第五章对称矩阵与二次型-

合集下载

对称矩阵与二次型

对称矩阵与二次型

对称矩阵与二次型对称矩阵和二次型是线性代数中非常重要的概念,它们在各种数学和工程领域都有广泛的应用。

本文将介绍对称矩阵的定义和特性,以及与之相关的二次型的概念和性质。

一、对称矩阵的定义与特性在线性代数中,对称矩阵是指满足矩阵的转置等于其自身的矩阵。

具体定义如下:定义1:对称矩阵设A是一个n×n的矩阵,如果满足A^T=A,则称A为对称矩阵。

对称矩阵的一些特性如下:特性1:主对角线上的元素对称矩阵的主对角线上的元素都相等,即a_ij = a_ji。

特性2:特征值对称矩阵的特征值都是实数。

特性3:特征向量对称矩阵的特征向量对应不同特征值的特征向量是正交的。

特性4:对角化对称矩阵可以被对角化,即可以通过相似变换得到对角矩阵。

二、二次型的定义与性质二次型是对称矩阵与向量的乘积,它是一个函数,将向量映射为实数。

具体定义如下:定义2:二次型设f(x) = x^TAx是一个定义在R^n上的函数,其中A是一个n×n的对称矩阵,x是一个n维列向量。

称f(x)为二次型。

二次型有一些重要的性质:性质1:对称性二次型的矩阵A是对称矩阵,即A^T=A。

性质2:标准型对于任意二次型f(x),都存在一个正交变换,将其化为标准型。

标准型的形式为f(x) = λ_1y_1^2 + λ_2y_2^2 + ... + λ_ny_n^2,其中λ_1, λ_2, ..., λ_n为实数,y_1, y_2, ..., y_n为变量。

性质3:正定、负定与半正定二次型可以根据其对应的矩阵A的特征值判定其正定、负定与半正定。

当A的所有特征值均为正时,二次型为正定;当A的所有特征值均为负时,二次型为负定;当A的特征值既有正又有负时,二次型为不定;当A的特征值既有非负又有非正时,二次型为半正定。

三、对称矩阵与二次型的关系对称矩阵与二次型之间有紧密的联系,通过对称矩阵可以定义出二次型,同时对于任意一个二次型,都可以找到对应的对称矩阵。

高等代数北大版教案-第5章二次型

高等代数北大版教案-第5章二次型

高等代数北大版教案-第5章二次型-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN48第五章 二次型§1 二次型的矩阵表示一 授课内容:§1 二次型的矩阵表示二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性替换和矩阵的合同.三 教学重点:矩阵表示二次型四 教学难点:二次型在非退化下的线性替换下的变化情况. 五 教学过程:定义:设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式++++=n n n x x a x x a x a x x x f 11211221112122),,,(+++n n x x a x a 2222222 (2)n nn x a + (3)称为数域P 上的一个n 元二次型,或者,简称为二次型.例如:2332223121213423x x x x x x x x x +++++ 就是有理数域上的一个3元二次型.定义1 设n x x x ,,,21 ,n y y y ,,,21 是两组文字,系数在数域P 中的一组关系式⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=n nn n n n nn nn y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (4)称为n x x x ,,,21 到n y y y ,,,21 的一个线性替换,或则,简称为线性替换.如果系数行列式 0≠ij c ,那么线性替换(4)就称为非退化的.二次型的矩阵表示:49令 ji ij a a = ,j i < 由于 i j j i x x x x =,那么二次型(3)就可以写为++++=n n n x x a x x a x a x x x f 112112211121),,,(++++n n x x a x a x x a 2222221221 …+22211n nn n n n n x a x x a x x a +++∑∑===n i nj j i ij x x a 11(5)把(5)的系数排成一个n n ⨯矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211它称为二次型(5)的矩阵.因为ji ij a a =,n j i ,,2,1, =,所以A A ='.我们把这样的矩阵称为对称矩阵,因此,二次型(5)的矩阵都是对称的.令⎪⎪⎪⎪⎪⎭⎫⎝⎛=n x x x X 21,于是,二次型可以用矩阵的乘积表示出来,()n x x x AX X 21='⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a a a a a a a a 212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛n x x x 21()⎪⎪⎪⎪⎪⎭⎫⎝⎛+++++++++=n nn n n n n n n n x a x a x a x a x a x a x a x a x a x x x 22112222121121211121∑∑===ni nj j i ij x x a 11.50故 AX X x x x f n '=),,,(21 .显然,二次型和它的矩阵是相互唯一决定的.由此还能得到,若二次型BX X AX X x x x f n '='=),,,(21且 B B A A ='=',,则,B A = 线性替换的矩阵表示令⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n c c cc c cc c c C 212222111211,⎪⎪⎪⎪⎪⎭⎫⎝⎛=n y y y Y 21,那么,线性替换(4)可以写成, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n x x x 21⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n c c cc c c c c c212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛n y y y 21 或者CY X =.显然,一个非退化的线性替换把二次型还是变成二次型,现在就来看一下替换后的二次型与原二次型之间有什么关系.设 AX X x x x f n '=),,,(21 ,A A =', (7) 是一个二次型,作非退化的线性替换CY X = (8) 得到一个n y y y ,,,21 的二次型BY Y '.现在来看矩阵B 与矩阵A 的关系 把(8)代入(7)有AX X x x x f n '=),,,(21 ACY C Y CY A CY ''='=)()(BY Y Y AC C Y '=''=)(.51容易看出,矩阵AC C '也是对称的,事实上,AC C C A C AC C '=''''='')(.由此,即得AC C B '=.定义2 数域P 上n n ⨯矩阵B A ,称为合同的,如果有数域P 上可逆的n n ⨯矩阵C ,使AC C B '=.合同是矩阵之间的一个关系,不难看出,合同关系具有 (1)反身性 AE E A '=.(2)对称性 由 AC C B '=,即得)()(11--'=C B C A .(3)传递性 由111AC C A '=,2122C A C A '=,即得)()(21212C C A C C A '=.因之,经过非退化的线性替换,替换后的二次型的矩阵与原二次型矩阵是合同的.§2 标准形一 授课内容:§2 标准形二 教学目的:通过定理的证明掌握二次型化为标准形的配方法. 三 教学重点:化普通的二次型为标准形.四 教学难点:化普通的二次形为标准形的相应矩阵表示.52五 教学过程:I 导入可以认为,在二次型中最简单的一种是只含有平方项的二次型2222211n n x d x d x d +++ (1)II 讲授新课定理1 二次型都可以经过非退化的线性替换变为平方和(1)的形式. 不难看出,二次型(1)的.2222211n n x d x d x d +++ =()n x x x 21⎪⎪⎪⎪⎪⎭⎫⎝⎛n d d d00000021⎪⎪⎪⎪⎪⎭⎫⎝⎛n x x x 21. 反过来,矩阵是对角形的二次型就只含有平方项.定理2 在数域P 上,任意一个对称矩阵都合同于一对角矩阵. 定义 二次型),,,(21n x x x f 经过非退化的线性替换所变成的平方和称为),,,(21n x x x f 的一个标准形.例 化二次型313221321262),,(x x x x x x x x x f +-=为标准形.解:作非退化的线性替换⎪⎩⎪⎨⎧=-=+=33212211yx y y x y y x53则3213212121321)(2)(6))((2),,(y y y y y y y y y y x x x f ++---+=323122218422y y y y y y +--=322223231822)(2y y y y y y +---=再令 ⎪⎩⎪⎨⎧==-=3322311y z y z y y z 或⎪⎩⎪⎨⎧==+=3322311zy z y z z y则),,(321x x x f 233222212822z z z z z -+-=23232216)2(22z z z z +--=.最后令 ⎪⎩⎪⎨⎧=-==33322112z w z z w z w 或⎪⎩⎪⎨⎧=+==33322112wz w w z w z则 ),,(321x x x f 232221622w w w +-=是平方和,而这几次线性替换的结果相当于作一个总的线性替换,⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛100011011321x x x ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321100210001100010101w w w ⎪⎪⎪⎭⎫ ⎝⎛--=100110311⎪⎪⎪⎭⎫ ⎝⎛321w w w . 用矩阵的方法来解 例 化二次型313221321262),,(x x x x x x x x x f +-=为标准形.解:),,(321x x x f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--=031301110A .取⎪⎪⎪⎭⎫⎝⎛-=1000110111C ,则111AC C A '=54⎪⎪⎪⎭⎫ ⎝⎛-=100011011⎪⎪⎪⎭⎫ ⎝⎛--031301110⎪⎪⎪⎭⎫ ⎝⎛-100011011⎪⎪⎪⎭⎫ ⎝⎛---=042420202. 再取⎪⎪⎪⎭⎫ ⎝⎛=1000101012C ,则2122C A C A '=⎪⎪⎪⎭⎫ ⎝⎛=101010001⎪⎪⎪⎭⎫ ⎝⎛---042420202⎪⎪⎪⎭⎫ ⎝⎛100010101⎪⎪⎪⎭⎫ ⎝⎛--=240420002. 再取⎪⎪⎪⎭⎫ ⎝⎛=1002100013C ,则3233C A C A '=⎪⎪⎪⎭⎫ ⎝⎛=120010001⎪⎪⎪⎭⎫ ⎝⎛--240420002⎪⎪⎪⎭⎫ ⎝⎛100210001 3A 是对角矩阵,因此令321C C C C =⎪⎪⎪⎭⎫ ⎝⎛-=100011011⎪⎪⎪⎭⎫ ⎝⎛100010101⎪⎪⎪⎭⎫ ⎝⎛100210001⎪⎪⎪⎭⎫ ⎝⎛--=100111311,就有AC C '⎪⎪⎪⎭⎫⎝⎛-=600020002.作非退化的线性替换CY X =即得),,(321x x x f 232221622y y y +-=.55§3 唯一性一 授课内容:§3 唯一性二 教学目的: 通过本节的学习,让学生掌握复二次型,实二次型的规范形,正(负)惯性指数,符号差.三 教学重点:复二次型,实二次型的规范形的区别及唯一性的区别. 四 教学难点:实二次型的唯一性 五 教学过程:在一个二次型的标准形中,系数不为零的平方项个数是唯一确定的,与所作的非退化的线性替换无关.二次型的矩阵的秩有时候就称为二次型的秩.至于标准形的系数就不是唯一的.例 二次型313221321262),,(x x x x x x x x x f +-=经过非退化的线性替换⎪⎪⎪⎭⎫ ⎝⎛321x x x ⎪⎪⎪⎭⎫⎝⎛--=100110311⎪⎪⎪⎭⎫ ⎝⎛321w w w 得到标准形232221622w w w +-.而经过非退化的线性替换56⎪⎪⎪⎭⎫ ⎝⎛321x x x ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=3100312111211⎪⎪⎪⎭⎫ ⎝⎛321y y y 就得到另一个标准形23222132212y y y +-. 这就说明,在一般的数域内,二次型的标准形不是唯一的,而与所作的非退化的线性替换有关.下面只就复数域与实数域的情形来进一步讨论唯一性的问题. 对于复数域的情形设),,,(21n x x x f 是一个复系数的二次型,则经过一个适当的非退化的线性替换后,),,,(21n x x x f 变为标准形,不妨设标准形为2222211r r y d y d y d +++ ,0≠i d ,r i ,,2,1 = (1)易知,r 就是),,,(21n x x x f 的矩阵的秩.因为复数总可以开平方,我们再作一非退化的线性替换⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧====++nn r r rrr z y z y z d y z d y 1111111 (2) (1)就变为22221r z z z +++ (3) (3)称为复二次型),,,(21n x x x f 的规范形.显然,规范形完全被原二次型的矩阵的秩所决定.定理3 任意一个复系数的二次型,经过一个适当的非退化的线性替换可以变为规范形,规范形是唯一的.定理3换个说法就是,任意一个复的对称矩阵合同于一个形式为⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0011的对角矩阵.从而有,两个复对称矩阵合同的充分必要条件是它们的秩相等.对于实数域的情形设),,,(21n x x x f 是一个实系数的二次型,则经过一个适当的非退化的线性替换,再适当排列文字的次序,可使),,,(21n x x x f 变为标准形,2211p p y d y d ++ 2211r r p p y d y d ---++ (4)0>i d r i ,,2,1 = ,r 就是),,,(21n x x x f 的矩阵的秩.因为在实数域中,正实数总可以开平方,所以,再作一非退化的线性替换⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧====++n n r r rrr z y z y z d y z d y 1111111 (5) (4)就变为221p z z ++ 221r p z z ---+ (6)(6)称为实二次型),,,(21n x x x f 的规范形.显然,规范形完全被p r ,这两个数所决定.定理4(惯性定理) 任意一个实数域上的二次型,经过一个适当的非退化的线性替换可以变为规范形,规范形是唯一的.定义3 在实二次型),,,(21n x x x f 的规范形中,正平方项的个数p 称为),,,(21n x x x f 的正惯性指数,负平方项的个数p r -称为),,,(21n x x x f 的负惯性指数,它们的差r p p r p -=--2)(称为),,,(21n x x x f 的符号差.惯性定理也可以叙述为,实二次型的标准形中系数为正的平方项个数是唯一的,它等于正惯性指数,而系数为负的平方项个数也是唯一的,它等于负惯性指数.§4 正定二次型一 授课内容:§4 正定二次型二 教学目的:通过本节的学习,让学生掌握正定(负定,半正定,半负定,不定)二次型或矩阵.(顺序)主子式的定义,掌握各种类型的判别法.三 教学重点:正定二次型. 四 教学难点:判别方法 五 教学过程:定义4 实二次型),,,(21n x x x f 称为正定的,如果对于任意一组不全为零的实数n c c c ,,,21 都有0),,,(21>n c c c f .显然,二次型),,,(21n x x x f 221n x x ++=是正定的,因为只有在021====n c c c 时,221n c c ++ 才为零.一般的,实二次型),,,(21n x x x f 2222211n n x d x d x d +++=是正定的,当且仅当0>i d n i ,,2,1 =.可以证明,非退化的实线性替换保持正定性不变.定理5 n 元实二次型),,,(21n x x x f 是正定的充分必要条件是它的正惯性指数等于n .定理5说明,正定二次型),,,(21n x x x f 的规范形为221n y y ++ (5)定义5 实对称矩阵A 称为正定的,如果二次型AX X '正定. 因为二次型(5)的矩阵是单位矩阵E ,所以一个实对称矩阵是正定的,当且仅当它与单位矩阵合同.推论 正定矩阵的行列式大于零. 定义6 子式iii i iii a a a a a a a a a P 212222111211=),,2,1(n i =称为矩阵nn ij a A )(=的顺序主子式.定理6 实二次型),,,(21n x x x f ∑∑===ni nj j i ij x x a 11AX X '=是正定的充分必要条件为矩阵A 的顺序主子式全大于零.例 判断二次型3231212322213214845),,(x x x x x x x x x x x x f +-+++=是否正定.解:),,(321x x x f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛----524212425它的顺序主子式05> ,01225> , 0524212425>---- 因之,),,(321x x x f 正定. 与正定性平行,还有下面的概念.定义7 设),,,(21n x x x f 是一实二次型,对于任意一组不全为零的实数n c c c ,,,21 ,如果都有0),,,(21<n c c c f ,那么),,,(21n x x x f 称为负定的;如果都有0),,,(21≥n c c c f ,那么),,,(21n x x x f 称为半正定的;如果都有0),,,(21≤n c c c f ,那么),,,(21n x x x f 称为半负定的;如果它既不是半正定又不是半负定,那么),,,(21n x x x f 就称为不定的.对于半正定,我们有定理7 对于实二次型),,,(21n x x x f AX X '=,其中A 是实对称的,下面条件等价:(1)),,,(21n x x x f 是半正定的. (2)它的正惯性指数与秩相等. (3)有可逆实矩阵C ,使⎪⎪⎪⎪⎪⎭⎫⎝⎛='n d d d AC C21,其中,0≥i d n i ,,2,1 =. (4)有实矩阵C 使C C A '=.(5)A 的所有主子式皆大于或等于零.注意:在(5)中,仅有顺序主子式大于或等于零是不能保证半正定性的.比如,()⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-=-=212122211000),(x x x x x x x f 就是一个反例.。

第五章三节二次型和对称矩阵的有定性

第五章三节二次型和对称矩阵的有定性

2 2 2 f (x1, x2 , x3 ) = - 2x1 - 2x2 - x3 + 2x1x2 - 2x2 x3 例8 设二次型
试判断 f (x1, x2 , x3 )的有定性。 解
轾 -2 1 犏 二次型的矩阵 A = 犏 - 2 1 犏 犏 -1 0 臌 A的各顺序主子式 -2 det A = - 2 < 0,det A = 1 2 1
det A = 1> 0,det A2 = 1 1 det A = det A = t 3
1 t t 1
= 1- t 2 = > 0
t -1 1 2 = - 5t 2 - 4Fra bibliotek > 0 5
-1 2
4 解之得- < t < 0. 5 4 即当 - < t < 0时,二次型 f (x1, x2 , x3 )为正定二次型。 5
第三节 二次型和对称矩阵的有定性
一、正定二次型和正定矩阵
定义5.6 设n元二次型 f (x1, x2 ,Lxn ) = X T AX 定义5.6 ,其中A为n阶实 0 对称矩阵。如果对于任意的 X = (x1, x2 ,Lxn )T ,有
f (x1, x2 ,Lxn ) = X T AX > 0 则称该二次型为正定二次型 正定二次型,矩阵A称为正定矩阵 正定矩阵。 正定二次型 正定矩阵
T
推论2 推论 实对称矩阵A为正定矩阵的充分必要条件是存在可 逆矩阵C,使得 A = CT C. 推论3 推论 如果实对称矩阵A为正定矩阵,则A的行列式大于零。 定理5.8 实对称矩阵A为正定矩阵的充分必要条件是A的所有 定理 特征值都是正数。 例2 如果实对称矩阵A为正定矩阵,则 A- 1也是正定矩阵。 证法1 证法 由 AT = A,有

第五章 高等代数二次型

第五章 高等代数二次型

a1n x1 a2 n x2 , x x ann n
其中 aij=aji,i,j=1,2,…,n,则二次型可用矩阵的乘积表示为
f ( x1 , x2 ,, xn ) xAx
其中 A 称为该二次型的矩阵,A 的秩称为该二次型的秩。
二次型
n
§1 二次型及其矩阵表示
若在 n 元二次型中令 aij=aji,由于 xi xj=xj xi,则二次型可表示为
f ( x1 , x2 ,, xn ) aij xi x j
i 1 j 1
n
若记
a11 a21 A a n1
a12 a22 an 2
二次型
§2 标准型
§2 标准型
用配方法化二次型为标准型
定理:数域 P 上任意一个二次型都可以经过非退化的线性替换化为 标准型。
用合同法化二次型为标准型
定理:数域 P 上任意一个对称矩阵都合同于一个对角矩阵。
行列式
例题 1、 化下列二次型为标准型
§1 n阶行列式的定义
(1)
(2)
2 2 f ( x1, x2 , x3 ) x12 2x1x2 2x1x3 2x2 8x2 x3 5x3
其中对角线上 1 和 -1 的个数都是唯一确定的,且其和 r 等于矩阵 A 的秩。 问题:试给出两个实对称矩阵合同的充要条件。
二次型
§4 正定二次型
§4 正定二次型
正定二次型的定义和判定
定义:实二次型 f ( x1 , x2 ,, xn ) 是正定的,如果对任意一组不全为零的 的实数 c1 , c2 ,, cn 都有 f (c1 , c2 ,, cn ) 0 。

线性代数:第五章二次型

线性代数:第五章二次型

线性代数:第五章⼆次型第五章⼆次型§1 ⼆次型及其矩阵表⽰⼀、⼆次型及其矩阵表⽰设是⼀个数域,⼀个系数在数域中的的⼆次齐次多项式称为数域上的⼀个元⼆次型,简称⼆次型.定义1 设是两组⽂字,系数在数域P中的⼀组关系式(2)称为由到的⼀个线性替换,或简称线性替换.如果系数⾏列式,那么线性替换(2)就称为⾮退化的.线性替换把⼆次型变成⼆次型.令由于所以⼆次型(1)可写成把(3)的系数排成⼀个矩阵(4)它称为⼆次型(3)的矩阵.因为所以把这样的矩阵称为对称矩阵,因此,⼆次型的矩阵都是对称的.令或应该看到⼆次型(1)的矩阵A的元素,当时正是它的项的系数的⼀半,⽽是项的系数,因此⼆次型和它的矩阵是相互唯⼀决定的.由此可得,若⼆次型且,则.令,于是线性替换(4)可以写成或者经过⼀个⾮退化的线性替换,⼆次型还是变成⼆次型,替换后的⼆次型与原来的⼆次型之间有什么关系,即找出替换后的⼆次型的矩阵与原⼆次型的矩阵之间的关系.设(7)是⼀个⼆次型,作⾮退化线性替换(8)得到⼀个的⼆次型,⼆、矩阵的合同关系现在来看矩阵与的关系.把(8)代⼊(7),有易看出,矩阵也是对称的,由此即得.这是前后两个⼆次型的矩阵的关系。

定义2 数域P上两个阶矩阵,称为合同的,如果有数域P上可逆的矩阵,使得.合同是矩阵之间的⼀个关系,具有以下性质:1) ⾃反性:任意矩阵都与⾃⾝合同.2) 对称性:如果与合同,那么与合同.3) 传递性:如果与合同,与合同,那么与合同.因此,经过⾮退化的线性替换,新⼆次型的矩阵与原来⼆次型的矩阵是合同的。

这样把⼆次型的变换通过矩阵表⽰出来,为以下的讨论提供了有⼒的⼯具。

最后指出,在变换⼆次型时,总是要求所作的线性替换是⾮退化的。

从⼏何上看,这⼀点是⾃然的因为坐标变换⼀定是⾮退化的。

⼀般地,当线性替换是⾮退化时,由上⾯的关系即得.这也是⼀个线性替换,它把所得的⼆次型还原.这样就使我们从所得⼆次型的性质可以推知原来⼆次型的⼀些性质.§2 标准形⼀、⼆次型的标准型⼆次型中最简单的⼀种是只包含平⽅项的⼆次型. (1)定理1 数域上任意⼀个⼆次型都可以经过⾮化线性替换变成平⽅和(1)的形式.易知,⼆次型(1)的矩阵是对⾓矩阵,反过来,矩阵为对⾓形的⼆次型就只包含平⽅项.按上⼀节的讨论,经过⾮退化的线性替换,⼆次型的矩阵变到⼀个合同的矩阵,因此⽤矩阵的语⾔,定理1可以叙述为:定理2 在数域上,任意⼀个对称矩阵都合同于⼀对⾓矩阵.定理2也就是说,对于任意⼀个对称矩阵都可以找到⼀个可逆矩阵使成对⾓矩阵.⼆次型经过⾮退化线性替换所变成的平⽅和称为的标准形.例化⼆次型为标准形.⼆、配⽅法1.这时的变量替换为令,则上述变量替换相应于合同变换为计算,可令.于是和可写成分块矩阵,这⾥为的转置,为级单位矩阵.这样矩阵是⼀个对称矩阵,由归纳法假定,有可逆矩阵使为对⾓形,令,于是,这是⼀个对⾓矩阵,我们所要的可逆矩阵就是.2. 但只有⼀个.这时,只要把的第⼀⾏与第⾏互换,再把第⼀列与第列互换,就归结成上⾯的情形,根据初等矩阵与初等变换的关系,取⾏显然.矩阵就是把的第⼀⾏与第⾏互换,再把第⼀列与第列互换.因此,左上⾓第⼀个元素就是,这样就归结到第⼀种情形.3. 但有⼀与上⼀情形类似,作合同变换可以把搬到第⼀⾏第⼆列的位置,这样就变成了配⽅法中的第⼆种情形.与那⾥的变量替换相对应,取,于是的左上⾓就是,也就归结到第⼀种情形.4.由对称性,也全为零.于是,是级对称矩阵.由归纳法假定,有可逆矩阵使成对⾓形.取,就成对⾓形.例化⼆次型成标准形.§3 唯⼀性经过⾮退化线性替换,⼆次型的矩阵变成⼀个与之合同的矩阵.由第四章§4定理4,合同的矩阵有相同的秩,这就是说,经过⾮退化线性替换后,⼆次型矩阵的秩是不变的.标准形的矩阵是对⾓矩阵,⽽对⾓矩阵的秩就等于它对⾓线上不为零的平⽅项的个数.因之,在⼀个⼆次型的标准形中,系数不为零的平⽅项的个数是唯⼀确定的,与所作的⾮退化线性替换⽆关,⼆次型矩阵的秩有时就称为⼆次型的秩.⾄于标准形中的系数,就不是唯⼀确定的.在⼀般数域内,⼆次型的标准形不是唯⼀的,⽽与所作的⾮退化线性替换有关.下⾯只就复数域与实数域的情形来进⼀步讨论唯⼀性的问题.设是⼀个复系数的⼆次型,由本章定理1,经过⼀适当的⾮退化线性替换后,变成标准形,不妨假定化的标准形是. (1)易知就是的矩阵的秩.因为复数总可以开平⽅,再作⼀⾮退化线性替换(2)(1)就变成(3)(3)就称为复⼆次型的规范形.显然,规范形完全被原⼆次型矩阵的秩所决定,因此有定理3 任意⼀个复系数的⼆次型经过⼀适当的⾮退化线性替换可以变成规范形,且规范形是唯⼀的.定理3 换个说法就是,任⼀复数的对称矩阵合同于⼀个形式为的对⾓矩阵.从⽽有两个复数对称矩阵合同的充要条件是它们的秩相等.设是⼀实系数的⼆次型.由本章定理1,经过某⼀个⾮退化线性替换,再适当排列⽂字的次序,可使变成标准形(4)其中是的矩阵的秩.因为在实数域中,正实数总可以开平⽅,所以再作⼀⾮退化线性替换(5)(4) 就变成(6)(6)就称为实⼆次型的规范形.显然规范形完全被这两个数所决定.定理4 任意⼀个实数域上的⼆次型,经过⼀适当的⾮退化线性替换可以变成规范形,且规范形是唯⼀的.这个定理通常称为惯性定理.定义3 在实⼆次型的规范形中,正平⽅项的个数称为的正惯性指数;负平⽅项的个数称为的负惯性指数;它们的差称为的符号差.应该指出,虽然实⼆次型的标准形不是唯⼀的,但是由上⾯化成规范形的过程可以看出,标准形中系数为正的平⽅项的个数与规范形中正平⽅项的个数是⼀致的,因此,惯性定理也可以叙述为:实⼆次型的标准形中系数为正的平⽅项的个数是唯⼀的,它等于正惯性指数,⽽系数为负的平⽅项的个数就等于负惯性指数.定理5 (1)任⼀复对称矩阵都合同于⼀个下述形式的对⾓矩阵:.其中对⾓线上1 的个数等于的秩.(2)任⼀实对称矩阵都合同于⼀个下述形式的对⾓矩阵:,其中对⾓线上1的个数及-1的个数(等于的秩)都是唯⼀确定的,分别称为的正、负惯性指数,它们的差称为的符号差..§4 正定⼆次型⼀、正定⼆次型定义4 实⼆次型称为正定的,如果对于任意⼀组不全为零的实数都有.实⼆次型是正定的当且仅当.设实⼆次型(1)是正定的,经过⾮退化实线性替换(2)变成⼆次型(3)则的⼆次型也是正定的,或者说,对于任意⼀组不全为零的实数都有.因为⼆次型(3)也可以经⾮退化实线性替换变到⼆次型(1),所以按同样理由,当(3)正定时(1)也正定.这就是说,⾮退化实线性替换保持正定性不变.⼆、正定⼆次型的判别定理6 实数域上⼆次型是正定的它的正惯性指数等于.定理6说明,正定⼆次型的规范形为(5)定义5 实对称矩阵A称为正定的,如果⼆次型正定.因为⼆次型(5)的矩阵是单位矩阵E,所以⼀个实对称矩阵是正定的它与单位矩阵合同.推论正定矩阵的⾏列式⼤于零.定义6 ⼦式称为矩阵的顺序主⼦式.定理7 实⼆次型是正定的矩阵的顺序主⼦式全⼤于零.例判定⼆次型是否正定.定义7 设是⼀实⼆次型,如果对于任意⼀组不全为零的实数都有,那么称为负定的;如果都有,那么称为半正定的;如果都有,那么称为半负定的;如果它既不是半正定⼜不是半负定,那么就称为不定的.由定理7不难看出负定⼆次型的判别条件.这是因为当是负定时,就是正定的.定理8 对于实⼆次型,其中是实对称的,下列条件等价:(1)是半正定的;(2)它的正惯性指数与秩相等;(3)有可逆实矩阵,使其中;(4)有实矩阵使.(5)的所有主⼦式皆⼤于或等于零;注意,在(5)中,仅有顺序主⼦式⼤于或等于零是不能保证半正定性的.⽐如就是⼀个反例.证明 Th8,设的主⼦式全⼤于或等于零,是的级顺序主⼦式,是对应的矩阵其中是中⼀切级主⼦式之和,由题设,故当时,,是正定矩阵.若不是半正定矩阵,则存在⼀个⾮零向量,使令与时是正定矩阵⽭盾,故是半正定矩阵.Th8记的⾏指标和列指标为的级主⼦式为,对应矩阵是,对任意,有,其中⼜是半正定矩阵,从⽽.若,则P234,12T,存在使与⽭盾,所以.◇设为级实矩阵,且,则都是正定矩阵.◇设为实矩阵,则都是半正定矩阵.证明是实对称矩阵,令,则是维实向量是半正定矩阵,同理可证是半正定矩阵.◇设是级正定矩阵,则时,都是正定矩阵.证明由于正定,存在可逆矩阵,使,,从⽽为正定矩阵.正定⼜正定, ,正定,正定.对称当时,,从⽽正定.当时,所以与合同,因⽽正定.第五章⼆次型(⼩结)⼀、⼆次型与矩阵1. 基本概念⼆次型;⼆次型的矩阵和秩;⾮退化线性替换;矩阵的合同.2. 基本结论(1) ⾮退化线性替换把⼆次型变为⼆次型.(2) ⼆次型可经⾮退化的线性替换化为⼆次型.(3) 矩阵的合同关系满⾜反⾝性、对称性和传递性.⼆、标准形1. 基本概念⼆次型的标准形;配⽅法.2. 基本定理(1) 数域上任意⼀个⼆次型都可经过⾮退化的线性替换化为标准形式.(2) 在数域上,任意⼀个对称矩阵都合同于⼀对⾓矩阵.三、唯⼀性1. 基本概念复⼆次型的规范形;实⼆次型的规范形,正惯性指数、负惯性指数、符号差.2. 基本定理(1) 任⼀复⼆次型都可经过⾮退化的线性替换化为唯⼀的规范形式的秩.因⽽有:两个复对称矩阵合同它们的秩相等.(2) 惯性定律:任⼀实⼆次型都可经过⾮退化线性替换化为唯⼀的规范形式的秩,为的惯性指数.因⽽两个元实⼆次型可经过⾮退化线性替换互化它们分别有相同的秩和惯性指数.(4) 实⼆次型的标准形式中系数为正的平⽅项的个数是唯⼀确定的,它等于正惯性指数,⽽系数为负的平⽅项的个数就等于负惯性指数.四、正定⼆次型1. 基本概念正定⼆次型,正定矩阵;顺序主⼦式,负定⼆次型,半正定⼆次型,半负定⼆次型,不定⼆次型.2. 基本结论(1) ⾮退化线性替换保持实⼆次型的正定性不变.(2) 实⼆次型正定①与单位矩阵合同,即存在可逆矩阵,使得;②的顺序主⼦式都⼤于零.③的正惯性指数等于.。

线性代数43二次型与对称矩阵的有定性

线性代数43二次型与对称矩阵的有定性

1 0, 1 0,..., 1 0 A-1的特征值都大于0,故A-1正定
1 2
n
A 0 0是A的特征值 A 0 0不是A的特征值
证法2 ∵A正定 A : E 即存在可逆矩阵C,使得
A CT E C CTC
A1 (C T C )1 C 1(C T )1 C 1(C 1 )T DT D DT E D
a11 a12 a13 ... a1n a21 a22 a23 ... a2n
A
a31
a32
a33
...
a3n
an1 an2 an3 ... ann
定义4.5
A1 a11
A2
a11 a21
a12 a22
a11 A3 a21
a31
a12 a22 a32
a13 a23 ... An A a33
ann 0
a1n a2n ann
0
1
M
0
0
负定的判别:
矩阵A负定
矩阵 (A正) 定.
x1
证: A负定
n
1
∴A ~
2
n
A正 定
1
2
正定
n
1 0,2 0,...,n 0
A的所有特征值
准则2 矩阵A为正定矩阵
A与单位矩阵E合同.
证 充分性:若 A : E 则由于 E 正定, 故A正定.
必要性: 设A正定, 则A的特征值都大于0 1
∵A是实对称矩阵 ∴存在正交矩阵Q,使得 2
cnn
yn
要证 yT B y 0
yT By yT ( C T AC ) y ( (yCTCy)TT ) A (C y) xT Ax 0

第五章二次型

第五章二次型

正交变换下的标准形
第五章 二次型
例1. 用正交变换把将二次型
§5.2 化二次型为标准形
f(x1, x2, x3) = x12+x22+x322x1x3 化为标准形.
1 0 1 解: f 的矩阵A = 0 1 0 ,
1 0 1
|E–A| = (–1)(–2).
所以A的特征值为1= 0, 2= 1, 3= 2. 代入(E–A)x = 0求得对应的特征向量
第五章 二次型
§5.3 正定二次型
例如 f = 2x1x2 + 2x1x3 – 6x2x3 在三种不同的可 逆线性变换下可分别化为下列标准形:
f
=
3y12
1 2
(3+
17
)y22+
1 2
(
17
3)y32
f = 2z12 – 2z22 +6z32
f
2
y12
1 2
y22 6 y32 .
可见秩(f) = 3, f的正惯性指数p = 2, f的负惯性
第五章 二次型
§5.1 二次型及其矩阵表示
二次型的系统研究是从 18 世纪开始的
起源于对二次曲线/面的分类问题的讨论
1801年, 德国数学家高斯:
引进了二次型的正定、负定、半正定和半负定等术语
法国数学家柯西:
当方程是标准型时, 二次曲面用二次项的符号来进行分类 不太清楚,在化简成标准型时,为何总是得到同样数目的正项和负项
(3) A正定, P可逆 PTAP正定.
第五章 二次型
§5.3 正定二次型
3. 判定 定理5.4. 设A为n阶实对称矩阵, 则TFAE:
(1) A是正定矩阵;

线性代数第五章相似矩阵及二次型

线性代数第五章相似矩阵及二次型

1.2正交向量组与施密特正交化方法
b1 ,b2 , ,br1 ,br 是正交向量组.由
b1
,br
b1
,ar
b1 ,ar b1 ,b1
b1
b2 b2
br 1 ,ar br 1 ,br 1
br 1
,ar ,b2
b2
由归纳假设知b1 分别与 b2 ,b3 , ,br 1 正交,故
a1 b1,
a2
b2
b1, a2 b1, b1
b1
,
1.2正交向量组与施密特正交化方法
ar
br
b1 ,ar b1 ,b1
b1
b2 b2
,ar ,b2
b2
br 1 ,ar br 1 ,br 1
br 1 .
于是得 a1 ,a2 , ,ar b1 ,b2 , ,br 与等价.
若再将 b1 ,b2 , ,br 单位化,并记为
a,b a1b1 a2b2 anbn aTb
1.1向量的内积
例2 设向量 1
a
0
,
2
3
3
b
2
1
,
求a,
b
1
解 a,b 13 0 2 2(1) 31 4
3
1
练习设向量
a
1 0
,
b
1 2
,

a,
b
2
3
解 a,b 3111 0 (2) 2 (3) 2
1 2 3
6 3
1 1 1
1 0 1
1.2正交向量组与施密特正交化方法
b3
a3
b1, a3 b1, b1
b1
b2 , b2 ,
a3 b2

第五章二次型--精品PPT课件

第五章二次型--精品PPT课件

定义:复数域C上的n元二次齐次函数
f ( x1, x2 , , xn )
n j1
n i 1
aij
xi
x
j
其中 aij a ji ,称为C上n元Hermite型.
注: Hermite型是二次型的推广.
Hermite型矩阵_2
n元Hermite型 f ( x1, x2, , xn ) X ' AX
定理: A=A, B=B∈Cn×n,则A合同于B
r(A) = r(B)
定理: A=A, B=B∈Rn×n ,则A合同于B
A与B有相同的秩与符号差 A与B有相同的正惯性指数和负惯性指数 A与B有相同的正惯性指数和秩 A与B有相同的符号差和秩
注 1 : C上n阶对称阵,按合同关系分类共有n+1类
Hermite型矩阵_4
定理:设A是一个Hermite阵,则必存在一个可 逆阵C∈Cn×n,使 CAC为对角阵且主对角线元 素是实数.
定理:设 f (x1, …, xn) 是Hermite型, 则存在非 退化线性替换X=CY,使
f ( x1, x2 , , xn ) d1 y1 y1 d2 y2 y2 dn yn yn
二次型的标准型
引理:设0≠A’=A∈Kn×n,则必存在可逆阵C, 使C’AC的第(1,1)元素不等于0.
定理:设A’=A∈Kn×n,则存在可逆阵C∈Kn×n, 使C’AC为对角阵.
定理:设 f (x1…xn) 是K上n元二次型, 则存在 非退化线性替换X=CY,使
f ( x1, x2 , , xn ) d1 y12 d2 y22 dn yn2
定理中称r为f (x1…xn)的秩, p为f (x1…xn)的 正惯性指数, q = r-p称为f (x1…xn)的负惯性 指数, s = p-q称为f (x1…xn)的符号差.

二次型

二次型
第五章 二次型 阶实对称矩阵,X是 维列向量 维列向量,则 设A是n阶实对称矩阵 是n维列向量 则f(X)=XTAX 是 阶实对称矩阵 是一个实二次型,简称为二次型 简称为二次型,本章研究二次型的基 是一个实二次型 简称为二次型 本章研究二次型的基 本性质和标准形.特别是正定二次型的性质 特别是正定二次型的性质.同时也研 本性质和标准形 特别是正定二次型的性质 同时也研 究对称矩阵、正定矩阵、反对称矩阵的性质. 究对称矩阵、正定矩阵、反对称矩阵的性质 一、基本概念和重要结果 1.二次型 二次型f(X)=XTAX的矩阵是对称阵 即AT=A.下面 的矩阵是对称阵,即 二次型 的矩阵是对称阵 下面 我们给出关于对称矩阵的一些重要结果. 我们给出关于对称矩阵的一些重要结果 (1)设A和B是对称矩阵 则A+B,A*是对称矩阵 若 是对称矩阵,则 设 和 是对称矩阵 , 是对称矩阵.若 A可逆 则A-1是对称矩阵 更一般地 若f(x)是任一多项 可逆,则 是对称矩阵.更一般地 更一般地,若 可逆 是任一多项 是对称矩阵. 式,则f(A)是对称矩阵 则 是对称矩阵 (2)设A和B是对称矩阵 则AB是对称矩阵当且仅当 设 和 是对称矩阵,则 是对称矩阵当且仅当 是对称矩阵 AB=BA.
A = C
T
利用反证法. 利用反证法
I p 0 0
0 − Iq 0
0 0C 0
其中C可逆 其中 可逆. 可逆
那么对于任意的X,令 都有: 若p=0,那么对于任意的 令Y=CX,都有 那么对于任意的 都有 q − I q 0 2 T T X AX = Y Y = ∑ ( − y i ) ≤ 0 0 i =1 0 这显然与题目条件X 相矛盾,于是有 这显然与题目条件 1TAX1>0相矛盾 于是有 相矛盾 于是有p≠0. 同理,若 将会导致与X 相矛盾,那么也有 同理 若q=0,将会导致与 2TAX2<0相矛盾 那么也有 将会导致与 相矛盾 q≠0. 于是我们可以取Y 于是我们可以取 0T=(1,0,…,0,1(p+1),…,0),并令 并令 X0=C-1Y0≠0. 显然有, 显然有 X0TAX0=0. □

二次型知识点总结

二次型知识点总结

第五章 二次型( * * )一、复习指导:二次型这一章节也是一个比较重要的章节,在首师大的大题中,往往会出现关于判断二次型是否为正定二次型的题目,我们要掌握的:正定二次型的充分必要条件;还可能会出化二次型为标准型,所以我们还要知道如何化二次型为标准型。

二、考点精讲: (一)基本概念1、二次型—含n 个变量n x x x ,,,21 且每项皆为二次的齐次多项式∑∑==--=+++++=n i nj j i ij n n n n n nn n x x a x x a x x a x a x a x x x f 111,12112221112122),,,( 称为二次型。

令⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n x x x X 21,⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211,则AX X X f T =)(。

矩阵A 称为二次型的矩阵,显然A A T =,即二次型的矩阵都是对称矩阵,矩阵A 的秩称为二次型的秩。

2、标准二次型—只含有平方项不含交叉项的二次型称为标准二次型。

3、矩阵合同—设B A ,为n 阶矩阵,若存在可逆矩阵P ,使得B AP P T =,称矩阵A 与B 合同,记为B A ≅。

4、二次型的标准化—设AX X X f T =)(为一个二次型,若经过可逆的线性变换PYX =(即P 为可逆矩阵)把二次型AX X X f T =)(化为2222211)()(mm T T PYX Ty l y l y l Y AP P Y AX X X f +++==== ,称为二次型的标准化。

5、规范二次型—二次型的标准型的系数为1和1-的标准型,称为二次型的规范型。

(二)二次型标准化方法 1.配方法 2.正交变换法(1)求A 的特征值n λλλ,,,21 。

(2)求A 的线性无关的特征向量n ξξξ,,,21 。

(3)将n ξξξ,,,21 进行施密特正交化和规范化得n γγγ,,,21 ,令),,,(21n Q γγγ =。

二次型和对称矩阵的关系

二次型和对称矩阵的关系

二次型和对称矩阵的关系
二次型和对称矩阵的关系非常密切。

在数学中,对称矩阵是一种
特殊的矩阵形式,它的转置矩阵等于本身。

而二次型则是一种由向量
构成的二次函数,可以用矩阵乘积的形式表示。

在矩阵中,如果一个矩阵A等于它的转置矩阵,即$A^T = A$,
那么称A为对称矩阵。

对称矩阵具有很多重要性质,比如它的特征值
都是实数,且可以通过正交对角化得到它的特征向量。

而二次型则是由一个$n$维向量$x$和一个$n$阶实对称矩阵$A$构
成的二次函数,即$f(x) = x^TAx$。

二次型在许多领域中都有广泛的
应用,比如物理学、统计学和优化等等。

对于任意一个实对称矩阵$A$,我们都可以通过正交变换将其对
角化为对角矩阵$D$,即$A = Q^TDQ$,其中$Q$是正交矩阵。

这样,我
们就可以将二次型表示为$f(x) = x^TAx = x^TQ^TDQx =
(Qx)^TD(Qx)$,即$f(x)$的值仅由$Qx$的分量决定,而且每个分量之
间是相互独立的。

这种分离变量的特性使得计算二次型的值非常方便,同时也为研究二次型提供了极大的方便。

因此,对称矩阵和二次型之间的关系是十分紧密的,它们相互依存、相互辅助,在数学中扮演着非常重要的角色。

高等数学第5章课件-§-5.1 二次型的矩阵表示

高等数学第5章课件-§-5.1 二次型的矩阵表示
2 i
n
i =1
∑≤ n aij xi x j 1≤ i < j
§5.1 二次型的矩阵表示
2、二次型的矩阵表示
i<j 1) 约定①中aij=aji,i<j ,由 xixj=xjxi,有
2 f ( x1 , x2 ,⋯ , xn ) = a11 x1 + a12 x1 x2 + ⋯⋯ + a1n x1 xn 2 + a21 x2 x1 + a22 x2 + ⋯ + a2 n x2 x n
| C 1C 2 |=| C 1 || C 2 |≠ 0, 即C1C2可逆. C .
§5.1 二次型的矩阵表示
2)合同矩阵具有相同的秩. B = C ′AC , C可逆 ⇒ 秩 ( B ) = 秩 ( A) 3)与对称矩阵合同的矩阵是对称矩阵. A′ = A, B = C ′AC , C 可逆
⇒ B′ = (C ′AC )′ = C ′A′C = C ′AC = B
. 它是非退化的.
cosθ − sinθ = 1. ∵系数行列式 sinθ cosθ
§5.1 二次型的矩阵表示
2、线性替换的矩阵表示 ⎛ c11 c12 ⎛ x1 ⎞ ⎛ y1 ⎞ ⎜ c21 c22 ⎜ x2 ⎟ ⎜ y2 ⎟ 令 X = ⎜ ⎟ ,Y = ⎜ ⎟ , C = ⎜ ⋮ ⋮ ⋯ ⋯ ⎜x ⎟ ⎜y ⎟ ⎜c c ⎝ n⎠ ⎝ n⎠ ⎝ n1 n 2 ... ... ⋯ ...
1 1 1
⎛ 1 52 6⎞ 2. ⎜ 5 2 4 7 ⎟ ⎜ 6 7 5⎟ ⎝ ⎠
⎛ n−1 n −1 n −1 n ... −1 n ⎞ ⎜ −1 n n−1 n −1 n ... −1 n ⎟ 4. ⎜⋯ ⋯ ⋯ ⋯ ⋯⎟ ⎜ −1 −1 −1 ... n−1 ⎟ n n n⎠ ⎝ n

线性代数二次型讲解学习

线性代数二次型讲解学习

线性代数二次型、二次型及其矩阵二次型与对称矩阵1定义:含有n 个变量的二次齐次函数:f (X 「X 2,卅,X n )a11X 1 a 22X 22 ann X n2a i2X i X 2 2a i3X|X 31112a (n 1)n X n 1X n称为二次型。

为便于用矩阵讨论二次型,令aij a ji,则二次型为:f 化险川各)III MXa 〔2 x 〔 X 2O|1 x〔n i,j 1a11a12a1nX1a21a22an1an2a2n,annX 2Xnf (X 1,X 2,|||,X n )X T A X ,且A 为对称矩阵。

由于对称矩阵A 与二次型f 是 对应关系,故称对称矩阵 A 为二次型f 的秩于是得解 由于A 不是对称矩阵,故A 不是二次型X AX 的矩阵•因为次型f 的矩阵,也称二次型f 为对称矩阵A 的二次型, R(A)也称为二12 3 X 1 A 01 1 , XX 2 3 3 2X 3求二次型X AX的矩 巨阵•例2 1 2 3 X AX (X 1,X 2,X 3) 01 1 3 32 X 1 X 2X 3f (X 1,X 2,X 3) x ; 2x ; 3x f 5x 1x 2 7X 2X 3试求二次型矩阵 A. 解an1 , a 222 ,a 333 , a 12a 21a 23a 315 2 9 22 ,f(N ,X 2,X 3)5929 2 7 2X1X2已知三阶矩阵A 和向量X,其中2 2 2x 1 x 2 2X 3 2X 1X 2 6X 1X 3 4X 2X 3 ,故此二次型的矩阵为、线性变换 1 标准形显然:其矩阵为对角阵。

2线性变换y 1, y 2,川,y n 的一个线性变量替换,简称线性变换。

y 1y 2,则线性变换可用矩阵形式表示为:x Cy y n 若C 0 ,称线性变换为满秩(线性)变换(或非退化变换),否贝称为降秩(线性)变换(或退化变换)。

f (X1,X 2,川,X n ) x T Ax (Cy)T A(Cy) y T C T ACy y T By ,其中定义:形如d 1xf d 2x ;d n X ;的二次型称为二次型的标准形。

3二次型和对称矩阵的正定性.ppt

3二次型和对称矩阵的正定性.ppt
则称该二次型为正定二次型, 矩阵A为正定矩阵. 例1 二次型f (x1, x2 ,, xn ) x12 x22 xn2是正定二次
型.因为对任意的 X (x1, x2 ,, xn )T 0,有 f (x1, x2 ,, xn ) 0.
而二次型 f (x1, x2 ,, xn ) x12 x22 xr2 (r n)不是 正定二次型.因为对任意的 X (0,,0, xr1,, xn )T 0,有
证明:
必要性 : 设二次型 f (x1, x2 ,, xn ) X T AX , ( AT A)正定,
在通过可逆线性替换X CY化成的标准形
d1x12 dk xk2 dn xn2也正定.
根据定理5.6,必有di 0(i 1,2,,n).由此可得二次 型的正惯性指数p n.
由于A的各顺序主子式 det Ak 0, k 1,2,, n.
根据归纳假设 , An1为正定矩阵. 所以, 存在n 1阶可逆矩阵 D, 使得DT An1D En1.

C1


D 0


An11
1
nn
C1T
AC1



DT
A T 1 n1
0 1
充分性 : 设二次型 f (x1, x2 ,, xn )的定惯性指数为 n.
则此二次型通过可逆线性替换可化为规范性
z12 z22 zn2
这是一个正定二次型.根据定理5.5, 原二次型
f (x1, x2,, xn ) X T AX也是正定二次型.
推论1 实对称矩阵A为正定矩阵的充分必要条件是A合 同于单位矩阵E.即存在可逆矩阵C, 有
记d ann T An11 ,

第5章(二次型)线性代数及其应用

第5章(二次型)线性代数及其应用
2 2 f (x1, x2) = a11x1 +a22x2 +2a12x1x2 2 2 = (a1x1 +a12x1x2) +(a22x2 +a12x1x2)
= x1(a11x1 +a12x2) + x2(a12x1 +a22x2) a11x1 +a12x2 = (x1, x2) a12x1 +a22x2
2 2 f = y12 + 2 y2 + 5 y3 . 通过正交变换化为标准形 (1)求参数 ,并指出二次曲面 f ( x1 , x2 , x3 ) = 10 所属的 求参数a 求参数
曲面类型; 曲面类型 (2)当 x T x = 1 时,求 f 的最大值, 其中 x = ( x1 , x2 , x3 )T . 当 的最大值
二次型的矩阵表示
a11 = (x1, x2) a12 x1 a11 其 x = ,A= 中 x2 a12
a12 x1 = xT Ax, a22 x2
a12 为 阶 称 阵 , A 二 对 矩 . a22
一般地, 一般地,对n元二次型 元二次型
第5章 二次型
建立了实二次型和实对称矩阵之间的 对应关系; 对应关系;从矩阵变换和函数化简两个角 度给出了二次型标准化的三种方法,进一 度给出了二次型标准化的三种方法, 步得到了二次型的规范形; 步得到了二次型的规范形;并对正定二次 型和正定矩阵的判别进行了讨论. 型和正定矩阵的判别进行了讨论.
第5章 二次型
λ1 λ2 T 求正交矩阵Q, ②求正交矩阵 ,使得 Q AQ = Λ = O λn
为对角阵; 为对角阵; ③正交变换x =Qy化二次型为标准形 f =yT Λy . 正交变换 化二次型为标准形

大学数学高数微积分第五章二次型第二节课堂讲义

大学数学高数微积分第五章二次型第二节课堂讲义

0 0 1 0 0 0
C1
P (1, i)
1
0
0
0
0
0
i行
0 0 0 0 1 0
0 0 0 0 0 1
i列
显然 矩阵
P( 1 , i )T = P( 1, i ) .
C1TAC1 = P( 1 , i ) A P( 1 , i ) 就是把 A 的第一行与第 i 行互换,再把第一列与第
z1 y1 y3 ,
再令
z
2
y2
,

z 3 y 3 ,
y1 y2
z1 z2
,
z3
,
y 3 z 3 ,

f( x 1 ,x 2 ,x 3 ) 2 z 1 2 2 z 2 2 8 z 2 z 3 2 z 3 2 2 z 1 2 2 (z 2 2 z 3 )2 8 z 3 2 2 z 3 2 2 z1 2 2 (z2 2 z3)2 6 z3 2.
x
2 3
8
x2
x3
2(
x1
x2
x3
)2
x
2 2
x
2 3
4
x
2
x3
三、配方法的矩阵形式
前面所讲的配方法的过程,可以用矩阵写出来.
我们按前面的每一种情况写出相应的矩阵.
情形一 a11 0
这时的变数替换为
x1 y1
n
a
1 11
a
1
j
x
j
,
x
2
y2
,
j2
x n y n ,
该变数替换的矩阵为
i 列互换的结果.
因此, C1TAC1 左上角第一个元
素就是 aii ,这样就归结到第一种情形.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:f
的矩阵为
A
1 2
2 2
0 2
0 2 3
返回 上一页 下一页
1 2 0 AE2 2 2 (1 )(2)(5), 1 ,2,5
0 2 3
1 1时, 2
A1E2
0
2 3 2
0 1 2~0 4 0
0 1 0
022,
x1 x2
2x3 2x3
令 x3
1
,则
x1 x2
2 2

1
2
2
3
5
q1
b1 b1
1 5
,
q2
b2 b2
3
4 5
0
5
3 5
返回
上一页 下一页
当 3 7时,解方程组A7Ex0,即
8 2 2 x1 0
2
5
4
x2
0
由于
2
8 2 2 2 4 2 5 4 0 9
4 5 x3 0
5 2 9 0
4 1
5 2 1 0
0 1
1 1 1 0
例如,二次型 f x 1 2 x 2 2 x 4 2 2 x 2 x 3 x 2 x 4 的
1 0 0 0
矩阵
A
0
0 0
1
1
1 2
1 0 0
1 2
01

返回 上一页 下一页
定义2:f k 1y 1 2 k2y2 2 knyn 2称为二次型 的标准形 (其矩阵为对角形),其中的正 (负)
系数的个数称为二次型的正 (负) 惯性系数。
f x1,x2,x3 =x122x1x2 2x1x34x224x328x2x3
=x122x1 x2 x3 4x224x328x2x3
=
x1
x2 x3
2
x2 x3
2 4x22 4x32 8x2x3
2
2
= x1 x2x3 3 x2 x3
返回 上一页 下一页

y1
x1
x2
x3,
返回 上一页 下一页
2 5
2 35
1
3
P
q1 ,
q2
,
q3
1 5
4 35
2
3
0
5 35
2 3
为正交矩阵,且
2
PT
AP
2
7
返回 上一页 下一页
作正交变换 x Py,即
x1 x2 x3
2 5 1 5
0
2 35
4 35
5 35
1
3 2 3 2 3
y1 y2 y3
1 6 1 6 2
6
1 1
2 1 2
0
3 1 3 1
y1 y2 y3
3
返回 上一页 下一页
原二次型可化为 f 4y229y32 由于方程在4y22 9y32 1在三维空间中表示椭圆柱 面,二正交变换不会改变几何特征,故
f x1,x2,x3 1也表示椭圆柱面。
例5.4 求一个正交变换,将二次型
例5.1 将二次型 f= x 1 2 2 x 1x 2 2 x 2x 3 2 x 3 2写成矩 阵表示形式。
解:f的系数矩阵为
1 1 0
A
1 0
0 1
1 2
返回 上一页 下一页
故f的矩阵形式表示式为
1 1 0 x1
f x1,x2,x31
0
1x2
0 1 2 x3
返回 上一页 下一页
问题:如何求可逆线性变换
故原二次型可化为 f 2y122y2 27y3 2。
返回 上一页 下一页
例5.5 求可逆变换化二次型
fx 1 , x 2 , x 3 = x 1 2 4 x 2 2 4 x 3 2 2 x 1 x 2 2 x 1 x 3 8 x 2 x 3
为标准形,并写出所作的变换矩阵。
解:由于f含x1的平方项,将含x1的项归并进行配 方,得
(2)对称矩阵A负定( f xT Ax 负定) A的奇 数阶主子式为负,偶数阶主子式为正,即
(1)k Ak 0
参考题2、判定二次型f 5 x2 6 y2 4 z2 4 x y 4 xz 的正定性。
返回 上一页 下一页
解:f
的矩阵为
A
5 2
2 6
2 0

2 0 4
5 2 2 5 2 A 1 50 ,A 22 62 60 ,A 32 6 0 8 0 0
x1 c11y1 c12y2 c1n yn
x2
c21y1 c22y2
c2n yn
xn cn1y1 cn2 y2 cnnyn
将二次型化为标准形。
返回 上一页 下一页
解:令 C ( c i j) n n ,x x 1 ,x 2 ,L ,x n T ,y y 1 ,y 2 ,L ,y n T 则线性变换记为x Cy 。
解:二次型f的矩阵为
由于
1 1 t A1 2 0,
t 0 1
11 t A1 2 012t2
t 01
a111,
a11 a12111, a21 a22 12
A12t2
当二次型f正定时,必有 A12t2 0,故 t
1。
2
返回 上一页 下一页
例5.8 判别二次型 f= 5 x 1 2 6 x 2 2 4 x 3 2 4 x 1 x 2 4 x 1 x 3 的 正定性。 解:二次型f的矩阵为
fx 1 , x 2 , x 3 = 5 x 1 2 5 x 2 2 3 x 3 2 2 x 1 x 2 6 x 1 x 3 6 x 2 x 3
化为标准形,并指出 f x1,x2,x3 1表示何种二次
曲面 。
5 1 3
解:二次型f的矩阵 A1 5 3,rA 2,
由于
3 3 3
5 1 3
AE 1 5 3 49
3 3 3
返回 上一页 下一页
故矩阵A的特征值为10,24,39,各特征值
对应的线性无关的特征向量分别为
1 1 1
p1 1 , p2 1, p3 1
2
0
1
由于A的三个特征值互异,故 p1, p2, p3两两正交,
将其单位化,得
返回 上一页 下一页
1
y2 x2 x3,
y3
x3,

x
1
y1
y2,
x2 y2 y3,
x
3
y3,
则二次型化为 f =y12 3y22。所用变换矩阵为
1 1 0
P
0 0
1 0
1 1
显然P可逆 P 1 ,但P不是正交矩阵。
返回 上一页 下一页
§2、正定二次型与正定矩阵
定义3:若对任何 x0,都有
f x T A x 0f x T A x 0,则称 f 为正定(负
0 2 2 0 0 0
x1 x2
1 2
x3,
x3
令x3
2,

x1 x2
1 2
, 1
1 2 2

p3
2 3
2 3
2 3
2 3
2 3
2 3
,故所求正交变换为x=Py,
P
2 3
1 3
1 3
2 3
2 3
2 3
标准形为 f y122y2 25y3 2。
返回 上一页
下一页
例5.2 已知二次型 f= 5 x 1 2 5 x 2 2 x 3 2 2 x 1 x 2 6 x 1 x 3 6 x 2 x 3
的秩为2,求参数 。 5 1 3
解:二次型f的矩阵为
A
1
5
3
3 3
由于f的秩为2,即 r A 2,故 A 0 ,即
5 1 3
1 5 3 24 3 0
3 3
解得 3 。显然,A中左上角的二阶子式非零,
故 3 时,r A 2。
返回 上一页 下一页
例5.3 求一个正交变换,将二次型
f x T A x C y T A C y y T C T A C y ,显然,当
C T A C 为对角形时,f 即为标准形。故问题可 转化为“对对称阵,求一可逆阵C,使C T A C 为对角形”。
将Ch4§4中定理11“若A对称,则必有正交 阵P,使 P 1 A即P P T A为P 对角阵”应用于二次 型,则有如下定理:
定)二次型,并称矩阵A为正定(负定)的,记为 A>0(A<0)。
定理2:n元二次型 f xT Ax 正定 其标 准形中的n个系数全为正,即 f 的正惯性系数 为n f 的个特征值全为正。
定理3:(1)对称矩阵A正定( f xT Ax 正定)
返回 上一页 下一页
A的各阶主子式全为正,即
A 1a11 0,A 2a a1 21 1a a1 22 20,,A na a1 n11 a a1 nnnA0
0 1
1 2 1
2 4 5 0 18 18 0 0 0
同解的方程组为
x1
1 2
x3
0 0 0
0 0 0
x 2 x 3
返回 上一页 下一页
1
基础解系为 p 3
2
2
故特征值 3 7对应的线性无关的特征向量
1
为p 3
2
1
2
3
将单位化,得 q 3
2 3
,故
2 3
解:设λ为矩阵A的特征值,对应的特征向量为α ,
由于
5 2 2 A2 6 0,
2 0 4
5 2 2 A2 6 0 80
2 0 4
a115,
a11
a12
相关文档
最新文档