高考数学一轮复习 第六章 数列 6.5 数列通项公式的求法课件 文 (2)

合集下载

2024届高考一轮复习数学课件(新人教B版):等差数列

2024届高考一轮复习数学课件(新人教B版):等差数列
所以 Sn+1- Sn=(n+1) a1-n a1= a1(常数),
所以数列{ Sn}是等差数列. ①②⇒③. 已知{an}是等差数列,{ Sn}是等差数列.
设数列{an}的公差为d, 则 Sn=na1+nn- 2 1d=12n2d+a1-d2n.
因为数列{ Sn}是等差数列, 所以数列{ Sn}的通项公式是关于 n 的一次函数,
教材改编题
1.在等差数列{an}中,已知a5=11,a8=5,则a10等于
A.-2
B.-1
√C.1
D.2
设等差数列{an}的公差为 d,由题意得151==aa1+1+74dd,, 解得ad1==-192,. ∴an=-2n+21. ∴a10=-2×10+21=1.
教材改编题
2.设等差数列{an}的前n项和为Sn,若S4=8,S8=20,则a9+a10+a11+a12
A.aa94=-1
√C.aa93=-1
B.aa83=-1 D.aa140=-1
由aa85=-2 得 a5≠0,2a5+a8=a4+a6+a8=3a6=0, 所以a6=0,a3+a9=2a6=0, 因为a5≠0,a6=0, 所以 a3≠0,aa93=-1.
命题点2 等差数列前n项和的性质
例 4 (1)设等差数列{an},{bn}的前 n 项和分别为 Sn,Tn,若对任意的
则 a1-d2=0,即 d=2a1,所以 a2=a1+d=3a1. ②③⇒①. 已知数列{ Sn}是等差数列,a2=3a1, 所以S1=a1,S2=a1+a2=4a1. 设数列{ Sn}的公差为 d,d>0, 则 S2- S1= 4a1- a1=d,得 a1=d2, 所以 Sn= S1+(n-1)d=nd,
所以Sn=n2d2, 所以an=Sn-Sn-1=n2d2-(n-1)2d2=2d2n-d2(n≥2),是关于n的一 次函数,且a1=d2满足上式, 所以数列{an}是等差数列.

2025版高考数学一轮总复习第6章数列第1讲数列的概念与简单表示法pptx课件

2025版高考数学一轮总复习第6章数列第1讲数列的概念与简单表示法pptx课件

知识点三 an与Sn的关系 若数列{an}的前n项和为Sn,
则 an=______S__S1__n-____S__n, _-_1n_= __1_, _,n≥2.
知识点四 数列的分类
归纳拓展 1.数列与函数 数 列 可 以 看 作 是 一 个 定 义 域 为 正 整 数 集 N*( 或 它 的 有 限 子 集 {1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值. 数列的通项公式是相应函数的解析式,它的图象是一群孤立的点.
知识点二 数列的表示方法
列表法 图象法
列表格表示n与an的对应关系 把点___(n_,__a_n_)______画在平面直角坐标系中
通项公式 把数列的通项使用__公__式____表示的方法
公式法 递推公式 使用初始值a1和an+1=f(an)或a1,a2和an+1=f(an, an-1)等表示数列的方法
运算求解
数学运算
并项求和
综合性
逻辑思维
逻辑推理
2022新高考 求通项公 累乘法求数列
运算求解 综合性 数学运算
Ⅰ,17 式
的通项公式
等差数列 2022新高考
及其前n项 Ⅱ,3

求值
运算求解 创新性 数学运算
考题
考点
考向
关键能力 考查要求 核心素养
等比数列
2022新高考
等比数列的通项 运算求解
及其前n
Ⅱ,17
公式及其应用 逻辑思维
项和
创新性
数学运算
2021新高考
数列的求
错位相减法求和, 运算求解
综合性
数学运算
Ⅰ,16,17 和
分组求和
等差数列 求解等差数列的

数列通项公式的求法课件-高三数学一轮复习

数列通项公式的求法课件-高三数学一轮复习

(2)证明:∵cn=a2nn(n∈N*), ∴cn+1-cn=a2nn+ +11-a2nn=an+21-n+12an=2bn+n 1. 将 bn=3·2n-1 代入,得 cn+1-cn=34(n∈N*). ∴数列{cn}是公差为34的等差数列,c1=a21=12, 故 cn=12+34(n-1)=34n-14.
探究 5 此类题可由 an=SS1n(-nS=n-11()n,≥2)求出通项 an,但要注意 n=1 与 n ≥2 两种情况能否统一.
思考题 5 在数列{an}中,a1=1,a1+2a2+3a3+…+nan=n+2 1an+1,n∈
N*,求 an. 【解析】
由 a1+2a2+3a3+…+nan=n+2 1an+1,
例 4 已知数列{an}满足 a1=1,an+1=2aan+n 1(n∈N+).求数列{an}的通项公 式.
【解析】 易知 an>0,依题意得an1+1=2ana+n 1=a1n+2, ∴数列a1n是等差数列,公差为 2,首项为 1,∴a1n=1+(n-1)×2=2n-1, ∴an=2n1-1.
探究 4 已知数列递推公式的分母中含有通项公式的表达式,求解对应的通 项公式时,往往可以通过观察表达式的特点,通过倒数关系加以转化,利用等差 数列的性质分析相应的通项公式问题.
思考题 4 设数列{an}是首项为 1 的正项数列,且 an+1-an+an+1·an= 0(n∈N*),求{an}的通项公式.
【解析】 ∵an+1-an+an+1·an=0.∴an1+1-a1n=1. 又a11=1,∴a1n是首项为 1,公差为 1 的等差数列. 故a1n=n,∴an=1n.
题型四 已知 Sn 求 an
题型二 累乘法
例 2 在数列{an} 中,已知 a1=3,nan=(1+n)an+1,求 an. 【解析】 据题意有aan+n 1=n+n 1⇒aan-n 1=n-n 1(n≥2 且 n∈N*). ∴an=a1·aa21·aa32·…·aan-n 1 =3×12×23×34×…×n-n 1=3n(n≥2 且 n∈N*),把 n=1 代入上式也成立,故 an=3n(n∈N*).

高考数学一轮复习第6章数列第2讲等差数列及其前n项和课件文

高考数学一轮复习第6章数列第2讲等差数列及其前n项和课件文

n≤10 , 即 共 有
10
个数.所以
S10

10(1+19) 2

100或S10=10×1+1பைடு நூலகம்× 2 9×2=100,故选 C.
12/13/2021
第七页,共四十二页。
(必修 5 P46B 组 T2 改编)等差数列{an}的前 n 项和为 Sn,若 S10=20,S20=50,则 S30=________. 解析:根据等差数列性质 S10,S20-S10,S30-S20 成等差数列, 所以 2(S20-S10)=S10+S30-S20,所以 S30=3(S20-S10)=3(50 -20)=90. 答案:90
12/13/2021
第二十七页,共四十二页。
考点四 等差数列的单调性与最值
(1)下面是关于公差 d>0 的等差数列{an}的四个命题:p1: 数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列ann 是递增数列;p4:数列{an+3nd}是递增数列.其中真命题为
12/13/2021
第十六页,共四十二页。
当 n≥2 时,由22SSnn=-1=a2na+n2-a1n+,an-1, 得 2an=a2n+an-a2n-1-an-1. 即(an+an-1)(an-an-1-1)=0, 因为 an+an-1>0, 所以 an-an-1=1(n≥2), 所以数列{an}是等差数列.
ak+al=am+an.
(3)若{an}是等差数列,公差为 d,则{a2n}也是等差数列,公差 为__2_d_.
(4)若{an},{bn}是等差数列,则{pan+qbn}也是等差数列.
12/13/2021
第三页,共四十二页。
5.等差数列的前 n 项和公式 设等差数列{an}的公差为 d,其前 n 项和 Sn=n(a12+an)或 Sn=____n_a_1+ __n__(__n_2-__1_)__d________.

高考总复习一轮数学精品课件 第六章 数列 第一节 数列的概念与简单表示法

高考总复习一轮数学精品课件 第六章 数列 第一节 数列的概念与简单表示法
典例突破
1
例 4.在数列{an}中,a1=2且(n+2)an+1=nan,则它的前 30 项和 S30=(
30
A.
31
29
B.
30
28
C.
29
19
D.
29
)
答案 A
解析 易知
+1
an≠0,∵(n+2)an+1=nan,∴

2 3

∴an=a1·
· ·
…·
1 2
-1
=
1 1 2
2-1-2 , ≥ 2.
增素能 精准突破
考点一
利用an与Sn的关系求通项公式(多考向探究)
考向1.已知Sn求an
典例突破
例1.(1)(2023北京朝阳二模)已知数列{an}的前n项和是2n-1,则a5=(
)
A.9
B.16
C.31
D.33
(2)若数列{an}对任意n∈N*满足a1+2a2+3a3+…+nan=n,则数列{
∴{an}是首项为1,公差为1的等差数列.
∴a4 023=1+(4 023-1)×1=4 023.故选B.
(2)因为 + -1 =an=Sn-Sn-1=( + -1 )( − -1 )(n≥2),所以
− -1 =1.又 1 = √1 =1,所以数列{ }是首项为 1,公差为 1 的等差
(+1)
1+2+3+…+n=
.
2
考向2.已知an与Sn的关系式求an
典例突破
例2.(1)(2023河南名校联考改编)已知正项数列{an}的前n项和为Sn,满足

2021高考数学一轮复习第6章数列第2节等差数列及其前n项和课件文北师大版

2021高考数学一轮复习第6章数列第2节等差数列及其前n项和课件文北师大版


1 a1
=1,因此数列
1
an
是首项为1,公差为2的等差数列,所以
a1n=1+2(n-1)=2n-1,
所以an=2n1-1.]
39
2.在数列{an}中,a1=2,an是1与anan+1的等差中项. 求证:数列an-1 1是等差数列,并求{an}的通项公式.
40
[证明] 由题意知2an=1+anan+1, ∴an+11-1-an-1 1 =aan-n+11--1aan+n-1-11 =an+1·ana-n-ana+n1+-1 an+1=2ana-n-ana+n1+-1 an=1. 又a1=2,a1-1 1=1, ∴数列an-1 1是首项为1,公差为1的等差数列.
[答案](1)× (2)√ (3)√ (4)×
12
二、教材改编
1.等差数列11,8,5,…中,-49是它的( )
A.第19项
B.第20项
C.第21项
D.第22项
C [由题意知an=11+(n-1)×(-3)=-3n+14,令-3n+14 =-49得n=21,故选C.]
13
2.在等差数列{an}中a1=14.5,d=0.7,an=32,则Sn=( )
等差中项 2an-1=an+an-2(n≥3,n∈N*)成立⇔{an}是 法 等差数列
适合题型
解答题中 证明问题
30
通项公式 an=pn+q(p,q为常数)对任意的正整数n都成 选择、填
法 立⇔{an}是等差数列
空题中的
前n项和公 验证Sn=An2+Bn(A,B是常数)对任意的正整 判定问题
式法 数n都成立⇔{an}是等差数列
4
课前自主回顾
5
1.等差数列的有关概念

2022版高考数学一轮复习第6章数列第2节等差数列及其前n项和课件

2022版高考数学一轮复习第6章数列第2节等差数列及其前n项和课件

3.《算法统宗》是中国古代数学名著,由明代数学家程大位编
著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古
代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现
的,“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不
知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数
要详推.在这个问题中,记这位公公的第n个儿子的年龄为an,则a1=
C.Sn=2n2-8n
D.Sn=12n2-2n
A [设等差数列{an}的首项为a1,公差为d.
由题知,S4=4a1+d2×4×3=0, a5=a1+4d=5,
解得ad1==2-,3, ∴an=2n-5,Sn=n2-4n,故选A.]
2.(2018·全国卷Ⅰ)记Sn为等差数列{an}的前n项和,若3S3=S2+
1234
4.某剧场有20排座位,后一排比前一排多2个座位,最后一排有 60个座位,则剧场总共的座位数为________.
820 [设第n排的座位数为an(n∈N*),数列{an}为等差数列,其公 差d=2,则an=a1+(n-1)d=a1+2(n-1).由已知a20=60,得60=a1 +2×(20-1),解得a1=22,则剧场总共的座位数为20a12+a20= 20×222+60=820.]
(2)整体思想:当所给条件只有一个时,可将已知和所求都用 a1,d表示,寻求两者间的联系,整体代换即可求解.
(3)利用性质:运用等差数列性质可以化繁为简、优化解题过 程.
1.(2019·全国卷Ⅰ)记Sn为等差数列{an}的前n项和.已知S4=0,
a5=5,则( )
A.an=2n-5
B.an=3n-10
(2)由已知nan+1-(n+1)an=2n(n+1), 得nan+n1-n+n+1 1an=2,即na+n+11-ann=2, 所以数列ann是首项a11=1,公差d=2的等差数列. 则ann=1+2(n-1)=2n-1,所以an=2n2-n.

2024届高考一轮复习数学课件(新教材人教A版强基版):数列求和

2024届高考一轮复习数学课件(新教材人教A版强基版):数列求和

①等差数列的前n项和公式:
na1+an Sn= 2 =
na1+nn- 2 1d
.
②等比数列的前n项和公式:
na1,q=1, Sn= _a_11_--__aq_nq_=__a_1_1_1-_-_q_q_n_,__q_≠__1__.
知识梳理
(2)分组求和法 若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求 和时可用分组求和法,分别求和后相加减. (3)并项求和法 一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an= (-1)nf(n)类型,可采用两项合并求解.
因为bn=an+ncos nπ=2n+1+(-1)nn, 所以当n为偶数时, Tn=b1+b2+…+bn =[3+5+7+…+(2n+1)]+[-1+2-3+4-…-(n-1)+n] =n3+22n+1+n2 =n2+2n+n2=n2+52n.
当n为奇数时, Tn=Tn+1-bn+1=(n+1)2+52(n+1)-[2(n+1)+1+n+1]=n2+32n-12. 综上,Tn=nn22++3252nn, -12n为 ,偶n为数奇,数.
题型二 并项求和
例2 记数列{an}的前n项和为Sn,已知Sn=2an-2n+1. (1)求数列{an}的通项公式;
当n=1时,由Sn=2an-2n+1,可得a1=S1=2a1-2+1,即有a1=1. 当n≥2时,an=Sn-Sn-1=2an-2n+1-2an-1+2(n-1)-1, 即an=2an-1+2,可得an+2=2(an-1+2),显然an-1+2≠0. 所以数列{an+2}是首项为3,公比为2的等比数列, 则an+2=3·2n-1,即有an=3·2n-1-2.
跟踪训练3 已知等差数列{an}中,a2=5,a3+a5=18. (1)求数列{an}的通项公式;

2023届高考数学全程一轮复习第六章数列第二节等差数列及其前n项和课件

2023届高考数学全程一轮复习第六章数列第二节等差数列及其前n项和课件
前n项和公式转化为方程(组)求解.
(2)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,
Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题.
(3)数列的通项公式和前n项和公式在解题中起到变量代换的作用,
而a1 和d是等差数列的两个基本量,用它们表示已知量和未知量是常
用方法.
第二节 等差数列及其前n项和
必备知识—基础落实
关键能力—考点突破
·最新考纲·
1.理解等差数列的概念.
2.掌握等差数列的通项公式与前n项和公式.
3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解
决相应的问题.
4.了解等差数列与一次函数的关系.
·考向预测·
考情分析:等差数列的判断与证明,等差数列的基本运算,等差数
d< − 4,
14
所以ቐ
d≥− ,
3
14
即- ≤d<-4.
3
(四)走进高考
6.[2020·全国卷Ⅱ]记Sn 为等差数列{an}的前n项和.若a1=-2,a2
25
+a6=2,则S10=______.
解析:设等差数列{an}的公差为d,
则a2=-2+d,a6=-2+5d,
因为a2+a6=2,
所以-2+d+(-2+5d)=2,
同一个常数
___________,那么这个数列就叫做等差数列;数学语言表达式:a
n+
1-an=d(n∈N+,d为常数).
(2)如果三个数x,A,y组成等差数列,那么A叫做x和y的等差中项.
[提醒] (1)d>0⇒{an}为递增数列;
(2)d=0⇒{an}为常数列;
(3)d<0⇒{an}为递减数列.

2024届高三数学一轮复习-求数列通项公式的方法 课件(共25张ppt)

2024届高三数学一轮复习-求数列通项公式的方法 课件(共25张ppt)

再得出 的表达式
例五.2
在数列 中,1 = 1,+1 =

,求通项公式 ?
3 +2
解:由题意,两边同取倒数,得

1
an+1
+k=2
1
an
+k

1
an+1
1
an+1
=
=
1
2
an
1
2 +3
an
+k
对比原式,得k = 3

1
an
1
an
+ 3 为首项为4,公比为2的等比数列
+ 3 = 4 · 2n−1 = 2n+1
解题思路:设 ,构造等比数列{ + }
具体步骤: 设+1 + = +
即+1 = ⋅ + − 1 ·
对比原式,得k =
q
p−1
得到以1 +为首项,为公比的等比数列{ + }
例四.1
在数列 an 中,a1 = 1,an+1 = 3an + 1,求通项公式an ?
故an =
1
2n+1 −3
六、取对数法
①形如+1 = ⋅
对数运算法则: log ⋅ = log + log
解题思路:等式两边同取对数,构造等比数列
log ⋅= · log
具体步骤: 两边同取以p为底的对数,得log +1 = log + 1
使用条件:已知+1 − =
解题思路: 2 − 1 = 1

数列通项公式的求法最全PPT课件

数列通项公式的求法最全PPT课件

0,a-b,0,a-b..的和,分别写通项然后相加再化简。
类型二、前n项和Sn法 已知前n项和,求通项公

an


S1 Sn

Sn1
(n 1) (n 2)
例2:设﹛an﹜的前n项和为Sn,且满足Sn=n2+2n-1,
求﹛an﹜的通项公式.
提示:当n 2时,an Sn (n2 2n - 1) - [(n - 1)2 2(n
lg an lg a1 2n1 lg 32n1 即 an 32n1
类型六、(2)形如 an1 Aan2 Ban C 递推式
例.已知数列an 中, a1 1, an1 3an2 12an 10 ,求an
分析:先转化后取对数再构造等比数列
解: an1 3an2 12an 10 变形为:
.......
a3 a2 3 以上各式相加得
a2 a1 2
an a1 (2 3 4 n)
(n+2)(n-1)
练:已知
an
=1+
中,a1

2 1, an

3n1

an1
(n

2)证明:an

3n 1 2
类型二、累乘法形如 an1 f (n) an 的递推式
an

4n
2n
类型五、(3)形如 an1 pan qan1an 的递推式
相除法 两边同除以an+1an
例8:已知a1 2, an 0,且an1 an 2an1an ,求an.
解:
an1 an 2an1an
11 2aຫໍສະໝຸດ an1 1 an

高三一轮复习数列通项公式的求法课件(共23张PPT)

高三一轮复习数列通项公式的求法课件(共23张PPT)
或利用等差、等比数列的通项公式)
S1 (n=1) Sn-Sn-1(n≥2)
三、叠加法(形如an+1=an+ f(n)型)
an an an1 an1 an2 a2 a1 a1
四、累乘法
an

an an1
(a形n如1 an+1 an2
=(n

1)+(n
-2)+
•••+2+1+1

n-1 n
1
n2
n2
2
2
12
注:
递推公式形如an+1=an+ f(n)型的数列其中f(n)可以是 关于n的一次函数、二次函数、指数函数、分式函数, 求通项. ①若f(n)是关于n的一次函数,累加后可转化为等差数列 求和; ②若f(n)是关于n的二次函数,累加后可分组求和; ③若f(n)是关于n的指数函数,累加后可转化为等比数列 求和; ④若f(n)是关于n的分式函数,累加后可裂项求和。
1且an 的通项公式为
分析 : an1 n 得 a2 a3 a4 an 1 2 3 4 n-1
an n 2 a1 a2 a3
an1 3 4 5 6
n 1

an a1

1 2 n(n 1)

a1
a1 S1 3不合上式
故an

3 2n
(n 1) (n N ) (n 2)
1100
思考: 已知数列{an}的前n项和sn=2-an.
求数列{an}的通项公式。
解:当n≥2时an=sn-sn-1=(2-an)-(2-an-1)=an-1-an,

高考数学一轮复习第六章数列数列的通项公式课件PPT24页

高考数学一轮复习第六章数列数列的通项公式课件PPT24页
高考数学一轮复习第六章数列数列的 通项公式课件
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
谢谢!

高中数学一轮复习 数列通项公式求法课件 精品

高中数学一轮复习 数列通项公式求法课件 精品

构造数列{an+x}为等比数列
如何确定x?
待定系数法: 令an+1+x=p(an+x)

an+1=pan+px-x
an
(1根 据pq已1)知 pnx1=
q p1
所所以以数数列列{{aan nppqq11 }是}是等等比比数数列列. .
例4.已知数列{an}中a1=1,an1
解:两边取倒数得:
2an an 2
an1 an n(n N * )
以上n式相加得:
an1
a1
1
2
3
n
n(n 2
1)
(n
N*)
an1
3
n(n 2
1)
(n
N*)
an
3
n(n 1) 2
(n
N*,n≥
2)
(1)注意讨 论首项;
因为当n=1时,a1=3也适合上式,所以
an
3
n(n 1) 2
(n
N*)
(2)适用于 an+1=an+f(n)型递推 公式
累乘法
问题三 : a1 2, an1 3an 2 构造新数列
作业: 课后探讨 : a1 2, an1 3an 2n 1
,求an
1 an 2 1 1 an1 2an 2 an
所以数列{
1 an
}是以
1 1 a1
为首项,12
为公差
的等差数列.
1
1 n1
1 (n 1)
an
22
an
2 n1
例5. 已知数列{an}中a1=2,an+1=4an+ 2n1 求数列{an}的通项公式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析答案
(3)1-12,12-13,13-14,14-15,…; 解 数列的每项可看成两数之差,前一数是自然数的倒数1n,后一数为n+1 1, ∴通项公式 an=1n-n+1 1.
解析答案
(4)3,5,3,5,….
解 数列中的奇数项为3,偶数项为5.
∴通项公式 an=35, ,
n为奇数, n为偶数.
答案
(4)若三个数成等比数列,那么这三个数可以设为aq,a,aq (a≠0).( √ ) (5)指数函数 f(x)=2x 图象上一系列点的横坐标构成数列{xn},对应的纵坐 标构成数列{yn}.若数列{xn}是等差数列,则数列{yn}是等比数列.( √ )
1+-1n+1 (6)数列 1,0,1,0,1,0,…的通项公式只能是 an= 2 .( × )
n
= n+1- n,
∴am= m+1- m=3-2 2= 9- 8.
∴m=8.
12345
解析答案
3.(教材改编)已知数列{an}的前n项和Sn=n2+2n+1 (n∈N*),
4,
n=1,
则an=___2_n_+__1_,____n_≥__2_________.
12345
答案
4.数列{an}是公差不为零的等差数列,且a7,a10,a15是等比数列{bn}的 连续三项,若该等比数列的首项b1=3,则bn=__3_·_53__n-_1_. 解析 ∵a210=a7·a15,∴(a1+9d)2
解析答案
(2)27,141,12,45,2,…; 解 这个分数数列中分子、分母的规律都不明显,不妨把分子变成4, 然后看分母, 从而有144,141,48,45,…,分母正好构成等差数列, 从而原数列的通项公式为 an=17-4 3n.
解析答案
(3)1,3,3,5,5,7,7,9,9,….
解 注意到此数列的特点:奇数项与项数相等,偶数项比项数大1. 故它可改写成1+0,2+1,3+0,4+1,5+0,6+1,…, 所以原数列的通项公式为 an=n+12+-21n.
=(a1+6d)·(a1+14d),∴a1=-32d,
∴an=a1+(n-1)d=n-52d,
15 q=aa170= 229dd=53,∴bn=3·53n-1.
12345
解析答案
5.数列{an}的前20项由如图所示的流程图依次输出的a值构成,则数列 nn+1
{an}的一个通项公式an=____2____(n∈N*,n≤20).
答案
2
考点自测
2n+1
1.数列 1,13,395,1673,3939,…的一个通项公式是 an=__2_n_-__1__2_n_+__1____.
12345
答案
2.已知数列{an}的通项公式为 an=
1 n+
n+1,若
am=3-2
2,则
m=____8____.
解析
an=
1= n+ n+1
n+1- n n+1+ n n+1-
思维升华
解析答案
跟踪训练1
(1)-1,12,-13,14,…; 解 不看符号,数列可看作自然数列的倒数,正负相间隔用(-1) 的n次幂进行调整, ∴通项公式 an=(-1)n·1n.
解析答案
(2) 3,3, 15, 21,3 3,…; 解 数列可化为 3, 9, 15, 21, 27,…, 即 3×1, 3×3, 3×5, 3×7, 3×9,…. 每个根号内可看作3与2n-1的乘积. ∴通项公式 an= 3·2n-1= 6n-3.
则 d=ann--a11=ann--mam,从而有 an=am+ (n-m)d
.
(3){an}的公差为d,则d>0⇔{an}为 递增 数列;d<0⇔{an}为 递减 数 列;d=0⇔{an}为常数列.
答案
2.等比数列的通项公式 (1)首项为a1,公比为q,则an= a1qn-1 . (2)推广形式:an=am·qn-m或am=an·qm-n. 3.常用结论 (1)若{an}是等差数列,k∈N*,则{kan}也是等差数列. (2)若{bn}是等差数列,公差为D,{an}为等差数列,公差为d,则{an±bn} 仍为等差数列,其公差为d±D.
思考辨析
判断下面结论是否正确(请在括号中打“√”或“×”) (1)如果数列{an}的通项公式an=3n+2,则数列{an}是递增数列.( √ ) (2)数列{an}的前n项和为Sn=n2-1,则其通项公式为an=Sn-Sn-1=2n -1.( × ) (3)若已知数列{an}的递推公式为 an+1=2an1-1,且 a2=1,则可以写出数 列{an}的任何一项.( √ )
第六章 数列
§6.5 数列通项公式的求法
内容 索引
基础知识 自主学习 题型分类 深度剖析 思想与方法系列 思想方法 感悟提高 练出高分
基础知识 自主学习
ቤተ መጻሕፍቲ ባይዱ 1
知识梳理
1.等差数列的通项公式 (1)若等差数列的首项为a1,公差为d,则其通项an= a1+(n-1)d .
(2)等差数列通项公式的推广:在等差数列{an}中,已知 a1,d,am,an (m≠n),
答案
(3)若{an}、{bn}为等比数列,则{λan}(λ≠0)、{|an|}、a1n、{a2n}、{manbn}(m≠0) 仍为等差数列.
(4){an}是等差数列⇔{(cn)a} (c>0,c≠1)是等比数列. {an}是正项等比数列⇔{logcan} (c>0,c≠1)是等差数列. {an}既是等差数列又是等比数列⇔{an}是各项不为零的常数列.
解析 由流程图,知a1=0+1=1, a2=a1+2=1+2, a3=a2+3=1+2+3,…, an=an-1+n, 即 an=1+2+3+…+(n-1)+n=nn2+1,
1 2 3 4 5 解析答案
返回
题型分类 深度剖析
题型一 利用观察法求通项公式
例 1 写出下列数列的一个通项公式: (1)2,52,143,383,8116,…; 解 原数列可改写成 1+210,2+211,3+212,4+213,…. 故其通项公式为 an=n+2n1-1.
3+5 此数列还可以这样考虑,3 与 5 的算术平均数为 2 =4
4加1便是5,4减1便是3,而加1与减1也就是(-1)n. 因此数列的通项公式还可以写成 an=3+2 5+(-1)n=4+(-1)n.
相关文档
最新文档