a 或a b =.当a b =时,[][]()[][]()211311000000b b b b b b A b b b b b b +⨯-+⨯-⎡⎤⎡⎤⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦显然秩()12A =≠, 故必有 a b ≠且02=+b a . 应选(C).方法2:根据A 与其伴随矩阵A *秩之间的关系,()()()()1101*n r A n r A r A n r A n =⎧⎪==-⎨⎪<-⎩,知()1*r A =,()2r A =. 对A 作初等行变换[][]()[][]()21131100a b b a b b A b a b b a a b b b a b a a b +⨯-+⨯-⎡⎤⎡⎤⎢⎥⎢⎥=→--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦当a b =时,从矩阵中可以看到A 的秩为1,与秩()2A =,不合题意(排除(A)、(B)) 故a b ≠,这时[]()[]()[][][][]231213201100100101001b a b a a b b a b b a b b b A b a a b b a a b ÷-÷-+++⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥→--→-→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦故02=+b a ,且a b ≠时,秩(A )=2,故应选.(5)【答案】(B)【分析】本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式.应注意是寻找不正确的命题.【详解】(A): 若对于任意一组不全为零的数s k k k ,,,21Λ,都有 02211≠+++s s k k k αααΛ, 则s ααα,,,21Λ必线性无关.因为若s ααα,,,21Λ线性相关,则存在一组不全为零的数s k k k ,,,21Λ,使得02211=+++s s k k k αααΛ,矛盾. 可见(A)成立.(B): 若s ααα,,,21Λ线性相关,则存在一组(而不是对任意一组不全为零的)数s k k k ,,,21Λ,都有.02211=+++s s k k k αααΛ (B)不成立.(C) s ααα,,,21Λ线性无关,则此向量组的秩为s ;反过来,若向量组s ααα,,,21Λ的秩为s ,则s ααα,,,21Λ线性无关,因此(C)成立.(D) s ααα,,,21Λ线性无关,则其任一部分组线性无关,则其中任意两个向量线性无关,可见(D)也成立.综上所述,应选(B).【评注】 原命题与其逆否命题是等价的. 例如,原命题:若存在一组不全为零的数s k k k ,,,21Λ,使得02211=+++s s k k k αααΛ成立,则s ααα,,,21Λ线性相关. 其逆否命题为:若对于任意一组不全为零的数s k k k ,,,21Λ,都有02211≠+++s s k k k αααΛ,则s ααα,,,21Λ线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.(6)【答案】C【分析】(1) ,A B 两事件相互独立的充要条件:{}{}{}P AB P A P B =(2) ,,A B C 三事件相互独立的充要条件:(i),,A B C 两两相互独立; (ii){}{}{}{}P ABC P A P B P C =⋅⋅【详解】方法1:因为{}112P A =,{}212P A =,{}312P A =,{}414P A =,且 {}1214P A A =,{}1314P A A =,{}2314P A A =,{}2414P A A =,{}1230P A A A =,可见有{}{}{}1212P A A P A P A =,{}{}{}1313P A A P A P A =,{}{}{}2323P A A P A P A =, {}{}{}{}123123P A A A P A P A P A ≠,{}{}{}2424P A A P A P A ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选(C).方法2:由三事件相互独立的定义可知:相互独立必两两独立;反之,两两独立不一定相互独立.可见(A)不正确,因为如果正确,则(C)也正确,但正确答案不能有两个;同理,(B)也不正确. 因此只要检查(C)和(D){}{}{}{}{}2342341110244P A A A P P A P A P A =∅=≠⋅⋅=⨯⨯故(D)错,应选(C).三【详解】为使函数()f x 在1[,1]2上连续,只需求出函数()f x 在1x =的左极限)(lim 1x f x -→,然后定义(1)f 为此极限值即可.11111lim ()lim[]sin (1)x x f x x x x πππ--→→=+-- 1111lim[]sin (1)x x x πππ-→=+--11(1)sin lim (1)sin x x xx xπππππ-→--=+-令1u x =-,则当1x -→时,0u +→,所以1lim ()x f x -→01sin (1)lim sin (1)u u u u u πππππ+→--=+-1sin (1)lim (sin cos cos sin )u u u u u u ππππππππ+→--=+⋅⋅-⋅01sin (1)limsin u u u u uπππππ+→--=+⋅ 2201sin (1)lim u u u u ππππ+→--+等201cos (1)lim 2u u uπππππ+→+-+洛 2201sin (1)lim 2u u ππππ+→-+洛110ππ+== 定义π1)1(=f ,从而有11lim ()(1)x f x f π-→==,()f x 在1x =处连续. 又()f x 在)1,21[上连续,所以()f x 在]1,21[上连续.四【详解】由复合函数[(,),(,)]z f x y x y ϕψ=的求导法则,得221()()2x y g f xy f x u x v x ⎛⎫∂- ⎪∂∂∂∂⎝⎭=+∂∂∂∂∂f f y x u v ∂∂=+∂∂ 221()()2x y g f xy f y u y v x ⎛⎫∂- ⎪∂∂∂∂⎝⎭=+∂∂∂∂∂.f f x y u v∂∂=-∂∂ 从而2222222222222222g f f f f f y y x x y x x u u v v u v v f f f f y xy x u u v v v ⎡⎤⎡⎤∂∂∂∂∂∂=⋅+⋅++⋅+⋅⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎣⎦⎣⎦∂∂∂∂=+++∂∂∂∂∂2222222222222222g f f f f f x x y y x y y u u v v u v v f f f f x xy y u u v v v⎡⎤⎡⎤∂∂∂∂∂∂=⋅-⋅--⋅-⋅⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎣⎦⎣⎦∂∂∂∂=-+-∂∂∂∂∂所以 222222222222222222()()()()g g f f f f x y x y x y x y u v u v∂∂∂∂∂∂+=+++=++∂∂∂∂∂∂=.22y x +五【详解】从被积函数与积分区域可以看出,应利用极坐标进行计算.作极坐标变换:设θθsin ,cos r y r x ==,有2222222()22()22222220sin()sin()sin sin sin .2xy xy DDt r rr t I e x y dxdy e e x y dxdye e d r rdr d r dr e e tdt ππππππππθθπ-+--+=---=+=+=⋅==⎰⎰⎰⎰⎰⎰⎰记tdt e A t sin 0⎰-=π,则0000sin cos cos cos t t t t A e tdt e d t e t e tdt ππππ----⎡⎤==-=-+⎢⎥⎣⎦⎰⎰⎰0001sin 1sin sin t t t e e d t e e t e tdt πππππ-----⎡⎤=---+=+--⎢⎥⎣⎦⎰⎰=.1A e -+-π因此 )1(21π-+=e A ,).1(2)1(2πππππe e e I +=+=-六【分析】(1) 和函数一般经过适当的变换后,考虑对其逐项求积分后求和,再求导即可得和函数;或者先通过逐项求导后求和,再积分即可得和函数.本题可直接采用后者.(2) 等比级数求和公式2011(11)1n n n x x x x x x∞==+++++=-<<-∑L L【详解】先对和函数21()1(1)2nnn x f x n ∞==+-∑求导211()(1)nn n f x x∞-='=-∑2221(1)(1)nn n n n n x xx x ∞∞-===-=--∑∑2221()11n n x x x x x x ∞=-=--=-⋅=++∑ 对上式两边从0到x 积分200()1xxt f t dt dt t '=-+⎰⎰21()(0)ln(1)2f x f x ⇒-=-+ 由(0)1f =, 得21()1ln(1)(1).2f x x x =-+<为了求极值,对()f x 求一阶导数,2212()211x xf x x x-'=-⋅=++ 令0)(='x f ,求得唯一驻点0x =. 由于2221()(1)x f x x -''=-+, 01)0(<-=''f 由极值的第二充分条件,得()f x 在0x =处取得极大值,且极大值为(0)1f =.七【分析】题目要求()F x 所满足的微分方程,而微分方程中含有其导函数,自然想到对()F x 求导,并将其余部分转化为用()F x 表示,导出相应的微分方程,然后再求解相应的微分方程即可. 【详解】(1) 方法1:由()()()F x f x g x =,有)()()()()(x g x f x g x f x F '+'='=)()(22x f x g +2[()()]2()()f x g x f x g x =+-=2(2)2()x e F x -可见()F x 所满足的一阶微分方程为.4)(2)(2x e x F x F =+'相应的初始条件为(0)(0)(0)0F f g ==. 方法2:由()()()F x f x g x =,有)()()()()(x g x f x g x f x F '+'='=22[()][()]f x g x ''+2[()()]2()()f x g x f x g x ''''=+-又由.2)()(x e x g x f =+ 有()()2x f x g x e ''+=,)()(x g x f =',)()(x f x g =',于是22()42()()42()x x F x e f x g x e F x '=-=-可见()F x 所满足的一阶微分方程为.4)(2)(2x e x F x F =+'相应的初始条件为(0)(0)(0)0F f g ==(2) 题(1)得到()F x 所满足的一阶微分方程,求()F x 的表达式只需解一阶微分方程.又一阶线性非齐次微分方程()()dyP x y Q x dx+=的通解为 ()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=⋅+ ⎪⎝⎭⎰ 所以 ]4[)(222C dx e e e x F dxx dx +⎰⋅⎰=⎰-=]4[42C dx e e x x +⎰- =.22x x Ce e -+将(0)0F =代入上式,得01,1C C =+=-. 所以 .)(22x x e e x F --=八【分析】题目要证存在)3,0(∈ξ,使得其一阶导数为零,自然想到用罗尔定理. 而罗尔定理要求函数在某闭区间连续,且端点处函数值相等.题目中已知(3)1f =,只需要再证明存在一点[0,3)c ∈,使得)3(1)(f c f ==,然后在[,3]c 上应用罗尔定理即可. 条件(0)(1)(2)3f f f ++=等价于13)2()1()0(=++f f f .问题转化为1介于()f x 的最值之间,最终用介值定理可以达到目的.【详解】方法1:因为()f x 在[0,3]上连续,所以()f x 在[0,2]上连续,则在[0,2]上必有最大值M 和最小值m (连续函数的最大值最小值定理),于是M f m ≤≤)0(,M f m ≤≤)1(,M f m ≤≤)2(.三式相加 3(0)(1)(2)3.m f f f M ≤++≤ 从而 (0)(1)(2)1.3f f f m M ++≤=≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f因为()(3)1f c f ==, 且()f x 在[,3]c 上连续,在(,3)c 内可导,由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf方法2:由于(0)(1)(2)3f f f ++=,如果(0),(1),(2)f f f 中至少有一个等于1,例如(2)1f =,则在区间[2,3]上对()f x 使用罗尔定理知,存在(0,2)(0,3)ξ∈⊂使.0)(='ξf 如果(0),(1),(2)f f f 中没有一个等于1,那么它们不可能全大于1,也不可能全小于1.即至少有一个大于1,至少有一个小于1,由连续函数的介值定理知,在区间(0,2)内至少存在一点η使()1f η=.在区间[,3]η对()f x 用罗尔定理知,存在(,3)(0,3)ξη∈⊂,使.0)(='ξf 证毕.九【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有行对应元素相加后相等.可先将所有行对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值. 【详解】方程组的系数行列式ba a a a a ba a a a ab a a a a a b a A n n n n++++=ΛM M M M M ΛΛΛ321321321321 231231231231nin i n in i nin i nin i b a a a a b a a b a a b a a a b a b a a a a b====+++=++++∑∑∑∑L LL M M M M M L23232312311()11nn ni n i n a a a a b a a b a a a ba a a a b=+=+++∑L L L M M M M M L 2311000()000000n ni i a a a b b a b b==+∑L L L M M M M M L =).(11∑=-+ni i n a b b(1) 当0A ≠,即0≠b 且01≠+∑=ni i a b 时,秩()A n =,方程组仅有零解.(2) 当0b =时,0A =,原方程组的同解方程组为.02211=+++n n x a x a x a Λ由01≠∑=ni i a 可知,),,2,1(n i a i Λ=不全为零.不妨设01≠a ,得原方程组的一个基础解系T a a )0,,0,1,(121Λ-=α,Ta a )0,,1,0,(132Λ-=α,.)1,,0,0,(,1T n na a ΛΛ-=α (3) 当∑=-=ni i a b 1时,0A =. 这时0≠b ,原方程组的系数矩阵可化为1231123112311231nin i nini ni n i nn i i a a a a a a a a a a A a a a a a aa a a a ====⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦∑∑∑∑L LLM M M M L1231111111001(1)000nin i nniii i nni i i i n ni i i i a a a a a a a a a a a =======⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦∑∑∑∑∑∑∑L LLu u u u u u u u u u u u u u u u u u r M M M M L将第行的倍加到其余各行12311211001101011nin i n ii a a a a a n a ==⎡⎤-⎢⎥⎢⎥-⎢⎥-⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦∑∑L L L M M MM u u u u u u u u u u u u u u u u u u r L从第行到第行同乘以倍 0000()11001.2,3,,10001001i i a i n ⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥-⎣⎦LL M M M M L L u u u u u u u u u u u u u u u u u u u r L将第行的倍加到第行,由此得原方程组的同解方程组为12x x =,13x x =,1,x x n =Λ .原方程组的一个基础解系为.)1,,1,1(T Λ=α十【分析】 特征值之和等于A 的主对角线上元素之和,特征值之积等于A 的行列式,由此可求出,a b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】(1)二次型f 的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A 设A 的特征值为(1,2,3)i i λ=,由题设得1231122332(2)1a a a a λλλ++=++=++-=,21230||0204212.02a bA a b b λλλ===--=--解得1,2a b ==-.(2) 求矩阵A 的特征值,令210202(2)(3)022E A λλλλλλ---=-=-+=-+,得矩阵A 的特征值.3,2321-===λλλ对于,221==λλ 解齐次线性方程组0)2(=-x A E ,系数矩阵为102000204-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦,得基础解系T )1,0,2(1=ξ,.)0,1,0(2T =ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,系数矩阵为402050201--⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦,得基础解系.)2,0,1(3T -=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得T )51,0,52(1=η,T )0,1,0(2=η,.)52,0,51(3T -=η令矩阵[]12300100Q ηηη⎤⎥⎥==⎢⎥⎢⎥,则Q 为正交矩阵. 在正交变换X QY =下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T ,且二次型的标准形为.322232221y y y f -+=【评注】本题求,a b 也可先计算特征多项式,再利用根与系数的关系确定:二次型f 的矩阵A 对应特征多项式为)].2()2()[2(220022b a a bb aA E +----=+----=-λλλλλλλ设A 的特征值为321,,λλλ,则).2(,2,2232321b a a +-=-=+=λλλλλ 由题设得1)2(2321=-+=++a λλλ,.12)2(22321-=+-=b a λλλ解得1,2a b ==-.第一步求参数见《数学复习指南》P361重要公式与结论4,完全类似例题见《文登数学全真模拟试卷》数学三P47第九题.十一【分析】先求出分布函数()F x 的具体形式,从而可确定()Y F X = ,然后按定义求Y 的分布函数即可.注意应先确定()Y F x =的值域范围)1)(0(≤≤X F ,再对y 分段讨论. 【详解】易见,当1x <时,()0F x =; 当8x >时,()1F x =.对于]8,1[∈x ,有.131)(3132-==⎰x dt t x F x设()G y 是随机变量()Y F x =的分布函数. 显然,当0<y 时,()G y =0;当1≥y 时,()G y =1. 对于)1,0[∈y ,有})({}{)(y X F P y Y P y G ≤=≤=31}{(1)}P y P X y =≤=≤+3[(1)].F y y =+=于是,()Y F x =的分布函数为0,0,(),01,1, 1.y G y y y y <⎧⎪=≤<⎨⎪≥⎩若若若十二【分析】本题属新题型,求两个随机变量和的分布,其中一个是连续型一个是离散型,要求用全概率公式进行计算,类似问题以前从未出现过,具有一定的难度和综合性.求二维随机变量函数的分布,一般用分布函数法转化为求相应的概率. 注意X 只有两个可能的取值,求概率时可用全概率公式进行计算.求概率密度()g u ,一般应先求分布函数(){}{}G u P U u P X Y u =≤=+≤,在计算概率的时候,应充分利用X 只有可能取值1X =和2X =.全概率公式:如果事件1,,n A A L 构成一个完备事件组,即它们是两两互不相容,其和为Ω(总体的样本空间);并且()0,1,2,,.i P A i n >=L 则对任一事件B 有()1()(|)ni i i P B P A P B A ==∑.【详解】设()F y 是Y 的分布函数,由全概率公式,得U X Y =+的分布函数}{)(u Y X P u G ≤+={1}{1}{2}{2}P X P X Y u X P X P X Y u X ==+≤=+=+≤= 0.3{1}0.7{2}P X Y u X P X Y u X =+≤=++≤= 0.3{11}0.7{22}P Y u X P Y u X =≤-=+≤-=.由于X 和Y 相互独立,所以 {1}{11}P Y u P Y u X ≤-=≤-=,{2}{22}P Y u P Y u X ≤-=≤-= 所以 ()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,因为连续型随机变量密度函数是分布函数在对应区间上的微分得到,得U 的概率密度)2(7.0)1(3.0)()(-'+-'='=u F u F u G u g 0.3(1)0.7(2).f u f u =-+-。

03年高03年高考数学试题和答卷评价

03年高03年高考数学试题和答卷评价

. . . ....03年高考数学试题和答卷评价华南师范大学王林全(广州,,)引言. 我们处于一个改革变化的时代, 教育的理念,思维的方式都在发生变化, 03年高考数学试题(下称03年试题)反映了这种变化, 它向传统的教学方式提出了挑战.本文着重评价03年试题特色和答卷的有关问题.1.03年高考数学试题的特点1.1根据大纲,重视基础,要求熟练03年试题按照考纲、大纲和现行课本要求命题.考题内容基本上没有超过课本与大纲。

∙考查的知识面比较宽阔. 涉及代数,三角,立体几何,平面解析几何等多方面,∙要求对基础知识有相当的熟练程度。

如(12)题, 如果对正三棱锥的图形特点和数量关系没有相当熟练的掌握, 是不易做出来的.例1.第(12)题. 一个四面体的所有棱长都为2,四个顶点在同一球面上, 则此球的表面积为(A) 3π(B)4π(C)33π(D)6π分析: 如图1, 设正四面体P-ABC的外接球球心为O, 外接球半径为R, 则点O在四面体的高PO’上(O’是垂足), O’在正△ABC中AB的高CD 上, 已知PA=PB=PC=AB=BC=CA=2, 由直角三角形的边角关系算得: PD= 6/2, BO’=CO’=6/3, PO’=23/3, 在rt△OO’B中, 用勾股定理得(PO’-R)2+ BO’2=OB2, 从而得到关于R的方程:(23/3-R)2+(6/3)2= R2, 解得R=3/2, 得球表面积S = 3π. 答案(A).图11.2稳中求变,难点增加,难度提高03年试题的题型结构,考题分量与近年历届试题持平,各分科所占比例大致合理。

∙ 对一些常用的公式给予适当的提示。

然而,在数学学习中, 一定的记忆仍然需要。

∙ 提高起点,尾巴不翘. 03年试题打破了过去由易到难的考题分布格局,填空题、选择题的难点分布明显增多,给考生形成一定的心理挑战。

解答题的难度并非依题次而增高,几乎每题都设置了难点,作为解答题开始的(17)题,不同于往年设置较简单的代数题,而是有一定深度的立体几何问题,给考生造成一定的心理威胁。

[高考必看]2003年全国高考数学试卷分析

[高考必看]2003年全国高考数学试卷分析

2003年全国高考数学试卷分析保定二中范智贤2003年全国高考数学试卷分析保定二中 范智贤2003年数学高考试卷严格遵循《高考说明》中“发挥数学作为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注重考查进入高校继续学习的潜能”的要求,保持稳中有变,注重创新,有较好的梯度和区分度,注重考查基础知识和常用的数学思想方法,数学实际应用能力。

文理区分度较大,文科试卷贴近生活,理科试卷更加注重抽象推理,重视思维严谨性的考查。

1.注重对基础知识的考查选择题平稳,以基础知识基本技能为目标,起点较低,覆盖面广,重点知识突出。

如理科(1)(2)(4)(5)(8)(9)(11)(12)题,文科(1)(2)(3)(4)(5)(7)(8)(9)(12)题,没有太大运算量,只要稍加思索,便可得出答案。

填空题难度适中,如理科(15)文科(16)题染色问题,贴近生活,与实际联系紧密,在复习中做过4个区域5个颜色的染色问题,但此题改成了5个区域4个颜色的染色问题,题目一下变灵活了,难度增大了,需要分类讨论,7211111213141211121314=+C C C C C C C C C C ,不少考生因为没有分类而丢分。

如文科(15)题,与平面几何类比、猜想,得出立体几何的结论,是一道很好的小题。

又如,平面几何中梯形中位线定理“梯形中位线等于上底与下底和的一半”,类比《立体几何》P 67例2:台体中截面面积公式)(下上中s s s +=21,所以,在平时教学中要培养学生敢于想象,大胆猜想,注重类比的思想。

解答题文科难度适中,理科较难。

如文科(16)题是立体几何考题,针对文科考生空间想象能力,逻辑推理能力较弱的特点,起点低,考生能得满分。

如文(19)题第(Ⅱ)问画图象,只要用五πππππ,,,,分别等于,再令置点法作图先画出平衡位202421---=x y 上图象。

,然后再改成得出一个周期的图象,]22[ππ-如理科(20)文科(21)题是一道应用题,文字叙述简洁,信息点一目了然,没有干扰考生的无用信息,一改过去拖冗滞长的文字叙述,用平面几何知识便可解答,也可建模,用解析几何、不等式知识解答,在复习中做过类似的题目,但此题加上台风“以10km/h 的速度不断增大”更加合乎实际,又加大了试题的难度,是一道不错的应用题。

2003年高考数学试卷解析

2003年高考数学试卷解析

2003年高考数学试卷解析一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知x∈(-(π)/(2),0),cos x = (4)/(5),则tan2x = ( )A. (7)/(24)B. -(7)/(24)C. (24)/(7)D. -(24)/(7)2. 圆锥曲线ρ=(8sinθ)/(cos^2)θ的准线方程是( )A. ρcosθ = - 2B. ρcosθ = 2C. ρsinθ = - 2D. ρsinθ = 23. 设函数f(x)=2^-x-1,x≤slant0 x^(1)/(2),x > 0,若f(x_0)>1,则x_0的取值范围是( )A. ( - 1,1)B. ( - 1,+∞)C. (-∞,-2)∪(0,+∞)D. (-∞,-1)∪(1,+∞)4. 函数y = 2sin x(sin x+cos x)的最大值为( )B. √(2)-1C. √(2)D. 2.5. 已知圆C:(x - a)^2+(y - 2)^2 = 4(a > 0)及直线l:x - y + 3 = 0,当直线l被圆C截得的弦长为2√(2)时,则a = ( )A. √(2)B. 2-√(2)C. √(2)-1D. √(2)+16. 已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,全面积的最大值是( )A. 2π R^2B. (9)/(4)π R^2C. (8)/(3)π R^2D. (3)/(2)π R^27. 已知方程(x^2-2x + m)(x^2-2x + n)=0的四个根组成一个首项为(1)/(4)的等差数列,则| m - n|=( )A. 1.B. (3)/(4)C. (1)/(2)8. 已知双曲线中心在原点且一个焦点为F(√(7),0),直线y = x - 1与其相交于M、N两点,MN中点的横坐标为-(2)/(3),则此双曲线的方程是( )A. frac{x^2}{3}-frac{y^2}{4}=1B. frac{x^2}{4}-frac{y^2}{3}=1C. frac{x^2}{5}-frac{y^2}{2}=1D. frac{x^2}{2}-frac{y^2}{5}=19. 函数f(x)=sin x,x∈[(π)/(2),(3π)/(2)]的反函数f^-1(x)=( )A. -arcsin x,x∈[-1,1]B. -π-arcsin x,x∈[-1,1]C. π+arcsin x,x∈[-1,1]D. π - arcsin x,x∈[-1,1]10. 已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和D(0,1),一质点从AB的中点P_0沿与AB夹角为θ的方向射到BC上的点P_1后,依次反射到CD、DA和AB 上的点P_2、P_3和P_4(入射角等于反射角),设P_4的坐标为(x_4,0),若1 <x_4<2,则tanθ的取值范围是( )A. ((1)/(3),1)B. ((1)/(3),(2)/(3))C. ((2)/(5),(1)/(2))D. ((2)/(5),(2)/(3))11. limlimits_n→∞frac{C_2n^n}{C_2n + 2^n+1}=( )A. 0.B. 2.C. (1)/(2)D. (1)/(4)12. 一个四面体的所有棱长都为√(2),四个顶点在同一球面上,则此球的表面积为( )A. 3πB. 4πC. 3√(3)πD. 6π二、填空题(本大题共4小题,每小题4分,共16分。

2003年数学三试题评析1

2003年数学三试题评析1

2003年数学三试题评析1 D又在此点y 坐标为0,于是有300230=+-=b x a x ,故.44)3(6422202202a a a x a x b =⋅=-=【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程.完全类似例题见《文登数学全真模拟试卷》数学四P.36第一大题第(3)小题.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= 2a .【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】⎰⎰-=D dxdyx y g x f I )()(=dxdya x y x ⎰⎰≤-≤≤≤10,102=.])1[(212112a dx x x a dy dx a x x=-+=⎰⎰⎰+【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.完全类似例题见《数学复习指南》P.191【例8.16-17】 .(4)设n 维向量0,),0,,0,(<=a a a Tα;E 为n 阶单位矩阵,矩阵TE A αα-=,TaE B αα1+=,其中A 的逆矩阵为B ,则a= -1 .【分析】 这里Tαα为n 阶矩阵,而22a T=αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.【详解】 由题设,有)1)((TTaE E AB αααα+-= =T T T Ta a E αααααααα⋅-+-11 =TT T T a a E αααααααα)(11-+-=TT T a a E αααααα21-+-=Eaa E T =+--+αα)121(,于是有0121=+--aa ,即122=-+a a ,解得.1,21-==a a由于A<0 ,故a=-1.【评注】完全类似例题见《数学复习指南》P.305第2大题第(5)小题 .(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为 0.9 .【分析】 利用相关系数的计算公式即可.【详解】 因为)4.0()()]4.0([()4.0,cov(),cov(---=-=X E Y E X Y E X Y Z Y=)(4.0)()()(4.0)(Y E X E Y E Y E XY E +--=E(XY) –E(X)E(Y)=cov(X,Y), 且.DX DZ =于是有cov(Y,Z)=DZDY Z Y ),cov(=.9.0),cov(==XY DYDXY X ρ【评注】 注意以下运算公式:DX a X D =+)(,).,cov(),cov(Y X a Y X =+完全类似例题见《数学复习指南》P.475【例3.32】的【注】 .(6)设总体X 服从参数为2的指数分布,n X X X ,,,21 为来自总体X 的简单随机样本,则当∞→n 时,∑==n i in X n Y 121依概率收敛于 21 . 【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量nX XX ,,,21,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:).(1111∞→→∑∑==n EX n X n ni i pn i i【详解】 这里22221,,,nX X X满足大数定律的条件,且22)(i i iEX DX EX +==21)21(412=+,因此根据大数定律有∑==n i in X n Y 121依概率收敛于.21112=∑=n i i EX n【评注】 大数定律见《数学复习指南》P.484 .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ D ]【分析】 由题设,可推出f(0)=0 , 再利用在点x=0处的导数定义进行讨论即可.【详解】 显然x=0为g(x)的间断点,且由f(x)为不恒等于零的奇函数知,f(0)=0. 于是有)0(0)0()(lim )(lim)(lim 00f x f x f x x f xg x x x '=--==→→→存在,故x=0为可去间断点.【评注1】 本题也可用反例排除,例如f(x)=x, 则此时g(x)=,0,0,0,1=≠⎩⎨⎧=x x xx 可排除(A),(B),(C) 三项,故应选(D).【评注2】 若f(x)在0x x =处连续,则.)(,0)()(lim000A x f x f A x x x f x x ='=⇔=-→.本题事实上相当于考查此结论,详情可参见《考研数学大串讲》P.18的重要结论与公式.(2)设可微函数f(x,y)在点),(0y x 取得极小值,则下列结论正确的是(A)),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零.(C)),(0y x f 在0y y =处的导数小于零. (D)),(0y x f 在0y y =处的导数不存在.[ A ]【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(x,y)在点),(0y x 取得极小值,根据取极值的必要条件知0),(0='y x f y,即),(0y x f 在0y y =处的导数等于零, 故应选(A).【评注1】 本题考查了偏导数的定义,),(0y x f 在0y y =处的导数即),(0y x f y';而),(0y x f 在0x x =处的导数即).,(0y x f x'【评注2】 本题也可用排除法分析,取22),(y x y x f +=,在(0,0)处可微且取得极小值,并且有2),0(y y f =,可排除(B),(C),(D), 故正确选项为(A).(3)设2nn na a p+=,2nn na a q-=, ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n na 条件收敛,则∑∞=1n np 与∑∞=1n nq 都收敛.(B) 若∑∞=1n na 绝对收敛,则∑∞=1n np 与∑∞=1n nq 都收敛.(C) 若∑∞=1n na 条件收敛,则∑∞=1n np 与∑∞=1n nq 敛散性都不定.(D) 若∑∞=1n na 绝对收敛,则∑∞=1n np 与∑∞=1n nq 敛散性都不定. [ B ]【分析】 根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案.【详解】 若∑∞=1n na 绝对收敛,即∑∞=1n na 收敛,当然也有级数∑∞=1n n a 收敛,再根据2nn na a p+=,2nn na a q -=及收敛级数的运算性质知,∑∞=1n np 与∑∞=1n n q 都收敛,故应选(B).【评注】 完全类似例题见《文登数学全真模拟试卷》数学三P.23第二大题第(3)小题.(4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有(A) a=b 或a+2b=0. (B) a=b或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b且a+2b ≠0. [ C ]【分析】 A 的伴随矩阵的秩为1, 说明A 的秩为2,由此可确定a,b 应满足的条件.【详解】 根据A 与其伴随矩阵A*秩之间的关系知,秩(A)=2,故有0))(2(2=-+=b a b a ab b b a b bb a ,即有02=+b a 或a=b.但当a=b 时,显然秩(A)2≠, 故必有 a ≠b 且a+2b=0. 应选(C).【评注】 n (n )2≥阶矩阵A 与其伴随矩阵A*的秩之间有下列关系:.1)(,1)(,)(,0,1,*)(-<-==⎪⎩⎪⎨⎧=n A r n A r n A r n A r完全类似例题见《数学复习指南》P.329【例3.31】.(5)设sααα,,,21均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数sk k k ,,,21,都有02211≠+++s s k k k ααα,则sααα,,,21线性无关. (B) 若sααα,,,21线性相关,则对于任意一组不全为零的数sk k k ,,,21 ,都有.02211=+++ssk k k ααα(C) sααα,,,21 线性无关的充分必要条件是此向量组的秩为s.(D)sααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. [ B ] 【分析】 本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式. 应注意是寻找不正确的命题.【详解】(A): 若对于任意一组不全为零的数sk k k ,,,21,都有2211≠+++s s k k k ααα ,则sααα,,,21必线性无关,因为若sααα,,,21线性相关,则存在一组不全为零的数sk k k ,,,21,使得 02211=+++s s k k k ααα ,矛盾. 可见(A )成立.(B): 若sααα,,,21线性相关,则存在一组,而不是对任意一组不全为零的数sk k k ,,,21,都有.02211=+++s s k k k ααα (B)不成立.(C) sααα,,,21线性无关,则此向量组的秩为s ;反过来,若向量组sααα,,,21的秩为s ,则sααα,,,21线性无关,因此(C)成立.(D) sααα,,,21 线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见(D)也成立.综上所述,应选(B).【评注】 原命题与其逆否命题是等价的. 例如,原命题:若存在一组不全为零的数sk k k ,,,21,使得02211=+++s s k k k ααα成立,则sααα,,,21线性相关.其逆否命题为:若对于任意一组不全为零的数sk k k ,,,21 ,都有02211≠+++s s k k k ααα,则sααα,,,21线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.与本题完全类似例题见《数学复习指南》P.313【例3.4】.(6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A)321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C)321,,A A A 两两独立. (D)432,,A A A 两两独立. [ C ]【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立.【详解】 因为21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P , 且41)(21=A A P ,41)(31=A A P ,41)(32=A A P ,41)(42=A A P 0)(321=A A A P ,可见有)()()(2121A P A P A A P =,)()()(3131A P A P A A P =,)()()(3232A P A P A A P =,)()()()(321321A P A P A P A A A P ≠,)()()(4242A P A P A A P ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选(C).【评注】 本题严格地说应假定硬币是均匀的,否则结论不一定成立.本题考查两两独立与相互独立的差异,其要点可参见《数学复习指南》P.401 .三 、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义f(1)使得f(x)在]1,21[上连续. 【分析】 只需求出极限)(lim 1x f x -→,然后定义f(1)为此极限值即可.【详解】 因为)(lim 1x f x -→=])1(1sin 11[lim 1x x x x --+-→πππ=x x xx x πππππsin )1(sin )1(lim 111---+-→ =xx x x x ππππππππcos )1(sin cos lim 111-+---+-→=xx x x xx ππππππππππsin )1(cos cos sin lim 11221----+-→ =.1π由于f(x)在)1,21[上连续,因此定义π1)1(=f , 使f(x)在]1,21[上连续. 【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.在计算过程中,也可先作变量代换y=1-x ,转化为求+→0y 的极限,可以适当简化.完全类似例题在一般教科书上都可找到,或参见《文登数学全真模拟试卷》P.数学三P.24第三题.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂vf u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22uv fv u f ∂∂∂=∂∂∂【详解】vf x u f y xg ∂∂+∂∂=∂∂, .vf y u f x yg ∂∂-∂∂=∂∂故vf v f x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222,.2222222222vf v f y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂ 所以222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂=.22y x +【评注】 本题考查半抽象复合函数求二阶偏导.完全类似例题《数学复习指南》P.171【例7.20,7.22】.五 、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x eI Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y xy x【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算.【详解】 作极坐标变换:θθsin ,cos r y r x ==,有dxdyy x e e I Dy x)sin(22)(22+=⎰⎰+-π=.sin 2022dr r re d e r ⎰⎰-πππθ令2r t =,则tdtee I tsin 0⎰-=πππ.记 tdt e A t sin 0⎰-=π,则 tt de e A --⎰-=int 0π=]cos sin [00⎰----ππtdt e tet t=⎰--π0cos ttde =]sin cos [00tdt e t e t t⎰--+-ππ=.1A e-+-π因此 )1(21π-+=e A ,).1(2)1(2πππππe e e I +=+=-【评注】 本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.六、(本题满分9分) 求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数f(x)及其极值.【分析】 先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1. 求出和函数后,再按通常方法求极值.【详解】.1)1()(1212∑∞=-+-=-='n n n x x x x f上式两边从0到x 积分,得).1ln(211)0()(22x dt t t f x f x+-=+-=-⎰ 由f(0)=1, 得 ).1(),1ln(211)(2<+-=x xx f令0)(='x f ,求得唯一驻点x=0. 由于,)1(1)(222x x x f +--=''1)0(<-=''f ,可见f(x)在x=0处取得极大值,且极大值为 f(0)=1.【评注】 求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数.完全类似例题见《数学题型集粹与练习题集》P.285数学三模拟试题(五)第八题.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件:)()(x g x f =',)()(x f x g =',且f(0)=0,.2)()(x e x g x f =+(1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式.【分析】 F(x)所满足的微分方程自然应含有其导函数,提示应先对F(x)求导,并将其余部分转化为用F(x)表示,导出相应的微分方程,然后再求解相应的微分方程.【详解】 (1) 由 )()()()()(x g x f x g x f x F '+'=' =)()(22x f x g+=)()(2)]()([2x g x f x g x f -+=(22)x e -2F(x), 可见F(x)所满足的一阶微分方程为.4)(2)(2xe x F x F =+'(2)]4[)(222C dx e e e x F dxx dx +⎰⋅⎰=⎰-=]4[42C dx e e xx+⎰- =.22xxCe e -+将F(0)=f(0)g(0)=0代入上式,得 C=-1. 于是.)(22x x e e x F --=【评注】 本题没有直接告知微分方程,要求先通过求导以及恒等变形引出微分方程的形式,从题型来说比较新颖,但具体到微分方程的求解则并不复杂,仍然是基本要求的范围.完全类似例题在文登数学辅导班上介绍过,也可参见《文登数学全真模拟试卷》数学三P.17第三题.八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf【分析】 根据罗尔定理,只需再证明存在一点c )3,0[∈,使得)3(1)(f c f ==,然后在[c,3]上应用罗尔定理即可. 条件f(0)+f(1)+f(2)=3等价于13)2()1()0(=++f f f ,问题转化为1介于f(x)的最值之间,最终用介值定理可以达到目的.【详解】 因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M 和最小值m ,于是Mf m ≤≤)0(,Mf m ≤≤)1(, Mf m ≤≤)2(. 故.3)2()1()0(M f f f m ≤++≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f 因为f(c)=1=f(3), 且f(x)在[c,3]上连续,在(c,3)内可导,所以由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf【评注】 介值定理、微分中值定理与积分中值定理都是常考知识点,且一般是两两结合起来考. 本题是典型的结合介值定理与微分中值定理的情形.完全类似例题见《数学复习指南》P.128【例5.2】及P.131的【解题提示】.九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn n n n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a其中.01≠∑=ni ia试讨论na a a ,,,21和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等. 可先将所有列对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值.【详解】 方程组的系数行列式ba a a a a ba a a a ab a a a a a b a A n n n n++++= 321321321321=).(11∑=-+ni i n a b b(1) 当0≠b 时且01≠+∑=ni iab 时,秩(A)=n ,方程组仅有零解.(2) 当b=0 时,原方程组的同解方程组为 .02211=+++nnx a x a x a由01≠∑=ni ia可知,),,2,1(n i a i=不全为零. 不妨设1≠a ,得原方程组的一个基础解系为T a a )0,,0,1,(121 -=α,T a a )0,,1,0,(132-=α,.)1,,0,0,(,1T nna a -=α当∑=-=ni i a b 1时,有0≠b ,原方程组的系数矩阵可化为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑∑∑∑====n i i n nni inni inni ia a a a a a a a a a a a a a a a a a a a 1321132131213211(将第1行的-1倍加到其余各行,再从第2行到第n 行同乘以∑=-ni ia11倍)→⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑=1001010100113211 n ni ia a a a a( 将第n 行na -倍到第2行的2a -倍加到第1行,再将第1行移到最后一行)→.0000100101010011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---由此得原方程组的同解方程组为12x x =,13x x=,1,x xn= .原方程组的一个基础解系为.)1,,1,1(T=α【评注】 本题的难点在∑=-=ni i a b 1时的讨论,事实上也可这样分析:此时系数矩阵的秩为 n-1(存在n-1阶子式不为零),且显然T)1,,1,1( =α为方程组的一个非零解,即可作为基础解系. 完全类似问题2002年已考过,见2002年数学三第九题.十、(本题满分13分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12.(1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.【分析】 特征值之和为A 的主对角线上元素之和,特征值之积为A 的行列式,由此可求出a,b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】 (1)二次型f 的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A设A 的特征值为).3,2,1(=i iλ 由题设,有1)2(2321=-++=++a λλλ,.12242002002321-=--=-=b a b ba λλλ解得 a=1,b= -2.(2) 由矩阵A 的特征多项式)3()2(22202012+-=+----=-λλλλλλA E ,得A 的特征值.3,2321-===λλλ对于,221==λλ解齐次线性方程组0)2(=-x A E ,得其基础解系T )1,0,2(1=ξ,.)0,1,0(2T =ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,得基础解系 .)2,0,1(3T -=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得 T)51,0,52(1=η,T)0,1,0(2=η,.)52,0,51(3T -=η令矩阵[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==5205101051052321ηηηQ ,则Q 为正交矩阵. 在正交变换X=QY 下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T ,且二次型的标准形为.322232221y y y f -+=【评注】 本题求a,b ,也可先计算特征多项式,再利用根与系数的关系确定:二次型f 的矩阵A 对应特征多项式为)].2()2()[2(220022b a a bb aA E +----=+----=-λλλλλλλ设A 的特征值为321,,λλλ,则).2(,2,2232321b a a +-=-=+=λλλλλ由题设得1)2(2321=-+=++a λλλ, .12)2(22321-=+-=b a λλλ解得a=1,b=2.第一步求参数见《数学复习指南》P.361重要公式与结论4,完全类似例题见《文登数学全真模拟试卷》数学三P.47第九题.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可。

2003年高考数学试题(全国卷)评析

2003年高考数学试题(全国卷)评析

2003年高考数学试题(全国卷)评析海盐元济高级中学胡水林2003年高考,受到了社会各界从未有过的关注。

高考时间的提前,SARS 的突袭,新旧教材的交替,考后的强烈反应等等,将会在一段时间内给人留下一份挥之不去的记忆。

我们处于一个改革锐进的时代,教育的理念,思维的方式都在发生变化,2003年高考数学试题反映了这种变化,它向传统的教学方式提出了挑战。

本文着重评价03年试题特色和教学的启示。

一、03年高考教学试题的特点03年试题的题型结构,考题份量与近年历届的试题持平,各分科所占比例大致合理。

1.突出基础知识和数学思想方法的考查1.1 高中数学的主干知识构成试题的主体如同以往,今年的高考试题继续坚持“高中数学的主干知识构成试题的主体”,试题中保持了较高的比例,并达到了必要的深度。

代数着重考查函数、数列、不等式、三角等主要内容;立体几何着重考查线面关系、线线关系,特别是它们之间的垂直关系;解析几何着重考查圆锥曲线和直线,以及它们之间的位置关系。

如函数作为高中代数中最基本、最重要的内容,在理科试题第(1)、(3)、(4)、(9)、(14)、(19)、(22)题,文科试题第(2)、(6)、(7)、(8)、(13)、(20)中,从不同的侧面,对函数进行了全面考查。

又如文科第(17)题、理科第(18)题,考查的是立体几何中点在平面上的射影、斜线与平面所成的角、点到平面的距离、异面直线及其公垂线等概念,以及棱柱的概念与性质等重点知识,将空间问题转化为平面问题的思考等重点方法。

1.2 抓住知识网络的交汇点设计命题。

今年的高考命题提纲挈领地抓住知识网络的交汇点,设计出具有综合性的新颖的试题,以达到较全面地考查学生的数学基础和数学素养的目的。

如理科的第(19)题,以最基本的指数函数、含有绝对值的不等式为载体,考查了函数的概念、函数的单调性、函数的最值等性质,含有绝对值不等式的解法,集合的概念与运算,以及对“有且只有”严谨的数学语言的解读。

2003年数学三试题解析

2003年数学三试题解析

2003年考研数学(三)试题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是2>λ. 【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导.【详解】 当1>λ时,有,0,0,0,1sin 1cos )(21=≠⎪⎩⎪⎨⎧+='--x x xx x x x f 若若λλλ 显然当2>λ时,有)0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续.(2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b 64a .【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2b 与a 的关系.【详解】 由题设,在切点处有03322=-='a x y ,有 .220a x =又在此点y 坐标为0,于是有0300230=+-=b x a x ,故 .44)3(6422202202a a a x a x b =⋅=-=【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= 2a .【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 ⎰⎰-=D dxdy x y g x f I )()(=dxdy a x y x ⎰⎰≤-≤≤≤10,102=.])1[(2121012adx x x ady dx ax x=-+=⎰⎰⎰+【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.(4)设n 维向量0,),0,,0,(<=a a a Tα;E 为n 阶单位矩阵,矩阵TE A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a= -1 .【分析】 这里Tαα为n 阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.【详解】 由题设,有)1)((T Ta E E AB αααα+-= =TT T T a a E αααααααα⋅-+-11=TT T T a a E αααααααα)(11-+-=TT T a aE αααααα21-+-=E aa E T=+--+αα)121(,于是有 0121=+--a a ,即 0122=-+a a ,解得 .1,21-==a a 由于A<0 ,故a=-1.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为0.9 .【分析】 利用相关系数的计算公式即可. 【详解】 因为)4.0()()]4.0([()4.0,cov(),cov(---=-=X E Y E X Y E X Y Z Y =)(4.0)()()(4.0)(Y E X E Y E Y E XY E +-- =E(XY) – E(X)E(Y)=cov(X,Y), 且.DX DZ =于是有 cov(Y,Z)=DZDY Z Y ),cov(=.9.0),cov(==XY DYDX Y X ρ【评注】 注意以下运算公式:DX a X D =+)(,).,cov(),cov(Y X a Y X =+(6)设总体X 服从参数为2的指数分布,n X X X ,,,21 为来自总体X 的简单随机样本,则当∞→n 时,∑==n i i n X n Y 121依概率收敛于 21 .【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量n X X X ,,,21 ,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:).(1111∞→→∑∑==n EX n X n ni i pn i i【详解】 这里22221,,,nX X X 满足大数定律的条件,且22)(i i i EX DX EX +==21)21(412=+,因此根据大数定律有∑==n i i n X n Y 121依概率收敛于.21112=∑=n i i EX n二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ D ] 【分析】 由题设,可推出f(0)=0 , 再利用在点x=0处的导数定义进行讨论即可. 【详解】 显然x=0为g(x)的间断点,且由f(x)为不恒等于零的奇函数知,f(0)=0. 于是有 )0(0)0()(lim )(lim)(lim 00f x f x f x x f xg x x x '=--==→→→存在,故x=0为可去间断点. 【评注1】 本题也可用反例排除,例如f(x)=x, 则此时g(x)=,0,0,0,1=≠⎩⎨⎧=x x x x 可排除(A),(B),(C) 三项,故应选(D). 【评注2】 若f(x)在0x x =处连续,则.)(,0)()(lim000A x f x f A x x x f x x ='=⇔=-→.本题事实上相当于考查此结论.(2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ A ] 【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(x,y)在点),(00y x 取得极小值,根据取极值的必要条件知0),(00='y x f y ,即),(0y x f 在0y y =处的导数等于零, 故应选(A).【评注1】 本题考查了偏导数的定义,),(0y x f 在0y y =处的导数即),(00y x f y ';而),(0y x f 在0x x =处的导数即).,(00y x f x '【评注2】 本题也可用排除法分析,取22),(y x y x f +=,在(0,0)处可微且取得极小值,并且有2),0(y y f =,可排除(B),(C),(D), 故正确选项为(A).(3)设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.(B) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.(C) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.(D) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. [ B ]【分析】 根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案. 【详解】 若∑∞=1n na绝对收敛,即∑∞=1n na收敛,当然也有级数∑∞=1n na收敛,再根据2nn n a a p +=,2nn n a a q -=及收敛级数的运算性质知,∑∞=1n np与∑∞=1n nq都收敛,故应选(B).(4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ C ] 【分析】 A 的伴随矩阵的秩为1, 说明A 的秩为2,由此可确定a,b 应满足的条件. 【详解】 根据A 与其伴随矩阵A*秩之间的关系知,秩(A)=2,故有0))(2(2=-+=b a b a ab b b a bbb a ,即有02=+b a 或a=b. 但当a=b 时,显然秩(A)2≠, 故必有 a ≠b 且a+2b=0. 应选(C).【评注】 n (n )2≥阶矩阵A 与其伴随矩阵A*的秩之间有下列关系:.1)(,1)(,)(,0,1,*)(-<-==⎪⎩⎪⎨⎧=n A r n A r n A r n A r(5)设s ααα,,,21 均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关. (B) 若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα (C) s ααα,,,21 线性无关的充分必要条件是此向量组的秩为s.(D)s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. [ B ]【分析】 本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式. 应注意是寻找不正确的命题.【详解】(A): 若对于任意一组不全为零的数s k k k ,,,21 ,都有 02211≠+++s s k k k ααα ,则s ααα,,,21 必线性无关,因为若s ααα,,,21 线性相关,则存在一组不全为零的数s k k k ,,,21 ,使得 02211=+++s s k k k ααα ,矛盾. 可见(A )成立.(B): 若s ααα,,,21 线性相关,则存在一组,而不是对任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα (B)不成立.(C)s ααα,,,21 线性无关,则此向量组的秩为s ;反过来,若向量组s ααα,,,21 的秩为s ,则s ααα,,,21 线性无关,因此(C)成立.(D)s ααα,,,21 线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见(D)也成立.综上所述,应选(B).【评注】 原命题与其逆否命题是等价的. 例如,原命题:若存在一组不全为零的数s k k k ,,,21 ,使得02211=+++s s k k k ααα 成立,则s ααα,,,21 线性相关. 其逆否命题为:若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.(6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ C ]【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立. 【详解】 因为21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P , 且 41)(21=A A P ,41)(31=A A P ,41)(32=A A P ,41)(42=A A P 0)(321=A A A P ,可见有)()()(2121A P A P A A P =,)()()(3131A P A P A A P =,)()()(3232A P A P A A P =,)()()()(321321A P A P A P A A A P ≠,)()()(4242A P A P A A P ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选(C).【评注】 本题严格地说应假定硬币是均匀的,否则结论不一定成立.三 、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续.【分析】 只需求出极限)(lim 1x f x -→,然后定义f(1)为此极限值即可. 【详解】 因为)(lim 1x f x -→=])1(1sin 11[lim 1x x x x --+-→πππ =xx xx x πππππsin )1(sin )1(lim 111---+-→=xx x xx ππππππππcos )1(sin cos lim 111-+---+-→=xx x x xx ππππππππππsin )1(cos cos sin lim 11221----+-→=.1π由于f(x)在)1,21[上连续,因此定义π1)1(=f ,使f(x)在]1,21[上连续.【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.在计算过程中,也可先作变量代换y=1-x ,转化为求+→0y 的极限,可以适当简化.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222yg x g ∂∂+∂∂ 【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22uv fv u f ∂∂∂=∂∂∂ 【详解】vf x u f y xg ∂∂+∂∂=∂∂, .vf y u f x yg ∂∂-∂∂=∂∂ 故 vf v f x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222,.2222222222v f vf y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂ 所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂ =.22y x +【评注】 本题考查半抽象复合函数求二阶偏导.五 、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算. 【详解】 作极坐标变换:θθsin ,cos r y r x ==,有dxdy y x e eI Dy x )sin(22)(22+=⎰⎰+-π=.sin 2022dr r re d e r ⎰⎰-πππθ令2r t =,则tdt e e I t sin 0⎰-=πππ.记 t d te A t s i n 0⎰-=π,则 t t de e A --⎰-=int 0π=]cos sin [0⎰----ππtdt e t e t t=⎰--πcos t tde=]sin cos [0tdt e t e t t⎰--+-ππ=.1A e -+-π因此 )1(21π-+=e A , ).1(2)1(2πππππe e e I +=+=-【评注】 本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n n nx n x 的和函数f(x)及其极值.【分析】 先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1. 求出和函数后,再按通常方法求极值.【详解】.1)1()(1212∑∞=-+-=-='n n n xxx x f上式两边从0到x 积分,得).1ln(211)0()(202x dt t t f x f x+-=+-=-⎰ 由f(0)=1, 得).1(),1ln(211)(2<+-=x x x f 令0)(='x f ,求得唯一驻点x=0. 由于,)1(1)(222x x x f +--='' 01)0(<-=''f ,可见f(x)在x=0处取得极大值,且极大值为 f(0)=1.【评注】 求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件:)()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(x e x g x f =+(1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式.【分析】 F(x)所满足的微分方程自然应含有其导函数,提示应先对F(x)求导,并将其余部分转化为用F(x)表示,导出相应的微分方程,然后再求解相应的微分方程.【详解】 (1) 由)()()()()(x g x f x g x f x F '+'=' =)()(22x f x g +=)()(2)]()([2x g x f x g x f -+ =(22)x e -2F(x), 可见F(x)所满足的一阶微分方程为.4)(2)(2x e x F x F =+'(2) ]4[)(222C dx e e e x F dx xdx +⎰⋅⎰=⎰-=]4[42C dx e e x x+⎰-=.22x xCe e-+将F(0)=f(0)g(0)=0代入上式,得 C=-1. 于是.)(22x x e e x F --=【评注】 本题没有直接告知微分方程,要求先通过求导以及恒等变形引出微分方程的形式,从题型来说比较新颖,但具体到微分方程的求解则并不复杂,仍然是基本要求的范围.八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf 【分析】 根据罗尔定理,只需再证明存在一点c )3,0[∈,使得)3(1)(f c f ==,然后在[c,3]上应用罗尔定理即可. 条件f(0)+f(1)+f(2)=3等价于13)2()1()0(=++f f f ,问题转化为1介于f(x)的最值之间,最终用介值定理可以达到目的.【详解】 因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M 和最小值m ,于是 M f m ≤≤)0(, M f m ≤≤)1(, M f m ≤≤)2(. 故.3)2()1()0(M f f f m ≤++≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f因为f(c)=1=f(3), 且f(x)在[c,3]上连续,在(c,3)内可导,所以由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf 【评注】 介值定理、微分中值定理与积分中值定理都是常考知识点,且一般是两两结合起来考. 本题是典型的结合介值定理与微分中值定理的情形.九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中.01≠∑=ni ia试讨论n a a a ,,,21 和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等. 可先将所有列对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值.【详解】 方程组的系数行列式ba a a a ab a a a a a b a a a a a ba A n n n n ++++=321321321321=).(11∑=-+ni i n a b b(1) 当0≠b 时且01≠+∑=ni iab 时,秩(A)=n ,方程组仅有零解.(2) 当b=0 时,原方程组的同解方程组为 .02211=+++n n x a x a x a 由01≠∑=ni ia可知,),,2,1(n i a i =不全为零. 不妨设01≠a ,得原方程组的一个基础解系为T a a )0,,0,1,(121 -=α,T a a )0,,1,0,(132 -=α,.)1,,0,0,(,1T n n a a -=α 当∑=-=ni iab 1时,有0≠b ,原方程组的系数矩阵可化为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑∑∑∑====n i i n nni inni inni ia a a a a a a a a a a a a a a a a a a a 1321132131213211(将第1行的-1倍加到其余各行,再从第2行到第n 行同乘以∑=-ni ia11倍)→ ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑=1001010100113211 n ni ia a a a a( 将第n 行n a -倍到第2行的2a -倍加到第1行,再将第1行移到最后一行)→ .0000100101010011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--- 由此得原方程组的同解方程组为12x x =,13x x =,1,x x n = .原方程组的一个基础解系为.)1,,1,1(T =α【评注】 本题的难点在∑=-=n i i a b 1时的讨论,事实上也可这样分析:此时系数矩阵的秩为 n-1(存在n-1阶子式不为零),且显然T )1,,1,1( =α为方程组的一个非零解,即可作为基础解系.十、(本题满分13分)设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12.(1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.【分析】 特征值之和为A 的主对角线上元素之和,特征值之积为A 的行列式,由此可求出a,b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】 (1)二次型f 的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A 设A 的特征值为).3,2,1(=i i λ 由题设,有1)2(2321=-++=++a λλλ,.12242002002321-=--=-=b a b ba λλλ解得 a=1,b= -2.(2) 由矩阵A 的特征多项式)3()2(2020202012+-=+----=-λλλλλλA E ,得A 的特征值.3,2321-===λλλ对于,221==λλ解齐次线性方程组0)2(=-x A E ,得其基础解系T )1,0,2(1=ξ,.)0,1,0(2T =ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,得基础解系.)2,0,1(3T -=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得T )51,0,52(1=η,T )0,1,0(2=η,.)52,0,51(3T -=η令矩阵 []⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==5205101051052321ηηηQ , 则Q 为正交矩阵. 在正交变换X=QY 下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T , 且二次型的标准形为.322232221y y y f -+=【评注】 本题求a,b ,也可先计算特征多项式,再利用根与系数的关系确定:二次型f 的矩阵A 对应特征多项式为)].2()2()[2(20020022b a a b b aA E +----=+----=-λλλλλλλ 设A 的特征值为321,,λλλ,则).2(,2,2232321b a a +-=-=+=λλλλλ由题设得1)2(2321=-+=++a λλλ,.12)2(22321-=+-=b a λλλ解得a=1,b=2.十一、(本题满分13分)设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f F(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可。

2003数学三真题及答案解析

2003数学三真题及答案解析

2003数学三真题及答案解析(本文为AI生成文章,仅供参考)2003年的数学三是一道非常经典的试题,难度适中,涵盖了初高中数学的各个知识点。

本文将对这道题目进行详细解析,帮助读者更好地理解题目的解法和思路。

该题目的完整表述如下:已知复数满足条件:|z+1+i|=4,|z-2-2i|=6。

则|z|=?首先,我们需要了解一些基本的复数知识。

复数可以表示为a+bi 的形式,其中 a 和 b 分别为实部和虚部。

绝对值 |z| 也称为复数的模,定义为|z| = √(a²+b²)。

接下来,我们来解析这道题目。

首先,我们可以根据第一个条件|z+1+i|=4,将复数 z+1+i 的模表示出来,即:|z+1+i| = √((x+1)²+(y+1)²) = 4,其中 x 和 y 分别表示复数 z 的实部和虚部。

类似地,我们可以根据第二个条件 |z-2-2i|=6,将复数 z-2-2i 的模表示出来,即:|z-2-2i| = √((x-2)²+(y-2)²) = 6。

接下来的解题思路是什么呢?我们可以使用复数的模的性质,即两个复数的模的乘积等于它们的和的模的平方。

具体来说,我们可以得到以下等式:[(x+1)²+(y+1)²] * [(x-2)²+(y-2)²] = 4² * 6²。

我们继续展开并化简上述等式的左侧:[(x+1)²+(y+1)²] * [(x-2)²+(y-2)²] = [(x²+2x+1) +(y²+2y+1)] * [(x²-4x+4) + (y²-4y+4)]= (x²+2x+1) * (x²-4x+4) + (y²+2y+1) * (y²-4y+4)= (x⁴ - 2x³ + 8x² - 8x + 4) + (y⁴ - 2y³ + 8y² - 8y + 4)。

2003年全国硕士研究生入学统一考试《数学三》真题试卷

2003年全国硕士研究生入学统一考试《数学三》真题试卷

【分析】 本题积分区域为全平面,但只有当 0 x 1,0 y x 1 时, 被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可. 2 解: I f ( x ) g ( y x ) dxdy = a dxdy
D 0 x 1, 0 y x 1
(1) 求 F(x)所满足的一阶微分方程; (2) 求出 F(x)的表达式.
第 5 页 共 26 页
八、 (本题满分 8 分) 设函数 f(x)在[0, 3]上连续, 在 (0, 3) 内可导, 且 f(0)+f(1)+f(2)=3, f(3)=1.试证必存在 (0,3) ,使 f ( ) 0.
cov(Y , Z ) cov( X , Y ) = XY 0.9. DY DZ DX DY
n 1 n 1 n 1
(B) 若 an 绝对收敛,则 p n 与 qn 都收敛.
n 1 n 1 n 1
(C) 若 an 条件收敛,则 p n 与 qn 敛散性都不定.
n 1 n 1 n 1
(D) 若 an 绝对收敛,则 p n 与 qn 敛散性都不定.
n 1
x 2n ( x 1) 的和函数 f(x)及其极值. 2n
七、 (本题满分 9 分) 设 F(x)=f(x)g(x), 其中函数 f(x),g(x)在 ( , ) 内满足以下条件:
f ( x ) g ( x ) , g ( x ) f ( x ) ,且 f(0)=0, f ( x ) g ( x ) 2e x .
围是________. ( 2 ) 已 知曲线 y x 3 3a 2 x b 与 x 轴相切,则 b 2 可以通 过 a 表示为

2003年全国高中数学联赛试题及详细解析

2003年全国高中数学联赛试题及详细解析

2003年全国高中数学联赛试题及详细解析一、选择题(每小题6分,共36分)1.(2003年全国高中数学联赛)删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2003项是(A) 2046 (B) 2047 (C) 2048 (D) 20492.设a,b∈R,ab≠0,那么直线ax-y+b=0和曲线bx2+ay2=ab的图形是yxOO xyO xyyxOA. B. C. D.3.过抛物线y2=8(x+2)的焦点F作倾斜角为60°的直线,若此直线与抛物线交于A、B 两点,弦AB的中垂线与x轴交于点P,则线段PF的长等于(A)163(B)83(C)1633 (D) 8 34.若x∈[-5π12,-π3],则y=tan(x+2π3)-tan(x+π6)+cos(x+π6)的最大值是(A)1252 (B)1162 (C)1163 (D)1253二.填空题(每小题9分,共54分)7.不等式|x|3-2x2-4|x|+3<0的解集是.8.设F1、F2是椭圆x29+y24=1的两个焦点,P是椭圆上一点,且|PF1|∶|PF2|=2∶1,则△PF1F2的面积等于.9.已知A={x|x2-4x+3<0,x∈R},B={x|21-x+a≤0,x2-2(a+7)x+5≤0,x∈R}若A⊆B,则实数a的取值范围是.10.已知a,b,c,d均为正整数,且log a b=32,log c d=54,若a-c=9,则b-d=.11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},T n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .五、(本题满分20分)15.一张纸上画有一个半径为R 的圆O 和圆内一个定点A ,且OA=a ,折叠纸片,使圆周上某一点A '刚好与点A 重合.这样的每一种折法,都留下一条折痕.当A '取遍圆周上所有点时,求所有折痕所在直线上点的集合.加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠PAC .二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).2003年全国高中数学联赛解答第一试一、选择题(每小题6分,共36分)1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2003项是(A) 2046 (B) 2047 (C) 2048 (D) 2049 【答案】C【解析】452=2025,462=2116.在1至2025之间有完全平方数45个,而2026至2115之间没有完全平方数.故1至2025中共有新数列中的2025-45=1980项.还缺2003-1980=23项.由2025+23=2048.知选C .3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A) 163 (B) 83 (C) 1633 (D) 8 3【答案】A【解析】抛物线的焦点为原点(0,0),弦AB 所在直线方程为y=3x ,弦的中点在y=p k =43上,即AB 中点为(43,43),中垂线方程为y=-33(x -43)+43,令y=0,得点P 的坐标为163.∴ PF=163.选A .4.若x ∈[-5π12 ,-π3],则y=tan(x +2π3)-tan(x +π6)+cos(x +π6)的最大值是(A) 125 2 (B) 116 2 (C) 116 3 (D) 1253【答案】C【解析】令x +π6=u ,则x +2π3=u +π2,当x ∈[-5π12,-π3]时,u ∈[-π4,-π6],y=-(cot u +tan u )+cos u=-2sin2u +cos u .在u ∈[-π4,-π6]时,sin2u 与cos u 都单调递增,从而y 单调递增.于是u=-π6时,y 取得最大值1163,故选C .二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 .【答案】(-3,-5-12)∪(5-12,3). 【解析】即|x |3-2|x |2-4|x |+3<0,⇒(|x |-3)(|x |-5-12)(|x |+5+12)<0.⇒|x |<-5+12,或5-12<|x|<3.∴解为(-3,-5-12)∪(5-12,3).9.已知A={x|x2-4x+3<0,x∈R},B={x|21-x+a≤0,x2-2(a+7)x+5≤0,x∈R}若A⊆B,则实数a的取值范围是.【答案】-4≤a≤-1.【解析】A=(1,3);又,a≤-21-x∈(-1,-14),当x∈(1,3)时,a≥x2+52x-7∈(5-7,-4).∴-4≤a≤-1.10.已知a,b,c,d均为正整数,且log a b=32,log c d=54,若a-c=9,则b-d=.【答案】93【解析】a3=b2,c5=d4,设a=x2,b=x3;c=y4,d=y5,x2-y4=9.(x+y2)(x-y2)=9.∴x+y2=9,x-y2=1,x=5,y2=4.b-d=53-25=125-32=93.11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于.【答案】2+48【解析】如图,ABCD是下层四个球的球心,EFGH是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH在平面ABCD上的射影是一个正方形.是把正方形ABCD绕其中心旋转45︒而得.设E的射影为N,则MN=2-1.EM=3,故EN2=3-(2-1)2=22.∴EN=48.所求圆柱的高=2+48.12.设M n={(十进制)n位纯小数0.-a1a2…a n|a i只取0或1(i=1,2,…,n-1),a n=1},N MHGFEDCBAT n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .【答案】118【解析】由于a 1,a 2,…,a n -1中的每一个都可以取0与1两个数,T n =2n -1.在每一位(从第一位到第n -1位)小数上,数字0与1各出现2n -2次.第n 位则1出现2n -1次.∴ S n =2n -2⨯0.11…1+2n -2⨯10-n.∴ lim n →∞S n T n =12⨯19=118.四、(本题满分20分)14.设A 、B 、C 分别是复数Z 0=a i ,Z 1=12+b i ,Z 2=1+c i(其中a ,b ,c 都是实数)对应的不共线的三点.证明:曲线Z=Z 0cos 4t +2Z 1cos 2t sin 2t +Z 2sin 4t (t ∈R)与△ABC 中平行于AC 的中位线只有一个公共点,并求出此点.【解析】曲线方程为:Z=a icos 4t +(1+2b i)cos 2t sin 2t +(1+c i)sin 4t=(cos 2t sin 2t +sin 4t )+i(a cos 4t +2b cos 2t sin 2t +c s in 4t )∴ x=cos 2t sin 2t +sin 4t=sin 2t (cos 2t +sin 2t )=sin 2t .(0≤x ≤1) y=a cos 4t +2b cos 2t sin 2t +c sin 4t=a (1-x )2+2b (1-x )x +cx 2即 y=(a -2b +c )x 2+2(b -a )x +a (0≤x ≤1). ①若a -2b +c=0,则Z 0、Z 1、Z 2三点共线,与已知矛盾,故a -2b +c ≠0.于是此曲线为轴与x 轴垂直的抛物线.AB 中点M :14+12(a +b )i ,BC 中点N :34+12(b +c )i .与AC 平行的中位线经过M (14,12(a +b ))及N (34,12(b +c ))两点,其方程为4(a -c )x +4y -3a -2b +c=0.(14≤x ≤34). ②令 4(a -2b +c )x 2+8(b -a )x +4a=4(c -a )x +3a +2b -c .即4(a -2b +c )x 2+4(2b -a -c )x +a -2b +c=0.由a -2b +c 0,得4x 2+4x +1=0, 此方程在[14,34]内有惟一解: x=12.以x=12代入②得, y=14(a +2b +c ).∴ 所求公共点坐标为(12,14(a +2b +c )).加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠PAC .分析:由∠PBC=∠CDB ,若∠DBQ=∠PAC=∠ADQ ,则∆BDQ ∽∆DAQ .反之,若∆BDQ ∽∆DAQ .则本题成立.而要证∆BDQ ∽∆DAQ ,只要证BD AD =DQAQ即可.二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.【解析】当3l、3m、3n的末四位数字相同时,⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104.即求满足3l ≡3m ≡3n ( mod 104)的l 、m 、n .∴ 3n (3l -n -1)≡0 (mod 104).(l -n >0)但 (3n ,104)=1,故必有3l -n ≡1(mod 104);同理3m -n ≡1(mod 104).下面先求满足3x ≡1(mod 104)的最小正整数x .∵ ϕ(104)=104⨯12⨯45=4000.故x |4000.用4000的约数试验:∵ x=1,2,时3x ≡∕1(mod 10),而34≡1(mod 10),∴ x 必须是4的倍数;∵ x=4,8,12,16时3x ≡∕1(mod 102),而320≡1(mod 102),∴ x 必须是20的倍数;∵ x=20,40,60,80时3x ≡∕1(mod 103),而3100≡1(mod 103),∴ x 必须是100的倍数;∵ x=100,200,300,400时3x ≡∕1(mod 104),而3500≡1(mod 104).即,使3x ≡1(mod 104)成立的最小正整数x=500,从而l -n 、m -n 都是500的倍数, 设l -n=500k ,m -n=500h ,(k ,h ∈N*,k >h ).由m +n >l ,即n +500h +n >n +500k ,⇒n >500(k -h )≥500,故n ≥501.取n=501,m=1001,l=1501,即为满足题意的最小三个值. ∴ 所求周长的最小值=3003.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).现设任一点连的线数≤n -2.且设b 0=q +2≤n -2.且设图中没有四边形.于是当i ≠j 时,B i 与B j 没有公共的点对,即|B i ∩B j |≤1(0≤i ,j ≤n -1).记B 0-=V \B 0,则由|B i ∩B 0|≤1,得|B i ∩B 0-|≥b i -1(i =1,2,…,n -1),且当1≤i ,j ≤n -1且i ≠j 时,B i ∩B 0-与B j ∩B 0-无公共点对.从而B 0-中点对个数≥i =1n -1∑(B i ∩B 0-中点对个数).即C 2 n -b 0≥i =1n -1∑C 2 |B i ∩B 0-|≥i =1n -1∑C 2 b i -1=12i =1n -1∑ (b 2i -3b i +2)≥12[1n -1(i =1n -1∑b i )2-3i =1n -1∑b i +2(n -1)](由平均不等式)=12[1n -1(2l -b 0)2-3(2l -b 0)+2(n -1)]=12(n -1)[(2l -b 0)2-3(n -1)(2l -b 0)+2(n -1)2]=12(n -1)(2l -b 0-n +1)(2l -b 0-2n +2)(2l ≥q (q +1)2+2=(n -1)(q +1)+2)≥12(n -1)[(n -1)(q +1)+2-b 0-n +1][(n -1)(q +1)+2-b 0-2n +2]=12(n -1)[(n -1)q +2-b 0][(n -1)(q -1)+2-b 0].(两边同乘以2(n -1)即 (n -1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(n -1≥q (q +1)代入) 得 q (q +1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(各取一部分因数比较) ①但(nq -q -n +3-b 0)-q (n -b 0-1)=(q -1)b 0-n +3(b 0≥q +2)≥(q -1)(q +2)-n +3=q 2+q +1-n =0.②(nq -q +2-b 0)-(q +1)(n -b 0)=qb 0-q -n +2≥q (q +1)-n +2=1>0. ③由假设,不存在处在不同行的2个红点对,使此四点两两同列,所以,有(由于去掉了q +2列,故还余q 2-1列,不同的列对数为C 2 q 2-1)i =1n -1∑C 2 m i ≤C 2 q 2-1. 所以q 2·q (q -1)+q (q -1)(q -2)≤(q 2-1)(q 2-2).⇒ q (q -1)(q 2+q -2)≤(q -1)(q +1)(q 2-2)⇒q 3+q 2-2q ≤q 3+q 2-2q -2.矛盾.故证.。

考研真题及详解-考研数三(2003-2017年)历年真题

考研真题及详解-考研数三(2003-2017年)历年真题

2003年全国硕士研究生入学统一考试数学(三)试题一、填空题:1~6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1) 设其导函数在处连续,则的取值范围是_________.(2) 已知曲线与轴相切,则可以通过表示为_________.(3) 设,而表示全平面,则=_________.(4) 设维向量,为阶单位矩阵,矩阵,,其中的逆矩阵为,则_________.(5) 设随机变量和的相关系数为,若,则与的相关系数为_________.(6) 设总体服从参数为的指数分布,为来自总体的简单随机样本,则当时,依概率收敛于_________.二、选择题:7~12小题,每小题4分,共24分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(7) 设为不恒等于零的奇函数,且存在,则函数:(A) 在处左极限不存在(B) 有跳跃间断点(C) 在处右极限不存在(D) 有可去间断点(8) 设可微函数在点取得极小值,则下列结论正确的是:(A) 在处的导数等于零(B) 在处的导数大于零(C) 在处的导数小于零(D) 在处的导数不存在.(9) 设,,,则下列命题正确的是:(A) 若条件收敛,则与都收敛.(B) 若绝对收敛,则与都收敛.(C) 若条件收敛,则与敛散性都不确定.(D) 若绝对收敛,则与敛散性都不确定.(10) 设三阶矩阵,若的伴随矩阵的秩等于,则必有:(A) 或(B) 或(C) 且(D)且.(11) 设均为维向量,下列结论不正确的是:(A) 若对于任意一组不全为零的数,都有,则线性无关.(B) 若线性相关,则对于任意一组不全为零的数,有(C) 线性无关的充分必要条件是此向量组的秩为.(D) 线性无关的必要条件是其中任意两个向量线性无关.(12) 将一枚硬币独立地掷两次,引进事件:={掷第一次出现正面},={掷第二次出现正面},= {正、反面各出现一次},={正面出现两次},则事件:(A) 相互独立(B) 相互独立(C)两两独立(D) 两两独立.三、解答题:13~22小题,共102分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.(13) (本题满分8分)设,试补充定义使得在上连续.(14) (本题满分8分)设具有二阶连续偏导数,且满足,又,求(15) (本题满分8分)计算二重积分,其中积分区域(16) (本题满分9分)求幂级数的和函数及其极值.(17) (本题满分9分)设,其中函数在内满足以下条件:,且,(I) 求所满足的一阶微分方程;(II) 求出的表达式.(18) (本题满分8分)设函数在上连续,在内可导,且.试证必存在,使(19) (本题满分13分)已知齐次线性方程组其中试讨论和满足何种关系时,(I) 方程组仅有零解;(II) 方程组有非零解.在有非零解时,求此方程组的一个基础解系.(20) (本题满分13分)设二次型,其中二次型的矩阵的特征值之和为,特征值之积为.(I) 求的值;(II) 利用正交变换将二次型化为标准形,并写出所用的正交变换和对应的正交矩阵.(21) (本题满分13分)设随机变量的概率密度为是的分布函数.求随机变量的分布函数.(22) (本题满分13分)设随机变量与独立,其中的概率分布为而的概率密度为,求随机变量的概率密度.2004年全国硕士研究生入学统一考试数学(三)试题一、填空题:1~6小题,每小题4分,共24分. 请将答案写在答题纸指定位置上.(1) 若,则_________,_________.(2) 函数由关系式确定,其中函数可微,且,则_________.(3) 设则_________.(4) 二次型的秩为_________.(5) 设随机变量服从参数为的指数分布,则=_________.(6) 设总体服从正态分布,总体服从正态分布,和分别是来自总体和的简单随机样本,则_________.二、选择题:7~14小题,每小题4分,共32分. 下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(7) 函数在下列哪个区间内有界:(A)(B)(C).(D) .(8) 设在内有定义,且,则:(A) 必是的第一类间断点.(B) 必是的第二类间断点.(C) 必是的连续点.(D) 在点处的连续性与a的取值有关.(9) 设,则:(A) 是的极值点,但不是曲线的拐点.(B) 不是的极值点,但是曲线的拐点.(C)是的极值点,且是曲线的拐点.(D) 不是的极值点,也不是曲线的拐点.(10) 设有以下命题:①若收敛,则收敛.②若收敛,则收敛.③若,则发散.④若收敛,则,都收敛.则以上命题中正确的是:(A) ①②.(B) ②③.(C) ③④.(D) ①④.(11) 设在上连续,且,则下列结论中错误的是:(A) 至少存在一点,使得>.(B) 至少存在一点,使得>.(C) 至少存在一点,使得.(D) 至少存在一点,使得=.(12) 设阶矩阵与等价,则必有:(A) 当时,(B) 当时,.(C) 当时,.(D) 当时,.(13) 设阶矩阵的伴随矩阵若是非齐次线性方程组的互不相等的解,则对应的齐次线性方程组的基础解系:(A) 不存在(B) 仅含一个非零解向量(C) 含有两个线性无关的解向量(D) 含有三个线性无关的解向量.(14) 设随机变量服从正态分布,对给定的,数满足,若,则=(A)(B)(C)(D) .三、解答题:15~23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分8分)求.(16) (本题满分8分)求,其中是由圆和所围成的平面区域(如图).(17) (本题满分8分)设在上连续,且满足,.证明:.(18) (本题满分9分)设某商品的需求函数为,其中价格,为需求量.(I) 求需求量对价格的弹性(>);(II) 推导(其中为收益),并用弹性说明价格在何范围内变化时,降低价格反而使收益增加.(19) (本题满分9分)设级数的和函数为.求:(I) 所满足的一阶微分方程;(II)的表达式.(20) (本题满分13分)设,,,,试讨论当为何值时,(I) 不能由线性表示;(II) 可由唯一地线性表示,并求出表示式;(III) 可由线性表示,但表示式不唯一,并求出表示式.(21) (本题满分13分)设阶矩阵.(I) 求的特征值和特征向量;(II) 求可逆矩阵,使得为对角矩阵.(22) (本题满分13分)设为两个随机事件,且,,,令求(I) 二维随机变量的概率分布;(II) 与的相关系数;(III) 的概率分布.(23) (本题满分13分)设随机变量的分布函数为其中参数.设为来自总体的简单随机样本,(I) 当时,求未知参数的矩估计量;(II) 当时,求未知参数的最大似然估计量;(III) 当时,求未知参数的最大似然估计量.2005年全国硕士研究生入学统一考试数学(三)试题一、填空题:1~6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1) 极限=_________.(2) 微分方程满足初始条件的特解为_________.(3) 设二元函数,则_________.(4) 设行向量组,,,线性相关,且,则_________.(5) 从数中任取一个数,记为,再从中任取一个数,记为,则=_______ __.(6) 设二维随机变量的概率分布为若随机事件与相互独立,则=_________,=_________.二、选择题:7~14小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7) 当取下列哪个值时,函数恰好有两个不同的零点:(A) .(B)(C)(D) .(8) 设,,,其中,则:(A)(B) .(C)(D) .(9) 设若发散,收敛,则下列结论正确的是:(A) 收敛,发散(B)收敛,发散(C) 收敛(D) 收敛(10)设,下列命题中正确的是:(A) 是极大值,是极小值(B) 是极小值,是极大值(C) 是极大值,也是极大值(D) 是极小值,也是极小值.(11)以下四个命题中,正确的是:(A)若在内连续,则在内有界(B) 若在内连续,则在内有界(C) 若在内有界,则在内有界(D) 若在内有界,则在内有界(12) 设矩阵=满足,其中是的伴随矩阵,为的转置矩阵.若为三个相等的正数,则为:(A)(B)(C)(D)(13) 设是矩阵的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是:(A)(B)(C)(D)(14) 设一批零件的长度服从正态分布,其中均未知.现从中随机抽取个零件,测得样本均值,样本标准差,则的置信度为的置信区间是:(A)(B)(C)(D)(注:大纲已不要求)三、解答题:本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.(15) (本题满分8分)求.(16) (本题满分8分)设具有二阶连续导数,且,求.(17) (本题满分9分)计算二重积分,其中.(18) (本题满分9分)求幂级数在区间内的和函数.(19) (本题满分8分)设在上的导数连续,且,,.证明:对任何,有.(20) (本题满分13分)已知齐次线性方程组(I) 和 (II)同解,求的值.(21) (本题满分13分)设为正定矩阵,其中分别为阶,阶对称矩阵,为矩阵.(I) 计算,其中;(II) 利用(I)的结果判断矩阵是否为正定矩阵,并证明你的结论.(22) (本题满分13分)设二维随机变量的概率密度为求:(I) 的边缘概率密度;(II) 的概率密度;(Ⅲ) .(23) (本题满分13分)设为来自总体的简单随机样本,其样本均值为,记.求:(I) 的方差;(II)与的协方差;(III) 若是的无偏估计量,求常数.2006年全国硕士研究生入学统一考试数学(三)试题一、填空题:1~6小题,每小题4分,共24分. 请将答案写在答题纸指定位置上.(1) _________.(2) 设函数在的某邻域内可导,且,则_________.(3) 设函数可微,且,则在点处的全微分_________.(4) 设矩阵,为阶单位矩阵,矩阵满足,则_________.(5) 设随机变量与相互独立,且均服从区间上的均匀分布,则_______ __.(6) 设总体的概率密度为为总体的简单随机样本,其样本方差,则=_________.二、选择题:7~14小题,每小题4分,共32分. 下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7) 设函数具有二阶导数,且,为自变量在处的增量,与分别为在点处对应的增量与微分,若,则:(A)(B)(C)(D)(8)设函数在处连续,且,则:(A) 存在(B) 存在(C) 存在(D) 存在(9)若级数收敛,则级数:(A) 收敛(B) 收敛(C) 收敛(D) 收敛(10) 设非齐次线性微分方程有两个的解为任意常数,则该方程的通解是:(A)(B)(C)(D)(11) 设均为可微函数,且已知是在约束条件下的一个极值点,下列选项正确的是:(A) 若(B) 若(C) 若(D) 若(12) 设均为维列向量,是矩阵,下列选项正确的是:(A) 若线性相关,则线性相关(B) 若线性相关,则线性无关(C) 若线性无关,则线性相关(D) 若线性无关,则线性无关(13) 设为阶矩阵,将的第行加到第行得,再将的第列的倍加到第列得,记,则:(A)(B)(C)(D) .(14) 设随机变量服从正态分布,随机变量服从正态分布,且,则必有:(A)(B)(C)(D)三、解答题:15~23小题,共94分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.(15) (本题满分7分)设,求(I) ;(II) .(16) (本题满分7分)计算二重积分,其中是由直线所围成的平面区域.(17) (本题满分10分)证明:当时,.(18) (本题满分8分)在坐标平面上,连续曲线过点,其上任意点处的切线斜率与直线的斜率之差等于.(I) 求的方程;(II) 当与直线所围成平面图形的面积为时,确定的值.(19) (本题满分10分)求幂级数的收敛域及和函数.(20) (本题满分13分)设维向量组,,,,问为何值时线性相关?当线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.(21) (本题满分13分)设阶实对称矩阵的各行元素之和均为,向量是线性方程组的两个解.(I) 求的特征值与特征向量;(II) 求正交矩阵和对角矩阵,使得;(III) 求及,其中为阶单位矩阵.(22) (本题满分13分)设随机变量的概率密度为令,为二维随机变量的分布函数.求:(I) 的概率密度;(II) ;(III) .(23) (本题满分13分)设总体的概率密度为其中是未知参数(),为来自总体的简单随机样本.记为样本值中小于的个数,求:(I) 的矩估计;(II) 的最大似然估计.2007年全国硕士研究生入学统一考试数学(三)试题一、选择题:1~10小题,每小题4分,共40分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1) 当时,与等价的无穷小量是:(A)(B)(C)(D) .(2) 设函数在处连续,则下列命题错误的是:(A) 若存在,则(B) 若存在,则.(C) 若存在,则存在.(D) 若存在,则存在.(3) 如图,连续函数在区间上的图形分别是直径为的上、下半圆周,在区间上的图形分别是直径为的上、下半圆周,设则下列结论正确的是:(A)(B)(C)(D)(4) 设函数连续,则二次积分等于:(A)(B)(C)(5) 设某商品的需求函数为,其中分别表示需要量和价格,如果该商品需求弹性的绝对值等于,则商品的价格是:(A)(B)(C)(D)(6) 曲线渐近线的条数为:(A)(B)(C)(D)(7) 设向量组线性无关,则下列向量组线性相关的是:(A)(B)(C)(D)(8) 设矩阵,,则与:(A) 合同,且相似(B) 合同,但不相似(C) 不合同,但相似(D) 既不合同,也不相似(9) 某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第次命中目标的概率为:(A)(B)(C)(D)(10) 设随机变量服从二维正态分布,且与不相关,分别表示的概率密度,则在条件下,的条件概率密度为:(A)(B)(C)(D) .二、填空题:11~16小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(11) _________.(12) 设函数,则_________.(13) 设是二元可微函数,则_________.(14) 微分方程满足的特解为=_________.(15) 设矩阵则的秩为_________.(16) 在区间中随机地取两个数,则这两数之差的绝对值小于的概率为_________.三、解答题:17~24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17) (本题满分10分)设函数由方程确定,试判断曲线在点附近的凹凸性. (18) (本题满分11分)设二元函数计算二重积分,其中.设函数在上连续,在内二阶可导且存在相等的最大值,又,=,证明:(I) 存在使得;(II) 存在使得(20) (本题满分10分)将函数展开成的幂级数,并指出其收敛区间.(21) (本题满分11分)设线性方程组①与方程②有公共解,求的值及所有公共解.(22) (本题满分11分)设阶实对称矩阵的特征值是的属于的一个特征向量.记,其中为阶单位矩阵.(I) 验证是矩阵的特征向量,并求的全部特征值与特征向量;(II) 求矩阵.(23) (本题满分11分)设二维随机变量的概率密度为(I) 求;(II)求的概率密度.设总体的概率密度为,其中参数未知,是来自总体的简单随机样本,是样本均值.(I) 求参数的矩估计量;(II) 判断是否为的无偏估计量,并说明理由.2008年全国硕士研究生入学统一考试数学(三)试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 设函数在区间上连续,则是函数的:(A) 跳跃间断点(B) 可去间断点(C) 无穷间断点(D) 振荡间断点.(2) 如图,曲线段方程为,函数在区间上有连续的导数,则定积分等于:(A) 曲边梯形面积(B) 梯形面积(C) 曲边三角形面积(D) 三角形面积.(3) 设则:(A) 存在,存在(B) 不存在,存在(C) 存在,不存在(D) ,都不存在.(4) 设函数连续.若,其中区域为图中阴影部分,则(A)(B)(C)(D)(5) 设为阶非零矩阵,为阶单位矩阵,若,则:(A) 不可逆,不可逆(B) 不可逆,可逆(C) 可逆,可逆(D) 可逆,不可逆.(6) 设,则在实数域上与合同的矩阵为:(A)(B)(C)(D)(7) 随机变量独立同分布,且的分布函数为,则分布函数为:(A)(B)(C)(D)(8) 设随机变量,且相关系数,则:(A)(B)(C)(D)二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9) 设函数在内连续,则_________.(10) 设函数,则_________.(11) 设,则_________.(12) 微分方程满足条件的解是_________.(13) 阶矩阵的特征值为,为三阶单位矩阵,则_________.(14) 设随机变量服从参数为的泊松分布,则_________.三、解答题:15~23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分9分)求极限.(16) (本题满分10分)设是由方程所确定的函数,其中具有阶导数且.(I) 求;(II) 记,求.计算其中.(18) (本题满分10分)设是周期为的连续函数,(I) 证明对任意的实数,都有;(II) 证明是周期为的周期函数.(19) (本题满分10分)设银行存款的年利率为,并依年复利计算.某基金会希望通过存款万元实现第一年提取万元,第二年提取万元,,第年取出万元,并能按此规律一直提取下去,问至少应为多少万元?(20) (本题满分12分)设元线性方程组,其中,,,(I) 证明行列式;(II) 当为何值时,该方程组有唯一解,并求;(III) 当为何值时,该方程组有无穷多解,并求通解.(21) (本题满分10分)设为阶矩阵,为的分别属于特征值特征向量,向量满足.(I) 证明线性无关;(II) 令,求.设随机变量与相互独立,概率分布为,的概率密度为记.求:(I) ;(II) 求的概率密度.(23) (本题满分11分)设是总体的简单随机样本.记,,(I) 证明是的无偏估计量;(II) 当时,求.2009年全国硕士研究生入学统一考试数学(三)试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数的可去间断点的个数为:(A) .(B) .(C) .(D) 无穷多个.(2)当时,与是等价无穷小:(A) .(B).(C) .(D) .(3)使不等式成立的的范围是:(A) .(B) .(C) .(D) .(4)设函数在区间上的图形为:则函数的图形为:(A)(B)(C)(D)(5)设均为阶矩阵,分别为的伴随矩阵,若,则分块矩阵的伴随矩阵为:(A) .(B) .(C) .(D).(6)设均为阶矩阵,为的转置矩阵,且.若,则为:(A) .(B) .(C).(D) .(7)设事件与事件互不相容,则:(A) .(B) .(C) .(D) .(8)设随机变量与相互独立,且服从标准正态分布,的概率分布为.记为随机变量的分布函数,则函数的间断点个数为:(A).(B) .(C) .(D) .二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)_________.(10)设,则_________.(11)幂级数的收敛半径为_________.(12)设某产品的需求函数为,其对价格的弹性,则当需求量为件时,价格增加元会使产品收益增加_________元.(13)设,.若矩阵相似于,则_________.(14)设为来自二项分布总体的简单随机样本,和分别为样本均值和样本方差,记统计量,则_________.三、解答题:15~23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求二元函数的极值.(16) (本题满分10分)计算不定积分.(17) (本题满分10分)计算二重积分,其中.(18)(本题满分11分)(I) 证明拉格朗日中值定理:若函数在上连续,在可导,则存在,使得.(II) 证明:若函数在处连续,在内可导,且,则存在,且.(19)(本题满分10分)设曲线,其中是可导函数,且.已知曲线与直线及所围成的曲边梯形绕轴旋转一周所得的立体体积值是该曲边梯形面积值的倍,求该曲线方程.(20)(本题满分11分)设,(I) 求满足的所有向量;(II) 对(I)中的任意向量,证明:线性无关.(21)(本题满分11分)设二次型.(I) 求二次型的矩阵的所有特征值;(II) 若二次型的规范形为,求的值.(22)(本题满分11分)设二维随机变量的概率密度为(I) 求条件概率密度;(II) 求条件概率.(23)(本题满分11分)袋中有个红球,个黑球与个白球.现有放回地从袋中取两次,每次取一个球,以分别表示两次取球所取得的红球、黑球与白球的个数.(I) 求;(II) 求二维随机变量的概率分布.2010年全国硕士研究生入学统一考试数学(三)试题一、选择题(1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.)(1)若,则等于(A) .(B) .(C) .(D) .(2)设是一阶线性非齐次微分方程的两个特解,若常数使是该方程的解,是该方程对应的齐次方程的解,则:(A) .(B) .(C) .(D) .(3)设函数具有二阶导数,且,若是的极值,则在取极大值的一个充分条件是:(A) .(B) .(C) .(D) .(4)设,则当充分大时有:(A) .(B) .(C) .(D) .(5)设向量组可由向量组线性表示,下列命题正确的是:(A) 若向量组线性无关,则.(B) 若向量组线性相关,则.(C) 若向量组线性无关,则.(D) 若向量组线性相关,则.(6)设为阶实对称矩阵,且,若的秩为,则相似于:(A).(B) .(C) .(D) .(7)设随机变量的分布函数则=(A) 0.(B) .(C) .(D) .(8)设为标准正态分布的概率密度,为上均匀分布的概率密度,若为概率密度,则应满足:(A).(B) .(C) .(D) .二、填空题(9~14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.)(9)设可导函数由方程确定,则_________.(10)设位于曲线下方,轴上方的无界区域为,则绕轴旋转一周所得空间区域的体积为_________.(11)设某商品的收益函数为,收益弹性为,其中为价格,且,则=________ _.(12)若曲线有拐点,则_________.(13)设为阶矩阵,且,则=_________.(14)设是来自总体的简单随机样本,记统计量,则_________.或演算步骤.)(15)(本题满分10分)求极限.(16)(本题满分10分)计算二重积分,其中由曲线与直线及围成. (17)(本题满分10分)求函数在约束条件下的最大值和最小值.(18)(本题满分10分)(I) 比较与的大小,说明理由;(II) 记,求极限.(19)(本题满分10分)设函数在上连续,在内存在二阶导数,且.(I) 证明存在,使;(II) 证明存在,使.(20)(本题满分11分)设,已知线性方程组存在个不同的解.(I) 求,;(II) 求方程组的通解.(21)(本题满分11分)设,正交矩阵使得为对角矩阵,若的第列为,求.(22)(本题满分11分)设二维随机变量的概率密度为,,,求常数及条件概率密度.(23)(本题满分11分)箱中装有个球,其中红、白、黑球的个数分别为个,现从箱中随机地取出个球,记为取出的红球个数,为取出的白球个数.(I) 求随机变量的概率分布;(II) 求.2011年全国硕士研究生入学统一考试数学(三)试题一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)已知当时,函数与是等价无穷小,则:(A) .(B) .(C) .(D) .(2)设函数在处可导,且,则=(A) .(B) .(C) .(D) .(3)设是数列,则下列命题正确的是:(A) 若收敛,则收敛.(B) 若收敛,则收敛.(C) 若收敛,则收敛.(D) 若收敛,则收敛.(4)设,,,则的大小关系是:(A) .(B) .(C) .(D) .(5)设为阶矩阵,将的第列加到第列得矩阵,再交换的第行与第行得单位矩阵,记,,则(A) .(B).(C) .(D) .(6)设为矩阵,是非齐次线性方程组的个线性无关的解,为任意常数,则的通解为:(A) .(B) .(C) .(D) .(7)设与为两个分布函数,其相应的概率密度与是连续函数,则必为概率密度的是:(A).(B) .(C) .(D) .(8)设总体服从参数为的泊松分布,为来自总体的简单随机样本,则对应的统计量和,有:(A) ,.(B) ,.(C) ,.(D) ,.(9)设,则_________.(10)设函数,则_________.(11)曲线在点处的切线方程为_________.(12)曲线,直线及轴所围成的平面图形绕轴旋转所成的旋转体的体积为______ ___.(13)设二次型的秩为,的各行元素之和为,则在正交变换下的标准形为_________.(14)设二维随机变量服从正态分布,则=_________.明、证明过程或演算步骤.(15) (本题满分10分)求极限.(16) (本题满分10分)已知函数具有二阶连续偏导数,是的极值,,求.(17) (本题满分10分)求.(18) (本题满分10分)证明方程恰有两个实根.(19) (本题满分10分)设函数在上具有连续导数,,且满足,,求的表达式.(20) (本题满分11分)设向量组不能由向量组线性表示.(I) 求的值;(II) 将用线性表示.(21) (本题满分11分)设为阶实对称矩阵,的秩为,且.(I) 求的所有特征值与特征向量;(II) 求矩阵.(22) (本题满分11分)设随机变量与的概率分布分别为且.(I) 求二维随机变量的概率分布;(II) 求的概率分布;(III) 求与的相关系数.(23) (本题满分11分)设二维随机变量服从区域上的均匀分布,其中是由与所围成的三角形区域.(I) 求边缘概率密度;(II) 求条件概率密度.2012年全国硕士研究生入学统一考试数学(三)试题一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线渐近线的条数为:(A) .(B) .(C) .(D) .(2)设函数,其中为正整数,则:(A) .(B) .(C).(D) .(3)设函数连续,则二次积分:(A) .(B) .(C) .(D) .(4)已知级数绝对收敛,级数条件收敛,则:(A).(B) .(C) .(D) .(5)设,其中为任意常数,则下列向量组线性相关的为:(A) .(B) .(C) .(D) .(6)设为阶矩阵,为阶可逆矩阵,且.若,,则:(A) .(B) .(C) .(D).(7)设随机变量与相互独立,且都服从区间上的均匀分布,则:(A) .(B) .(C) .(D) .(8)设为来自总体()的简单随机样本,则统计量的分布为:(A).(B) .(C) .(D) .(9)_________.(10)设函数,,则_________.(11)设连续函数满足,则_________.(12)由曲线和直线及在第一象限中围成的平面图形的面积为_________.(13)设为阶矩阵,,为的伴随矩阵.若交换的第行与第行得矩阵,则_________.(14)设是随机事件,与互不相容,则_________.证明过程或演算步骤.(15) (本题满分10分)求极限.(16) (本题满分10分)计算二重积分,其中是以曲线及轴为边界的无界区域.。

03年数学三考研真题

03年数学三考研真题

03年数学三考研真题03年数学三考研真题数学是一门智力与逻辑的结合体,对于很多考生来说,数学三是考研数学中最具挑战性的一门课程。

而03年的数学三考研真题,则是一道经典的题目,让许多考生在备考过程中遇到了困难。

本文将对03年数学三考研真题进行分析,并探讨其中的解题思路和方法。

首先,我们来看看03年数学三考研真题的具体内容。

该题目为一道复合函数的求导题,题目如下:已知函数f(x) = g(h(x)),其中g(x)和h(x)分别是可导函数,求f'(x)。

这道题目看似简单,但实际上涉及到了复合函数和链式法则的运用。

考生需要熟练掌握这些数学概念和相关的求导规则,才能正确解答该题。

解答这道题的关键在于理解复合函数和链式法则的概念。

复合函数是由两个或多个函数组合而成的函数,而链式法则则是用于求解复合函数的导数的一种规则。

根据链式法则,复合函数的导数等于外层函数对内层函数求导的结果乘以内层函数对自变量求导的结果。

根据这个思路,我们可以开始解答这道题目。

首先,我们需要对函数f(x)进行拆解,即将f(x)表示为g(h(x))的形式。

然后,我们分别对g(x)和h(x)求导。

求导的过程中,需要注意使用链式法则。

最后,将求得的导数结果进行合并,即可得到f'(x)的表达式。

在解答这道题目的过程中,考生需要注意以下几点。

首先,要注意对复合函数进行拆解,确保每一步的计算都是准确无误的。

其次,要熟练掌握链式法则的运用,特别是在求导过程中,要注意对内层函数和外层函数的求导顺序。

最后,要注意化简结果,确保最终的导数表达式是简洁明了的。

除了解答这道题目,考生还可以通过做类似的练习题来提高自己的解题能力。

通过反复练习,考生可以更好地掌握复合函数和链式法则的应用,从而在考试中更加得心应手。

总结起来,03年数学三考研真题是一道经典的复合函数求导题,考生需要熟练掌握复合函数和链式法则的概念和运用,才能正确解答该题。

通过反复练习类似的题目,考生可以提高解题能力,并在考试中取得好成绩。

2003数三考研真题

2003数三考研真题

2003数三考研真题在2003年的数学三考研真题中,考察了多个数学领域的知识点。

本文将按照题目出现的顺序,对每一道题目进行解答和讨论,帮助考生更好地理解和掌握这些知识点。

题目一:已知矩阵A=[2a b; 12 2b],其中a、b为实数,若A的秩为1,则a=____。

解答一:根据题目中给出的信息,矩阵A的秩为1,即矩阵A的列向量线性相关。

我们可以设矩阵A的列向量为v1和v2,即:v1 = [2a; 12]v2 = [b; 2b]要使得v1和v2线性相关,可以通过以下方式得到:v2 = k * v1其中k为非零实数。

将v1和v2代入上述等式中,得到:[b; 2b] = k * [2a; 12]根据等式的对应元素相等,可以得到以下两个方程:b = 2ak2b = 12k将第二个方程除以2,然后代入第一个方程,可以得到:2ak = 12kb = 6由此可得,a = 3。

因此,答案为a=3。

题目二:设函数f(x)在区间[0,1]上连续,且f(0)=0,f(1)=1,证明存在x∈(0,1),使得f(x)=x。

解答二:根据题目中给出的条件,函数f(x)在区间[0,1]上连续且满足f(0)=0,f(1)=1。

我们可以构造一个辅助函数g(x) = f(x) - x。

首先,观察辅助函数g(x)在区间端点的取值:g(0) = f(0) - 0 = 0g(1) = f(1) - 1 = 0根据零值定理,由于g(x)在区间端点的取值为0,所以在区间内必然存在某一点x∈(0,1),使得g(x)=0。

因此,存在x∈(0,1),使得f(x)=x。

证毕。

题目三:已知函数f(x)为定义在[0,1]上的二阶可导函数,且满足f(0)=f(1)=0,证明存在ξ∈(0,1),使得f''(ξ)=-8π^2f(ξ)。

解答三:根据题目中给出的条件,函数f(x)为定义在[0,1]上的二阶可导函数,并且满足f(0)=f(1)=0。

我们可以利用罗尔定理进行证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2003年考研数学(三)真题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是2>λ. 【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导.【详解】 当1>λ时,有,0,0,0,1sin 1cos )(21=≠⎪⎩⎪⎨⎧+='--x x xx x x x f 若若λλλ 显然当2>λ时,有)0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续.【评注】 原题见《考研数学大串讲》P.21【例5】(此考题是例5的特殊情形). (2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b 64a . 【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2b 与a 的关系.【详解】 由题设,在切点处有03322=-='a x y ,有 .220a x =又在此点y 坐标为0,于是有0300230=+-=b x a x ,故 .44)3(6422202202a a a x a x b =⋅=-=【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程.完全类似例题见《文登数学全真模拟试卷》数学四P.36第一大题第(3)小题.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= 2a .【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 ⎰⎰-=D dxdy x y g x f I )()(=dxdy ax y x ⎰⎰≤-≤≤≤10,102=.])1[(2121012adx x x ady dx ax x=-+=⎰⎰⎰+【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.完全类似例题见《数学复习指南》P.191【例8.16-17】 .(4)设n 维向量0,),0,,0,(<=a a a T α;E 为n 阶单位矩阵,矩阵TE A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a= -1 .【分析】 这里T αα为n 阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.【详解】 由题设,有)1)((T Ta E E AB αααα+-= =TT T T a a E αααααααα⋅-+-11=TT T T a a E αααααααα)(11-+-=TT T a a E αααααα21-+-=E aa E T=+--+αα)121(,于是有 0121=+--a a ,即 0122=-+a a ,解得 .1,21-==a a 由于A<0 ,故a=-1.【评注】完全类似例题见《数学复习指南》P.305第2大题第(5)小题 .(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为0.9 .【分析】 利用相关系数的计算公式即可. 【详解】 因为)4.0()()]4.0([()4.0,cov(),cov(---=-=X E Y E X Y E X Y Z Y =)(4.0)()()(4.0)(Y E X E Y E Y E XY E +-- =E(XY) – E(X)E(Y)=cov(X,Y), 且.DX DZ =于是有 cov(Y,Z)=DZDY Z Y ),cov(=.9.0),cov(==XY DYDX Y X ρ【评注】 注意以下运算公式:DX a X D =+)(,).,cov(),cov(Y X a Y X =+ 完全类似例题见《数学复习指南》P.475【例3.32】的【注】 .(6)设总体X 服从参数为2的指数分布,n X X X ,,,21 为来自总体X 的简单随机样本,则当∞→n 时,∑==n i i n X n Y 121依概率收敛于 21 .【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量n X X X ,,,21 ,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值: ).(1111∞→→∑∑==n EX n X n ni i pn i i【详解】 这里22221,,,nX X X 满足大数定律的条件,且22)(i i i EX DX EX +==21)21(412=+,因此根据大数定律有∑==n i i n X n Y 121依概率收敛于.21112=∑=n i i EX n【评注】 大数定律见《数学复习指南》P.484 .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ D ] 【分析】 由题设,可推出f(0)=0 , 再利用在点x=0处的导数定义进行讨论即可. 【详解】 显然x=0为g(x)的间断点,且由f(x)为不恒等于零的奇函数知,f(0)=0. 于是有 )0(0)0()(lim )(lim)(lim 00f x f x f x x f xg x x x '=--==→→→存在,故x=0为可去间断点. 【评注1】 本题也可用反例排除,例如f(x)=x, 则此时g(x)=,0,0,0,1=≠⎩⎨⎧=x x x x 可排除(A),(B),(C) 三项,故应选(D).【评注2】 若f(x)在0x x =处连续,则.)(,0)()(lim000A x f x f A x x x f x x ='=⇔=-→.本题事实上相当于考查此结论,详情可参见《考研数学大串讲》P.18的重要结论与公式.(2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ A ]【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(x,y)在点),(00y x 取得极小值,根据取极值的必要条件知0),(00='y x f y ,即),(0y x f 在0y y =处的导数等于零, 故应选(A).【评注1】 本题考查了偏导数的定义,),(0y x f 在0y y =处的导数即),(00y x f y ';而),(0y x f 在0x x =处的导数即).,(00y x f x '【评注2】 本题也可用排除法分析,取22),(y x y x f +=,在(0,0)处可微且取得极小值,并且有2),0(y y f =,可排除(B),(C),(D), 故正确选项为(A).(3)设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.(B) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.(C) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.(D) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. [ B ]【分析】 根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案. 【详解】 若∑∞=1n na绝对收敛,即∑∞=1n na收敛,当然也有级数∑∞=1n na收敛,再根据2nn n a a p +=,2nn n a a q -=及收敛级数的运算性质知,∑∞=1n np与∑∞=1n nq都收敛,故应选(B).【评注】 完全类似例题见《文登数学全真模拟试卷》数学三P.23第二大题第(3)小题.(4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ C ]【分析】 A 的伴随矩阵的秩为1, 说明A 的秩为2,由此可确定a,b 应满足的条件. 【详解】 根据A 与其伴随矩阵A*秩之间的关系知,秩(A)=2,故有0))(2(2=-+=b a b a ab b b a bbb a ,即有02=+b a 或a=b. 但当a=b 时,显然秩(A)2≠, 故必有 a ≠b 且a+2b=0. 应选(C).【评注】 n (n )2≥阶矩阵A 与其伴随矩阵A*的秩之间有下列关系:.1)(,1)(,)(,0,1,*)(-<-==⎪⎩⎪⎨⎧=n A r n A r n A r n A r完全类似例题见《数学复习指南》P.329【例3.31】. (5)设s ααα,,,21 均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.(B) 若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα(C) s ααα,,,21 线性无关的充分必要条件是此向量组的秩为s.(D)s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. [ B ]【分析】 本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式. 应注意是寻找不正确的命题.【详解】(A): 若对于任意一组不全为零的数s k k k ,,,21 ,都有 02211≠+++s s k k k ααα ,则s ααα,,,21 必线性无关,因为若s ααα,,,21 线性相关,则存在一组不全为零的数s k k k ,,,21 ,使得 02211=+++s s k k k ααα ,矛盾. 可见(A )成立.(B): 若s ααα,,,21 线性相关,则存在一组,而不是对任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα (B)不成立.(C)s ααα,,,21 线性无关,则此向量组的秩为s ;反过来,若向量组s ααα,,,21 的秩为s ,则s ααα,,,21 线性无关,因此(C)成立.(D)s ααα,,,21 线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见(D)也成立.综上所述,应选(B).【评注】 原命题与其逆否命题是等价的. 例如,原命题:若存在一组不全为零的数s k k k ,,,21 ,使得02211=+++s s k k k ααα 成立,则s ααα,,,21 线性相关. 其逆否命题为:若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.与本题完全类似例题见《数学复习指南》P.313【例3.4】.(6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ C ] 【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立.【详解】 因为21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P , 且 41)(21=A A P ,41)(31=A A P ,41)(32=A A P ,41)(42=A A P 0)(321=A A A P ,可见有)()()(2121A P A P A A P =,)()()(3131A P A P A A P =,)()()(3232A P A P A A P =,)()()()(321321A P A P A P A A A P ≠,)()()(4242A P A P A A P ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选(C).【评注】 本题严格地说应假定硬币是均匀的,否则结论不一定成立.本题考查两两独立与相互独立的差异,其要点可参见《数学复习指南》P.401 .三 、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义f(1)使得f(x)在]1,21[上连续.【分析】 只需求出极限)(lim 1x f x -→,然后定义f(1)为此极限值即可. 【详解】 因为)(lim 1x f x -→=])1(1sin 11[lim 1x x x x --+-→πππ =xx xx x πππππsin )1(sin )1(lim 111---+-→=xx x xx ππππππππcos )1(sin cos lim 111-+---+-→=xx x x xx ππππππππππsin )1(cos cos sin lim 11221----+-→ =.1π由于f(x)在)1,21[上连续,因此定义π1)1(=f ,使f(x)在]1,21[上连续.【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.在计算过程中,也可先作变量代换y=1-x ,转化为求+→0y 的极限,可以适当简化. 完全类似例题在一般教科书上都可找到,或参见《文登数学全真模拟试卷》P.数学三P.24第三题.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂vf u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂ 【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22uv fv u f ∂∂∂=∂∂∂【详解】vf x u f y xg ∂∂+∂∂=∂∂, .vf y u f x yg ∂∂-∂∂=∂∂ 故 v f vf x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222, .2222222222v f vf y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂ 所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂ =.22y x +【评注】 本题考查半抽象复合函数求二阶偏导.完全类似例题《数学复习指南》P.171【例7.20,7.22】.五 、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算. 【详解】 作极坐标变换:θθsin ,cos r y r x ==,有dxdy y x e eI Dy x )sin(22)(22+=⎰⎰+-π=.sin 2022dr r red e r ⎰⎰-πππθ令2r t =,则tdt e e I t sin 0⎰-=πππ.记 t d t e A t s i n 0⎰-=π,则t t de e A --⎰-=int 0π=]cos sin [0⎰----ππtdt e te t t=⎰--πcos t tde=]sin cos [0tdt e t e t t⎰--+-ππ=.1A e -+-π因此 )1(21π-+=e A , ).1(2)1(2πππππe e e I +=+=-【评注】 本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n n nx n x 的和函数f(x)及其极值.【分析】 先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1. 求出和函数后,再按通常方法求极值.【详解】.1)1()(1212∑∞=-+-=-='n n nxxx x f 上式两边从0到x 积分,得).1ln(211)0()(202x dt t t f x f x+-=+-=-⎰ 由f(0)=1, 得).1(),1ln(211)(2<+-=x x x f 令0)(='x f ,求得唯一驻点x=0. 由于,)1(1)(222x x x f +--=''01)0(<-=''f ,可见f(x)在x=0处取得极大值,且极大值为 f(0)=1.【评注】 求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数.完全类似例题见《数学题型集粹与练习题集》P.285数学三模拟试题(五)第八题.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件:)()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(x e x g x f =+(1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式.【分析】 F(x)所满足的微分方程自然应含有其导函数,提示应先对F(x)求导,并将其余部分转化为用F(x)表示,导出相应的微分方程,然后再求解相应的微分方程.【详解】 (1) 由)()()()()(x g x f x g x f x F '+'=' =)()(22x f x g +=)()(2)]()([2x g x f x g x f -+ =(22)x e -2F(x), 可见F(x)所满足的一阶微分方程为.4)(2)(2x e x F x F =+'(2) ]4[)(222C dx e e e x F dx xdx +⎰⋅⎰=⎰-=]4[42C dx e e x x+⎰-=.22x xCe e-+将F(0)=f(0)g(0)=0代入上式,得 C=-1. 于是.)(22x xe ex F --=【评注】 本题没有直接告知微分方程,要求先通过求导以及恒等变形引出微分方程的形式,从题型来说比较新颖,但具体到微分方程的求解则并不复杂,仍然是基本要求的范围.完全类似例题在文登数学辅导班上介绍过,也可参见《文登数学全真模拟试卷》数学三P.17第三题.八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf【分析】 根据罗尔定理,只需再证明存在一点c )3,0[∈,使得)3(1)(f c f ==,然后在[c,3]上应用罗尔定理即可. 条件f(0)+f(1)+f(2)=3等价于13)2()1()0(=++f f f ,问题转化为1介于f(x)的最值之间,最终用介值定理可以达到目的.【详解】 因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M 和最小值m ,于是M f m ≤≤)0(, M f m ≤≤)1(, M f m ≤≤)2(. 故.3)2()1()0(M f f f m ≤++≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f因为f(c)=1=f(3), 且f(x)在[c,3]上连续,在(c,3)内可导,所以由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf【评注】 介值定理、微分中值定理与积分中值定理都是常考知识点,且一般是两两结合起来考. 本题是典型的结合介值定理与微分中值定理的情形.完全类似例题见《数学复习指南》P.128【例5.2】及P.131的【解题提示】.九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中.01≠∑=ni ia试讨论n a a a ,,,21 和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等. 可先将所有列对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值.【详解】 方程组的系数行列式ba a a a ab a a a a a b a a a a a ba A n n n n ++++=321321321321=).(11∑=-+ni i n a b b(1) 当0≠b 时且01≠+∑=ni iab 时,秩(A)=n ,方程组仅有零解.(2) 当b=0 时,原方程组的同解方程组为 .02211=+++n n x a x a x a 由01≠∑=ni ia可知,),,2,1(n i a i =不全为零. 不妨设01≠a ,得原方程组的一个基础解系为T a a )0,,0,1,(121 -=α,T a a )0,,1,0,(132 -=α,.)1,,0,0,(,1T n n a a -=α 当∑=-=ni iab 1时,有0≠b ,原方程组的系数矩阵可化为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑∑∑∑====n i i n nni inni inni ia a a a a a a a a a a a a a a a a a a a 1321132131213211(将第1行的-1倍加到其余各行,再从第2行到第n 行同乘以∑=-ni ia11倍)→ ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑=1001010100113211 n ni ia a a a a( 将第n 行n a -倍到第2行的2a -倍加到第1行,再将第1行移到最后一行)→.0000100101010011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---由此得原方程组的同解方程组为12x x =,13x x =,1,x x n = . 原方程组的一个基础解系为.)1,,1,1(T =α【评注】 本题的难点在∑=-=ni iab 1时的讨论,事实上也可这样分析:此时系数矩阵的秩为 n-1(存在n-1阶子式不为零),且显然T )1,,1,1( =α为方程组的一个非零解,即可作为基础解系.完全类似问题2002年已考过,见2002年数学三第九题.十、(本题满分13分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵. 【分析】 特征值之和为A 的主对角线上元素之和,特征值之积为A 的行列式,由此可求出a,b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】 (1)二次型f 的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A 设A 的特征值为).3,2,1(=i i λ 由题设,有1)2(2321=-++=++a λλλ,.12242002002321-=--=-=b a b ba λλλ解得 a=1,b= -2.(2) 由矩阵A 的特征多项式)3()2(22202012+-=+----=-λλλλλλA E ,得A 的特征值.3,2321-===λλλ对于,221==λλ解齐次线性方程组0)2(=-x A E ,得其基础解系T )1,0,2(1=ξ,.)0,1,0(2T =ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,得基础解系.)2,0,1(3T -=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得T )51,0,52(1=η,T )0,1,0(2=η,.)52,0,51(3T -=η令矩阵[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==5205101051052321ηηηQ ,则Q 为正交矩阵. 在正交变换X=QY 下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T ,且二次型的标准形为.322232221y y y f -+=【评注】 本题求a,b ,也可先计算特征多项式,再利用根与系数的关系确定:二次型f 的矩阵A 对应特征多项式为)].2()2()[2(220022b a a bb aA E +----=+----=-λλλλλλλ设A 的特征值为321,,λλλ,则).2(,2,2232321b a a +-=-=+=λλλλλ由题设得1)2(2321=-+=++a λλλ,.12)2(22321-=+-=b a λλλ解得a=1,b=2.第一步求参数见《数学复习指南》P.361重要公式与结论4,完全类似例题见《文登数学全真模拟试卷》数学三P.47第九题.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可。

相关文档
最新文档