初一数学 因式分解练习题
七年级因式分解刷题练习92题-答案版
第X 讲因式分解刷题练习(92题)-7上复习用【例题1】()()()()23222336x y x y y x y x x y -++---+【分析】 原式()()3221x y x =--【例题2】222944a b bc c -+-【分析】 原式()()()()22222944923232a b bc c a b c a b c a b c =--+=--=+--+【例题3】3223x x xy y y ----【分析】 原式()()221x xy y x y =++--【例题4】54323331x x x x x -+-+-【分析】 原式()()()223111x x x x x =-++-+【例题5】222595121824x y z xy yz zx --+-+【分析】 原式()()3553x y z x y z =++--【例题6】22121115x xy y --【分析】 原式()()4335x y x y =+-【例题7】2408124848x x --【分析】 原式()()204612x x =+-【例题8】633619216x x y y --【分析】 原式()()()()2222232439x y x y x xy y x xy y =+--+++【例题9】2222x yz axyz yz xy xz az ++---【分析】 原式()()xy z az xz y =-+-【例题10】222222444222a b b c c a a b c ++---原式()()()()b c a b c a c a b a b c =+++-+-+-【例题11】22015201420162015x x -⨯-【分析】 原式()()201512015x x =+-【例题12】()()()22592791a a a +---【分析】 原式()()()242728a a a a =-+--【例题13】()()()()26121311x x x x x ----+【分析】 原式()22661x x =-+【例题14】()()()()461413119x x x x x ----+【分析】 原式()22971x x =-+【例题15】343115x x -+【分析】 原式()()()21253x x x =--+【例题16】322772x x x -+-【分析】 原式()()()1221x x x =---【例题17】3331x y xy ++-【分析】 原式()()2211x y x y xy x y =+-++-++【例题18】432655x x x x ++++【分析】 原式()()2251x x x =+++【例题19】()()()()222222261561121x x x x x x ++++++++ 【分析】 原式()()229141x x x =+++【例题20】()()()322223a b c a a c b a b c abc +-+-++-【分析】 原式()()()a b a c a b c =+-+-【例题21】322222422x x z x y xyz xy y z --++-【分析】 原式()()22x z x y =--【例题22】()()()2122xy x y x y xy -++-+-【分析】 原式()()2211x y =--【例题23】32542071227x y x xy --【分析】 原式()()22223293293x x xy y x xy y =-++-+【例题24】43241x x x x +-++【分析】 原式()()22131x x x =-++【例题25】()()22222a a b b ab a -+--【分析】 原式()222a b b =-【例题26】43214599448x x x x -+-+【分析】 原式()()()()1238x x x x =----【例题27】432673676x x x x +--+【分析】 原式=()()()()221331x x x x -++-【例题28】()22223122331x x x x -+-+- 【分析】 原式()()()23323x x x x =--+【例题29】2244661124864x y x y x y -+-【分析】 原式()()331212xy xy =+-【例题30】()()()333222222x y z x y z ++--+ 【分析】 原式()()()()22223x y y z z x z x =-+++-【例题31】32221x ax ax a --+-【分析】 原式()()211x a x x a =--+-+【例题32】42201520142015x x x +++【分析】 原式()()2212015x x x x =++-+【例题33】22()()1ab a b a b +-++【分析】 原式22(1)(1)a ab b ab =+-+-【例题34】()()66x x y z y z y x +-+--【分析】 原式()()()()()2222x y z x y x y x xy y x xy y =+--+++-+【例题35】432227447x x x x ---+【例题36】()()()2222223241x x x x x x -+++-++ 【分析】 原式()()()2112x x x x =--++【例题37】323233332a a a b b b ++++++【分析】 原式()()222a b a b ab a b =+++-++【例题38】()322312b a a b a a -++--++【分析】 ()()212a b ab a b b =-+-+++【例题39】()()211ab ab ab a b a b +-+--+【分析】 原式()()()2111ab ab a b ab =+-+++(以1ab +为主元) ()()()()22111111a ab b ab a b a ab b =+-+-⎡⎤⎡⎤⎣⎦⎣⎦=+-+-【例题40】()()()333222x y z y z x z x y -+-+-【分析】 原式()()()()x y y z z x xy yz zx =---++【例题41】()()()()3311x a xy x y a b y b +---++【分析】 原式()()22x xy y ax x y by =-++++【例题42】22()()()()ax by ay bx ay ax by ay bx ay +++-+++-原式2222()()a ab b x xy y =++++【例题43】22222612523171319322312520a b c d ab ac ad bc bd cd a b c d ---+--+-+-+-+-【分析】 原式()()23423455a b c d a b c d =+-+--+-+【例题44】()()()()()()2222326232x y a b m n xy a b m n xy a b m n ++-+++++【分析】 原式()()()32421xy a b m n ax bx my ny =+++--+【例题45】22223273x xy y xz yz z ---+-【分析】 原式()()232x y z x y z =+--+【例题46】2299x x +-【分析】 原式()()119x x =+-【例题49】632827x x -+【分析】 原式()()()()2211339x x x x x x =-++-++【例题50】32374a a +-【分析】 原式()()()1322a a a =+-+【例题51】4464a b +【分析】 原式()()22224848a ab b a ab b =++-+【例题52】()()3211x y xy x y ++---【分析】 原式()()2211x y x y x y =+-++++【例题53】()()()2113212xy xy xy x y x y ⎛⎫+++-++-+- ⎪⎝⎭ 【分析】 原式()()()()1111x y x y =++--【例题54】22243x y x y ----【分析】 原式()()13x y x y =++--【例题55】2231032x xy y x y ---++【分析】 原式()()5221x y x y =--+-【例题56】32256x x x +--【分析】 原式()()()123x x x =+-+【例题57】4322111236x x x x --++【分析】 原式()()2223x x =+-【例题58】432262x x x x ---+【分析】 原式()()()22121x x x =--+【例题59】()()22213260x x x x -+-+ 【分析】 原式()()()()2165x x x x =-+-+【例题60】()()222248415x x x x x x ++++++ 【分析】 原式()()22264x x x =+++【例题62】()()()()11359x x x x -+++-【分析】 原式()()22246x x x =++-【例题63】()()()()245610123x x x x x ++++-【分析】 原式()()()22158235120x x x x =++++【例题64】()()42424413110x x x x x -++++【分析】 原式()()()()22221111x x x x x x =+-++-+【例题65】2222232a x acx bcx b x c ++--【分析】 原式()()2ax bx c ax bx c =-++-【例题66】()()()2222a b a b c a b ++-++ 【分析】 原式()()222a b c =++【例题67】()()()3332a b c a b b c ++-+-+【分析】 原式()()()32a b b c a b c =++++【例题68】()()ab bc ca a b c abc ++++-【分析】 原式()()()a b b c c a =+++【例题69】86421x x x x ++++【分析】 86421x x x x ++++()()()4322221x x x =+++()()()()551111x x x x +-=+-551111x x x x +-=⋅+- ()()43243211x x x x x x x x =-+-+++++【例题70】已知2220x y z --=,试将333x y z --分解成一次因式之积.【分析】 由已知,222z x y =-,222y x z =-,故()3333322x y z x y z x y --=---()()()()22x y x xy y x y x y z =-++--+()()22x y x xy y x y z ⎡⎤=-++-+⎣⎦()()222x y x xy z xz yz =-+---()()()()2x y x z x z y x z =--++-⎡⎤【例题71】证明:220162014201520172018+⨯⨯⨯是一个完全平方数【分析】 设2016x =,故原式()()()()22112x x x x x =+--++()()22222x x x x x =+--+-()222x =-()2220162=-,得证.【例题72】证明:20132014201520172018201936⨯⨯⨯⨯⨯+是一个完全平方数【分析】 设2016n =,则原式()()()()()()32112336n n n n n n =---++++()()()22214936n n n =---+()()42254936n n n =-+-+6421449n n n =-+()2227n n =-()227n n ⎡⎤=-⎣⎦ ()22201620167⎡⎤=⨯-⎣⎦,得证.【例题73】证明:22222016201620172017+⨯+是一个完全平方数【分析】 令2016n =,则2222(1)(1)a n n n n =++++()2432223211n n n n n n =++++=++, 故()22201620161a =++【例题74】证明:3320162016201620182016201720162015⨯-⨯是一个完全立方数【分析】 令20162016m =,则原数()()()()333323211812612140324033m m m m m m m m =+-+-=+++=+=【例题75】333333()()()a b b c c a a b c ++++++++【解析】 原式333333222[()][()][()]3()()a b c b c a c a b a b c a b c =++++++++=++++;【例题76】42222222()()x a b x a b -++-.【解析】 ()()()()()222242222222222222x a b x a b x a b a b a b ⎡⎤-++-=-+-++-⎣⎦ ()222224x a b a b =---()()22222222x a b ab x a b ab =--+---()()2222x a b x a b ⎡⎤⎡⎤=---+⎣⎦⎣⎦()()()()x a b x a b x a b x a b =+--+--++【例题77】()()()()()2222221ab x y a b xy a b x y ---+-++【解析】 原式2222[(1)()]()[()(1)]b xy x y ab x y a x y xy =+-++--+++2222(1)(1)()(1)(1)b x y ab x y a x y =--+--++[(1)(1)][(1)(1)]x b y a y b x a =--+-++【解析】 2227()()ab a b a ab b +++【例题79】33(1)()()(1)x a xy x y a b y b +---++ 【解析】33(1)()()(1)x a xy x y a b y b +---++33(1)()[(1)(1)](1)x a xy x y a b y b =+--+-+++ 322322(1)()(1)()a x x y xy b y x y xy =+-++++-2222(1)()(1)()x a x xy y b x xy y =+-+++-+ 22()()x xy y ax by x y =-++++【例题80】32()(32)(23)2()l m x l m n x l m n x m n +++-+---+【解析】 如果多项式的系数的和等于0,那么1一定是它的根;如果多项式的偶次项系数的和减去奇次项系数的和等于0,那么1-一定是它的根.现在正是这样:()(32)(23)2()0l n l m n l m n m n -+++-----+=所以1x +是原式的因式,并且32()(32)(23)2()l m x l m n x l m n x m n +++-+---+322[()()][(2)(2)][2()2()]l m x l m x l m n x l m n x m n x m n =+++++-++--+++ 2(1)[()(2)2()]x l m x l m n x m n =++++--+(1)(2)()x x lx mx m n =+++--【例题81】21(1)(3)2()(1)2xy xy xy x y x y +++-++-+- 【解析】 设xy u =,x y v +=,原式(1)(1)(1)(1)(1)(1)u v u v y x x y =+--+=++--【例题82】()()()()22222222ab cd a b c d ac bd a b c d +-+-+++--【分析】 原式()()()()()()()()22222222ab cd a d ab cd b c ac bd a d ac bd b c =+--+-++-++-()()()()()()()()()()()()()()()()()()()()222222ab cd ac bd a d ac bd ab cd b c a d b c a d a d b c d a b c b c a d b c a d b c a d b c a d b c a d b c =+++-++---=+++-+---+⎡⎤=-++--⎣⎦=-++-+++-【例题83】432234a b a b a b ab +--【分析】 ⑴原式432234332()()()()()()a b a b a b ab a b a b ab a b ab a b a b =+-+=+-+=-+【例题84】22(2)9x x -- 【分析】 原式222(23)(23)(23)(1)(3)x x x x x x x x =-+--=-++-【例题85】3139k +()1【分析】 原式2221(44)1(2)(12)(12)x xy y x y x y x y =--+=--=+--+【例题87】()()()333ax by by cz ax cz -+---【分析】 原式()()()333ax by bx cz cz ax =-+-+- ()()()3ax by bx cz cz ax =---【例题88】333()()()a b c bc b c ca c a ab a b ++++++++【分析】 原式222()()a b c a b c =++++【例题89】326116x x x +++【分析】 原式326126x x x x =-+++()()()21161x x x x =+-++()()()()22166156x x x x x x x =+-++=+++()()()()()21236123x x x x x x x =++++=+++【例题90】32254x x x +--【分析】 ()()()()232225515115x x x x x x x x x x =++--=+-+=++-【例题91】521171x x x +-+【分析】 设522321171(1)(1)x x x x ax x bx cx +-+=+-++-展开得5254321171()(1)(1)()1x x x x a b x ab c x ac b x a c x +-+=++++-+---++比较对应系数得0101117a b ab c ac b a c +=⎧⎪+-=⎪⎨--=⎪⎪+=⎩,解得225a b c =⎧⎪=-⎨⎪=⎩,∴原式232(21)(251)x x x x x =+--+-【例题92】54321x x x +-+【分析】 设()()5423232111x x x x ax x bx cx +-+=+++++展开得()()()()545432321111x x x x a b x ab c x b ac x a c x +-+=+++++++++++比较对应系数得31010a b ab c b ac +=⎧⎪++=⎪⎨++=⎪,解得12a b =⎧⎪=⎨⎪,∴原式()()2321231x x x x x =+++-+。
七年级因式分解练习题100道
1.)3a³b²c-12a²b²c2+9ab²c³2.)16x²-813.)xy+6-2x-3y4.)x²(x-y)+y²(y-x)5.)2x²-(a-2b)x-ab6.)a4-9a²b²7.)x³+3x²-4 8.)ab(x²-y²)+xy(a²-b²)9.)(x+y)(a-b-c)+(x-y)(b+c-a) 10.)a²-a-b²-b 11.)(3a-b)²-4(3a-b)(a+3b)+4(a+3b)²12.)(a+3) ²-6(a+3)13.)(x+1) ²(x+2)-(x+1)(x+2) ²14.)16x²-8115.)9x²-30x+25 16.)x²-7x-30 17.) x(x+2)-x 18.) x²-4x-ax+4a 19.) 25x²-49 20.) 36x²-60x+25 21.) 4x²+12x+9 22.) x²-9x+18 23.) 2x²-5x-3 24.) 12x²-50x+8 25.) 3x²-6x 26.) 49x²-25 27.) 6x²-13x+5 28.) x²+2-3x29.) 12x²-23x-24 30.) (x+6)(x-6)-(x-6) 31.) 3(x+2)(x-5)-(x+2)(x-3) 32.) 9x²+42x+49 33.) x4-2x³-35x 34.) 3x6-3x²35.)x²-25 36.)x²-20x+10037.)x²+4x+3 38.)4x²-12x+539.)3ax²-6ax 40.)(x+2)(x-3)+(x+2)(x+4) 41.)2ax²-3x+2ax-3 42.)9x²-66x+12143.)8-2x²44.)x²-x+1445.)9x²-30x+25 46.)-20x²+9x+2047.)12x²-29x+15 48.)36x²+39x+949.)21x²-31x-22 50.)9x4-35x²-451.)(2x+1)(x+1)+(2x+1)(x-3) 52.)2ax²-3x+2ax-3 53.)x(y+2)-x-y-1 54.) (x²-3x)+(x-3) ²55.) 9x²-66x+121 56.) 8-2x²57.) x 4-1 58.) x ²+4x -xy -2y +459.) 4x ²-12x +5 60.) 21x ²-31x -2261.) 4x ²+4xy +y ²-4x -2y -3 62.) 9x 5-35x 3-4x63.) 若(2x)n −81 = (4x 2+9)(2x+3)(2x−3),那么n 的值是( )64.) 若9x ²−12xy+m 是两数和的平方式,那么m 的值是( )65) 把多项式a 4− 2a ²b ²+b 4因式分解的结果为( )66.) 把(a+b) ²−4(a ²−b ²)+4(a−b) ²分解因式为( )67.) 200020012121⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-68) 已知x ,y 为任意有理数,记M = x ²+y ²,N = 2xy ,则M 与N 的大小关系为( )69) 对于任何整数m ,多项式( 4m+5) ²−9都能( )A .被8整除B .被m 整除C .被(m−1)整除D .被(2m −1)整除70.) 将−3x ²n −6x n 分解因式,结果是( )71.) 多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是( )72.) 若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。
(完整版)七年级数学因式分解练习题及答案
七年级数学因式分解练习题及答案一、选择 1.下列各式由左到右变形中,是因式分解的是 A.a=ax+ayB. x-4x+4=x+4 C. 10x-5x=5xD. x-16+3x=+3x 2.下列各式中,能用提公因式分解因式的是 A. x-yB. x+2x C. x+y D. x-xy+1 3.多项式6xy-3xy-18xy分解因式时,应提取的公因式是 A.xyB.3xy C.xyD.3xy 4.多项式x+x提取公因式后剩下的因式是 A. x+1 B.x C. x D. x+1 5.下列变形错误的是 A.-x-y=- B.= - C. –x-y+z=- D.= 6.下列各式中能用平方差公式因式分解的是 A. –xyB.x+y C.-x+y D.x-y 7.下列分解因式错误的是 A. 1-16a=B. x-x=x C.a-bc= D.m-0.01= 8.下列多项式中,能用公式法分解因式的是 A.x-xy 二、填空 9.ab+ab-ab=ab. 10.-7ab+14a-49ab=-7a. 11.3+2=___________ 12.x-y=____________. 13.-a+b= 14.1-a=___________ 15.99-101=________ 12422222222222223222222222223222223332222322222222B. x+xyC. x-y D. x+y2222 16.x+x+____= 17.若a+b=1,x-y=2,则a+2ab+b-x+y=____。
222 三、解答 18.因式分解: ①?4x3?16x2?24x ②8a2?123 ③2am?1?4am?2am?1 ④2a2b2-4ab+2 ⑤2-4x2y2 ⑥2-4 19.已知a+b-c=3,求2a+2b-2c的值。
2 20、已知,2x-Ax+B=2,请问A、B的值是多少?2 21、若2x2+mx-1能分解为,求m的值。
完整版)初中数学因式分解练习题
完整版)初中数学因式分解练习题1.下面是一些因式分解的练题。
填空题:2.(a-3)(3-2a) = (3-a)(3-2a)12.若 m^2 - 3m + 2 = (m+a)(m+b),则 a = 1,b = 215.当 m = 4 时,x^2 + 2(m-3)x + 25 是完全平方式。
选择题:1.下列各式的因式分解结果中,正确的是 C。
- 6x^2y^2 = (4-3xy)2.多项式 m(n-2) - m^2(2-n) 分解因式等于 B。
(n-2)(m-m^2)3.在下列等式中,属于因式分解的是 C。
-4a^2 + 9b^2 = (-2a+3b)(2a+3b)4.下列各式中,能用平方差公式分解因式的是 D。
-(a^2) + b^25.若 9x^2 + mxy + 16y^2 是一个完全平方式,那么 m 的值是 ±126.把多项式 an+4 - an+1 分解得 D。
an+1(a-1)(a^2+a+1)7.若 a^2 + a = -1,则 a^4 + 2a^3 - 3a^2 - 4a + 3 的值为 C。
108.已知 x^2 + y^2 + 2x - 6y + 10 = 0,那么 x,y 的值分别为 B。
x=1,y=-39.把 (m^2 + 3m)^4 - 8(m^2 + 3m)^2 + 16 分解因式得 D。
(m+1)^2(m+2)^2(m^2+3m-2)10.把 x^2 - 7x - 60 分解因式,得 B。
(x+5)(x-12)11.把 3x^2 - 2xy - 8y^2 分解因式,得 (3x+4y)(x-2y)1.(3x+4)(x-2)。
(3x-4)(x+2)。
(3x+4y)(x-2y)。
(3x-4y)(x+2y)是四个多项式的因式分解形式。
2.a2+8ab-33b2可以分解为(a+11)(a-3)或(a-11b)(a-3b)或(a+11b)(a-3b)或(a-11b)(a+3b)。
七年级因式分解练习题100道
1.)3a³b²c-12a²b²c2+9ab²c³2.) 16x²-813。
)xy+6-2x-3y 4。
)x²(x-y)+y²(y-x)5.)2x²-(a-2b)x-ab6.)a4-9a²b²7。
)x³+3x²-4 8.)ab(x²-y²)+xy(a²-b²)9。
)(x+y)(a-b-c)+(x-y)(b+c-a) 10.)a²-a-b²-b11。
) (3a-b)²-4(3a-b)(a+3b)+4(a+3b)²12。
) (a+3)²-6(a+3)13.)(x+1)²(x+2)-(x+1)(x+2)²14.)16x²-8115。
)9x²-30x+25 16.)x²-7x-3017。
)x(x+2)-x 18。
) x²-4x-ax+4a 19.) 25x²-49 20。
)36x²-60x+25 21。
) 4x²+12x+9 22。
)x²-9x+18 23.) 2x²-5x-3 24.)12x²-50x+8 25。
) 3x²-6x 26.) 49x²-2527。
) 6x²-13x+5 28.)x²+2-3x29。
)12x²-23x-24 30.)(x+6)(x-6)-(x-6)31.) 3(x+2)(x-5)-(x+2)(x-3)32.)9x²+42x+49 33。
) x4-2x³-35x 34.)3x6-3x²35。
) x²-25 36.)x²-20x+10037.) x²+4x+3 38.)4x²-12x+539。
初中数学因式分解100题及答案
初中数学因式分解100题及答案一、提取公因式(1)(53)(35)(53)(54)-----x y x y(2)(74)(25)(74)(52)----+x y x y(3)(54)(73)(54)(72)a b a b--+--(4)(45)(23)(71)(45)---+-m n n m(5)(25)(41)(25)(92)(25)(63)-++--+--a b a b a b(6)(1)(51)(1)(83)+-++-a b a b(7)(35)(85)(31)(35)-+---a b b a(8)4424322-+283521xy z y z x y z(9)22242x y z x yz x y+-15615(10)(21)(34)(23)(21)--+---m n n m(11)4232+x z x y z126(12)3222-x y x y39(13)343-ab c c2114(14)2333+xyz x y z820(15)(45)(2)(45)(33)a b a b+-+++-(16)(5)(25)(5)(53)(5)(42)--+--+-+m n m n m n (17)(72)(25)(72)(31)--+-+m x m x(18)33231435a c a b c-(19)3423234664xy z x y z x y z --(20)(2)(34)(2)(25)a b a b -----二、公式法(21)224253681x y x -+-(22)2262550x xy y ++(23)2324625x -(24)22729324m n -(25)2281324m n -(26)22364816a b a -+-(27)22900225a b -(28)22289340100a ab b -+(29)2361140900x x -+(30)22495616m n n -+-三、分组分解法(31)45408172mx my nx ny--+(32)455273xy x y --+(33)224835182186a c ab bc ca+-+-(35)60125010+--mn m n(36)12402480----xy x y(37)22++--54224545x y xy yz zx (38)28327080+++mn m n(39)22++++x z xy yz zx635102529 (40)54451815+--mx my nx ny (41)40802856+--ax ay bx by (42)245637--+xy x y(44)351573+--ax ay bx by (45)36541624+--ab a b (46)981981mx my nx ny+--(47)183060100+++ab a b (48)48641216-+-mx my nx ny (49)22-+--a c ab bc ca93326 (50)45253620--+ax ay bx by四、拆添项(51)22-+++936361235x y x y(52)223610489a b a b ---+(53)2299364828x y x y ----(54)2249161127217x y x y --+-(55)229366368x y x y ----(56)4224256936a a b b -+(57)2264254830m n m n-++(58)2281181880m n m n ----(59)22164641255m n m n -+++(60)2249649814432x y x y ----五、十字相乘法(61)22----+a ab b a b5412333018 (62)22+-+--x xy y x y283152815 (63)2++--a ab a b32828749(64)22x xy y x y-+-++327635564412 (65)22--+-+x xy y x y212025352514 (66)222x y z xy yz xz++-+-491512563656 (67)222x y z xy yz xz-+-+-28182031851 (68)222-++--48182030964a b c ab bc ac(69)22691523167x xy y x y +-+-+(70)2227216542321x xy y x y -----(71)22429149171415x xy y x y -++--(72)2229108471614x y z xy yz xz+----(73)22849293535a ab a b ++--(74)22629282315x xy y x y -++--(75)2293299x xy y y --+-(76)222141211165x xy y x y -+-++(77)2254697302224x xy y x y +++--(78)2215241231210a ab b a b --+-+(79)227222242712x xy y x y+-+-(80)2274342512814x xy y x y +-+-+六、双十字相乘法(81)22185914592814x xy y x y +-+--(82)2226341219260x y z xy yz xz-++++(83)2261121483142x xy y x y +-+-+(84)2227216282513x y z xy yz xz++--+(85)22263312342060x y z xy yz xz+++--(86)2146592135x xy x y +--+(87)22499849707024x xy y x y -+-++(88)22151910252110x xy y x y +-+++(89)242723x xy x y ++++(90)2728455x xy x y-+-七、因式定理(91)32672912x x x ---(92)326132015x x x --+(93)32896x x x ++-(94)321529173x x x +++(95)322536x x x +--(96)32384x x x -++(97)3220191312a a a --+(98)32463x x x +--(99)3231024x x x --+(100)32515136x x x +++初中数学因式分解100题答案一、提取公因式(1)(53)(21)x y --+(2)(74)(37)x y --+(3)(54)(145)a b --(4)(45)(54)m n --+(5)(25)(194)a b --(6)(1)(134)a b +-(7)(35)(56)a b -+(8)2222237(453)y z xy z z x -+(9)223(525)x y yz z x y +-(10)(21)(57)m n ---(11)326(2)x z xz y +(12)223(3)x y x -(13)337(32)c ab c -(14)2224(25)xyz x y z +(15)(45)(21)a b +-(16)(5)(116)m n --(17)(72)(54)m x --(18)2237(25)a c ac b -(19)3332(332)xy z z x xz --(20)(2)(1)a b -+二、公式法(21)(259)(259)x y x y ++-+(22)2(25)x y +(23)(1825)(1825)x x +-(24)(2718)(2718)m n m n +-(25)(918)(918)m n m n +-(26)(64)(64)a b a b ++-+(27)(3015)(3015)a b a b +-(28)2(1710)a b -(29)2(1930)x -(30)(74)(74)m n m n +--+三、分组分解法(31)(59)(98)m n x y --(32)(53)(91)x y --(33)(67)(835)a c a b c ---(34)(41)(310)m n --(35)2(65)(51)m n -+(36)4(2)(310)x y -++(37)(625)(9)x y z x y +-+(38)2(25)(78)m n ++(39)(357)(25)x y z x z+++(40)3(3)(65)m n x y-+(41)4(107)(2)a b x y-+(42)(81)(37)x y--(43)2(5)(310)m n+-(44)(5)(73)a b x y-+(45)2(94)(23)a b-+(46)9()(9)m n x y-+(47)2(310)(35)a b++(48)4(4)(34)m n x y+-(49)(3)(9)a c ab c-++(50)(54)(95)a b x y--四、拆添项(51)(365)(367)x y x y++-+(52)(61)(69)a b a b+---(53)(332)(3314)x y x y++--(54)(7417)(741)x y x y+--+ (55)(362)(364)x y x y++--(56)2222(536)(536)a ab b a ab b+---(57)(85)(856)m n m n+-+(58)(98)(910)m n m n++--(59)(425)(4211)m n m n++-+ (60)(782)(7816)x y x y++--五、十字相乘法(61)(563)(26)a b a b+---(62)(453)(75)x y x y++--(63)(47)(87)a b a++-(64)(852)(476)x y x y----(65)(757)(352)x y x y++-+ (66)(752)(736)x y z x y z----(67)(435)(764)x y z x y z+---(68)(665)(834)a b c a b c+---(69)(331)(257)x y x y-+++ (70)(337)(923)x y x y--++ (71)(675)(773)x y x y-+--(72)(52)(924)x y z x y z---+(73)(75)(477)a a b-++ (74)(345)(273)x y x y-+--(75)(33)(323)x y x y+--+ (76)(65)(221)x y x y----(77)(676)(94)x y x y+++-(78)(365)(522)a b a b-+++(79)(863)(94)x y x y++-(80)(77)(762)x y x y++-+六、双十字相乘法(81)(277)(922)x y x y++--(82)(72)(946)x y z x y z-+++ (83)(676)(37)x y x y-+++ (84)(776)(3)x y z x y z-+-+ (85)(732)(96)x y z x y z+-+-(86)(27)(735)x x y-+-(87)(774)(776)x y x y----(88)(352)(525)x y x y++-+ (89)(1)(423)x x y+++(90)(9)(85)x y x-+七、因式定理(91)(3)(21)(34)x x x-++ (92)2(3)(655)x x x-+-(93)2(2)(63)x x x++-(94)(1)(53)(31)x x x+++ (95)2(1)(236)x x x++-(96)2(1)(354)x x x---(97)(1)(43)(54)a a a--+ (98)2(1)(423)x x x++-(99)(3)(4)(2)x x x+--(100)2(2)(553)x x x+++。
七年级因式分解练习题100道
1.)3a3b2c-12a2b2c2+9ab2c32.)16x2-813.)xy+6-2x-3y4.)x2 (x-y)+y2 (y-x)5.)2x2-(a-2b)x-ab6.)a4-9a2b27.)x3+3x2-4 8.)ab(x2-y2)+xy(a2-b2)9.)(x+y)(a-b-c)+(x-y)(b+c-a)10.)a2-a-b2-b11.)(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2 12.)(a+3) 2-6(a+3)13.)(x +1) 2(x+2)-(x+1)(x+2) 2 14.)16x2-8115.) 9x2-30x+25 16.) x2-7x-30 17.) x(x +2)-x 18.) x2-4x-ax+4a 19.) 25x2-49 20.) 36x2-60x+2522. ) x2-9x+18 21. ) 4x2+12x+923. ) 2x2-5x-3 24. ) 12x2-50x+8 25. ) 3x2-6x 26. ) 49x2-2527. ) 6x2-13x+5 28. ) x2+2-3x29.) 12x2-23x-2430.)(x+6)(x-6)-(x-6)31.) 3(x+2)(x-5)-(x+2)(x-3)32.) 9x2+42x+4933.) x4-2x3-35x 34.) 3x6-3x235.)x2-25 36.)x2-20x+10037.)x2+4x+3 38.)4x2-12x+539.)3ax2-6ax 40.)(x +2)(x -3)+(x+2)(x+4)29.) 12x2-23x-2430.)(x+6)(x-6)-(x -6)42.)9x2-66x+121 41.)2ax2-3x+2ax-343.)8-2x2 44.)x2-x+1445. )9x2-30x+25 46. )-20x2+9x+2047. )12x2-29x+15 48. )36x2+39x+949. )21x2-31x-22 50. )9x4-35x2-451. )(2x+1)(x+1)+(2x+1)(x-3) 52.)2ax2-3x+2ax - 353.)x(y +2)-x-y-1 54.)(x2-3x)+(x-3) 255.) 9x2-66x+121 56.) 8-2x259.) 4x2 —12x + 5 60.) 21x2 —31x —2261.) 4x2 + 4xy + y2—4x—2y —3 62.) 9x5—35x3—4x63. ) 若(2x)n- 81 = (4X2+9)(2X+3)(2X-3),那么n 的值是()64. )若9x2- 12xy+m是两数和的平方式,那么m的值是()65) 把多项式a4- 2a2b2+b4因式分解的结果为()66. )把(a+b) 2-4(a2-b2)+4(a-b) 2分解因式为()2001 20001 167. ) 丄丄2 268) 已知x,y为任意有理数,记M二x2+y2,N = 2xy,则M与N 的大小关系为()69) 对于任何整数m,多项式(4m+5) 2-9都能()A .被8整除B .被m整除C.被(m-1)整除D.被(2m-1)整除70.) 将-3x2n- 6x n分解因式,结果是()71.) 多项式(x+y-z)(x-y+z)-(y+z-x)(z-x-y) 的公因式是()72.)2若X 2(m 3)X 16是完全平方式,则m的值等于。
初一数学因式分解常考训练
初一数学因式分解常考训练1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8【分析】(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.【解答】(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8=2(x2+4x+4)=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy(2)3a3﹣6a2b+3ab2.【分析】(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.【解答】(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.【分析】(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.【解答】(1)a2(x﹣y)+16(y﹣x)=(x﹣y)(a2﹣16)=(x﹣y)(a+4)(a﹣4)(2)(x2+y2)2﹣4x2y2=(x2+2xy+y2)(x2﹣2xy+y2)=(x+y)2(x﹣y)24.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.【分析】(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.【解答】(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3=﹣y(9x2﹣6xy+y2)=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2=[2+3(x﹣y)]2=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2【分析】(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.【解答】(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2=x(4x2+4xy+y2)=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.【分析】(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.【解答】(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.【分析】(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.【解答】(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.【分析】(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.【解答】(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.【分析】本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.【解答】a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.【解答】a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1【分析】(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.【解答】(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)-(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y-x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;【分析】(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.【解答】(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2。
七年级因式分解50道题及答案和过程
七年级因式分解50道题及答案和过程1.因式分解:(1)2218x -(2)()()244m n m n +-++2.因式分解:(1)2129xyz x y -;(2)2464x -.3.因式分解:(1)249x -;(2)322242m m n mn ++.4.因式分解:(1)2464x -;(2)232a a a -+-.5.因式分解:(1)2422ax ay -.(2)4224817216x x y y -+.6.因式分解:(1)228a -(2)()()24129a b a b +-++7.因式分解:(1)244x x -+;(2)2327x -.8.分解因式:(1)533416m n m n -(2)32221218x x y xy -+9.分解因式:(2)32232x y x y xy ++.10.因式分解:(1)2416x -;(2)23216164a b a ab --.11.因式分解:(1)2296x xy y -+.(2)(1)(3)4x x +-+.12.因式分解:(1)222a ab b -+(2)24()()a a b b a -+-13.因式分解(1)242025x x ++;(2)()()2293a b a b -+-.14.因式分解:(1)a 3-4a 2+4a ;(2)a 4b 4-81;(3)16(x -2y )2-4(x +y )2.15.因式分解:(1)32288a a a -+;(2)328x x -16.因式分解:(1)33a b ab -(2)22363x xy y -+-17.因式分解:(1)2 x 2 -8(2)4221x x -+18.因式分解:(2)228x -19.因式分解(1)a 2(x+y )﹣b 2(x+y )(2)x 4﹣8x 2+16.20.因式分解:(1)2693x xy x -+;(2)2xy x -;21.因式分解:(1)x 3y ﹣xy 3;(2)(x +2)(x +4)+x 2﹣422.因式分解:(1)322369x y x y xy -+(2)()()236x x y x y x -+-23.因式分解:(1)32246x x x -+-;(2)222(4)16a a +-.24.因式分解:(1)236x x -;(2)2441a a -+(3)()()229m n m n +--;25.因式分解:(1)4ab b +(2)232x x -+ (3)2214a b b -+-(4)2464a -参考答案1.(1)21313x x(2)22m n【分析】(1)先提公因式2,再按照平方差公式分解即可;(2)把m n +看整体,直接利用完全平方公式分解即可.(1)解:2218x -2219x21313x x(2)()()244m n m n +-++22m n2.(1)343xy z x(2)()()444x x +-【分析】(1)提取公因式3xy 即可;(2)先提取公因式4,再利用平方差公式分解因式即可.(1)解:2129xyz x y -343xy z x(2)()()()22464416444.x x x x -=-=+-3.(1)()()2323x x +-(2)()22m m n +【解析】(1)根据平方差公式因式分解即可求解;(2)提公因式2m ,然后根据完全平方公式因式分解即可求解.(1)解:原式=2223x()()2323x x =+-;(2)原式=()2222m m mn n ++()22m m n =+.4.(1)()()444x x +-(2)()21a a --【解析】(1)后利用平方差公式分解因式;(2)先提取公因数,再结合完全平方公式分解因式;(1)解:原式()()()2416444x x x =-=+-;(2)原式()()22211a a a a a =--+=--.5.(1)()()222a x y x y +-(2)22(32)(32)x y x y +-【解析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式利用完全平方公式分解,整理后,再利用平方差公式分解即可.(1)解:2422ax ay -()242a x y =-()()222a x y x y =+-;(2)解:4224817216x x y y -+()22294x y =-()()223232x y x y =+-.6.(1)()()222a a +-(2)()2223a b +-【解析】(1)先提公因式2,再用平方差公式分解;(2)将2()a b +看成一个整体,利用完全平方公式直接分解.(1)解:228a -()224a =-()()222a a =+-;(2)()()24129a b a b +-++()()22129a b a b ⎡⎤=+-++⎣⎦()223a b ⎡⎤=+-⎣⎦=()2223a b +-.7.(1)()22x -(2)()()333x x +-【解析】(1)利用完全平方公式法进行因式分解即可;(2)先对整式进行提公因式,再利用平方差公式进行因式分解即可.(1)解:原式=()22x -(2)原式=()239x -=()()333x x +-8.(1)3422m n mn mn(2)223x x y【解析】(1)先提公因式34,m n 再利用平方差公式分解即可; (2)先提公因式2,x 再按照完全平方公式分解因式即可.(1)解:533416m n m n -32244m n m n3422m n mn mn(2)解:32221218x x y xy -+22269x x xy y223x x y9.(1)()()244x x +-(2)()2xy x y +【解析】(1)提出公因式2,然后根据平方差公式因式分解即可求解; (2)提公因式xy ,然后根据完全平方公式因式分解即可求解.(1)解:原式=()2216x -()()244x x =+-;(2)解:原式=()222xy x xy y ++()2xy x y =+.10.(1)4(2)(2)x x +-(2)24(2)a a b --【分析】(1)根据提公因式法和公式法即可求解.(2)先利用提公因式法,再利用公式法即可求解.(1)解:2224164(2)4(2)(2)x x x x -=-=+-.(2)23216164a b a ab --224(44)a ab a b =--224(2)4a a ab b ⎡⎤=--+⎣⎦24(2)a a b =--.11.(1)(3x -y)2(2)(x -1)2【分析】(1)直接利用完全平方公式进行因式分解;(2)先拆开括号,然后利用完全平方公式继续进行因式分解.(1)解:原式 =()2236x xy y -+=()23x y -.(2)原式=221x x -+=()21x -.12.(1)2()a b -(2)()(21)(21)a b a a -+-【解析】(1)利用完全平方公式解答,即可求解;(2)先提出公因式,再利用平方差公式解答,即可求解.(1)解:()2222a ab b a b -+=-;(2)解:24()()a a b b a -+-()()241a b a =--()()()2121a b a a =-+-13.(1)2(25)x +(2)(3)(31)a b a b -++【解析】(1)根据完全平方公式因式分解即可求解;(2)根据平方差公式与提公因式法因式分解即可求解.(1)242025x x ++=()2222255x x +⋅⋅+=2(25)x +(2)()()2293a b a b -+-=()()2233a b a b ⎡⎤-+-⎣⎦=()()()333a b a b a b +-+-=(3)(31)a b a b -++14.(1)()22a a -(2)()()()22933a b ab ab ++-(3)()()125x y x y --【解析】(1)先提出公因式,再利用完全平方公式解答,即可求解; (2)利用平方差公式解答,即可求解;(3)先利用平方差公式,再提出公因式,即可求解.(1)解:3244a a a -+()244a a a =-+()22a a =-(2)解:4481a b -()()222299a b a b =+-()()()22933a b ab ab =++-(3)解:()()221624x y x y --+()()()()422422x y x y x y x y =-++--+⎡⎤⎡⎤⎣⎦⎣⎦()()66210x y x y =--()()125x y x y =--15.(1)()222a a -(2)()()21212x x x +-【解析】(1)先提公因式,然后利用公式法因式分解,即可得到答案; (2)先提公因式,然后利用公式法因式分解,即可得到答案.(1)解:()()232228824422a a a a a a a a -+=-+=-;(2)解:()()()322821421212x x x x x x x -=-=+-;16.(1)()()ab a b a b +-(2)23()x y --【解析】(1)先提取公因式,再利用平方差公式分解因式;(2)先提取公因式,再利用完全平方公式分解因式.(1)解:33a b ab -()22ab a b =-()()ab a b a b =+-;(2)解:22363x xy y -+-()2232x xy y =--+()23x y =--.17.(1)()()222.x x +-(2) ()()2211.x x +-【解析】(1)利用提公因式法提公因式后,再按照平方差公式分解即可。
初一数学因式分解练习题
初一数学因式分解练习题初一数学因式分解练习题在初中数学中,因式分解是一个重要的概念和技巧。
它不仅在解题过程中起到关键作用,还有助于培养学生的逻辑思维和数学推理能力。
因此,掌握因式分解的方法和技巧对于学生来说至关重要。
本文将为大家提供一些初一数学因式分解练习题,帮助大家巩固和加深对这一概念的理解。
练习题一:将下列各式因式分解。
1. $4x^2-9$2. $2a^3-8a$3. $9x^2-12x+4$4. $3x^2+6x+3$5. $6x^2+11x-10$解答:1. $4x^2-9$首先,我们可以将$4x^2$视为$(2x)^2$,将$9$视为$3^2$,则原式可以重写为$(2x)^2-3^2$。
根据差平方公式,$(a^2-b^2)=(a+b)(a-b)$,我们可以将原式因式分解为$(2x+3)(2x-3)$。
2. $2a^3-8a$首先,我们可以将$2a^3$视为$2(a^3)$,将$8a$视为$2(4a)$,则原式可以重写为$2(a^3)-2(4a)$。
根据因子提取公式,$ax-ay=a(x-y)$,我们可以将原式因式分解为$2(a^3-4a)$。
进一步提取公因式,$a^3-4a=a(a^2-4)$,我们可以将原式因式分解为$2a(a+2)(a-2)$。
3. $9x^2-12x+4$首先,我们可以将$9x^2$视为$(3x)^2$,将$12x$视为$2(6x)$,将$4$视为$(2)^2$,则原式可以重写为$(3x)^2-2(6x)+(2)^2$。
根据完全平方公式,$(a-b)^2=a^2-2ab+b^2$,我们可以将原式因式分解为$(3x-2)^2$。
4. $3x^2+6x+3$首先,我们可以将$3x^2$视为$(\sqrt{3}x)^2$,将$6x$视为$2(\sqrt{3}x)$,将$3$视为$(\sqrt{3})^2$,则原式可以重写为$(\sqrt{3}x)^2+2(\sqrt{3}x)+(\sqrt{3})^2$。
七年级因式分解练习题100道
七年级因式分解练习题100道1.3a³b²c - 12a²b²c² + 9ab²c³2.16x² - 83.xy + 6 - 2x - 3y4.x²(x - y) + y²(y - x)5.2x² - (a - 2b)x - ab6.(a² - 3ab + 3b²)(a² + 3ab + 3b²)7.x³ + 3x² - 4x - 128.ab(x + y)(x - y) + xy(a - b)(a + b)9.(x - y - z)(a - b - c) + (x - y + z)(b + c - a)10.(a - b)(a + b) - (a + b)²11.2a² - 10ab + 8b²12.8a + 913.x(x + 3)(x + 2) - (x + 1)(x + 2)²14.16(x - 1)(x + 1)15.9(x - 1)(x - 3)16.(x - 10)(x + 3)17.x(x + 1) - x18.(x - 4)(x - a)19.(5x + 7)(5x - 7)20.9(2x - 5)²21.(2x + 3)²22.(x - 3)(x - 6)23.(2x - 3)(x - 1)24.2(3x - 1)(2x - 5)25.3x(x - 2)26.(7x + 5)(7x - 5)27.(2x - 1)(3x - 5)28.(x - 1)² - 2x + 129.(x + 6)(x - 5)(x + 6)30.2(x - 5)(2x + 3)31.2(x - 2)(x - 5)(x + 3)32.(3x + 7)²33.(x - 5)(x + 5)(x² + 7)34.3x²(x - 5)(x + 5)35.(x + 5)(x - 5)36.(x - 10)²37.(x + 2)² + 338.4(x - 1)(x - 5)39.3ax(x - 2)40.2(x + 2)(x - 3)(x + 4)41.2ax(x + 1) - 3(x + 1)42.(3x - 11)²43.(2x - 1)(2x - 11)44.(x - 1)² + 1345.3(3x - 5)²46.-5(2x - 3)(2x - 4)47.(3x - 5)(4x - 3)48.(6x + 3)(6x + 1)49.(3x + 15)(7x - 15)50.(3x² - 1)(3x² + 4)51.4x² - 4x - 252.2ax(x + 1) - 3(x + 1)53.xy + x - y - 154.x² - 2x + 955.(x - 3)²56.8 - 2x²57.x⁴ - 1658.(x - 1)² - xy - 2y + 559.(4x - 5)(x + 2)61.将4x²+4xy+y²-4x-2y-36改写为4x²+4xy+y²-4x-2y-36=0,并删除明显有问题的段落。
初一因式分解50道题
初一因式分解50道题一、因式分解练习题(30道无解析)1. x^2 - 92. 4x^2 - 163. x^2+6x + 94. 9x^2 - 25y^25. x^3 - 276. 8x^3+17. x^2 - 4x+48. 16x^2 - 8x + 19. x^2y - 4y10. 3x^2 - 1211. x^4 - 112. x^2+5x+613. x^2 - 5x+614. x^2+7x+1015. x^2 - 7x + 1016. 2x^2 - 817. 3x^2 - 27x18. x^3+2x^2+x19. x^3 - 3x^2+2x20. x^2 - xy - 2y^221. x^2+xy - 6y^222. 9x^2 - 12x+423. 1 - 4x^224. x^3 - x^2 - x+125. x^3+x^2 - x - 126. 4x^2 - 4x+127. x^2 - 8x+1628. x^2+10x + 2529. x^3 - 830. 27x^3+8二、因式分解练习题(20道带解析)1. x^2 - 16- 解析:这是一个平方差的形式,a^2 - b^2=(a + b)(a - b),在这里a=x,b = 4,所以x^2-16=(x + 4)(x - 4)。
2. 9x^2 - 49- 解析:同样是平方差形式,a = 3x,b=7,根据平方差公式可得9x^2 -49=(3x+7)(3x - 7)。
3. x^2+8x + 16- 解析:这是一个完全平方的形式(a + b)^2=a^2+2ab + b^2,这里a=x,b = 4,因为x^2+8x + 16=(x + 4)^2。
4. 25x^2 - 1- 解析:是平方差形式,a = 5x,b = 1,所以25x^2-1=(5x + 1)(5x - 1)。
5. x^3+27- 解析:这是立方和的形式a^3 + b^3=(a + b)(a^2 - ab + b^2),这里a=x,b = 3,则x^3+27=(x + 3)(x^2 - 3x+9)。
因式分解初一数学习题及答案
因式分解初一数学习题及答案一、分解因式1.2x4y2-4x3y2+10xy4 。
2.5xn+1-15xn+60xn-1 。
4. (a+b)2x2-2(a2-b2)xy+(a-b)2y25. x4-16. -a2-b2+2ab+4 分解因式。
10.a2+b2+c2+2ab+2bc+2ac11.x2-2x-812.3x2+5x-213. (x+1)(x+2)(x+3)(x+4)+114. (x2+3x+2)(x2+7x+12)-120.15. 把多项式3x2+11x+10 分解因式。
16. 把多项式5x2―6xy―8y2 分解因式。
二证明题17. 求证:32000-431999+1031998能被7整除。
18. 设为正整数,且64n-7n 能被57整除,证明:是57的倍数.19. 求证:无论x、y 为何值,的值恒为正。
20. 已知x2+y2-4x+6y+13=0, 求x,y 的值。
三求值。
21. 已知a,b,c 满足a-b=8,ab+c2+16=0, 求a+b+c 的值.22. 已知x2+3x+6 是多项式x4-6x3+mx2+nx+36的一个因式,试确定m,n 的值,并求出它的其它因式。
因式分解精选练习答案一分解因式1. 解:原式=2xy2x3-2xy22x2+2xy25y2=2xy2(x3-2x2+5y2) 。
提示:先确定公因式,找各项系数的最大公约数2; 各项相同字母的最低次幂xy2,即公因式2xy2,再把各项的公因式提到括号外面,把多项式写成因式的积。
2. 提示:在公因式中相同字母x 的最低次幂是xn-1 ,提公因式时xn+1 提取xn-1 后为x2,xn 提取xn--1 后为x 。
解:原式=5xn--1x2-5xn--13x+5xn--112=5xn--1(x2-3x+12)3. 解:原式=3a(b-1)(1-8a3)=3a(b-1)(1-2a)(1+2a+4a2)提示:立方差公式:a3-b3=(a-b)(a2+ab+b2)立方和公式:a3+b3=(a+b)(a2-ab+b2)所以,1-8a3=(1-2a)(1+2a+4a2)4. 解:原式=[(a+b)x]2-2(a+b)(a-b)xy+[(a-b)y]2=(ax+bx-ay+by)2[提示:将(a+b)x 和(a-b)y 视为一个整体。