金属学与热处理总结版
金属学与热处理章节重点总结
第1章金属和合金的晶体结构1.1金属原子的结构特点:最外层的电子数很少,一般为1~2个,不超过3个。
金属键的特点:没有饱和性和方向性结合力:当原子靠近到一定程度时,原子间会产生较强的作用力。
结合力=吸引力+排斥力结合能=吸引能+排斥能(课本图1.2)吸引力:正离子与负离子(电子云)间静电引力,长程力排斥力:正离子间,电子间的作用力,短程力固态金属原子趋于规则排列的原因:当大量金属原子结合成固体时,为使固态金属具有最低的能量,以保持其稳定状态,原子间也必须保持一定的平衡距离。
1.2晶体:基元在三维空间呈规律性排列。
晶体结构:晶体中原子的具体排列情况,也就是晶体中的这些质点在三维空间有规律的周期性的重复排列方式。
晶格:将阵点用直线连接起来形成空间格子。
晶胞:保持点阵几何特征的基本单元三种典型的金属晶体结构(要会画晶项指数,晶面指数)共带面:平行或相交于同一直线的一组晶面组成一个晶带,这一组晶面叫做共带面晶带轴:同一晶带中所有晶面的交线互相平行,其中通过坐标原点的那条直线。
多晶型转变或同素异构转变:当外部的温度和压强改变时,有些金属会由一种晶体结构向另一种晶体结构转变。
1.3合金:两种或两种以上金属元素,或金属元素与非金属元素,经熔炼、烧结或其它方法组合而成并具有金属特性的物质。
组元:组成合金最基本的独立的物质,通常组元就是组成合金的元素。
相:是合金中具有同一聚集状态、相同晶体结构,成分和性能均一,并以界面相互分开的组成部分。
固溶体:合金的组元通过溶解形成一种成分及性能均匀的、且结构与组元之一相同的固相,称为固溶体。
与固溶体结构相同的组元为溶剂,另一组元为溶质。
固溶体的分类:按溶质原子在溶剂晶格中的位置:置换固溶体与间隙固溶体。
按溶质原子在固体中的溶解度:分为有限固溶体和无限固溶体。
按溶质原子在固溶体内分布规则:分为有序固溶体和无序固溶体固溶强化:在固体溶液中,随着溶质浓度的增加,固溶体的强度、硬度提高,塑性韧性下降。
金属学与热处理基础知识总结
学习好资料欢迎下载金属学与热处理总结一、金属的晶体结构重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。
基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。
晶体的特征、晶体中的空间点阵。
晶格类型晶胞中的原子数原子半径配位数致密度体心立方243a868%面心立方442a1274%密排六方621 a1274%晶格类型fcc(A1)bcc(A2)hcp(A3)间隙类型正四面体正八面体四面体扁八面体四面体正八面体间隙个数8412612623a a原子半径 r A4a4232 a a53a2 3a6 2a2 1a间隙半径 r B22444442晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。
金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。
位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。
位错的柏氏矢量具有的一些特性:①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。
刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。
晶界具有的一些特性:①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。
二、纯金属的结晶重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。
基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。
的金属学与热处理知识总结
钢的热处理总结晶向指数[UVW],晶向族<uvw>;晶面指数(hkl),晶面族{hkl};六方晶系晶向指数[uvw]→u=(2U-V)/3,v=(2V-U)/3,t=-(u+v),w=W→[uvtw]1. 空间点阵和晶体点阵:为便于了解晶体中原子排列的规律性,通常将实体晶体结构简化为完整无缺的理想晶体。
若将其中每个院子抽象为纯几何点,即可得到一个由无数几何点组成的规整的阵列,称为空间点阵,抽象出来的几何点称为阵点或结点。
由此构成的空间排列,称为晶体点阵;与此相应,上述空间点阵称为晶格。
2. 热过冷:纯全属在凝固时,其理论凝固温度(T m)不变,当液态金属中的实际温度低于T m 时,就引起过冷,这种过冷称为热过冷。
3. 成分过冷:在固液界面前沿一定范围内的液相,其实际温度低于平衡结晶温度,出现了一个过冷区域,过冷度为平衡结晶温度与实际温度之差,这个过冷度是由于界面前沿液相中的成分差别引起的,称为成分过冷。
成分过冷能否产生及程度取决于液固界面前沿液体中的溶质浓度分布和实际温度分布这两个因素。
4. 动态过冷度:当界面温度T i<T m,熔化速率<凝固速率时,晶核才能长大,这时的过冷度称为动态过冷度。
即只有液固界面取得动态过冷度,才能使晶核长大。
5. 结构起伏:液态金属中大量不停“游动”着的原子团簇不断地分化组合,由于“能量起伏”,一部分金属原子(离子)从某个团簇中分化出去,同时又会有另一些原子组合到该团簇中,此起彼伏,不断发生着这样的涨落过程,似乎原子团簇本身在“游动”一样,团簇的尺寸及其内部原子数量都随时间和空间发生着改变的现象。
6. 能量起伏:液态金属中处于热运动的原子能量有高有低,同一原子的能量也在随时间不停地变化,时高时低的现象。
7. 均匀形核:液相中各个区域出现新相晶核的几率都是相同的,是液态金属绝对纯净、无任何杂质,喝不喝型壁接触,只是依靠液态金属的能量变化,由晶胚直接生核的理想过程。
123重庆大学金属学与热处理考点总结
5 3 a 4
2 3 a 4
6 2 a 4
2 1 a 2
晶胞: 在晶格中选取一个能够完全反映晶格特征的最小的几何单元, 用来分析原子排列的 规律性,这个最小的几何单元称为晶胞。 金属键: 失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来, 这种结 合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型; ②柏氏矢量的守恒性, 即柏氏矢量与回路起点 及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在 晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生 杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,
3 4
2 4
配位数 8 12 12
致密度 68% 74% 74%
a
a
1 2
a
晶格类型 间隙类型 间隙个数
原子半径 rA 间隙半径 rB
fcc(A1)
正四面体 正八面体 四面体
bcc(A2)
扁八面体
hcp(A3)
四面体 正八面体
8
2 a 4
4
12
3 a 4
6
12
a 2
6
3 2 a 4
2 2 a 4
2Hale Waihona Puke 相律:f = c – p + 1 其中,f 为 自由度数,c 为 组元数,p 为 相数。 伪共晶:在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金也可能得到全 部共晶组织,这种共晶组织称为伪共晶。 合金:两种或两种以上的金属,或金属与非金属,经熔炼或烧结、或用其它方法组合而成 的具有金属特性的物质。 合金相:在合金中,通过组成元素(组元)原子间的相互作用,形成具有相同晶体结构与 性质,并以明确界面分开的成分均一组成部分称为合金相。 四、铁碳合金 重点内容:铁碳合金的结晶过程及室温下的平衡组织,组织组成物及相组成物的计算。 基本内容:铁素体与奥氏体、二次渗碳体与共析渗碳体的异同点、三个恒温转变。 钢的含碳量对平衡组织及性能的影响;二次渗碳体、三次渗碳体、共晶渗碳体相对量的计 算;五种渗碳体的来源及形态。 奥氏体与铁素体的异同点: 相同点:都是铁与碳形成的间隙固溶体;强度硬度低,塑性韧性高。 不同点:铁素体为体心结构,奥氏体面心结构;铁素体最高含碳量为 0.0218%, 奥氏体 最高含碳量为 2.11%,铁素体是由奥氏体直接转变或由奥氏体发生共析转变得到,奥氏体是由 包晶或由液相直接析出的;存在的温度区间不同。 二次渗碳体与共析渗碳体的异同点。 相同点:都是渗碳体,成份、结构、性能都相同。 不同点:来源不同,二次渗碳体由奥氏体中析出,共析渗碳体是共析转变得到的;形态不 同二次渗碳体成网状,共析渗碳体成片状;对性能的影响不同,片状的强化基体,提高强度, 网状降低强度。 成分、组织与机械性能之间的关系:如亚共析钢。亚共析钢室温下的平衡组织为 F+P,F 的强度低,塑性、韧性好,与 F 相比 P 强度硬度高,而塑性、韧性差。随含碳量的增加,F 量 减少,P 量增加(组织组成物的相对量可用杠杆定律计算) 。所以对于亚共析钢,随含碳量的 增加,强度硬度升高,而塑性、韧性下降 五、三元合金相图 重点内容:固态下无溶解度三元共晶相图投影图中不同区、线的结晶过程、室温组织。 基本内容:固态下无溶解度三元共晶相图投影图中任意点的组织并计算其相对量。 三元合金相图的成分表示法;直线法则、杠杆定律、重心法则。
金属学与热处理总结5则范文
金属学与热处理总结5则范文第一篇:金属学与热处理总结名词解释:退火:将钢加热到临界点Ac1以上或以下温度,保温以后随炉冷却以获得近于平衡状态组织的热处理工艺。
正火:将钢加热到Ac3(或Acm)以上适当温度,保温以后在空气中冷却得到珠光体类组织的热处理工艺。
淬火:将钢加热到临界点Ac3或Ac1以上一定温度,保温后以大于临界冷却速度的速度冷却得到马氏体(或下贝氏体)的热处理工艺。
回火:将淬火钢在A1以下温度加热,使其转变为稳定的回火组织,并以适当方式冷却到室温的工艺过程。
表面淬火:将工件快速加热到淬火温度,然后快速冷却,仅使表面层获得淬火组织的热处理方法。
渗碳:将低碳钢件放入渗碳介质中,在900-950加热保温,使活性原子渗入钢件表面并获得高渗碳体的工艺方法。
渗氮:向钢件表面渗入氮元素,形成富氮硬化层的化学热处理。
淬透性:钢材淬火时获得马氏体能力的特征。
淬硬性:钢材淬火时淬成马氏体可能得到的最高硬度。
回火稳定性:淬火钢对回火时发生软化过程的抵抗能力。
回火脆性:钢在一定温度范围内回火时,其冲击韧度显著下降,这种脆化现象叫做钢的回火脆性热应力:工件在加热(或冷却)时,由于不同部位的温度差异,导致热胀(或冷缩)的不一致所引起的应力称为热应力。
组织应力:由于工件不同部位组织转变不同时性而引起的内应力。
过冷奥氏体:在临界温度以下处于不稳定状态的奥氏体称为过冷奥氏体。
退火的目的:均匀钢的化学成分及组织;细化晶粒;调整硬度,消除内应力和加工硬化,改善钢的成形及切削加工性能,为淬火做好组织准备。
正火的目的:改善钢的切削加工性能;消除热加工缺陷;消除过共析钢的网状碳化物,便于球化退火;提高普通结构零件的力学性能。
淬火目的:提高工具、渗碳零件和其它高强度耐磨机器零件等的硬度、强度和耐磨性;回火目的:减少或消除淬火应力,保持相变的组织转变,提高钢的塑形和韧性,获得硬度强度塑形和韧性的适当结合1.试述奥氏体钢的形成过程及控制奥氏体晶粒的方法制定合适的加热规范,包括控制加热温度和保温时间;碳含量控制在一定范围内,并在钢中加入一定阻碍奥氏体晶粒长大的合金元素;考虑原始组织的影响2.珠光体、贝氏体、马氏体的特征、性能特点是什么?珠光体:片状珠光体,片间距越小,强度越高,塑性、韧性也越好;粒状珠光体,Fe3C颗粒越细小,分布越均匀,合金的强度越高。
金属学与热处理基本知识
• 而位错的 存在则使 金属容易 塑性变形, 强度降低。 • (图 1-14)
• 高温的液态金属冷却转变为固态金属的过程是一 个结晶过程,即原子由不规则状态(液态)过渡到 规则状态(固态)的过程。 • 过冷是金属结晶的必要条件。 • 每一种金属都有一定的结晶温度,例如铁的结晶 温度为 1538℃ ,铜的结晶温度为 1 083 ℃ ,这 种结晶温度称为理论结晶温度或平均结晶温度, 用有To表示。 • 但实际上,液态金属只有冷却到低于 To 的某一 温度时才开始结晶。也就是说,实际结晶温度 Tn 总是低于理治结晶温度 To。 • 两者之差称为过冷度,用 Δ T 表示, • 即 Δ T= To –Tn。
金属学与热处理基本知识
一. 金属的晶体结构
• 物质是由原子构成的。根据原子在物质内 部的排列方式不同,可将物质分为晶体和 非晶体两大类。凡内部原子呈规则排列的 物质称为晶体,凡内部原子呈不规则排列 的物质称为非晶体,所有固态金属都是晶 体。 • 晶体内部原子的排列方式称为晶体结构。 常见的晶体结构有:
晶格类型会发生转变,
称为同素异构转变
图1-29 纯铁的冷却曲线及晶体结构变化
三、金属的结构及铁碳合金
1、铁碳合金的基本组织 ⑴、钢和铁 ①、含碳量小于2.06的铁碳合金叫钢。 ②、含碳量大于2.06的铁碳合金叫铁(铸 铁或生铁)。 ⑵、钢材的性能不仅取决于钢材的化学成份, 而且与钢材组织有关。 ⑶、纯铁的晶体结构 ①.15380C~13940C—α-Fe(体心立方晶体) ②.13940C~9120C—γ-Fe(面心立方晶体
金属学及热处理总结
间隙固溶体
臵换固溶体
固溶体的性能 通过形成固溶体而产生晶格畸变, 使金属强度和硬度提高的现象称 为固溶强化。
固溶强化是金属强化的重要方式 之一。固溶体的综合力学性能较 好,常作为结构合金的基体相。
§1.3 合金相结构
固溶体
不同
金属化合物
正常价化合物 间隙相
电子化合物
间隙化合物
是指按照一定价电子浓度的比值 组成一定晶格类型的化合物。电 子化合物的熔点和硬度都很高, 而塑性较差,是有色金属中的重 要强化相。
晶体的主要特点是:①结构有序;②物理 性质表现为各向异性;③有固定的熔点; ④在一定条件下有规则的几何外形。
§1.2 金属晶体典型结构
晶体结构
= 空间点阵 + 基元
构成晶体的基元在三 维空间的具体的排列 方式
§1.2 金属晶体典型结构
原子半径 原子半径是指晶胞中原子密度最大方向相邻两原子之间距离的 一半。 晶胞中所含原子数 晶胞中所含原子数是指一个晶胞内真正包含的原子数目。 配位数 是指在晶体结构中,与任一原子最近邻且等距离的原子数。 致密度
性 能
使 用 性 能
工 艺 性 能
液→固;流动性
铸造 塑性加工 焊接 热处理 粉末冶金 机械加工
锻、拉、挤、轧、弯 ; 延展性 ;变形抗力、变 形开裂倾向
性 能
使 用 性 能
工 艺 性 能
液→固;流动性
铸造 塑性加工 焊接 热处理 粉末冶金 机械加工
锻、拉、挤、轧、弯 ; 延展性 ;变形抗力、变 形开裂倾向 可焊性
性能
铸 造
锻 造
焊 接
热 处 理
组织结构 第六章 热加工工艺
性能
铸 造
锻 造
金属学与热处理总结(上)
金属的晶体结构1.化学键:组成物质的质点的相互作用力。
分为共价键(有饱和性与方向性)、离子键(没有饱和性与方向性)、金属键(没有饱和性与方向性)、范德瓦尔键。
2.晶体晶体:物质的质点在三维空间作有规律的周期性重复排列所形成的物质。
(长程有序)晶体的特性:均匀性、各向异性、固定的熔点、对称性、规则外形、产生电子衍射等。
3.典型晶体结构配位数:一个原子周围最近邻并且等距离的原子的个数。
进行晶体结构转变相关计算时,应注意不同晶体结构所含的原子数不同。
4.点缺陷:三维尺度均很小的晶体缺陷。
a)形成:结晶、高温或辐照b)类型:肖脱基空位、弗兰克尔空位c)运动:迁移、复合d)点缺陷对性能的影响:晶格畸变与缺陷强化;电阻率升高;加速扩散,影响相变5.线缺陷:晶体中长度为数百到数万原子间距的管线状原子错排区。
又称位错。
a)类型:i.刃型位错:有正负之分;ii.螺型位错:有左右之分(左右手法则)。
b)柏氏矢量的确定方法:i.从距离位错一定距离的任一原子出发,沿逆时针环绕位错做闭合回路;ii.在完整晶体中以同样方向步数做相同的不封闭回路;iii.将回路封闭,封闭向量就是柏氏矢量。
c)性质i.刃型位错的柏氏矢量与位错线垂直;ii.螺型位错的柏氏矢量与位错线平行。
d)位错的特征i.位错是晶体变形与未变形区域的分界ii.位错线不会中断于晶体内。
iii.位错具有易动性6.亚晶界:晶粒内部各排列方位有细微差异的亚结构之间的界面。
晶界:相邻晶粒的界面。
a)小角度晶界:对称倾侧晶界,无长程应力场,能量低、稳定;位向差越大、位错密度越高,界面能越高。
b)大角度晶界:晶界能高,且与取向差无关7.相界a)是两种不同晶体结构的相之间的界面;b)分为共格界面、半共格界面、非共格界面三类;c)共格界面界面能最低,弹性应变能最高。
8.堆垛层错a)是原子的堆垛次序错误形成的缺陷。
b)形成单位面积层错升高的能量称为层错能。
c)层错能越高,形成层错越困难。
金属学与热处理知识点总结
金属学与热处理知识点总结金属学是研究金属材料的物理特性、化学特性和力学特性,以及金属原材料的加工工艺的学科。
热处理是指将金属材料通过加热、保温和冷却等工艺过程来改变金属材料的性能,改善金属材料的加工性能。
本文结合实例,从金属学和热处理两个方面对相关知识点进行总结。
一、金属学1、金属的性质金属的性质是由元素的原子结构和组成决定的,因此,金属的物理性质、化学性质和力学性质均受它的原子结构和组成的影响。
金属的主要性质有导电性、导热性、耐腐蚀性等。
它们的性质决定了金属在工业生活中的重要作用。
2、金属的加工工艺金属加工是指采用机械、热处理、电子和化学等不同类型的加工方法,改变金属原材料的形状、性能和结构,以达到使用和生产需要的加工工艺。
常见的金属加工工艺有冲压、锻造、焊接、切削等。
二、热处理1、热处理的种类热处理是指通过加热、保温和冷却等技术,改变金属材料的组织结构,以改善材料性能的一种技术手段。
热处理的分类很多,其中包括:硬化、回火、淬火、正火、调质等。
2、热处理的作用热处理的主要作用是改变金属材料的组织结构,从而改善金属材料的性能。
热处理可以增加材料的强度、耐磨性、耐腐蚀性,同时热处理还可以改变材料的尺寸、形状和外观等。
热处理是衡量金属材料质量的关键性步骤之一,因此,热处理技术的发展有助于提高金属材料的使用性能。
综上所述,金属学是研究金属材料的物理特性、化学特性和力学特性,及其原材料加工工艺的学科,金属加工工艺可以改变金属原材料的形状、性能和结构,以达到使用和生产需要。
热处理是通过加热、保温、冷却等技术,改变金属材料的组织结构,以改善材料性能的技术手段,可以改变材料的性能、尺寸、形状和外观等。
正确运用金属学和热处理知识,可以有效提高金属材料的使用性能。
金属材料与热处理总结
金属材料与热处理总结金属材料是工程领域中最常用的材料之一,其性能和用途很大程度上取决于其热处理过程。
热处理是通过控制金属材料的温度、时间和冷却速率来改变其内部结构和性能的工艺。
本文将对金属材料的热处理方法和效果进行总结,以期为工程实践提供参考。
首先,我们来谈谈金属材料的热处理方法。
常见的热处理方法包括退火、正火、淬火和回火。
退火是将金属材料加热至一定温度,然后缓慢冷却至室温,以消除内部应力和改善塑性。
正火是将金属材料加热至适当温度,然后在空气中冷却,以提高硬度和强度。
淬火是将金属材料加热至临界温度,然后迅速冷却至室温,以获得高硬度和强度。
回火是将淬火后的金属材料重新加热至适当温度,然后进行缓慢冷却,以降低硬度和提高韧性。
其次,我们来探讨金属材料热处理的效果。
热处理可以显著改变金属材料的组织结构和性能。
通过退火,金属材料的晶粒得以细化,内部应力得以消除,从而提高其塑性和韧性。
通过正火,金属材料的碳化物颗粒得以析出,晶粒得以再结晶,从而提高其硬度和强度。
通过淬火,金属材料的组织得以马氏体化,从而获得极高的硬度和强度。
通过回火,金属材料的马氏体得以转变,内部应力得以释放,从而平衡硬度和韧性。
最后,我们需要注意的是金属材料的热处理过程中需要严格控制温度、时间和冷却速率。
温度过高或时间过长会导致晶粒长大,从而降低金属材料的性能;冷却速率过快会导致金属材料产生裂纹或变形。
因此,在实际工程中,需要根据金属材料的具体成分和要求,合理选择热处理方法和工艺参数,以获得最佳的性能和效果。
总之,金属材料的热处理是工程领域中不可或缺的工艺之一,通过合理的热处理方法和工艺参数,可以显著改善金属材料的性能和用途。
因此,在工程实践中,我们需要深入理解金属材料的热处理原理和方法,灵活运用于实际生产中,以满足不同工程需求。
金属学与热处理总结 版
金属学与热处理总结一、金属的晶体结构重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。
基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。
金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。
位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。
位错的柏氏矢量具有的一些特性:①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。
刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。
晶界具有的一些特性:①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。
二、纯金属的结晶重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。
基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。
铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。
相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。
过冷度:理论结晶温度与实际结晶温度的差称为过冷度。
变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。
过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。
从热力学的角度上看,没有过冷度结晶就没有趋动力。
根据 T R k ∆∝1可知当过冷度T ∆为零时临界晶核半径R k 为无穷大,临界形核功(21T G ∆∝∆)也为无穷大。
金属学及热处理要点总结
第一章金属的晶体结构决定材料性能的三个因素:化学成分、内部结构、组织状态金属:具有正的电阻温度系数的物质。
金属与非金属的主要区别是金属具有正的电阻温度系数和良好的导电能力。
金属键:处以聚集状态的金属原子,全部或大部分贡献出他们的价电子成为自由电子,为整个原子集体所共有,这些自由电子与所有自由电子一起在所有原子核周围按量子力学规律运动着,贡献出价电子的原子则变为正离子,沉浸在电子云中,依靠运动于其间的公有化的自由电子的静电作用结合起来,这种结合方式叫做金属键。
双原子模型:晶体:原子在三维空间做有规则周期性重复排列的物质叫做晶体。
晶体的特性:1、各向异性2、具有一定的熔点。
空间点阵:为了清晰地描述原子在三维空间排列的规律性,常将构成晶体的实际质点忽略,而将其抽象为纯粹的几何点,称为阵点或节点,这些阵点可以是原子或分子的中心,也可以是彼此等同的原子团或分子团的中心,各个阵点的周围环境都相同。
做许多平行的直线将这些阵点连接起来形成一个三维空间格架,叫做空间点阵。
晶胞:从点阵中选取的一个能够完全反映晶格特征的最小几何单元。
晶格常数:晶胞的棱边长度称为晶格常数,在X、Y、Z轴上分别以a、b、c表示。
致密度:表示晶胞中原子排列的紧密程度,可用原子所占体积与晶胞体积之比K表示。
三种典型的晶体结构:体心立方晶格、面心立方晶格、密排六方晶格。
体心立方晶格:α-Fe、Cr、W、V、Nb、Mo 配位数8 致密度0.68 滑移系:{110}*<111> 共12 个堆垛顺序ABAB 面心立方晶格:γ-Fe、Cu、Ni、Al、Au、Ag 配位数12 致密度0.74 滑移系:{111}*<110> 共12 个堆垛顺序ABCABC 密排六方晶格:Zn、Mg、Be、Cd 配位数12 致密度0.74 滑移系:{0001}*<1121> 堆垛顺序ABAB晶向族指数包含的晶向指数:一、写出<u v w>的排列二、给其中每个晶向加一个负号,分三次加三、给其中每个晶向加两个负号,分三次加四、给每个晶向加三个负号晶面族指数包含的晶面指数:(如果h k l 中有一个是零就写出排列各加一个负号,如果有两个零就只写出排列就行。
金属学与热处理总结
金属学与热处理总结引言金属学是研究金属和金属合金的组织、性能和应用的学科,而热处理是通过控制金属的温度和时间来改变其组织和性能的过程。
金属学与热处理密切相关,对于了解金属的物理性质、力学性能以及在工程中的应用都具有重要意义。
本文将对金属学和热处理的基本概念、常见方法和应用进行总结和介绍。
金属学金属的结晶结构金属的结晶结构是指其原子的排列方式。
常见的金属结晶结构包括面心立方结构(FCC)、体心立方结构(BCC)和面心立方结构(HCP)。
不同的结晶结构直接影响金属的性能,如硬度、韧性和导电性等。
金属的相图金属的相图描述了在不同温度和成分条件下金属的相变和相组成的关系。
常见的金属相图包括二元相图和三元相图。
通过研究和分析金属相图,可以预测金属在不同条件下的相变行为和相组成。
金属的晶体缺陷金属的晶体缺陷是指晶体中存在的缺陷,如点缺陷、线缺陷和面缺陷等。
晶体缺陷对金属的力学性能和导电性能等有影响,可以通过热处理来修复或改变晶体缺陷。
热处理热处理的基本原理热处理是通过控制金属的温度和时间来改变其组织和性能的方法。
热处理可以通过调整金属的晶界、晶粒大小和相组成等方式来改善金属的性能。
常见的热处理方法退火退火是将金属加热到一定温度,保持一定时间后缓慢冷却的过程。
退火可以消除应力、提高金属的韧性和可塑性,同时改变金属的晶粒大小和晶界分布。
固溶处理固溶处理是将固溶体加热到高温,使溶质原子溶解在溶剂原子中的过程。
固溶处理可以均匀分布溶质原子,提高金属的强度和硬度。
淬火淬火是将金属迅速冷却到室温的过程。
淬火可以使金属形成马氏体结构,提高金属的硬度和强度,但也会带来脆性。
热处理的应用热处理在工程中广泛应用于改善金属的性能和调整材料的组织。
例如,通过热处理可以使合金材料具有良好的耐腐蚀性、高强度和高温稳定性,适用于航空发动机、汽车制造和化工等领域。
结论金属学和热处理在工程中具有重要意义。
通过对金属的结晶结构、相图和晶体缺陷的研究,可以了解金属的基本特性。
(完整版)金属学与热处理考点总结及课后答案第二版
金属学与热处理总结一、金属的晶体结构重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。
基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。
金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。
位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。
位错的柏氏矢量具有的一些特性:①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。
刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。
晶界具有的一些特性:①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。
二、纯金属的结晶重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。
基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。
铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。
相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。
过冷度:理论结晶温度与实际结晶温度的差称为过冷度。
变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。
过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。
从热力学的角度上看,没有过冷度结晶就没有趋动力。
根据 T R k ∆∝1可知当过冷度T ∆为零时临界晶核半径R k 为无穷大,临界形核功(21T G ∆∝∆)也为无穷大。
金属学与热处理期末复习总结PPT课件
2019/11/28
.
15
工业纯铁
碳素钢
白口铸铁
四条垂直线
Fe
-
Fe C 相图:相 3.2 Fe-Fe3C相图 3
过共析钢
亚共晶白口铁 过共晶白口铁
亚20共19/析11/2钢8 共析钢
.
共晶白口铁
16
Fe - Fe3C 相图:组织
1. 16点
2. 3水平线 HJB、ECF、PSK线
3. 初生、二次、三次渗碳体脱溶线 CD、ES、PQ(碳的溶
立方晶系中给出指定的晶向指数或晶面指数( 取倒数化整数!!)的坐标。
刃型位错中位错线中既有正应变又有切应变, 对于正刃型位错,滑移面之上受压应力,滑移 面之下受拉应力。位错线、运动方向、滑移方 向之间的关系。螺型位错。
空位类型、晶体缺陷种类、点缺陷种类
3
选择
Fe在不同温度下体积的变化。P18-19 例如:在912℃(其晶格常数为0.02464nm)转变为( 其晶格常数为0.0486nm)时的休积() A膨胀 B收缩 C不变 D不能确定 四面体八面体间隙(考研) 例如:若面心立方晶体的晶格常数为a,则其八面体间 隙( )。 A是不对称的 B是对称的 C位于面心和棱边中点 D 位于体心和棱边中点 各向异性、各向同性。
(二)区间范围
1.碳在三大固溶体的极限溶解度(温度、含量) 2.A4温度 3. A3
温度 4.共晶点(温度、成分)5.包晶点 6.共析点 7.渗碳体成分
8.室温下,三次渗碳体含量最大的铁碳合金 9.共晶、共析、包晶
转变的碳含量范围
14
三、相图分析
1.基本概念
初生相 先共晶相 二次结晶
二次相
组织组成物:在显微组织中能够清楚的区分开,是显微 组织的独立部分 相组成物:从相的组成看 相的成分 相含量 用不同的线段 组织含量
金属学与热处理总结前七章
金属学与热处理总结一、金属的晶体结构重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。
基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。
金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。
位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。
位错的柏氏矢量具有的一些特性:①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。
刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。
晶界具有的一些特性:①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。
二、纯金属的结晶重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。
基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。
铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。
相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。
过冷度:理论结晶温度与实际结晶温度的差称为过冷度。
变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。
过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。
从热力学的角度上看,没有过冷度结晶就没有趋动力。
根据 T R k ∆∝1可知当过冷度T ∆为零时临界晶核半径R k 为无穷大,临界形核功(21T G ∆∝∆)也为无穷大。
金属学与热处理期末复习总结
一、名词解释:1热强性:在室温下,钢的力学性能与加载时间无关,但在高温下钢的强度及变形量不但与时间有关,而且与温度有关,这就是耐热钢所谓的热强性。
2形变热处理:是将塑性变形同热处理有机结合在一起,获得形变强化和相变强化综合效果的工艺方法。
3热硬性:热硬性是指钢在较高温度下,仍能保持较高硬度的性能。
4固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。
5回火脆性:是指淬火钢回火后出现韧性下降的现象。
6二次硬化:某些铁碳合金(如高速钢)须经多次回火后,才进一步提高其硬度。
7回火稳定性:淬火钢在回火时,抵抗强度、硬度下降的能力称为回火稳定性。
8淬硬性:指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示。
9水韧处理:将钢加热至奥氏体区温度(1050-1100℃,视钢中碳化物的细小或粗大而定)并保温一段时间(每25mm壁厚保温1h),使铸态组织中的碳化物基本上都固溶到奥氏体中,然后在水中进行淬火,从而得到单一的奥氏体组织。
10分级淬火:将奥氏体状态的工件首先淬入温度略高于钢的Ms点的盐浴或碱浴炉中保温,当工件内外温度均匀后,再从浴炉中取出空冷至室温,完成马氏体转变。
11临界淬火冷却速度:是过冷奥氏体不发生分解直接得到全部马氏体(含残留奥氏体)的最低冷却速度。
12季裂:它指的是经冷变形后的金属内有拉伸应力存在又处于特定环境中所发生的断裂。
13奥氏体化:将钢加热至临界点以上使形成奥氏体的金属热处理过程。
14本质晶粒度:本质晶粒度用于表征钢加热时奥氏体晶粒长大的倾向。
二、简答:1 何为奥氏体化?简述共析钢的奥氏体化过程。
答:1、将钢加热至临界点以上使形成奥氏体的金属热处理过程。
2、它是一种扩散性相变,转变过程分为四个阶段。
(1)形核。
将珠光体加热到Ac1以上,在铁素体和渗碳体的相界面上奥氏体优先形核。
珠光体群边界也可形核。
在快速加热时,由于过热度大,铁素体亚边界也能形核。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属学与热处理总结一、金属的晶体结构重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。
基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。
金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。
位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。
位错的柏氏矢量具有的一些特性:①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。
刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。
晶界具有的一些特性:①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。
二、纯金属的结晶重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。
基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。
铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。
相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。
过冷度:理论结晶温度与实际结晶温度的差称为过冷度。
变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。
过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。
从热力学的角度上看,没有过冷度结晶就没有趋动力。
根据 T R k ∆∝1可知当过冷度T ∆为零时临界晶核半径R k 为无穷大,临界形核功(21T G ∆∝∆)也为无穷大。
临界晶核半径R k 与临界形核功为无穷大时,无法形核,所以液态金属不能结晶。
晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。
细化晶粒的方法:增加过冷度、变质处理、振动与搅拌。
铸锭三个晶区的形成机理:表面细晶区:当高温液体倒入铸模后,结晶先从模壁开始,靠近模壁一层的液体产生极大的过冷,加上模壁可以作为非均质形核的基底,因此在此薄层中立即形成大量的晶核,并同时向各个方向生长,形成表面细晶区。
柱状晶区:在表面细晶区形成的同时,铸模温度迅速升高,液态金属冷却速度减慢,结晶前沿过冷都很小,不能生成新的晶核。
垂直模壁方向散热最快,因而晶体沿相反方向生长成柱状晶。
中心等轴晶区:随着柱状晶的生长,中心部位的液体实际温度分布区域平缓,由于溶质原子的重新分配,在固液界面前沿出现成分过冷,成分过冷区的扩大,促使新的晶核形成长大形成等轴晶。
由于液体的流动使表面层细晶一部分卷入液体之中或柱状晶的枝晶被冲刷脱落而进入前沿的液体中作为非自发生核的籽晶。
三、二元合金的相结构与结晶 重点内容:杠杆定律、相律及应用。
基本内容:相、匀晶、共晶、包晶相图的结晶过程及不同成分合金在室温下的显微组织。
合金、成分过冷;非平衡结晶及枝晶偏析的基本概念。
相律:f = c – p + 1其中,f 为自由度数,c为组元数,p为相数。
伪共晶:在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金也可能得到全部共晶组织,这种共晶组织称为伪共晶。
合金:两种或两种以上的金属,或金属与非金属,经熔炼或烧结、或用其它方法组合而成的具有金属特性的物质。
合金相:在合金中,通过组成元素(组元)原子间的相互作用,形成具有相同晶体结构与性质,并以明确界面分开的成分均一组成部分称为合金相。
四、铁碳合金重点内容:铁碳合金的结晶过程及室温下的平衡组织,组织组成物及相组成物的计算。
基本内容:铁素体与奥氏体、二次渗碳体与共析渗碳体的异同点、三个恒温转变。
钢的含碳量对平衡组织及性能的影响;二次渗碳体、三次渗碳体、共晶渗碳体相对量的计算;五种渗碳体的来源及形态。
奥氏体与铁素体的异同点:相同点:都是铁与碳形成的间隙固溶体;强度硬度低,塑性韧性高。
不同点:铁素体为体心结构,奥氏体面心结构;铁素体最高含碳量为0.0218%,奥氏体最高含碳量为2.11%,铁素体是由奥氏体直接转变或由奥氏体发生共析转变得到,奥氏体是由包晶或由液相直接析出的;存在的温度区间不同。
二次渗碳体与共析渗碳体的异同点。
相同点:都是渗碳体,成份、结构、性能都相同。
不同点:来源不同,二次渗碳体由奥氏体中析出,共析渗碳体是共析转变得到的;形态不同二次渗碳体成网状,共析渗碳体成片状;对性能的影响不同,片状的强化基体,提高强度,网状降低强度。
成分、组织与机械性能之间的关系:如亚共析钢。
亚共析钢室温下的平衡组织为F+P,F的强度低,塑性、韧性好,与F相比P强度硬度高,而塑性、韧性差。
随含碳量的增加,F 量减少,P量增加(组织组成物的相对量可用杠杆定律计算)。
所以对于亚共析钢,随含碳量的增加,强度硬度升高,而塑性、韧性下降五、三元合金相图重点内容:固态下无溶解度三元共晶相图投影图中不同区、线的结晶过程、室温组织。
基本内容:固态下无溶解度三元共晶相图投影图中任意点的组织并计算其相对量。
三元合金相图的成分表示法;直线法则、杠杆定律、重心法则。
六、金属及合金的塑性变形与断裂重点内容:体心与面心结构的滑移系;金属塑性变形后的组织与性能。
基本内容:固溶体强化机理与强化规律、第二相的强化机理。
霍尔——配奇关系式;单晶体塑性变形的方式、滑移的本质。
塑性变形的方式:以滑移和孪晶为主。
滑移:晶体的一部分沿着一定的晶面和晶向相对另一部分作相对的滑动。
滑移的本质是位错的移动。
体心结构的滑移系个数为12,滑移面:{110},方向<111>。
面心结构的滑移系个数为12,滑移面:{111},方向<110>。
金属塑性变形后的组织与性能:显微组织出现纤维组织,杂质沿变形方向拉长为细带状或粉碎成链状,光学显微镜分辨不清晶粒和杂质。
亚结构细化,出现形变织构。
性能:材料的强度、硬度升高,塑性、韧性下降;比电阻增加,导电系数和电阻温度系数下降,抗腐蚀能力降低等。
七、金属及合金的回复与再结晶重点内容:金属的热加工的作用;变形金属加热时显微组织的变化、性能的变化,储存能的变化。
基本内容:回复、再结的概念、变形金属加热时储存能的变化。
再结晶后的晶粒尺寸;影响再结晶的主要因素性能的变化规律。
变形金属加热时显微组织的变化、性能的变化:随温度的升高,金属的硬度和强度下降,塑性和韧性提高。
电阻率不断下降,密度升高。
金属的抗腐蚀能力提高,内应力下降。
再结晶:冷变形后的金属加热到一定温度之后,在原来的变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化,并恢复到完全软化状态,这个过程称之为再结晶。
热加工的主要作用(或目的)是:①把钢材加工成所需要的各种形状,如棒材、板材、线材等;②能明显的改善铸锭中的组织缺陷,如气泡焊合,缩松压实,使金属材料的致密度增加;③使粗大的柱状晶变细,合金钢中大块状碳化物初晶打碎并使其均匀分布;④减轻或消除成分偏析,均匀化学成分等。
使材料的性能得到明显的改善。
影响再结晶的主要因素:①再结晶退火温度:退火温度越高(保温时间一定时),再结晶后的晶粒越粗大;②冷变形量:一般冷变形量越大,完成再结晶的温度越低,变形量达到一定程度后,完成再结晶的温度趋于恒定;③原始晶粒尺寸:原始晶粒越细,再结晶晶粒也越细;④微量溶质与杂质原子,一般均起细化晶粒的作用;⑤第二相粒子,粗大的第二相粒子有利于再结晶,弥散分布的细小的第二相粒子不利于再结晶;⑥形变温度,形变温度越高,再结晶温度越高,晶粒粗化;⑦加热速度,加热速度过快或过慢,都可能使再结晶温度升高。
塑性变形后的金属随加热温度的升高会发生的一些变化:显微组织经过回复、再结晶、晶粒长大三个阶段由破碎的或纤维组织转变成等轴晶粒,亚晶尺寸增大;储存能降低,内应力松弛或被消除;各种结构缺陷减少;强度、硬度降低,塑性、韧度提高;电阻下降,应力腐蚀倾向显著减小。
八、扩散重点内容:影响扩散的因素;扩散第一定律表达式。
基本内容:扩散激活能、扩散的驱动力。
柯肯达尔效应,扩散第二定律表达式。
柯肯达尔效应:由置换互溶原子因相对扩散速度不同而引起标记移动的不均衡扩散现象称为柯肯达尔效应。
影响扩散的因素:①温度:温度越高,扩散速度越大;② 晶体结构:体心结构的扩散系数大于面心结构的扩散系数; ③ 固溶体类型:间隙原子的扩散速度大于置换原子的扩散速度; ④ 晶体缺陷:晶体缺陷越多,原子的扩散速度越快;⑤ 化学成分:有些元素可以加快原子的扩散速度,有些可以减慢扩散速度。
扩散第一定律表达式:扩散第一定律表达式:dxdCD J -= 其中,J 为扩散流量;D 为扩散系数;dxdC为浓度梯度。
扩散的驱动力为化学位梯度,阻力为扩散激活能 九、钢的热处理原理重点内容:冷却时转变产物(P 、B 、M )的特征、性能特点、热处理的概念。
基本内容:等温、连续C-曲线。
奥氏体化的四个过程;碳钢回火转变产物的性能特点。
热处理:将钢在固态下加热到预定的温度,并在该温度下保持一段时间,然后以一定的速度冷却下来,让其获得所需要的组织结构和性能的一种热加工工艺。
转变产物(P 、B 、M )的特征、性能特点:片状P 体,片层间距越小,强度越高,塑性、韧性也越好;粒状P 体,Fe 3C 颗粒越细小,分布越均匀,合金的强度越高。
第二相的数量越多,对塑性的危害越大;片状与粒状相比,片状强度高,塑性、韧性差;上贝氏体为羽毛状,亚结构为位错,韧性差;下贝氏体为黑针状或竹叶状,亚结构为位错,位错密度高于上贝氏体,综合机械性能好;低碳马氏体为板条状,亚结构为位错,具有良好的综合机械性能;高碳马氏体为片状,亚结构为孪晶,强度硬度高,塑性和韧性差。
等温、连续C-曲线。
十、钢的热处理工艺重点内容:退火、正火的目的和工艺方法;淬火和回火的目的和工艺方法。
基本内容:淬透性、淬硬性、热应力、组织应力、回火脆性、回火稳定性、过冷奥氏体的概念。
淬火加热缺陷及其防止措施。
热应力:工件在加热(或冷却)时,由于不同部位的温度差异,导致热胀(或冷缩)的不一致所引起的应力称为热应力。
组织应力:由于工件不同部位组织转变不同时性而引起的内应力。
淬透性:是表征钢材淬火时获得马氏体的能力的特性。
可硬性:指淬成马氏体可能得到的硬度。
回火稳定性:淬火钢对回火时发生软化过程的抵抗能力。
回火脆性:钢在一定的温度范围内回火时,其冲击韧性显著下降,这种脆化现象叫做钢的回火脆性。