24理论(数值方法)
第三章-数值模拟理论与方法
第三章数值模拟理论与方法§ 3.1流体力学的基本方程流体运动所遵循的规律是由物理学三大守恒定律规定的,即质量守恒定律, 动量守恒定律和能量守恒定律[44]。
(一)连续方程—(v ) 0式中 P-流体密度u -流体速度分量(二)动量方程(x 方向)p —压力对于可压缩流体y , z 方向上的动量方程可类似推出。
(三)能量方程—e t其中e C v T式中等号左边第一项是瞬变项,第二项是对流项,等号右边第一项是扩散项, 第二、三项是源项所以,流体力学基本方程组为:(3.1)对于不可压流体(即 V( v u )( x式中Y-运动粘性系数v)p x(3.2)u v ux式中等号后前两项是粘性力Pxx(3.3)(3.4)fv u fv vtw— fv w t§3.2紊流模式理论概况§.2.1基本方程在自然界中,真实的流体都具有粘性。
粘性流体存在两种不同的运动方式和 流态,即层流和紊流。
而在自然界和工农业生产中所遇见的流体流动大部分都是 紊流。
三维的N-S 方程是目前描述粘性流体运动较为理想的模型,其优点一是应用 范围广,在空气、水流、传热等方面均用 N-S 方程描述;二是对于有分离、旋涡等情况的复杂三维流动更为适用。
2 u 2 u2 2)y z 22 v v (3.6) 2 2)y z2 2w w )2yzu v W 小xyz式(3.6)和(3.7)共有四个未知数((3.7)u 、v 、w 、p )和四个方程,加上边界条件,从理论上来讲其解是存在的。
但是,要直接求解复杂而详细的粘性流体运动 是十分复杂和困难的。
其原因是:直接求解N-S 方程要求求解从反映消散运动的最小涡漩尺度到反映大尺度涡体的所有流动尺度,因而只有对简单情况下才有理 论解。
§3.2.2 三维 N-S 方程N-S 方程模型的流动计算可分为三种方法:1. 直接模拟法( Direct Numerical Simulation , DNS ) 除稀薄气体等极端条件外,紊流DuF xp(- 2u Dt2xxDv F y p(- 2 v Dt 2 yx Dw F z p (- 2w Dt z 2 x 不可压缩流体的连续性方程为:三维直角坐标下的u)(3.5)e fv e tke q v C vN-S 方程[45],[46],即不可压缩粘性流体的动量方程式的最小长度尺度远远大于分子运动的长度尺度,故紊流可以作为连续体运动处理。
粤教版高中信息技术《数据与计算》(必修1)知识点汇总
必修1 《数据与计算》第一章数据与信息1.1 数据及其特征1.1.1 数据数据:数据是现实世界客观事物的符号记录,是信息的载体,是计算机加工的对象。
在计算机科学中,数据是对所有输入计算机并被计算机识别、存储和处理的符号的总称,包括图形、图像、视频、音频、文本(文字、数字、数值、字符)等数值性和非数值性符号。
1.1.2 数据的基本特征(1)二进制。
在计算机中,数据以二进制的形式存储、加工。
(2)语义性。
语义是将数据符号解释为客观世界的事物。
(3)分散性。
数据是分散的记录,分别记录不同客观事物的运动状态。
(4)多样性和感知性。
数据记录的形式是多样的、可看的、可听的、可感知的,如图形、图像、视频、音频、文本等。
1.2 数据编码1.2.1 模拟信号与数字信号模拟信号:是指用连续变化的物理量所表达的信息。
如声音信号、图形信号。
优点:直观且容易实现。
缺点:保密性差、抗干扰能力差、不适合远距离传输。
数字信号:是离散时间信号的数字化表示。
如开关电路中输出电压、电流脉冲。
优点:抗干扰能力强、可靠性高。
缺点:算法复杂、成本较高。
1.2.2 编码的基本方式1.文字编码在现代技术的信号处理中,数据基本上是通过编码将模拟信号转换为数字信号的。
(1)ASCII码:美国信息交换标准代码。
采用单字节编码,用8位二进制码为英文字母、数字、不可见控制符、标点符号、运算符号等建立的转换码。
字符0的码值为48;A的码值为65;a的码值为97;空格的码值为32。
(2)国标码:我国设计的简体中文GB码和繁体中文的BIG5码。
采用双字节编码。
2.图像编码图像编码:是指在一定保真度的条件下,对图像进行交换、编码、压缩,以较少的比特数表示图像或图像中包含的信息的技术。
(1)位图图像编码:最小单位为像素的图,也叫点阵图(或像素图)。
通常以黑、白图像分别对应1和0而产生二进制代码串,生成16进制的编码。
位图文件的大小:二进制中,0或1就是一个位(bit,数据存储的最小单位),8个位称为一个字节(Byte,数据存储的基本单位)。
多相流动理论模型和数值方法-多相流在线课件
收敛。
•在经过Gosman等[143]和Berlemont等[144]改进以 后,得到了广泛的应用。 •Sommerfeld[145]和Shuen[146]等采用此模型进行 数值求解,得到了比较满意的结果。 •浙江大学热能工程研究所的岑可法院士和樊建人 教授[147]提出的随机频谱颗粒轨道(FSRT)模型,
颗粒确定轨道模型
•处理颗粒群的方法较简单,能够考虑相间速度 与温度的滑移, •并可以追踪比较复杂的颗粒经历, •数值计算不会产生伪扩散。 •但其存在一个缺点,就是对颗粒的湍流扩散缺 乏较好的处理。
29 多相流体动力学
颗粒随机轨道模型。
•考虑到湍流脉动对颗粒轨迹造成的影响,
•Yuu等[142]首先提出了涡作用模型。
拟流体模型小结
• 无滑移模型:颗粒相的宏观运动而引起的质量迁 移是由流体运动引起的;
• 小滑移模型:混合物运动引起的 • 滑移-扩散模型:颗粒相自身的宏观运动引起了
质量迁移
11 多相流体动力学
拟流体模型数值方法
12 多相流体动力学
湍流流场数值模拟方法简介
传统模 式理论
大涡模拟
格子气
常用数值 模拟方法
FLT模型
SSG模型
14 多相流体动力学
湍流模式理论局限性
▪ 对经验数据的依赖性;
▪ 将脉动运动的全部细节一律抹平从 而丢失大量重要信息;
▪ 目前各种模型,都只能适用于解决 一种或者几种特定的湍流运动。
15 多相流体动力学
•湍流直接模拟(DNS)简介
计不算用机任发何展湍流模型,直接b出G数车现习值大L型I求ob并z解行(J完计0J2算整)级机 的三维非定常的N-S方程组;
非线性偏微分方程 偏微分方程数值方法
非线性偏微分方程偏微分方程数值方法非线性偏微分方程偏微分方程数值方法非线性偏微分方程定义:各阶微分项有次数高于一的,该微分方程即为非线性微分方程(一)主要研究内容非线性偏微分方程是现代数学的一个重要分支,无论在理论中还是在实际应用中,非线性偏微分方程均被用来描述力学、控制过程、生态与经济系统、化工循环系统及流行病学等领域的问题。
利用非线性偏微分方程描述上述问题充分考虑到空间、时间、时滞的影响,因而更能准确的反映实际。
本方向主要研究非线性偏微分方程、H-半变分不等式、最优控制系统的微分方程理论及其在电力系统的应用。
1.非线性偏微分方程的研究:我们主要研究偏微分方程解的存在唯一性(和多解性)及稳定性;偏微分方程的初值问题、初边值问题的整体解(包括周期解和概周期解)的存在性及渐近性;平衡解的存在性,尤其是当问题依赖于某些参数时平衡解的分叉结构,以及平衡解的稳定性问题;非线性方程的数值解。
2.H-半变分不等式的研究:建立具有极大单调算子扰动的多值(S)型和伪单调型映象的广义度理论,广义不动点指标理论和具有非凸、不可微泛函的非线性发展型H-半变分不等式理论,由此来研究含间断项的非线性偏微分方程。
3.最优控制系统的微分方程理论及其在电力系统的应用:主要研究与电力生产有关的控制系统的理论和应用。
首先提出了对Banach空间中抽象非线性发展方程所描述的最优控制系统的研究。
引进非光滑分析,研究最优控制系统的微分方程,利用变分不等式理论研究多值问题、数值计算等,所获理论成果应用于电力系统的许多最优控制问题(如:电力系统励磁调节器传递函数的辨识、牛顿最优潮流的数学模型等)。
(二)研究方向的特色1.变分不等式理论与能量泛函的凸性密切相关,由于现代科学技术的需要,特别是研究自由边界和固体力学问题的需要,传统的方法往往都无法解决这类问题,人们对H-半变分不等式进行研究,研究涉及现代分析及应用、偏微分方程以及科学计算等众多领域中亟待解决和发展的重要课题。
数值分析全册完整课件
算法基本结构:顺序,分支,循环
算法描述:程序或流程图
常采用的处理方法:
构造性方法 离散化方法 递推化方法 迭代法 近似替代方法 以直代曲法 化整为零的处理方法 外推法
数学基础:
微积分的若干定理: 罗尔定理和微分中值定理; 介值定理及推论; 泰勒公式(一元、二元); 积分中值定理;
设y=f(x)为一元函数,自变量准确值x*,对应函数准确 值y*=f(x*),x误差为e(x),误差限为ε(x),函数近似值 误差e(y),误差限为ε(y)。则(可由Taylor公式推得)
( y) | f '(x) | (x)
r
(
y)
|
xf |f
'(x) (x) |
|
r
(
x)
对于多元函数 z f (x1, x2 ,, xn )
定义1.1 设x*为某一数据的准确值,x为x*的一个近 似值,称e(x)=x-x*(近似值-准确值)为近似值x的绝对 误差,简称误差。
e(x) 可正可负,当e(x) >0时近似值偏大,叫强近似值;当e(x) <0时近似值偏小,叫弱近似值。
由于x*通常无法确定,只能估计其绝对误差值 不超过某整数ε(x),即
设准确值
z* f (x1*, x2*,, xn* )
由多元函数Taylor公式,可得误差估计:
n
(z)
k 1
f xk
(xk )
相对误差限为:
r (z)
n k 1
xk
f xk
r (xk )
z
2. 算术运算的误差估计:
数值计算方法第一章 误差
1 10n1 2a1
所以 1 10n1 是 x* 的相对误差限。
2a1
若
r
1
2a1
1
10n1,
由式(1-4)
21
绝对误差、相对误差和有效数字
e x* x*er x* 0.a1a2 L an L 10mr
a1
1
10m1
2
1 a1
1
10n1
1 10mn 2
由式(1-6),x* 至少有n位有效数字。
1.3.1 基本运算中的误差估计
本节中所讨论的基本运算是指四则运算与 一些常用函数的计算。
由微分学,当自变量改变量(误差)很小时, 函数的微分作为函数改变量的主要线性部分可以 近似函数的改变量, 故利用微分运算公式可导出 误差运算公式。
24
数值计算中误差的传播
设数值计算中求得的解与参量(原始数据)
由以上各式还可得出
ex1 x2 ex1 ex2 ex1 ex2 (1-14)
er x1x2 er x1 er x2 er x1 er x2 (1-15)
er
x1 x2
er x1 er x2
er x1
er x2
(1-16)
29
数值计算中误差的传播
因此,和、差的误差限不超过各数的误差限之 和,积、商的相对误差限不超过各数的相对误 差限之和。
定义: 若x的某一近似值 x* 的绝对误差限是某一位 的半个单位, 则称其“准确”到这一位,且从该位直到
x* 的第一位非零数字共有q位,则称近似值 x* 有q
位有效数字。
16
绝对误差、相对误差和有效数字
例如, 2 的近似值1.414准确到小数点后第3位, 它具有4位有效数字。
数值计算方法-全套课件
数值计算方法
Numerical Method
数值计算方法
1
第一章 绪 论
课程简介
什么是数值计算方法? 为什么学习数值计算方法? 数值计算方法的主要内容
数值计算中的误差
误差的种类及其来源 绝对误差与相对误差 有效数字与误差 舍入误差与截断误差 误差的传播与估计 算法的数值稳定性
t
12
数值计算方法
课堂教学内 容
绪论 (1周) 非线性方程求根 (1周) 求解线性方程组的数值方法 (2周) 插值和曲线拟合 (1周) 数值微分和数值积分 (1周) 常微分方程数值解 (1周)
数值计算方法
19
教学安 排
理论
13:15~15:40
上机(助教负责)
四次 海洋大楼机房 刷校园卡
确定降落伞的最后速度
FU
加速度表示为速度的变化率
dv F dt m
如果净受力为正,物体加速运动; 如果为负,物体减速运动;如果为0, 物体速度不变。
假定向下的力为正,
FD mg
FU cv
c为比例系数,称为阻力系数(drag
coefficient(kg/s))。参数c说明了下降物
FD
体的特征,如形状或表面的粗糙程度。
4
数值计算方法
非计算机方 法
解析方法
简单问题 实际价值有限
图解法
结果准确? 三维及以下
手工方法
计算器 速度慢,很容易出现低级错误
5
数值计算方法
工程问题求解的三个 阶段
公式化
简洁表示 的基本定律
公式化
深入分析问题与 基本定律的关系
求解
用详细、通常也是复杂 的方法来求解问题
绪论 数值计算方法的研究对象和特点
21
数学学院 信息与计算科学系
完全没有实际意义, 而用Gauss消元法只需3060 次乘法运算. Cramer法则 vs Gauss消元法.
选择算法非常重要!
数学学院 信息与计算科学系
二、计算方法的研究对象 微积分、线性代数、微分方程中的数学问 题。
数值逼近
数值代数
微分方程数值解
数学学院 信息与计算科学系
数学学院 信息与计算科学系
算法不同, 计算量大不相同. 例如: 求解一个n阶线性方程组, 用行列式
解法的克莱姆法则要进行 (n+1)n!(n-1)次乘除
运算. n=20时, 大约进行1021 次运算, 如用每秒
3亿次乘法运算的巨型计算机要连续工作
10 100(年 ) 11 3 10 60 60 24 365
数学学院 信息与计算科学系
四、计算方法的意义与学习方法 1. 意义 计算机的出现为大规模的数值计 算创造了条件, 研究适合于计算机的数值方 法变得十分迫切和必要. 计算方法是在大量 的数值计算实践和理论分析工作的基础上发 展起来的, 它不仅是一些数值方法的简单积 累 , 而且揭示包含在多种多样的数值方法之 间的结构和统一的原理.
数学学院 信息与计算科学系
2. 学习方法
(1) 认识建立算法和对每个算法进行理论
分析是基本任务, 主动适应“公式多”和“理
论分析”的特点.
(2) 注重各章建立算法的问题的提出, 搞清 问题的基本提法、逐步深入的层次及提法的 正确性.
数学学院 信息与计算科学系
(3) 理解每个算法建立的数学背景、数学 原理和基本线索,而且对一些最基本的线索 要非常熟悉. (4) 从各种算法的理论分析中学习理论推 理方法, 提高推理证明能力. (5) 认真进行数值计算的训练, 学习各种算 法完全为了应用于实际, 因此必须真会算.
数值计算方法第一章 误差
6
误差的来源
4.舍入误差 在计算过程中往往要对数字进行舍入。 如受机器 字长的限制,无穷小数和位数很多的数必须舍入成 一定的位数。 这样产生的误差称为“舍入误差”。 本课程只讨论截断误差与舍入误差对计算结 果的影响。
§1.2 绝对误差、相对误差和有效数字
7
绝对误差、相对误差和有效数字
1.2.1
绝对误差与相对误差
17
x* 0.a1a2 an 10m
如果
1 x x 10 m n 2
*
(1-5)
(1-6)
* x 则称近似值 有n位有效数字。
1 5 x 0 . 003400 10 例如 表示近似值0.003400准确 2
到小数点后第5位,有3位有效数字。
上面的讨论表明,可以用有效数字位数来刻划 误差限。 形如式(1-5)的数,当m一定时,其有效数字 数位n越大,则误差限越小。
但可以根据测量 能算出绝对误差 e( x*) 的准确值, 工具或计算的情况估计出它的取值范围,
8
绝对误差、相对误差和有效数字
即估计出误差绝对值的一个上界
e( x ) x x
* *
*
(1-2)
通常称 为近似值 x 的绝对误差限,简称误差限。 显然误差限不是唯一的。 有了误差限及近似值,就可以得到准确值 的范围 * * 即准确值 x
* 显然,误差限与近似值绝对值之比 * 为 x 的 一 x
个相对误差限。
例 取3.14作为 相对误差限.
的四舍五入的近似值,试求其
13
绝对误差、相对误差和有效数字
1 2 3 . 14 0 . 0016 10 解: 2 相对误差限 1 2 10 2 0.159 % * x 3.14 又如 由实验测得光速近似值为 c * 2.997925 105 km/s, 其误差限为 0.1 km/s, 于是
数值分析(计算方法)介绍
Zeno悖论所描述的逼近过程正是这种迭代过程,当k→∞时,tk →t* (问题2: 证明该结论!)。大家知道,任何形式的重复都可看成是 “时间”的量度。Zeno在刻画人龟追赶问题中设置了两个“时钟”:一 个是日常的钟,另外Zeno又将迭代次数视为另一种时钟,不妨称之为 Zeno钟。Zeno公式(2)表明,当Zeno钟趋于∞时人才能追上龟,Zeno 正是据此断言人永远追不上龟。
9
North China Elec. P.U.
Numerical Analysis
2019/12/20
算法设计技术
J. G. Liu
引例
古希腊哲学家Zeno在两千多年前提出过一个骇人听闻的命题: 一个人不管跑得多快,也追不上爬在他前面的一只乌龟。这就 是著名的Zeno悖论。
Zeno在论证这个命题时采取了如下形式的逻辑推理:设人与龟 同时同向起跑,如果龟不动,那么人经过某段时间便能追上它; 但实际上在这段时间内龟又爬了一段路程,从而人又得重新追 赶,如下图所示,这样每追赶一次所归结的是同样类型的追赶 问题,因而这种追赶过程“永远”不会终结。
Numerical Analysis
2019/12/20
J. G. Liu
数值分析
——插值、拟合与数值微积分
主讲: 刘敬刚
School of Math. & Phys.
1
North China Elec. P.U.
Numerical Analysis
2019/12/20
数值分析(计算方法)简介
• 引例
School of Math. & Phys.
11
North China Elec. P.U.
Numerical Analysis
黄云清版数值计算方法习题解答
第一章 引论(习题)2. 证明 : 记 x x f =)( ,则)()(***x x x x x xx x f E r +-=-=)(21**x E x x x x x xr ≈-⋅+=.3. 证明: 令: )()()(b a fl b a fl b a **-*=δ可估计: 1|)(|-≥*c b a fl β (c 为b a *阶码), 故: 121||--≤c t c ββδt-=121β 于是: )1()()(δ+*=*b a b a fl .4. 解 (1) )21()1(22x x x ++. (2))11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-.6. 解 a 的相对误差:由于 31021|)(|-⋅≤-=a x x E . x a x x E r -=)(, 221018110921)(--⋅=⨯≤x E r . (1Th ) )(a f 对于)(x f 的误差和相对误差. |11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r .9. 解 递推关系: 1101.100-+-=n n n y y y (1) 取初值 10=y , 01.01=y 计算可得: 11001.10022-⨯=-y 10001.1-=410-= 6310-=y , 8410-=y , 10510-=y , …(2) 取初值 50101-+=y , 2110-=y , 记: n n n y y -=ε,序列 {}n ε ,满足递推关系,且 5010--=ε , 01=ε1101.100-+-=n n n εεε, 于是: 5210-=ε,531001.100-⨯=ε, 55241010)01.100(---⨯=ε,55351002.20010)01.100(--⨯-⨯=ε, 可见随着 n ε 的主项 5210)01.100(--⨯n 的增长,说明该递推关系式是不稳定的.第二章 多项式插值 (习 题)1. 方法一. 由 Lagrange 插值公式)()()()()(332211003x l f x l f x l f x l f x L ⋅+⋅+⋅+⋅=)1)((31)2)()(1()1)(()(123210---=-----=x x x x x x x l , ))(1(2)1)()(1()(21221211--=--+=x x x x x x l , x x x x x x l )1()()1()1!()(2382121232--=-⋅⋅-+=, )()1(12)()1()(2121213-+=⋅⋅-+=x x x x x x x l . 可得: )21()(23-=x x x L方法二. 令:)()21()(3B Ax x x x L +-=由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法)2. 证明(1) 由于 j i j i x l ,)(δ= 故: =)(x L n ∑=ni i k i x l x0)( ,当 j x x = 时 有: k j j n x x L =)( , n j ,,1,0 =)(x L n 也即为 kx 的插值多项式,由唯一性,有:∑==ni k i ki x x l x)( , n k ,,1,0 =证明(2):利用Newton 插值多项式)(],[)()(0100x x x x f x f x N n -+=)()(],,[100---++n n x x x x x x f )()()()()()(00101x l x x x x x x x x x f n n =----=差商表:f(x) 一阶 二阶 … n 阶差商0x 1 1x 0101x x -)()(11020x x x x --n x 0 0)()(1010n x x x x --代入)(*式有:)()()()()(1)(020*******n n n x x x x x x x x x x x x x x x N -----++--+=- . )(0x l 为n 次代数多项式,由插值多项式的唯一性:有 )()(0x N x l n ≡.4. 解 作)(x f 以b a a ,,ε+为节点的Lagrange 插值多项式,有: )()()(22x R x L x f +=, 其中:)()()()()()()()()()(2εεεεε+-+--+-----=a fb a b x a x a f b a b x a x x L)()()()()(b f a b a b a x a x εε------+,)()()(!3)()(2b x a x a x f x R ----'''=εζ , b a <<ζ 令: 0→ε 有 )()(6)()()(22b x a x f x R x R --'''=→ζ, 又:)()()()([)()(2a f a b ax a f a b a x x b x L εεεεε----+----= )]()()()()(a f a b a x a f a b a x -------+εεεε )()()()()(b f a b a b a x a x εε------+)()()2()(2a f ab a b x x b --+-→)()()()(a f a b a x x b '---+ )()()()(22x P b f a b a x =--+ 故当 0→ε 时,成立公式: )()()(x R x P x f +=.5. 解:因为34)(3'-=x x f ,2''12)(x x f =)(x f 为凹函数.又从数值表可见:当]5.0,1.0[∈x 时,)(x f 单调下降.有反函数)(1y fx -=)(y f的Newton 插值多项式:)17440.0)(10810.0)(40160.0)(70010.0(01225.0)10810.0)(40160.0)(70010.0(01531.0)40160.0)(70010.0(0096436.0)70010.0(33500.01.0)(4+---+------+--=y y y y y y y y y y y N.337.0)0(4*≈=N x7. 解 1)(37++=x x x f .有:=]2,,2,2[71f !7)()7(ξf =1, !8)(]2,,2,2[)8(810ηf f = 0=.9. 证明:(1) =⋅-⋅=⋅∆++i i i i i i g f g f g f 11)(i i i i i i i i g f g f g f g f ⋅-⋅+⋅-⋅++++1111i i i i f g g f ∆+∆=+1.(3) n x n n)1()1(-=∆!)()(nh x h x x h n ++此题可利用数学归纳法:设 k n = 成立,证明 1+=k n 成立.又 1=n 时是成立的.10. 证明: 记: 2]2/)1([)(+=n n n f ,33321)(n n g +++=有: 3)1()()1()(+=-+=∆n n f n f n f 故: ∑-=∆=10)()(n k k f n g ∑-=-+=1)]()1([n k k f k f2]2/)1([)0()(+=-=n n f n f .13. 解 作重节点差商的Newton 插值公式)1(]1,1[)1()(+--+-=x f f x P 22)1(]1,0,1,1[)1(]0,1,1[+--++--+x x f x f )1()1(]1,1,0,1,1[2-+--+x x x f 重节点差商表:i x i f 一阶 二阶 三阶 四阶10-=x 110-=x 1 201=x 1 0 -212=x 1 0 0 112=x 1 2 2 1 0得 22)1()1(2)1(21)(+++-++=x x x x x P 13+-=x x .17. 证: 取 ,00=x 211=x , 12=x , 21=h00=f , 11=f , 12=f 记: )(i i x s M ''= , 2,1,0=i有 hx x M h x x M x S 01101)(-+-=''x M x M 102)21(2+-= )21(2)1(2)(212-+-=''x M x M x S 又三弯矩方程为:( 2],,[210-=x x x f )244210-=++M M M , )24(41201M M M ++-=.分段积分:⎰⎰+''=''∆1021221)]([)]([dx x s dx x s ⎰''12221)]([dx x s ⎰+-+=21201)]21([4dx x M x M ⎰-+-121221)]21()1([4dx x M x M⎰⎰-+-+-+-=121121221201)]21()1([4)]1()21([4dxx M x M dx x M x M由于 ⎰=-1212241)21(dx x ,⎰=-1212241)1(dx x ,⎰=--121481)1()21(dx x x ,于是:⎰++++=''∆1022212110202]2[61))((M M M M M M M dx x S 又: )24(41201M M M ++-=记 =),(20M M I ⎰∆''12))((dx x S=)()24(41[6120202220M M M M M M +++-+ ])24(81220M M +++由00=∂∂M I, 02=∂∂M I . 得:⎩⎨⎧=+-=-07072020M M M M 即当: 020==M M 时, ),(20M M I 达最小故:⎰=⋅⋅≥''∆102212)24(8161))((dx x S ,由最小模原理: ⎰≥''1212)]([dx x f .20. 解 利用三弯矩方法 )(i i x s M ''= , 2,1,0=i 10=x , 22=x , 32=x⎪⎩⎪⎨⎧-=+=++=+542364622121010M M M M M M M解得: 70-=M , 201=M , 372-=M]2,1[∈x 72431729)(231-+-=x x x x s ]3,2[∈x 105229367219)(232+-+-=x x x x s .第三章 最佳逼近及其实现 (习 题)2. 解 (1) ⎰'⋅'=badx x g x f g f )()(),( 不是 ),(b a c '中的内积,事实上容易验证:),(),(f g g f = , ),(),(g f g f λλ= ),(),(),(w g w f w g f +=+但是 0),(=f f 当且仅当 0)(≡x f . 条件不满足,因为: ⎰='⋅'=badx x f x f f f 0)()(),(推出0)(≡'x f ,0)(≠=const x f . 因而 ),(g f 不是 ),(b a C '中的内积.(2) ),(g f 是 =],[10b a C {}],[)(,0)(:)(b a C x f a f x f '∈'=空间的内积,这是因为: 0),(=f f 推出 0)(='x f , C x f =)(,又],[10b a C f ∈ ,故 0)(=x f .4. 解:由于 0)(],,[2≠''∈x f b a c f ,则)(x f ''于],[b a 上保号,由定理5的推论2可知:)()(1x P x f -的交错点组恰有三个交错点,且 a x =1,b x =3,即: ⎪⎪⎩⎪⎪⎨⎧=-'='-=+-==+-==+-=0)()(,)()()(,)()()(,)()()(122210223103311011αρααρααρααx f x e x x f x e x x f x e x x f x e 故: a b a f b f x f --='=)()()(21α,2)()(2)()(220x a a b a f b f x f a f +⋅---+=α 记 c x =2 ,即证得(1).(2) 若 x x f cos )(= ,]2,0[],[π=b a此时由 ab a f b fc f --=')()()( 得:π2sin =c , )2sin(πarc c =,πα21-=πππα2)4(2120-+=2)/2sin(2ππarc ⋅+)4(212-+=πππππ)2sin(arc +. 误差估计:)()(10b f b f E -+=-=ααρ)4(212-+=πππ1)2sin(-+ππarc5. 解:选取α ,使得:=)(αI ||max 211x x x α-≤≤ ,达到极小,即要求 x x *)(*αϕ= ,于]1,0[上一致逼近于2x ,如图 应选 *α ,使得:x x x *)(2αϕ-=,于 ]1,0[ 上有两个轮流为正负偏差点,其中之一为1,另一个假设为 ζ 于是: )()1(ζϕα-=, 0)(='ζϕ , ( ζ为)(x ϕ的极值点) 得: αζζα+-=-2102=-αζ 解得:ζα2= ,0122=-+ζζ, 212,1±-=ζ取12-=ζ , 222-=α. 又: α 是唯一的.6. 证明:由最佳一致逼近的特征定理,)(*x P n 为)(x f 的最佳一致逼近多项式,则存在2+n 个点b x x x a n ≤<<<≤+110使得: )()()(*k n k k x P x f x e -==*)1(n kP f --σ.又由于 ],[)(b a C x f ∈ ,于 ),(1+i i x x 中有一个点 i η ,1+<<i i i x x η , 使得: 0)()()(*=-=i n i i P f e ηηη, n i ,,1,0 =即: )(*x P n 为)(x f 满足插值条件: )()(*i i n f P ηη= , n i ,,1,0 = 的插值多项式.7. 解:求C*,使得:C x f C I bx a R C -=≤≤∈)(max min *)(记 C x f x e -=)()(, 依最佳一致逼近的特征定理:应取 )](min )(max [21*],[],[x f x f C b a b a +=*)()(C x f x e -=于 ],[b a 才有两个轮流正负的偏差点,(即 )(x f 于],[b a 上的最大值点和最小值点)1x ,2x )(max )(],[1x f x f b a = , )(min )(],[2x f x f b a =此时: *)(m a x )1()(],[C x f x e b a ii --=σ即 *C 为)(x f 的零次最佳逼近多项式.8. 解: 436)(23+++=x x x x f 2)(34)3(62031T T T T +++=014T T ++01232112112323T T T T +++= 因为)(413x T 与零偏差最小,故: 012221121123)(T T T x P ++=421132++=x x . 为)(x f 的最佳一致逼近多项式.9. 证明:我们仅证明)(x f 是偶函数时,)(x P n 亦是偶函数.由于)(x P n 为)(x f的最佳一致逼近多项式,有:)()()(max ],[f E x P x f n n a a =--和: [,max ()()()]n n a af x P x E f ----=即: )()()(m a x ],[f E x P x f n n a a =---)(x P n -亦是)(x f 的最佳一致逼近多项式,由最佳一致逼近多项式的惟一性,有: )()(x P x P n n =-即: )(x P n 为偶函数.11. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。
《数值计算方法》试题集及答案(1-6)-2..
《计算方法》期中复习试题一、填空题:1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。
答案:2.367,0.252、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。
答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+5、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );6、计算方法主要研究( 截断 )误差和( 舍入 )误差;7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+ 。
13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。
简单的数值方法
在分段点处可能不光滑,需要进行特 殊处理以保证整体光滑性。
03 迭代法
迭代法的定义与原理
01
迭代法是一种通过不断逼近的方式求解基本原理是从一个初始近似解出发,按照一定的迭代格式 逐步逼近精确解。
03
迭代法的关键在于构造合适的迭代格式,使得迭代序列收敛 于精确解。
误差的来源与分类
模型误差
由于数学模型与实际问题之间 的差异而产生的误差。
观测误差
由于观测数据的不准确性或不 完全性而产生的误差。
截断误差
由于数值方法采用有限项近似 而产生的误差。
舍入误差
由于计算机浮点数运算的精度 限制而产生的误差。
误差的估计与控制
先验误差估计
通过理论分析或实验手段,预先估计数值方 法的误差范围。
解。
二维问题的有限差分法
二维常系数线性偏微分方程的有限差分法
对于形如 $u_t = a(u_{xx} + u_{yy})$ 的二维常系数线性偏微分方程,可以采用五点差分格式进行离 散化,得到相应的差分方程。通过求解差分方程,可以得到原偏微分方程的近似解。
二维变系数线性偏微分方程的有限差分法
对于形如 $u_t = a(x,y,t)(u_{xx} + u_{yy})$ 的二维变系数线性偏微分方程,可以采用加权五点差分格 式进行离散化,得到相应的差分方程。通过求解差分方程,可以得到原偏微分方程的近似解。
有限元法在结构力学中的应用
静力分析
用于求解结构在静载作 用下的应力、应变和位
移等。
动力分析
用于求解结构在动载作 用下的响应,如固有频
率、振型和阻尼等。
稳定性分析
用于研究结构在失稳状 态下的临界载荷和失稳
数值计算方法课件CH4数值积分4.2复合求积法
f
(b)
f (a)]
1 4
(I
Tn
)
20
因此有
I T2n 1 I Tn 4
4I 4T2n I Tn
即
I
T2n
1 3
(T2
n
Tn )
这说明, T2n作为I的近似值时的截断误差 绝对值约为
1 3 T2n Tn
若预先给定的误差限为,只要 ,就认为此时的数
值积分T2n已经达到精度要求,可以停止计算了.
3 4
)]
14
k
1
f
(xk ) 7
f
(1)]
0.94608307
10
比较三个 公式的结果
精度最低 精度次高
T8 0.94569086 S4 0.94608331
精度最高 C2 0.94608307
原积分的精确值为 I 1sin x dx 0.946083070367183 0x
这三种方法都是求积区间上9个节点上的函数值的线性组合 进行计算,只是组合方法不同,但工作量基本相同.T8的精 度很低,但S4和C2的精度很高,相比较而言,复合Simpson 公式的复杂性居中,精度又可达到要求,故使用更普遍.
在数值积分中,精度是一个很重要的问题,复合求积法 对提高精度是很有效的.由复合求积公式的余项表达式看到, 精度与步长有关. 步长取得太大,精度难以保证,步长太小, 则求积会公导式致之计前算最量好的先增给加出,步并长且.积I累 T误n 差 11也2 h2会[ f 增(b) 大f (,a)]因此使用
从理论上讲,可以根据复合I求 S积n 公 118式0 的2h 4余[ f 项(b) 公f 式(a)或] 其近 似于被表积达函式数,的预高先阶确导定数出很恰难当估的计步I,长 C或hn 来者 9.24但被5 在积h4 6实函[ f (际数5)(b使)没 f用有(5)(中解a)],析表由 达式,因此这个预估h的方法是不宜使用的.
24,28,42的最小公倍数短除法
24,28,42的最小公倍数短除法1.引言1.1 概述本文将介绍短除法的基本原理和应用,以及利用短除法来求解给定数列24、28和42的最小公倍数。
短除法是一种简便的整除运算方法,适用于较小的数值范围。
通过将被除数不断除以约数,直到除尽或者得到一个小于除数的余数为止,我们可以快速确定最小公倍数。
最小公倍数是指几个数中最小的能同时整除这些数的正整数。
在本文的例子中,我们将使用短除法来确定数列24、28和42的最小公倍数。
这三个数分别是任意选择的,目的是为了更好地说明短除法的原理和过程。
通过本文的研究和分析,读者将能够理解短除法的基本概念和步骤,以及在实际问题中如何应用短除法来求解最小公倍数。
这将有助于读者在数学和计算领域中更好地应用短除法,并进一步提高他们的问题解决能力。
在接下来的部分中,我们将首先介绍短除法的基本原理和步骤,在此基础上,展示如何利用短除法求解24、28和42的最小公倍数。
最后,我们将总结短除法的优点和应用,并提供一些相关问题的思考和解决方法,以帮助读者更好地掌握短除法的应用技巧。
通过本文的阅读和学习,读者将能够更加深入地理解短除法的实际价值和意义,从而提高自己的数学运算能力和解题能力。
1.2文章结构文章结构部分的内容可以如下所示:1.2 文章结构本文分为三个部分进行介绍和讨论。
首先在引言部分,我们将概述本文的主要内容和目的,以引起读者的兴趣。
接下来,在正文部分,我们将首先介绍短除法的基本概念和原理,为后续的最小公倍数求解做基础铺垫。
然后,我们将具体讨论如何通过短除法求解24、28和42的最小公倍数,并给出详细的计算步骤和结果。
最后,在结论部分,我们将对本文的结果进行总结,并探讨短除法在其他实际问题中的应用。
通过这样的文章结构组织,读者可以清晰地了解本文的主要内容和论证思路,同时也能更好地理解短除法在最小公倍数求解中的应用。
1.3 目的本文旨在介绍和说明如何使用短除法求解24、28和42的最小公倍数,以及探讨短除法在数学领域中的应用。
基于数值计算方法计算最大反应速率到达时间
基于数值计算方法计算最大反应速率到达时间ZHU Yi;WANG Hao;CHEN Liping;GUO Zichao;HE Zhongqi;CHEN Wanghua 【摘要】最大反应速率到达时间(TMRad)是化工工艺热风险评估中一个十分重要的参数.一般计算TMRad的方法是基于N级模型的分析.但对于复杂的反应过程统一采用N级模型分析计算可能会引起较大偏差甚至得到错误的评估.因此,提出运用基于反应类型的数值计算方法进行TMRad和TD24的评估,通过分别代表N级反应和自催化反应的20%DTBP甲苯溶液和CHP的ARC测试分析表明:对于N级反应,该方法能可靠地用于TMRad和TD24的求取;而对于自催化反应,尽管拟合效果很好,原有方法计算偏差很大,原因是不同模型下动力学参数不同,还进行偏差大小分析.由此可知该数值计算方法有广泛的适用性,对于放热曲线,需在了解其反应类型的基础上利用该方法进行TMRad和TD24的评估,由此评估的结果更为可靠准确.【期刊名称】《化工学报》【年(卷),期】2019(070)001【总页数】9页(P379-387)【关键词】热力学;热分解反应;稳定性;安全;最大反应速率到达时间;N级;自催化【作者】ZHU Yi;WANG Hao;CHEN Liping;GUO Zichao;HE Zhongqi;CHEN Wanghua【作者单位】【正文语种】中文【中图分类】O642.1引言在化工生产领域中,失控是导致事故发生的重要原因[1-3]。
世界著名Ciba-Geigy 公司对1971—1980年十年间工厂事故的统计发现:56%的事故是由于反应失控或近乎失控造成的。
反应失控最坏的情形为绝热条件,绝热条件下,失控反应到达最大反应速率所需要的时间称为失控反应最大反应速率到达时间[4](time to maximum rate under adiabatic conditions,TMRad)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相对误差放大 的倍数,所以 叫条件数
这也是常数向量b 的扰动引起解的 扰动的一种估计
第二章 线性代数方程组的直接解法
§6 误差分析
作业: P64:11,12
第二章 线性代数方程组的直接解法 上机作业
编程实现Doolittle分解方法解方程组。 输入:A,b 输出:(1)能不能用Doolittle分解方法 (2)如能,则输出L,U,Y,X 截止日期10.14,网络学堂提交,建议Matlab
第二章 线性代数方程组的直接解法
理论部分
第二章 线性代数方程组的直接解法
§5 向量范数与矩阵范数
单位阵 的范数?
正交矩阵2范数
第二章 线性代数方程组的直接解法
§5 向量范数与矩阵范数
作业: P37 11,12,13,14
第二章 线性代数方程组的直接解法
§6 误差分析
条件数