专题训练10---以不等式证明为背景
专题10 第二章元一次不等式(组)小专题-含参一元一次不等式组的解法(解析版)
八年级数学下册学霸提分秘籍专题10 第二章元一次不等式(组)小专题-含参一元一次不等式组的解法典例精讲(2020•河北模拟)已知关于x 的不等式组{−x −1≥−2x +112(x −2a)+12x <0,其中实数a 是不等于2的常数,请依据a 的取值情况求出不等式组的解集.【点睛】分别求出各不等式的解集,再根据实数a 是不等于2的常数进行分类解答即可.【解析】解:{−x −1≥−2x +1①12(x −2a)+12x <0②, 由①得,x ≥2, 由②得,x <a ,故当a >2时,不等式组得解集为2≤x <a ;当a <2时,该不等式组无解.巩固提高1.(2019•鼓楼区校级期末)解关于x 的不等式组{x −a ≥0x −2<0x +1>0.【点睛】根据不等式组的解法即可求出答案,注意对参数a 的讨论.【解析】解:{x −a ≥0①x −2<0②x +1>0③由①可得:x ≥a 由②可得:x <2 由③可得:x >﹣1当a ≤﹣1时,此时不等式组的解集为:﹣1<x <2 当﹣1<a <2时,此时不等式组的解集为:a ≤x <2 当a ≥2时, 此时不等式组无解2.(2020•顺义区校级期中)解关于x 的不等式组:{0<5x +3a ≤10<5x −3a ≤1,其中a 为参数.【点睛】求出不等式组中每个不等式的解集,分别求出当−35a =35a 时、当1−3a 5=1+3a 5时、当−35a =1+3a 5时、当35a =1−3a5时a 的值,结合不等式的解集,即可求出在各段的不等式组的解集. 【解析】解:{0<5x +3a ≤1①0<5x −3a ≤1②,解不等式①得:﹣3a <5x ≤1﹣3a ,−35a <x ≤1−3a5, 解不等式②得:3a <5x ≤1+3a ,35a <x ≤1+3a 5, ∵当−35a =35a 时,a =0,当1−3a 5=1+3a 5时,a =0,当−35a =1+3a 5时,a =−16, 当35a =1−3a 5时,a =16,∴当a ≥16或a ≤−16时,原不等式组无解;当0≤a <16时,原不等式组的解集为:35a <x ≤1−3a 5;当−16<a <0时,原不等式组的解集为:−35a <x ≤1+3a5. 3.(2020•浙江自主招生)解关于x 的不等式组:{a(x −2)>x −39(a +x)>9a +8.【点睛】利用不等式组的求解方法,求得各不等式组的解集,然后分别讨论a 的取值,即可求得答案. 【解析】解:∵{a(x −2)>x −3①9(a +x)>9a +8②,由①得:(a ﹣1)x >2a ﹣3③,由②得:x >89,当a ﹣1>0时,解③得:x >2a−3a−1, 若2a−3a−1≥89,即a ≥1910时, 不等式组的解集为:x >2a−3a−1; 当1≤a <1910时,不等式组的解集为:x ≥89; 当a ﹣1<0时,解③得:x <2a−3a−1,若2a−3a−1≥89,即a ≤1910时,89<x <2a−3a−1; 当a <1时,不等式组的解集为:89<x <2a−3a−1.∴原不等式组的解集为:当a ≥1910时,x >2a−3a−1;当a <1910时,89<x <2a−3a−1.。
【高中数学专项突破】专题10 二次函数与一元二次方程、不等式-专题突破(含答案)
【高中数学专项突破】专题10 二次函数与一元二次方程、不等式题组1 一元二次不等式的解法1.下列不等式中是一元二次不等式的是()A.a2x2+2≥0B.21x x<3C.-x2+x-m≤0D.x3-2x+1>02.不等式(x+5)(3-2x)≥6的解集为()A.B.C.D.3.不等式3x2-7x+2<0的解集为()A.B.C.D.{x|x>2}4.解关于x的不等式x2-(a+a2)x+a3>0(a∈R).5.已知f(x)=ax2+x-a,a∈R.(1)若a=1,解不等式f(x)≥1;(2)若不等式f(x)>-2x2-3x+1-2a对一切实数x恒成立,求实数a的取值范围;(3)若a<0,解不等式f(x)>1.6.(1)已知当-1≤a≤1时,不等式ax2-(3a+2)x+6≤0恒成立,求实数x的取值范围.(2)解关于x的不等式ax2-(3a+2)x+6≤0.题组2 “三个二次”的对应关系的应用7.不等式x2-ax-b<0的解集是{x|2<x<3},则bx2-ax-1>0的解集是()A.{x|2<x<3}B.{x|-3<x<-2}C.{x|-<x<-}D.{x|<x<}8.设f(x)=x2+bx+1,且f(-1)=f(3),则f(x)>0的解集是()A.(-∞,-1)∪(3,+∞)B.RC.{x|x≠1}D.{x|x=1}9.不等式ax2+bx-2≥0的解集为{x|-2≤x≤-},则()A.a=-8,b=-10B.a=-1,b=9C.a=-4,b=-9D.a=-1,b=2题组3 分式不等式的解法10.设集合A={x||4x-1|≥9,x∈R},B={x|≥0,x∈R},则A∩B等于()A.(-3,-2]B.(-3,-2]∪[0,]C.(-∞,-3]∪[,+∞)D.(-∞,-3)∪[,+∞)11.关于x的不等式ax+b>0的解集为{x|x>2},则关于x的不等式>0的解集为()A.{x|-2<x<-1或x>3}B.{x|-3<x<-2或x>1}C.{x|-1<x<2或x>3}D.{x|x<-1或x<3}题组4 一元二次不等式的应用12.行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离s(m)与汽车的车速(km/h)满足下列关系:s=+(n为常数,且n∈N*),做了两次刹车试验,有关试验数据如图所示,其中(1)求n的值;(2)要使刹车距离不超过12.6 m,则行驶的最大速度是多少?13.某工厂生产商品M,若每件定价80元,则每年可销售80万件,税务部门对市场销售的商品要征收附加费,为了既增加国家收入,又有利于市场活跃,必须合理确定征收的税率.据市场调查,若政府对商品M 征收的税率为P%(即每百元征收P元)时,每年的销售量减少10P万件,据此,问:(1)若税务部门对商品M每年所收税金不少于96万元,求P的范围;(2)在所收税金不少于96万元的前提下,要让厂家获得最大的销售金额,应如何确定P值?(3)若仅考虑每年税收金额最高,又应如何确定P值?题组5 一元二次不等式恒成立问题14.若不等式x2+ax+1≥0对于一切x∈(0,]恒成立,则a的最小值是()A.0B.-2C.-D.-315.关于x的不等式(a-2)x2+2(a-2)x-4<0对一切x∈R恒成立,则a的取值范围是()A.(-∞,2]B.(-2,2]C.(-2,2)D.(-∞,2)16.当x∈R时,不等式kx2-kx+1>0恒成立,则k的取值范围是()A.(0,+∞)B.[0,+∞)C.[0,4)D.(0,4)17.设二次函数f(x)=ax2+bx.(1)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围;(2)当b=1时,若对任意x∈[0,1],-1≤f(x)≤1恒成立,求实数a的取值范围.18.已知不等式x2-x-m+1>0.(1)当m=3时,求此不等式的解集;(2)若对于任意的实数x,此不等式恒成立,求实数m的取值范围.19.(1)解不等式-3<4x-4x2≤0;(2)若不等式mx2+2mx-4<2x2+4x对任意x均成立,求实数m的取值范围.专题10 二次函数与一元二次方程、不等式题组1 一元二次不等式的解法1.下列不等式中是一元二次不等式的是()A.a2x2+2≥0B.<3C.-x2+x-m≤0D.x3-2x+1>0【答案】C【解析】选项A中,a2=0时不符合;选项B是分式不等式;选项D中,最高次数为三次;只有选项C符合.故选C.2.不等式(x+5)(3-2x)≥6的解集为()A.B.C.D.【答案】D【解析】首先展开,移项,合并同类项,分解因式可得-≤x≤1,故选D.3.不等式3x2-7x+2<0的解集为()A.B.C.D.{x|x>2}【答案】A【解析】3x2-7x+2<0⇒(3x-1)(x-2)<0⇒<x<2.4.解关于x的不等式x2-(a+a2)x+a3>0(a∈R).【答案】原不等式可变形为(x-a)(x-a2)>0,方程(x-a)(x-a2)=0的两个根为x1=a,x2=a2.当a<0时,有a<a2,∴x<a或x>a2,此时原不等式的解集为{x|x<a或x>a2};当0<a<1时,有a>a2,∴x<a2或x>a,此时原不等式的解集为{x|x<a2或x>a};当a>1时,有a2>a,∴x<a或x>a2,此时原不等式的解集为{x|x<a或x>a2};当a=0时,有x≠0,此时原不等式的解集为{x|x∈R且x≠0};当a=1时,有x≠1,此时原不等式的解集为{x|x∈R且x≠1}.综上可知,当a<0或a>1时,原不等式的解集为{x|x<a或x>a2};当0<a<1时,原不等式的解集为{x|x<a2或x>a};当a=0时,原不等式的解集为{x|x≠0};当a=1时,原不等式的解集为{x|x≠1}.5.已知f(x)=ax2+x-a,a∈R.(1)若a=1,解不等式f(x)≥1;(2)若不等式f(x)>-2x2-3x+1-2a对一切实数x恒成立,求实数a的取值范围;(3)若a<0,解不等式f(x)>1.【答案】(1)根据题意,由于x2+x-1≥1,结合二次函数图象可知不等式的解集为{x|x≤-2或x≥1}.(2)(a+2)x2+4x+a-1>0,a=-2不符合;当a≠-2时,由a+2>0且Δ<0,得a>2.故a>2. (3)ax2+x-a-1>0,即(x-1)(ax+a+1)>0.因为a<0,所以(x-1)<0,因为1-=,所以当-<a<0时,1<-,解集为;当a=-时,(x-1)2<0,解集为∅;当a<-时,1>-,解集为.6.(1)已知当-1≤a≤1时,不等式ax2-(3a+2)x+6≤0恒成立,求实数x的取值范围.(2)解关于x的不等式ax2-(3a+2)x+6≤0.【答案】(1)原式可化为(x2-3x)a-2x+6≤0,设f(a)=(x2-3x)a-2x+6≤0,则f(a)为关于a的一次函数,由题意∴解得∴x=3.(2)原不等式可化为(x-3)(ax-2)≤0.那么由于a=0表示的为一次函数,a≠0为二次函数,那么分为两大类,结合开口方向和根的大小和二次函数图形可知,需要整体分为a>0,a=0,a<0来求解,那么对于a与的大小将会影响到根的大小,∴要将a 分为0<a<和a=以及a>来得到结论,那么可知有:当a<0时,原不等式的解集为;当a=0时,原不等式的解集为{x|x≥3};当0<a<时,原不等式的解集为;当a=时,原不等式的解集为{x|x=3};当a>时,原不等式的解集为.题组2 “三个二次”的对应关系的应用7.不等式x2-ax-b<0的解集是{x|2<x<3},则bx2-ax-1>0的解集是()A.{x|2<x<3}B.{x|-3<x<-2}C.{x|-<x<-}D.{x|<x<}【答案】C【解析】∵不等式x2-ax-b<0的解集是{x|2<x<3},∴a=5,b=-6,∴不等式bx2-ax-1>0,即为-6x2-5x-1>0,∴6x2+5x+1<0,∴(3x+1)(2x+1)<0,∴-<x<-.8.设f(x)=x2+bx+1,且f(-1)=f(3),则f(x)>0的解集是()A.(-∞,-1)∪(3,+∞)B.RC.{x|x≠1}D.{x|x=1}【答案】C【解析】由f(-1)=f(3),知b=-2,∴f(x)=x2-2x+1,∴f(x)>0的解集是{x|x≠1},故选C.9.不等式ax2+bx-2≥0的解集为{x|-2≤x≤-},则()A.a=-8,b=-10B.a=-1,b=9C.a=-4,b=-9D.a=-1,b=2【答案】C【解析】∵不等式ax2+bx-2≥0的解集为{x|-2≤x≤-},∴-2,-为方程ax2+bx-2=0的两根,则根据根与系数关系可得-2+(-)=-,(-2)·(-)=-,∴a=-4,b=-9,故选C.题组3 分式不等式的解法10.设集合A={x||4x-1|≥9,x∈R},B={x|≥0,x∈R},则A∩B等于()A.(-3,-2]B.(-3,-2]∪[0,]C.(-∞,-3]∪[,+∞)D.(-∞,-3)∪[,+∞)【答案】D【解析】因为A={x|x≥或x≤-2},B={x|x≥0或x<-3},∴A∩B=(-∞,-3)∪[,+∞),故选D.11.关于x的不等式ax+b>0的解集为{x|x>2},则关于x的不等式>0的解集为()A.{x|-2<x<-1或x>3}B.{x|-3<x<-2或x>1}C.{x|-1<x<2或x>3}D.{x|x<-1或x<3}【答案】C题组4 一元二次不等式的应用12.行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离s(m)与汽车的车速(km/h)满足下列关系:s=+(n为常数,且n∈N*),做了两次刹车试验,有关试验数据如图所示,其中(1)求n的值;(2)要使刹车距离不超过12.6 m,则行驶的最大速度是多少?【答案】(1)依题意得解得又n∈N*,所以n=6.(2)s=+≤12.6⇒v2+24v-5 040≤0⇒-84≤v≤60,因为v≥0,所以0≤v≤60,即行驶的最大速度为60 km/h.13.某工厂生产商品M,若每件定价80元,则每年可销售80万件,税务部门对市场销售的商品要征收附加费,为了既增加国家收入,又有利于市场活跃,必须合理确定征收的税率.据市场调查,若政府对商品M 征收的税率为P%(即每百元征收P元)时,每年的销售量减少10P万件,据此,问:(1)若税务部门对商品M每年所收税金不少于96万元,求P的范围;(2)在所收税金不少于96万元的前提下,要让厂家获得最大的销售金额,应如何确定P值?(3)若仅考虑每年税收金额最高,又应如何确定P值?【答案】税率为P%时,销售量为(80-10P)万件,销售金额为f(P)=80(80-10P),税金为g(P)=80(80-10P)·P%,其中0<P<8.(1)由解得2≤P≤6.(2)∵f(P)=80(80-10P)(2≤P≤6)为减函数,∴当P=2时,厂家获得最大的销售金额.(3)∵0<P<8,g(P)=80(80-10P)·P%=-8(P-4)2+128,∴当P=4时,国家所得税金最多,为128万元.题组5 一元二次不等式恒成立问题14.若不等式x2+ax+1≥0对于一切x∈(0,]恒成立,则a的最小值是()A.0B.-2C.-D.-3【答案】C【解析】ax≥-(x2+1),a≥-(x+)对一切x∈(0,]恒成立,当0<x≤时,-(x+)≤-,∴a≥-,故选C.15.关于x的不等式(a-2)x2+2(a-2)x-4<0对一切x∈R恒成立,则a的取值范围是()A.(-∞,2]B.(-2,2]C.(-2,2)D.(-∞,2)【答案】B【解析】由可求得-2<a<2.又当a=2时,原不等式化为-4<0,恒成立,∴-2<a≤2.16.当x∈R时,不等式kx2-kx+1>0恒成立,则k的取值范围是()A.(0,+∞)B.[0,+∞)C.[0,4)D.(0,4)【答案】C【解析】当k=0时,不等式变为1>0,成立;当k≠0时,不等式kx2-kx+1>0恒成立,则即0<k<4,所以0≤k<4.17.设二次函数f(x)=ax2+bx.(1)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围;(2)当b=1时,若对任意x∈[0,1],-1≤f(x)≤1恒成立,求实数a的取值范围.【答案】(1)方法一⇒∵f(-2)=4a-2b=3f(-1)+f(1),且1≤f(-1)≤2,2≤f(1)≤4,∴5≤f(-2)≤10.方法二设f(-2)=mf(-1)+nf(1),即4a-2b=m(a-b)+n(a+b)=(m+n)a-(m-n)b,比较两边系数:⇒∴f(-2)=3f(-1)+f(1),下同方法一.(2)当x∈[0,1]时,-1≤f(x)≤1,即-1≤ax2+x≤1,即当x∈[0,1]时,ax2+x+1≥0且ax2+x-1≤0恒成立;当x=0时,显然,ax2+x+1≥0且ax2+x-1≤0均成立;当x∈(0,1]时,若ax2+x+1≥0恒成立,则a≥--=-(+)2+,而-(+)2+在x∈(0,1]上的最大值为-2,∴a≥-2;当x∈(0,1]时,ax2+x-1≤0恒成立,则a≤-=(-)2-,而(-)2-在x∈(0,1]上的最小值为0,∴a≤0,∴-2≤a≤0,而a≠0,因此所求a的取值范围为[-2,0).18.已知不等式x2-x-m+1>0.(1)当m=3时,求此不等式的解集;(2)若对于任意的实数x,此不等式恒成立,求实数m的取值范围.【答案】(1)当m=3时,x2-x-m+1>0,即x2-x-2>0,解得x<-1或x>2,故不等式的解集为{x|x<-1或x>2}.(2)∵1>0,∴对任意的实数x,不等式x2-x-m+1>0恒成立,则必须有(-1)2-4(-m+1)<0,解得m<,∴实数m的取值范围是m<.19.(1)解不等式-3<4x-4x2≤0;(2)若不等式mx2+2mx-4<2x2+4x对任意x均成立,求实数m的取值范围.【答案】(1)根据题意,由于-3<4x-4x2≤0,那么等价于-3<4x-4x2且4x-4x2≤0,先分析方程的根,结合二次函数图象可知,不等式的解集为(-,0]∪[1,).(2)由于不等式mx2+2mx-4<2x2+4x对任意x均成立,那么可知,当m=0时,-4<2x2+4x,由于判别式小于零可知成立,恒大于零,不等式对任意x均成立;当m≠0时,要使不等式恒成立,只要开口向上,判别式小于零即可,得到-2<m≤2,且m≠0.综上可知-2<m≤2.。
专题10 一元一次不等式(组)(解析版)-备战2024年中考数学一轮复习之必考点题型全归纳与分层精练
专题10一元一次不等式(组)【专题目录】技巧1:一元一次不等式组的解法技巧技巧2:一元一次不等式的解法的应用技巧3:含字母系数的一元一次不等式(组)的应用【题型】一、不等式的性质【题型】二、不等式(组)的解集的数轴表示【题型】三、求一元一次不等式的特解的方法【题型】四、确定不等式(组)中字母的取值范围【题型】五、求一元一次方程组中的待定字母的取值范围【题型】六、一元一次不等式的应用【考纲要求】1、了解不等式(组)有关的概念,理解不等式的基本性质;2、会解简单的一元一次不等式(组);并能在数轴上表示出其解集.3、能列出一元一次不等式(组)解决实际问题.【考点总结】一、一元一次不等式(组)不等式或组不等式的基本性质(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变(2)不等式的两边都乘(或除以)同一个正数,不等号的方向不变(3)不等式的两边都乘(或除以)同一个负数,不等号的方向改变解法①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1.在①至⑤步的变形中,一定要注意不等号的方向是否需要改变.一元一次不等式组定义一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.解法先求出各个不等式的解再确定其公共部分,即为原不等式组的解集。
四种不等式组(a<b)解集图示口诀【注意】1.不等式的解与不等式的解集的区别与联系:1)不等式的解是指满足这个不等式的未知数的某个值。
2)不等式的解集是指满足这个不等式的未知数的所有的值。
3)不等式的所有解组成了这个不等式的解集,不等式的解集中包括这个不等式的每一个解。
2.用数轴表示不等式的解集:大于向右,小于向左,有等号画实心圆点,无等号画空心圆图。
2.列不等式或不等式组解决实际问题,要注意抓住问题中的一些关键词语,如“至少”“最多”“超过”“不低于”“不大于”“不高于”“大于”“多”等.这些都体现了不等关系,列不等式时,要根据关键词准确地选用不等号.另外,对一些实际问题的分析还要注意结合实际.3.列不等式(组)解应用题的一般步骤:(1)审题;(2)设未知数;(3)找出能够包含未知数的不等量关系;(4)列出不等式(组);(5)求出不等式(组)的解;(6)在不等式(组)的解中找出符合题意的值;(7)写出答案(包括单位名称).【技巧归纳】基本不等式组的解集⎩⎨⎧≥≥b x a x x ≥b 大大取大⎩⎨⎧≤≤b x a x x ≤a 小小取小⎩⎨⎧≤≥bx a x a ≤x ≤b 大小小大中间找⎩⎨⎧≥≤b x a x 无解大大小小解不了技巧1:一元一次不等式组的解法技巧【类型】一、解普通型的一元一次不等式组12x <6,-2≤0的解集,在数轴上表示正确的是()2.解不等式组,并把解集表示在数轴上.(x +2),①+15>0.②【类型】二、解连写型的不等式组3.满足不等式组-1<2x -13≤2的整数的个数是()A .5B .4C .3D .无数4.若式子4-k 的值大于-1且不大于3,则k 的取值范围是____________.5.用两种不同的方法解不等式组-1<2x -13【类型】三、“绝对值”型不等式转化为不等式组求解.6.解不等式|3x -12|≤4.【类型】四、“分式”型不等式转化为不等式组求解7.解不等式3x -62x +1<0.参考答案1.C2.解:由①得,x≥-1.由②得,x <45.∴不等式组的解集为-1≤x <45.表示在数轴上,如图所示.3.B 4.1≤k <55.解:方法1解不等式①,得x>-1.解不等式②,得x≤8.所以不等式组的解集为-1<x≤8.方法2:-1<2x -13≤5,-3<2x -1≤15,-2<2x≤16,-1<x≤8.6.分析:由绝对值的知识|x|<a(a >0),可知-a <x <a.解:由|3x -12|≤4,得-4≤3x -12≤4.-4,①②解不等式①,得x≥-73.解不等式②,得x≤3.所以原不等式的解集为-73≤x≤3.点拨:解题时要先将不等式转化为不等式组再进行求解.7.解:∵3x -62x +1<0,∴3x -6与2x+1异号.即:-6>0,+1<0或<0,+1>0.解(Ⅰ)>2,<-12.∴此不等式组无解.解(Ⅱ)<2,>-12.∴此不等式组的解集为-12<x <2.∴原不等式的解集为-12<x <2.技巧2:一元一次不等式的解法的应用【类型】一、直接解不等式1.解下列不等式,并把它们的解集在数轴上表示出来.(1)x >13x -2;(2)4x -13-x >1;(3)x +13≥2(x +1).2.下面解不等式的过程是否正确?如不正确,请找出开始错误之处,并改正.解不等式:4-3x 3-1<7+5x 5.解:去分母,得5(4-3x)-1<3(7+5x).①去括号,得20-15x -1<21+15x.②移项,合并同类项,得-30x <2.③系数化为1,得x >-115.④【类型】二、解含字母系数的一元一次不等式3.解关于x 的不等式ax -x -2>0.【类型】三、解与方程(组)的解综合的不等式4.当m 取何值时,关于x 的方程23x -1=6m +5(x -m)的解是非负数?5+3y =10,-3y =2的解满足不等式ax +y >4,求a 的取值范围.【类型】四、解与新定义综合的不等式6.定义新运算:对于任意实数a ,b ,都有a ★b =a(a -b)+1,等式右边是通常的加法、减法及乘法运算,比如:2★5=2×(2-5)+1=-5.(1)求(-2)★3的值;(2)若3★x 的值小于13,求x 的取值范围,并在数轴上表示出来.【类型】五、解与不等式的解综合的不等式7.已知关于x 的不等式3x -m ≤0的正整数解有四个,求m 的取值范围.8.关于x 的两个不等式①3x +a 2<1与②1-3x>0.(1)若两个不等式的解集相同,求a 的值;(2)若不等式①的解都是②的解,求a 的取值范围.参考答案1.解:(1)x>13x-2,23x>-2,x>-3.这个不等式的解集在数轴上的表示如图所示.(2)4x-13-x>1,4x-1-3x>3,x> 4.这个不等式的解集在数轴上的表示如图所示.(3)x+13≥2(x+1),x+1≥6x+6,-5x≥5,x≤-1.这个不等式的解集在数轴上的表示如图所示.2.解:第①步开始错误,应该改成:去分母,得5(4-3x)-15<3(7+5x).去括号,得20-15x-15<21+15x.移项,合并同类项,得-30x<16.系数化为1,得x>-8 15 .3.解:移项,合并同类项得,(a-1)x>2,当a-1>0,即a>1时,x>2a-1;当a-1=0,即a=1时,x无解;当a-1<0,即a<1时,x<2a-1.4.解:解方程得x =-313(m +1),由题意得-313(m +1)≥0,解得m ≤-1.5.解:2x +3y =10,-3y =2,=2,=2.代入不等式得2a +2>4.所以a >1.6.解:(1)(-2)★3=-2×(-2-3)+1=-2×(-5)+1=10+1=11.(2)∵3★x <13,∴3(3-x)+1<13,去括号,得9-3x +1<13,移项,合并同类项,得-3x <3,系数化为1,得x >-1.在数轴上表示如图所示.7.解:解不等式得x ≤m 3,由题意得4≤m 3<5,解得12≤m <15.方法规律:已知一个不等式的解集满足特定要求,求字母参数的取值范围时,我们可先解出这个含字母参数的不等式的解集,然后根据题意列出一个(或几个)关于字母参数的不等式,从而可求出字母参数的取值范围.8.解:(1)由①得x <2-a 3,由②得x <13,由两个不等的解集相同,得2-a 3=13,解得a =1.(2)由不等式①的解都是②的解,得2-a 3≤13,解得a ≥1.技巧3:含字母系数的一元一次不等式(组)的应用【类型】一、与方程组的综合问题1.已知实数x ,y 同时满足三个条件:①x -y =2-m ;②4x -3y =2+m ;③x >y.那么实数m 的取值范围是()A .m >-2B .m <2C .m <-2D .m >22+y =-7-a ,-y =1+3a的解中,x 为非正数,y 为负数.(1)求a 的取值范围;(2)化简|a -3|+|a +2|.3.在等式y =ax +b 中,当x =1时,y =-3;当x =-3时,y =13.(1)求a ,b 的值;(2)当-1<x <2时,求y 的取值范围.【类型】二、与不等式(组)的解集的综合问题题型1:已知解集求字母系数的值或范围4.已知不等式(a -2)x >4-2a 的解集为x <-2,则a 的取值范围是__________.5-a <1,-2b >3的解集为-1<x <1,求(b -1)a +1的值.题型2:已知整数解的情况求字母系数的值或取值范围6>2,<a 的解集中共有5个整数,则a 的取值范围为()A .7<a ≤8B .6<a ≤7C .7≤a <8D .7≤a ≤87-a ≥0,-b <0的整数解是1,2,3,求适合这个不等式组的整数a ,b 的值.题型3:已知不等式组有无解求字母系数的取值范围8-1>0,-a <0无解,则a 的取值范围是__________.91<a ①,+5>x -7②有解,求实数a 的取值范围.参考答案1.B2.解:(1)=-3+a ,=-4-2a.∵x 为非正数,y 3+a ≤0,4-2a <0,解得-2<a ≤3.(2)∵-2<a ≤3,即a -3≤0,a +2>0,∴原式=3-a +a +2=5.3.解:(1)将x =1时,y =-3;x =-3时,y =13代入y =ax +b +b =-3,3a +b =13,=-4,=1.(2)由y =-4x +1,得x =1-y 4.∵-1<x <2,∴-1<1-y 4<2,解得-7<y <5.4.a <25.-a <1.①,-2b >3.②,解①得x <a +12;解②得x >2b +3.根据题意得a +12=1,且2b +3=-1,解得a =1,b =-2,则(b -1)a +1=(-3)2=9.6.A7.解:解不等式组得a 2≤x <b 3.∵不等式组仅有整数解1,2,3,∴0<a 2≤1,3<b 3≤4.解得0<a ≤2,9<b ≤12.∵a,b为整数,∴a=1,2,b=10,11,12. 8.a≤19.+1<a①,+5>x-7②,解不等式①得x<a-1.解不等式②得x>-6.∵不等式组有解,∴-6<x<a-1,则a-1>-6,a>-5.【题型讲解】【题型】一、不等式的性质例1、若a>b,则下列等式一定成立的是()A.a>b+2B.a+1>b+1C.﹣a>﹣b D.|a|>|b|【答案】B【分析】利用不等式的基本性质判断即可.【详解】A、由a>b不一定能得出a>b+2,故本选项不合题意;B、若a>b,则a+1>b+1,故本选项符合题意;C、若a>b,则﹣a<﹣b,故本选项不合题意;D、由a>b不一定能得出|a|>|b|,故本选项不合题意.故选:B.【题型】二、不等式(组)的解集的数轴表示例2、不等式组20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【解析】解不等式x+2>0,得:x>-2,解不等式2x-4≤0,得:x≤2,则不等式组的解集为-2<x≤2,将解集表示在数轴上如下:故选C.【题型】三、求一元一次不等式的特解的方法例3、不等式12x-≤的非负整数解有()A.1个B.2个C.3个D.4个【答案】D【详解】解:12x-≤,解得:3x≤,则不等式12x-≤的非负整数解有:0,1,2,3共4个.故选:D.【题型】四、确定不等式(组)中字母的取值范围例4、若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.【答案】-2-3【详解】解:由题意得:130 x abx->⎧⎨+≥⎩①②解不等式①得:x>1+a,解不等式②得:x≤3 b-不等式组的解集为:1+a<x≤3b- 不等式组的解集是﹣1<x≤1,∴..1+a=-1,3b-=1,解得:a=-2,b=-3故答案为:-2,-3.【题型】五、求一元一次方程组中的待定字母的取值范围例5、若不等式组841x x x m +<-⎧⎨>⎩的解集是x >3,则m 的取值范围是().A .m >3B .m≥3C .m≤3D .m <3【答案】C【解析】详解:841x x x m +<-⎧⎨>⎩①②,解①得,x>3;解②得,x>m ,∵不等式组841x x x m +<-⎧⎨>⎩的解集是x>3,则m ⩽3.故选:C.【题型】六、一元一次不等式的应用例6、某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为()A .13B .14C .15D .16【答案】C【分析】根据竞赛得分10=⨯答对的题数(5)+-⨯未答对的题数,根据本次竞赛得分要超过120分,列出不等式即可.【详解】解:设要答对x 道.10(5)(20)120x x +-⨯->,10 1005 120x x -+>,15 220x >,解得:443x >,根据x 必须为整数,故x 取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题.故选C .一元一次不等式(组)(达标训练)一、单选题1.若m n >,则下列不等式一定成立的是().A .2121m n -+>-+B .1144m n ++>C .m a n b+>+D .am an-<-【答案】B【分析】根据不等式的性质解答.不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、∵m >n ,∴-2m <-2n ,则-2m +1<-2n +1,故该选项不成立,不符合题意;B 、∵m >n ,∴m +1>n +1,则1144m n ++>,故该选项成立,符合题意;C 、∵m >n ,∴m +a >n +a ,不能判断m +a >n +b ,故该选项不成立,不符合题意;D 、∵m >n ,当a >0时,-am <-an ;当a <0时,-am >-an ;故该选项不成立,不符合题意;故选:B .【点睛】本题考查了不等式的性质,掌握不等式的基本性质是解答本题的关键.2.北京2022冬奥会吉祥物“冰墩墩”和“雪容融”受到大家的喜爱,某网店出售这两种吉祥物礼品,售价如图所示.小明妈妈一共买10件礼品,总共花费不超过900元,如果设购买冰墩墩礼品x 件,则能够得到的不等式是()A .100x +80(10﹣x )>900B .100+80(10﹣x )<900C .100x +80(10﹣x )≥900D .100x +80(10﹣x )≤900【答案】D【分析】设购买冰墩墩礼品x 件,则购买雪容融礼品(10﹣x )件,根据“冰墩墩单价×冰墩墩个数+雪容融单价×雪容融个数≤900”可得不等式.【详解】解:设购买冰墩墩礼品x 件,则购买雪容融礼品(10﹣x )件,根据题意,得:100x +80(10﹣x )≤900,故选:D .【点睛】本题主要考查由实际问题抽象出一元一次不等式,解题的关键是理解题意,找到其中蕴含的不等关系.3.不等式组3050x x +>⎧⎨-≤⎩的解是()A .3x >-B .5x ≤C .35x -<≤D .无解【答案】C 【分析】先求出每个不等式的解集,再结合起来即可得到不等式组的解集.【详解】由30x +>得:3x >-由50x -≤得:5x ≤∴35x -<≤故选C【点睛】本题考查一元一次方程组的求解,掌握方法是关键.4.不等式3﹣x <2x +6的解集是()A .x <1B .x >1C .x <﹣1D .x >﹣1【答案】D【分析】根据一元一次不等式的解法,移项、合并同类项、系数化1求解即可.【详解】解:326x x -<+,移项得362x x -<+,合并同类项得33x -<,系数化1得1x >-,∴不等式326x x -<+的解集是1x >-,故选:D .【点睛】本题考查一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解决问题的关键.5.在数轴上表示不等式1x >-的解集正确的是()A.B.C.D.【答案】A【分析】根据不等式解集的表示方法依次判断.【详解】解:在数轴上表示不等式x>−1的解集的是A.故选:A.【点睛】此题考查了在数轴上表示不等式的解集,正确掌握不等式解集的表示方法,区分实心点与空心点,是解题的关键.二、填空题6.超市用1200元钱批发了A,B两种西瓜进行销售,两种西瓜的批发价和零售价如下表所示,若计划将这批西瓜全部售完后,所获利润率不低于40%,则该超市至少批发A种西瓜__________kg.名称A B批发价(元/kg)43零售价(元/kg)64【答案】120【分析】设批发A种西瓜x kg,根据“利润率不低于40%”列出不等式,求解即可.【详解】解:设批发A种西瓜x kg,则(6-4)x+120043x-×(4-3)≥1200×40%,解得x≥120.答:该超市至少批发A种西瓜120kg.故答案为:120.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解.7.不等式2103x--<的解集为____.【答案】5x <【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1;本题可以采用去括号、移项、合并同类项即可求解.【详解】解:去分母,得:230x --<,移项,得:23x <+,合并同类项,得:5x <.∴不等式的解集为:5x <.故答案为:5x <.【点睛】本题考查了解一元一次不等式.严格遵循解不等式的基本步骤是关键,尤其需要注意∶不等式两边都乘以或除以同一个负数时,不等号方向改变;在数轴上表示不等式的解集要注意实心点和空心点的区别.三、解答题8.解不等式组:()36,3121,x x x x ≤-⎧⎨+>-⎩并将解集在数轴上表示.【答案】3x ≥,数轴表示见解析【分析】先求出每个一元一次不等式的解集,再求两个解集的公共部分,即是不等式组的解集.【详解】解:解不等式36x x -≤,得:3x ≥,解不等式312(1)x x +>-,得:3x >-,∵3x ≥与3x >-的公共部分为3x ≥,∴不等式组的解集是:3x ≥.在数轴上表示解集如下:【点睛】本题考查了一元一次不等式组,熟练掌握一元一次不等式组解集的求解方法是解题关键.一元一次不等式(组)(提升测评)1.2022年北京冬季奥运会开幕式于2022年2月4日20:00在国家体育馆举行,嘉淇利用相关数字做游戏:①画一条数轴,在数轴上用点A ,B ,C 分别表示﹣20,2022,﹣24,如图1所示;②将这条数轴在点A 处剪断,点A 右侧的部分称为数轴I ,点A 左侧的部分称为数轴Ⅱ;③平移数轴Ⅱ使点A 位于点B 的正下方,如图2所示;④扩大数轴Ⅱ的单位长度至原来的k 倍,使点C 正上方位于数轴I 的点A 左侧.则整数k 的最小值为()A .511B .510C .509D .500【答案】A 【分析】根据题意可得k ⋅AC AB >,列出不等式,求得最小整数解即可求解.【详解】解:依题意,4AC =,2042AB =∵扩大数轴Ⅱ的单位长度至原来的k 倍,使点C 正上方位于数轴I 的点A 左侧,∴k ⋅AC AB >,即42042k >,解得15102k >, k 为正整数,∴k 的最小值为511,故选A .【点睛】本题考查了数轴上两点距离,一元一次不等式的应用,根据题意得出k ⋅AC AB >是解题的关键.2.不等式12<32x x -⎛⎫ ⎪⎝⎭的解在数轴上表示正确的是()A .B .C .D .【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得不等式的解集,继而可得答案.【详解】解:去括号,得:21<3x x -,移项,得:3+2<1x x -,合并同类项,得:<1x -,系数化为1,得>1x -,在数轴上表示为:故选:A .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.已知实数a ,b ,c 满足2a c b +=,112a c b +=.则下列结论正确的是()A .若0a b >>,则0c b >>B .若1ac =,则1b =±C .a ,b ,c 不可能同时相等D .若2a =,则28b c=【答案】B【分析】A.根据0a b >>,则11a b <,根据112a c b +=,得出c b <;B.根据112a c b+=,得出()2ac b a c =+,把2a c b +=代入得:21b ac ==,即可得出答案;C.当a b c ==时,可以使2a c b +=,112a c b +=,即可判断出答案;D.根据解析B 可知,22b ac c ==,即可判断.【详解】A.∵0a b >>,∴11a b<,∵112a c b+=,∴11c b,∴c b <,故A 错误;B.∵112a c b +=,即2a c ac b+=,∴()2ac b a c =+,把2a c b +=代入得:222ac b =,21b ac ∴==,解得:1b =±,故B 正确;C.当a b c ==时,可以使2a c b +=,112a c b+=,∴a ,b ,c 可能同时相等,故C 错误;D.根据解析B 可知,2b ac =,把2a =代入得:22b c =,故D 错误.故选:B .【点睛】本题主要考查了分式的化简,等式基本性质和不等式的基本性质,熟练掌握不等式的基本性质和等式的性质,是解题的关键.4.若数a 使关于x 的分式方程1133x a x x ++=--有非负整数解,且使关于y 的不等式组3212623y y y y a++⎧⎪⎨⎪≥-⎩>至少有3个整数解,则符合条件的所有整数a 的和是()A .﹣5B .﹣3C .0D .2【答案】D 【分析】解不等式组,根据题意确定a 的范围;解出分式方程,根据题意确定a 的范围,根据题意计算即可.【详解】解:3212623y y y y a ++⎧⎪⎨⎪≥-⎩>①②,解不等式①得:y >﹣8,解不等式②得:y ≤a ,∴原不等式组的解集为:﹣8<y ≤a ,∵不等式组至少有3个整数解,∴a ≥﹣5,1133x a x x++=--,去分母得∶1﹣x ﹣a =x ﹣3,解得:x 42a -=,∵分式方程有非负整数解,∴x ≥0(x 为整数)且x ≠3,∴42a -为非负整数,且42a -≠3,∴a ≤4且a ≠﹣2,∴符合条件的所有整数a 的值为:﹣4,0,2,4,∴符合条件的所有整数a 的和是:2,故选:D .【点睛】本题考查的是分式方程的解法、一元一次不等式组的解法,掌握解分式方程、一元一次不等式组的一般步骤是解题的关键.5.已知三个实数a 、b 、c ,满足325a b c ++=,231a b c +-=,且0a ≥、0b ≥、0c ≥,则37+-a b c 的最小值是()A .111-B .57-C .37D .711【答案】B【分析】由两个已知等式3a +2b +c =5和2a +b ﹣3c =1.可用其中一个未知数表示另两个未知数,然后由条件:a ,b ,c 均是非负数,列出c 的不等式组,可求出未知数c 的取值范围,再把m =3a +b ﹣7c 中a ,b 转化为c ,即可得解.【详解】解:联立方程组325231a b c a b c ++=⎧⎨+-=⎩,解得,73711a c b c=-⎧⎨=-⎩,由题意知:a ,b ,c 均是非负数,则07307110c c c ≥⎧⎪-≥⎨⎪-≥⎩,解得37711c ≤≤,∴3a +b ﹣7c=3(﹣3+7c )+(7﹣11c )﹣7c=﹣2+3c ,当c =37时,3a+b ﹣7c 有最小值,即3a+b ﹣7c =﹣2+3×37=﹣57.故选:B .【点睛】此题主要考查代数式求值,考查的知识点相对较多,包括不等式的求解、求最大值最小值等,另外还要求有充分利用已知条件的能力.二、填空题6.一元二次方程x 2+5x ﹣m =0有两个不相等的实数根,则m 的取值范围是_____.【答案】254m >-## 6.25m >-##164m >-【分析】由方程有两个不相等的实数根结合根的判别式,可得254()0m =-->Δ,进行计算即可得.【详解】解:根据题意得254()0m =-->Δ,解得,254m >-,故答案为:254m >-.【点睛】本题考查了根的判别式,解题的关键是掌握根的判别式并认真计算.7.若关于x 的分式方程232x m x -=-的解是非负数,则m 的取值范围是________.【答案】m ≤6且m ≠4【分析】先求得分式方程的解,利用已知条件列出不等式,解不等式即可求解.【详解】解:关于x 的分式方程232x m x -=-的解为:x =6−m ,∵分式方程有可能产生增根2,∴6−m ≠2,∴m ≠4,∵关于x 的分式方程232x m x -=-的解是非负数,∴6−m ≥0,解得:m ≤6,综上,m 的取值范围是:m ≤6且m ≠4.故答案为:m ≤6且m ≠4.【点睛】本题主要考查了分式方程的解,解一元一次不等式,解分式方程一定要注意有可能产生增根的情况,这是解题的关键.三、解答题8.2022年4月16日,神舟十三号载人飞船返回舱成功着陆,三名航天员平安归来,神舟十三号任务取得圆满成功.飞箭航模店看准商机,推出了“神舟”和“天宫”模型.已知每个“神舟”模型的成本比“天宫”模型多10元,同样花费100元,购进“天宫”模型的数量比“神舟”模型多5个.(1)“神舟”和“天宫”模型的成本各多少元?(2)飞箭航模店计划购买两种模型共200个,且每个“神舟”模型的售价为30元,“天宫”模型的售价为15元.设购买“神舟”模型a 个,销售这批模型的利润为w 元.①求w 与a 的函数关系式(不要求写出a 的取值范围);②若购进“神舟”模型的数量不超过“天宫”模型数量的13,则购进“神舟”模型多少个时,销售这批模型可以获得最大利润?最大利润是多少?【答案】(1)“天宫”模型成本为每个10元,“神舟”模型每个20元(2)①51000w a =+②购进“神舟”模型50个时,销售这批模型可以获得最大利润,最大利润为1250元【分析】(1)根据总数,设立未知数,建立分式方程,即可求解.(2)①设“神舟”模型a 个,则“天宫”模型为200a -()个,根据利润关系即可表示w 与a 的关系式.②根据购进“神舟”模型的数量不超过“天宫”模型数量的13,即可找到a 的取值范围,利用一次函数性质即可求解.(1)解:设“天宫”模型成本为每个x 元,则“神舟”模型成本为每个10x +()元.依题意得100100510x x =++.解得10x =.经检验,10x =是原方程的解.答:“天宫”模型成本为每个10元,“神舟”模型每个20元;(2)解:① “神舟”模型a 个,则“天宫”模型为200a -()个.()()()3020151020051000w a a a ∴=-+--=+.② 购进“神舟”模型的数量不超过“天宫”模型数量的13.()12003a a ∴≤-.解得:50a ≤.51000w a =+ .50k =>.()max 5055010001250a w ∴==⨯+=当时,元.即:购进“神舟”模型50个时,销售这批模型可以获得利润.最大利润为1250元.【点睛】本题考查了分式方程、一次函数的性质,关键在于找到等量关系,建立方程,不等式,函数模型.9.解不等式组:3(2)821+1<52x x x x --≥--⎧⎪⎨⎪⎩【答案】1x ≥-【分析】先分别求出两个一元一次不等式的解集,然后根据“同大取大、同小取小,小大大小取中间、大大小小找不到”即可求解.【详解】解:3(2)821+1<52x x x x --≥--⎧⎪⎨⎪⎩①②,解不等式①,得1x ≥-,解不等式②,得>7x -,∴该不等式组的解集为1x ≥-.【点睛】本题主要考查了解一元一次不等式组,理解并掌握求不等式组的原则“同大取大、同小取小,小大大小取中间、大大小小找不到”是解题的关键.。
(完整word版)中考数学专题练习-不等式的解及解集(含解析)
中考数学专题练习-不等式的解及解集(含解析)一、单选题1。
某日我市最高气温是26℃,最低气温是12℃,则当天气温t(℃)的变化范围是() A。
t>26 B。
t≥12C. 12<t<26 D。
12≤t≤262.下列说法正确的是( )A. x=1是不等式-2x<1的解集B。
x=3不是不等式-x<1的解集C. x>-2是不等式-2x<1的解集D。
不等式-x<1的解集是x<-13.不等式组的解集是x>a,则a的取值范围是( )A。
a<﹣2 B. a=﹣2 C。
a>﹣2 D. a≥﹣24.从下列不等式中选择一个与x+1≥2组成不等式组,如果要使该不等式组的解集为x≥1,那么可以选择的不等式可以是()A。
x>﹣1 B。
x>2 C. x<﹣1 D. x<25.若关于x的一元一次不等式组无解,则a的取值范围是( )A. a≥1B。
a>1 C。
a≤﹣1 D。
a<﹣16。
下列式子中,是不等式的有( )①2x=7;②3x+4y;③﹣3<2;④2a﹣3≥0;⑤x>1;⑥a﹣b>1.A. 5个B。
4个 C. 3个D。
1个7.若不等式组有解,则a的取值范围是()A。
a≤3B。
a<3 C. a<2 D. a≤28.某种品牌奶粉合上标明“蛋白质≥20%”,它所表达的意思是( )A. 蛋白质的含量是20%B 。
蛋白质的含量不能是20%C. 蛋白质的含量高于20%D。
蛋白质的含量不低于20%9.对于不等式x﹣3<0,下列说法中不正确的是( )A.x=2是它的一个解B.x=2不是它的解C。
有无数个解D.x<3是它的解集10.若不等式组无解,则a的取值范围是()A. a≥﹣3 B。
a>﹣3 C. a≤﹣3 D. a<﹣311。
某市最高气温是33℃,最低气温是24℃,则该市气温t(℃)的变化范围是( )A. t>33 B. t≤24C。
24<t<33 D。
24≤t≤3312。
已知不等式组的解集是x>2,则a的取值范围是()A。
a≤2B。
2024年高考数学专题10 数列不等式的放缩问题 (练习)(原卷版)
(2)是否存在
n
Î
N*
,使得
ln
2
<
sin
1 1´
3
+
sin
2
1 ´
4
+
×
×
×
+
sin
1 n(n +
2)
<
3 4
成立?请说明理由.
23.(2023·福建福州·福建省福州第一中学校考三模)记 Sn 为数列an 的前 n 项和,已知
专题 10 数列不等式的放缩问题
目录
01 先求和后放缩 .................................................................................................................................1
明理由;
a
-
1
£0
(3)对任意正整数
n
,不等式
1 +
1 b1
1 +
1 b2
××
×
1
+
1 bn
n - 2 + an
都成立,求实数 a 的取值范围.
n
06 å ai < (>)b 型不等式的证明 i =1
22.(2023·山西·高三统考阶段练习)已知函数 f (x) = sin x - x + 1 x3 . 6
等比数列,这三个条件中任选一个补充在上面题干中,并解答下面问题.
(1)求an 的通项公式;
2020高考数学之冲破压轴题讲与练 专题10 数列与不等式的综合问题【解析版】
第二章 数列与不等式专题10 数列与不等式的综合问题【压轴综述】纵观近几年的高考命题,考查常以数列的相关项以及关系式,或数列的前n 项和与第n 项的关系入手,结合数列的递推关系式与等差数列或等比数列的定义展开,求解数列的通项、前n 项和,有时与参数的求解、数列不等式的证明等加以综合.数列与不等式的结合,一般有两类题:一是利用基本不等式求解数列中的最值;二是与数列中的求和问题相联系,证明不等式或求解参数的取值范围,此类问题通常是抓住数列通项公式的特征,多采用先求和后利用放缩法或数列的单调性证明不等式,求解参数的取值范围. 本专题通过例题说明此类问题解答规律与方法.①函数方法:即构造函数,通过函数的单调性、极值等得出关于正实数的不等式,通过对关于正实数的不等式特殊赋值得出数列中的不等式;②放缩方法:数列中不等式可以通过对中间过程或者最后的结果放缩得到; ③比较方法:作差或者作商比较.【压轴典例】例1.(2013·全国高考真题(理))设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n=1,2,3,… 若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n nb a +,则( ) A .{S n }为递减数列 B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列 【答案】B 【解析】因为11b c >,不妨设111142,33a a b c ==,13()22p a b c a =++=;故211S ==; 21a a =,112125326a ab a +==,112147326a a c a +==,2216S a ==; 显然21S S >;同理,31a a =,112159428a a b a +==,113137428a a c a +==,211113133535 (228816)a a a a S a ==,显然32S S >. 例2. (2018·江苏高考真题)已知集合*{|21,}A x x n n N ==-∈,*{|2,}n B x x n N ==∈.将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为________. 【答案】27 【解析】设=2k n a ,则12[(211)+(221)+(221)][222]k kn S -=⨯-⨯-+⋅-++++L L()11221212212(12)222212k k kk k ---++⨯--=+=+--由112n n S a +>得2211211522212(21),(2)20(2)140,22,6k k k k k k k -+---+->+-->≥≥ 所以只需研究5622n a <<是否有满足条件的解,此时25[(211)+(221)+(21)][222]n S m L L =⨯-⨯-+-++++25122m +=+-,+121n a m =+,m 为等差数列项数,且16m >. 由25122212(21),2450022,527m m m m m n m ++->+-+>∴≥=+≥,得满足条件的n 最小值为27. 例3.(2018·浙江高考模拟)设数列的前项和分别为,其中,使成立的最大正整数__________,__________.【答案】 6. 114. 【解析】根据题意,数列{a n }中,a n =-3n+20,则数列{a n }为首项为17,公差为-3的等差数列,且当n≤6时,a n >0,当n >7时,a n <0,又由b n =|a n |,当n≤6时,b n =a n ,当n >7时,b n =-a n , 则使T n =S n 成立的最大正整数为6,T 2018+S 2018=(a 1+a 2+……+a 6+a 7+a 8+……+a 2018)+(b 1+b 2+……+b 6+b 7+b 8+……+b 2018)=(a 1+a 2+……+a 6+a 7+a 8+……+a 2018)+(a 1+a 2+……+a 6-a 7-a 8-……-a 2018) =2(a 1+a 2+……+a 6)=,故答案为:6,114例4.(2019·江西师大附中高考模拟(文))数列{}n a 中的项按顺序可以排成如图的形式,第一行1项,排1a ;第二行2项,从左到右分别排2a ,3a ;第三行3项,……依此类推,设数列{}n a 的前n 项和为n S ,则满足2019n S >的最小正整数n 的值为( )A .20B .21C .26D .27【答案】B 【解析】第一行为4,其和为4,可以变形为:1232T =⨯-;第二行为首项为4,公比为3的等比数列,共2项,其和为:()22241323213T -==⨯--;第三行为首项为4,公比为3的等比数列,共3项,其和为()33341323213T -==⨯--;依此类推:第n 行的和:232nn T =⨯-;则前6行共:12345621+++++=个数 前6行和为:()()()()26267212322322322333123152172S =⨯-+⨯-+⋅⋅⋅+⨯-=⨯++⋅⋅⋅+-=-=满足2019n S >而第六行的第6个数为:543972⨯=,则202197212002019S S =-=<∴满足2019n S >的最小正整数n 的值为:21本题正确选项:B例5.(2019·内蒙古高考模拟(理))数列()11n a n n =+的前n 项和为n S ,若1S ,m S ,n S 成等比数列()1m >,则正整数n 值为______. 【答案】8【解析】 ∵()11111n a n n n n ==-++,∴11111122311n n S n n n =-+-++-=++L , 又1S ,m S ,n S 成等比数列()1m >,∴()21m n S S S =⋅, 即()221211m n n m =⋅++,()22211m n n m =++, ∴()2221m m <+,即2210m m --<,解得1212m -<<+,结合1m >可得2m =, ∴8n =,故答案为8.例6.(2016·天津高考真题(理))已知{}是各项均为正数的等差数列,公差为d ,对任意的,是和的等比中项.(Ⅰ)设求证:数列{}是等差数列;(Ⅱ)设求证:【答案】(Ⅰ)详见解析(Ⅱ)详见解析 【解析】(Ⅰ)证明:由题意得,有,因此,所以是等差数列.(Ⅱ)证明:所以.例7.(2016·四川高考真题(理))已知数列{}的首项为1,为数列{}的前n 项和,,其中q>0,.(Ⅰ)若成等差数列,求数列{a n}的通项公式;(Ⅱ)设双曲线的离心率为,且,证明:.【答案】(Ⅰ);(Ⅱ)详见解析.【解析】(Ⅰ)由已知,两式相减得到.又由得到,故对所有都成立.所以,数列是首项为1,公比为q的等比数列.从而.由成等差数列,可得,即,则,由已知,,故.所以.(Ⅱ)由(Ⅰ)可知,.所以双曲线的离心率.由解得.因为,所以.于是,故.例8.(2016·浙江高考真题(理))设数列满足,.(Ⅰ)证明:,;(Ⅱ)若,,证明:,.【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】(Ⅰ)由得,故,,所以,因此.(Ⅱ)任取,由(Ⅰ)知,对于任意,,故.从而对于任意,均有.由的任意性得.①否则,存在,有,取正整数且,则,与①式矛盾.综上,对于任意,均有.【压轴训练】1.(2019·安徽高考模拟(理))设是等差数列,下列结论一定正确的是()A.若,则B.若,则C.若,则D.若,则【答案】C【解析】若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;对于B选项,当,分别为-4,-1,2时,满足a1+a3<0,但a2+a3=1>0,故B不正确;又{a n }是等差数列,0<a 1<a 2,2a 2=a 1+a 3>2,∴a 2,即C 正确;若a 1<0,则(a 2﹣a 1)(a 2﹣a 3)=﹣d 2≤0,即D 不正确. 故选:C .2.(2018·浙江高考模拟)已知等差数列的前项和是,公差不等于零,若成等比数列,则A .B .C .D .【答案】C 【解析】 由成等比数列.可得,可得(,即,∵公差不等于零,故选:C .3.(2019·山东高考模拟(文))已知正项等比数列{}n a 满足5432a a a +=,若存在两项m a ,n a ,使得18m n a a a =,则91m n+的最小值为__________. 【答案】2 【解析】Q 正项等比数列{}n a 满足5432a a a +=,432111=+2a q a q a q ∴,整理,得210+2q q -=,又0q >,解得,12q =, Q 存在两项m a ,n a 使得18m n a a a g ,2221164m n a q a +-∴=,整理,得8m n +=,∴9119119()()(10)88m n m n m n m n n m+=++=++ 19(102)28m n n m+=g …, 则91m n+的最小值为2. 当且仅当9m n n m=取等号,又m ,*n N ∈.8m n +=, 所以只有当6m =,2n =时,取得最小值是2. 故答案为:24.(2019·湖南师大附中高考模拟(理))已知等比数列{a n }的前n 项积为T n ,若124a =-,489a =-,则当T n 取最大值时,n 的值为_____. 【答案】4 【解析】设等比数列{a n }的公比为q ,因为124a =-,489a =-,可得341127a q a ==,解得13q =,则()()()1112312(2131)(32424)n n nnn n n T a a a a q-+++⋅⋅⋅+-=⋅⋅⋅=-=-, 当T n 取最大值时,可得n 为偶数,函数13xy =()在R 上递减, 又由2192T =,4489T =,66983T =,可得246T T T <>,当6n >,且n 为偶数时,6n T T <, 故当4n =时,T n 取最大值.5.(2019·安徽高考模拟(理))已知数列的各项均为正数,记为的前项和,若,,则使不等式成立的的最小值是________.【答案】11 【解析】由可得,则()()=0,又数列的各项均为正数,∴,即,可得数列{a n }是首项为公比为q =2的等比数列,∴,则n>10,又,∴n 的最小值是11,故答案为11.6.(2019·甘肃天水一中高考模拟(文))已知数列{}n a 满足11a =,0n a >,11n n a a +=,那么32n a <成立的n 的最大值为______ 【答案】5 【解析】11n n a a +=, 所有{}na 11a =,公差d 1=n n a =,2n a n = 解232n a n =<,得n 42<所以32n a <成立的n 的最大值为5 故答案为:57.(2019·河北高考模拟(理))已知数列{}n a 的前n 项和为n S ,且()2119*2n n n nS S n N +-+=∈,若24a <-,则n S 取最小值时n =__________.【答案】10 【解析】由21192n n n nS S +-+=,()21(1)1912n n n n S S ----+=,两式作差可得:1110(2)n n S S n n +--=-≥,即110(2)n n a a n n ++=-≥,由110n na a n ++=-,219n n a a n +++=-,两式作差可得:21(2)n n a a n +-=≥,则328a a +=-,24a <-,故234a a <-<,进一步可得:4567891011,,,a a a a a a a a <<<<,又10110a a +=,则10110a a <<,且111212130a a a a <+<+<L,则n S 取最小值时10n =.8.(2019·河南高考模拟(理))记首项为11(0)a a >,公差为d 的等差数列{}n a 的前n 项和为n S ,若1212a d =-,且1n n n S a S λ+≤+,则实数λ的取值范围为__________. 【答案】19,121⎡⎤⎢⎥⎣⎦【解析】由1n n n S a S λ+≤+,得11n n n n S S a a λ++-=≤. 因为10a >,所以0d <,()12312n a a n d n d ⎛⎫=+-=-⎪⎝⎭. 所以当111n ≤≤时,0n a >,当12n ≥时,0n a <. (1)当111n ≤≤时,由1n n a a λ+≥得1211223n n n n n a a d d a a a n λ++≥==+=+-. 因为221911223212321n +≤+=-⨯-,所以1921λ≥.(2)当12n ≥时,由1n n a a λ+≥得121223n n a a n λ+≤=+-. 因为211223n +>-,所以1λ≤.综上所述,λ的取值范围是19,121⎡⎤⎢⎥⎣⎦. 9.(2019·四川重庆南开中学高考模拟(理))在正项递增等比数列{}n a 中,51a =,记12...n n S a a a =+++,12111...n nT a a a =+++,则使得n n S T ≤成立的最大正整数n 为__________. 【答案】9【解析】由题得11111(1)(1)(1)11(1)1n nn nq q a q a q q q a q q--⋅-≤=---,因为数列是正项递增等比数,所以10,1a q >>,所以2111n a q -≤.因为51a =,所以44281111,,a q a q a q --=∴=∴=,所以81901,,9n n q qq q n ---⋅≤∴≤∴≤.所以使得n n S T ≤成立的最大正整数n 为9. 故答案为:910.(2017·吉林高考模拟(理))已知数列{}n a 满足()113,31.2n n a a a n N *+==-∈ (1)若数列{}n b 满足12n n b a =-,求证:{}n b 是等比数列; (2)若数列{}n c 满足312log ,n n n n c a T c c c ==+++L ,求证:()1.2n n n T ->【答案】(1) 见解析;(2)见解析. 【解析】(1) 由题可知()*n N∈,从而有13n n b b +=,11112b a =-=,所以{}n b 是以1为首项,3为公比的等比数列.(2) 由(1)知13n n b -=,从而1132n n a -=+,11331log 3log 312n n n c n --⎛⎫=+>=- ⎪⎝⎭,有()12101212n n n n T c c c n -=+++>+++-=L L ,所以()12n n n T ->.11.(2019·江苏金陵中学高考模拟)已知各项均为正整数的数列{a n }的前n 项和为S n ,满足:S n ﹣1+ka n =ta n 2﹣1,n≥2,n∈N *(其中k ,t 为常数).(1)若k =12,t =14,数列{a n }是等差数列,求a 1的值; (2)若数列{a n }是等比数列,求证:k <t . 【答案】(1)a 1=(2)见解析 【解析】(1)∵k=12,t =14,∴2111124n n n S a a -+=-(n≥2),设等差数列{a n }的公差为d ,令n =2,则212211a a a 124+=-,令n =3,则2123311124a a a a ++=-,两式相减可得:()()()2332321124a a a a a a +=+-,∵a n >0,∴a 3﹣a 2=2=d .由212211124a a a +=-,且d =2,化为2112a a -﹣4=0,a 1>0.解得a 1=(2)∵S n ﹣1+ka n =ta n 2﹣1①,n≥2,n∈N *,所以S n +ka n+1=2n 1ta +﹣1②, ②-①得a n +ka n+1﹣ka n =2n 1ta +﹣2n ta ,∴a n =(a n+1﹣a n )[t (a n+1+a n )﹣k], 令公比为q >0,则a n+1=a n q ,∴(q ﹣1)k+1=ta n (q 2﹣1), ∴1=(q ﹣1)[ta n (q+1)﹣k];∵对任意n≥2,n∈N *, 1=(q ﹣1)[ta n (q+1)﹣k]成立;∴q≠1,∴a n 不是一个常数; ∴t=0,∴S n ﹣1+ka n =﹣1,且{a n }是各项均为正整数的数列,∴k<0, 故k <t .12.(2019·天津高考模拟(理))已知单调等比数列{}n a ,首项为12,其前n 项和是n S ,且3312a S +,5S ,44a S +成等差数列,数列{}n b满足条件1231n b na a a a =L(1)求数列{}n a 、{}n b 的通项公式; (2)设1n n nc a b =-,记数列{}n c 的前n 项和是n T . ①求n T ;②求正整数k ,使得对任意*n N ∈,均有k n T T ≥.【答案】(1)12nn a ⎛⎫= ⎪⎝⎭,(1)n b n n =+;(2)①.1112n n T n =-+;②.4k =. 【解析】(1)设11n n a a q -=.由已知得53344122S a S a S =+++,即5341222S a S =+, 进而有()543122S S a -=.所以53122a a =,即214q =,则12q =±.由已知数列{}n a 是单调等比数列,且112a =,所以取12q =.数列{}n a 的通项公式为12nn a ⎛⎫= ⎪⎝⎭. 1231(2)n b na a a a =QL ,(1)2322222222n b n nn+∴⨯⨯⨯⨯==L , 则(1)n b n n =+.即数列{}n b 的通项公式为(1)n b n n =+. (2)①.由(1)可得:1111112(1)21n n n n n c a b n n n n ⎛⎫=-=-=-- ⎪++⎝⎭, 分组求和可得:1111112112n n nT n n ⎛⎫=---=- ⎪++⎝⎭. ②由于11111111(1)(2)222122(1)(2)n n n n n n n n T T n n n n ++++++--=--+=++++, 由于12n +比()()12n n ++变化快,所以令10n n T T +->得4n <. 即1234,,,T T T T 递增,而456,,n T T T T L 递减.所以,4T 最大. 即当4k =时,k n T T ≥.13.(2019·安徽高考模拟(文))已知数列为等差数列,且公差,其前项和为,,且,,成等比数列. (1)求等差数列的通项公式;(2)设,记数列的前项和为,求证.【答案】(1);(2)证明见解析.【解析】 (1)由题意得: ,解得:,∴(2)由(1)得,∴ ∴14.(2019·广东高考模拟(理))已知数列{}n a 满足11*121(22)2()n n n a a a n N n-++++=∈L . (1)求12,a a 和{}n a 的通项公式;(2)记数列{}n a kn -的前n 项和为n S ,若4n S S ≤对任意的正整数n 恒成立,求实数k 的取值范围. 【答案】(1) 1a 4= 26;a = 22n a n =+ (2) 125[,].52【解析】(1)由题意得111222?2n n n a a a n -++++=L , 所以23112124,222,a a a =⨯=+=⨯得26;a = 由111222?2n n n a a a n -++++=L , 所以()2121221?2n n n a a a n --+++=-L (2n ≥),相减得()1+12?21?2n n n n a n n -=--,得22,1n a n n =+=当也满足上式. 所以{}n a 的通项公式为22n a n =+.(2)数列{}n a kn -的通项公式为()2222,n a kn n kn k n -=+-=-+ 是以4k -为首项,公差为2k -的等差数列,若4n S S ≤对任意的正整数n 恒成立,等价于当4n =时,n S 取得最大值,所以()()4544220,55220.a k k a k k ⎧-=-+≥⎪⎨-=-+≤⎪⎩解得125.52k ≤≤ 所以实数k 的取值范围是125,.52⎡⎤⎢⎥⎣⎦ 15.(2017·浙江高考模拟)已知无穷数列{}n a 的首项112a =,*1111,2n n n a n N a a +⎛⎫=+∈ ⎪⎝⎭. (Ⅰ)证明: 01n a <<;(Ⅱ) 记()211n n nn n a a b a a ++-=, n T 为数列{}n b 的前n 项和,证明:对任意正整数n , 310n T <. 【答案】(Ⅰ)见解析;(Ⅱ)见解析. 【解析】(Ⅰ)证明:①当1n =时显然成立;②假设当n k = ()*k N ∈时不等式成立,即01k a <<, 那么当1n k =+时,11112k k k a a a +⎛⎫=+ ⎪⎝⎭ > 1·12=,所以101k a +<<, 即1n k =+时不等式也成立.综合①②可知, 01n a <<对任意*n N ∈成立. (Ⅱ)12211n n n a a a +=>+,即1n n a a +>,所以数列{}n a 为递增数列. 又1111112n n n n n a a a a a +⎛⎫-=-+ ⎪⎝⎭ 112n n a a ⎛⎫=- ⎪⎝⎭,易知1n n a a ⎧⎫-⎨⎬⎩⎭为递减数列, 所以111nn a a +⎧⎫-⎨⎬⎩⎭也为递减数列, 所以当2n ≥时,111n n a a +-22112a a ⎛⎫≤- ⎪⎝⎭154245⎛⎫=- ⎪⎝⎭ 940= 所以当2n ≥时, ()211n n nn n a a b a a ++-== ()()11111940n n n n n n a a a a a a +++⎛⎫--<- ⎪⎝⎭当1n =时, 11934010n T T b ===<,成立; 当2n ≥时, 12n n T b b b =+++L < ()()()32431994040n n a a a a a a +⎡⎤+-+-++-⎣⎦L ()12994040n a a +=+- ()2999942731140404040510010a ⎛⎫<+-=+-=< ⎪⎝⎭ 综上,对任意正整数n , 310n T <16.(2017·浙江高考模拟)已知数列{}n a 满足: 11p ap +=, 1p >, 11ln n n na a a +-=.(1)证明: 11n n a a +>>; (2)证明:12112n nn n a a a a ++<<+; (3)证明:()1211121121ln 122n n n n n a a a p p ----⨯<⋯<⨯+. 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析. 【解析】(1)先用数学归纳法证明1n a >. ①当1n =时,∵1p >,∴111p a p+=>; ②假设当n k =时, 1k a >,则当1n k =+时, 1111ln 1k k k k k a a a a a +--=>=-. 由①②可知1n a >. 再证1n n a a +>.111ln ln ln n nn nn n n n na a a a a a a a a +----=-=, 令()1ln f x x x x =--, 1x >,则()'ln 0f x x =-<, 所以()f x 在()1,+∞上单调递减,所以()()10f x f <=,所以1ln 0ln n n nna a a a --<,即1n n a a +>.(2)要证12112n nn n a a a a ++<<+,只需证2111ln 2n n n n n a a a a a -+<<+, 只需证()2210,{1220,n n n n n na lna a a lna a -+<+-+>其中1n a >, 先证22ln 10n n n a a a -+<,令()22ln 1f x x x x =-+, 1x >,只需证()0f x <. 因为()()'2ln 2221220f x x x x x =+-<-+-=, 所以()f x 在()1,+∞上单调递减,所以()()10f x f <=. 再证()1ln 220n n n a a a +-+>,令()()1ln 22g x x x x =+-+, 1x >,只需证()0g x >,()11'ln 2ln 1x g x x x x x +=+-=+-, 令()1ln 1h x x x =+-, 1x >,则()22111'0x h x x x x -=-=>,所以()h x 在()1,+∞上单调递增,所以()()10h x h >=,从而()'0g x >,所以()g x 在()1,+∞上单调递增,所以()()10g x g >=, 综上可得12112n nn n a a a a ++<<+. (3)由(2)知,一方面, 1112n n a a ---<,由迭代可得()1111111122n n n a a p --⎛⎫⎛⎫-<-= ⎪⎪⎝⎭⎝⎭,因为ln 1x x ≤-,所以111ln 12n n n a a p -⎛⎫≤-< ⎪⎝⎭,所以()1212ln ln ln ln n n a a a a a a ⋯=++⋯+ 0111111222n p -⎡⎤⎛⎫⎛⎫⎛⎫<++⋯+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ 111112121212nn n p p -⎛⎫- ⎪-⎝⎭=⨯=⨯-;另一方面,即11112n n n na a a a ++-->, 由迭代可得111111111212n n nn a a a a p ----⎛⎫⎛⎫>⨯= ⎪ ⎪+⎝⎭⎝⎭.因为1ln 1x x ≥-,所以1ln 1n n a a ≥- 11112n p -⎛⎫> ⎪+⎝⎭,所以()01112121111ln ln ln ln 1222n n n a a a a a a p -⎡⎤⎛⎫⎛⎫⎛⎫⋯=++⋯+>⨯++⋯+⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦112112n n p --=⨯+;综上,()1211121121ln 122n n n n n a a a p p ----⨯<⋯<⨯+.。
专题10 放缩法证明数列不等式之常数型与函数型(解析版)
放缩法证明数列不等式之常数型与函数型◆题型一:放缩法证明数列不等式之常数型 方法解密:放缩法证明数列不等式属于数列大题中较有难度的一种题型.大部分是以证明某个数列和大于或小于一个常数类型,小部分是证明某个数列前n 项和或者积大于或小于一个函数(下一专题详解).本专题我们来介绍最常见的常数类型. 放缩的目的有两个:一是通过放缩使数列的和变换成比如裂项相消等可以简单求和的形式,这样可以方便比较大小.二是两者之间无法直接比较大小,这样我们需要通过寻找一个媒介,来间接比较大小. 放缩的原则:放缩必然会导致数变大或者变小的情况,我们的原则是越精确越好.在证明过程中,为了使放缩更精确,往往会第一项不变,从第二项或者第三项开始放缩(例题会有讲解). 放缩的方法:(1)当我们要证明多项式M A <时,我们无法直接证明两者的大小,这时我们可以将多项式M 放大为1N ,当我们能够证明1N A <,也间接证明了M A <.切不可将M 缩小为2N ,即使能够证明2N A <,M 与A 的关系无法得证.(2)当我们要证明多项式M A >时,这时我们可以将多项式M 缩小为1N ,当我们能够证明1N A >,也间接证明了M A >.需要放缩的多项式多以分式形式出现,要使得分式的值变大,就是将分母变小,常见是将分母减去一个正数,比如1. 常见的放缩形式:(1)()()21111211n n n n n n<=-≥--; (2)()2111111n n n n n >=-++;(3)2221441124412121n n n n n ⎛⎫=<=- ⎪--+⎝⎭; (5(()2121n n n n n n n n==--≥+-+; (6(211n n n n n n n =>=++++;(7222212111212122n n n n nn n n n ==--++-++-++; (8)()()()()()()()1211222211212121212122212121nn n n n n n n n n n n n ---=<==----------()2n ≥;(12)()()()111121122121212121n nn n n n n ---<=-≥-----.类型一:裂项放缩 【经典例题1】求证22221111.....2123n ++++< 【解析】因为()()2211111211n n n n n n n n <==-≥---,所以2222222211111111111111..........11.....=22123122332231n n n n n n ++++<++++=+-+-++--<----,所以原式得证. 为什么第一项没有经过放缩,因为分母不能为0,所以只能从第二项进行放缩.总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式1】求证222211117 (1234)n ++++< 【解析】因为()()()221111112111211n n n n n n n ⎛⎫<==-≥ ⎪-+--+⎝⎭,所以222222221111111111111111........11....1231213112324351n n n n ⎛⎫++++<++++=+-+-+-+- ⎪----⎝⎭11117=112214n n ⎛⎫++--< ⎪+⎝⎭,所以原式得证. 总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式2】求证222211115 (1233)n ++++<【解析】因为()()()221111112111211n n n n n n n ⎛⎫<==-≥ ⎪-+--+⎝⎭,所以 222222222111111111111111111........1....12312311222435461n n n n ⎛⎫++++<++++=++-+-+-++- ⎪---⎝⎭11111151115=1=422313213n n n n ⎛⎫⎛⎫+++---+< ⎪ ⎪++⎝⎭⎝⎭,注意这是保留前两项,从第三项开始放缩.总结:通过例1和变式题我们发现,我们对分式的进行放大,分母我们依次减去的数是n,1.不难发现,这些数递减,所得的结果也是递减的.说明减去的数越小,所得的结果越精确.同时通过两道变试题我们也发现,保留前几项不动,这样放缩的精度也会高一些.有些模拟题中,经常出现保留前2项到3项不动的情况.那么作为学生如何判断从第几项开始放缩呢?这需要学生去尝试和试错,如果第一项不行,那就尝试第二项,第三项.【经典例题2】已知2,2n n n a b n ==,设1n n nc a b =+,求证:1243n c c c +++<.【解析】已知2,2n n na b n ==,因为 222441122(21)2(21)(21)(21)2121n c n n n n n n n n n n ⎛⎫===<=- ⎪+++-+-+⎝⎭所以1221111112224233557212133132n c c c n n n ⎛⎫+++<+-+-++-=+-< ⎪-++⎝⎭,故不等式得证.【经典例题3】已知数列{}n a 满足11a =,*11(2,)n n n a a n n n--≥∈=N , (1)求n a ;(2)若数列{}n b 满足113b =,*121()n n n b b n a ++∈=N ,求证:2512n b <. 【答案】(1)n a n =;(2)证明见解析. 【详解】 (1)由题意11n n a na n -=-(2n ≥), ∴321121231121n n n a a a na a n a a a n -=⨯⨯⨯⨯=⨯⨯⨯⨯=-,11a =也适合.所以n a n =(*n N ∈); (2)由已知1125312b =<,214251312b b =+=<,32214119252341212b b =+=+=<, 当3n ≥时,121111(1)1n n b b n n n n n+-=<=---, 因此1343541()()()n n n b b b b b b b b ++=+-+-++-1911111125125()()()12233411212n n n <+-+-++-=-<-, 则1212512n n b b n +=-< 综上,2512n b <.类型二:等比放缩所谓等比放缩就是数列本身并非为标准的等比数列,我们将数列的通项经过一定的放缩使之成为一个等比数列,然后再求和,我们通过例题进行观察了解. 【经典例题4】证明:12311115 (212121213)n ++++<----【解析】令121n na =-,则1111212111212222n n n n n n n n a a a a ++++--=<=⇒<-- 又因为1211,3a a ==,由于不等式右边分母为3 ,因此从第三项开始放缩,得21121222111115321122312n n n a a a a a a a --⎛⎫- ⎪⎛⎫⎝⎭+++<++++=+<⎪⎝⎭-故不等式得证.【经典例题5】已知数列{}n a 满足:12a =,1122n n n a a ++=+,*n N ∈.(1)求证2n n a ⎧⎫⎨⎬⎩⎭是等差数列并求n a ;(2)求数列{}n a 的前n 项和n S ; (3)求证:2132431111112n n a a a a a a a a ++++⋅⋅⋅+<----. 【答案】(1)证明见解析,2nn a n =⋅;(2)1(1)22n n S n +=-+;(3)证明见解析.【详解】(1)证明:1111122211222222n n n n n n nn n n n n na a a a a a ++++++-=-=+-=, ∴2n na ⎧⎫⎨⎬⎩⎭是首项为1112a =,公差为1的等差数列, ∴1(1)12nn a n n =+-=,∴2n n a n =⋅. (2)∵1231222322n nS n =⨯+⨯+⨯+⋅⋅⋅⋅⋅⋅⋅, ∴234121222322n n S n +=⨯+⨯+⨯+⋅⋅⋅⋅⋅⋅⋅, 两式相减得:123122222n n n S n +-=+++⋅⋅⋅⋅⋅⋅-⋅,()1212212n n n n S +-=-⋅--,∴1(1)22n n S n +=-+.(3)证明:∵2n n a n =⋅,∴11(1)2n n a n ++=+⋅,∴1(2)2n n n a a n +-=+⋅,当*n N ∈时,22n +>,∴1(2)22n n n ++⋅>, ∴111(2)22n n n +<+⋅,∴21324311111n n a a a a a a a a ++++⋅⋅⋅⋅⋅⋅----234111112222n ++++⋅⋅⋅⋅⋅⋅< 111421111122212nn ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎛⎫⎝⎭⎛⎫⎝⎭==-< ⎪ ⎪ ⎪⎝⎭⎝⎭-.【练习1】已知数列{}n a 中,11a =,其前n 项的和为n S ,且当2n ≥时,满足21nn n S a S =-.(1)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列;(2)证明:2221274n S S S +++<. 【答案】(1)证明见解析;(2)证明见解析 【解析】(1)当2n ≥时,211nn n n S S S S --=-,11n n n n S S S S ---=,即1111n n S S --=从而1n S ⎧⎫⎨⎬⎩⎭构成以1为首项,1为公差的等差数列.(2)由(1)可知,()11111n n n S S =+-⨯=,1n S n∴=. 则当2n ≥时222111111211n S n n n n ⎛⎫=<=- ⎪--+⎝⎭. 故当2n ≥时22212111111111123224211n S S S n n ⎛⎫⎛⎫⎛⎫+++<+-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭1111137111221224n n ⎛⎫=++--<+⋅= ⎪+⎝⎭ 又当1n =时,21714S =<满足题意,故2221274n S S S +++<. 法二:则当2n ≥时22211111n S n n n n n =<=---, 那么222121111111717142334144n S S S n n n ⎛⎫⎛⎫⎛⎫+++<++-+-+-=-< ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭ 又当1n =时,21714S =<,当时,21714S =<满足题意.【练习2】已知数列{}n a 的前n 项和为n S ,且112n n n S na a =+-. (1)求数列{}n a 的通项公式; (2)若数列22n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:32n T <. 【答案】(1)()*1n a n n N =+∈.(2)见解析【解析】(1)当1n =时,111112S a a =+-,即12a =, 当2n ≥时,112n n n S na a =+-①,()1111112n n n S n a a ---=-+-②, ①-②,得:()112122n n n n n a na n a a a --=--+-,即()11n n na n a -=+, 11n n a a n n-∴=+,且112a=,∴数列1n a n ⎧⎫⎨⎬+⎩⎭是以每一项均为1的常数列,则11n a n =+,即()*1n a n n N =+∈;(2)由(1)得1n a n =+,()()2222211221n a n n n n n ∴=<=-+++, 11111111113113243522122n T n n n n ∴<-+-+-++-=+--<+++.【练习3】已知函数()32x f x x=-,数列{}n a 中,若1()n n a f a +=,且114a =.(1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭是等比数列;(2)设数列{}n a 的前n 项和为n S ,求证:12n S <. 【答案】(1)见解析;(2)见解析 【解析】 (1)由函数()32x f x x=-,在数列{}n a 中,若1()n n a f a +=,得:132n n n a a a +=-, 上式两边都倒过来,可得:11n a +=32n na a -=3n a ﹣2,∴11n a +﹣1=3n a ﹣2﹣1=3n a ﹣3=3(1n a ﹣1).∵11a ﹣1=3.∴数列11n a ⎧⎫-⎨⎬⎩⎭是以3为首项,3为公比的等比数列.(2)由(1),可知:11n a -=3n ,∴a n =131n +,n ∈N*.∵当n ∈N*时,不等式131n +<13n成立. ∴S n =a 1+a 2+…+a n =2121111111 (313131333)nn +++<++++++=11133113n⎛⎫⋅- ⎪⎝⎭-=12﹣12•13n<12.∴1S 2n <.【练习4】已知函数2()2f x x x =-,数列{}n a 的前n 项和为n S ,点(),n n P n S 均在函数()y f x =的图象上.若()132n n b a =+ (1)当2n ≥时,试比较1n b +与2nb 的大小;(2)记)*1n nc n N b =∈试证1240039c c c ++⋯+<. 【答案】(1)12bnn b +<;(2)证明见解析. 【详解】(1)2()2f x x x ∴=-,故22n S n n =-,当2n ≥时,123n n n a S S n -=-=-, 当1n =时,111a S ==-适合上式,因此()*23n a n n N =-∈.从而1,1,22nb nn n b n b n +==+=,当2n ≥时,()01211 1nn n n C C n =+=++⋯>+故122nb nn b +<=(2)1n n c b n=11c =,()*2(1),21n n n N n n n n n n =<=-∈≥++- )12400 (12212)32 (2)400399c c c +++<++++400139==.◆题型二:放缩法证明数列不等式之函数型 方法解密:数列放缩较难的的两类便是形如数列的前n 项和与函数()f n 的不等关系,即12()n a a a f n +++<或者数列前n 项积与函数()f n 的不等关系,即12n a a a ⋅⋅⋅<()f n 的问题,其中,这里的前n 项和与前n 项积难求或者是根本无法求.面对这类题时,首先,我们可以将()f n 看成某个数列的和或者积,然后通过比较通项的大小来解决;其次,我们也可以对n a 进行变形,使之能求和或者求积.往往第二种方法难以把握,对学生综合素质要求较高.而第一种方法相对简单易行,所以本专题以“拆项”为主线详细讲解.【经典例题1】已知数列*113,31,2n n a a a n N +==-∈ (1)若数列{}n b 满足12n n b a =-,求证:数列{}n b 是等比数列。
专题10 一元一次不等式(组)(课件)2023年中考数学一轮复习(全国通用)
1. 一元一次不等式的定义:不等式中只含有一个未知数,未知数的次数是1,且不 等式的两边都是整式,这样的不等式叫做一元一次不等式.
2. 一元一次不等式的解法: 一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将未知项的 系数化为1.
知识点2:一元一次不等式及其解法
典型例题
知识点3:一元一次不等式组及其解法
知识点梳理
3. 解不等式组:求不等式组的解集的过程,叫做解不等式组.
4. 一元一次不等式组的解法: (1)分别求出不等式组中各个不等式的解集; (2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.
知识点3:一元一次不等式组及其解法
知识点梳理
5. 解集在数轴上的表示(令a>b):
典型例题
【例8】(2022•聊城)关于x,y的方程组
2x y x 2 y
2k k
3
的解中x与y的和不小于5,
则k的取值范围为( )
A.k≥8 B.k>8 C.k≤8 D.k<8
【解答】解:把两个方程相减,可得x+y=k-3, 根据题意得:k-3≥5, 解得:k≥8. 所以k的取值范围是k≥8. 故选:A.
知识点4:一元一次不等式(组)的实际应用
典型例题
【解答】解:(1)设生产A产品x件,B产品y件,
根据题意,得
100x 75y 8250 (120 100)x (100 75) y 2350
.
解这个方程组,得
x 30
y
70
,
所以,生产A产品30件,B产品70件.
知识点4:一元一次不等式(组)的实际应用
知识点梳理
知识点1:不等式及其性质
5. 不等式基本性质:
高考数学二轮复习考点知识与题型专题讲解10---对数平均不等式、切线不等式
高考数学二轮复习考点知识与题型专题讲解 第10讲 对数平均不等式、切线不等式在高考压轴题中,经常考查与导数有关的不等式问题,这些问题可以用常规方法求解,也可以转变成对数平均不等式、切线不等式进行求解,起到事半功倍的效果.考点一 对数平均不等式例1 若a >0,b >0,a ≠b ,求证:ab <a -b ln a -ln b<a +b 2. 证明 不妨设a >b >0,①要证ab <a -b ln a -ln b成立, 即证ab <a -b ln a b,即证ln a b <a -b ab , 即证ln a b <a b -b a ,令a b=t (t >1), 则需证明2ln t <t -1t(t >1), 构造函数f (t )=2ln t -t +1t(t >1), 则f ′(t )=2t -1-1t 2=-(t -1)2t2<0, 所以f (t )在(1,+∞)上单调递减,又f (1)=0,所以f (t )<0,即2ln t <t -1t,原不等式得证. ②要证a -b ln a -ln b <a +b 2,只需证2·a -b a +b<ln a b ,即证2·a b -1a b+1<ln a b ,令t =a b (t >1), 即证2·t -1t +1<ln t .即证2-4t +1<ln t , 构造函数φ(t )=2-4t +1-ln t (t >1), φ′(t )=4(t +1)2-1t =-(t -1)2t (t +1)2<0, ∴φ(t )在(1,+∞)上单调递减,∴φ(t )<φ(1)=0,即2-4t +1<ln t , ∴原不等式得证. 综上,ab <a -b ln a -ln b<a +b 2. 规律方法 该类问题的特征是双变量,将双变量问题转变为单变量问题处理,即将a b看成一个新对象(整体),从而进行降维打击.跟踪演练1 已知函数f (x )=1x-x +a ln x . (1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2. (1)解 f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+a x =-x 2-ax +1x 2. ①若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0,∴f (x )在(0,+∞)上单调递减. ②若a >2,令f ′(x )=0,得x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0. ∴f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减, 在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增. (2)证明 由(1)知,f (x )存在两个极值点当且仅当a >2.由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0,所以x 1x 2=1,不妨设x 2>x 1>0,则x 2>1.由于f (x 1)-f (x 2)x 1-x 2=-1x 1x 2-1+a (ln x 1-ln x 2)x 1-x 2=-2+a (ln x 1-ln x 2)x 1-x 2, 由对数平均不等式知x 1-x 2ln x 1-ln x 2>x 1x 2=1, 又x 2>x 1>0,∴x 1-x 2<0,ln x 1-ln x 2<0,∴0<ln x 1-ln x 2x 1-x 2<1, ∴f (x 1)-f (x 2)x 1-x 2=-2+a (ln x 1-ln x 2)x 1-x 2<-2+a , 即证原不等式成立.考点二 以泰勒公式为背景的切线不等式泰勒公式:将函数展开为一个多项式与一个余项的和.f (x )=f (x 0)+f ′(x 0)(x -x 0)+f ″(x 0)2!(x -x 0)2+…+f (n )(x 0)n !(x -x 0)n +R n (x ), 其中余项R n (x )=f (n +1)(ξ)(n +1)!(x -x 0)n +1(ξ在x 0与x 之间), 当x 0=0时为麦克劳林公式.其中e x 与ln(1+x )的麦克劳林公式为e x =1+x +12x 2+16x 3+o (x 3), ln(1+x )=x -12x 2+13x 3+o (x 3), 从中截取片段就构成了常见的不等式:e x ≥1+x 或e x≥1+x +x 22(x ≥0), ln(1+x )≤x (x ≥0)或ln x ≤x -1(x >0),ln(1+x )≥x -x 22(x ≥0),例2 设函数f (x )=a e xln x +b e x -1x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2. (1)求a ,b ;(2)证明:f (x )>1.(1)解 函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+b xe x -1. 由题意可得f (1)=2,f ′(1)=e.故a =1,b =2.(2)证明 方法一 由(1)知,f (x )=e x ln x +2x·e x -1, 从而f (x )>1等价于x ln x >x e -x -2e. 设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝⎛⎭⎫0,1e ,g ′(x )<0; 当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增, 从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e. 设函数h (x )=x e -x -2e, 则h ′(x )=e -x (1-x ). 所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e. 综上,当x >0时,g (x )>h (x ),即f (x )>1.方法二 f (x )=e x ln x +2xe x -1=e x ⎝⎛⎭⎫ln x +2e x . 当x >0时,e x >1+x ,所以e x -1≥x , 即e x e≥x ,e x ≥e x ,当x =1时等号成立, 即e -ln x ≥e(-ln x ),所以1x≥e(-ln x ), 即ln x ≥-1e x ,当x =1e时等号成立,所以e x ⎝⎛⎭⎫ln x +2e x ≥e x ⎝⎛⎭⎫-1e x +2e x =e xe x >1(等号不同时成立). 规律方法 指数的放缩.形如:e x -1≥x -1+1⇒e x ≥e x , e x n≥e·x n ⇒e x ≥e n n n x n . 对数的放缩.形如:e ln x ≥1+ln x ⇒ln x ≤x -1⇒ln(1+x )≤x ,ln ⎝⎛⎭⎫1+1x <1x ⇒ln(x +1)-ln x <1x, ln ⎝⎛⎭⎫1+⎝⎛⎭⎫-11+x <-11+x⇒ln(1+x )-ln x >11+x , ln x e ≤x e-1⇒x ≥eln x . 跟踪演练2 已知函数f (x )=12ax 2-(2a +1)x +2ln x (a ∈R ). (1)当a >0时,求函数f (x )的单调递增区间;(2)当a =0时,证明:f (x )<2e x -x -4.(1)解 f (x )的定义域为(0,+∞),f ′(x )=ax -(2a +1)+2x =(ax -1)(x -2)x, 当0<1a <2,即a >12时, 在⎝⎛⎭⎫0,1a 和(2,+∞)上,f ′(x )>0,f (x )单调递增; 当1a =2,即a =12时,f ′(x )≥0,f (x )在(0,+∞)上单调递增; 当1a >2,即0<a <12时, 在(0,2)和⎝⎛⎭⎫1a ,+∞上,f ′(x )>0,f (x )单调递增.综上所述,当a >12时,f (x )的单调递增区间为⎝⎛⎭⎫0,1a 和(2,+∞); 当a =12时,f (x )的单调递增区间为(0,+∞); 当0<a <12时,f (x )的单调递增区间为(0,2)和⎝⎛⎭⎫1a ,+∞. (2)证明 方法一 当a =0时,要证f (x )<2e x -x -4,即证e x -ln x -2>0,构造函数h (x )=e x -ln x -2(x >0),h ′(x )=e x -1x, 令φ(x )=e x -1x(x >0), 则φ′(x )=e x +1x 2>0, 所以h ′(x )在(0,+∞)上单调递增,h ′⎝⎛⎭⎫12=e -2<0,h ′(1)=e -1>0,故存在x 0∈⎝⎛⎭⎫12,1,使得h ′(x 0)=0,即0e x =1x 0. 当x ∈(0,x 0)时,h ′(x )<0,h (x )单调递减;当x ∈(x 0,+∞)时,h ′(x )>0,h (x )单调递增.所以当x =x 0时,h (x )取得极小值,也是最小值.h (x 0)=0e x -ln x 0-2=1x 0-01ln e 2x - =1x 0+x 0-2>21x 0·x 0-2=0, 所以h (x )=e x -ln x -2>0,故f (x )<2e x -x -4.方法二 当a =0时,要证f (x )<2e x -x -4,即证e x -ln x -2>0,由x >0时,e x >x +1可得e x -1>x ,由x >0时,ln x ≤x -1可得x ≥ln x +1,故e x -1>x ≥ln x +1,即e x -ln x -2>0,即原不等式成立.专题强化练1.(2022·葫芦岛模拟)已知函数f (x )=x +b (1+ln x )(b ∈R ).(1)求f (x )的单调区间;(2)设g (x )=f (x )-12sin x ,若存在0<x 1<x 2,使得g (x 1)=g (x 2),求证: ①b <0;②x 1x 2<4b 2.(1)解 由题意,定义域为(0,+∞),f ′(x )=x +b x, 若b ≥0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;若b <0,令f ′(x )=0,得x =-b , 当x ∈(0,-b )时,f ′(x )<0,f (x )单调递减;当x ∈(-b ,+∞)时,f ′(x )>0,f (x )单调递增,综上,若b ≥0,f (x )的单调递增区间为(0,+∞),无单调递减区间;若b <0,f (x )的单调递减区间为(0,-b ),单调递增区间为(-b ,+∞).(2)证明 g (x )=x +b (1+ln x )-12sin x , g ′(x )=1-cos x 2+b x, ①若b ≥0,则由1-cos x 2>0,b x≥0得g ′(x )>0,g (x )在(0,+∞)上单调递增,故不存在0<x 1<x 2,使得g (x 1)=g (x 2),所以b <0.②令m (x )=x -sin x (x >0),m ′(x )=1-cos x ≥0,当x →0时,m (x )→0, 故m (x )>0,即x >sin x ,因为g (x 1)=g (x 2),即x 1+b (1+ln x 1)-12sin x 1 =x 2+b (1+ln x 2)-12sin x 2, 所以-b (ln x 2-ln x 1)=x 2-x 1-12(sin x 2-sin x 1)>12(x 2-x 1), 又0<x 1<x 2,所以-2b >x 2-x 1ln x 2-ln x 1>0, 根据对数平均不等式ab <a -b ln a -ln b<a +b 2, 所以x 2-x 1ln x 2-ln x 1>x 2x 1, 所以-2b >x 2x 1,故x 1x 2<4b 2.2.(2022·抚州模拟)已知函数f (x )=x (ln x +a ),a ∈R .(1)求f (x )的单调区间;(2)当a =1时,求证:f (x )≤x e x-1在(0,+∞)上恒成立. (1)解 因为f (x )=x (ln x +a ),故可得f ′(x )=ln x +a +1,又y =ln x +a +1为单调递增函数,令f ′(x )=0,解得x =e -a -1,故当0<x <e-a -1时,f ′(x )<0; 当x >e -a -1时,f ′(x )>0,故f (x )的单调递减区间为(0,e-a -1), 单调递增区间为(e -a -1,+∞).(2)证明 方法一 当a =1时,f (x )=x (ln x +1), 要证f (x )≤x e x -1,即证x (ln x +1)≤x e x -1,又x >0,则只需证ln x +1≤e x -1,即证ln x -x +1≤e x -1-x ,令m (x )=ln x -x +1,m ′(x )=1x -1=1-x x ,当0<x <1时,m ′(x )>0,m (x )单调递增, 当x >1时,m ′(x )<0,m (x )单调递减, 故当x =1时,m (x )取得最大值m (1)=0; 令n (x )=e x -1-x ,n ′(x )=e x -1-1,又y =n ′(x )为单调递增函数,且当x =1时,n ′(x )=0,当0<x <1时,n ′(x )<0,n (x )单调递减; 当x >1时,n ′(x )>0,n (x )单调递增, 故当x =1时,n (x )取得最小值n (1)=0. 则n (x )min =m (x )max ,且当x =1时,同时取得最小值和最大值, 故n (x )≥m (x ),即ln x -x +1≤e x -1-x ,故f (x )≤x e x -1在(0,+∞)上恒成立.方法二 当a =1时,f (x )=x (ln x +1),要证f(x)≤x e x-1,即证x(ln x+1)≤x e x-1,又x>0,则只需证ln x+1≤e x-1,又ln x+1≤x,e x-1≥x,且等号都在x=1处取得,所以ln x+1≤e x-1.即f(x)≤x e x-1在(0,+∞)上恒成立.11 / 11。
2022—2023学年人教版数学七年级下册专题训练十——求不等式(组)中参数的取值范围
专题训练十 求不等式(组)中参数的取值范围类型一 求不等式中参数的取值范围1.(2022·射洪期中)如果关于x 的不等式(1-a)x >a -1的解集是x <-1,那么a 的取值范围是( )A .a≤1 B.a≥1 C.a >1 D .a <02.若不等式x +a >ax +1的解集是x >1,则a 的取值范围是 . 3.已知不等式x +8>4x +m(m 是常数)的解集是x<3,则m 的值为 .4.如果关于x 的不等式(m -2)x >n 的解集是x >1,那么m ,n 满足的数量关系是______________,m 的取值范围是____________. 5.已知不等式(a +1)x >2的解集为x <2a +1 ,则a 的取值范围为__________. 6.解关于x 的不等式ax -x -2>0.7.(1)解关于x 的不等式ax -x -2<0;(2)若关于x 的不等式a(x -1)>x +1-2a 的解集是x <-1,求a 的取值范围.类型二 求不等式组中参数的取值范围8.(菏泽中考)如果不等式组⎩⎪⎨⎪⎧x +5<4x -1x >m的解集为x >2,那么m 的取值范围是( )A .m ≤2B .m ≥2C .m >2D .m <2 9.(德州中考)若关于x 的不等式组⎨⎪⎧2-x 2>2x -43的解集是x <2,则a 的取值范围是( )A .a ≥2B .a <-2C .a >2D .a ≤210.如果不等式组⎩⎪⎨⎪⎧x <3a +2x <a -4的解集是x <a -4,则a 的取值范围是__________.11.关于x 的不等式组⎩⎪⎨⎪⎧x <3a +2x >a -4 的解集是a -4<x <3a +2,则a 的取值范围是______________.12.已知不等式组⎩⎪⎨⎪⎧2x +9>-6x +1x -k >1 的解集为x >-1,求k 的取值范围.13.若数a 使关于x 的方程4(x -1)=2-a 的解为正数,且使关于y 的不等式组⎩⎪⎨⎪⎧y +23-y 2>1,2(y -a )≤0的解集为y<-2,求符合条件的所有整数a 的和.类型三 已知有解、无解的情况求参数的取值范围14.若关于x 的不等式组⎩⎪⎨⎪⎧2x +1<x -3x >a无解,则实数a 的取值范围是( )A .a <-4B .a =-4C .a ≥-4D .a >-415.(黑龙江中考改编)关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -a >03x -4<5 有解,求a 的取值范围.16.若关于x 的不等式组⎩⎪⎨⎪⎧x -3(x -2)<2,①a +2x 4>x ②有解,求实数a 的取值范围.17.如果关于x 的方程x +23=m2的解也是不等式组⎩⎪⎨⎪⎧1-x 2>x -2,2(x -3)≤x -8的一个解,求m 的取值范围.18.已知关于x 的不等式组⎩⎪⎨⎪⎧3x -12>a +2x 4,①5-2x ≥-1②无解,求a 的取值范围.类型四 已知特殊解的情况求参数的取值范围19.(2022·济宁)若关于x 的不等式组⎩⎪⎨⎪⎧x -a >0,7-2x >5仅有3个整数解,则a 的取值范围是( )A .-4≤a <-2B .-3<a ≤-2C .-3≤a ≤-2D .-3≤a <-220.(眉山中考)若关于x 的不等式x +m <1只有3个正整数解,则m 的取值范围是______________________.21.如果关于x 的不等式组⎩⎪⎨⎪⎧3x -a>0,2x -b ≤0的整数解为1,2,求a ,b 的取值范围.22.(2022·达州改编)关于x 的不等式组⎩⎪⎨⎪⎧-x +a <2,①3x -12≤x +1②恰有2个整数解,求a 的取值范围.类型五 已知两个不等式的解的关系求参数的取值范围23.已知关于x 的不等式4x +a 3 >1的解都是不等式2x +13 >0的解,则a 的取值范围是( )A .a =5B .a ≥5C .a ≤5D .a <524.(绵阳中考)若不等式x +52 >-x -72 的解都能使不等式(m -6)x <2m +1成立,则实数m的取值范围是____________________.类型六 已知方程(组)解的情况求参数的取值范围25.(遂宁中考)已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +3y =5ax +4y =2a +3满足x -y >0,则a 的取值范围是____________.26.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =2,x -y =2a -4,当a 取什么整数时,这个方程组的解中x 为正数,y 为非负数?27.已知方程组⎩⎪⎨⎪⎧2x +y =1+3m ①,x +2y =1-m ②的解x ,y 满足x +y <1,且m 为正数,求m 的取值范围.28.已知方程组⎩⎪⎨⎪⎧x +y =4a +5①,x -y =6a -5② 的解满足不等式x -2y <4,求a 的取值范围.参考答案类型一求不等式中参数的取值范围1.(2022·射洪期中)如果关于x的不等式(1-a)x>a-1的解集是x<-1,那么a的取值范围是( C)A.a≤1 B.a≥1 C.a>1 D.a<02.若不等式x+a>ax+1的解集是x>1,则a的取值范围是 .【答案】a<13.已知不等式x+8>4x+m(m是常数)的解集是x<3,则m的值为 .【答案】-14.如果关于x的不等式(m-2)x>n的解集是x>1,那么m,n满足的数量关系是______________,m的取值范围是____________.【答案】m-n=2 m>25.已知不等式(a+1)x>2的解集为x<2a+1,则a的取值范围为__________.【答案】a<-16.解关于x的不等式ax-x-2>0.解:移项、合并同类项,得(a-1)x>2.当a-1>0,即a>1时,不等式的解集为x>2a-1;当a-1=0,即a=1时,0>2不成立,所以原不等式无解;当a-1<0,即a<1时,不等式的解集为x<2a-1.7.(1)解关于x的不等式ax-x-2<0;(2)若关于x的不等式a(x-1)>x+1-2a的解集是x<-1,求a的取值范围.解:(1)∵ax -x -2<0,∴(a -1)x <2,当a -1>0,即a >1时,x <2a -1 ;当a -1=0,即a=1时,0<2恒成立,不等式的解集为全体实数;当a -1<0,即a <1时,x >2a -1(2)∵a(x -1)>x +1-2a ,∴ax -a >x +1-2a ,∴ax -x >1-a ,则(a -1)x >-(a -1),∵不等式的解集为x <-1,∴a -1<0,解得a <1 类型二 求不等式组中参数的取值范围8.(菏泽中考)如果不等式组⎩⎪⎨⎪⎧x +5<4x -1x >m的解集为x >2,那么m 的取值范围是( A )A .m ≤2B .m ≥2C .m >2D .m <2 9.(德州中考)若关于x 的不等式组⎩⎪⎨⎪⎧2-x 2>2x -43-3x >-2x -a 的解集是x <2,则a 的取值范围是( A )A .a ≥2B .a <-2C .a >2D .a ≤210.如果不等式组⎩⎪⎨⎪⎧x <3a +2x <a -4的解集是x <a -4,则a 的取值范围是__________.【答案】a≥-311.关于x 的不等式组⎩⎪⎨⎪⎧x <3a +2x >a -4 的解集是a -4<x <3a +2,则a 的取值范围是______________.【答案】a >-312.已知不等式组⎩⎪⎨⎪⎧2x +9>-6x +1x -k >1的解集为x >-1,求k 的取值范围.解:解不等式2x +9>-6x +1,得x >-1,解不等式x -k >1,得x >k +1,∵不等式组的解集为x >-1,∴k +1≤-1,解得k ≤-213.若数a 使关于x 的方程4(x -1)=2-a 的解为正数,且使关于y 的不等式组⎩⎪⎨⎪⎧y +23-y 2>1,2(y -a )≤0的解集为y<-2,求符合条件的所有整数a 的和.解:解方程4(x -1)=2-a ,得x =6-a4.∵x>0,∴6-a4>0,a<6.解不等式组得⎩⎪⎨⎪⎧y<-2,y ≤a ,∵不等式组解集是y<-2.∴a ≥-2,∴-2≤a<6.又a 取整数, ∴a =-2,-1,0,1,2,3,4,5 ∴符合条件的所有整数a 的和为12.类型三 已知有解、无解的情况求参数的取值范围14.若关于x 的不等式组⎩⎪⎨⎪⎧2x +1<x -3x >a无解,则实数a 的取值范围是( C )A .a <-4B .a =-4C .a ≥-4D .a >-415.(黑龙江中考改编)关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -a >03x -4<5有解,求a 的取值范围.解:解不等式2x -a >0,得x >a2 ,解不等式3x -4<5,得x <3,∵不等式组有解,∴a2 <3,解得a <616.若关于x 的不等式组⎩⎪⎨⎪⎧x -3(x -2)<2,①a +2x 4>x ②有解,求实数a 的取值范围.解:解不等式①,得x>2. 解不等式②,得x<a2.∵不等式组⎩⎪⎨⎪⎧x -3(x -2)<2,a +2x 4>x有解,∴2<x<a2.∴a2>2,解得a>4. 17.如果关于x 的方程x +23=m2的解也是不等式组⎩⎪⎨⎪⎧1-x 2>x -2,2(x -3)≤x -8的一个解,求m 的取值范围.解:解不等式组得x ≤-2, 解方程得x =3m -42,则3m -42≤-2,解得m ≤0.18.已知关于x 的不等式组⎩⎪⎨⎪⎧3x -12>a +2x 4,①5-2x ≥-1②无解,求a 的取值范围.解:解不等式①,得x>2+a4,解不等式②,得x ≤3, ∵此不等式组无解. ∴2+a 4≥3, ∴a ≥10.类型四 已知特殊解的情况求参数的取值范围 19.(2022·济宁)若关于x 的不等式组⎩⎪⎨⎪⎧x -a >0,7-2x >5仅有3个整数解,则a 的取值范围是( D )A .-4≤a <-2B .-3<a ≤-2C .-3≤a ≤-2D .-3≤a <-220.(眉山中考)若关于x 的不等式x +m <1只有3个正整数解,则m 的取值范围是【答案】-3≤m <-221.如果关于x 的不等式组⎩⎪⎨⎪⎧3x -a>0,2x -b ≤0的整数解为1,2,求a ,b 的取值范围.解:解不等式组,得a 3<x ≤b2.∵不等式组的整数解为1,2.∴⎩⎪⎨⎪⎧0≤a3<1,2≤b 2<3.∴0≤a<3,4≤b<6.22.(2022·达州改编)关于x 的不等式组⎩⎪⎨⎪⎧-x +a <2,①3x -12≤x +1②恰有2个整数解,求a 的取值范围.解:解不等式①,得x >a -2,解不等式②,得x ≤3,∴不等式组的解集为a -2<x ≤3,∵不等式组恰有2个整数解,∴1≤a -2<2,∴3≤a <4 类型五 已知两个不等式的解的关系求参数的取值范围23.已知关于x 的不等式4x +a 3 >1的解都是不等式2x +13 >0的解,则a 的取值范围是( C )A .a =5B .a ≥5C .a ≤5D .a <524.(绵阳中考)若不等式x +52 >-x -72 的解都能使不等式(m -6)x <2m +1成立,则实数m的取值范围是____________________. 【答案】236≤m ≤6类型六 已知方程(组)解的情况求参数的取值范围25.(遂宁中考)已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +3y =5ax +4y =2a +3满足x -y >0,则a 的取值范【答案】a >126.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =2,x -y =2a -4,当a 取什么整数时,这个方程组的解中x 为正数,y 为非负数?解:解方程组⎩⎪⎨⎪⎧x +y =2x -y =2a -4 得:⎩⎪⎨⎪⎧x =a -1,y =-a +3, ∵x 为正数,y 为非负数,∴⎩⎪⎨⎪⎧a -1>0,-a +3≥0, 解得1<a ≤3,∵a 为整数,∴a 为2,3,即当a 为2或3时,这个方程组的解中x 为正数,y 为非负数27.已知方程组⎩⎪⎨⎪⎧2x +y =1+3m ①,x +2y =1-m ② 的解x ,y 满足x +y <1,且m 为正数,求m 的取值范围.解:①+②,得3x +3y =2+2m ,∴x +y =2+2m 3 ,又∵x +y <1,∴2+2m 3 <1,解得m <12 .∵m >0,∴0<m <1228.已知方程组⎩⎪⎨⎪⎧x +y =4a +5①,x -y =6a -5②的解满足不等式x -2y <4,求a 的取值范围.解:①+②,得2x =10a ,∴x =5a ,①-②,得2y =-2a +10,∴y =-a +5,∵x -2y <4,∴5a -2(-a +5)<4,解得a <2。
专题-不等式基本性质(解析版)
专题10不等式基本性质1.设{}2560,A x x x x R =--=∈,{}260,B x mx x x R =-+=∈,且A B B ⋂=,则m 的取值范围为 . 【难度】★★【答案】1024m m >=或2.设集合{}{}2135,322,A x a x a B x x A B =+≤≤-=≤≤⊆恒成立,则实数a 的取值范围为 . 【难度】★★ 【答案】(,9]-∞3.设全集{}R y x y x U ∈=,|),(,⎭⎬⎫⎩⎨⎧∈=--=,,,123|),(R y x x y y x A ,{}R y x x y y x B ∈+==,,1|),(,则UC AB =.热身练习【难度】★★ 【答案】(){}2,3⎧⎪⎪⎨⎪⎪⎩基本性质比较大小不等式基本性质不等式范围问题不等式综合1.不等式的性质(1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇔a >c ;(3)可加性:a >b ⇔a +c >b +c ,a >b ,c >d ⇔a +c >b +d ;知识梳理模块一:(4)可乘性:a>b,c>0⇔ac>bc;a>b,c<0⇔ac<bc;a>b>0,c>d>0⇔ac>bd;(5)可乘方:a>b>0⇔a n>b n(n⇔N,n≥2);(6)可开方:a>b>0⇔na>nb(n⇔N,n≥2);(7) a>b,ab>0⇔11a b<;a>b>0,0<c<d⇔a b c d>.【例1】判断下列命题的真假。
(1)若a>b,那么ac>2bc2。
()(2)若ac>2bc2,那么a>b。
()(3)若a>b,c>d,那么a-c>b-d。
必考问题10基本不等式及其应用
抓住命题方向 必备知识方法 热点命题角度 阅卷老师叮咛
上页 下页 返回
必备知识 方法
抓住命题方向 必备知识方法 热点命题角度 阅卷老师叮咛
上页 下页 返回
必备知识 1.基本不等式
两个正数的算术平均数不小于它们的几何平均数. 即若a,b>0,则a+2 b≥ ab(当且仅当a=b时取等号) 基本变形:(1)a+b≥2 ab;a+2 b2≥ab; (2)若a,b∈R,则a2+b2≥2ab,a2+2 b2≥a+2 b2.
上页 下页 返回
必备方法
1.利用基本不等式
x+y 2
≥
xy 时,要注意“正、定、等”三要
素,“正”,即x,y都是正数;“定”,即不等式另一边为
定值;“等”,即当且仅当x=y时取等号.
抓住命题方向 必备知识方法 热点命题角度 阅卷老师叮咛
上页 下页 返回
2.利用基本不等式
x+y 2
≥
xy 时,要注意“积定和最大,和定
积最小”这一口诀,并且适当运用拆、拼、凑等技巧,但应
该注意,一般不要出现两次不等号,若出现,则要看两次等
号成立的条件是否同时成立.
抓住命题方向 必备知识方法 热点命题角度 阅卷老师叮咛
上页 下页 返回
热点命题 角度
抓住命题方向 必备知识方法 热点命题角度 阅卷老师叮咛
上页 下页 返回
命题角度一 利用基本不等式求最值 [命题要点] ①应用基本不等式求和的最小值或积的最大值; ②构造基本不等式满足的条件求最值.
抓住命题方向 必备知识方法 热点命题角度 阅卷老师叮咛
上页 下页 返回
5.(2012·扬州中学检测)已知x,y,z∈R,且x+y+z=1, x2+y2+z2=3,则xyz的最大值是________.
中考数学复习50个知识点专题专练:10 不等式
中考数学50个知识点专练10 不等式一、选择题1.小颖准备用21元钱买笔和笔记本,已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买多少支笔? ( )A .1支B .2支C .3支D .4支2.(2011·茂名)若函数y =m +2x的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是( )A .m >-2B .m <-2C .m >2D .m <23.(2010·南州)关于x 、y 的方程组⎩⎪⎨⎪⎧x -y =m +3,2x +y =5m 的解满足 x >y >0 ,则m 的取值范围是( )A. m >2B. m >-3 C .-3<m <2 D .m <3或m >24.一种灭虫药粉30千克,含药率是15%,现在要用含药率较高的同种灭虫药粉50千克和它混合,使混合后的含药率大于20%且小于35%,则所用药粉的含药率x 的范围是( )A .15%<x <23%B .15%<x <35%C .23%<x <47%D .23%<x <50% 5.(2011·烟台)如图,直线y 1=k 1x +a 与y 2=k 2x +b 的交点坐标为(1,2),则使y 1< y 2的x 的取值范围为( )A .x >1B .x >2C .x <1D .x <2二、填空题 6.(2011·泉州)在函数y =x +4中,自变量x 的取值范围是________.7.(2011·嘉兴)当x ________时,分式13-x有意义.8.(2011·陕西)若一次函数y =(2m -1)x +3-2m 的图象经过 一、二、四象限,则m 的取值范围是________.9.(2011·临沂)有3人携带会议材料乘坐电梯,这3人的体重共210kg ,每捆材料20kg ,电梯最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载________捆材料.10.(2011·东营)如图,用锤子以相同的力将铁钉锤入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的13.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是a cm ,如铁钉总长度是6 cm ,则a 的取值范围是________.三、解答题11.(2011·广州)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?12.(2011·绍兴)筹建中的城南中学需720套单人课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组,每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务,光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.13.(2011·桂林)某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒;则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得1盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒?(用含x的代数式表示);(2)该敬老院至少有多少名老人?最多有多少名老人.14.(2011·潼南)潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬((1)求A、B两类蔬菜每亩平均收入各是多少元?(2)某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.15.(2010·桂林)某校初三年级春游,现在36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.四、选做题16.(2011·江西)某数学兴趣小组开展了一次活动,过程如下:设∠BAC=θ(0°<θ<90°),现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB、AC上.活动一如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直. (A1A2为第1根小棒)数学思考(1)小棒能无限摆下去吗?答:__________;(填“能”或“不能”)(2)设AA1=A1A2=A2A3=1.①θ=________度;②若记小棒A2n-1A2n的长度为a n(n为正整数,如A1A2=a1,A3A4=a2,…), 求出此时a2,a3的值,并直接写出a n(用含n的式子表示).活动二如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第一根小棒,且A1A2=AA1.数学思考(3)若已经摆放了3根小棒,则θ1=______,θ2=______,θ3=________;(用含θ的式子表示)(4)若只能..摆放4根小棒,求θ的范围.。
证明不等式的竞赛题
证明不等式的竞赛题
一、引言
不等式是数学中一个重要的概念,它在数学竞赛中占据着重要的地位。
证明不等式的方法多种多样,包括代数法、几何法、三角法、数列法等。
本文将介绍一些证明不等式的竞赛题,并给出相应的解题思路和答案。
二、竞赛题
1.题目:设 a, b, c ∈ℝ+,且 a + b + c = 1。
求证:1/a + 1/b + 1/c ≥ 9。
解题思路:
首先,我们注意到给定条件 a + b + c = 1,我们可以将原不等式转化为:
(a + b + c) / a + (a + b + c) / b + (a + b + c) / c ≥ 9
即:
b/a + c/a + a/b + c/b + a/c + b/c ≥ 6
我们可以使用基本不等式(AM-GM不等式)来证明这个不等式。
答案:
根据AM-GM不等式,我们有:
b/a + c/a ≥ 2√(b/a × c/a) = 2√bc/a^2
a/b + c/b ≥ 2√(a/b × c/b) = 2√ac/b^2
a/c + b/c ≥ 2√(a/c × b/c) = 2√ab/c^2
将上述三个不等式相加,得到:
b/a + c/a + a/b + c/b + a/c + b/c ≥ 2(√bc/a^2 + √ac/b^2 + √ab/c^2)
化简得:
b/a + c/a + a/b + c/b + a/c + b/c ≥ 6
当且仅当 a = b = c 时,等号成立。
专题10一元一次不等式(组)及其应用(知识点总结+例题讲解)-2021届中考数学一轮复习
2021年中考数学专题10 一元一次不等式(组)及其应用(知识点总结+例题讲解)一、不等式及其性质:1.不等式的定义:用不等号“>”、“≥”、“<”、“≤”或“≠”表示不等关系的式子,叫做不等式;2.不等式的解:使不等式成立的未知数的值;3.不等式的解集:(1)对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解;(2)对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集;4.解不等式:求不等式的解集的过程,叫做解不等式;5.不等式基本性质:(1)不等式两边加(或减)同一个数(或同一个整式),不等号的方向不变;若a>b,则a±c>b±c;(2)不等式两边乘以(或除以)同一个正数,不等号的方向不变;若a>b,c>0,则ac>bc(或a b>);c c(3)不等式两边乘以(或除以)同一个负数,不等号的方向改变;若a>b,c<0,则ac<bc(或a b<);c c【例题1】下列式子:(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的个数有()A.2个B.3个C.4个D.5个【答案】C【解析】主要依据不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(2),(4),(6)为不等式,共有4个.故选:C.【变式练习1】据气象台预报,2019年某日武侯区最高气温33℃,最低气温24℃,则当天气温(℃:)的变化范围是()A.t>33 B.t≤24 C.24<t<33 D.24≤t≤33【答案】D【解析】已知某日武侯区的最高气温和最低气温,可知某日武侯区的气温的变化范围应该在最高气温和最低气温之间,且包括最高气温和最低气温.解:由题意知:武侯区的最高气温是33℃,最低气温24℃,所以当天武侯区的气温(t℃)的变化范围为:24≤t≤33.故选:D.【例题2】(2020•贵港)如果a<b,c<0,那么下列不等式中不成立的是()A.a+c<b+c B.ac>bc C.ac+1>bc+1 D.ac2>bc2【答案】D【解析】根据不等式的性质解答即可.解:A、由a<b,c<0得到:a+c<b+c,原变形正确,故此选项不符合题意;B、由a<b,c<0得到:ac>bc,原变形正确,故此选项不符合题意;C、由a<b,c<0得到:ac+1>bc+1,原变形正确,故此选项不符合题意;D、由a<b,c<0得到:ac2<bc2,原变形错误,故此选项符合题意.故选:D.【变式练习2】(2019•济南)实数a、b在数轴上的对应点的位置如图所示,下列关系式不成立的是()A.a﹣5>b﹣5 B.6a>6b C.﹣a>﹣b D.a﹣b>0【答案】C【解析】根据数轴判断出a、b的正负情况以及绝对值的大小,然后解答即可.解:由图可知,b<0<a,且|b|<|a|,∴a﹣5>b﹣5,6a>6b,﹣a<﹣b,a﹣b>0,∴关系式不成立的是选项C.故选:C.【例题3】已知x≥5的最小值为a,x≤﹣7的最大值为b,则ab=.【答案】-35【解析】解答此题首先根据已知得出理解“≥”“≤”的意义,判断出a和b的最值即可解答.解:因为x≥5的最小值是a,a=5;x≤﹣7的最大值是b,则b=﹣7;则ab=5×(﹣7)=﹣35.故答案为:﹣35.【变式练习3】关于x的一元一次不等式m−2x3≤−2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.2【答案】D【解析】本题是关于x的不等式,应先只把x看成未知数,求得不等式的解集,再根据x≥4,求得m的值.解:m−2x3≤−2;所以:m﹣2x≤﹣6;则:﹣2x≤﹣m﹣6;即:x≥12m+3;∵关于x的一元一次不等式m−2x3≤−2的解集为x≥4;∴12m+3=4,解得m=2.故选:D.二、一元一次不等式及其解法:1.一元一次不等式的定义:不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的2.一元一次不等式的解法一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)将未知项的系数化为1。
高中数学 解题方法介绍10 不等式问题的题型与方法 试题
第10讲不等式创作单位:*XXX创作时间:2022年4月12日创作编者:聂明景不等式这局部知识,浸透在中学数学各个分支中,有着非常广泛的应用.因此不等式应用问题表达了一定的综合性、灵敏多样性,对数学各局部知识融会贯穿,起到了很好的促进作用.在解决问题时,要根据题设与结论的构造特点、内在联络、选择适当的解决方案,最终归结为不等式的求解或者证明.不等式的应用范围非常广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域确实定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着亲密的联络,许多问题,最终都可归结为不等式的求解或者证明。
一、知识整合1.解不等式的核心问题是不等式的同解变形,不等式的性质那么是不等式变形的理论根据,方程的根、函数的性质和图象都与不等式的解法亲密相关,要擅长把它们有机地联络起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或者根本不等式,通过构造函数、数形结合,那么可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类HY明晰.2.整式不等式(主要是一次、二次不等式)的解法是解不等式的根底,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的根本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解亲密相关,要擅长把它们有机地联络起来,互相转化和互相变用.3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或者根本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类HY更加明晰.4.证明不等式的方法灵敏多样,但比拟法、综合法、分析法仍是证明不等式的最根本方法.要根据题设、题断的构造特点、内在联络,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比拟法的一般步骤是:作差(商)→变形→判断符号(值).5.证明不等式的方法多样,内容丰富、技巧性较强.在证明不等式前,要根据题设和待证不等式的构造特点、内在联络,选择适当的证明方法.通过等式或者不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因〞,后者是“由因导果〞,为沟通联络的途径,证明时往往结合使用分析综合法,两面夹击,相辅相成,到达欲证的目的.6.不等式应用问题表达了一定的综合性.这类问题大致可以分为两类:一类是建立不等式、解不等式;另一类是建立函数式求最大值或者最小值.利用平均值不等式求函数的最值时,要特别注意“正数、定值和相等〞三个条件缺一不可,有时需要适当拼凑,使之符合这三个条件.利用不等式解应用题的根本步骤:1.审题,2.建立不等式模型,3.解数学问题,4.答题。
10不等式专题(2)
不等式(二)一、填空题1.若不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,那么a +b =________.2.若不等式ax 2+bx -2>0的解集为⎩⎨⎧⎭⎬⎫x |-2<x <-14,则a +b =________________.3.利用基本不等式求最值,下列运用正确的是________.①y =|x |2+4|x |≥2|x |2·4|x |=4|x |≥0;②y =sin x +4sin x≥2sin x ·4sin x=4(x 为锐角);③已知ab ≠0,a b +ba ≥2a b ·b a =2;④y =3x +43x ≥23x ·43x =4. 4.某工厂第一年的产量为A ,第二年的增长率为a ,第三年的增长率为b .这两年的平均增长率为x ,则x 与a +b 2的大小关系为________.5.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是________.7.设x ,y ∈R ,且xy ≠0,则⎝⎛⎭⎫x 2+1y 2⎝⎛⎭⎫1x 2+4y 2的最小值为________. 8.将一根铁丝切割成三段做一个面积为2 m 2,形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是________. (1)6.5 m ;(2)6.8 m ;(3)7 m ;(4)7.2 m. 9.方程x 2+(m -2)x +5-m =0的两根都大于2,则m 的取值范围是________.10.已知等比数列{a n }各项均为正数,公比q ≠1,设P =a 2+a 92,Q =a 4a 7,则P 与Q 的大小关系是________.11.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.12.已知x ,y ,z ∈(0,+∞),且满足x -2y +3z =0,则y 2xz的最小值为________.13.(2016·苏州高二检测)已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x ,那么不等式f (x +2)<5的解集是________. 14.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为________. 二、解答题15.解关于x 的不等式:x -ax -a 2<0(a ∈R ).16.已知关于x 的不等式kx 2-2x +6k <0(k ≠0). (1)若不等式的解集是{x |x <-3或x >-2},求k 的值; (2)若不等式的解集是R ,求k 的取值范围.17.当x >3时,求函数y =2x 2x -3的值域.18.在锐角三角形ABC 中,若sin A =2sin B sin C ,求tan A tan B tan C 的最小值.19.规定:max(a ,b ,c )与min(a ,b ,c )分别表示a ,b ,c 中的最大数与最小数,若正系数二次函数f (x )=ax 2+bx +c 的图象与x 轴有公共点,试证:(1)max(a ,b ,c )≥49f (1); (2)min(a ,b ,c )≤14f (1).20. (2016·南京高二检测)某个集团公司下属的甲、乙两个企业在2016年1月的产值都为a 万元,甲企业每个月的产值与前一个月相比增加的产值相等,乙企业每个月的产值与前一个月相比增加的百分数相等,到2017年1月两个企业的产值再次相等.(1)试比较2016年7月甲、乙两个企业产值的大小,并说明理由.(2)甲企业为了提高产能,决定投入3.2万元买台仪器,并且从2017年2月1日起投入使用.从启用的第一天起连续使用,第n 天的维修保养费为n +4910元,(n ∈N *),求前n 天这台仪器的日平均耗资(含仪器的购置费),并求日平均耗资最少时使用的天数?第四课 不等式(二)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填在题中的横线上) 1.若不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,那么a +b =________.【解析】 因为x 2-2x -3<0的解集为A ={x |-1<x <3},不等式x 2+x -6<0的解集为B ={x |-3<x <2},不等式x 2+ax +b <0的解集为A ∩B ={x |-1<x <2},所以x 2+ax +b =0的解为x 1=-1,x 2=2.由根与系数的关系,得a =-1,b =-2,则a +b =-3.【答案】 -3 2.-133.利用基本不等式求最值,下列运用正确的是________. ①y =|x |2+4|x |≥2|x |2·4|x |=4|x |≥0;②y =sin x +4sin x≥2sin x ·4sin x=4(x 为锐角);③已知ab ≠0,a b +ba ≥2a b ·b a =2;④y =3x +43x ≥23x ·43x =4. 【解析】 ①错,右侧不为定值;②错,sin x =4sin x ,则sin x =2>1;③错,a b 与ba 为负时不成立.【答案】 ④4.某工厂第一年的产量为A ,第二年的增长率为a ,第三年的增长率为b .这两年的平均增长率为x ,则x 与a +b2的大小关系为________.【解析】 由题意可知A (1+x )2=A (1+a )(1+b )≤A ⎝ ⎛⎭⎪⎫2+a +b 22,∴x ≤a +b 2.【答案】 x ≤a +b 25. 46.设M =a +1a -2(2<a <3),N =log 12⎝⎛⎭⎫x 2+116,x ∈R ,则M ,N 的大小关系为________. 【解析】 M =a -2+1a -2+2≥2+2=4,此时a -2=1,a =3,而2<a <3,则M >4,N =log 12⎝⎛⎭⎫x 2+116≤log 12116=4,∴M >N .【答案】 M >N 7. 98.将一根铁丝切割成三段做一个面积为2 m 2,形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是________.(1)6.5 m ;(2)6.8 m ;(3)7 m ;(4)7.2 m.【解析】 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l =a+b +a 2+b 2≥2ab +2ab =4+22≈6.828(m).因为要求够用且浪费最少,故答案为(3).【答案】 (3)9.方程x 2+(m -2)x +5-m =0的两根都大于2,则m 的取值范围是________. 【解析】 令f (x )=x 2+(m -2)x +5-m ,要使f (x )=0的两根都大于2,则⎩⎨⎧Δ=(m -2)2-4(5-m )≥0,f (2)>0,-m -22>2,解得⎩⎪⎨⎪⎧m 2≥16,m >-5,⇒-5<m ≤-4,m <-2故答案为(-5,-4].【答案】 (-5,-4]10.已知等比数列{a n }各项均为正数,公比q ≠1,设P =a 2+a 92,Q =a 4a 7,则P 与Q 的大小关系是________.【解析】 ∵{a n }是等比数列,∴a 2·a 9=a 4·a 7,∴a 2+a 92≥a 2a 9=a 4a 7.又q ≠1,∴a 2≠a 9,∴a 2+a 92>a 4a 7,∴P >Q .【答案】 P >Q11.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.【解析】 f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.【答案】 (-1,3)12.已知x ,y ,z ∈(0,+∞),且满足x -2y +3z =0,则y 2xz的最小值为________.【解析】 由题意知y =x +3z 2,所以y 2xz =x 2+9z 2+6xz 4xz =x 2+9z 24xz +32≥29x 2z 24xz +32=32+32=3,当且仅当x 2=9z 2时等号成立,所以y 2xz的最小值为3.【答案】 313.(2016·苏州高二检测)已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x ,那么不等式f (x +2)<5的解集是________.【解析】 因为f (x )为偶函数,所以f (|x +2|)=f (x +2),则f (x +2)<5可化为f (|x +2|)<5,即|x +2|2-4|x +2|<5,(|x +2|+1)(|x +2|-5)<0,所以|x +2|<5,解得-7<x <3,所以不等式f (x +2)<5的解集是(-7,3).【答案】 (-7,3)14. 32二、解答题15.【解】 原不等式等价于(x -a )(x -a 2)<0. (1)当a =0时,原不等式为x 2<0,∴x ∈∅. (2)当a =1时,原不等式为(x -1)2<0,∴x ∈∅.(3)当0<a <1时,a >a 2,∴原不等式的解集为{x |a 2<x <a }. (4)当a <0或a >1时,a 2>a ,∴原不等式的解集为{x |a <x <a 2}. 综上,当a =0或a =1时,不等式解集为∅; 当0<a <1时,不等式解集为{x |a 2<x <a }; 当a <0或a >1时,不等式解集为{x |a <x <a 2}.16. 【解】 (1)因为不等式的解集为{x |x <-3或x >-2},所以-3,-2是方程kx 2-2x +6k=0的两根且k <0.由根与系数的关系得⎩⎪⎨⎪⎧(-3)×(-2)=6,(-3)+(-2)=2k ,解得k =-25. (2)因为不等式的解集为R ,所以⎩⎪⎨⎪⎧k <0,Δ=4-4k ·6k <0,即⎩⎪⎨⎪⎧k <0,k >66或k <-66,所以k <-66. 即k 的取值范围是⎝⎛⎭⎫-∞,-66. 17.15.解 ∵x >3,∴x -3>0.∴y =2x 2x -3=2(x -3)2+12(x -3)+18x -3=2(x -3)+18x -3+12≥22(x -3)·18x -3+12=24.当且仅当2(x -3)=18x -3,即x =6时,上式等号成立,∴函数y =2x 2x -3的值域为[24,+∞).18. 【解】 在锐角三角形ABC 中, ∵sin A =2sin B sin C ,∴sin(B +C )=2sin B sin C ,∴sin B cos C +cos B sin C =2sin B sin C ,等号两边同除以cos B cos C ,得tan B +tan C =2tan B tan C .∴tan A =tan π-(B +C )]=-tan(B +C )=tan B +tan Ctan B tan C -1=2tan B tan Ctan B tan C -1.①∵A ,B ,C 均为锐角,∴tan B tan C -1>0,∴tan B tan C >1.由①得tan B tan C =tan Atan A -2.又由tan B tan C >1得tan Atan A -2>1,∴tan A >2.∴tan A tan B tan C =tan 2A tan A -2=(tan A -2)2+4(tan A -2)+4tan A -2=(tan A -2)+4tan A -2+4≥24+4=8,当且仅当tan A -2=4tan A -2,即tan A =4时取得等号.故tan A tan B tan C 的最小值为8. 19.【证明】 由题意知a ,b ,c >0,f (1)=a +b +c ,Δ=b 2-4ac ≥0. (1)若b ≥49f (1),结论显然成立;下面证明当b <49f (1)时,结论也成立.记f (1)=a +b +c =d .,由b 2-4ac ≥0,可知ac ≤b 24<481d 2,而a +c =d -b >59d ,所以a 2+481d 2≥a 2+ac =a (a +c )>59ad ,即⎝⎛⎭⎫a -19d ⎝⎛⎭⎫a -49d >0,解得a <19d 或 a >49d .若a <19d ,则a +c >59d ,c >49d .因此,必有a >49f (1)或b >49f (1)或 c >49f (1),于是max(a ,b ,c )≥49f (1). (2)若a ≤14f (1),结论显然成立;下面证明当a >14f (1)时,结论也成立.因为b +c =d -a <34d 且b 2≥4ac >cd ,所以c +cd <c +b <34d ,整理为⎝⎛⎭⎫c +32d ⎝⎛⎭⎫c -12d <0,解得c <14d . 因此,必有a ≤14f (1)或c <14f (1),于是min(a ,b ,c )≤14f (1).20. 【解】 (1)设从2016年1月到2017年1月甲企业每个月的产值分别为a 1,a 2,a 3,…,a 13,乙企业每个月的产值分别为b 1,b 2,…,b 13,由题意{a n }成等差数列,{b n }成等比数列,所以a 7=12(a 1+a 13),b 7=b 1·b 13,因为a 1=b 1,a 13=b 13,从而a 7=12(a 1+a 13)>a 1·a 13=b 1·b 13=b 7,所以到7月份甲企业的产值比乙企业的产值要大.(2)设一共使用了n 天,n 天的平均耗资P (n )=32 000+⎝⎛⎭⎪⎫1+4910+2+4910+3+4910+…+n +4910n=32 000+49n 10+n (n +1)20n=32 000n +n 20+9920≥232 000n ×n 20+9920=1 69920(元), 当且仅当32 000n =n20时,取得最小值,此时n =800,即日平均耗资最少时使用了800天.。
专题10 利用不等式与不等式组解决实际问题
是否符合题意.
写出答案.
学习了这节课,你有哪些收获?
见精准作业单
谢谢观看
11
.
又∵x 为正整数.
∴x≥182.
答:这时至少已售出 182 辆自行车.
针对练习
针对训练
长跑比赛中,张华跑在前面,在离终点100 m 时他以 4
m/s 的速度向终点冲刺,在他身后 10 m 的李明需以多
快的速度同时开始冲刺,才能够在张华之前到达终点?
解:设李明以 x m/s 的速度冲刺.
100
解:设每个小组原先每天生产x件产品,由
题意,得
3×10x<500,
3×10(x 16 2
3
3
根据题意,x的值应是整数,所以x=16.
答:每个小组原先每天生产16件产品.
针对练习
.蓝球比赛记分规则为:胜一场得3分,平一场得1分,负一场得0分.某篮球队
识不等式的应用价值。
旧知回顾
列一元一次不等式解决实际问题的一般步骤:
01
审:认真审题,分清已知量、未知量;
02
设:设出适当的未知数;
03
找:找出题目中的不等关系,抓住关键词,如“超
过”“不大于” “最多”等;
旧知回顾
01
列:根据题中不等关系,列出一元一次不等式或一元
一次不等式组;
01
解:求出一元一次不等式的解集;
3a 8 a< 23
解得:6 < < 7.5
因为a取整数,所以a=7,则8-a=1
答:胜7场,平1场
总结提升
解用
决一
实元
际一
问次
题不
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题训练10---以不等式证明为背景题型一 一元函数不等式的证明1.【2017届宁夏六盘山高级中学高三理上期中数学】已知函数()()ln 1f x x =+,()g x kx =,()k R ∈.(1)证明:当0x >时,()f x x <;(2)证明:当1k <时,存在00x >,使得对任意的()00,x x ∈,恒有()()f x g x >. 【答案】(1)证明见解析;(2)证明见解析.试题解析:(1)令()()()ln 1F x f x x x x =-=+-,[)0,x ∈+∞,则有()1111xF x x x -=-=++′ 当()0,x ∈+∞时,()0F x <′,所以()F x 在[)0,+∞上单调递减, 故当0x >时,()()00F x F <=,即当0x >时()f x x <.(2)令()()()()ln 1G x f x g x x kx =-=+-,[)0,x ∈+∞, 则有()()1111kx k G x k x x -+-=-=++′ 当0k ≤时,()0G x >′,故()G x 在[)0,+∞单调递增,()()00G x G >=, 故对任意正实数0x 均满足题意 当01k <<时,令()=0G x ′,得1110k x k k -==->,取011x k=-,对任意()00,x x ∈,有()0G x >′,从而()G x 在[)00,x 单调递增,所以()()00G x G >=,即()()f x g x >.综上,当1k <时,总存在00x >,使得对任意()00,x x ∈,恒有()()f x g x >. 2.【2017届云南省高三次统一检测】已知e 是自然对数的底数,()()()12ln ,13x F x ex x f x a x -=++=-+.(1)求曲线()y F x =在点()()1,1F 处的切线方程; (2)当4,1a x ≤≥时, 求证:()()F x f x ≥. 【答案】(1)410x y --=;(2)证明见解析. 【解析】3.【河南省南阳、信阳等六市2017届高三第一次联考理数试题】已知函数,且函数的图象在点处的切线与直线垂直.(1)求;(2)求证:当时,.【答案】(1);(2)证明见解析.【解析】试题分析:(1)根据切线过点且与直线垂直,可联立方程组解出;(2)由(1)得,要证,即证;构造函数,研究其单调性,当时,,又当时,,所以,即.试题解析:(1)因为,故,故①;依题意,;又,故,故②,联立①②解得;(2)由(1)得,要证,即证;令,∴,故当时,;令,因为的对称轴为,且,故存在,使得;故当时,,故,即在上单调递增;当时,,故,即在上单调递减;因为,故当时,,又当时,,∴,所以,即.4.【2017届浙江省名校协作体高三下学期考试】已知,函数.(Ⅰ)若函数在上递减, 求实数的取值范围;(Ⅱ)当时,求的最小值的最大值;(Ⅲ)设,求证:.【答案】(Ⅰ);(Ⅱ)的最大值为;(Ⅲ)见解析.【解析】(Ⅰ)函数在上递减, 恒有成立,而,恒有成立,而, 则满足条件. ……4分(Ⅱ)当时,的最小值=……7分的最大值为……9分(Ⅲ)当时,所以在上是增函数,故当时,解得或,综上所述:……15分5.【2017届云南省昆明市第一中学高三月考卷(五)】设函数,曲线在处的切线为.(Ⅰ)求函数的单调区间;(Ⅱ)当时,证明.【答案】(Ⅰ) 单调递增区间为,,单调递减区间为; (Ⅱ) 证明过程见解析.【解析】试题分析:(1)求解函数的导数,求解的解集,进而得到函数的单调区间;(2)由,又,可得函数在上单调递增,得,从而得的单调性与最小值,即可作出证明.(Ⅱ) 由,令,,因为(),所以,所以在上为增函数,所以(时取“”),而,由,得:,所以时,,时,,所以在为增函数,在为减函数,而,,所以(时取“”),所以,即:.6.【2017届云南省昆明市第一中学高三月考卷(五)】设函数,曲线在处与直线垂直.(1)求函数的单调区间;(2)当时,证明.【答案】(Ⅰ) 函数的单调递增区间为,单调递减区间为;(Ⅱ)证明过程见解析.试题解析:(Ⅰ) 函数定义域为,,由已知得,所以,所以,由得,由得,所以,函数的单调递增区间为,单调递减区间为.(Ⅱ) 令,则,由,令,则,当时,,所以在上为增函数,所以,所以,即:,所以,而,所以,所以在上为增函数,所以,即:题型二 含特殊函数,ln ,sin x e x x 不等式的证明7.【2017届安徽省六安一中月考】已知函数()2xf x e ax =-,曲线()y f x =在1x =处的切线方程为1y bx =+. (1)求,a b 的值;(2)求函数()f x 在[]0,1上的最大值;(3)证明:当0x >时,()1ln 10xe e x x x +---≥.【答案】(1) 1,2a b e ==-;(2)1e -;(3)证明见解析.试题解析:(1)()2xf x e ax '=-,由题设得,()12f e a b '=-=,()11f e a b =-=+,解得,1,2a b e ==-.(2)法1:由(1)知,()2x f x e x =-,∴()[]21210,0,1xf x e x x x x x '=-≥+-=-≥∈,故()f x 在[]0,1上单调递增,所以,()()max 11f x f e ==-.法2:由(1)知,()2xf x e x =-,∴()()2,2xxf x e x f x e '''=-=-,∴()f x '在()0,ln 2上单调递减,在()ln 2,+∞上单调递增, 所以,()()ln 222ln 20f x f ''≥=->,所以()f x 在[]0,1上单调递增,所以()()max 11f x f e ==-.所以,存在()00,1x ∈,使得()0g x '=, 所以,当()()00,1,x x ∈+∞时,()0g x '>;当()()0,1,0x x g x '∈<,故()g x 在()00,x 上单调递增,在()0,1x 上单调递减,在()1,+∞上单调递增. 又()()010g g ==,∴()()2210xg x e x e x =----≥,当且仅当1x =时取等号.故()21,0x e e x x x x+--≥>.由(2)知,1xe x ≥+,故()ln 1x x ≥+,∴1ln x x -≥,当且仅当1x =时取等号.所以,()21ln 1x e e x x x x+--≥≥+.即()21ln 1x e e x x x+--≥+.所以,()21ln x e e x x x x +--≥+,即()1ln 10xe e x x x +---≥成立,当1x =时等号成立.8.【2017届福建省泉州五中月考】已知函数()()ln 1axf x x x a=+-+, a 是常数,且1a ≥. (1)讨论()f x 零点的个数; (2)证明:213ln 1,2131n N n n n *⎛⎫<+<∈ ⎪++⎝⎭. 【答案】(1)当1a =时,()f x 零点的个数是1,当12a <<时,()f x 零点的个数是2,当2a =时,()f x 零点的个数是1,当2a >时,()f x 零点的个数是2;(2)证明解析.【解析】试题解析:证明:(1)()()()()()22222111x x a a a f x x x a x x a -+'=-=++++. 解()0f x '=得0x =,或22x a a =-.①1a =时,()()21xf x x '=+,若()()()()1,0,0,00x f x f x f '∈-<>=,若()()()()0,,0,00x f x f x f '∈+∞>>=,()f x 有一个零点. ②12a <<时,2120a a -<-<,由上表可知,()f x 在区间()22,a a -+∞有一个零点0x =.()()2200f a a f ->=,又2211ax a a aa a x a x a a a -=-≤-=++--,任取11,1aa t e -⎛⎫∈-- ⎪⎝⎭, ()011a af t a a <+=--,()f x 在区间()2,2t a a -有一个零点,从而()f x 有两个零点. ③2a =时,()()()22012x f x x x '=>++,()f x 在()1,-+∞上单调递增,有一个零点0x =.④2a >时,220a a ->,由上表可知,()f x 在区间()21,2a a --有一个零点0x =,在区间()22,a a -+∞有一个零点,从而()f x 有两个零点.(2)取2a =,由(1)知()()2ln 12xf x x x =+-+在()1,-+∞上单调递增, 取()1x n N n*=∈,则()100f f n ⎛⎫>= ⎪⎝⎭,化简得12ln 121n n ⎛⎫+>⎪+⎝⎭. 取32a =,由(1)知()()3ln 123x f x x x =+-+在区间3,04⎛⎫- ⎪⎝⎭上单调递减, 取()13,014x n N n *⎛⎫=-∈-∈ ⎪+⎝⎭,由()()0f x f >,得311ln 111231n n n -⎛⎫+-> ⎪+⎛⎫⎝⎭-+ ⎪+⎝⎭, 即()13ln 131n N n n *⎛⎫+<∈ ⎪+⎝⎭,综上,213ln 1,2131n N n n n *⎛⎫<+<∈ ⎪++⎝⎭. 9.【2017届湖南省邵阳市第一次大联考(理科)】已知函数(),.(1)求函数单调区间; (2)当时, ①求函数在上的值域;②求证:,其中,.(参考数据)【答案】(1)见解析;(2) ①;②见解析.试题解析:(1)∵.①当时,,在单调递增;②当时,令,得,即,∴在上单调递减,在单调递增.(2)时,.①由,令,∴在单调递减,单调递增,且由,,∴值域为.②由,设为前项和,,则,设,,在单调递减,,∴,∴,即时,,∴,故原不等式成立.题型三多元函数不等式的证明10.【2017届河北省张家口市高三上学期期末考试】已知函数有两个零点,().(1)求证:;(2)求证:.【答案】见解析.【解析】试题分析:(1)求出函数的导数,通过讨论的范围求出函数的单调区间,从而求出函数的最小值,求出的范围即可;(2)问题转化为证明,设函数,根据函数的单调性证明即可.试题解析:(1)证明:的定义域为,.①当时,,所以函数在区间上是增函数,不可能有两个零点;②当时,在区间上,,在区间上;所以在区间上递减,在区间上递增.的最小值为,依题意,有,则.(2)证明:要证,只要证,易知,.而在区间上是增函数,所以只要证明,即证,设函数,而,并且在区间上,即在区间上是减函数,所以.而,所以成立,所以.【河南省焦作市2017届高三下学期第二次模拟考试数学(理)】已知函数11.在点处的切线方程为.(Ⅰ)求,的值,并讨论在上的增减性;(Ⅱ)若,且,求证:.(参考公式:)【答案】(Ⅰ)为增函数.(Ⅱ)详见解析试题解析:解:(Ⅰ)由题意知,∴解得故,.当时,为减函数,且,∴,为增函数.(Ⅱ)由,得,所以,两边同除以,得,所以,令,得,得.因为,所以,因为,又,易知,所以,又,所以,故,得.12.【2017届山东省菏泽市高三上学期期末考试数学(理)】已知函数,其中为常数.(1)讨论函数的单调性;(2)若存在两个极值点,求证:无论实数取什么值都有. 【答案】(1)当时,在区间上单调递增;当时,在上单调递减,在上单调递增;(2)见解析.试题解析:(1)函数的定义域为.,记,判别式.①当即时,恒成立,,所以在区间上单调递增.②当或时,方程有两个不同的实数根,记,,显然(ⅰ)若,图象的对称轴,.两根在区间上,可知当时函数单调递增,,所以,所以在区间上递增.(ⅱ)若,则图象的对称轴,.,所以,当时,,所以,所以在上单调递减.当或时,,所以,所以在上单调递增.综上,当时,在区间上单调递增;当时,在上单调递减,在上单调递增.(2)由(1)知当时,没有极值点,当时,有两个极值点,且.,∴又,.记,,则,所以在时单调递增,,所以,所以.13.【2017届湖北省武汉市武昌区高三1月调研考试理数】已知函数 . (Ⅰ)讨论的单调性;(Ⅱ)设,证明:当时,;(Ⅲ)设是的两个零点,证明 .【答案】(Ⅰ)在上单调递减,在上单调递增;(Ⅱ)当时,;(Ⅲ)证明过程见解析【解析】试题分析:(Ⅰ)求导,并判断导数的符号,分别讨论的取值,确定函数的单调区间.(Ⅱ)构造函数,利用导数求函数当时的最大值小于零即可.(Ⅲ)由(Ⅱ)得,从而,于是,由(Ⅰ)知, .试题解析:(Ⅰ)的定义域为,求导数,得,若,则,此时在上单调递增,若,则由得,当时,,当时,,此时在上单调递减,在上单调递增.(Ⅱ)令,则.求导数,得,当时,,在上是减函数.而,,故当时,14.【2017届湖北省荆、荆、襄、宜四地七校考试联盟高三2月联考数学(文)】已知函数.(Ⅰ)讨论函数的极值点的个数;(Ⅱ)若有两个极值点,证明:.【答案】(Ⅰ)(ⅰ)时,仅有一个极值点;(ⅱ)当时,无极值点;(ⅲ)当时,有两个极值点.(Ⅱ)详见解析【解析】试题分析:(Ⅰ)先求导数,再确定导函数零点情况,这需分类讨论:一次与二次的讨论,二次中有根与无根的讨论,两根情况分相等、一正一负、两不等正根,最后根据对应情况确定导函数符号变化规律,确定对应极值点个数;(Ⅱ)由(Ⅰ)先确定有两个极值点时,的取值范围,以及满足条件,再化简为的函数,最后根据导数确定对应函数单调性,根据单调性证明不等式.试题解析:解:(Ⅰ)由得,(ⅲ)时,时,即在是减函数,无极值点.当时,,令,得当和时,时,,所以在取得极小值,在取得极大值,所以有两个极值点.综上可知:(ⅰ)时,仅有一个极值点;(ⅱ)当时,无极值点;(ⅲ)当时,有两个极值点.(Ⅱ)由(Ⅰ)知,当且仅当时,有极小值点和极大值点,且是方程的两根,所以,,设,,所以时,是减函数,,则所以得证.15.【2017届广东韶关市六校高三10月联考】已知函数)(ln 2)(R a a ax x x f ∈+-=. (Ⅰ)讨论)(x f 的单调性;(Ⅱ)若0)(≤x f 恒成立,证明:当210x x <<时,)11(2)()(11212-<--x x x x f x f .【答案】(1)详见解析;(2)详见解析 【解析】(Ⅱ)由(Ⅰ)知,若a≤0,f (x )在(0,+∞)上递增,又f (1)=0,故f (x )≤0不恒成立 若a >2,当x∈(2a,1)时,f (x )递减,f (x )>f (1)=0,不合题意若0<a <2,当x∈(1,)时,f (x )递增,f (x )>f (1)=0,不合题意若a=2,f (x )在(0,1)上递增,在(1,+∞)上递减,f (x )≤f(1)=0,合题意故a=2,且lnx≤x﹣1(当且仅当x=1时取“=”). 当0<x 1<x 2时,f (x 2)﹣f (x 1)=2ln21x x ﹣2(x 2﹣x 1) <2(21x x ﹣1)﹣2(x 2﹣x 1)=2(11x ﹣1)(x 2﹣x 1),∴)11(2)()(11212-<--x x x x f x f .16.【2017届广西南宁市高三模拟考试】已知函数()ln f x x =,2()(21),g x ax a x a R =-+∈. (1)当1a =时,求不等式()()0f x g x >的解集;(2)若0a ≠,求函数()()()F x f x g x =+的单调递增区间;(3)求证:当32[]23a +∈-时,对于任意两个不等的实数1213,[,]44x x ∈,均有1212|()()||()()|f x f x g x g x ->-成立.【答案】(1)(0,1)(3,)+∞;(2)0a <时,增区间为(0,1),12a =时,增区间为(0,)+∞,102a <<时,增区间为1(0,1),(,)2a +∞,12a >时,增区间为1(0,),(1,)2a+∞;(3)证明见解析.试题解析:(1)定义域为(0,)+∞,所以不等式等价于(3)ln 0x x ->, 故不等式的解集为(0,1)(3,)+∞,(2)2'12()(1)12(21)12()2(21)a x x ax a x a F x ax a x xx---++=+-+== 0a <时,'()001F x x >⇒<<,所以增区间为(0,1),12a =时,增区间为(0,)+∞, 102a <<时,增区间为1(0,1),(,)2a +∞,12a >时,增区间为1(0,),(1,)2a+∞.(3)不妨设12x x >,由(2)知,12a ≤时,()()f x g x +在13[,]44是单调递增函数, 1223a ≤≤时,所以1324a ≥, 所以()()f x g x +在13[,]44是单调递增函数,1122()()()()f x g x f x g x +>+对13[,]44x ∈恒成立.当a ≥时,令21()x x x x ϕ+=-,则2'2221()01()x x x x x x ϕ+-=-=⇒=-, 随着x 的变化,'(),()x x ϕϕ的变化如下:所以max ()3x ϕ=--∴2131[,],244x x a x x +∀∈≥-,从而()()f xg x -在13[,]44是单调递增函数, 1122()()()()f x g x f x g x ->-在13[,]44恒成立,所以211212()()()()()()f x f x g x g x f x f x -<-<-对1213,[,]44x x ∈, 任意1213,[,]44x x ∈且12x x ≠,均有1212|()()||()()|f x f x g x g x ->-成立.题型四 不等式证明的应用17.【2017届江西省上饶市高三第一次模拟考试文】已知函数,若存在,使得,则实数的取值范围是( )A. B. C. D.【答案】C 【解析】,设,所以已知条件转化为存在,使得成立,,在区间上有解,所以在区间上有解,令,结合函数单调性可知当时函数取得最大值,,所以的取值范围是.18.【2017届安徽蚌埠怀远县高三上学期摸底考】当()0,x ∈+∞时,不等式()221ln 0c x cx x cx -++≥恒成立,则实数c 的取值范围是_____________.【答案】1,e ⎡⎫+∞⎪⎢⎣⎭【解析】试题分析:当0c =时,原不等式化为ln 0x ≤不恒成立.原不等式因式分解得()()1ln 0cx cx x +-≥,()0,x ∈+∞,当0c >时,10cx +>,由l n 0c x x-≥,有ln xc x≥,令()()'2ln 1ln ,x xF x F x x x-==,所以函数()F x 在区间()0,e 上单调递增,在(),e +∞上单调递减,故在x e =处取得最大值,由此可得1,c e ⎡⎫≥+∞⎪⎢⎣⎭.当0c <时,1cx +在10,c ⎛⎫- ⎪⎝⎭上为正数,在1,c ⎛⎫-+∞ ⎪⎝⎭上为负数,而()'1ln 0cx x c x-=-<,所以ln cx x -为减函数,由于ln ln 0xcx x c x-≥⇔≥,由于c 是负数,根据前面分析可知,不成立,所以ln cx x -恒为负数,所以()()1ln 0cx cx x +-≥不恒成立,综上1,c e ⎡⎫∈+∞⎪⎢⎣⎭.19.【2017届江苏扬州中学等七校高三上期中联考】若()1ln ,(),0x exf x x a xg x a e=--=<,且对任意[]()1212,3,4,x x x x ∈≠121211|()()|||()()f x f xg x g x -<-的恒成立,则实数a 的取值范围为 . 【答案】22[3,0)3e - 【解析】试题分析:易知1(),()f xg x 在[]3,4x ∈上均为增函数,不妨设12x x <,则 121211|()()|||()()f x f x g x g x -<-等价于212111()()()()f x f xg x g x -<- 即212111()()()()f x f xg x g x -<- 令1()()1ln ()xe h xf x x a xg x ex=-=---,则()h x 在[]3,4x ∈为减函数, 则()'21()10x e x a h x x ex-=--≤在(3,4)x ∈上恒成立,[]11,3,4x x e a x e x x --∴≥-+∈恒成立 令[]11(),3,4x x e u x x ex x--=-+∈,[]21112(1)113'()11,3,424x x x e x u x ee x x x ---⎡⎤-⎛⎫∴=-+=--+∈⎢⎥ ⎪⎝⎭⎢⎥⎣⎦21211331,'()0244x e e u x x -⎡⎤⎛⎫-+>>∴<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦Q ,()u x ∴为减函数,()u x ∴在[]3,4x ∈的最大值为22(3)33u e =-综上,实数a 的取值范围为22[3,0)3e -. 20.【2017届河北衡水中学高三摸底联考】设函数()()21,x x xf xg x x e+==,对任意()12,0,x x ∈+∞,不等式()()121g x f x k k ≤+恒成立,则正数k 的取值范围是 . 【答案】121k e ≥- 【解析】21.【2017届河北省正定中学高三上学期第三次月考】设.(1)求证:当时,; (2)若不等式对任意的恒成立,求实数的取值范围.【答案】(1)详见解析(2)【解析】试题分析:(1)利用导数确定函数单调性:这要利用两次求导,,,先确定导函数单调性,为递增函数,再确定导函数符号为非负,从而确定原函数单调性,为增函数,最后根据单调性可证不等式(2)不等式恒成立问题,一般转化为对应函数最值问题:即证明的最小值非负,因为,所以,再由(1)结论放缩可得,利用导数易得试题解析:(1)证明:,则,设,则,当时,,即为增函数,所以,在时为增函数,所以.又,时,,所以时对任意的恒成立.当时,设,则,,所以存在实数,使得任意,均有,所以在为减函数,所以在时,所以时不符合题意.综上,实数的取值范围为.(2)解法二:因为等价于设,则可求,所以当时,恒成立,在是增函数,所以,即,即所以时,对任意恒成立.当时,一定存在,满足在时,,所以在是减函数,此时一定有,即,即,不符合题意,故不能满足题意,综上所述,时,对任意恒成立.。