15.9圆锥曲线的切线问题
圆锥曲线中切线问题的妙解
圆锥曲线中 切线问题的妙解在高中数学中圆锥曲线是一个重点也是一个难点,我们只有深刻理解圆锥曲线,掌握通性通法,才能更好地解决这一难题。
平时我们还要多归纳、多总结还可以得到一系列的结论。
下面我们利用一些结论来巧妙地解决圆锥曲线中的切线问题。
结论一.过圆锥曲线上一点的切线方程1.设圆(x -a )2+(y -b )2=r 2上有一点P (x 0,y 0),则过P 点的切线方程为(x -a )(x 0-a )+(y -b )(y 0-b )=r 2.2.(1)椭圆+=1(a >b >0)上有一点P (x 0,y 0),则P 点处的切线方程为+=1 (2)双曲线-=1(a ,b >0)上有一点P (x 0,y 0),则P 点处的切线方程为-=1. (3)抛物线y 2=2px (p >0)上有一点P (x 0,y 0),则P 点处的切线方程为y 0y =2p例1:求双曲线x 2-=1在点(,)处的切线方程.解 :由双曲线-=1(a >0,b >0)上一点P (x 0,y 0)处的切线方程是-=1,∴双曲线x 2-=1在点(,)处的切线方程为x -=1,即2x -y -=0.例 2:已知椭圆C :+=1(a >b >0)的焦距为2,且过点Q . (1)求椭圆C 的标准方程;(2)若O 为坐标原点,P 为直线l :x =2上的一动点,过点P 作直线l ′与椭圆相切于点A ,若△POA 的面积S 为,求直线l ′的方程.解 (1)由题意得:椭圆C 的标准方程为+y 2=1.(2)设A (x 0,y 0),则切线l ′的方程为+yy 0=1,即y =-x ,则直线l ′与x 轴交于点B ,∵P ,∴S △POA =··=,即=,∴=±,即或解得x 0=1,y 0=-或x 0=1,y 0=(x 0=0,y 0=±1不合题意舍),∴直线l ′的方程为y =-x +或y =x -.结论二:过圆锥曲线外一点作曲线的切线1.过椭圆+=1(a >b >0)外一点P (x 0,y 0),作椭圆的两条切线,则两切点的连线方程为+=1(a >b >0).2过双曲线-=1(a >0,b >0)外有一点P (x 0,y 0),作双曲线的两条切线,则两切点的连线方程为-=1.3.过抛物线y 2=2px (p >0)外有一点P (x 0,y 0),作抛物线的两条切线,则两切点的连线方程为y 0y =2p例3:已知P (1,1)是双曲线外一点,过P 引双曲线x 2-=1的两条切线PA ,PB ,A ,B 为切点,求直线AB 的方程.解: 利用结论2得直线AB 的方程为x -=1,即2x -y -2=0.例4 :已知曲线C :y =,D 为直线y =-上的动点,过D 作C 的两条切线,切点分别为A ,B .则直线AB 过定点解:设D ,抛物线方程为 ,则过D 点作抛物线的两条切线,则两切点的连线方程为 得,直线AB 的方程为 整理得:2tx -2y +1=0.所以直线AB 过定点在圆锥曲线中我们如果能够熟记这些结论,再结合常规方法,那就可以快速的找到解决切线问题解题思路,从而可以快速求得答案。
圆锥曲线题型总结:切线问题【自己整理】
高考数学圆锥曲线专题突破:切线问题【2017•新课标Ⅰ文】设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.【解析】解:(1)设A(x1,),B(x2,)为曲线C:y=上两点,则直线AB的斜率为k==(x1+x2)=×4=1;(2)设直线AB的方程为y=x+t,代入曲线C:y=,可得x2﹣4x﹣4t=0,即有x1+x2=4,x1x2=﹣4t,再由y=的导数为y′=x,设M(m,),可得M处切线的斜率为m,由C在M处的切线与直线AB平行,可得m=1,解得m=2,即M(2,1),由AM⊥BM可得,k AM•k BM=﹣1,即为•=﹣1,化为x1x2+2(x1+x2)+20=0,即为﹣4t+8+20=0,解得t=7.则直线AB的方程为y=x+7.【2014•广东理】已知椭圆C:+=1(a>b>0)的每一个焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.【解析】(1)依题意知,求得a=3,b=2,∴椭圆的方程为+=1.(2)当过点P的直线斜率不存在时,P的坐标为(±3,±2)时符合题意,设过点P(x0,y0)的切线为y=k(x﹣x0)+y0,+=+=1,整理得(9k2+4)x2+18k(y0﹣kx0)x+9[(y0﹣kx0)2﹣4]=0,△=[18k(y0﹣kx0)]2﹣4(9k2+4)×9[(y0﹣kx0)2﹣4],∴(x02﹣9)k2﹣2x0×y0×k+(y02﹣4)=0,∴﹣1=k1•k2==﹣1,∴x02+y02=13.把点(±3,±2)亦成立,∴点P的轨迹方程为:x2+y2=13.【2014•湖北理】在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1,记点M 的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设斜率为k的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.【解析】(Ⅰ)设M(x,y),依题意得:|MF|=|x|+1,即,化简得,y2=2|x|+2x.∴点M的轨迹C的方程为;(Ⅱ)在点M的轨迹C中,记C1:y2=4x(x≥0),C2:y=0(x<0).依题意,可设直线l的方程为y﹣1=k(x+2).由方程组,可得ky2﹣4y+4(2k+1)=0.①当k=0时,此时y=1,把y=1代入轨迹C的方程,得.故此时直线l:y=1与轨迹C恰好有一个公共点().②当k≠0时,方程ky2﹣4y+4(2k+1)=0的判别式为△=﹣16(2k2+k﹣1).设直线l与x轴的交点为(x0,0),则由y﹣1=k(x+2),取y=0得.若,解得k<﹣1或k>.即当k∈时,直线l与C1没有公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点.若或,解得k=﹣1或k=或.即当k=﹣1或k=时,直线l 与C 1只有一个公共点,与C 2有一个公共点. 当时,直线l 与C 1有两个公共点,与C 2无公共点.故当k=﹣1或k=或时,直线l 与轨迹C 恰好有两个公共点.若,解得﹣1<k <﹣或0<k <.即当﹣1<k <﹣或0<k <时,直线l 与C 1有两个公共点,与C 2有一个公共点. 此时直线l 与C 恰有三个公共点. 综上,当k ∈∪{0}时,直线l 与C 恰有一个公共点;当k ∪{﹣1,}时,直线l 与C 恰有两个公共点;当k ∈时,直线l 与轨迹C 恰有三个公共点.【2013广东理20】已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0.设P 为直线l 上的点,过点P 作抛物线C 的两条切线P A ,PB ,其中A ,B 为切点.(1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值. 【解析】(1)依题意,设抛物线C 的方程为x 2=4cy ,2=,结合c >0,解得c =1. 所以抛物线C 的方程为x 2=4y .(2)抛物线C 的方程为x 2=4y ,即y =14x 2,求导得y ′=12x , 设A (x 1,y 1),B (x 2,y 2)221212,44x x y y ⎛⎫== ⎪⎝⎭其中,则切线P A ,PB 的斜率分别为12x 1,12x 2,所以切线P A 的方程为y -y 1=12x(x -x 1),即y =12x x -212x +y 1,即x 1x -2y -2y 1=0,同理可得切线PB 的方程为x 2x -2y -2y 2=0,因为切线P A ,PB 均过点P (x 0,y 0),所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0.所以(x 1,y 1),(x 2,y 2)为方程x 0x -2y 0-2y =0的两组解. 所以直线AB 的方程为x 0x -2y -2y 0=0.(3)由抛物线定义可知|AF |=y 1+1,|BF |=y 2+1,所以|AF |·|BF |=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1.联立方程002220,4,x x y y x y --=⎧⎨=⎩消去x 整理得y 2+(2y 0-x 02)y +y 02=0.由一元二次方程根与系数的关系可得y 1+y 2=x 02-2y 0,y 1y 2=y 02, 所以|AF |·|BF |=y 1y 2+(y 1+y 2)+1=y 02+x 02-2y 0+1. 又点P (x 0,y 0)在直线l 上,所以x 0=y 0+2. 所以y 02+x 02-2y 0+1=2y 02+2y 0+5=2019222y ⎛⎫++ ⎪⎝⎭.所以当y 0=12-时,|AF |·|BF |取得最小值,且最小值为92.【2008山东理22】如图,设抛物线方程为x 2=2py (p >0),M 为 直线y =-2p 上任意一点,过M 引抛物线的切线,切点分别为A ,B .(Ⅰ)求证:A ,M ,B 三点的横坐标成等差数列;(Ⅱ)已知当M 点的坐标为(2,-2p )时,AB =(Ⅲ)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线22(0)x py p =>上,其中,点C 满足OC OA OB =+(O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由.【解析】(Ⅰ)证明:由题意设221212120(,),(,),,(,2).22x x A x B x x x M x p p p-<由22x py =得22x y p=,则,x y p'=所以12,.MAMB x x k k p p== 因此直线MA 的方程为102(),x y p x x p+=- 直线MB 的方程为202().x y p x x p+=-所以211102(),2x xp x x p p+=- ①222202().2x xp x x p p+=- ②由①、②得212120,2x x x x x +=+- 因此21202x x x +=,即0122.x x x =+所以A 、M 、B 三点的横坐标成等差数列.(Ⅱ)解:由(Ⅰ)知,当x 0=2时, 将其代入①、②并整理得: 2211440,x x p --=2222440,x x p --=所以 x 1、x 2是方程22440x x p --=的两根,因此212124,4,x x x x p +==-又22210122122,2ABx x x x x p p k x x p p-+===-所以2.ABk p=由弦长公式得AB ==又AB =所以p =1或p =2,因此所求抛物线方程为22xy =或24.x y =(Ⅲ)解:设D (x 3,y 3),由题意得C (x 1+ x 2, y 1+ y 2),则CD 的中点坐标为123123(,),22x x x y y y Q ++++设直线AB 的方程为11(),x y y x x p-=-由点Q 在直线AB 上,并注意到点1212(,)22x x y y ++也在直线AB 上, 代入得33.x y x p=若D (x 3,y 3)在抛物线上,则2330322,x py x x ==因此 x 3=0或x 3=2x 0.即D (0,0)或2002(2,).x D x p(1)当x 0=0时,则12020x x x +==,此时,点M (0,-2p )适合题意.(2)当00x ≠,对于D (0,0),此时2212222212120002(2,),,224CDx x x x x x pC x k px px +++==又0,ABx k p=AB ⊥CD , 所以222201212201,44AB CDx x x x x k k p px p++===- 即222124,x x p +=-矛盾.对于2002(2,),x D x p 因为22120(2,),2x x C x p+此时直线CD 平行于y 轴, 又00,ABx k p=≠ 所以 直线AB 与直线CD 不垂直,与题设矛盾, 所以00x ≠时,不存在符合题意的M 点.综上所述,仅存在一点M (0,-2p )适合题意.【2007江苏理19】如图,在平面直角坐标系xOy 中,过y 轴正方向上一点(0)C c ,任作一直线,与抛物线2y x =相交于A B ,两点.一条垂直于x 轴的直线,分别与线段AB 和直线:l y c =-交于点P Q ,. (1)若2OA OB =,求c 的值;(5分)(2)若P 为线段AB 的中点,求证:QA 为此抛物线的切线;(5分) (3)试问(2)的逆命题是否成立?说明理由.(4分)【解析】(1)设直线AB 的方程为y kx c =+,将该方程代入2y x =得20x kx c --=.令2()A a a ,,2()B b b ,,则ab c =-.因为2222OA OB ab a b c c =+=-+=,解得2c =, 或1c =-(舍去).故2c =.(2)由题意知2a b Q c +⎛⎫-⎪⎝⎭,,直线AQ 的斜率为22222AQ a c a ab k a a b a b a +-===+--. 又2y x =的导数为2y x '=,所以点A 处切线的斜率为2a , 因此,AQ 为该抛物线的切线. (3)(2)的逆命题成立,证明如下:设0()Q x c -,. 若AQ 为该抛物线的切线,则2AQ k a =, 又直线AQ 的斜率为2200AQa c a ab k a x a x +-==--,所以202a aba a x -=-,得202ax a ab =+,因0a ≠,有02a bx +=. 故点P 的横坐标为2a b+,即P 点是线段AB 的中点. 【2005江西理22】如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA=∠PFB.【解析】(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和,∴切线AP 的方程为:;02200=--x y x x切线BP 的方程为:;02211=--x y x x解得P 点的坐标为:1010,2x x y x x x P P =+=所以△APB 的重心G 的坐标为 P PG x x x x x =++=310,,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即(2)方法1:因为).41,(),41,2(),41,(2111010200-=-+=-=x x x x x x x x 由于P 点在抛物线外,则.0||≠∴||41)1)(1(||||cos 102010010FP x x x x x x x x FA FP AFP +=--+⋅+==∠同理有||41)1)(1(||||cos 102110110FP x x x x x x x x FB FP BFP +=--+⋅+==∠ ∴∠AFP=∠PFB.方法2:①当,0,0,,0000101==≠=y x x x x x 则不妨设由于时所以P 点坐标为)0,2(1x ,则P 点到直线AF 的距离为:,4141:;2||12111x x x y BF x d -=-=的方程而直线即.041)41(1121=+--x y x x x 所以P 点到直线BF 的距离为:2||412||)41()()41(|42)41(|1211212122111212x x x x x x x x x d =++=+-+-=所以d 1=d 2,即得∠AFP=∠PFB.②当001≠x x 时,直线AF 的方程:,041)41(),0(041410020020=+-----=-x y x x x x x x y 即 直线BF 的方程:,041)41(),0(041411121121=+-----=-x y x x x x x x y 即 所以P 点到直线AF 的距离为:2||41)41)(2|)41(|41)2)(41(|1020201020220012010201x x x x x x x x x x x x x x d -=++-=+-+-+-=,同理可得到P 点到直线BF 的距离2||012x x d -=,因此由d 1=d 2,可得到∠AFP=∠PFB.【2006全国卷Ⅱ理21】已知抛物线y x 42=的焦点为B A F ,,是抛物线上的两动点,且).0(>=λλ过A 、B 两点分别作抛物线的切线,设其交点为M .(Ⅰ)证明⋅为定值; (I )由已条件,得F (0,1),0>λ. 设,).,(),,(2211y x B y x A λ=由 即得),1,()1,(2211-=--y x y x λ ⎩⎨⎧-=-=-∴).1(12121y y x x λλ将①式两边平方并把22221141,41x y x y ==代入得221y y λ=, ③ 解②、③式得λλ1,21==y y ,且有.4422221-=-=-=y x x x λλ抛物线方程为.412x y = 求导得.21x y =' 所以过抛物线上A 、B 两点的切线方程分别是,)(21)(21222111y x x y y x x x y +-=⋅+-=即.4121,4121222211x x x y x x x y -=-=① ②陈爱梅老师资料 版权所有 违版必究解出两条切线的交点M 的坐标为).1,2()4,2(212121-+=+x x x x x x …………4分 所以 ),()2,2(121221y y x x x x AB FM --⋅-+=⋅ =)4141(2)(2121222122x x x x --- =0 所以⋅为定值,真值为0. ………………7分。
圆锥曲线的切线方程
圆锥曲线的切线方程点击此处添加副标题作者:鲜海东微信:xhd143848832211),(1),()0(13))(())((),())(())((),(),()()(2),(),(1202022220020200022222000020000002222000020000222=+=+=+=+=--+--=--+--=-+-=+=+=+by y a x x M b y a x y x M by y a x x y x M b a b y a x r b y b y a x a x M y x M rb y b y a x a x y x M y x M r b y a x r y y x x M y x M r y y x x y x M r y x 弦所在直线方程为:点的引切线有两条,过两切的外部时,过在椭圆当切线方程为:上一点>>:过椭圆结论所在直线方程:点切线有两条:切点弦在圆外,过若切线方程:则过一点为圆上,若的方程::若圆心不在原点,圆结论。
弦所在直线方程为,过两切点的点引切线有且只有两条在圆外时,过当。
的切线方程为上一点:经过圆结论。
两点的直线方程为、所以过两切点,满足直线现观察以上两个等式,发、以有是两条切线的交点,所。
又因、:两点的切线方程分别为、可知过由为引两条切线,切点分别外一点>>()设过椭圆(即由点斜式得切线方程为,得求导,得的两边对)大学隐函数求导)(证明:11),(),,(.11),(11)1().,(),,(),()0121),(,02211(20202020221120220220120100222221212211002222202000202002020222222=+=+=+=+=+=+=+=+--==--==='='+=+b y y a x x B A b y y a x x y x B y x A b y y a x x b y y a x x y x M b y y a x x b y y a x x B A y x B y x A y x M b a by a x by y a x x x x y a x b y y y a x b x x y b y y a x x b y a x)(),()0(2);(),()0(2)2()(),()0(2);(),()0(2)1(511),(1),()00(140000200002000020000220202222002020002222y y p x x y x M p py x y y p x x y x M p py x x x p y y y x M p px y x x p y y y x M p px y by y a x x M b y a x y x M by y a x x y x M b a b y a x +==+==+==+===-=-=-=-弦所在直线方程为的引两条切线,过两切点的外部一点>过抛物线切线方程为上一点>过抛物线弦所在直线方程为的引两条切线,过两切点的外部一点>过抛物线切线方程为上一点>过抛物线:结论。
高考数学二级结论快速解题:专题14 圆锥曲线的切线问题(解析版)
专题14圆锥曲线的切线问题一、结论圆锥曲线的切线问题常用方法有几何法,代数法:比如求圆的切线,常用圆心到直线的距离等于半径来解决切线问题,也可以联立直线与圆的方程根据0 来求解;比如涉及到椭圆的切线问题,也常常联立直线与椭圆的方程根据0 来求解;对于抛物线的切线问题,可以联立,有时也可以通过求导来求解.而对于这些圆锥曲线也常常存在一些特殊的求切线公式:1.过圆C:222()()x a y b R上一点00(,)P x y 的切线方程为200()()()()x a x a y b y b R .2.过椭圆22221x y a b 上一点00(,)P x y 的切线方程为00221x x y y a b.3.已知点00(,)M x y ,抛物线C :22(0)y px p 和直线l :00()y y p x x .(1)当点00(,)M x y 在抛物线C 上时,直线l 与抛物线C 相切,其中M 为切点,l 为切线.(2)当点00(,)M x y 在抛物线C 外时,直线l 与抛物线C 相交,其中两交点与点M 的连线分别是抛物线的切线,即直线l 为切点弦所在的直线.(3)当点00(,)M x y 在抛物线C 内时,直线l 与抛物线C 相离.二、典型例题1.(2021·安徽·六安一中高二期末(文))已知椭圆具有如下性质:若椭圆的方程为 222210x y a b a b ,则椭圆在其上一点 00,A x y 处的切线方程为00221x x y y a b ,试运用该性质解决以下问题;椭圆221:12x C y ,点B 为1C 在第一象限中的任意一点,过B 作1C 的切线l ,l 分别与x 轴和y 轴的正半轴交于,C D 两点,则OCD 面积的最小值为()A .1BCD .2【答案】C 【详解】设1111(,),(0,0)B x y x y ,由题意得,过点B 的切线l 的方程为:1112x xy y ,令0y ,可得12(,0)C x ,令0x ,可得11(0,)D y ,所以OCD 面积111112112S x y x y,又点B 在椭圆上,所以221112x y ,所以121111121111122x y S x y x y x x y y 当且仅当11112x yy x,即111,2x y 时等号成立,所以OCD故选:C【反思】过椭圆 222210x y a b a b上一点 00,A x y 作切线,切线方程为:00221x x y y a b ,该结论可以在小题中直接使用,但是在解答题中,需先证后用,所以在解答题中不建议直接使用该公式.2.(2020·江西吉安·高二期末(文))已知过圆锥曲线221x y m n上一点 00,P x y 的切线方程为001x x y y m n .过椭圆221124x y 上的点 3,1A 作椭圆的切线l ,则过A 点且与直线l 垂直的直线方程为()A .30x yB .-20x yC .2330x yD .3100x y 【答案】B 【详解】过椭圆221124x y 上的点 3, 1A 的切线l 的方程为 31124y x ,即40x y ,切线l 的斜率为1.与直线l 垂直的直线的斜率为-1,过A 点且与直线l 垂直的直线方程为 13y x ,即20x y .故选:B【反思】根据题中信息,直接代入公式,但是在代入切线方程为001x x y ym n注意不要带错,通过对比本题信息,12m ,4n ,03x ,01y ,将这些数字代入公式,可求出切线l ,再利用直线垂直的性质求解.3.(2022·江苏南通·一模)过点 1,1P 作圆22:2C x y 的切线交坐标轴于点A 、B ,则PA PB_________.【答案】2 【详解】圆C 的圆心为 0,0C ,10110CP k,因为22112 ,则点P 在圆C 上,所以,PC AB ,所以,直线AB 的斜率为1AB k ,故直线AB 的方程为 11y x ,即20x y ,直线20x y 交x 轴于点 2,0A ,交y 轴于点 0,2B ,所以, 1,1PA , 1,1PB ,因此,112PA PB.故答案为:2 .另解:过圆C :222()()x a y b R 上一点00(,)P x y 的切线方程为200()()()()x a x a y b y b R .可知01x ,01y ;0a b ,22R ,代入计算得到过点 1,1P 作圆22:2C x y 的切线为:(10)(0)(10)(0)2x y ,整理得:20x y ,直线20x y 交x 轴于点 2,0A ,交y 轴于点 0,2B ,所以, 1,1PA , 1,1PB ,因此,112PA PB.故答案为:2 .【反思】本题中提供了常规方法和使用二级结论的解法,特别提醒同学们,二级结论的公式代入数字时,最忌讳代入错误,所以需要特别仔细。
圆锥曲线中的切线问题
圆锥曲线中的切线问题过曲线上一点P(x o ,y o )的切线方程(焦点在x 轴上):圆:200r b)-b)(y -(y a)-a)(x -(x =+;椭圆:12020=+b y y a x x ;双曲线:12020=-b y y a x x ;抛物线:)(00x x p y y +=.证明:以双曲线为例.442222020220220420222022022020242022202222202022222020)(4)1)(b a x (4)2(,012)b a x (x .11.11b a b a a y x b x a x b y b y a x b y y y b y b y ax b y y a x x b y a x b y y a x x ---=---=∆=-+--⎪⎪⎩⎪⎪⎨⎧+=+=⇒⎪⎪⎩⎪⎪⎨⎧=-=-得消去①式平方后除以②式,,,.0012222202202220220,即证,所以,得又=∆=--=-b a b a y a x b b y a x 过曲线外一点P(x o ,y o )作曲线的切线,切点A 、B ,过切点A 、B 的直线方程(焦点在x 轴上):圆:200r b)-b)(y -(y a)-a)(x -(x =+;椭圆:12020=+b y y a x x ;双曲线:12020=-b y y a x x ;抛物线:)(00x x p y y +=.证明:以椭圆为例.设切点),(),,(2211y x B y x A ,以A ,B 为切点的直线方程分别为.1122222121=+=+b y y a x x b y y a x x ,若两切线均是P(x o ,y o )点引出的,即两切线均过点P ,则有.112022********=+=+by y ax x by y ax x ,可知点),(),,(2211y x B y x A 均在直线12020=+b y y a x x 上,所以过切点A ,B 的直线方程为12020=+by y a x x .即证.思考1.(2021全国乙卷)已知抛物线C :x 2=2py(y>0)的焦点为F ,且点F 与圆M :x 2+(y+4)2=1上的点最小值为4.(1)求p ;(2)若点P 在M 上,PA ,PB 是C 的两条切线,A ,B 是切点,求PAB ∆面积的最大值.).520;2(最大值为=p 解:(1)焦点坐标为(0,2p ),于4142p=-+是得到p=2;(2)设P(x 0,y 0),切点为),(),,(2211y x B y x A ,设过点),(11y x A 的方程为x 1x=2(y+y 1),联立x 2=4y ,化为关于x 的一元二次方程X 2-2x 1x+4y 1=0,得0=∆,所以x 1x=2(y+y 1)是抛物线上过A 的切线方程,同理可得x 2x=2(y+y 2)是抛物线上过B 点的切线方程.于是过P(x 0,y 0)作抛物线的切线,则过切点A ,B 的方程为x 0x=2(y+y 0),联立抛物线方程消去y 得X 2-2x 0x+4y 0=0,4|4|d AB P 16441||200200202+-=-+=x y x y x x AB 的距离到,点.520S -5)35(151221S 4-114)4(214|4|1644121d ||21S PAB 00020PAB 2020202030202002002020PAB取最小值为时,当,)(,于是)(而所以∆∆∆=-≤≤----=+==++-=+--+=⋅=y y y y y x y x y x x y x y x x AB 2.已知椭圆)0(12222>>=+b a b y a x 的左右焦点分别为F 1,F 2,且|F 1F 2|=2,点M 在直线x=-2上运动,线段MF 2与椭圆相交于N ,当NF 1⊥x 轴时,直线MF 2的斜率的绝对值为42.(1)求椭圆方程;(2)设P 是椭圆上一点,直线PF 1的斜率与直线MF 2的斜率之积为31-,证明直线MP 始终与椭圆相切.(1222=+y x )解:(1).12.2,0122,,22,22,422222222221=+==--=-====y x a a a c b a a b c c a b k NF MF 所以得所以又得为通径的一半,所以(2)设P(x 0,y 0),M(-2,y 1),设过P 的直线方程为1200=+y y xx ,联立椭圆方程消去x 得,.0,12,884024)2(20202020204020022020=∆=+-+=∆=-+-+所以而,y x x y x x x y y y x y .3131,31.121000021-=-⋅+-=⋅=+y x y k k y y x x MF PF 即由是椭圆的切线方程所以.MP .12M )1,2(M ,10000001与椭圆相切即证明直线满足椭圆的切线切线,点于是点=++-+=y y xx y x y x y。
圆锥曲线的切线问题
OCDOCD ,令OCD 面积1112112x y y y +=时等号成立,所以OCD 面积的最小值为A ,B ,则D的斜率为1,与直线l 垂直的直线的斜率为-1,过A 点且与直线l 垂直的,直线方程为(13)y x +=-一, 即20x y +-=.6.关于椭圆的切线由下列结论:若11(,)P x y 是椭圆22221(0)x y a b a b+=>>上的一点,则过点P的椭圆的切线方程为11221x x y y a b +=.已知椭圆22:143x y C +=.利用上述结论,则过椭圆C 上的点(1,)(0)P n n >的切线方程为 .【答案】240x y +-=【解析】由题意,将1x =代入椭圆方程22:143x y C +=,得32y =,所以3(1,)2P ,所以过椭圆C 上的点3(1,)2P 的切线方程为32143yx +=,即240x y +-=. 7.已知抛物线C:x 2=4y,直线l:x -y-2=0,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点,当点P(x 0,y 0)为直线l上的定点时,则直线AB的方程 . 【答案】y=12x 0x-y 0.【解析】联立方程得{x 2=4y ,x -y -2=0,消去y,整理得x 2-4x+8=0,Δ=(-4)2-4×8=-16<0,故直线l与抛物线C相离.由结论知,P在抛物线外,故切点弦AB所在的直线方程为x 0x=2(y+y 0),即y=12x 0x-y 0. 8.设椭圆C:x 24+y 23=1,点P (1,32),则椭圆C在点P处的切线方程为 .。
圆锥曲线的切线与法线方程求解技巧总结
圆锥曲线的切线与法线方程求解技巧总结圆锥曲线是数学中的重要概念,包括椭圆、双曲线和抛物线。
在解析几何和微积分中,求解圆锥曲线的切线和法线方程是一个基本的技巧。
本文将总结一些解决这类问题的常见方法和技巧。
一、椭圆的切线与法线方程求解椭圆是一个非常常见的圆锥曲线,其方程为 x^2 / a^2 + y^2 / b^2 = 1,其中 a 和 b 分别为椭圆的长轴与短轴。
求解椭圆的切线和法线方程的步骤如下:1. 确定切点首先,我们需要确定切点的坐标。
可以通过将直线 y = kx + c 代入椭圆方程,并解得 x 和 y 关于 k 和 c 的方程组。
解这个方程组即可得到切点的坐标。
2. 求解切线方程在得到切点的坐标后,我们可以使用常见的切线公式 y - y0 = k(x - x0) 来求解切线方程。
其中 (x0, y0) 为切点的坐标,k 为斜率。
3. 求解法线方程切线的斜率 k 和切点的坐标 (x0, y0) 可以通过对椭圆方程求偏导数得到。
设斜率 k1 为切线斜率,斜率 k2 为法线斜率,斜率之间的关系为 k1 * k2 = -1。
因此,我们可以通过斜率 k1 和切点 (x0, y0) 来求解法线方程。
二、双曲线的切线与法线方程求解双曲线是另一种常见的圆锥曲线,其方程为 x^2 / a^2 - y^2 / b^2 = 1。
求解双曲线的切线和法线方程的步骤如下:1. 确定切点与椭圆类似,我们首先需要确定切点的坐标。
代入直线 y = kx + c 到双曲线方程中,并解得切点的坐标。
2. 求解切线方程切线方程的求解过程与椭圆类似,使用公式 y - y0 = k(x - x0),其中 (x0, y0) 为切点的坐标,k 为斜率。
3. 求解法线方程双曲线的法线也满足斜率 k1 和斜率 k2 的关系为 k1 * k2 = -1。
通过切线方程的斜率 k1 和切点的坐标 (x0, y0),可以求得法线方程。
三、抛物线的切线与法线方程求解抛物线是圆锥曲线中的另一种重要类型,其方程为 y^2 = 2px,其中p 为抛物线的焦点到准线的距离。
圆锥曲线的切线方程的三种求法
圆锥曲线的切线方程问题侧重于考查圆锥曲线的性质、标准方程以及直线方程的几种形式.此类问题的难度一般不大,对同学们的抽象思维和分析能力的要求较高.下面主要探讨一下求圆锥曲线的切线方程的三种方法.一、向量法在求圆的切线方程时,可巧妙利用圆心和切点的连线垂直于切线的性质来建立关系式.在运用向量法解题时,可先给各条线段赋予方向,求得各条直线的方向向量,然后根据“互相垂直的两个向量的数量积为0”的性质建立圆心、切点、切线之间的关系式,从而求得切线的方向向量以及直线的方程.例1.已知圆O的方程是(x-a)2+(y-b)2=r2,求经过圆上一点M(x0,y0)的圆的切线l的方程.解:设切线l上任意一点N的坐标是(x,y).由(x-a)2+(y-b)2=r2得点O的坐标是(a,b),所以OM=(x0-a,y0-b), MN=(x-x0,y-y0).又因为OM∙MN=0,即[(x-a)-(x0-a)](x0-a)+[(y-b)-(y0-b)](y0-b)=0,所以过圆上的点M(x0,y0)的圆的切线l的方程是:(x0-a)(x-a)+(y0-b)(y-b)=[(x0-a)2+(y0-b)2],所以l的方程:(x0-a)(x-a)+(y0-b)(y-b)=r2.由已知圆的方程与圆上一点的坐标,可得出圆心的坐标,再设出切线上任意一点N的坐标,即可得到与切线垂直的向量,根据向量运算便可求得切线的方程.二、导数法我们知道,导数的几何意义是:该函数曲线在某一点上的切线的斜率,那么在求圆锥曲线的切线方程时,可对曲线的方程进行求导,便可得到曲线在切点处切线的斜率或切点的坐标,根据直线的点斜式方程即可求得切线的方程.例2.设A,B为曲线C:y=x24上两点,A与B的横坐标之和为4.设M为曲线C:y=x24上一点,C在M处的切线与直线AB平行,且AB⊥BM,求直线AB的方程.解:设A(x1,y1),B(x2,y2),则x1≠x2,y1=x124,y2=x224,x1+x2=4,于是直线AB的斜率为k=y1-y2x-x=x1+x24=1.由y=x24,得y,=x2.设M(x3,y3),由题意可知:x32=1,解得x3=2,则M(2,1).设直线AB的方程为y=x+m,故线段AB的中点为N(2,2-m),||MN=||m+1,将y=x+m代入y=x24得x2-4x-4m=0.当Δ=16()m+1>0,即当m>-1时,x1=2+2m+1或x2=2-2m+1,从而可得||AB=2||x1-x2=42(m+1),由||AB=2||MN得42(m+1)=2(m+1),解得m=7,所以直线AB的方程为y=x+7.在求得直线AB的斜率后,便可运用导数法对抛物线的方程求导,得出M点的坐标,再根据韦达定理和弦长公式求得切线的方程.三、几何性质法在解答圆锥曲线问题时,我们经常要用到椭圆、双曲线以及抛物线的几何性质,并结合几何图形,如三角形、梯形、平行四边形的性质来解题.采用几何性质法,关键要根据题意绘制出几何图形,明确各个点、直线、曲线的位置关系,然后运用几何性质来解题.例3.求抛物线C:y2=8x上经过点M(8,8)的切线l的方程.解:由抛物线C:y2=8x可得其焦点F为(2,0),准线方程为:x=-2,过点M(8,8)作准线的垂线,设垂足为N,则N的坐标为(-2,8),又设FN的中点为P,则P的坐标为(0,4),故直线PM的方程为:y=8-48x+4,即x-2y+8=0,所以切线l的方程是:x-2y+8=0.我们根据抛物线的几何性质作出准线,根据图形明确各点、曲线、切线的位置,根据点、直线之间的位置关系以及中点坐标公式建立关系式,求得切线的斜率与方程.相比较而言,几何性质法和导数法比较常用,运用几何性质法和向量法解题过程中的运算量较小.在求圆锥曲线的切线方程时,同学们要结合图形来解题,这样不仅能降低解题的难度,还能提升解题的效率.(作者单位:江苏省阜宁中学)周红芹解题宝典40。
圆锥曲线的切线方程求解方法总结
圆锥曲线的切线方程求解方法总结圆锥曲线是代数几何中的重要概念,指由一个平面与一个锥体相交而产生的曲线。
圆锥曲线包括椭圆、抛物线和双曲线,它们在数学和物理学等领域中有广泛的应用。
本文将总结圆锥曲线切线方程的求解方法,并以椭圆、抛物线和双曲线为例进行说明。
一、椭圆的切线方程求解方法椭圆是一个平面上的闭合曲线,其形状类似于椭圆形。
对于椭圆上的一点P,我们要求解的是通过该点的切线方程。
方法1:使用微积分方法求解椭圆的切线方程。
设椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1(其中a和b为椭圆的半长轴和半短轴),点P的坐标为(x0, y0)。
首先对椭圆方程两边求导,得到2x/a^2 + 2y/b^2 * y' = 0。
然后将点P的坐标代入,得到x0/a^2 + y0/b^2 * y' = 0。
最后将此式变形为y' = -x0 * a^2 / (y0 * b^2),即为所求的切线方程。
方法2:使用解析几何方法求解椭圆的切线方程。
设椭圆的焦点为F1和F2,点P在椭圆上的轨迹为OP。
设P点的坐标为(x0, y0),则PF1和PF2的距离之和等于2a,即PF1 + PF2 = 2a。
又根据焦点和点到直线的距离公式,可得切线所在直线与轴的交点Q的坐标为(a^2/x0, b^2/y0),进而得到切线方程的解析式。
二、抛物线的切线方程求解方法抛物线是一个平面上的开口曲线,其形状类似于抛物形。
对于抛物线上的一点P,我们要求解的是通过该点的切线方程。
方法1:使用微积分方法求解抛物线的切线方程。
设抛物线的标准方程为y^2 = 2px(其中p为抛物线的焦点到顶点的距离),点P的坐标为(x0, y0)。
首先对抛物线方程两边求导,得到2yy' = 2p。
然后将点P的坐标代入,得到y0 * y' = p。
最后将此式变形为y' = p / y0,即为所求的切线方程。
方法2:使用解析几何方法求解抛物线的切线方程。
圆锥曲线的切线与法线方程的求解技巧总结
圆锥曲线的切线与法线方程的求解技巧总结圆锥曲线是数学中一个重要的概念,在几何学、物理学以及工程学等许多领域都有广泛的应用。
对于圆锥曲线上的任意一点,切线和法线是与其切点和法点相关联的重要性质。
在本文中,我们将总结一些求解圆锥曲线切线和法线方程的技巧与方法。
一、椭圆的切线与法线方程椭圆是圆锥曲线中的一种,具有许多重要的特性。
对于椭圆上的任意一点P(x,y),我们希望求解它的切线和法线方程。
1. 切线方程的求解对于椭圆上一点P(x,y),其切线的斜率可以通过对椭圆的导数求解得到。
椭圆的隐式方程可以表示为:Ax² + By² = C,其中A、B、C为常数。
首先,对隐式方程两边同时求导,得到2Ax + 2By(dy/dx) = 0。
然后解出dy/dx,即切线的斜率。
接下来,通过点斜式的切线方程:y - y₁ = k(x - x₁),其中(k为切线的斜率,(x₁,y₁)为切点坐标),我们可以代入已知点P(x,y)和切线斜率,求解出切线方程。
2. 法线方程的求解对于椭圆上一点P(x,y),其法线与切线垂直,因此法线的斜率可以通过切线斜率的倒数得到。
我们可以通过点斜式的法线方程:y - y₁ = (-1/k)(x - x₁),其中(k为切线的斜率,(x₁,y₁)为切点坐标),代入已知点P(x,y)和切线斜率的倒数,求解出法线方程。
二、双曲线的切线与法线方程双曲线是圆锥曲线中的另一类,其形状与椭圆类似,但具有不同的数学性质。
对于双曲线上的任意一点P(x,y),我们也可以求解其切线和法线方程。
1. 切线方程的求解双曲线的隐式方程可以表示为:Ax² - By² = C,其中A、B、C为常数。
我们同样通过对隐式方程两边同时求导,得到2Ax - 2By(dy/dx) = 0。
然后解出dy/dx,即切线的斜率。
利用点斜式的切线方程,代入切点坐标和切线斜率,求解出切线方程。
2. 法线方程的求解与椭圆类似,双曲线上任意一点P(x,y)的法线与切线垂直,因此法线的斜率可以通过切线斜率的倒数得到。
圆锥曲线的切线方程及切点弦方程的应用-图文
圆锥曲线的切线方程及切点弦方程的应用-图文圆锥曲线是一类由一条直线和一个定点(焦点)生成的曲线。
常见的圆锥曲线有椭圆、抛物线和双曲线。
在数学和物理学中,圆锥曲线的切线方程和切点弦方程是非常重要的应用。
一、圆锥曲线的切线方程1.椭圆的切线方程椭圆是一个凹向两侧的曲线,其切线方程可以用点斜式表示。
假设椭圆的标准方程是$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$其中a和b分别是椭圆的半长轴和半短轴。
如果椭圆上的一点P(x1,y1)在曲线上,它的切线方程可以表示为:$y-y1=\frac{b^2}{a^2}(x-x1)$2.抛物线的切线方程抛物线是一个开口向上或向下的曲线,其切线方程可以用点斜式表示。
若抛物线的标准方程是$y^2=4ax$其中a是抛物线的焦点到曲线的距离。
如果抛物线上的一点P(x1,y1)在曲线上,它的切线方程可以表示为:$y-y1=\frac{1}{2a}(x-x1)$3.双曲线的切线方程双曲线是一个开口向上和向下的曲线,其切线方程可以用点斜式表示。
若双曲线的标准方程是$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$其中a和b分别是双曲线的距焦点到曲线的距离。
如果双曲线上的一点P(x1,y1)在曲线上,它的切线方程可以表示为:$y-y1=\frac{b^2}{a^2}(x-x1)$二、圆锥曲线的切点弦方程1.椭圆的切点弦方程椭圆的切点弦方程表示的是通过椭圆上两点的直线方程,也就是连接两点的弦的方程。
如果椭圆上的两点为P(x1,y1)和Q(x2,y2),椭圆的切点弦方程可以表示为:$\frac{y-y1}{y2-y1} = \frac{x-x1}{x2-x1}$2.抛物线的切点弦方程抛物线的切点弦方程表示的是通过抛物线上两点的直线方程,也就是连接两点的弦的方程。
如果抛物线上的两点为P(x1,y1)和Q(x2,y2),抛物线的切点弦方程可以表示为:$\frac{y-y1}{y2-y1} = \frac{x-x1}{x2-x1}$3.双曲线的切点弦方程双曲线的切点弦方程表示的是通过双曲线上两点的直线方程,也就是连接两点的弦的方程。
圆锥曲线的切线与法线的解析
圆锥曲线的切线与法线的解析圆锥曲线是数学中的一种重要曲线,包括椭圆、双曲线和抛物线。
在研究这些曲线时,我们经常需要求解曲线上某一点处的切线和法线。
本文将介绍圆锥曲线的切线和法线的解析方法。
一、椭圆的切线与法线椭圆是平面上一点到两个给定点(焦点)距离之和等于常数的点的轨迹。
对于椭圆上的任意一点P(x, y),我们来求解它的切线和法线。
1. 切线的解析式设椭圆的焦点为F₁和F₂,椭圆上的点P(x, y)。
连接F₁P和F₂P,并垂直平分F₁P和F₂P的中垂线,交椭圆于点M。
连接点M和点P,我们发现线段MP恰好就是切线。
由于F₁M = F₂M,根据垂直平分线的性质,有F₁P = F₂P。
设椭圆的长轴为2a,短轴为2b,则F₁M = F₁P - MP = a - xF₂M = F₂P + MP = a + x根据椭圆的定义,有F₁P + F₂P = 2a。
结合上面的等式,我们可以得到:2(a - x) + 2(a + x) = 2a4a = 2ax = a即当P(x, y)在椭圆的长轴上时,切线与椭圆的长轴垂直。
因此,椭圆的切线方程可以表示为:x = a当P(x, y)不在椭圆的长轴上时,切线的斜率可以通过求解导数来得到。
设椭圆的方程为x²/a² + y²/b² = 1,对该方程两边求导得:2x/a² + 2y/b² * dy/dx = 0dy/dx = -x(a²/b²)可以看出,切线的斜率等于曲线在切点处的导数值。
再通过点斜式求解切线的方程,即可得到椭圆上任一点的切线方程。
2. 法线的解析式椭圆上任意一点P(x, y)处的法线垂直于切线。
设法线的斜率为k,由于切线的斜率等于曲线在切点处的导数值,所以有k = -x(a²/b²)。
通过点斜式求解法线的方程,设法线与切点P(x, y)的坐标为(Nx, Ny),有:(Nx - x) / (Ny - y) = -x(a²/b²)(Ny - y) = (x² - a²) / (b²x)由于法线过点P(x, y),代入坐标可得:(Nx - x) / ((Nx² - a²) / (b²Nx) - y) = -x(a²/b²)化简以上方程可以得到椭圆上任一点的法线方程。
圆锥曲线的切线与切点弦方程
圆锥曲线的切线与切点弦方程圆锥曲线的切线与切点弦方程说明:(1)以上方程可以通过局部分割曲线,利用导数求得.(2)切点弦方程可以通过两切点具有相同结构方程式且切线有公共交点推导而得.1.过点(M 且与圆224x y +=相切的直线方程为2.由点()2,2P 向圆221x y +=引两切线,PA PB ,其中切点为,A B ,则AOB S ∆=3.设抛物线24y x =在()00,P x y 处的切线为l ,则点(2,0)A 到直线l 的距离的最小值为 4.设椭圆2214x y +=在()00,P x y 处的切线为l ,直线l 与两坐标轴交点分别为,A B ,则AOB S ∆最小值为 ;AB 最小值为 .二、抛物线的切线与切点弦方程1.已知抛物线24x y =在1(1,),(2,1)4A B -两点处的切线分别为12,l l ,且1l 与2l 相交于点P(1)求点P 的坐标.(2)求直线AB 的方程.2.已知抛物线22(0)x py p =>,过M 引抛物线的两条切线,切点分别为,A B .(1)证明:,,A M B 三点的横坐标成等差数列.(2)若(2,2)M p -且AB =.3.已知抛物线24x y =,过点P 的直线l 交抛物线于,A B 两点,分别以,A B 为切点的两切线12,l l .(1)若(2,2)P ,求1l 与2l 交点M 的轨迹方程.(2)若点P 为抛物线的焦点F ,证明:(i )MF AB ⊥; (ii )MA MB ⊥.4.已知抛物线C :22x py =的焦点(0,)F c (0)c >到直线l :20x y --=,设P 为直线l 上点,过点P 作抛物线的两条切线12,l l ,求切点分别为,A B .(1)求抛物线C 的方程;(2)当00(,)P x y 为定点时,求直线AB 的方程;(3)当P 在直线上运动时,求FA FB ⋅的最小值. 5.已知椭圆1C :22221x y a b+=的两个焦点1(2,0)F -,2(2,0)F ,点(2,3)A 在椭圆上,过点A 的直线l 与抛物线2C :24x y =交于,B C 两点,抛物线2C 在,B C 两点处的切线分别为12,l l 且1l 与2l 相交于点P .(1)求椭圆1C 的方程;(2)是否存在满足1212PF PF AF AF +=+的点P ,若存在,请指出个数?若不存在说明理由.。
圆锥曲线的切线与法线方程求解技巧阐述
圆锥曲线的切线与法线方程求解技巧阐述圆锥曲线是解析几何中的重要内容,其中包括椭圆、双曲线和抛物线等。
在研究圆锥曲线的性质时,常常需要找到曲线上某点处的切线和法线方程。
本文将重点探讨圆锥曲线的切线和法线方程求解技巧。
1. 切线的求解技巧切线是曲线在某一点处的切线,它与曲线仅相交于该点。
我们可以通过求解切线的斜率和通过给定点的方程来确定切线方程。
为了求解切线,首先需要求曲线在某点处的导数。
以椭圆为例,其方程为x^2/a^2 + y^2/b^2 = 1(a > b)。
假设我们要求解椭圆上一点P的切线方程,P的坐标为(x0, y0)。
(1)求解切线斜率:椭圆的导数可以通过隐函数求导法求得。
对椭圆方程两边同时求导,得到2x/a^2 + 2yy'/b^2 = 0。
将点P的坐标代入上式,可得到斜率m = -xb^2/ya^2。
(2)切线的方程:切线方程的一般形式为y - y0 = m(x - x0)。
将m和P的坐标代入切线方程中,可得到椭圆上点P处的切线方程。
2. 法线的求解技巧法线是与切线垂直的直线。
与切线类似,我们可以通过求解法线的斜率和通过给定点的方程来确定法线方程。
为了求解法线,同样需要求曲线在某一点处的导数。
以抛物线为例,其方程为y^2 = 4ax(a > 0)。
假设我们要求解抛物线上一点P的法线方程,P的坐标为(x0, y0)。
(1)求解法线斜率:抛物线的导数可以通过隐函数求导法求得。
对抛物线方程两边同时求导,得到2yy' = 4a。
将点P的坐标代入上式,可得到斜率m = -1/(2a)。
(2)法线的方程:法线方程的一般形式为y - y0 = -1/m(x - x0)。
将m和P的坐标代入法线方程中,可得到抛物线上点P处的法线方程。
3. 切线和法线方程求解实例通过以上技巧,我们可以来解决一个具体的求解问题。
示例:求解椭圆x^2/4 + y^2/9 = 1上点P(2, 3)处的切线和法线方程。
圆锥曲线中切线问题的秒杀策略
圆锥曲线中切线问题的秒杀策略圆锥曲线中的切线问题是高考压轴题的一大类型,共分下面四种题型,在高考中主要以考查重要结论为主,且重要结论的证明步骤固定,所以要求考生熟记下面的步骤,在高考中直接套用即可。
『秒杀策略』:当抛物线开口向上或开口向下时(此时抛物线可看作函数),主要利用导数解决,当抛物线开口向左或开口向右时利用解决。
椭圆利用解决。
【题型一】:过曲线上一点作曲线的切线。
『秒杀策略』:秒杀公式:熟记:①过椭圆上一点作切线,则切线方程为:。
证明:(此步骤必须牢记,在大题中要体现)设过的切线方程为:,与椭圆方程联立,利用。
熟记:②过抛物线上一点作切线,则切线方程为:。
证明:(此步骤必须牢记,在大题中要体现)设过的切线方程为:,与抛物线方程联立,利用。
若为开口向上或开口向下的抛物线,求导,代点,求出切线的斜率,利用点斜式求出切线的方程 。
〖母题〗抛物线上到直线的距离最小的点的坐标是 ( )A. B. C. D.0=D 0=D 12222=+by a x ()00,y x P 12020=+byy a x x ()00,y x P ()00x x k y y -=-0=D px y 22=()00,y x P )(00x x p y y +=()00,y x P ()00x x k y y -=-0=D 2y x =24x y -=11,24æöç÷èø()1,139,24æöç÷èø()2,4【解析】:法一:设P ,则,当时最小,选B 。
法二:设切点为,则切线方程为:,,即切点为,由点到直线的距离可求得,选B 。
法三:设P ,过P 的切线与直线平行,切点为所求的点,,,选B 。
1.(高考题)抛物线上的点到直线距离的最小值是 ( ) A. B. C. D.3 【解析】:法一:设抛物线上的点,到直线的距离为,,当时,最小值为。
高中数学圆锥曲线切线题解题方法
高中数学圆锥曲线切线题解题方法在高中数学中,圆锥曲线是一个重要的概念,而求解圆锥曲线的切线问题是其中的一个难点。
本文将介绍一些解题方法,帮助高中学生和他们的父母更好地理解和应对这类题目。
在解决圆锥曲线切线问题时,首先要明确题目给出的条件和要求。
例如,考虑以下题目:已知椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,点$P(x_0,y_0)$在椭圆上,求过点$P$的切线方程。
解决这类问题的关键是确定切线的斜率。
我们可以通过对椭圆方程进行求导来得到切线的斜率。
对椭圆方程两边同时对$x$求导,得到$\frac{2x}{a^2}+\frac{2y}{b^2}\cdot\frac{dy}{dx}=0$。
由于点$P$在椭圆上,代入点$P(x_0,y_0)$,可得$\frac{2x_0}{a^2}+\frac{2y_0}{b^2}\cdot\frac{dy}{dx}=0$。
进一步整理得到$\frac{dy}{dx}=-\frac{x_0}{y_0}\cdot\frac{b^2}{a^2}$。
由此可见,切线的斜率与点$P$的坐标有关。
接下来,我们可以利用点斜式或斜截式等方法求解切线方程。
例如,如果我们使用点斜式,切线方程可以表示为$y-y_0=-\frac{x_0}{y_0}\cdot\frac{b^2}{a^2}(x-x_0)$。
通过上述步骤,我们可以得到切线的方程。
但是,在具体解题过程中,我们还需要注意一些细节。
首先,要注意点$P$的坐标是否满足椭圆方程。
如果点$P$不在椭圆上,那么切线方程将无意义。
其次,要注意椭圆方程中的参数$a$和$b$的取值范围。
当$a=b$时,椭圆退化为圆,此时切线方程的求解方法也会有所不同。
除了椭圆,我们还可以考虑其他类型的圆锥曲线,如双曲线和抛物线。
对于双曲线,我们可以通过类似的方法求解切线方程。
例如,已知双曲线的方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,点$P(x_0,y_0)$在双曲线上,求过点$P$的切线方程。
圆锥曲线切线方程的五种求法
圆锥曲线切线方程的五种求法切线对于研究圆锥曲线的性质具有十分重要的作用,中学阶段常用的求圆锥曲线的切线方程的方法主要有以下五种:一、向量法在求圆的切线时,可以利用圆心和切点的连线垂直于切线以及向量的内积运算来求。
例1.已知圆0的方程是(x-a ) 2+ (y-b ) 2=r2,求经过圆上一点M(x0, y0)的圆的切线I的方程.解:设所求切线I上任意一点N的坐标是(x, y)由已知得:点0的坐标是(a,b),且M的坐标是(x0,y0),值得注意的是:此种方法只对于椭圆问题有效.三、判别式法也可以利用一元二次方程根的判别式来求圆锥曲线的切线方程,这种方法也是中学阶段的常用方法之一.例 3. 求经过点M( 2, 1 )的双曲线:x2-2y2=2 的切线I 的方程.将它代入方程x2-2y2=2 中整理得:( 2k2-1 )x2-4k ( 2k-1 )x+( 8k2-8k+4 ) =0,由已知得:△ =[-4k (2k-1 ) ]2-4 (2k2-1 ) (8k2-8k+4 ) =0, 解得:k=1,故所求切线I的方程为:y=x- (2X1 -1 ), 即:x-y-1=0.四、导数法新教材中介绍了微积分的初步知识,我们也可把圆锥曲线的方程看作关于x 的隐函数,利用导数求圆锥曲线的切线方程:例 4. 此处仍以上面的例 3 为例.解:对方程:x2-2y2=2 两边都取关于x 的导数,得:2x-4yy' =0,•••过点M(2, 1)的双曲线x2-2y2=2的切线I的方程为:x-y-1=0.五、几何法通过对椭圆、双曲线以及抛物线的几何性质的研究,我们知道:若焦点为F1、F2的椭圆或双曲线上有一点M则/F1MF2的平分线一定与圆锥曲线相切;又若焦点为F的抛物线上有一点M, 过M作准线的垂线,垂足为N,贝U FN的中点P与M的连线PM必与抛物线相切。
据此,我们也可以将圆锥曲线的切线先用几何方法做出来,然后再求出切线的方程:例 5. 求抛物线C:y2=8x 上经过点M( 8,8)的切线I 的方程.解:由抛物线C的方程可得其焦点F为(2, 0),准线方程为:x=-2 ,过点M(8, 8)作准线的垂线,设垂足为N,贝U N的坐标是( -2 , 8),又设FN的中点为P,则P的坐标为(0, 4),。
切线问题的解题技巧
切线问题的解题技巧
切线问题是高中圆锥曲线考试中常见的问题之一,通常需要一定的技巧和方法来解决。
以下是一些解决切线问题的常用技巧:
1. 利用三角形面积公式和椭圆切线方程的关系,可以快速求出椭圆上点的横坐标或纵坐标。
2. 利用椭圆的焦点三角形面积公式和椭圆的离心率的关系,可以快速求出椭圆上点的横坐标或纵坐标。
3. 利用椭圆的中点弦公式和椭圆的切线斜率的关系,可以快速求出椭圆上点的横坐标或纵坐标。
4. 利用抛物线的焦点弦公式和抛物线的切线斜率的关系,可以快速求出抛物线上点的横坐标或纵坐标。
5. 利用圆锥曲线的基本性质,例如离心率、截距、中点弦等,可以方便地求解圆锥曲线上的点。
6. 对于一些复杂的切线问题,可以利用仿射变换的方法将其转化为简单的问题,从而方便求解。
以上是解决切线问题的常用技巧,在高中圆锥曲线考试中,考生需要熟练掌握这些技巧,并能够灵活运用来解决各种切线问题。
同时,考生还需要具备扎实的数学基础知识和较强的思维能力,才能更好地应对高中圆锥曲线考试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将这两个椭圆方程相减: ,
整理得 ,即为所求的切线方程
已知点 是椭圆 上的任意一点,则椭圆的切线方程为
证明:当切线的斜率存在时,设过点 的切线方程为
联立方程组
消 得
化简,得
由韦达定理
即
将 代入 ,得 即
即
当切线的斜率不存在时,过点 的切线方程显然满足上式
综上,椭圆的切线方程为
设双曲线 方程: ,则方程( ):
.
当 时,其斜率 ,因渐近线斜率为 ,若 或 ,
则 或 从而 ,与 在双曲线 上,满足 矛盾,故直线 与双曲线的渐近线不平行;
又当 时,双曲线 的切线方程为 ,也满足方程( ),从而知方程( )为双曲线 的切线方程.
(3)当 表示抛物线时,只要断定直线 与抛物线的对称轴不平行,就能证明直线 就是切线,方程( )为其切线方程.
2(2008山东理)如图,设抛物线方程为 , 为直线 上任意一点,过 引抛物线的切线,切点分别为 .
(Ⅰ)求证: 三点的横坐标成等差数列;
(Ⅱ)已知当 点的坐标为 时, .求此时抛物线的方程;
(Ⅲ)是否存在点 ,使得点 关于直线 的对称点 在抛物线 上,其中,点 满足 ( 为坐标原点).若存在,求出所有适合题意的点 的坐标;若不存在,请说明理由.
解:(Ⅰ)证明:由题意设 .
由 得 ,得 ,所以 , .因此直线 的方程为 ,
直线 的方程为 .所以 ,① .②
由①、②得 ,因此 ,即 .
所以 三点的横坐标成等差数列.
(Ⅱ)解:由(Ⅰ)知,当 时,将其代入①、②并整理得:
, ,所以 是方程 的两根,
因此 , ,又 ,所以 .
由弦长公式得 .
又 ,所以 或 ,因此所求抛物线方程为 或 .
因 点在直线 上,故 点也在直线 上,可见直线 与曲线 有三个公共点,这与直线与二次曲线最多只有两个公共点矛盾,从而证明了直线 与曲线 有且只有一个公共点.
(1)当 表示椭圆时,由于椭圆是封闭曲线,直线 就是切线,方程( )即为切线方程.
(2)当 表示双曲线时,只要断定直线 与双曲线的渐近线不平行,就能证明直线 就是切线,方程( )为其切线方程.
3过椭圆 上一点 切线方程为 ;
证明:(1) 的两边对 求导,得 ,得 ,由点斜式得切线方程为 ,即 。
解: 的两边对 求导,得 ,得 ,由点斜式得切线方程为 即 即
4当 在椭圆 的外部时,过 引切线有两条,过两切点的弦所在直线方程为:
证明:设过椭圆 外一点 引两条切线,切点分别为 、 。由(1)可知过 、 两点的切线方程分别为: 、 。又因 是两条切线的交点,所以有 、 。观察以上两个等式,发现 、 满足直线 ,所以过两切点 、 两点的直线方程为 。
(Ⅲ)解:设 ,由题意得 ,
则 的中点坐标为 ,设直线 的方程为 ,
由点 在直线 上,并注意到点 也在直线 上,
代入得 .若 在抛物线上,则 ,因此 或 .即 或 .
(1)当 时,则 ,此时,点 适合题意.
(2)当 ,对于 ,此时 ,
,又 , ,
所以 ,即 ,矛盾.
对于 ,因为 ,此时直线 平行于 轴,又 ,设抛物 的方程: ,则方程( ): .
当 时,其斜率 ,故直线 与抛物线 的对称轴不平行;又当 时,抛物线 的切线方程为 ,也满足方程( ),从而知方程( )为抛物线 的切线方程.
综上所述,方程( )为圆锥曲线 上过 点的切线方程.
下面用此命题给出的方法解决本文一开始提出的问题.
求过椭圆 上一点 的切线方程.
所以直线 与直线 不垂直,与题设矛盾,
评注:因 在椭圆 上的位置(在椭圆上或椭圆外)的不同,同一方程 表示直线的几何意义亦不同。
5过双曲线 上一点 切线方程为 ;
6当 在双曲线 的外部时,过 引切线有两条,过两切点的弦所在直线方程为: 。(证明同上)
7过圆锥曲线 (A,C不全为零)上的点 的切线方程为 ;
8当 在圆锥曲线 (A,C不全为零)的外部时,过 引切线有两条,过两切点的弦所在直线方程为:
15过抛物线 上一点 切线方程为 ;
16过抛物线 的外部一点 引两条切线,过两切点的弦所在直线方程为: 。
过圆锥曲线上一点的切线方程的另一种初等求法
命题: 为圆锥曲线 上一点,则曲线 上过 点的切线方程为 ( )
证明:因 为二次曲线方程,知方程( )代表的是一条直线,记为 .假设直线 与曲线 除了点 外还有一个公共点 ,则有 和 同时成立,从而 ,这表明 关于点 的对称点 也在曲线 上,
圆锥曲线的切线方程
1经过圆 上一点 的切线方程为 ;
当 在圆外时,过 点引切线有且只有两条,过两切点的弦所在直线方程为 。
2 若P( , )是圆 上的点,则过点P( , )的切线方程为
若P( , )是圆 外一点, 由P( , )向圆引两条切线, 切点分别为A,B则直线AB的方程为
切线长公式:若P( , )是圆 外一点,由P( , )向圆引两条切线, 切点分别为A、B
1.(2013山东,理11)抛物线C1:y= (p>0)的焦点与双曲线C2: 的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=().
A. B. C. D.
解析:设M , ,故在M点处的切线的斜率为 ,故M .由题意又可知抛物线的焦点为 ,双曲线右焦点为(2,0),且 , ,(2,0)三点共线,可求得p= ,故选D.
证明:(1)两边对 求导,得
得 ,由点斜式得切线方程为
化简得 ………………….①
因为 …………………………………………………②
由①-②×2可求得切线方程为:
(2)同联想一(2)可证。结论亦成立。
过曲线上的点 的切线方程为:把原方程中的 用 代换, 用 代换。若原方程中含有 或 的一次项,把 用 代换, 用 代换,得到的方程即为过该点的切线方程。当点 在曲线外部时,过 引切线有两条,过两切点的弦所在直线方程为:
9过抛物线 上一点 切线方程为 ;
10过抛物线 的外部一点 引两条切线,过两切点的弦所在直线方程为:
11过抛物线 上一点 切线方程为 ;
12过抛物线 的外部一点 引两条切线,过两切点的弦所在直线方程为: 。
13过抛物线 上一点 切线方程为 ;
14过抛物线 的外部一点 引两条切线,过两切点的弦所在直线方程为: 。