江西省上饶市2019-2020学年第三次中考模拟考试数学试卷含解析

合集下载

江西省上饶市2019-2020学年中考三诊数学试题含解析

江西省上饶市2019-2020学年中考三诊数学试题含解析

江西省上饶市2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于()A.2 B.3 C.4 D.62.某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同.设现在每天生产x台机器,根据题意可得方程为()A.50035030x x=-B.50035030x x=-C.500350+30x x=D.500350+30x x=3.如图,反比例函数y=-的图象与直线y=-x的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则△ABC的面积为( )A.8 B.6 C.4 D.24.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB的最小值为()A.B.C.10 D.5.在实数π,017,﹣4中,最大的是()A.πB.0 C17D.﹣46.tan45º的值为()A.12B.1 C.22D27.如果零上2℃记作+2℃,那么零下3℃记作()A.-3℃B.-2℃C.+3℃D.+2℃8.实数﹣5.22的绝对值是()A.5.22 B.﹣5.22 C.±5.22 D 5.229.如图,取一张长为a、宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边,a b 应满足的条件是( )A .2a b =B .2a b =C .2a b =D .2a b =10.如图,正方形ABCD 的对角线AC 与BD 相交于点O ,∠ACB 的角平分线分别交AB ,BD 于M ,N 两点.若AM =2,则线段ON 的长为( )A .2B .3C .1D .6 11.半径为R 的正六边形的边心距和面积分别是( )A .32R ,2332R B .12R ,2332R C .32R ,234R D .12R ,234R 12.已知反比例函数y =﹣6x ,当﹣3<x <﹣2时,y 的取值范围是( ) A .0<y <1 B .1<y <2C .2<y <3D .﹣3<y <﹣2 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB=1:3,则△ADE 与△ABC 的面积之比为______.14.一个多项式与3212x y -的积为5243343x y x y x y z --,那么这个多项式为 . 15.平面直角坐标系中一点P (m ﹣3,1﹣2m )在第三象限,则m 的取值范围是_____.16.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.17.《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x 匹大马,y 匹小马,根据题意可列方程组为______.18.如图, AB 是⊙O 的弦,∠OAB=30°.OC ⊥OA ,交AB 于点C ,若OC=6,则AB 的长等于__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF ,(1)求证:AF=DC ;(2)若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.20.(6分)如图,在平面直角坐标系中,一次函数()10y kx b k =+≠与反比例函数()20m y m x=≠的图像交于点()3,1A 和点B ,且经过点()0,2C -. 求反比例函数和一次函数的表达式;求当12y y >时自变量x 的取值范围.21.(6分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.22.(8分)已知关于x 的方程220x ax a ++-=.当该方程的一个根为1时,求a 的值及该方程的另一根;求证:不论a 取何实数,该方程都有两个不相等的实数根.23.(8分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC.(结果精确到0.1米,参考数据:sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.5,3≈1.73)24.(10分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.(应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)25.(10分)如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)判断AE与⊙O的位置关系,并说明理由;(2)若BC=6,AC=4CE时,求⊙O的半径.26.(12分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.27.(12分)如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】设母线长为R,底面半径是3cm,则底面周长=6π,侧面积=3πR=12π,∴R=4cm.故选C.2.A【解析】【分析】根据现在生产500台机器所需时间与原计划生产350台机器所需时间相同,所以可得等量关系为:现在生产500台机器所需时间=原计划生产350台机器所需时间.【详解】现在每天生产x台机器,则原计划每天生产(x﹣30)台机器.依题意得:500350x x30=-,故选A.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.3.A【解析】试题解析:由于点A、B在反比例函数图象上关于原点对称,则△ABC的面积=2|k|=2×4=1.故选A.考点:反比例函数系数k的几何意义.4.D【解析】【分析】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根据勾股定理得到PP′=,求得2PD+PB≥4,于是得到结论.【详解】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,∵=2,∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=,∴2PD+PB≥4,∴2PD+PB的最小值为4,故选D.本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.5.C【解析】【分析】根据实数的大小比较即可得到答案.【详解】解:∵16<17<25,∴4<5π>0>-4,故答案选C.【点睛】本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.6.B【解析】【分析】【详解】解:根据特殊角的三角函数值可得tan45º=1,故选B.【点睛】本题考查特殊角的三角函数值.7.A【解析】【分析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.故选A.8.A【解析】【分析】根据绝对值的性质进行解答即可.【详解】实数﹣5.1的绝对值是5.1.【点睛】本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键.9.B【解析】【分析】由题图可知:得对折两次后得到的小长方形纸片的长为b ,宽为14a ,然后根据相似多边形的定义,列出比例式即可求出结论.【详解】解:由题图可知:得对折两次后得到的小长方形纸片的长为b ,宽为14a , ∵小长方形与原长方形相似, ,14a b b a ∴=2a b ∴=故选B .【点睛】此题考查的是相似三角形的性质,根据相似三角形的定义列比例式是解决此题的关键.10.C【解析】【分析】作MH ⊥AC 于H ,如图,根据正方形的性质得∠MAH=45°,则△AMH 为等腰直角三角形,所以AH=MH=2,再根据角平分线性质得,则,于是利用正方形的性质得到+2,OC=12+1,所以△CON ∽△CHM ,再利用相似比可计算出ON 的长.【详解】试题分析:作MH ⊥AC 于H ,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=22AM=22×2,∵CM平分∠ACB,∴2,∴2,∴22(2)2,∴OC=122+1,CH=AC﹣2+222,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴ON OCMH CH=21222+=+∴ON=1.故选C.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.11.A【解析】【分析】首先根据题意画出图形,易得△OBC是等边三角形,继而可得正六边形的边长为R,然后利用解直角三角形求得边心距,又由S正六边形=6V OBCS求得正六边形的面积.【详解】解:如图,O为正六边形外接圆的圆心,连接OB,OC,过点O作OH⊥BC于H,∵六边形ABCDEF 是正六边形,半径为R ,∴∠BOC=3600166⨯︒=︒, ∵OB=OC=R ,∴△OBC 是等边三角形,∴BC=OB=OC=R ,60OBC ∠=︒∵OH ⊥BC ,∴在Rt OBH V 中,sin sin 60∠=︒=OH OBH OB, 即32=OH R ∴32=OH R ,即边心距为32R ; ∵2113322=⋅==V OBC S BC OH R R , ∴S 正六边形=2233366==V OBC S R R , 故选:A .【点睛】本题考查了正多边形和圆的知识;求得正六边形的中心角为60°,得到等边三角形是正确解答本题的关键.12.C【解析】分析:由题意易得当﹣3<x <﹣2时,函数6y x=-的图象位于第二象限,且y 随x 的增大而增大,再计算出当x=-3和x=-2时对应的函数值,即可作出判断了.详解:∵在6y x=-中,﹣6<0, ∴当﹣3<x <﹣2时函数6y x =-的图象位于第二象限内,且y 随x 的增大而增大, ∵当x=﹣3时,y=2,当x=﹣2时,y=3,∴当﹣3<x <﹣2时,2<y <3,故选C .点睛:熟悉“反比例函数的图象和性质”是正确解答本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1:1.【解析】试题分析:由DE ∥BC ,可得△ADE ∽△ABC ,根据相似三角形的面积之比等于相似比的平方可得S △ADE :S △ABC =(AD :AB )2=1:1.考点:相似三角形的性质.14.22262x xy y z -++【解析】试题分析:依题意知()()524334325243343212332x y x y x y x y z x y x y x y x y z ⎛⎫-⎛⎫--÷-=--⨯ ⎪ ⎪⎝⎭⎝⎭ =22262x xy y z -++考点:整式运算点评:本题难度较低,主要考查学生对整式运算中多项式计算知识点的掌握。

江西省上饶市2019-2020学年中考数学最后模拟卷含解析

江西省上饶市2019-2020学年中考数学最后模拟卷含解析

江西省上饶市2019-2020学年中考数学最后模拟卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O ,AC 8=,BD 6=,DH AB ⊥于点H ,且DH 与AC 交于G ,则OG 长度为( )A .92B .94C .35D .352.如图,AB 是O e 的直径,CD 是O e 的弦,连接AD ,AC ,BD ,则DAB ∠与C ∠的数量关系为( )A .DABC ∠=∠ B .2DAB C ∠=∠ C .90DAB C ∠+∠=︒D .180DAB C ∠+∠=︒3.如图,把△ABC 剪成三部分,边AB ,BC ,AC 放在同一直线上,点O 都落在直线MN 上,直线MN ∥AB ,则点O 是△ABC 的( )A .外心B .内心C .三条中线的交点D .三条高的交点4.如图,一束平行太阳光线FA 、GB 照射到正五边形ABCDE 上,∠ABG =46°,则∠FAE 的度数是( )A.26°.B.44°.C.46°.D.72°5.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.12B.24C.14D.136.分式方程()22111xxx-++=1的解为()A.x=1 B.x=0 C.x=﹣23D.x=﹣17.计算(1-1x)÷221x xx-+的结果是( )A.x-1 B.11x-C.1xx-D.1xx-8.如图,点C是直线AB,DE之间的一点,∠ACD=90°,下列条件能使得AB∥DE的是()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°9.已知关于x的方程()2kx1k x10+--=,下列说法正确的是A.当k0=时,方程无解B.当k1=时,方程有一个实数解C.当k1=-时,方程有两个相等的实数解D.当k0≠时,方程总有两个不相等的实数解10.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-811.将不等式组2(23)3532x xx x-≤-⎧⎨+⎩>的解集在数轴上表示,下列表示中正确的是( )A.B.C.D.12.已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:2:3B.2:3:4 C.1:3:2 D.1:2:3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.使x2-有意义的x的取值范围是______.14.计算(5+3)(5-3)的结果等于________.15.小明为了统计自己家的月平均用电量,做了如下记录并制成了表格,通过计算分析小明得出一个结论:小明家的月平均用电量为330千瓦时.请判断小明得到的结论是否合理并且说明理由______.月份六月七月八月用电量(千瓦时)290 340 360月平均用电量(千瓦时)33016.若a、b为实数,且b=22117a aa-+-++4,则a+b=_____.17.一个正多边形的一个内角是它的一个外角的5倍,则这个多边形的边数是_______________18.已知b是a,c的比例中项,若a=4,c=16,则b=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某农场急需铵肥8吨,在该农场南北方向分别有一家化肥公司A、B,A公司有铵肥3吨,每吨售价750元;B公司有铵肥7吨,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输重量a(单位:吨)的关系如图所示.(1)根据图象求出b关于a的函数解析式(包括自变量的取值范围);(2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m千米,设农场从A 公司购买x吨铵肥,购买8吨铵肥的总费用为y元(总费用=购买铵肥费用+运输费用),求出y关于x的函数解析式(m为常数),并向农场建议总费用最低的购买方案.20.(6分)台州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:p=14t+16,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?21.(6分)随着高铁的建设,春运期间动车组发送旅客量越来越大,相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间的铁路发送旅客量情况进行了调查,过程如下.(Ⅰ)收集、整理数据请将表格补充完整:(Ⅱ)描述数据为了更直观地显示动车组发送旅客量占比的变化趋势,需要用什么图(回答“折线图”或“扇形图”)进行描述;(Ⅲ)分析数据、做出推测预估2019年春运期间动车组发送旅客量占比约为多少,说明你的预估理由.22.(8分)问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,2,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.23.(8分)如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C ,AF 与DE 交于点G ,求证:GE=GF .24.(10分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元.今年的总收入和总支出计划各是多少万元? 25.(10分)如图,已知抛物线y =ax 2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x 轴的另一个交点为C ,顶点为D ,连结CD .求该抛物线的表达式;点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为t .①当点P 在直线BC 的下方运动时,求△PBC 的面积的最大值;②该抛物线上是否存在点P ,使得∠PBC =∠BCD ?若存在,求出所有点P 的坐标;若不存在,请说明理由.26.(12分)如图,在正方形ABCD 中,点P 是对角线AC 上一个动点(不与点,A C 重合),连接PB 过点P 作PF PB ⊥,交直线DC 于点F .作PE AC ⊥交直线DC 于点E ,连接,AE BF .(1)由题意易知,ADC ABC ∆∆≌,观察图,请猜想另外两组全等的三角形∆ ∆≌ ;∆∆≌ ;(2)求证:四边形AEFB 是平行四边形;(3)已知22AB =,PFB ∆的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.27.(12分)先化简,再求值:(1﹣32x +)÷212x x -+,其中x 是不等式组20218x x ->⎧⎨+<⎩的整数解参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】试题解析:在菱形ABCD 中,6AC =,8BD =,所以4OA =,3OD =,在Rt AOD △中,5AD =, 因为11641222ABD S BD OA =⋅⋅=⨯⨯=V ,所以1122ABD S AB DH =⋅⋅=V ,则245DH =,在Rt BHD V 中,由勾股定理得,22222418655BH BD DH ⎛⎫=-=-= ⎪⎝⎭,由DOG DHB V V ∽可得,OG OD BH DH =,即3182455OG =,所以94OG =.故选B.2.C 【解析】 【分析】首先根据圆周角定理可知∠B=∠C ,再根据直径所得的圆周角是直角可得∠ADB=90°,然后根据三角形的内角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,从而得到结果. 【详解】解:∵AB 是O e 的直径, ∴∠ADB=90°.∴∠DAB+∠B=90°. ∵∠B=∠C , ∴∠DAB+∠C=90°. 故选C. 【点睛】本题考查了圆周角定理及其逆定理和三角形的内角和定理,掌握相关知识进行转化是解题的关键. 3.B 【解析】 【分析】利用平行线间的距离相等,可知点O 到BC 、AC 、AB 的距离相等,然后可作出判断. 【详解】解:如图1,过点O 作OD BC ⊥于D ,OE AC ⊥于E ,OF AB ⊥于F .图1//MN AB Q ,OD OE OF ∴==(夹在平行线间的距离相等).如图2:过点O 作OD BC '⊥于D ',作于E ,作OE AC '⊥于F '.由题意可知: OD OD '=,OE OE '=,OF OF '=, ∴OD =OE OF '''= ,∴图2中的点O 是三角形三个内角的平分线的交点,∴点O 是ABC ∆的内心,故选B. 【点睛】本题考查平行线间的距离,角平分线定理,三角形的内心,解题的关键是判断出OD OE OF ==. 4.A 【解析】 【分析】先根据正五边形的性质求出∠EAB 的度数,再由平行线的性质即可得出结论.【详解】解:∵图中是正五边形.∴∠EAB=108°.∵太阳光线互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故选A.【点睛】此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.5.D【解析】【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD 中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.6.C【解析】【分析】首先找出分式的最简公分母,进而去分母,再解分式方程即可.【详解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-23,检验:当x=-23时,(x+1)2≠0,故x=-23是原方程的根.故选C.【点睛】此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.7.B【解析】【分析】先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【详解】解:原式=(xx-1x)÷()2x1x-=x1x-•()2xx1-=1x1-,故选B.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.8.B【解析】【分析】延长AC交DE于点F,根据所给条件如果能推出∠α=∠1,则能使得AB∥DE,否则不能使得AB∥DE;【详解】延长AC交DE于点F.A. ∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B. ∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1, ∴不能使得AB ∥DE ; 故选B.【点睛】本题考查了平行线的判定方法:①两同位角相等,两直线平行; ②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行. 9.C 【解析】当k 0=时,方程为一元一次方程x 10-=有唯一解. 当k 0≠时,方程为一元二次方程,的情况由根的判别式确定: ∵()()()221k 4k 1k 1∆=--⋅⋅-=+,∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C . 10.D 【解析】试题分析:将x 与y 的值代入各项检验即可得到结果. 解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x ﹣4y=﹣1.故选D .点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值. 11.B 【解析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解:不等式可化为:11x x ≤⎧⎨>-⎩,即11x -<≤.∴在数轴上可表示为.故选B .“点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.12.D【解析】试题分析:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,则OD:OC=1:2,因而OD:OC:AD=1:2:1,所以内切圆半径,外接圆半径和高的比是1:2:1.故选D.考点:正多边形和圆.二、填空题:(本大题共6个小题,每小题4分,共24分.)≥13.x2【解析】二次根式有意义的条件.x2--≥⇒≥.x20x214.2【解析】【分析】利用平方差公式进行计算即可得.【详解】原式=(22-53=5-3=2,故答案为:2.【点睛】本题考查了二次根式的混合运算,掌握平方差公式结构特征是解本题的关键.15.不合理,样本数据不具有代表性【解析】【分析】根据表中所取的样本不具有代表性即可得到结论.【详解】不合理,样本数据不具有代表性(例:夏季高峰用电量大不能代表年平均用电量).故答案为:不合理,样本数据不具有代表性(例:夏季高峰用电量大不能代表年平均用电量).本题考查了统计表,认真分析表中数据是解题的关键. 16.5或1 【解析】 【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案. 【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4, 当a =1时,a+b =1+4=5, 当a =﹣1时,a+b =﹣1+4=1, 故答案为5或1. 【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负. 17.1 【解析】 【分析】设这个正多边的外角为x°,则内角为5x°,根据内角和外角互补可得x+5x=180,解可得x 的值,再利用外角和360°÷外角度数可得边数. 【详解】设这个正多边的外角为x°,由题意得: x+5x=180, 解得:x=30, 360°÷30°=1. 故答案为:1. 【点睛】此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数. 18.±8 【解析】根据比例中项的定义即可求解. 【详解】∵b 是a ,c 的比例中项,若a=4,c=16, ∴b 2=ac=4×16=64, ∴b=±8, 故答案为±8 【点睛】此题考查了比例中项的定义,如果作为比例线段的内项是两条相同的线段,即a ∶b=b ∶c 或=a bb c,那么线段b 叫做线段a 、c 的比例中项.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)b =3a 0a 45a-84a ≤⎧⎨≤⎩(<)();(2)详见解析.【解析】 【分析】(1)分别设两段函数图象的解析式,代入图象上点的坐标求解即可;(2)先求出农场从A 、B 公司购买铵肥的费用,再求出农场从A 、B 公司购买铵肥的运输费用,两者之和即为总费用,可以求出总费用关于x 的解析式是一次函数,根据m 的取值范围不同分两类讨论,可得出结论. 【详解】(1)有图象可得,函数图象分为两部分,设第一段函数图象为y =k 1x ,代入点(4,12),即12=k 1×4,可得k 1=3,设第二段函数图象为y =k 2x +c ,代入点(4,12)、(8,32)可列出二元一次方程组224k +c=128k +c=32⎧⎨⎩,解得:k 2=5,c =-8,所以函数解析式为:b =3a 0a 45a-84a ≤⎧⎨≤⎩(<)();(2)农场从A 公司购买铵肥的费用为750x 元,因为B 公司有铵肥7吨,1≤x≤3,故农场从B 公司购买铵肥的重量(8-x )肯定大于5吨,农场从B 公司购买铵肥的费用为700(8-x )元,所以购买铵肥的总费用=750x +700(8-x )=50x +5600(0≤x≤3);农场从A 公司购买铵肥的运输费用为3xm 元,且满足1≤x≤3,农场从B 公司购买铵肥的运输费用为[5(8-x )-8]×2m 元,所以购买铵肥的总运输费用为3xm +[5(8-x )-8]×2m =-7mx +64m 元,因此农场购买铵肥的总费用y =50x +5600-7mx +64m =(50-7m )x +5600+64m (1≤x≤3),分一下两种情况进行讨论; ①当50-7m≥0即m≤507时,y 随x 的增加而增加,则x =1使得y 取得最小值即总费用最低,此时农场铵肥的购买方案为:从A 公司购买1吨,从B 公司购买7吨,②当50-7m <0即m >507时,y 随x 的增加而减少,则x =3使得y 取得最小值即总费用最低,此时农场铵肥的购买方案为:从A 公司购买3吨,从B 公司购买5吨. 【点睛】本题主要考查了方案比较以及函数解析式的求解,解本题的要点在于根据题意列出相关方程式.20. (1)y=﹣2t+200(1≤t≤80,t 为整数); (2)第30天的日销售利润最大,最大利润为2450元;(3)共有21天符合条件. 【解析】 【分析】(1)根据函数图象,设解析式为y=kt+b ,将(1,198)、(80,40)代入,利用待定系数法求解可得; (2)设日销售利润为w ,根据“总利润=每千克利润×销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;(3)求出w=2400时t 的值,结合函数图象即可得出答案; 【详解】(1)设解析式为y=kt+b ,将(1,198)、(80,40)代入,得:1988040k b k b +=⎧⎨+=⎩ ,解得:2200k b =-⎧⎨=⎩,∴y=﹣2t+200(1≤t≤80,t 为整数); (2)设日销售利润为w ,则w=(p ﹣6)y , 当1≤t≤80时,w=(14t+16﹣6)(﹣2t+200)=﹣12(t ﹣30)2+2450, ∴当t=30时,w 最大=2450;∴第30天的日销售利润最大,最大利润为2450元. (3)由(2)得:当1≤t≤80时,w=﹣12(t ﹣30)2+2450, 令w=2400,即﹣12(t ﹣30)2+2450=2400,解得:t 1=20、t 2=40, ∴t 的取值范围是20≤t≤40, ∴共有21天符合条件. 【点睛】本题考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象解不等式及二次函数的图象与性质是解题关键.21.(Ⅰ)见表格;(Ⅱ)折线图;(Ⅲ)60%、之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019 年增加的百分比接近3%.【解析】【分析】(Ⅰ)根据百分比的意义解答可得;(Ⅱ)根据折线图和扇形图的特点选择即可得;(Ⅲ)根据之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019 年增加的百分比接近3% .【详解】(Ⅰ)年份2014 2015 2016 2017 2018动车组发送旅客量a 亿人次0.87 1.14 1.46 1.80 2.17铁路发送旅客总量b 亿人次 2.52 2.76 3.07 3.42 3.82动车组发送旅客量占比× 100 34.5 % 41.3 % 47.6 % 52.6 % 56.8 %(Ⅱ)为了更直观地显示动车组发送旅客量占比的变化趋势,需要用折线图进行描述,故答案为折线图;(Ⅲ)预估2019 年春运期间动车组发送旅客量占比约为60%,预估理由是之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019 年增加的百分比接近3%.【点睛】本题考查了统计图的选择,根据统计图的特点正确选择统计图是解题的关键.22.(1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为26.【解析】【分析】(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.【详解】(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为:BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质. 23.证明见解析. 【解析】【分析】求出BF=CE ,根据SAS 推出△ABF ≌△DCE ,得对应角相等,由等腰三角形的判定可得结论. 【详解】∵BE=CF ,∴BE+EF=CF+EF , ∴BF=CE ,在△ABF 和△DCE 中AB DCB C BF CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△DCE (SAS ), ∴∠GEF=∠GFE , ∴EG=FG .【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.24.今年的总收入为220万元,总支出为1万元. 【解析】试题分析:设去年总收入为x 万元,总支出为y 万元,根据利润=收入-支出即可得出关于x 、y 的二元一次方程组,解之即可得出结论. 试题解析:设去年的总收入为x 万元,总支出为y 万元.根据题意,得()()50110%120%100x y x y -=⎧⎨+--=⎩,解这个方程组,得200150 xy=⎧⎨=⎩,∴(1+10%)x=220,(1-20%)y=1.答:今年的总收入为220万元,总支出为1万元.25.(1)y=x2+6x+5;(2)①S△PBC的最大值为278;②存在,点P的坐标为P(﹣32,﹣74)或(0,5).【解析】【分析】(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣52,﹣32),过该点与BC垂直的直线的k值为﹣1,求出直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD 的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=12x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣32,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.【详解】解:(1)将点A、B坐标代入二次函数表达式得:25550 16453a ba b-+=⎧⎨-+=-⎩,解得:16 ab=⎧⎨=⎩,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=12PG(x C﹣x B)=32(t+1﹣t2﹣6t﹣5)=﹣32t2﹣152t﹣6,∵-32<0,∴S△PBC有最大值,当t=﹣52时,其最大值为278;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣52,﹣32),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣52,﹣32)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=12x﹣1…⑤,联立①⑤并解得:x=﹣32或﹣4(舍去﹣4),故点P(﹣32,﹣74);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5); 故点P 的坐标为P(﹣32,﹣74)或(0,5). 【点睛】本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键. 26.(1),,,PEF PCB ADE BCF ;(2)见解析;(3)存在,2 【解析】 【分析】(1)利用正方形的性质及全等三角形的判定方法证明全等即可;(2)由(1)可知PEF PCB ∆∆≌,则有EF BC =,从而得到AB EF =,最后利用一组对边平行且相等即可证明;(3)由(1)可知PEF PCB ∆∆≌,则PF PB =,从而得到PBF ∆是等腰直角三角形,则当PB 最短时,PBF ∆的面积最小,再根据AB 的值求出PB 的最小值即可得出答案.【详解】解:(1)Q 四边形ABCD 是正方形,,45AD DC BC ACD ACB ︒∴==∠=∠=,,PE AC PB PF ⊥⊥Q , 90EPC BPF ︒∴∠=∠=,,45EPF CPB PEC PCE ︒∴∠=∠∠=∠=,PE PC ∴=,在PEF ∆和PCB ∆中,PEF BCPPE PCEPF CPB ∠=∠⎧⎪=⎨⎪∠=∠⎩()PEF PCB ASA ∴∆∆≌EF BC DC ∴==DE CF ∴=在ADE ∆和BCF ∆中,90AD BC D BCF DE CF ︒=⎧⎪∠=∠=⎨⎪=⎩, ()ADE BCF SAS ∴∆∆≌故答案为,,,PEF PCB ADE BCF ;(2)证明:由(1)可知PEF PCB ∆∆≌,EF BC ∴=,AB BC =QAB EF ∴=//AB EF Q∴四边形AEFB 是平行四边形.(3)解:存在,理由如下:PEF PCB ∆∆Q ≌PF PB ∴=90BPF ︒∠=QPBF ∆∴是等腰直角三角形,PB ∴最短时,PBF ∆的面积最小,∴当PB AC ⊥时,PB 最短,此时2cos 452222PB AB =⋅︒=⨯=, PBF ∆∴的面积最小为12222⨯⨯=. 【点睛】本题主要考查全等三角形的判定及性质,平行四边形的判定,掌握全等三角形的判定方法和平行四边形的判定方法是解题的关键.27.x=3时,原式=14【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,求出不等式组的解集,找出解集中的整数计算得出到x 的值,代入计算即可求出值.【详解】解:原式=÷ =× =, 解不等式组得,2<x <,∵x取整数,∴x=3,当x=3时,原式=14.【点睛】本题主要考查分式额化简求值及一元一次不等式组的整数解.。

【附5套中考模拟试卷】江西省上饶市2019-2020学年中考数学模拟试题含解析

【附5套中考模拟试卷】江西省上饶市2019-2020学年中考数学模拟试题含解析
江西省上饶市2019-2020学年中考数学模拟试题
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在△ABC中,AB=5,AC=4,∠A=60°,若边AC的垂直平分线DE交AB于点D,连接CD,则△BDC的周长为( )
A.8B.9C.5+ D.5+
19.(6分)在Rt△ABC中,∠BAC= ,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
求证:△AEF≌△DEB;证明四边形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD的面积.
20.(6分)如图,直线y= x与双曲线y= (k>0,x>0)交于点A,将直线y= x向上平移4个单位长度后,与y轴交于点C,与双曲线y= (k>0,x>0)交于点B.
A. B. C. D.
4.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()
A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)
A.0个B.1个C.2个D.3个
8.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是()
A. B. C. D.
9.某校九年级(1)班全体学生实验考试的成绩统计如下表:
成绩(分)
24
25
ห้องสมุดไป่ตู้26
27
28
29
30
人数(人)
2
5
6
6
8
7
6

江西省上饶市2019-2020学年中考数学考前模拟卷(4)含解析

江西省上饶市2019-2020学年中考数学考前模拟卷(4)含解析

江西省上饶市2019-2020学年中考数学考前模拟卷(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若关于x 的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a 的值为( ) A .1-B .1C .22-或D .31-或2.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°3.如图,在△ABC 中,点D 在BC 上,DE ∥AC ,DF ∥AB ,下列四个判断中不正确的是( )A .四边形AEDF 是平行四边形B .若∠BAC =90°,则四边形AEDF 是矩形 C .若AD 平分∠BAC ,则四边形AEDF 是矩形 D .若AD ⊥BC 且AB =AC ,则四边形AEDF 是菱形4.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示: 成绩()m 1.50 1.60 1.65 1.70 1.75 1.80人数12 4 33 2这些运动员跳高成绩的中位数是( ) A .1.65mB .1.675mC .1.70mD .1.75m5.如图,在平面直角坐标系中,ABC ∆位于第二象限,点A 的坐标是(2,3)-,先把ABC ∆向右平移3个单位长度得到111A B C ∆,再把111A B C ∆绕点1C 顺时针旋转90︒得到221A B C ∆,则点A 的对应点2A 的坐标是( )A .(2,2)-B .(6,0)-C .(0,0)D .(4,2)6.在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是( ) 年龄 13 14 15 25 28 30 35 其他 人数3053317 12209 23A .平均数B .众数C .方差D .标准差7.中华人民共和国国家统计局网站公布,2016年国内生产总值约为74300亿元,将74300亿用科学计数法可以表示为( ) A .1074310⨯B .1174.310⨯C .107.4310⨯D .127.4310⨯8.下列图形中,不是轴对称图形的是( )A .B .C .D .9.如图,在平行四边形ABCD 中,AE :EB=1:2,E 为AB 上一点,AC 与DE 相交于点F , S △AEF =3,则S △FCD 为( )A .6B .9C .12D .2710.现有三张背面完全相同的卡片,正面分别标有数字﹣1,﹣2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是( ) A .12B .59C .49D .2311.下列式子一定成立的是( ) A .2a+3a=6aB .x 8÷x 2=x 4C.121aa=D.(﹣a﹣2)3=﹣61a12.已知△ABC,D是AC上一点,尺规在AB上确定一点E,使△ADE∽△ABC,则符合要求的作图痕迹是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,Rt△ABC的直角边BC在x轴上,直线y=23x﹣23经过直角顶点B,且平分△ABC的面积,BC=3,点A在反比例函数y=kx图象上,则k=_______.14.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的四边形,AB∥CD,CD⊥BC于C,且AB、BC、CD边长分别为2,4,3,则原直角三角形纸片的斜边长是_______.15.如图,边长为6的菱形ABCD中,AC是其对角线,∠B=60°,点P在CD上,CP=2,点M在AD 上,点N在AC上,则△PMN的周长的最小值为_____________ .16.当x=_____时,分式22xx--值为零.17.小青在八年级上学期的数学成绩如下表所示.平时测验期中考试期末考试成绩86 90 81如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是_____分.18.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E 在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A(-1,0),点B(3,0),与y轴交于点C,线段BC与抛物线的对称轴交于点E、P为线段BC上的一点(不与点B、C重合),过点P作PF∥y轴交抛物线于点F,连结DF.设点P的横坐标为m.(1)求此抛物线所对应的函数表达式.(2)求PF的长度,用含m的代数式表示.(3)当四边形PEDF为平行四边形时,求m的值.20.(6分)为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB由西向东行驶.在A处测得岸边一建筑物P在北偏东30°方向上,继续行驶40秒到达B处时,测得建筑物P在北偏西60°方向上,如图所示,求建筑物P到赛道AB 的距离(结果保留根号).21.(6分)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级(2)班参加球类活动人数情况统计表项目篮球足球乒乓球排球羽毛球人数 a 6 5 7 6八年级(2)班学生参加球类活动人数情况扇形统计图根据图中提供的信息,解答下列问题:a=,b=.该校八年级学生共有600人,则该年级参加足球活动的人数约人;该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.22.(8分)如图,在平面直角坐标系中,抛物线y=﹣12x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=32交x轴于点D.(1)求抛物线的解析式;(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E 运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.23.(8分)近年来,新能源汽车以其舒适环保、节能经济的优势受到热捧,随之而来的就是新能汽车销量的急速增加,当前市场上新能漂汽车从动力上分纯电动和混合动力两种,从用途上又分为乘用式和商用式两种,据中国汽车工业协会提供的信息,2017年全年新能源乘用车的累计销量为57.9万辆,其中,纯电动乘用车销量为46.8万辆,混合动力乘用车销量为11.1万辆;2017年全年新能源商用车的累计销量为19.8万辆,其中,纯电动商用车销量为18.4万辆,混合动力商用车销量为1.4万辆,请根据以上材料解答下列问题:(1)请用统计表表示我国2017年新能源汽车各类车型销量情况;(2)小颖根据上述信息,计算出2017年我国新能源各类车型总销量为77.7万辆,并绘制了“2017年我国新能源汽车四类车型销量比例”的扇形统计图,如图1,请你将该图补充完整(其中的百分数精确到0.1%);(3)2017年我国新能源乘用车销量最高的十个城市排名情况如图2,请根据图2中信息写出这些城市新能源乘用车销售情况的特点(写出一条即可);(4)数据显示,2018年1~3月的新能源乘用车总销量排行榜上位居前四的厂家是比亚迪、北汽、上汽、江准,参加社会实践的大学生小王想对其中两个厂家进行深入调研,他将四个完全相同的乒乓球进行编号(用“1,2,3,4”依次对应上述四个厂家),并将乒乓球放入不透明的袋子中搅匀,从中一次拿出两个乒乓球,根据乒乓球上的编号决定要调研的厂家.求小王恰好调研“比亚迪”和“江淮”这两个厂家的概率.24.(10分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;并计算两辆汽车都不直行的概率.(2)求至少有一辆汽车向左转的概率.25.(10分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.若前四局双方战成2:2,那么甲队最终获胜的概率是__________;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?26.(12分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m = ,n = ;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?27.(12分)如图,一棵大树在一次强台风中折断倒下,未折断树杆AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树杆AB 形成53︒的夹角.树杆AB 旁有一座与地面垂直的铁塔DE ,测得6BE =米,塔高9DE =米.在某一时刻的太阳照射下,未折断树杆AB 落在地面的影子FB 长为4米,且点F 、B 、C 、E 在同一条直线上,点F 、A 、D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1,参考数据:sin530.7986︒≈,cos530.6018︒≈,tan53 1.3270︒≈).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a 的方程,解方程即可得. 【详解】x(x+1)+ax=0,x 2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0, 解得:a 1=a 2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2.A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.3.C【解析】A选项,∵在△ABC中,点D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四边形AEDF是平行四边形;即A正确;B选项,∵四边形AEDF是平行四边形,∠BAC=90°,∴四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.4.C【解析】【分析】根据中位数的定义解答即可.【详解】解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1.所以这些运动员跳高成绩的中位数是1.1.故选:C.【点睛】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.D【解析】【分析】根据要求画出图形,即可解决问题.【详解】解:根据题意,作出图形,如图:观察图象可知:A2(4,2);故选:D.【点睛】本题考查平移变换,旋转变换等知识,解题的关键是正确画出图象,属于中考常考题型.6.B【解析】分析:根据平均数的意义,众数的意义,方差的意义进行选择.详解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数.故选B.点睛:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数. 【详解】解:74300亿=7.43×1012, 故选:D . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 8.A 【解析】 【分析】观察四个选项图形,根据轴对称图形的概念即可得出结论. 【详解】根据轴对称图形的概念,可知:选项A 中的图形不是轴对称图形. 故选A . 【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合. 9.D 【解析】 【分析】先根据AE :EB=1:2得出AE :CD=1:3,再由相似三角形的判定定理得出△AEF ∽△CDF ,由相似三角形的性质即可得出结论. 【详解】解:∵四边形ABCD 是平行四边形,AE :EB=1:2, ∴AE :CD=1:3, ∵AB ∥CD , ∴∠EAF=∠DCF , ∵∠DFC=∠AFE , ∴△AEF ∽△CDF , ∵S △AEF =3,∴AEF FCD S S V V =3FCD S V =(13)2, 解得S △FCD =1. 故选D.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键. 10.D【解析】【分析】先找出全部两张卡片正面数字之和情况的总数,再先找出全部两张卡片正面数字之和为正数情况的总数,两者的比值即为所求概率.【详解】任取两张卡片,数字之和一共有﹣3、2、1三种情况,其中和为正数的有2、1两种情况,所以这两张卡片正面数字之和为正数的概率是23.故选D. 【点睛】本题主要考查概率的求法,熟练掌握概率的求法是解题的关键.11.D【解析】【分析】根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可.【详解】解:A :2a+3a=(2+3)a=5a ,故A 错误;B :x 8÷x 2=x 8-2=x 6,故B 错误;C :12a a C 错误;D :(-a -2)3=-a -6=-61a ,故D 正确. 故选D.【点睛】本题考查了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现.12.A【解析】【分析】以DA 为边、点D 为顶点在△ABC 内部作一个角等于∠B ,角的另一边与AB 的交点即为所求作的点.【详解】如图,点E 即为所求作的点.故选:A .【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】分析:根据题意得出点B的坐标,根据面积平分得出点D的坐标,利用三角形相似可得点A的坐标,从而求出k的值.详解:根据一次函数可得:点B的坐标为(1,0),∵BD平分△ABC的面积,BC=3∴点D的横坐标1.5,∴点D的坐标为512⎛⎫⎪⎝⎭,,∵DE:AB=1:1,∴点A的坐标为(1,1),∴k=1×1=1.点睛:本题主要考查的是反比例函数的性质以及三角形相似的应用,属于中等难度的题型.得出点D的坐标是解决这个问题的关键.14.4或1【解析】【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【详解】①如图:因为AC==2,点A是斜边EF的中点,所以EF=2AC=4,②如图:因为BD==5,点D 是斜边EF 的中点,所以EF=2BD=1,综上所述,原直角三角形纸片的斜边长是4或1,故答案是:4或1. 【点睛】 此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.15.21【解析】【分析】过P 作关于AC 和AD 的对称点,连接1P 和2P ,过P 作2P C BC ⊥, 1P 和2P ,M ,N 共线时最短,根据对称性得知△PMN 的周长的最小值为12PP .因为四边形ABCD 是菱形,AD 是对角线,可以求得60DCF ∠=︒,根据特殊三角形函数值求得1,3CF PF ==3PE =再根据线段相加勾股定理即可求解.【详解】过P 作关于AC 和AD 的对称点,连接1P 和2P ,过P 作2P C BC ⊥,Q 四边形ABCD 是菱形,AD 是对角线,60B BAC BCA DCA DAC D ︒∴∠=∠=∠=∠=∠=∠=,180BCD DCF ∠+∠=︒Q ,18012060DCF ∴∠=︒-︒=︒,cos60sin 60CF PF CP CP=︒=︒Q , 1,3CF PF ∴==4PD CD CP =-=Q ,sin 60PE PD=︒ 23PE ∴= 又由题意得222,43PE P E P P PE P E ==+=2253FP FP PP ∴=+=113PF PC CF =+=Q ()()221212221PP FP FP ∴=+=【点睛】 本题主要考查对称性质,菱形性质,内角和定理和勾股定理,熟悉掌握定理是关键.16.﹣1.【解析】试题解析:分式22x x --的值为0,则:2020.x x ⎧-=⎨-≠⎩解得: 2.x =-故答案为 2.-17.84.2【解析】小青该学期的总评成绩为:86×10%+90×30%+81×60%=84.2(分),故答案为: 84.2. 18.4π﹣1 【解析】分析:连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解.详解:连接OC ∵在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是»AB 的中点,∴∠COD=45°,∴22,∴阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积=22451(42)43602π⨯⨯-⨯=4π-1. 故答案是:4π-1.点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=-x 2+2x+1;(2)-m 2+1m .(1)2.【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据自变量与函数值的对应关系,可得C 点坐标,根据平行于y 轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得答案;(1)根据自变量与函数值的对应关系,可得F 点坐标,根据平行于y 轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得DE 的长,根据平行四边形的对边相等,可得关于m 的方程,根据解方程,可得m 的值.【详解】解:(1)∵点A (-1,0),点B (1,0)在抛物线y=-x 2+bx+c 上,∴10{930b c b c -++=-++=,解得23b c =⎧⎨=⎩, 此抛物线所对应的函数表达式y=-x 2+2x+1;(2)∵此抛物线所对应的函数表达式y=-x 2+2x+1,∴C (0,1).设BC 所在的直线的函数解析式为y=kx+b ,将B 、C 点的坐标代入函数解析式,得303k b b +=⎧⎨=⎩,解得1{3k b =-=, 即BC 的函数解析式为y=-x+1.由P 在BC 上,F 在抛物线上,得P (m ,-m+1),F (m ,-m 2+2m+1).PF=-m 2+2m+1-(-m+1)=-m 2+1m .(1)如图,∵此抛物线所对应的函数表达式y=-x 2+2x+1,∴D (1,4).∵线段BC 与抛物线的对称轴交于点E ,当x=1时,y=-x+1=2,∴E (1,2),∴DE=4-2=2.由四边形PEDF 为平行四边形,得PF=DE ,即-m 2+1m=2,解得m 1=1,m 2=2.当m=1时,线段PF 与DE 重合,m=1(不符合题意,舍).当m=2时,四边形PEDF 为平行四边形.考点:二次函数综合题.20.1003米.【解析】【分析】如图,作PC⊥AB于C,构造出Rt△PAC与Rt△PBC,求出AB的长度,利用特殊角的三角函数值进行求解即可得.【详解】如图,过P点作PC⊥AB于C,由题意可知:∠PAC=60°,∠PBC=30°,在Rt△PAC中,tan∠PAC=PCAC,∴AC=3PC,在Rt△PBC中,tan∠PBC=PCBC,∴BC=3PC,∵AB=AC+BC=3PC+3PC=10×40=400,∴PC=1003,答:建筑物P到赛道AB的距离为1003米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形,利用特殊角的三角函数值进行解答是关键.21.(1)a=16,b=17.5(2)90(3)3 5【解析】试题分析:(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解.试题解析:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案为90;(3)如图,∵共有20种等可能的结果,两名主持人恰为一男一女的有12种情况,∴则P(恰好选到一男一女)=1220=35.考点:列表法与树状图法;用样本估计总体;扇形统计图.22.(1)213222y x x =-++ ;(1)132 ,E (1,1);(3)存在,P 点坐标可以为(,5)或(3,5).【解析】【分析】(1)设B (x 1,5),由已知条件得21322x -+= ,进而得到B (2,5).又由对称轴2b a -⨯求得b .最终得到抛物线解析式.(1)先求出直线BC 的解析式,再设E (m ,=﹣12m+1.),F (m ,﹣12m 1+32m+1.) 求得FE 的值,得到S △CBF ﹣m 1+2m .又由S 四边形CDBF =S △CBF +S △CDB ,得S 四边形CDBF 最大值, 最终得到E 点坐标.(3)设N 点为(n ,﹣12n 1+32n+1),1<n <2.过N 作NO ⊥x 轴于点P ,得PG =n ﹣1. 又由直角三角形的判定,得△ABC 为直角三角形,由△ABC ∽△GNP , 得n =或n =1(舍去),求得P 点坐标.又由△ABC ∽△GNP ,且OC PG OB NP =时, 得n =3或n =﹣2(舍去).求得P 点坐标.【详解】解:(1)设B (x 1,5).由A (﹣1,5),对称轴直线x =32. ∴21322x -+= 解得,x 1=2.∴B (2,5). 又∵3122()2b-=⨯-∴b =32. ∴抛物线解析式为y =213222x x -++ , (1)如图1,∵B(2,5),C(5,1).∴直线BC的解析式为y=﹣12x+1.由E在直线BC上,则设E(m,=﹣12m+1.),F(m,﹣12m1+32m+1.)∴FE=﹣12m1+32m+1﹣(﹣12n+1)=﹣12m1+1m.由S△CBF=12 EF•OB,∴S△CBF=12(﹣12m1+1m)×2=﹣m1+2m.又∵S△CDB=12BD•OC=12×(2﹣32)×1=52∴S四边形CDBF=S△CBF+S△CDB═﹣m1+2m+52.化为顶点式得,S四边形CDBF=﹣(m﹣1)1+132.当m=1时,S四边形CDBF最大,为132.此时,E点坐标为(1,1).(3)存在.如图1,由线段FG绕点G顺时针旋转一个角α(5°<α<95°),设N(n,﹣12n1+32n+1),1<n<2.过N作NO⊥x轴于点P(n,5).∴NP =﹣12n 1+32n+1,PG =n ﹣1. 又∵在Rt △AOC 中,AC 1=OA 1+OC 1=1+2=5,在Rt △BOC 中,BC 1=OB 1+OC 1=16+2=15. AB 1=51=15.∴AC 1+BC 1=AB 1.∴△ABC 为直角三角形.当△ABC ∽△GNP ,且OC NP OB PG=时, 即,213222242n n n -++=- 整理得,n 1﹣1n ﹣6=5.解得,n =或n =1(舍去).此时P 点坐标为(,5).当△ABC ∽△GNP ,且OC PG OB NP=时, 即,222134222n n n -=-++ 整理得,n 1+n ﹣11=5.解得,n =3或n =﹣2(舍去).此时P 点坐标为(3,5).综上所述,满足题意的P 点坐标可以为,(,5),(3,5).【点睛】本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.23.(1)统计表见解析;(2)补全图形见解析;(3)总销量越高,其个人购买量越大;(4)16. 【解析】【分析】(1)认真读题,找到题目中的相关信息量,列表统计即可;(2)分别求出“混动乘用”和“纯电动商用”的圆心角的度数,然后补扇形图即可;(3)根据图表信息写出一个符合条件的信息即可;(4)利用树状图确定求解概率.【详解】(1)统计表如下:2017年新能源汽车各类型车型销量情况(单位:万辆)类型纯电动混合动力总计新能源乘用车46.8 11.1 57.9 新能源商用车18.4 1.4 19.8 (2)混动乘用:×100%≈14.3%,14.3%×360°≈51.5°,纯电动商用:×100%≈23.7%,23.7%×360°≈85.3°,补全图形如下:(3)总销量越高,其个人购买量越大.(4)画树状图如下:∵一共有12种等可能的情况数,其中抽中1、4的情况有2种,∴小王恰好调研“比亚迪”和“江淮”这两个厂家的概率为=.【点睛】此题主要考查了数据的分析,利用统计表和扇形统计图表示数据的关系,以及用列表法或树状图法求概率,难度一般,注意认真阅读题目信息是关键.24.(1)49;(2)59.【解析】【分析】(1)可以采用列表法或树状图求解.可以得到一共有9种情况,从中找到两辆汽车都不直行的结果数,根据概率公式计算可得;(2)根据树状图得出至少有一辆汽车向左转的结果数,根据概率公式可得答案.【详解】(1)画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:∴这两辆汽车行驶方向共有9种可能的结果,其中两辆汽车都不直行的有4种结果,所以两辆汽车都不直行的概率为49;(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P(至少有一辆汽车向左转)=59.【点睛】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.25.(1)12;(2)78【解析】分析:(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.详解:(1)甲队最终获胜的概率是12;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=78.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.26.(1)100,35;(2)补全图形,如图;(3)800人【解析】【分析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.【详解】解:(1)∵被调查总人数为m=10÷10%=100人,∴用支付宝人数所占百分比n%=30100%30% 100⨯=,∴m=100,n=35.(2)网购人数为100×15%=15人,微信人数所占百分比为40100%40% 100⨯=,补全图形如图:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.【点睛】本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.27.9.6米.【解析】试题分析:要求这棵大树没有折断前的高度,只要求出AB和AC的长度即可,根据题目中的条件可以求得AB和AC的长度,即可得到结论.试题解析:解:∵AB⊥EF,DE⊥EF,∴∠ABC=90°,AB∥DE,∴△FAB∽△FDE,∴AB FB DE FE=,∵FB=4米,BE=6米,DE=9米,∴4946AB=+,得AB=3.6米,∵∠ABC=90°,∠BAC=53°,cos∠BAC=ABAC,∴AC=cosABBAC∠=3.60.6=6米,∴AB+AC=3.6+6=9.6米,即这棵大树没有折断前的高度是9.6米.点睛:本题考查直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答.。

江西省上饶市2019-2020学年中考数学学业水平测试试题

江西省上饶市2019-2020学年中考数学学业水平测试试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是( ) A .∠1=50°,∠1=40° B .∠1=40°,∠1=50° C .∠1=30°,∠1=60°D .∠1=∠1=45°2.如图,在平面直角坐标系中,△OAB 的顶点A 在x 轴正半轴上,OC 是△OAB 的中线,点B 、C 在反比例函数y=2x(x >0)的图象上,则△OAB 的面积等于( )A .2B .3C . 4D .63.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是 ( )A .平均数B .中位数C .众数D .方差4.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为()A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元 5.已知a ,b ,c 在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是( )A .4b+2cB .0C .2cD .2a+2c6.关于二次函数2241y x x =+-,下列说法正确的是( ) A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-37.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=25°,则∠2的度数是( )A.25°B.30°C.35°D.55°8.若关于x的一元二次方程2210-++=有两个不相等的实数根,则一次函数x x kb=+的图象可能是:y kx bA.B.C.D.9.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确10.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.6cm C.2.5cm D.5cm二、填空题(本题包括8个小题)11.若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是_____.12.若关于x的方程111m xx x----=0有增根,则m的值是______.13.,A B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地.甲、乙两车相距的路程y (千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有____________千米.14.分解因式:xy2﹣2xy+x=_____.15.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.16.关于x的一元二次方程2210ax x-+=有实数根,则a的取值范围是__________.17.关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根,则m的取值范围是_____.18.有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得a bc c=;④由23a bc c=,得3a=2b;⑤由a2=b2,得a=b.其中正确的是_____.三、解答题(本题包括8个小题)19.(6分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图: 运动项目 频数(人数) 羽毛球 30篮球乒乓球 36 排球 足球12请根据以上图表信息解答下列问题:频数分布表中的 , ;在扇形统计图中,“排球”所在的扇形的圆心角为 度;全校有多少名学生选择参加乒乓球运动?20.(6分)如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角30α=︒,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角60β=︒,求树高AB(结果保留根号).21.(6分)为了了解某校学生对以下四个电视节目:A 《最强大脑》,B 《中国诗词大会》,C 《朗读者》,D 《出彩中国人》的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图. 请你根据图中所提供的信息,完成下列问题:本次调查的学生人数为________;在扇形统计图中,A 部分所占圆心角的度数为________;请将条形统计图补充完整:若该校共有3000名学生,估计该校最喜爱《中国诗词大会》的学生有多少名?22.(8分)阅读材料:已知点00(,)P x y 和直线y kx b =+,则点P 到直线y kx b =+的距离d 可用公式0021kx y b d k-+=+.例如:求点(2,1)P -到直线1y x =+的距离.解:因为直线1y x =+可变形为10x y -+=,其中1,1k b ==,所以点(2,1)P -到直线1y x =+的距离为:00221(2)1122111kx y b d k -+⨯--+====++根据以上材料,求:点(1,1)P 到直线32y x =-的距离,并说明点P 与直线的位置关系;已知直线1y x =-+与3y x =-+平行,求这两条直线的距离. 23.(8分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x (元),每日销售量y (件)每日的利润w (元).在试销过程中,每日销售量y (件)、每日的利润w (元)与销售单价x (元)之间存在一定的关系,其几组对应量如下表所示: (元) 19 20 21 30 (件)62605840(1)根据表中数据的规律,分别写出毎日销售量y (件),每日的利润w (元)关于销售单价x (元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元? 24.(10分)观察下列等式:第1个等式:1111a 11323==⨯-⨯(); 第2个等式:21111a 35235==⨯-⨯(); 第3个等式:31111a 57257==⨯-⨯(); 第4个等式:41111a 79279==⨯-⨯(); …请解答下列问题:按以上规律列出第5个等式:a 5= = ;用含有n 的代数式表示第n 个等式:a n = = (n 为正整数);求a 1+a 2+a 3+a 4+…+a 100的值.25.(10分)在直角坐标系中,过原点O 及点A (8,0),C (0,6)作矩形OABC 、连结OB ,点D 为OB 的中点,点E 是线段AB 上的动点,连结DE ,作DF ⊥DE ,交OA 于点F ,连结EF .已知点E 从A 点出发,以每秒1个单位长度的速度在线段AB 上移动,设移动时间为t 秒.如图1,当t=3时,求DF 的长.如图2,当点E 在线段AB 上移动的过程中,∠DEF 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan ∠DEF 的值.连结AD ,当AD 将△DEF 分成的两部分的面积之比为1:2时,求相应的t 的值. 26.(12分)如图所示,在Rt ABC △中,90ACB ∠=︒,用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹)连接AP 当B 为多少度时,AP 平分CAB ∠.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.D 【解析】 【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子. 【详解】“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题为∠1=∠1=45°. 故选:D . 【点睛】考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键. 2.B 【解析】 【详解】作BD ⊥x 轴于D ,CE ⊥x 轴于E ,∴BD ∥CE , ∴CE AE ACBD AD AB ==, ∵OC 是△OAB 的中线, ∴12CE AE AC BD AD AB ===, 设CE=x ,则BD=2x ,∴C 的横坐标为2x,B 的横坐标为1x ,∴OD=1x ,OE=2x,∴DE=OE-OD=2x ﹣1x =1x ,∴AE=DE=1x,∴OA=OE+AE=213x x x +=,∴S △OAB =12OA•BD=12×32x x⨯=1.故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.3.D【解析】【分析】根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.故选D.【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.4.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.A【解析】由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a−2b>0,c+2b<0,则原式=a+c−a+2b+c+2b=4b +2c.故选:B.点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键. 6.D 【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题. 详解:∵y=2x 2+4x-1=2(x+1)2-3, ∴当x=0时,y=-1,故选项A 错误,该函数的对称轴是直线x=-1,故选项B 错误, 当x <-1时,y 随x 的增大而减小,故选项C 错误, 当x=-1时,y 取得最小值,此时y=-3,故选项D 正确, 故选D .点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答. 7.C 【解析】 【分析】根据平行线的性质即可得到∠3的度数,再根据三角形内角和定理,即可得到结论. 【详解】解:∵直线m ∥n , ∴∠3=∠1=25°,又∵三角板中,∠ABC =60°, ∴∠2=60°﹣25°=35°, 故选C .【点睛】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键. 8.B 【解析】 【详解】由方程2210x x kb ++=-有两个不相等的实数根,可得()4410kb =-+>, 解得0kb <,即k b 、异号,当00k b >,<时,一次函数y kx b =+的图象过一三四象限,当00k b <,>时,一次函数y kx b =+的图象过一二四象限,故答案选B. 9.A 【解析】 【分析】过两把直尺的交点C 作CF ⊥BO 与点F ,由题意得CE ⊥AO ,因为是两把完全相同的长方形直尺,可得CE=CF ,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP 平分∠AOB 【详解】如图所示:过两把直尺的交点C 作CF ⊥BO 与点F ,由题意得CE ⊥AO ,∵两把完全相同的长方形直尺, ∴CE=CF ,∴OP 平分∠AOB (角的内部到角的两边的距离相等的点在这个角的平分线上), 故选A . 【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理. 10.D 【解析】分析:根据垂径定理得出OE 的长,进而利用勾股定理得出BC 的长,再利用相似三角形的判定和性质解答即可. 详解:连接OB ,∵AC 是⊙O 的直径,弦BD ⊥AO 于E ,BD=1cm ,AE=2cm .在Rt △OEB 中,OE 2+BE 2=OB 2,即OE 2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt △EBC 中,22224845BE EC +=+=∵OF ⊥BC ,∴∠OFC=∠CEB=90°.∵∠C=∠C ,∴△OFC ∽△BEC , ∴OF OC BE BC =,即445OF = 解得:5故选D .点睛:本题考查了垂径定理,关键是根据垂径定理得出OE 的长.二、填空题(本题包括8个小题)11.150【解析】【分析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可【详解】∵圆锥的底面圆的周长是45cm ,∴圆锥的侧面扇形的弧长为5π cm ,65180n ππ⨯∴=, 解得:150n = 故答案为150.【点睛】此题考查弧长的计算,解题关键在于求得圆锥的侧面积12.2【解析】去分母得,m-1-x=0.∵方程有增根,∴x=1, ∴m-1-1=0, ∴m=2.13.90【解析】【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B 地,设乙车出故障前走了t 1小时,修好后走了t 2小时,根据等量关系甲车用了122133t t ⎛⎫+++ ⎪⎝⎭小时行驶了全程,乙车行驶的路程为60t 1+50t 2=240,列方程组求出t 2,再根据甲车的速度即可知乙车修好时甲车距B 地的路程.【详解】甲车先行40分钟(402603=h ),所行路程为30千米, 因此甲车的速度为304523=(千米/时),设乙车的初始速度为V 乙,则有4452103V ⨯=+乙, 解得:60V =乙(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t 1小时,修好后走了t 2小时,则有121260502402145()4524033t t t t +=⎧⎪⎨⨯+++⨯=⎪⎩,解得:12732t t ⎧=⎪⎨⎪=⎩, 45×2=90(千米),故答案为90.【点评】 本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.14.x (y-1)2【解析】分析:先提公因式x ,再用完全平方公式把221y y -+继续分解.详解:22xy xy x -+=x(221y y -+)=x(1y -)2.故答案为x(1y -)2.点睛:本题考查了因式分解,有公因式先提公因式,然后再用公式法继续分解,因式分解必须分解到每个因式都不能再分解为止.15.1【解析】【分析】由两角对应相等可得△BAD ∽△CED ,利用对应边成比例即可得两岸间的大致距离AB 的长.【详解】解:∵∠ADB=∠EDC ,∠ABC=∠ECD=90°,∴△ABD ∽△ECD , ∴AB BD EC CD=, 即BD EC AB CD⨯= , 解得:AB=1205060⨯ =1(米). 故答案为1.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.16.a≤1且a≠0【解析】∵关于x 的一元二次方程2210ax x -+=有实数根,∴()20240a a ≠⎧⎪⎨=--≥⎪⎩,解得:a 1≤, ∴a 的取值范围为:a 1≤且0a ≠ .点睛:解本题时,需注意两点:(1)这是一道关于“x”的一元二次方程,因此0a ≠ ;(2)这道一元二次方程有实数根,因此()2240a =--≥ ;这个条件缺一不可,尤其是第一个条件解题时很容易忽略.17.m≤1【解析】【分析】根据一元二次方程有实数根,得出△≥0,建立关于m 的不等式,求出m 的取值范围即可.【详解】解:由题意知,△=4﹣4(m ﹣1)≥0,∴m≤1,故答案为:m≤1.【点睛】此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0,方程有两个不相等的实数根;△=0,方程有两个相等的实数根;△<0,方程没有实数根是本题的关键.18.①②④【解析】①由a=b,得5﹣2a=5﹣2b,根据等式的性质先将式子两边同时乘以-2,再将等式两边同时加上5,等式仍成立,所以本选项正确,②由a=b,得ac=bc,根据等式的性质,等式两边同时乘以相同的式子,等式仍成立,所以本选项正确, ③由a=b,得a b c c=,根据等式的性质,等式两边同时除以一个不为0的数或式子,等式仍成立,因为c 可能为0,所以本选项不正确,④由23a b c c=,得3a=2b, 根据等式的性质,等式两边同时乘以相同的式子6c,等式仍成立,所以本选项正确, ⑤因为互为相反数的平方也相等,由a 2=b 2,得a=b,或a=-b,所以本选项错误,故答案为: ①②④.三、解答题(本题包括8个小题)19. (1)24,1;(2) 54;(3)360.【解析】【分析】(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a ,用总人数减去其它组的人数求得b ;(2)利用360°乘以对应的百分比即可求得;(3)求得全校总人数,然后利用总人数乘以对应的百分比求解.【详解】(1)抽取的人数是36÷30%=120(人),则a =120×20%=24,b =120﹣30﹣24﹣36﹣12=1.故答案是:24,1;(2)“排球”所在的扇形的圆心角为360°×=54°,故答案是:54; (3)全校总人数是120÷10%=1200(人), 则选择参加乒乓球运动的人数是1200×30%=360(人).20.6+332【解析】【分析】 如下图,过点C 作CF ⊥AB 于点F ,设AB 长为x ,则易得AF=x-4,在Rt △ACF 中利用∠α的正切函数可由AF 把CF 表达出来,在Rt △ABE 中,利用∠β的正切函数可由AB 把BE 表达出来,这样结合BD=CF ,DE=BD-BE 即可列出关于x 的方程,解方程求得x 的值即可得到AB 的长.【详解】解:如图,过点C 作CF ⊥AB ,垂足为F ,设AB=x ,则AF=x-4,∵在Rt △ACF 中,tan ∠α=AF CF , ∴CF=4tan30x -︒=BD , 同理,Rt △ABE 中,BE=tan60x ︒, ∵BD-BE=DE ,∴4tan30x -︒-tan60x ︒=3, 解得332答:树高AB 为(332 . 【点睛】作出如图所示的辅助线,利用三角函数把CF 和BE 分别用含x 的式子表达出来是解答本题的关键. 21.(1)120;(2) 54;(3)答案见解析;(4)1650.【解析】【分析】(1)依据节目B 的数据,即可得到调查的学生人数;(2)依据A 部分的百分比,即可得到A 部分所占圆心角的度数;(3)求得C 部分的人数,即可将条形统计图补充完整;(4)依据喜爱《中国诗词大会》的学生所占的百分比,即可得到该校最喜爱《中国诗词大会》的学生数量.【详解】()16655%120÷=,故答案为120;()182********⨯=, 故答案为54;()3C :12025%30⨯=,如图所示:()4300055%1650⨯=,答:该校最喜爱《中国诗词大会》的学生有1650名. 【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.22.(1)点P 在直线32y x =-上,说明见解析;(22.【解析】【详解】解:(1) 求:(1)直线32y x =-可变为320x y --=,22312013d --==+说明点P 在直线32y x =-上;(2)在直线1y x =-+上取一点(0,1),直线3y x =-+可变为30x y +-= 则22013211d +-==+∴.23.(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.【解析】【分析】(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.列方程组得到y关于x的函数表达式y=﹣2x+100,根据题意得到w=﹣2x2+136x﹣1800;(2)把w=﹣2x2+136x﹣1800配方得到w=﹣2(x﹣34)2+1.根据二次函数的性质即可得到结论;(3)根据题意列方程即可得到即可.【详解】解:(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.则62196020k bk b=+⎧⎨=+⎩,解得k2b100=-⎧⎨=⎩,∴y=﹣2x+100,∴y关于x的函数表达式y=﹣2x+100,∴w=(x﹣18)•y=(x﹣18)(﹣2x+100)∴w=﹣2x2+136x﹣1800;(2)∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+1.∴当销售单价为34元时,∴每日能获得最大利润1元;(3)当w=350时,350=﹣2x2+136x﹣1800,解得x=25或43,由题意可得25≤x≤32,则当x=32时,18(﹣2x+100)=648,∴制造这种纪念花灯每日的最低制造成本需要648元.【点睛】此题主要考查了二次函数的应用,根据已知得出函数关系式.24.(1)11119112911⨯-⨯,()(2)()()11112n12n+122n12n+1⨯--⨯-,()(3)100201【解析】【分析】(1)(2)观察知,找等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1.(3)运用变化规律计算【详解】 解:(1)a 5=1111=9112911⨯-⨯(); (2)a n =()()1111=2n 12n+122n 12n+1⨯--⨯-(); (3)a 1+a 2+a 3+a 4+…+a 10011111111111=1++++232352572199201⨯-⨯-⨯-⋅⋅⋅⨯-()()()() 11111111111200100=1++++=1==23355719920122012201201⎛⎫⎛⎫⨯---⋅⋅⋅-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭. 25.(1)3;(2)∠DEF 的大小不变,tan ∠DEF=34;(3)7541或7517. 【解析】【详解】(1)当t=3时,点E 为AB 的中点,∵A (8,0),C (0,6),∴OA=8,OC=6,∵点D 为OB 的中点,∴DE ∥OA ,DE=12OA=4, ∵四边形OABC 是矩形,∴OA ⊥AB ,∴DE ⊥AB ,∴∠OAB=∠DEA=90°,又∵DF ⊥DE ,∴∠EDF=90°,∴四边形DFAE 是矩形,∴DF=AE=3;(2)∠DEF 的大小不变;理由如下:作DM ⊥OA 于M ,DN ⊥AB 于N ,如图2所示:∵四边形OABC 是矩形, ∴OA ⊥AB ,∴四边形DMAN 是矩形,∴∠MDN=90°,DM ∥AB ,DN ∥OA ,∴BD BN DO NA =,BD AM DO OM= , ∵点D 为OB 的中点,∴M 、N 分别是OA 、AB 的中点,∴DM=12AB=3,DN=12OA=4, ∵∠EDF=90°,∴∠FDM=∠EDN ,又∵∠DMF=∠DNE=90°,∴△DMF ∽△DNE ,∴34DF DM DE DN ==, ∵∠EDF=90°,∴tan ∠DEF=34DF DE =; (3)作DM ⊥OA 于M ,DN ⊥AB 于N ,若AD 将△DEF 的面积分成1:2的两部分,设AD 交EF 于点G ,则点G 为EF 的三等分点;①当点E 到达中点之前时,如图3所示,NE=3﹣t ,由△DMF ∽△DNE 得:MF=34(3﹣t ), ∴AF=4+MF=﹣34t+254, ∵点G 为EF 的三等分点,∴G (37112t +,23t ), 设直线AD 的解析式为y=kx+b ,把A (8,0),D (4,3)代入得:8043k b k b +=⎧⎨+=⎩ , 解得:346k b ⎧=-⎪⎨⎪=⎩ ,∴直线AD 的解析式为y=﹣34x+6, 把G (37112t +,23t )代入得:t=7541; ②当点E 越过中点之后,如图4所示,NE=t ﹣3,由△DMF ∽△DNE 得:MF=34(t ﹣3), ∴AF=4﹣MF=﹣34t+254, ∵点G 为EF 的三等分点,∴G (3236t +,13t ), 代入直线AD 的解析式y=﹣34x+6得:t=7517; 综上所述,当AD 将△DEF 分成的两部分的面积之比为1:2时,t 的值为7541或7517. 考点:四边形综合题.26.(1)详见解析;(2)30°.【解析】【分析】(1)根据线段垂直平分线的作法作出AB 的垂直平分线即可;(2)连接PA ,根据等腰三角形的性质可得PAB B ∠=∠,由角平分线的定义可得PAB PAC ∠=∠,根据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案.【详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线, ∴PA=PB , ∴点P 即为所求.(2)如图,连接AP , ∵PA PB =, ∴PAB B ∠=∠,∵AP 是角平分线, ∴PAB PAC ∠=∠, ∴PAB PAC B ∠=∠=∠, ∵90ACB ∠=︒, ∴∠PAC+∠PAB+∠B=90°, ∴3∠B=90°, 解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为()A.3B.23C.332D.2332.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°3.若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3D.x=34.在△ABC中,AB=AC=13,BC=24,则tanB等于()A.513B.512C.1213D.1255.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=()A.141°B.144°C.147°D.150°6.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A.B.C.D .7.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子( ) A .1颗B .2颗C .3颗D .4颗8.若一次函数y =(2m ﹣3)x ﹣1+m 的图象不经过第三象限,则m 的取值范图是( ) A .1<m <32B .1≤m <32C .1<m≤32D .1≤m≤329.函数228y x x m =--+的图象上有两点()11,A x y ,()22,B x y ,若122x x <<-,则( ) A .12y y <B .12y y >C .12 y y =D .1y 、2y 的大小不确定10.如图,某小区计划在一块长为31m ,宽为10m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 1.若设道路的宽为xm ,则下面所列方程正确的是( )A .(31﹣1x )(10﹣x )=570B .31x+1×10x=31×10﹣570C .(31﹣x )(10﹣x )=31×10﹣570D .31x+1×10x ﹣1x 1=570二、填空题(本题包括8个小题)11.如图,在平面直角坐标系中,点A 和点C 分别在y 轴和x 轴正半轴上,以OA 、OC 为边作矩形OABC ,双曲线6y x=(x >0)交AB 于点E,AE ︰EB=1︰3.则矩形OABC 的面积是 __________.12.与直线2y x =平行的直线可以是__________(写出一个即可). 13.因式分解:2()4()a a b a b ---=___.14.已知圆锥的底面半径为40cm , 母线长为90cm , 则它的侧面展开图的圆心角为_______. 15.-3的倒数是___________16.如图,在△ABC 中,∠BAC=50°,AC=2,AB=3,将△ABC 绕点A 逆时针旋转50°,得到△AB 1C 1,则阴影部分的面积为_______.17.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100 400 800 1 000 2 000 5 000发芽种子粒数85 318 652 793 1 604 4 005发芽频率0.850 0.795 0.815 0.793 0.802 0.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).18.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x 是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b=_____.三、解答题(本题包括8个小题)19.(6分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.20.(6分)小明对A,B,C,D四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知A超市有女工20人.所有超市女工占比统计表超市A B C D女工人数占比62.5% 62.5% 50% 75%A超市共有员工多少人?B超市有女工多少人?若从这些女工中随机选出一个,求正好是C超市的概率;现在D超市又招进男、女员工各1人,D超市女工占比还是75%吗?甲同学认为是,乙同学认为不是.你认为谁说的对,并说明理由.21.(6分)解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.22.(82112(1)6tan303π-︒⎛⎫--+-⎪⎝⎭解方程:544101236x xx x-++=--23.(8分)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB 的平分线.求证:AB=DC.24.(10分)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.25.(10分)关于x的一元二次方程230-++=有两个实数根,则m的取值范围是()x m x mA.m≤1B.m<1 C.﹣3≤m≤1D.﹣3<m<126.(12分)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6 a1.6≤x<2.0 122.0≤x<2.4 b2.4≤x<2.8 10请根据图表中所提供的信息,完成下列问题:表中a=,b=,样本成绩的中位数落在范围内;请把频数分布直方图补充完整;该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生有多少人?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6×12×1×1×sin60°33故选C.【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.2.C【解析】试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC﹣∠DCA="50°." ∴∠BAE=50°.故选C.考点:1.面动旋转问题;2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质.3.C【解析】【详解】试题分析:∵分式13x-有意义,∴x﹣3≠0,∴x≠3;故选C.考点:分式有意义的条件.4.B【解析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,225AB BD-=,故tanB=512 ADBD=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.5.B【解析】【分析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.【详解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故选B.【点睛】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).6.B【解析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B.【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.7.B【解析】试题解析:由题意得25134xx yxx y⎧⎪+⎪⎨⎪⎪++⎩==,解得:23 xy⎧⎨⎩==.故选B.8.B【解析】【分析】根据一次函数的性质,根据不等式组即可解决问题;【详解】∵一次函数y=(2m-3)x-1+m的图象不经过第三象限,∴230 10 mm<-⎧⎨-+≥⎩,解得1≤m<32.故选:B.【点睛】本题考查一次函数的图象与系数的关系等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.9.A【解析】【分析】根据x1、x1与对称轴的大小关系,判断y1、y1的大小关系.【详解】解:∵y=-1x1-8x+m,。

江西省上饶市2019-2020学年中考数学三模考试卷含解析

江西省上饶市2019-2020学年中考数学三模考试卷含解析

江西省上饶市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知圆心在原点O ,半径为5的⊙O ,则点P (-3,4)与⊙O 的位置关系是( )A .在⊙O 内B .在⊙O 上C .在⊙O 外D .不能确定2.下列分式中,最简分式是( )A .2211x x -+B .211x x +-C .2222x xy y x xy -+-D .236212x x -+ 3.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是( )A .20,20B .30,20C .30,30D .20,304.某种超薄气球表面的厚度约为0.00000025mm ,这个数用科学记数法表示为( )A .72.510-⨯B .70.2510-⨯C .62.510-⨯D .52510-⨯5.已知抛物线y=(x ﹣1a )(x ﹣11a +)(a 为正整数)与x 轴交于M a 、N a 两点,以M a N a 表示这两点间的距离,则M 1N 1+M 2N 2+…+M 2018N 2018的值是( ) A .20162017 B .20172018 C .20182019 D .20192020 6.如图,在ABC ∆中,10 , 8 , 6AB AC BC === ,以边AB 的中点O 为圆心,作半圆与AC 相切,点, P Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A .6B .131C .9D .32377 )A.7B.-7C.77D.-778.若关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程236x y+=的解,则k的值为()A.34-B.34C.43D.43-9.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S1.若S2=48,S1=9,则S1的值为()A.18 B.12 C.9 D.110.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.11.下列图形中一定是相似形的是( )A.两个菱形B.两个等边三角形C.两个矩形D.两个直角三角形12.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B.2C.3D.23二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知矩形ABCD,AD>AB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD 的其他边上,则可以画出的不同的等腰三角形的个数为_______________.14.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.15.观察下列图形:它们是按一定的规律排列的,依照此规律,第n个图形共有___个★.16.因式分解:x2y-4y3=________.17.如图,四边形ABCD是菱形,☉O经过点A,C,D,与BC相交于点E,连接AC,AE,若∠D=78°,则∠EAC=________°.18.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(﹣1,0),(﹣4,0),将△ABC沿x轴向左平移,当点C落在直线y=﹣2x﹣6上时,则点C沿x轴向左平移了_____个单位长度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于12EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为( )A.40°B.55°C.65°D.75°20.(6分)如图,已知∠AOB与点M、N求作一点P,使点P到边OA、OB的距离相等,且PM=PN (保留作图痕迹,不写作法)21.(6分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?22.(8分)如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y 轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.23.(8分)对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p 为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为.24.(10分)列方程解应用题:为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?25.(10分)2017年10月31日,在广州举行的世界城市日全球主场活动开幕式上,住建部公布许昌成为“国家生态园林城市”在2018年植树节到来之际,许昌某中学购买了甲、乙两种树木用于绿化校园.若购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元.(1)求甲种树和乙种树的单价;(2)按学校规划,准备购买甲、乙两种树共200棵,且甲种树的数量不少于乙种树的数量的12,请设计出最省钱的购买方案,并说明理由.26.(12分)2018年大唐芙蓉园新春灯会以“鼓舞中华”为主题,既有新年韵味,又结合“一带一路”展示了丝绸之路上古今文化经贸繁荣的盛况。

江西省上饶市2019-2020学年中考数学一模考试卷含解析

江西省上饶市2019-2020学年中考数学一模考试卷含解析

江西省上饶市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是( )A .2a ﹣a=1B .2a+b=2abC .(a 4)3=a 7D .(﹣a )2•(﹣a )3=﹣a 52.如图1,在矩形ABCD 中,动点E 从A 出发,沿AB→BC 方向运动,当点E 到达点C 时停止运动,过点E 做FE ⊥AE ,交CD 于F 点,设点E 运动路程为x ,FC =y ,如图2所表示的是y 与x 的函数关系的大致图象,当点E 在BC 上运动时,FC 的最大长度是25,则矩形ABCD 的面积是( )A .235B .5C .6D .2543.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <.则k 的取值范围为( ) A .1k < B .1k ³ C .1k > D .1k <4.如图,有5个相同的小立方体搭成的几何体如图所示,则它的左视图是( )A .B .C .D .5.如图:A 、B 、C 、D 四点在一条直线上,若AB =CD ,下列各式表示线段AC 错误的是( )A .AC =AD ﹣CDB .AC =AB+BC C .AC =BD ﹣AB D .AC =AD ﹣AB6.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是( )A.0.1 B.0.2C.0.3 D.0.47.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.8.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF,其中正确的结论A.只有①②. B.只有①③. C.只有②③. D.①②③.9.如图,在△ABC中,cosB=2,sinC=35,AC=5,则△ABC的面积是()A.212B.12 C.14 D.2110.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=3 211.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是()A.a>b B.a<bC.a=b D.与m的值有关12.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半径为1,点P是斜边AB上的点,过点P作⊙C的一条切线PQ(点Q是切点),则线段PQ的最小值为_____.14.点A到⊙O的最小距离为1,最大距离为3,则⊙O的半径长为_____.15.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为_____.16.计算:3a r ﹣(a r ﹣2b r)=____.17.若一个反比例函数的图象经过点A(m ,m)和B(2m ,-1),则这个反比例函数的表达式为______ 18.如图,边长为6cm 的正三角形内接于⊙O ,则阴影部分的面积为(结果保留π)_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示,直线y=12x+2与双曲线y=k x相交于点A(2,n),与x 轴交于点C .求双曲线解析式;点P 在x 轴上,如果△ACP 的面积为5,求点P 的坐标.20.(6分)如图,热气球探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球与楼的水平距离AD 为100米,试求这栋楼的高度BC .21.(6分)如图,已知二次函数y=﹣x 2+bx+c (b ,c 为常数)的图象经过点A (3,1),点C (0,4),顶点为点M ,过点A 作AB ∥x 轴,交y 轴于点D ,交该二次函数图象于点B ,连结BC .(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC 的内部(不包括△ABC的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).22.(8分)请你仅用无刻度的直尺在下面的图中作出△ABC 的边AB 上的高CD.如图①,以等边三角形ABC 的边AB 为直径的圆,与另两边BC、AC 分别交于点E、F.如图②,以钝角三角形ABC 的一短边AB 为直径的圆,与最长的边AC 相交于点E.23.(8分)已知关于x的方程220++-=.当该方程的一个根为1时,求a的值及该方程的另一根;x ax a求证:不论a取何实数,该方程都有两个不相等的实数根.24.(10分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.求抛物线的解析式;判断△ABC的形状,并说明理由;经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.25.(10分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;在网格中将△ABC放大2倍得到△DEF,使A与D为对应点.26.(12分)如图,直线y=﹣x+2与反比例函数kyx=(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.(1)求a,b的值及反比例函数的解析式;(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.27.(12分)某种商品每天的销售利润y元,销售单价x元,间满足函数关系式:y x bx c=-++,其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据合并同类项,幂的乘方,同底数幂的乘法的计算法则解答.【详解】A 、2a ﹣a=a ,故本选项错误;B 、2a 与b 不是同类项,不能合并,故本选项错误;C 、(a 4)3=a 12,故本选项错误;D 、(﹣a )2•(﹣a )3=﹣a 5,故本选项正确,故选D .【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法,熟练掌握各运算的运算法则是解题的关键. 2.B【解析】【分析】易证△CFE ∽△BEA ,可得CF CE BE AB=,根据二次函数图象对称性可得E 在BC 中点时,CF 有最大值,列出方程式即可解题.【详解】若点E 在BC 上时,如图∵∠EFC+∠AEB =90°,∠FEC+∠EFC =90°,∴∠CFE =∠AEB ,∵在△CFE 和△BEA 中,90CFE AEB C B ︒∠=∠⎧⎨∠=∠=⎩, ∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF CE BE AB =,BE =CE =x ﹣52,即525522x y x-=-, ∴225()52y x =-, 当y =25时,代入方程式解得:x 1=32(舍去),x 2=72, ∴BE =CE =1,∴BC =2,AB =52, ∴矩形ABCD 的面积为2×52=5;故选B .【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E 为BC 中点是解题的关键.3.B【解析】【分析】求出不等式组的解集,根据已知得出关于k 的不等式,求出不等式的解集即可.【详解】解:解不等式组29611x x x k +>+⎧⎨-<⎩,得21x x k <⎧⎨<+⎩. ∵不等式组29611x x x k +>+⎧⎨-<⎩的解集为x <2, ∴k +1≥2,解得k≥1.故选:B .【点睛】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k 的不等式,难度适中.4.C【解析】试题解析:左视图如图所示:5.C【解析】【分析】根据线段上的等量关系逐一判断即可.【详解】A、∵AD-CD=AC,∴此选项表示正确;B、∵AB+BC=AC,∴此选项表示正确;C、∵AB=CD,∴BD-AB=BD-CD,∴此选项表示不正确;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系. 6.B【解析】∵在5.5~6.5组别的频数是8,总数是40,∴=0.1.故选B.7.D【解析】试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得.故选D.考点:由实际问题抽象出二元一次方程组8.D【详解】解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,则△CBM≌△CDN,(HL)∴S四边形BCDG=S四边形CMGN.S四边形CMGN=1S△CMG,∵∠CGM=60°,∴GM=12CG,CM=3CG,∴S四边形CMGN=1S△CMG=1×12×12CG×3CG=CG1.③过点F作FP∥AE于P点.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故选D.9.A【解析】【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【详解】解:过点A作AD⊥BC,∵△ABC中,cosB=22,sinC=35,AC=5,∴2=BDAB,∴∠B=45°,∵sinC=35=ADAC=5AD,∴AD=3,∴2253,∴BD=3,则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选:A.【点睛】此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.10.D【解析】【分析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-32,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-b2a=-321⨯=32,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.11.A【解析】【分析】根据一次函数性质:y kx b=+中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.由-2<0得,当x12时,y1>y2.【详解】因为,点A(1,a)和点B(4,b)在直线y=-2x+m上,-2<0,所以,y随x的增大而减小.因为,1<4,所以,a>b.故选A【点睛】本题考核知识点:一次函数性质. 解题关键点:判断一次函数y kx b=+中y与x的大小关系,关键看k的符号.12.C【解析】观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EP⊥AC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2.【解析】【分析】当PC⊥AB时,线段PQ最短;连接CP、CQ,根据勾股定理知PQ2=CP2﹣CQ2,先求出CP的长,然后由勾股定理即可求得答案.【详解】连接CP、CQ;如图所示:∵PQ是⊙C的切线,∴CQ⊥PQ,∠CQP=90°,根据勾股定理得:PQ2=CP2﹣CQ2,∴当PC⊥AB时,线段PQ最短.∵在Rt△ACB中,∠A=30°,BC=2,∴AB=2BC=4,AC=23,∴CP=AC BCAB⋅=2324⨯=3,∴PQ=22CP CQ-=312-=,∴PQ的最小值是2.故答案为:2.【点睛】本题考查了切线的性质以及勾股定理的运用;注意掌握辅助线的作法,注意当PC⊥AB时,线段PQ最短是关键.【解析】【分析】分类讨论:点在圆内,点在圆外,根据线段的和差,可得直径,根据圆的性质,可得答案.【详解】点在圆内,圆的直径为1+3=4,圆的半径为2;点在圆外,圆的直径为3−1=2,圆的半径为1,故答案为1或2.【点睛】本题考查点与圆的位置关系,关键是分类讨论:点在圆内,点在圆外.15.【解析】试题分析:根据矩形的性质求出△AOB 的面积等于矩形ABCD 的面积的,求出△AOB 的面积,再分别求出、、、的面积,即可得出答案 ∵四边形ABCD 是矩形,∴AO=CO ,BO=DO ,DC ∥AB ,DC=AB , ∴, ∴, ∴, ∴,,, ∴考点:矩形的性质;平行四边形的性质点评:本题考查了矩形的性质,平行四边形的性质,三角形的面积的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等 16.2a r +2b r【解析】【分析】根据平面向量的加法法则计算即可.3a v ﹣(a v ﹣2b v )=3a v ﹣a v +2b v=2a v +2b v ,故答案为:2a v +2b v ,【点睛】本题考查平面向量,熟练掌握平面向量的加法法则是解题的关键.17.4y x【解析】【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m 的方程,解方程即可求得m 的值,再由待定系数法即可求得反比例函数的解析式.【详解】设反比例函数解析式为y=k x , 由题意得:m 2=2m×(-1), 解得:m=-2或m=0(不符题意,舍去),所以点A (-2,-2),点B (-4,1),所以k=4,所以反比例函数解析式为:y=4x , 故答案为y=4x. 【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k 是解题的关键.18.(4π﹣cm 1【解析】【分析】连接OB 、OC ,作OH ⊥BC 于H ,根据圆周角定理可知∠BOC 的度数,根据等边三角形的性质可求出OB 、OH 的长度,利用阴影面积=S 扇形OBC -S △OBC 即可得答案【详解】:连接OB 、OC ,作OH ⊥BC 于H ,则BH=HC= BC= 3,∵△ABC 为等边三角形,∴∠A=60°,由圆周角定理得,∠BOC=1∠A=110°,∵OB=OC ,∴∠OBC=30°,∴OB=cos OBC BH ∠=13 ,OH=3, ∴阴影部分的面积= 2120(23)π⨯﹣12×6×3=4π﹣33 ,故答案为:(4π﹣3)cm 1.【点睛】本题主要考查圆周角定理及等边三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;熟练掌握圆周角定理是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)6y x =;(2)(23-,0)或22,03⎛⎫- ⎪⎝⎭【解析】【分析】(1)把A 点坐标代入直线解析式可求得n 的值,则可求得A 点坐标,再把A 点坐标代入双曲线解析式可求得k 的值,可求得双曲线解析式;(2)设P (x ,0),则可表示出PC 的长,进一步表示出△ACP 的面积,可得到关于x 的方程,解方程可求得P 点的坐标.【详解】解:(1)把A (2,n )代入直线解析式得:n=3,∴A (2,3), 把A 坐标代入y=k x,得k=6, 则双曲线解析式为y=6x. (2)对于直线y=12x+2, 令y=0,得到x=-4,即C (-4,0).设P (x ,0),可得PC=|x+4|.∵△ACP 面积为5,∴12|x+4|•3=5,即|x+4|=2, 解得:x=-23或x=-223, 则P 坐标为203⎛⎫- ⎪⎝⎭,或2203⎛⎫- ⎪⎝⎭,. 20.这栋楼的高度BC 是40033米. 【解析】试题分析:在直角三角形ADB 中和直角三角形ACD 中,根据锐角三角函数中的正切可以分别求得BD 和CD 的长,从而可以求得BC 的长.试题解析:解:∵90ADB ADC ∠∠==°,30BAD ∠=°,60CAD ∠=°,AD =100,∴在Rt ABD V 中,1003tan BD AD BAD ⋅∠= 在Rt ACD V 中,tan 1003CD AD CAD ⋅∠==.∴4003BC BD CD =+=. 点睛:本题考查解直角三角形的应用-仰角俯角问题,解答此类问题的关键是明确已知边、已知角和未知边之间的三角函数关系.21.(1)y=﹣x 2+2x+4;M (1,5);(2)2<m <4;(3)P 1(311,31),P 2(313,31-),P 3(3,1),P 4(﹣3,7).【解析】试题分析:(1)将点A 、点C 的坐标代入函数解析式,即可求出b 、c 的值,通过配方法得到点M 的坐标;(2)点M 是沿着对称轴直线x=1向下平移的,可先求出直线AC 的解析式,将x=1代入求出点M 在向下平移时与AC 、AB 相交时y 的值,即可得到m 的取值范围;(3)由题意分析可得∠MCP=90°,则若△PCM 与△BCD 相似,则要进行分类讨论,分成△PCM ∽△BDC 或△PCM ∽△CDB 两种,然后利用边的对应比值求出点坐标.试题解析:(1)把点A(3,1),点C(0,4)代入二次函数y=﹣x2+bx+c得,解得∴二次函数解析式为y=﹣x2+2x+4,配方得y=﹣(x﹣1)2+5,∴点M的坐标为(1,5);(2)设直线AC解析式为y=kx+b,把点A(3,1),C(0,4)代入得,解得:∴直线AC的解析式为y=﹣x+4,如图所示,对称轴直线x=1与△ABC两边分别交于点E、点F把x=1代入直线AC解析式y=﹣x+4解得y=3,则点E坐标为(1,3),点F坐标为(1,1)∴1<5﹣m<3,解得2<m<4;(3)连接MC,作MG⊥y轴并延长交AC于点N,则点G坐标为(0,5)∵MG=1,GC=5﹣4=1∴MC==,把y=5代入y=﹣x+4解得x=﹣1,则点N坐标为(﹣1,5),∵NG=GC,GM=GC,∴∠NCG=∠GCM=45°,∴∠NCM=90°,由此可知,若点P在AC上,则∠MCP=90°,则点D与点C必为相似三角形对应点①若有△PCM∽△BDC,则有∵BD=1,CD=3,∴CP===,∵CD=DA=3,∴∠DCA=45°,若点P在y轴右侧,作PH⊥y轴,∵∠PCH=45°,CP=∴PH==把x=代入y=﹣x+4,解得y=,∴P1();同理可得,若点P在y轴左侧,则把x=﹣代入y=﹣x+4,解得y=∴P2();②若有△PCM∽△CDB,则有∴CP==3∴PH=3÷=3,若点P在y轴右侧,把x=3代入y=﹣x+4,解得y=1;若点P在y轴左侧,把x=﹣3代入y=﹣x+4,解得y=7∴P3(3,1);P4(﹣3,7).∴所有符合题意得点P坐标有4个,分别为P1(),P2(),P3(3,1),P4(﹣3,7).考点:二次函数综合题22.(1)详见解析;(2)详见解析.【解析】【分析】(1)连接AE 、BF ,找到△ABC 的高线的交点,据此可得CD ;(2)延长CB 交圆于点F ,延长AF 、EB 交于点G ,连接CG ,延长AB 交CG 于点D ,据此可得.【详解】(1)如图所示,CD 即为所求;(2)如图,CD 即为所求.【点睛】本题主要考查作图-基本作图,解题的关键熟练掌握圆周角定理和三角形的三条高线交于一点的性质. 23.(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.24.(1)y=-x 2+2x+2;(2)详见解析;(3)点P 的坐标为(2,1)、(2,1)、(6,-3)或(6,-3).【解析】【分析】(1)根据题意得出方程组,求出b、c的值,即可求出答案;(2)求出B、C的坐标,根据点的坐标求出AB、BC、AC的值,根据勾股定理的逆定理求出即可;(3)分为两种情况,画出图形,根据相似三角形的判定和性质求出PE的长,即可得出答案.【详解】解:(1)由题意得:()121931bb c⎧-=⎪⨯-⎨⎪-++=-⎩,解得:22bc=⎧⎨=⎩,∴抛物线的解析式为y=-x2+2x+2;(2)∵由y=-x2+2x+2得:当x=0时,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴,,∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如图,当点Q在线段AP上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=1,∴PE=AD=1∵由-x2+2x+2=1得:x=12∴P(2,1)或(2,1),②如图,当点Q在PA延长线上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=3,∴PE=3AD=3∵由-x2+2x+2=-3得:x=1±6,∴P(6,-3),或(6,-3),综上可知:点P的坐标为(2,1)、(2,1)、(6,-3)或(6,-3).【点睛】本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式,相似三角形的性质和判定等知识点,能求出符合的所有情况是解此题的关键.25.(1)见解析(2)见解析【解析】【分析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△DEF即为所求.【点睛】本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.26.(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123n-,0)或(331n+0).【解析】【分析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出S△ACP=12×3×|n+1|,S△BDP=12×1×|3−n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=32,再三种情况建立方程求解即可得出结论.【详解】(1)∵直线y=-x+2与反比例函数y=kx(k≠0)的图象交于A(a,3),B(3,b)两点,∴-a+2=3,-3+2=b,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵点A(-1,3)在反比例函数y=kx上,∴k=-1×3=-3,∴反比例函数解析式为y=3x -;(2)设点P (n ,-n +2),∵A (-1,3),∴C (-1,0),∵B (3,-1),∴D (3,0),∴S △ACP =12AC×|x P −x A |=12×3×|n +1|,S △BDP =12BD×|x B −x P |=12×1×|3−n|, ∵S △ACP =S △BDP , ∴12×3×|n +1|=12×1×|3−n|, ∴n =0或n =−3,∴P (0,2)或(−3,5);(3)设M (m ,0)(m >0),∵A (−1,3),B (3,−1),∴MA 2=(m +1)2+9,MB 2=(m−3)2+1,AB 2=(3+1)2+(−1−3)2=32,∵△MAB 是等腰三角形,∴①当MA =MB 时,∴(m +1)2+9=(m−3)2+1,∴m =0,(舍)②当MA =AB 时,∴(m +1)2+9=32,∴m =−1m =,∴M (−10)③当MB =AB 时,(m−3)2+1=32,∴m =3m =,∴M (30)即:满足条件的M (−10)或(30).【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.27.(1)10,1;(2)812x ≤≤.【解析】【分析】(1)将点(5,0),(8,21)代入2y x bx c =-++中,求出函数解析式,再根据二次函数的性质求出最大值即可;(2)求出对称轴为直线10x =,可知点(8,21)关于对称轴的对称点是(12,21),再根据图象判断出x 的取值范围即可.【详解】解:(1)2y x bx c =-++图象过点(5,0),(8,21), 255064821b c b c -++=⎧∴⎨-++=⎩, 解得2075b c =⎧⎨=-⎩ 22075y x x ∴=-+-.222075(10)25y x x x =-+-=--+Q .22075y x x ∴=-+-的顶点坐标为(10,25).10-<Q ,∴当10x =时,y 最大=1.答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元.(2)∵函数22075y x x =-+-图象的对称轴为直线10x =,可知点(8,21)关于对称轴的对称点是(12,21),又∵函数22075y x x =-+-图象开口向下,∴当812x ≤≤时,21y ≥.答:销售单价不少于8元且不超过12元时,该种商品每天的销售利润不低于21元.【点睛】本题考查了待定系数法求二次函数解析式以及二次函数的性质,解题的关键是熟悉待定系数法以及二次函数的性质.。

中考数学第三次模拟试卷含答案解析.doc

中考数学第三次模拟试卷含答案解析.doc

2019-2020 年中考数学第三次模拟试卷含答案解析一、选择题(本题共 12 小题,每小题 3 分,共 36 分.注意:在每小题给出的四个选项中,只有一个是符合题目要求的.)1.下列运算中,正确的是( )A2 4 66 3 2C4)2 62 4 6. a +a =a B.a a =a.(﹣ a=aD. a? a =a÷2.方程 x 2﹣ 2x+3=0 的根的情况是()A .有两个相等的实数根B .只有一个实数根C .没有实数根D .有两个不相等的实数根3.已知点 P ( a+1, 2a ﹣ 3)在第一象限,则 a 的取值范围是( )A . a <﹣ 1B . a >C .﹣ < a < 1D .﹣ 1< a <4.已知正比例函数 y=kx ( k < 0)的图象上两点 A ( x 1,y 1)、 B ( x 2, y 2),且 x 1< x 2,则下列不 等式中恒成立的是()A . y 1+y 2> 0B . y 1+y 2< 0C . y 1﹣ y 2> 0D . y 1﹣ y 2< 05.一个不透明的盒子中装有3 个红球, 2 个黄球和 1 个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( )A .B .C .D .6.如图,直线 AB , CD 相交于点 O ,射线 OM 平分∠ AOC ,ON ⊥OM ,若∠ AOM=35 °,则∠ CON的度数为()A . 35°B . 45°C . 55°D . 65° 7.如图,在直角坐标系中,有两点 A ( 6, 3), B (6, 0),以原点 O 为位似中心,相似比为,在第一象限内把线段AB 缩小后得到新的线段,则点A 的对应点坐标为()A .( 2, 1)B .( 2, 0)C .( 3,3)D .( 3, 1)8.如图,为了测得电视塔的高度AB ,在D 处用高为1 米的测角仪CD ,测得电视塔顶端A 的仰角为 30°,再向电视塔方向前进100 米达到F 处,又测得电视塔顶端A 的仰角为60°,则这个电视塔的高度AB (单位:米)为()A . 50B . 51C . 50+1D . 1019.关于 x 的方程 =1 的解是正数,则 a 的取值范围是( )A . a >﹣ 1B . a >﹣ 1 且 a ≠0C . a <﹣ 1D . a <﹣ 1 且 a ≠﹣ 210.如图, AB 是⊙ O 的直径,弦CD ⊥ AB ,∠ CDB=30 °, CD=2,则S 阴影 =()A . πB . 2πC .D . π11.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为()A . 236πB . 136πC . 132πD . 120π12.如图,二次函数y=ax 2+bx+c 的图象交 x 轴于 A 、 B 两点,下列结论:① abc >0;② 2a+b=0;③ 当 m ≠1 时, a+b > am 2+bm ;④ a ﹣ b+c > 0; ⑤ 若 ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则 x 1+x 2=2; ⑥ OA ?OB= ;其中正确的有()A . 3 个B . 2 个C . 4 个D . 5 个二、填空题(本大题6 个小题,每题 3 分,共18 分)13.两组数据:3, a , 2b ,5 与a ,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为.14.如图,点 E 在正方形ABCD的边CD上.若 △ ABE的面积为8, CE=3 ,则线段BE 的长为.15.观察下列一组数: , ,根据该组数的排列规律,可推出第10 个数是.16.如图,在 Rt △ABC 中,∠ BAC=90 °,AB=AC=16cm ,AD 为 BC 边上的高. 动点 P 从点 A 出发,沿 A →D方向以cm/s 的速度向点D 运动.设 △ABP的面积为 S 1,矩形 PDFE 的面积为S 2,运动时间为t 秒( 0< t < 8),则t=秒时,S 1=2S 2.17.已知 cos α= ,则 的值等于 .18.已知关于 x 的方程 x 2﹣ 6x+k=0 的两根分别是x 1,x 2,且满足 +=3,则 k 的值是.三、解答题(本大题 7 个小题,共 66 分.注意:解答应写出必要的文字说明, 证明过程或解答步骤. ) 19.( 1)计算:×(﹣)+|﹣2 |+( ) ﹣ 3﹣2 ×tan60°( 2)解方程: x 2﹣ 2x=2x ﹣ 4.20.先化简,再求值:( + ) ÷ ,其中 x= , y= ﹣ .21.某汽车专卖店销售A ,B 两种型号的新能源汽车.上周售出 1 辆 A 型车和 3 辆 B 型车,销售额为 96 万元;本周已售出2 辆 A 型车和 1 辆 B 型车,销售额为62 万元.( 1)求每辆 A 型车和 B 型车的售价各为多少元.( 2)甲公司拟向该店购买A ,B 两种型号的新能源汽车共 6 辆,购车费不少于 130 万元,且不超过140 万元.则有哪几种购车方案?22.如图,正方形 ABCD 的边长为 8cm , E 、 F 、 G 、 H 分别是 AB ,BC , CD , DA 上的动点,且AE=BF=CG=DH ,( 1)求证:四边形 EFGH 是正方形;( 2)当四边形 EFGH 的面积为 50cm 2时,求 tan ∠ FEB 的值;( 3)求四边形 EFGH 面积的最小值.23.如图,已知点 A 、 P 在反比例函数 y= (k < 0)的图象上,点 B 、Q 在直线 y=x ﹣ 3 的图象上,点 B 的纵坐标为﹣ 1, AB ⊥ x 轴,且 S △ OAB =4,若 P 、 Q 两点关于 y 轴对称,设点 P 的坐标为( m ,n ).( 1)求点 A 的坐标和 k 的值;( 2)求 的值.24.如图, AB 是⊙ O 的弦, D 为半径 OA 的中点,过 D 作 CD ⊥OA 交弦 AB 于点 E,交⊙ O 于点 F,且CE=CB .(1)求证: BC 是⊙ O 的切线;(2)连接 AF 、BF ,求∠ ABF 的度数;( 3)如果 CD=15 , BE=10 , sinA=,求⊙ O的半径.25.如图:已知抛物线y=ax 2﹣ x+c 与 x 轴相交于 A 、B 两点,并与直线y= x﹣ 2 交于 B 、C 两点,其中点 C 是直线 y= x﹣ 2 与 y 轴交点,连接 AC ,(1)求抛物线解析式;(2)证明:△ ABC 为直角三角形;( 3)在抛物线CB 段上存在点P 使得以 A ,C,P,B 为顶点的四边形面积最大,请求出点P 的坐标以及此时以 A , C, P,B 为顶点的四边形面积.2016 年四川省雅安中学中考数学一诊试卷参考答案与试题解析一、选择题(本题共12 小题,每小题 3 分,共 36 分.注意:在每小题给出的四个选项中,只有一个是符合题目要求的.)1.下列运算中,正确的是()2 46 6 3 2 4 2 62 4 6A . a +a =aB . a ÷a =aC .(﹣ a ) =aD . a ?a =a【考点】 同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】 根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】 解: A 、 a 2?a 4=a 6,故错误;B 、 a 6÷a 3=a 3,故错误;C 、(﹣ a 4)2=a 8,故错误;D 、正确;故选: D .【点评】 本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.2.方程 x 2﹣ 2x+3=0 的根的情况是()A .有两个相等的实数根B .只有一个实数根C .没有实数根D .有两个不相等的实数根【考点】 根的判别式.【分析】 把 a=1, b=﹣ 2, c=3 代入 △ =b 2﹣ 4ac 进行计算,然后根据计算结果判断方程根的情况.【解答】 解:∵ a=1, b=﹣ 2, c=3,∴△ =b 2﹣ 4ac=(﹣ 2) 2﹣4×1×3= ﹣ 8< 0,所以方程没有实数根.故选 C .【点评】 本题考查了一元二次方程ax 2+bx+c=0( a ≠0,a ,b ,c 为常数) 的根的判别式 △=b 2﹣ 4ac .当△ >0 时,方程有两个不相等的实数根;当 △ =0 时,方程有两个相等的实数根;当△ < 0 时,方程没有实数根.3.已知点P ( a+1, 2a ﹣ 3)在第一象限,则a 的取值范围是()A . a <﹣ 1B . a >C .﹣< a < 1D .﹣ 1< a <【考点】 点的坐标.【分析】 让横坐标大于 0,纵坐标大于 0 即可求得a 的取值范围.【解答】 解:∵点 P (a+1, 2a ﹣ 3)在第一象限,∴,解得: a,故选: B .【点评】 考查了点的坐标、一元一次不等式组的解集的求法;用到的知识点为:第一象限点的横纵坐标均为正数.4.已知正比例函数 y=kx ( k < 0)的图象上两点 A ( x 1,y 1)、 B ( x 2, y 2),且 x 1< x 2,则下列不 等式中恒成立的是()A . y 1+y 2> 0B . y 1+y 2< 0C . y 1﹣ y 2> 0D . y 1﹣ y 2< 0【考点】 一次函数图象上点的坐标特征;正比例函数的图象.【分析】 根据 k < 0,正比例函数的函数值y 随 x 的增大而减小解答.【解答】 解:∵直线 y=kx 的 k <0,∴函数值 y 随 x 的增大而减小,∵ x 1< x 2, ∴ y 1> y 2,∴ y 1﹣ y 2>0.故选: C .【点评】 本题考查了正比例函数图象上点的坐标特征,主要利用了正比例函数的增减性.5.一个不透明的盒子中装有 3 个红球, 2 个黄球和 1 个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A .B.C.D.【考点】概率公式.【专题】计算题.【分析】直接根据概率公式求解.【解答】解:从中随机摸出一个小球,恰好是黄球的概率==.故选 B .【点评】本题考查了概率公式:随机事件 A 的概率 P(A )=事件 A 可能出现的结果数除以所有可能出现的结果数.6.如图,直线AB , CD 相交于点O,射线 OM 平分∠ AOC ,ON ⊥OM ,若∠ AOM=35 °,则∠ CON 的度数为()A . 35° B. 45° C. 55° D. 65°【考点】垂线;角平分线的定义.【分析】由射线 OM 平分∠ AOC ,∠AOM=35 °,得出∠ MOC=35 °,由 ON ⊥ OM ,得出∠ CON= ∠ MON ﹣∠ MOC 得出答案.【解答】解:∵射线OM 平分∠ AOC ,∠ AOM=35 °,∴∠ MOC=35 °,∵ON⊥ OM ,∴∠ MON=90 °,∴∠ CON= ∠MON ﹣∠ MOC=90 °﹣35°=55 °.故选: C.【点评】本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系.7.如图,在直角坐标系中,有两点 A ( 6, 3), B (6, 0),以原点O 为位似中心,相似比为,在第一象限内把线段AB 缩小后得到新的线段,则点 A 的对应点坐标为()A .( 2, 1)B .( 2, 0) C.( 3,3) D .( 3, 1)【考点】位似变换;坐标与图形性质.【分析】由以原点O 为位似中心,相似比为,根据位似图形的性质,即可求得答案.【解答】解:∵以原点O 为位似中心,相似比为, A ( 6, 3),∴在第一象限内,点 A 的对应点坐标为:(2, 1).故选 A .【点评】此题考查了位似图形的变换.注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k 或﹣ k.8.如图,为了测得电视塔的高度AB ,在 D 处用高为 1 米的测角仪CD ,测得电视塔顶端 A 的仰角为 30°,再向电视塔方向前进100 米达到 F 处,又测得电视塔顶端 A 的仰角为60°,则这个电视塔的高度AB (单位:米)为()A . 50B . 51 C. 50 +1 D. 101【考点】解直角三角形的应用-仰角俯角问题.【专题】压轴题.【分析】设AG=x ,分别在Rt△ AEG 和Rt△ ACG 中,表示出CG 和 GE 的长度,然后根据DF=100m ,求出x 的值,继而可求出电视塔的高度AH .【解答】解:设 AG=x ,在Rt△ AEG 中,∵ tan∠AEG= ,∴EG= = x,在 Rt△ ACG 中,∵ tan∠ACG= ,∴ CG= = x,∴ x﹣x=100 ,解得: x=50 .则AB=50 +1(米).故选 C.【点评】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的常用方法.9.关于 x 的方程=1 的解是正数,则 a 的取值范围是(A . a>﹣ 1 B . a>﹣ 1 且 a≠0 C. a<﹣ 1D. a<﹣ 1 且)a≠﹣ 2【考点】分式方程的解.【专题】计算题.【分析】先解关于x 的分式方程,求得x 的值,然后再依据“解是正数”建立不等式求 a 的取值范围.【解答】解:去分母得,2x+a=x ﹣1∴x= ﹣ 1﹣ a∵方程的解是正数∴﹣ 1﹣ a> 0 即 a<﹣ 1又因为 x﹣ 1≠0∴a≠﹣ 2则 a 的取值范围是a<﹣ 1 且 a≠﹣ 2故选: D.【点评】由于我们的目的是求 a 的取值范围,根据方程的解列出关于 a 的不等式,另外,解答本题时,易漏掉a≠﹣ 2,这是因为忽略了x﹣ 1≠0 这个隐含的条件而造成的,这应引起同学们的足够重视.10.如图, AB 是⊙ O 的直径,弦CD ⊥ AB ,∠ CDB=30 °, CD=2,则S阴影=()A .π B. 2π C.D.π【考点】扇形面积的计算;勾股定理;垂径定理.【专题】计算题.【分析】求出 CE=DE , OE=BE=1 ,得出 S =S ,所以 S 阴影 =S 扇形BOC.△BED △OEC【解答】解:如图, CD⊥AB ,交 AB 于点 E,∵ AB 是直径,∴ CE=DE= CD=,又∵∠ CDB=30 °∴∠ COE=60 °,∴ OE=1, OC=2 ,∴ BE=1 ,∴S△BED =S△OEC,∴S阴影 =S 扇形BOC= =.故选: D.【点评】本题考查了垂径定理、扇形面积的计算,图形的转化是解答本题的关键.11.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为()A . 236πB . 136πC . 132πD . 120π 【考点】 由三视图判断几何体.【分析】 根据给出的几何体的三视图可知几何体是由大小两个圆柱组成,从而根据三视图的特点得知高和底面直径,代入体积公式计算即可.【解答】 解:由三视图可知,几何体是由大小两个圆柱组成,22×8 故该几何体的体积为: π×2 ×2+π×4=8π+128π=136π.故选: B .【点评】 本题考查的是由三视图判断几何体的形状并计算几何体的体积,由该三视图中的数据确定圆柱的底面直径和高是解本题的关键,本题体现了数形结合的数学思想.212.如图,二次函数 y=ax +bx+c 的图象交 x 轴于 A 、 B 两点,下列结论:① abc >0;② 2a+b=0;③ 当 m ≠1 时, a+b > am 2+bm ;④ a ﹣ b+c > 0; ⑤ 若 ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则 x 1+x 2=2; ⑥ OA ?OB= ; 其中正确的有()A . 3 个B . 2 个C . 4 个D . 5 个【考点】 二次函数图象与系数的关系.【分析】根据抛物线开口方向得a < 0,由抛物线对称轴为直线 x= ﹣ =1,得到 b=﹣ 2a > 0,即 2a+b=0,由抛物线与 y 轴的交点位置得到 c > 0,所以 abc < 0;根据二次函数的性质得当 x=1 时,函数有最大值 a+b+c ,则当 m ≠1 时, a+b+c > am 2+bm+c ,即 a+b > am 2+bm ;根据抛物线的对称性得到抛物线与x 轴的另一个交点在 (﹣ 1,0)的右侧, 则当 x= ﹣ 1 时, y < 0,所以 a ﹣ b+c <0;把 ax 12+bx 1=ax 22+bx 2先移项,再分解因式得到( x 1﹣ x 2)[a ( x 1+x 2)+b]=0,而 x 1≠x 2,则 a ( x 1+x 2)+b=0 ,即 x 1+x 2=﹣,然后把 b=﹣ 2a 代入计算得到 x 1+x 2=2 ;设 A ( x 1, 0), B (x 2, 0),根据抛物线和方程的关系得出 x 1?x 2= ,即可求得 OA ?OB= ﹣ x 1?x 2=﹣ . 【解答】 解:∵抛物线开口向下,∴ a <0,∵抛物线对称轴为直线x= ﹣ =1,∴ b=﹣ 2a > 0,即 2a+b=0,所以 ② 正确;∵抛物线与 y 轴的交点在 x 轴上方,∴ c >0,∴ abc < 0,所以 ① 错误;∵抛物线对称轴为直线 x=1 ,∴函数的最大值为 a+b+c ,∴当 m ≠1 时, a+b+c > am 2+bm+c ,即 a+b > am 2+bm ,所以 ③ 正确;∵抛物线与 x 轴的一个交点在( 3, 0 )的左侧,而对称轴为直线 x=1,∴抛物线与 x 轴的另一个交点在(﹣ 1, 0)的右侧∴当 x= ﹣ 1 时, y < 0, ∴ a ﹣b+c < 0,所以 ④ 错误; ∵ ax2 2 ,1+bx 1=ax 2 +bx 2∴ ax 1 22﹣bx 2=0 ,+bx 1﹣ ax 2∴ a (x 1+x 2)( x 1﹣ x 2) +b ( x 1﹣ x 2) =0,∴( x 1﹣ x 2) [a ( x 1+x 2) +b]=0 ,而 x 1≠x 2,∴ a (x 1+x 2) +b=0,即 x 1+x 2=﹣ , ∵ b=﹣ 2a ,∴ x 1+x 2=2,所以 ⑤ 正确;设 A ( x 1 ,0), B ( x 2, 0),∴x1?x2= .∵OA= ﹣ x1, OB=x 2,∴OA ?OB= ﹣ x1?x2=﹣,所以⑥错误.故选:A.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax 2+bx+c( a≠0),二次项系数 a 决定抛物线的开口方向和大小:当a>0 时,抛物线开口向上;当a< 0 时,抛物线开口向下;一次项系数 b 和二次项系数 a 共同决定对称轴的位置,当 a 与b 同号时(即ab> 0),对称轴在y 轴左侧;当a 与b 异号时(即ab< 0),对称轴在y 轴右侧;常数项 c 决定抛物线与y 轴交点.抛物线与y 轴交于( 0,c);抛物线与x 轴交点个数由△ 决定,△ =b2﹣4ac>0时,抛物线与x 轴有 2 个交点;△ =b2 ﹣ 4ac=0 时,抛物线与x 轴有 1 个交点;△=b2﹣ 4ac< 0 时,抛物线与x 轴没有交点.二、填空题(本大题 6 个小题,每题 3 分,共18 分)13.两组数据: 3, a, 2b,5 与 a,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为6.【考点】中位数;算术平均数.【分析】首先根据平均数的定义列出关于a、 b 的二元一次方程组,再解方程组求得a、 b 的值,然后求中位数即可.【解答】解:∵两组数据:3, a,2b, 5 与 a, 6, b 的平均数都是6,∴,解得,若将这两组数据合并为一组数据,按从小到大的顺序排列为3, 4, 5,6, 8, 8, 8,一共 7 个数,第四个数是6,所以这组数据的中位数是6.故答案为6.【点评】本题考查平均数和中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.14.如图,点 E 在正方形ABCD 的边 CD 上.若△ABE 的面积为 8,CE=3 ,则线段 BE 的长为5.【考点】正方形的性质;三角形的面积;勾股定理.【分析】根据正方形性质得出 AD=BC=CD=AB ,根据面积求出 EM ,得出 BC=4 ,根据勾股定理求出即可.【解答】解:过E 作 EM ⊥ AB 于 M ,∵四边形 ABCD 是正方形,∴ AD=BC=CD=AB ,∴ EM=AD ,BM=CE ,∵△ ABE 的面积为 8,∴ ×AB ×EM=8 ,解得: EM=4 ,即AD=DC=BC=AB=4 ,∵ CE=3,由勾股定理得:BE===5,故答案为: 5.BC 的长,【点评】本题考查了三角形面积,正方形性质,勾股定理的应用,解此题的关键是求出难度适中.15.观察下列一组数:,,根据该组数的排列规律,可推出第10 个数是.【考点】规律型:数字的变化类.【专题】规律型.【分析】由分子 1, 2,3, 4, 5,即可得出第10 个数的分子为10;分母为 3, 5, 7, 9, 11,即可得出第10 个数的分母为:1+2×10=21 ,得出结论.【解答】解:∵分子为1, 2, 3, 4, 5,,∴第 10 个数的分子为10,∵分母为3,5, 7, 9,11,,∴第 10 个数的分母为:1+2 ×10=21,∴第 10 个数为:,故答案为:.【点评】此题考查数字的变化规律,找出数字之间的运算规律,得出规律,利用规律,解决问题是解答此题的关键.16.如图,在 Rt△ABC 中,∠ BAC=90 °,AB=AC=16cm ,AD 为 BC 边上的高.动点 P 从点 A 出发,沿 A→D 方向以cm/s 的速度向点 D 运动.设△ABP 的面积为S1,矩形PDFE 的面积为S2,运动时间为t 秒( 0< t< 8),则t= 6秒时,S1=2S2.【考点】一元二次方程的应用;等腰直角三角形;矩形的性质.【专题】几何动点问题;压轴题.【分析】利用三角形的面积公式以及矩形的面积公式,表示出S1和S2,然后根据S1=2S2,即可列方程求解.【解答】解:∵ Rt△ ABC 中,∠ BAC=90 °, AB=AC=16cm , AD 为 BC 边上的高,∴AD=BD=CD=8cm,又∵ AP=t ,则 S1= AP ?BD=×8×t=8t , PD=8 ﹣t,∵PE∥ BC,∴△ APE ∽△ ADC ,∴,∴PE=AP=t ,∴ S 2=PD ?PE=( 8 ﹣t ) ? t ,∵ S 1=2S 2,∴ 8t=2( 8﹣ t ) ?t ,解得: t=6.故答案是: 6.【点评】 本题考查了一元二次方程的应用,以及等腰直角三角形的性质,正确表示出S 1 和 S 2 是关键.17.已知 cos α= ,则的值等于 0 .【考点】 同角三角函数的关系. 【专题】 计算题.【分析】 先利用 tan α=得到原式 = = ,然后把 cos α= 代入计算即可.【解答】 解:∵ tan α=,∴= = ,∵ cos α= ,∴= =0.故答案为 0.【点评】 本题考查了同角三角函数的关系:平方关系: sin 2A+cos 2A=1 ;正余弦与正切之间的关系 (积的关系):一个角的正切值等于这个角的正弦与余弦的比,即 tanA= 或 sinA=tanA ?cosA .18.已知关于 x 的方程 x 2﹣ 6x+k=0 的两根分别是 x 1, x 2,且满足+ =3,则 k 的值是 2 .【考点】 根与系数的关系.【分析】 找出一元二次方程的系数a ,b 及c 的值,利用根与系数的关系求出两根之和与两根之积,然后利用完全平方公式变形后,将求出的两根之和与两根之积代入,即可求出所求式子的值.2∴ x 1+x 2=6, x 1x 2=k ,+ = = =3,解得: k=2,故答案为: 2.【点评】 此题考查了一元二次方程根与系数的关系,对所求的代数式进行正确的变形是解决本题的关键.三、解答题(本大题 7 个小题,共 66 分.注意:解答应写出必要的文字说明, 证明过程或解答步骤. )19.( 1)计算:×(﹣)+|﹣ ﹣ 3×tan60°2 |+( ) ﹣2( 2)解方程: x 2﹣ 2x=2x ﹣ 4.【考点】 实数的运算;负整数指数幂;解一元二次方程-配方法;特殊角的三角函数值.【专题】 计算题;实数.【分析】 ( 1)原式第一项利用二次根式乘法法则计算,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果;( 2)方程整理后,利用完全平方公式化简,开方即可求出解.【解答】 解:( 1)原式 =﹣ 3+2 ﹣8﹣ 2 × =﹣ 3 +2 ﹣8﹣ 6=﹣﹣ 14;( 2)方程整理得: x 2﹣4x= ﹣ 4,配方得: x 2﹣4x+4=0 ,即( x ﹣ 2) 2=0,解得: x 1=x 2=2 .【点评】 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:( + ) ÷ ,其中 x= , y= ﹣ .【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 与 y 的值代入计算即可求出值.【解答】解:原式 =?xy ( x﹣ y) =?xy ( x﹣ y)=3xy ,当 x=+,y=﹣时,原式=3.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.某汽车专卖店销售 A , B 两种型号的新能源汽车.上周售出 1 辆 A 型车和 3 辆 B 型车,销售额为 96 万元;本周已售出 2 辆 A 型车和 1 辆 B 型车,销售额为62 万元.( 1)求每辆 A 型车和 B 型车的售价各为多少元.( 2)甲公司拟向该店购买 A , B 两种型号的新能源汽车共 6 辆,购车费不少于130 万元,且不超过140万元.则有哪几种购车方案?【考点】一元一次不等式组的应用;二元一次方程组的应用.【专题】应用题.【分析】( 1)每辆 A 型车和 B 型车的售价分别是x 万元、 y 万元.则等量关系为: 1 辆 A 型车和 3 辆 B 型车,销售额为96 万元, 2 辆 A 型车和 1 辆 B 型车,销售额为62 万元;( 2)设购买 A 型车 a 辆,则购买 B 型车( 6﹣ a)辆,则根据“购买A,B两种型号的新能源汽车共6 辆,购车费不少于130 万元,且不超过140 万元”得到不等式组.【解答】解:( 1)每辆 A 型车和 B 型车的售价分别是x 万元、 y 万元.则,解得.答:每辆 A 型车的售价为18 万元,每辆 B 型车的售价为26 万元;(2)设购买 A 型车 a 辆,则购买 B 型车( 6﹣ a)辆,则依题意得,解得2≤a≤3.∵a 是正整数,∴ a=2 或 a=3.∴共有两种方案:方案一:购买 2 辆 A 型车和 4 辆 B 型车;方案二:购买 3 辆 A 型车和 3 辆 B 型车.【点评】本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.22.如图,正方形ABCD 的边长为8cm, E、 F、 G、 H 分别是 AB ,BC , CD , DA 上的动点,且AE=BF=CG=DH ,(1)求证:四边形 EFGH 是正方形;(2)当四边形 EFGH 的面积为 50cm2时,求 tan∠ FEB 的值;(3)求四边形 EFGH 面积的最小值.【考点】正方形的判定与性质;二次函数的最值.【分析】( 1)由正方形的性质得出∠A= ∠ B= ∠C= ∠ D=90 °,AB=BC=CD=DA ,证出AH=BE=CF=DG ,由SAS 证明△ AEH ≌△ BFE≌△ CGF≌△ DHG ,得出 EH=FE=GF=GH ,∠ AEH= ∠ BFE,证出四边形 EFGH 是菱形,再证出∠ HEF=90 °,即可得出结论;( 2)设BE=xcm ,则BF=( 8﹣ x)cm,由勾股定理得出方程,解方程求出BE ,得出BF,即可得出结果;( 3)设四边形EFGH 面积为S,BE=xcm ,则BF=( 8﹣ x) cm,由勾股定理得出S=x 2+( 8﹣ x)2=2( x﹣ 4)2+32 ,S 是x 的二次函数,容易得出四边形EFGH 面积的最小值.【解答】( 1)证明:∵四边形ABCD 是正方形,∴∠ A= ∠B= ∠ C=∠ D=90 °, AB=BC=CD=DA,∵ AE=BF=CG=DH ,∴ AH=BE=CF=DG ,在 △AEH 、△ BFE 、 △ CGF 和 △ DHG 中,,∴△ AEH ≌△ BFE ≌△ CGF ≌△ DHG ( SAS ),∴ EH=FE=GF=GH ,∠ AEH= ∠ BFE ,∴四边形 EFGH 是菱形, ∵∠ BEF+ ∠ BFE=90 °,∴∠ BEF+ ∠ AEH=90 °,∴∠ HEF=90 °,∴四边形 EFGH 是正方形;( 2)解:∵四边形 EFGH 的面积为 50cm 2, ∴ EF 2=50cm 2,设 BE=xcm ,则 BF= ( 8﹣ x ) cm ,由勾股定理得: BE 2+BF 2=EF 2,即 x 2+( 8﹣x ) 2=50,解得: x=1,或 x=7 ,即 BE=1cm ,或 BE=7cm ,当 BE=1cm 时, BF=7cm , tan ∠ FEB= = ; 当 BE=7cm 时, BF=1cm , tan ∠ FEB==7;( 3)解:设四边形 EFGH 面积为 S ,设 BE=xcm ,则 BF= ( 8﹣x ) cm ,根据勾股定理得:EF 2=BE 2+BF 2=x 2+( 8﹣x ) 2, 222∴ S=x +( 8﹣x ) =2 ( x ﹣ 4) +32, ∵ 2> 0 ,∴ S 有最小值,当 x=4 时, S 的最小值 =32,∴四边形 EFGH 面积的最小值为32cm 2.【点评】 本题是四边形综合题目,考查了正方形的性质与判定、菱形的判定、全等三角形的判定与性质、勾股定理、 三角函数、 二次函数的最值等知识;本题综合性强, 有一定难度, 特别是( 2)( 3)中,需要通过作辅助线证明三角形全等和运用二次函数才能得出结果.23.如图,已知点 A、 P 在反比例函数y= (k< 0)的图象上,点 B 、Q 在直线 y=x ﹣ 3 的图象上,点 B 的纵坐标为﹣ 1, AB ⊥ x 轴,且 S△OAB =4,若 P、 Q 两点关于 y 轴对称,设点P 的坐标为( m,n).( 1)求点 A 的坐标和 k 的值;( 2)求的值.【考点】反比例函数与一次函数的交点问题.【分析】( 1)先由点 B 在直线 y=x ﹣ 3 的图象上,点 B 的纵坐标为﹣ 1,将 y= ﹣1 代入 y=x ﹣ 3,求出 x=2,即 B ( 2,﹣ 1).由 AB ⊥ x 轴可设点 A 的坐标为( 2,t),利用 S△OAB =4 列出方程(﹣1﹣t)×2=4 ,求出t=﹣ 5,得到点 A 的坐标为(2,﹣ 5);将点 A 的坐标代入y= ,即可求出k 的值;( 2)根据关于y 轴对称的点的坐标特征得到Q(﹣ m, n),由点P( m,n)在反比例函数y= ﹣的图象上,点Q 在直线y=x ﹣ 3 的图象上,得出mn=﹣ 10, m+n= ﹣ 3,再将变形为,代入数据计算即可.【解答】解:( 1)∵点 B 在直线 y=x ﹣ 3 的图象上,点 B 的纵坐标为﹣ 1,∴当 y= ﹣ 1 时, x﹣ 3=﹣ 1,解得 x=2,∴ B( 2,﹣ 1).设点 A 的坐标为( 2, t),则 t<﹣ 1, AB= ﹣ 1﹣t.∵S△OAB =4,∴(﹣1﹣t)×2=4,解得 t= ﹣5,∴点 A 的坐标为( 2,﹣ 5).∵点 A 在反比例函数y=(k<0)的图象上,∴﹣ 5=,解得k=﹣10;(2)∵ P、Q 两点关于 y 轴对称,点 P 的坐标为( m, n),∴Q(﹣ m,n),∵点 P 在反比例函数y= ﹣的图象上,点Q 在直线y=x﹣ 3 的图象上,∴ n=﹣,n=﹣m﹣3,∴mn=﹣ 10, m+n= ﹣ 3,∴= = = =﹣.【点评】本题考查了反比例函数与一次函数的交点问题,反比例函数与一次函数图象上点的坐标特征,三角形的面积,关于y 轴对称的点的坐标特征,代数式求值,求出点 A 的坐标是解决第(1)小题的关键,根据条件得到mn=﹣ 10, m+n= ﹣ 3 是解决第( 2)小题的关键.24.如图, AB 是⊙ O 的弦, D 为半径 OA 的中点,过 D 作 CD ⊥OA 交弦 AB 于点 E,交⊙ O 于点 F,且CE=CB .(1)求证: BC 是⊙ O 的切线;(2)连接 AF 、BF ,求∠ ABF 的度数;( 3)如果 CD=15 , BE=10 , sinA=,求⊙ O的半径.【考点】切线的判定;相似三角形的判定与性质.【专题】压轴题.【分析】( 1)连接 OB ,由圆的半径相等和已知条件证明∠OBC=90 °,即可证明BC 是⊙ O 的切线;(2)连接 OF,AF , BF,首先证明△OAF 是等边三角形,再利用圆周角定理:同弧所对的圆周角是所对圆心角的一半即可求出∠ ABF 的度数;( 3)过点 C 作 CG⊥ BE 于 G,根据等腰三角形的性质得到EG=BE=5 ,由两角相等的三角形相似,△ ADE ∽△ CGE,利用相似三角形对应角相等得到sin∠ECG=sinA=,在Rt△ECG中,利用勾股定理求出CG 的长,根据三角形相似得到比例式,代入数据即可得到结果.【解答】( 1)证明:连接OB,∵OB=OA , CE=CB ,∴∠ A= ∠OBA ,∠ CEB= ∠ ABC ,又∵ CD ⊥ OA ,∴∠ A+ ∠AED= ∠A+ ∠CEB=90 °,∴∠ OBA+ ∠ABC=90 °,∴OB ⊥BC ,∴BC 是⊙ O 的切线;( 2)解:如图1,连接 OF, AF , BF ,∵DA=DO , CD⊥OA ,∴ AF=OF ,∵OA=OF ,∴△ OAF 是等边三角形,∴∠ AOF=60 °,∴∠ ABF=∠AOF=30°;( 3)解:如图2,过点 C 作 CG⊥ BE 于 G,∵CE=CB ,∴ EG= BE=5 ,∵∠ ADE= ∠CGE=90 °,∠ AED= ∠ GEC,∴∠ GCE= ∠ A ,∴△ ADE ∽△ CGE,∴sin∠ ECG=sinA= ,在 Rt△ ECG 中,∵ CG==12 ,∵CD=15 ,CE=13 ,∴ DE=2 ,∵△ ADE ∽△ CGE,∴ = ,∴AD= , CG= ,∴⊙ O 的半径 OA=2AD=.【点评】此题考查了切线的判定,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.25.如图:已知抛物线y=ax 2﹣ x+c 与 x 轴相交于 A 、B 两点,并与直线y= x﹣ 2 交于 B 、C 两点,其中点 C 是直线 y= x﹣ 2 与 y 轴交点,连接 AC ,(1)求抛物线解析式;(2)证明:△ ABC 为直角三角形;( 3)在抛物线 CB 段上存在点 P 使得以 A ,C ,P ,B以及此时以 A , C , P ,B 为顶点的四边形面积.为顶点的四边形面积最大,请求出点P 的坐标【考点】 二次函数综合题.【分析】 ( 1)由直线 y= x ﹣ 2 交x 轴、 y轴于点B 、C 两点可求得点B 和点C 的坐标,然后将点B和点C 的坐标代入抛物线的解析式得到关于a 、c 的方程组,从而可求得a 、 c 的值;( 2)先求得点A 和点B 的坐标, 然后依据勾股定理可求得AC和BC的长,最后依据勾股定理的逆定理可证明 △ABC为直角三角形;( 3)设出点 P 与点 D 的坐标,可求得PD 的长(用含 a 的式子表示),依据二次函数的性质可知当a=2 时,PD 的最大值为2,由三角形的面积公式可知DP有最大值时, △ BCD 的面积最大,由于 △ ABC的面积为定值,故此时四边形ACPB 的面积最大.【解答】 解:( 1)∵直线 y=x ﹣ 2 交 x 轴、 y 轴于点B 、 C两点,∴ B ( 4,0), C ( 0,﹣ 2), ∵ y=ax 2﹣ x+c 经过点 B , C ,∴,解得 ,∴ y= x 2﹣ x ﹣ 2;( 2)∵令 x 2﹣ x ﹣ 2=0,解得: x 1=﹣ 1, x 2=4,∴ OA=1 , OB=4 .∴ AB=5 . ∴ AC 2=OA 2+0C 2=5, BC 2=OC 2+OB 2=20 , AB 2=25.∴ AC 2+BC 2=AB 2.∴△ ABC 为直角三角形.( 3)如图所示:连接 CD 、 BD ,过点 P 作 PE ⊥ AB ,垂足为 E ,直线 EP 交抛物线与点 D .设直线 BC 的解析式为 y=kx+b .∵将 B ( 4, 0), C( 0,﹣ 2)代入得:,解得: k= ,b=﹣ 2,∴直线 BC 的解析式为 y= .设点 P( a,),则点 D( a, a 2﹣ a﹣ 2).2﹣ 2) =﹣2,∵PD=DE ﹣PE=﹣ a + a+2+( a +2a∴当 a=2 时, PD 有最大值, PD 的最大值 =2 .∵四边形 ACPB 的面积 =S△ACB +S△CBD = + = ×5×2+ ×4×DP=5+2PD .∴当 PD 最大时,四边形 ACPB 的面积.∴当 P 的坐标为(2,﹣ 1)时,四边形 ACPB 的面积的最大值 =5+2 ×2=9 .【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、勾股定理、勾股定理的逆定理、三角形的面积公式、二次函数的图象和性质,列出四边形PD 与 a 的函数关系式是解题的关键.。

【附5套中考模拟试卷】江西省上饶市2019-2020学年中考数学一模试卷含解析

【附5套中考模拟试卷】江西省上饶市2019-2020学年中考数学一模试卷含解析

江西省上饶市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <12.四个有理数﹣1,2,0,﹣3,其中最小的是( )A .﹣1B .2C .0D .﹣33.如图,△ABC 内接于⊙O ,BC 为直径,AB=8,AC=6,D 是弧AB 的中点,CD 与AB 的交点为E ,则CE :DE 等于( )A .3:1B .4:1C .5:2D .7:24.下列运算正确的是( )A .32()x =x 5B .55()x x -=-C .3x ·2x =6xD .32x +2 35x 5x =5.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A .∠α=60°,∠α的补角∠β=120°,∠β>∠αB .∠α=90°,∠α的补角∠β=90°,∠β=∠αC .∠α=100°,∠α的补角∠β=80°,∠β<∠αD .两个角互为邻补角6.不等式组325521x x +>⎧⎨-≥⎩的解在数轴上表示为( ) A .B .C .D .7.已知5a =27b =,且a b a b +=+,则-a b 的值为( )A .2或12B .2或12-C .2-或12D .2-或12-8.如图,点C 是直线AB ,DE 之间的一点,∠ACD=90°,下列条件能使得AB ∥DE 的是( )A .∠α+∠β=180°B .∠β﹣∠α=90°C .∠β=3∠αD .∠α+∠β=90°9.如图,在平面直角坐标系xOy 中,点A (1,0),B (2,0),正六边形ABCDEF 沿x 轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF 滚动2017次时,点F 的坐标是( )A .(2017,0)B .(2017,12)C .(2018,3)D .(2018,0)10.运用乘法公式计算(3﹣a )(a+3)的结果是( )A .a 2﹣6a+9B .a 2﹣9C .9﹣a 2D .a 2﹣3a+911.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .203海里D .303海里12.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为( )A .140°B .160°C .170°D .150°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为___________元.14.已知a ,b ,c ,d 是成比例的线段,其中3cm a =,2cm b =,6cm c =,则d =_______cm . 15.某航班每次飞行约有111名乘客,若飞机失事的概率为p=1.111 15,一家保险公司要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿41万元人民币. 平均来说,保险公司应向每位乘客至少收取_____元保险费才能保证不亏本.16.在直角坐标系平面内,抛物线y=3x 2+2x 在对称轴的左侧部分是_____的(填“上升”或“下降”) 17.如果一个矩形的面积是40,两条对角线夹角的正切值是43,那么它的一条对角线长是__________. 18.如图,点E 在正方形ABCD 的边CD 上.若△ABE 的面积为8,CE=3,则线段BE 的长为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知正比例函数y=2x 和反比例函数的图象交于点A (m ,﹣2).求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x 的取值范围;若双曲线上点C (2,n )沿OA 5B ,判断四边形OABC 的形状并证明你的结论.20.(6分)如图,在△ABC 中,∠ABC=90°,D ,E 分别为AB ,AC 的中点,延长DE 到点F ,使EF=2DE . (1)求证:四边形BCFE 是平行四边形;(2)当∠ACB=60°时,求证:四边形BCFE 是菱形.21.(6分)如图所示,平行四边形形ABCD 中,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)请添加一个条件使四边形BEDF 为菱形.22.(8分)在▱ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF=BE ,连接AF ,BF . (1)求证:四边形DEBF 是矩形;(2)若AF 平分∠DAB ,AE=3,BF=4,求▱ABCD 的面积.23.(8分)已知y 关于x 的二次函数22(0).y ax bx a =--≠(1)当2,4a b ==时,求该函数图像的顶点坐标.(2)在(1)条件下,(,)P m t 为该函数图像上的一点,若p 关于原点的对称点p '也落在该函数图像上,求m 的值(3)当函数的图像经过点(1,0)时,若12113(,),(,)22A y B y a-是该函数图像上的两点,试比较1y 与2y 的大小.24.(10分)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A ,B 两种型号的学习用品共1000件,已知A 型学习用品的单价为20元,B 型学习用品的单价为30元.若购买这批学习用品用了26000元,则购买A ,B 两种学习用品各多少件?若购买这批学习用品的钱不超过28000元,则最多购买B 型学习用品多少件?25.(10分)在一个不透明的布袋中装两个红球和一个白球,这些球除颜色外均相同(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是 .(2)甲、乙、丙三人依次从袋中摸出一个球,记录颜色后不放回,试求出乙摸到白球的概率26.(12分)计算:3tan30°+|2﹣3|﹣(3﹣π)0﹣(﹣1)2018.27.(12分)数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式,然后翻开纸片②是4x1+5x+6,翻开纸片③是3x1﹣x﹣1.解答下列问题求纸片①上的代数式;若x是方程1x=﹣x﹣9的解,求纸片①上代数式的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选C.考点:一次函数与一元一次不等式.2.D【解析】解:∵-1<-1<0<2,∴最小的是-1.故选D.3.A【解析】【分析】利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.【详解】连接DO,交AB于点F,∵D是»AB的中点,∴DO ⊥AB ,AF=BF ,∵AB=8,∴AF=BF=4,∴FO 是△ABC 的中位线,AC ∥DO ,∵BC 为直径,AB=8,AC=6,∴BC=10,FO=12AC=1, ∴DO=5,∴DF=5-1=2,∵AC ∥DO ,∴△DEF ∽△CEA , ∴CE AC DE FD=, ∴CE DE =62=1. 故选:A .【点睛】此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF ∽△CEA 是解题关键.4.B【解析】【分析】根据幂的运算法则及整式的加减运算即可判断.【详解】A. ()23x =x 6,故错误;B. ()55x x -=-,正确;C. 3x ·2x =5x ,故错误;D. 32x +2 3x 不能合并,故错误,故选B.【点睛】此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则.5.C【解析】熟记反证法的步骤,然后进行判断即可.解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;A 、∠α的补角∠β>∠α,符合假命题的结论,故A 错误;B 、∠α的补角∠β=∠α,符合假命题的结论,故B 错误;C 、∠α的补角∠β<∠α,与假命题结论相反,故C 正确;D 、由于无法说明两角具体的大小关系,故D 错误.故选C .6.C【解析】【分析】先解每一个不等式,再根据结果判断数轴表示的正确方法.【详解】解:由不等式①,得3x >5-2,解得x >1,由不等式②,得-2x≥1-5,解得x≤2,∴数轴表示的正确方法为C .故选C .【点睛】考核知识点:解不等式组.7.D【解析】【分析】【详解】根据a =5=7,得a 5,b 7=±=±,因为a b a b +=+,则a 5,b 7=±=,则-a b =5-7=-2或-5-7=-12. 故选D.8.B【解析】【分析】延长AC 交DE 于点F ,根据所给条件如果能推出∠α=∠1,则能使得AB ∥DE ,否则不能使得AB ∥DE ;【详解】延长AC 交DE 于点F.A. ∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB ∥DE ;B. ∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故选B.【点睛】本题考查了平行线的判定方法:①两同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.9.C【解析】【分析】本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为23F滚动7次时的横坐标为8,纵坐3F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.【详解】.解:∵正六边形ABCDEF一共有6条边,即6次一循环;∴2017÷6=336余1,∴点F滚动1次时的横坐标为23,点F滚动7次时的横坐标为83,∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,∴点F滚动2107次时的横坐标为2017+1=20183∴点F滚动2107次时的坐标为(20183),故选C.【点睛】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考10.C【解析】【分析】根据平方差公式计算可得.【详解】解:(3﹣a)(a+3)=32﹣a2=9﹣a2,故选C.【点睛】本题主要考查平方差公式,解题的关键是应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方.11.D【解析】【分析】根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【详解】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:=故选:D.【点睛】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.12.B【解析】试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°. 考点:角度的计算二、填空题:(本大题共6个小题,每小题4分,共24分.)13.28【解析】设标价为x元,那么0.9x-21=21×20%,x=28.14.4【解析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad =cb ,将a ,b 及c 的值代入即可求得d .【详解】已知a ,b ,c ,d 是成比例线段,根据比例线段的定义得:ad =cb ,代入a =3,b =2,c =6,解得:d =4,则d =4cm .故答案为:4【点睛】本题主要考查比例线段的定义.要注意考虑问题要全面.15.21【解析】每次约有111名乘客,如飞机一旦失事,每位乘客赔偿41万人民币,共计4111万元,由题意可得一次飞行中飞机失事的概率为P=1.11115,所以赔偿的钱数为41111111×1.11115=2111元,即可得至少应该收取保险费每人2000100 =21元. 16.下降【解析】【分析】根据抛物线y=3x 2+2x 图像性质可得,在对称轴的左侧部分是下降的.【详解】解:∵在232y x x =+中,30a =>,∴抛物线开口向上,∴在对称轴左侧部分y 随x 的增大而减小,即图象是下降的,故答案为下降.【点睛】本题考查二次函数的图像及性质.根据抛物线开口方向和对称轴的位置即可得出结论.17.1.【解析】【分析】如图,作BH ⊥AC 于H .由四边形ABCD 是矩形,推出OA=OC=OD=OB ,设OA=OC=OD=OB=5a ,由tan∠BOH43BHOH==,可得BH=4a,OH=3a,由题意:212⨯⨯1a×4a=40,求出a即可解决问题.【详解】如图,作BH⊥AC于H.∵四边形ABCD是矩形,∴OA=OC=OD=OB,设OA=OC=OD=OB=5a.∵tan∠BOH43BHOH==,∴BH=4a,OH=3a,由题意:212⨯⨯1a×4a=40,∴a=1,∴AC=1.故答案为:1.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.18.5.【解析】【详解】试题解析:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴12×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:222243BC CE+=+考点:1.正方形的性质;2.三角形的面积;3.勾股定理.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)2 yx =(2)﹣1<x<0或x>1.(3)四边形OABC是平行四边形;理由见解析.【解析】【分析】(1)设反比例函数的解析式为kyx=(k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式.(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;(3)首先求出OA的长度,结合题意CB∥OA且OABC是平行四边形,再证明OA=OC【详解】解:(1)设反比例函数的解析式为kyx=(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1.∴A(﹣1,﹣2).又∵点A在kyx=上,∴k21-=-,解得k=2.,∴反比例函数的解析式为2yx =.(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为﹣1<x<0或x>1.(3)四边形OABC是菱形.证明如下:∵A(﹣1,﹣2),∴OA=.由题意知:CB∥OA且CB=OA.∴四边形OABC是平行四边形.∵C(2,n)在2yx=上,∴2n12==.∴C(2,1).∴OC OC=OA.∴平行四边形OABC是菱形.20.(1)见解析;(2)见解析【解析】【分析】(1)由题意易得,EF与BC平行且相等,利用四边形BCFE是平行四边形.(2)根据菱形的判定证明即可.【详解】(1)证明::∵D.E为AB,AC中点∴DE为△ABC的中位线,DE=BC,∴DE∥BC,即EF∥BC,∵EF=BC,∴四边形BCEF为平行四边形.(2)∵四边形BCEF为平行四边形,∵∠ACB=60°,∴BC=CE=BE,∴四边形BCFE是菱形.【点睛】本题考查平行四边形的判定和性质、菱形的判定、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.见解析【解析】【分析】(1)根据平行四边形的性质可得AB∥DC,OB=OD,由平行线的性质可得∠OBE=∠ODF,利用ASA 判定△BOE≌△DOF,由全等三角形的性质可得EO=FO,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF是平行四边形;(2)添加EF⊥BD(本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF为菱形.【详解】(1)∵四边形ABCD是平行四边形,O是BD的中点,∴AB∥DC,OB=OD,∴∠OBE=∠ODF,又∵∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)EF⊥BD.∵四边形BEDF是平行四边形,∵EF ⊥BD ,∴平行四边形BEDF 是菱形.【点睛】本题考查了平行四边形的性质与判定、菱形的判定,熟知平行四边形的性质与判定及菱形的判定方法是解决问题的关键.22.(1)证明见解析(2)3【解析】试题分析:(1)根据平行四边形的性质,可证DF ∥EB ,然后根据一组对边平行且相等的四边形为平行四边形可证四边形DEBF 是平行四边形,然后根据有一个角是直角的平行四边形是矩形可证;(2)根据(1)可知DE=BF ,然后根据勾股定理可求AD 的长,然后根据角平分线的性质和平行线的性质可求得DF=AD ,然后可求CD 的长,最后可用平行四边形的面积公式可求解.试题解析:(1)∵四边形ABCD 是平行四边形,∴DC ∥AB ,即DF ∥EB .又∵DF =BE ,∴四边形DEBF 是平行四边形.∵DE ⊥AB ,∴∠EDB =90°.∴四边形DEBF 是矩形.(2)∵四边形DEBF 是矩形,∴DE =BF =4,BD =DF .∵DE ⊥AB ,∴AD 1.∵DC ∥AB ,∴∠DFA =∠FAB .∵AF 平分∠DAB ,∴∠DAF =∠FAB .∴∠DAF =∠DFA .∴DF =AD =1.∴BE =1.∴AB =AE +BE =3+1=2.∴S □ABCD =AB·BF =2×4=3.23.(1)2242y x x =-- 2214x =--(),顶点坐标(1,-4);(2)m=±1;(3)①当a >0时,y 2>y 1 ,②当a <0时,y 1>y 2 .【解析】试题分析:(1)把a=2,b=4代入22y ax bx =--并配方,即可求出此时二次函数图象的顶点坐标;(2)由题意把(m ,t )和(-m ,-t )代入(1)中所得函数的解析式,解方程组即可求得m 的值; (3)把点(1,0)代入22y ax bx =--可得b=a-2,由此可得抛物线的对称轴为直线:2112222b b a x a a a a--=-===-,再分a>0和a<0两种情况分别讨论即可y 1和y 2的大小关系了. 试题解析:(1)把a=2,b=4代入22y ax bx =--得:222422(1)4y x x x =--=--, ∴此时二次函数的图象的顶点坐标为(1,-4);(2)由题意,把(m ,t )和(-m ,-t )代入2242y x x =--得: 2242m m t --=①,2242m m t +-=-②,由①+②得:2440m -=,解得:1m =±;(3)把点(1,0)代入22y ax bx =--得a-b-2=0,∴b=a-2, ∴此时该二次函数图象的对称轴为直线:2112222b b a x a a a a--=-===-, ①当a>0时,1111()22a a--=,13112()()22a a a ---=, ∵此时21a a>,且抛物线开口向上, ∴12113,,,22A y B y a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭中,点B 距离对称轴更远, ∴y 1<y 2;②当a<0时,1111()22a a --=-,13112()()22a a a---=-, ∵此时12a a -<-,且抛物线开口向下, ∴12113,,,22A y B y a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭中,点B 距离对称轴更远, ∴y 1>y 2;综上所述,当a>0时,y 1<y 2;当a<0时,y 1>y 2.点睛:在抛物线上:(1)当抛物线开口向上时,抛物线上的点到对称轴的距离越远,所对应的函数值就越大;(2)当抛物线开口向下时,抛物线上的点到对称轴的距离越近,所对应的函数值就越大;24.(1)购买A 型学习用品400件,B 型学习用品600件.(2)最多购买B 型学习用品1件【解析】【分析】(1)设购买A 型学习用品x 件,B 型学习用品y 件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论.(2)设最多可以购买B 型产品a 件,则A 型产品(1000﹣a )件,根据这批学习用品的钱不超过210元建立不等式求出其解即可.【详解】解:(1)设购买A 型学习用品x 件,B 型学习用品y 件,由题意,得x y 100020x 30y 26000+=⎧⎨+=⎩,解得:x 400y 600=⎧⎨=⎩. 答:购买A 型学习用品400件,B 型学习用品600件.(2)设最多可以购买B 型产品a 件,则A 型产品(1000﹣a )件,由题意,得20(1000﹣a )+30a≤210,解得:a≤1.答:最多购买B 型学习用品1件25. (1)23;(2)13. 【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出乙摸到白球的结果数,然后根据概率公式求解.【详解】解:(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是23; 故答案为:23; (2)画树状图为:共有6种等可能的结果数,其中乙摸到白球的结果数为2,所以乙摸到白球的概率=26=13. 【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.26.1.【解析】【分析】直接利用绝对值的性质以及特殊角的三角函数值分别化简得出答案.【详解】3tan31°+|2|﹣(3﹣π)1﹣(﹣1)21181﹣1=1﹣1=1.【点睛】本题考查了绝对值的性质以及特殊角的三角函数值,解题的关键是熟练的掌握绝对值的性质以及特殊角的三角函数值.27.(1)7x1+4x+4;(1)55.【解析】【分析】(1)根据整式加法的运算法则,将(4x1+5x+6)+(3x1﹣x﹣1)即可求得纸片①上的代数式;(1)先解方程1x=﹣x﹣9,再代入纸片①的代数式即可求解.【详解】解:(1)纸片①上的代数式为:(4x1+5x+6)+(3x1﹣x﹣1)=4x1+5x+6+3x1-x-1=7x1+4x+4(1)解方程:1x=﹣x﹣9,解得x=﹣3代入纸片①上的代数式得7x1+4x+4=7×(-3)²+4×(-3)+4=63-11+4=55即纸片①上代数式的值为55.【点睛】本题考查了整式加减混合运算,解一元一次方程,代数式求值,在解题的过程中要牢记并灵活运用整式加减混合运算的法则.特别是对于含括号的运算,在去括号时,一定要注意符号的变化.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC 中,BC =4,⊙P 与△ABC 的边或边的延长线相切.若⊙P 半径为2,△ABC 的面积为5,则△ABC 的周长为( )A .8B .10C .13D .142.图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .2mnB .(m+n )2C .(m-n )2D .m 2-n 23.30cos ︒的值是()n n n nA .22B .33C .12D .324.在△ABC 中,∠C =90°,sinA =45,则tanB 等于( ) A .43 B .34C .35D .45 5.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE=AD ,连接EB ,EC ,DB .添加一个条件,不能使四边形DBCE 成为矩形的是( )A .AB=BEB .BE ⊥DC C .∠ADB=90°D .CE ⊥DE6.下列各数中是有理数的是( )A.πB.0 C.2D.35 7.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.2 8.已知x=2﹣,则代数式(7+4)x2+(2+)x+ 的值是()A.0 B.C.2+D.2﹣9.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.3B.5C.23D.2510.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长32m,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到AC'的位置,此时露在水面上的鱼线B′C′为33m,则鱼竿转过的角度是()A.60°B.45°C.15°D.90°11.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF 的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:112.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.109二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为.14.如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠三角形,使点C落在AB 边的点E处,折痕为BD.则△AED的周长为____cm.15.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是_____.16.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP 的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是___.17.计算:|-3|-1=__.18.已知x+y=8,xy=2,则x2y+xy2=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA 表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y (千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值.20.(6分)地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)21.(6分)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.求第一批悠悠球每套的进价是多少元;如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?22.(8分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B款运动鞋的销售量是A款的,则1月份B款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价×销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.23.(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.小礼诵读《论语》的概率是;(直接写出答案)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.24.(10分)现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示.设种植A种树苗的工人为x名,种植B种树苗的工人为y名.求y与x之间的函数关系式;设种植的总成本为w元,①求w与x之间的函数关系式;②若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率.25.(10分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C处,再测得山顶A的仰角为45°,求山高AD的长度.(测角仪高度忽略不计)26.(12分)如图所示,在△ABC中,BO、CO是角平分线.∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.若∠A=n°,求∠BOC的度数.27.(12分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:分别写出y A、y B与x之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据三角形的面积公式以及切线长定理即可求出答案.【详解】连接PE、PF、PG,AP,由题意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=12BC•PE=12×4×2=4,∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切线长定理可知:S△APG=12S四边形AFPG=132,∴132=12×AG•PG,∴AG=132,由切线长定理可知:CE=CF,BE=BG,∴△ABC的周长为AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故选C.【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.2.C【解析】【详解】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.故选C.3.D【解析】【分析】根据特殊角三角函数值,可得答案.【详解】解:30cos︒=,故选:D.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.4.B【解析】法一,依题意△ABC为直角三角形,∴∠A+∠B=90°,∴cosB=45,∵22cos sin1B B+=,∴sinB=35,∵tanB=sincosBB=34故选B法2,依题意可设a=4,b=3,则c=5,∵tanb=34ba=故选B5.B【解析】【分析】先证明四边形DBCE为平行四边形,再根据矩形的判定进行解答.【详解】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误,故选B.【点睛】本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键. 6.B【解析】【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.【详解】A 、π是无限不循环小数,属于无理数,故本选项错误;B 、0是有理数,故本选项正确;C 、2是无理数,故本选项错误;D 、35是无理数,故本选项错误,故选B . 【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.7.D【解析】【分析】解不等式得到x≥12m+3,再列出关于m 的不等式求解. 【详解】 23m x -≤﹣1, m ﹣1x≤﹣6,﹣1x≤﹣m ﹣6,x≥12m+3, ∵关于x 的一元一次不等式23m x -≤﹣1的解集为x≥4, ∴12m+3=4,解得m=1. 故选D .考点:不等式的解集8.C【解析】【分析】把x 的值代入代数式,运用完全平方公式和平方差公式计算即可【详解】解:当x=2﹣时, (7+4)x 2+(2+)x+。

江西省上饶市2019-2020学年高考数学三模考试卷含解析

江西省上饶市2019-2020学年高考数学三模考试卷含解析

江西省上饶市2019-2020学年高考数学三模考试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.某几何体的三视图如图所示,图中圆的半径为1,等腰三角形的腰长为3,则该几何体表面积为( )A .7πB .6πC .5πD .4π【答案】C 【解析】 【分析】几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,计算得到答案. 【详解】几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,故几何体的表面积为21322152πππ⨯⨯+⨯=. 故选:C . 【点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.2.若两个非零向量a r 、b r 满足()()0a b a b +⋅-=r r r r ,且2a b a b +=-r r r r ,则a r 与b r 夹角的余弦值为( )A .35B .35±C .12D .12±【答案】A 【解析】 【分析】设平面向量a r 与b r的夹角为θ,由已知条件得出a b =r r ,在等式2a b a b +=-r r r r 两边平方,利用平面向量数量积的运算律可求得cos θ的值,即为所求. 【详解】设平面向量a r 与b r的夹角为θ,()()22220a b a b a b a b +⋅-=-=-=r r r r r r r r Q ,可得a b =r r ,在等式2a b a b +=-r r r r 两边平方得22222484a a b b a a b b +⋅+=-⋅+r r r r r r r r ,化简得3cos 5θ=.故选:A. 【点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.3.若函数()222y sin x ϕϕπ⎛⎫<⎪⎝+⎭=的图象经过点012π⎛⎫⎪⎝⎭,,则函数()()()22f x sin x cos x ϕϕ=-+-图象的一条对称轴的方程可以为( ) A .24x π=-B .3724x π=C .1724x π=D .1324x π=-【答案】B 【解析】 【分析】 由点012π⎛⎫⎪⎝⎭,求得ϕ的值,化简()f x 解析式,根据三角函数对称轴的求法,求得()f x 的对称轴,由此确定正确选项. 【详解】 由题可知220,122sin ππϕϕ⎛⎫⨯+=< ⎪⎝⎭.6πϕ=-所以()2cos 266f x sin x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭5226412x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭令52,122x k k Z πππ+=+∈, 得,242k x k Z ππ=+∈ 令3k =,得3724x π= 故选:B 【点睛】本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.4.设集合U =R (R 为实数集),{}|0A x x =>,{}|1B x x =≥,则U A C B =I ( ) A .{}1|0x x << B .{}|01x x <≤C .{}|1x x ≥D .{}|0x x >【答案】A 【解析】 【分析】根据集合交集与补集运算,即可求得U A C B ⋂. 【详解】集合U =R ,{}|0A x x =>,{}|1B x x =≥ 所以{}1U C B x x =<所以{}{}{}0101U A C B x x x x x x ⋂=⋂<=<< 故选:A 【点睛】本题考查了集合交集与补集的混合运算,属于基础题.5.已知函数()f x 是R 上的偶函数,()g x 是R 的奇函数,且()()1g x f x =-,则()2019f 的值为( ) A .2 B .0C .2-D .2±【答案】B 【解析】 【分析】根据函数的奇偶性及题设中关于()g x 与()1f x -关系,转换成关于()f x 的关系式,通过变形求解出()f x 的周期,进而算出()2019f .【详解】()g x Q 为R 上的奇函数,()()()()010,g f g x g x ∴=-=-=-()()()10,11f f x f x ∴-=--=--,()()2f x f x ∴-=--而函数()f x 是R 上的偶函数,()()f x f x ∴=-,()()2f x f x ∴=--()()24f x f x ∴-=--,()()4f x f x ∴=-故()f x 为周期函数,且周期为4()()201910f f ∴=-=故选:B 【点睛】本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题. 6.已知集合A={x|y=lg (4﹣x 2)},B={y|y=3x ,x >0}时,A∩B=( ) A .{x|x >﹣2} B .{x|1<x <2} C .{x|1≤x≤2} D .∅ 【答案】B【解析】试题分析:由集合A 中的函数,得到,解得:,∴集合,由集合B 中的函数,得到,∴集合,则,故选B .考点:交集及其运算.7.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( ) A .()()⋅f x g x 是偶函数 B .()()f x g x ⋅是奇函数 C .()()f x g x ⋅是奇函数 D .()()f x g x ⋅是奇函数【答案】C 【解析】 【分析】根据函数奇偶性的性质即可得到结论. 【详解】解:()f x Q 是奇函数,()g x 是偶函数,()()f x f x ∴-=-,()()g x g x -=,()()()()f x g x f x g x --=-g g ,故函数是奇函数,故A 错误, |()|()|()|()f x g x f x g x --=g g 为偶函数,故B 错误, ()|()|()|()|f x g x f x g x --=-g g 是奇函数,故C 正确. |()()||()()|f x g x f x g x --=g g 为偶函数,故D 错误,故选:C . 【点睛】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.8.抛物线24y x =的焦点为F ,点(,)P x y 为该抛物线上的动点,若点(1,0)A -,则PFPA的最小值为( )A .12B .22C .32D .223【答案】B 【解析】 【分析】通过抛物线的定义,转化PF PN =,要使||||PF PA 有最小值,只需APN ∠最大即可,作出切线方程即可求出比值的最小值. 【详解】解:由题意可知,抛物线24y x =的准线方程为1x =-,(1,0)A -,过P 作PN 垂直直线1x =-于N ,由抛物线的定义可知PF PN =,连结PA ,当PA 是抛物线的切线时,||||PF PA 有最小值,则APN ∠最大,即PAF ∠最大,就是直线PA 的斜率最大, 设在PA 的方程为:(1)y k x =+,所以2(1)4y k x y x =+⎧⎨=⎩, 解得:2222(24)0kx k x k -++=,所以224()2440k k ∆=--=,解得1k =±, 所以45NPA ∠=︒,||2cos ||2PF NPA PA =∠=. 故选:B .【点睛】本题考查抛物线的基本性质,直线与抛物线的位置关系,转化思想的应用,属于基础题.9.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值是( )A .4B .2C .2-D .4-【答案】C 【解析】 【分析】利用n S 先求出n a ,然后计算出结果. 【详解】根据题意,当1n =时,11224S a λ==+,142a λ+∴=, 故当2n ≥时,112n n n n a S S --=-=,Q 数列{}n a 是等比数列,则11a =,故412λ+=, 解得2λ=-, 故选C . 【点睛】本题主要考查了等比数列前n 项和n S 的表达形式,只要求出数列中的项即可得到结果,较为基础. 10.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=L )A .1624B .1024C .1198D .1560【答案】B 【解析】 【分析】根据高阶等差数列的定义,求得等差数列{}n c 的通项公式和前n 项和,利用累加法求得数列{}n a 的通项公式,进而求得19a . 【详解】 依题意n a :1,4,8,14,23,36,54,……两两作差得n b :3,4,6,9,13,18,……两两作差得n c :1,2,3,4,5,……设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b ,设{}n c 的前n 项和为n C .易n c n =,22n n n C +=,进而得21332n n n n b C ++=+=+,所以2(1)133222n n n n b n -=+=-+,则(1)(1)36n n n n B n +-=+,所以11n n a B +=+,所以191024a =.故选:B【点睛】本小题主要考查新定义数列的理解和运用,考查累加法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题.11.已知椭圆()222210x y a b a b +=>>的右焦点为F ,左顶点为A ,点P 椭圆上,且PF AF ⊥,若1tan 2PAF ∠=,则椭圆的离心率e 为( ) A .14B .13C .12D .23【答案】C 【解析】 【分析】不妨设P 在第一象限,故2,b P c a ⎛⎫ ⎪⎝⎭,根据1tan 2PAF ∠=得到2120e e --=,解得答案.【详解】不妨设P 在第一象限,故2,b P c a ⎛⎫⎪⎝⎭,21tan 2b aPAF a c ∠==+,即2220a ac c --=, 即2120e e --=,解得12e =,1e =-(舍去).故选:C . 【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力.12.已知抛物线2:2(0)C y px p =>的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点(设点A 位于第一象限),过点A ,B 分别作抛物线C 的准线的垂线,垂足分别为点1A ,1B ,抛物线C 的准线交x 轴于点K ,若11||2||A KB K =,则直线l 的斜率为 A .1 B. C.D【答案】C 【解析】 【分析】 【详解】根据抛物线定义,可得1||||AF AA =,1||||BF BB =, 又11AA FK BB ∥∥,所以11||||2||||A K AF B K BF ==,所以1111||||2||||A K AAB K BB ==, 设1||(0)BB m m =>,则1||2AA m =,则111||||21cos cos ||23AA BB m m AFx BAA AB m m --∠=∠===+,所以sin 3AFx ∠=,所以直线l 的斜率tan k AFx =∠=C . 二、填空题:本题共4小题,每小题5分,共20分。

江西省上饶市2019-2020学年中考数学仿真第三次备考试题含解析

江西省上饶市2019-2020学年中考数学仿真第三次备考试题含解析

江西省上饶市2019-2020学年中考数学仿真第三次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有( )A .2个B .3个C .4个D .5个2.﹣18的倒数是( )A .18B .﹣18C .-118D .1183.一次函数y kx k =-与反比例函数(0)k y k x=≠在同一个坐标系中的图象可能是( ) A . B . C . D .4.如图,平面直角坐标中,点A (1,2),将AO 绕点A 逆时针旋转90°,点O 的对应点B 恰好落在双曲线y=(x>0)上,则k 的值为( )A .2B .3C .4D .65.如图,点A 为∠α边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示sinα的值,错误的是( )A .CD BCB .AC AB C .AD AC D .CD AC6.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( )A .和B .谐C .凉D .山7.如图所示的几何体的左视图是( )A .B .C .D .8.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( )A .205万B .420510⨯C .62.0510⨯D .72.0510⨯9.不等式3x <2(x+2)的解是( )A .x >2B .x <2C .x >4D .x <410.如图,等腰三角形ABC 底边BC 的长为4 cm ,面积为12 cm 2,腰AB 的垂直平分线EF 交AB 于点E ,交AC 于点F ,若D 为BC 边上的中点,M 为线段EF 上一点,则△BDM 的周长最小值为( )A .5 cmB .6 cmC .8 cmD .10 cm11.如图1、2、3分别表示甲、乙、丙三人由A 地到B 地的路线图,已知甲的路线为:A→C→B ;乙的路线为:A→D→E→F→B ,其中E 为AB 的中点;丙的路线为:A→I→J→K→B ,其中J 在AB 上,且AJ >JB .若符号[→]表示[直线前进],则根据图1、图2、图3的数据,判断三人行进路线长度的大小关系为( )A .甲=乙=丙B .甲<乙<丙C .乙<丙<甲D .丙<乙<甲12.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于__________.14.抛物线y =x 2﹣4x+2m 与x 轴的一个交点的坐标为(1,0),则此抛物线与x 轴的另一个交点的坐标是______. 15.分解因式:a 3-12a 2+36a=______.16.有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是_____.17.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.18.如图,在△ABC 中,AB=BC ,∠ABC=110°,AB 的垂直平分线DE 交AC 于点D ,连接BD,则∠ABD= ___________°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在ABC ∆中,AB AC =,AD 为BC 边上的中线,DE AB ⊥于点E.求证:BDE CAD ∆∆∽;若13AB =,10BC =,求线段DE 的长.20.(6分)如图,在四边形ABCD 中,点E 是对角线BD 上的一点,EA ⊥AB ,EC ⊥BC ,且EA=EC .求证:AD=CD .21.(6分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W (L )与滴水时间t (h )的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W 与t 之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图 ① 图②22.(8分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x 元(x 为正整数),每天的销售利润为y 元.求y 与x 的函数关系式;每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?23.(8分)重百江津商场销售AB 两种商品,售出1件A 种商品和4件B 种商品所得利润为600元,售出3件A 商品和5件B 种商品所得利润为1100元.求每件A 种商品和每件B 种商品售出后所得利润分别为多少元?由于需求量大A 、B 两种商品很快售完,重百商场决定再次购进A 、B 两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A 种商品? 24.(10分)已知Rt △ABC,∠A=90°,BC=10,以BC 为边向下作矩形BCDE,连AE 交BC 于F. (1)如图1,当AB=AC,且sin ∠BEF=35时,求BF CF的值;(2)如图2,当tan ∠ABC=12时,过D 作DH ⊥AE 于H,求EH EA ⋅的值; (3)如图3,连AD 交BC 于G ,当2FG BF CG =⋅时,求矩形BCDE 的面积25.(10分)已知抛物线,2:3L y ax bx =+-与x 轴交于()1,0A B -、两点,与y 轴交于点C ,且抛物线L 的对称轴为直线1x =.(1)抛物线的表达式;(2)若抛物线'L 与抛物线L 关于直线x m =对称,抛物线'L 与x 轴交于点','A B 两点(点'A 在点'B 左侧),要使'2ABC A BC S S ∆∆=,求所有满足条件的抛物线'L 的表达式.26.(12分)对于方程=1,某同学解法如下:解:方程两边同乘6,得3x ﹣2(x ﹣1)=1 ①去括号,得3x ﹣2x ﹣2=1 ②合并同类项,得x ﹣2=1 ③解得x =3 ④∴原方程的解为x =3 ⑤上述解答过程中的错误步骤有 (填序号);请写出正确的解答过程.27.(12分)如图,在矩形纸片ABCD 中,AB=6,BC=1.把△BCD 沿对角线BD 折叠,使点C 落在C′处,BC′交AD 于点G ;E 、F 分别是C′D 和BD 上的点,线段EF 交AD 于点H ,把△FDE 沿EF 折叠,使点D 落在D′处,点D′恰好与点A 重合.(1)求证:△ABG ≌△C′DG ;(2)求tan ∠ABG 的值;(3)求EF 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AB,∵AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质2.C【解析】【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【详解】∵-181()18⨯-=1,∴﹣18的倒数是1 18 -,故选C.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.3.B【解析】当k>0时,一次函数y=kx﹣k的图象过一、三、四象限,反比例函数y=kx的图象在一、三象限,∴A、C不符合题意,B符合题意;当k<0时,一次函数y=kx﹣k的图象过一、二、四象限,反比例函数y=k x的图象在二、四象限,∴D不符合题意.故选B.4.B【解析】【分析】作AC⊥y轴于C,ADx轴,BD⊥y轴,它们相交于D,有A点坐标得到AC=1,OC=1,由于AO绕点A逆时针旋转90°,点O的对应B点,所以相当是把△AOC绕点A逆时针旋转90°得到△ABD,根据旋转的性质得AD=AC=1,BD=OC=1,原式可得到B点坐标为(2,1),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】作AC⊥y轴于C,AD⊥x轴,BD⊥y轴,它们相交于D,如图,∵A点坐标为(1,1),∴AC=1,OC=1.∵AO绕点A逆时针旋转90°,点O的对应B点,即把△AOC绕点A逆时针旋转90°得到△ABD,∴AD=AC=1,BD=OC=1,∴B点坐标为(2,1),∴k=2×1=2.故选B.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了坐标与图形变化﹣旋转.5.D【解析】【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.【详解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠ACD=∠B=α,A、在Rt△BCD中,sinα=CDBC,故A正确,不符合题意;B、在Rt△ABC中,sinα=ACAB,故B正确,不符合题意;C、在Rt△ACD中,sinα=ADAC,故C正确,不符合题意;D、在Rt△ACD中,cosα=CDAC,故D错误,符合题意,故选D.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.6.D【解析】分析:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.详解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.点睛:注意正方体的空间图形,从相对面入手,分析及解答问题.7.A【解析】本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A.8.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2 050 000将小数点向左移6位得到2.05,所以2 050 000用科学记数法表示为:20.5×106,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.D【解析】【分析】不等式先展开再移项即可解答.【详解】解:不等式3x<2(x+2),展开得:3x<2x+4,移项得:3x-2x<4,解之得:x<4.故答案选D.【点睛】本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.10.C【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】如图,连接AD.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=12,解得:AD=6(cm).∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+12BC=6+12×4=6+2=8(cm).故选C.【点睛】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.11.A【解析】分析:由角的度数可以知道2、3中的两个三角形的对应边都是平行的,所以图2,图3中的三角形都和图1中的三角形相似.而且图2三角形全等,图3三角形相似.详解:根据以上分析:所以图2可得AE=BE,AD=EF,DE=BE.∵AE=BE=12AB,∴AD=EF=12AC,DE=BE=12BC,∴甲=乙.图3与图1中,三个三角形相似,所以JKAI=JBAJ=BK AIIJ AC,=AJAB=IJBC.∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,∴甲=丙.∴甲=乙=丙.故选A.点睛:本题考查了的知识点是平行四边形的性质,解答本题的关键是利用相似三角形的平移,求得线段的关系.12.D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,不是中心对称图形,故此选项不合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】试题解析:平移CD到C′D′交AB于O′,如图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE ⊥O′D′于点E ,则BE=,∴O′E=,∴tanBO′E=,∴tan ∠BOD=3.考点:解直角三角形.14.(3,0)【解析】【分析】把交点坐标代入抛物线解析式求m 的值,再令y=0解一元二次方程求另一交点的横坐标.【详解】把点(1,0)代入抛物线y=x 2-4x+2m 中,得m=6, 所以,原方程为y=x 2-4x+3,令y=0,解方程x 2-4x+3=0,得x 1=1,x 2=3∴抛物线与x 轴的另一个交点的坐标是(3,0).故答案为(3,0).【点睛】本题考查了点的坐标与抛物线解析式的关系,抛物线与x 轴交点坐标的求法.本题也可以用根与系数关系直接求解.15.a(a-6)2【解析】【分析】原式提取a ,再利用完全平方公式分解即可.【详解】原式=a(a 2-12a+36)=a(a-6)2,故答案为a(a-6)2【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.16.45 【解析】分析:直接利用中心对称图形的性质结合概率求法直接得出答案.详解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:45. 故答案为45. 点睛:此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键. 17.72【解析】分析:延长AB 交2l 于点F ,根据12//l l 得到∠2=∠3,根据五边形ABCDE 是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB 交2l 于点F ,∵12//l l ,∴∠2=∠3,∵五边形ABCDE 是正五边形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案为:72°. 点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.18.1【解析】∵在△ABC 中,AB=BC ,∠ABC=110°,∴∠A=∠C=1°,∵AB 的垂直平分线DE 交AC 于点D ,∴AD=BD ,∴∠ABD=∠A=1°;故答案是1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)6013DE =. 【解析】【分析】对于(1),由已知条件可以得到∠B=∠C ,△ABC 是等腰三角形,利用等腰三角形的性质易得AD ⊥BC ,∠ADC=90°;接下来不难得到∠ADC=∠BED ,至此问题不难证明;对于(2),利用勾股定理求出AD ,利用相似比,即可求出DE.【详解】解:(1)证明:∵AB AC =,∴B C ∠=∠.又∵AD 为BC 边上的中线,∴AD BC ⊥.∵DE AB ⊥,∴90BED CDA ︒∠=∠=,∴BDE CAD ∆∆∽.(2)∵10BC =,∴5BD =.在Rt ABD ∆中,根据勾股定理,得12AD ==. 由(1)得BDE CAD ∆∆∽,∴BD DE CA AD=, 即51312DE =, ∴6013DE =. 【点睛】此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.20.证明见解析【解析】【分析】根据垂直的定义和直角三角形的全等判定,再利用全等三角形的性质解答即可.【详解】∵EA ⊥AB ,EC ⊥BC ,∴∠EAB=∠ECB=90°,在Rt △EAB 与Rt △ECB 中{EA EC EB EB==, ∴Rt △EAB ≌Rt △ECB ,∴AB=CB ,∠ABE=∠CBE ,∵BD=BD ,在△ABD 与△CBD 中{AB CBABE CBE BD BD=∠=∠=,∴△ABD ≌△CBD ,∴AD=CD .【点睛】本题考查了全等三角形的判定及性质,根据垂直的定义和直角三角形的全等判定是解题的关键. 21.(1)0.3 L ;(2)在这种滴水状态下一天的滴水量为9.6 L.【解析】【分析】(1)根据点()0,0.3的实际意义可得;(2)设W 与t 之间的函数关系式为W kt b =+,待定系数法求解可得,计算出24t =时W 的值,再减去容器内原有的水量即可.【详解】(1)由图象可知,容器内原有水0.3 L.(2)由图象可知W 与t 之间的函数图象经过点(0,0.3),故设函数关系式为W =kt +0.3.又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k +0.3=0.9,解得k =0.4.故W 与t 之间的函数关系式为W =0.4t +0.3.当t =24时,W =0.4×24+0.3=9.9(L ),9.9-0.3=9.6(L ),即在这种滴水状态下一天的滴水量为9.6 L.【点睛】本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.22.(1)y=﹣5x 2+110x+1200;(2) 售价定为189元,利润最大1805元【解析】【分析】利润等于(售价﹣成本)×销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;【详解】(1)y=(200﹣x﹣170)(40+5x)=﹣5x2+110x+1200;(2)y=﹣5x2+110x+1200=﹣5(x﹣11)2+1805,∵抛物线开口向下,∴当x=11时,y有最大值1805,答:售价定为189元,利润最大1805元;【点睛】本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键.23.(1)200元和100元(2)至少6件【解析】【分析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解即可.【详解】解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得4600351100x yx y+=⎧⎨+=⎩,解得:200100xy=⎧⎨=⎩,答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.24.(1)17;(2)80;(3)100.【解析】【分析】(1)过A作AK⊥BC于K,根据sin∠BEF=35得出35FKAK=,设FK=3a,AK=5a,可求得BF=a,故17BFCF=;(2)过A作AK⊥BC于K,延长AK交ED于G,则AG⊥ED,得△EGA∽△EHD,利用相似三角形的性质即可求出;(3)延长AB 、ED 交于K,延长AC 、ED 交于T,根据相似三角形的性质可求出BE=ED ,故可求出矩形的面积.【详解】解:(1)过A 作AK ⊥BC 于K,∵sin ∠BEF =35,sin ∠FAK =35, ∴35FK AK =, 设FK=3a,AK=5a,∴AK=4a,∵AB=AC,∠BAC=90°,∴BK=CK=4a,∴BF=a,又∵CF=7a, ∴17BF CF = (2)过A 作AK ⊥BC 于K,延长AK 交ED 于G ,则AG ⊥ED ,∵∠AGE=∠DHE=90°,∴△EGA ∽△EHD, ∴EH ED EG EA=, ∴·EH EA EG ED ⋅=,其中EG=BK, ∵BC=10,tan ∠ABC =12, cos ∠ABC =∴BA =BC· cos ∠ABCBK= BA·cos ∠ABC 8= ∴EG=8,另一方面:ED=BC=10,∴EH·EA=80(3)延长AB 、ED 交于K,延长AC 、ED 交于T,∵BC ∥KT,BF AF FG KE AE ED==, ∴BF KE FG DE =,同理:FG ED CG DT =∵FG2= BF·CG ∴BF FG FG CG=,∴ED2= KE·DT ∴KE EDDE DT=,又∵△KEB∽△CDT,∴KE CDBE DT=,∴KE·DT =BE2,∴BE2=ED2∴ BE=ED∴1010100BCDES=⨯=矩形【点睛】此题主要考查相似三角形的判定与性质,解题的关键根据题意作出辅助线再进行求解. 25.(1)()214y x=--;(2)()()2234;74y x y x=--=--.【解析】【分析】(1)根据待定系数法即可求解;(2)根据题意知()20A m'-,,根据三角形面积公式列方程即可求解.【详解】(1)根据题意得:1230baa b⎧-=⎪⎨⎪--=⎩,解得:12ab=⎧⎨=-⎩,抛物线的表达式为:()222314y x x x=--=--;(2)∵抛物线'L与抛物线L关于直线x m=对称,抛物线L的对称轴为直线1x=∴抛物线'L的对称轴为直线1x m=+,∵抛物线'L与x轴交于点','A B两点且点'A在点'B左侧,∴A'的横坐标为:121m m+-=-∴()10A m'-,,令0y=,则2230x x--=,解得:1213x x =-=,,令0x =,则3y =,∴点A B 、的坐标分别为()10A -,,()30B ,,点C 的坐标为()03,, ∴1143622ABC C S AB y =⨯⨯=⨯⨯=n , ∵132A BCABC S S '==n n , ∴132A BC C S A B y '=⨯⨯'=n ,即113332m --⨯=, 解得:2m =或6m =,∵抛物线'L 与抛物线L 关于直线x m =对称,抛物线'L 的对称轴为直线1x m =+,∴抛物线'L 的表达式为()234y x =--或()274y x =--. 【点睛】本题属于二次函数综合题,涉及了待定系数法求函数解析式、一元二次方程的解及三角形的面积,第(2)问的关键是得到抛物线'L 的对称轴为直线1x m =+.26.(1)错误步骤在第①②步.(2)x =4.【解析】【分析】(1)第①步在去分母的时候,两边同乘以6,但是方程右边没有乘,另外在去括号时没有注意到符号的变化,所以出现错误;(2)注重改正错误,按以上步骤进行即可.【详解】解:(1)方程两边同乘6,得3x ﹣2(x ﹣1)=6 ①去括号,得3x ﹣2x+2=6 ②∴错误步骤在第①②步.(2)方程两边同乘6,得3x ﹣2(x ﹣1)=6去括号,得3x ﹣2x+2=6合并同类项,得x+2=6解得x =4∴原方程的解为x =4【点睛】本题考查的解一元一次方程,注意去分母与去括号中常见错误,符号也经常是出现错误的原因.27.(1)证明见解析(2)7/24(3)25/6【解析】(1)证明:∵△BDC′由△BDC 翻折而成,∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。

江西省上饶市2019-2020学年中考第三次适应性考试数学试题含解析

江西省上饶市2019-2020学年中考第三次适应性考试数学试题含解析

江西省上饶市2019-2020学年中考第三次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是()A.圆锥B.圆柱C.球D.正方体2.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60°B.35°C.30.5°D.30°3.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A.4 B.3 C.2 D.14.四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。

现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是()A.34B.1 C.12D.145.已知:二次函数y=ax2+bx+c(a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b<m(am+b)(m≠-1);④ax2+bx+c=1两根分别为-3,1;⑤4a+2b+c>1.其中正确的项有( )A.2个B.3个C.4个D.5个6.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158 159 160 160 160 161 169乙组158 159 160 161 161 163 165以下叙述错误的是()A.甲组同学身高的众数是160B.乙组同学身高的中位数是161C.甲组同学身高的平均数是161D.两组相比,乙组同学身高的方差大7.有一个数用科学记数法表示为5.2×105,则这个数是()A.520000 B.0.000052C.52000 D.52000008.某射手在同一条件下进行射击,结果如下表所示:射击次数(n)10 20 50 100 200 500 ……击中靶心次数(m)8 19 44 92 178 451 ……击中靶心频率()0.80 0.95 0.88 0.92 0.89 0.90 ……由此表推断这个射手射击1次,击中靶心的概率是( )A.0.6 B.0.7 C.0.8 D.0.99.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )A.B.C.D.10.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A .带③去B .带②去C .带①去D .带①②去11.从标号分别为1,2,3,4,5的5张卡片中随机抽取1张,下列事件中不可能事件是( ) A .标号是2B .标号小于6C .标号为6D .标号为偶数12.图为一根圆柱形的空心钢管,它的主视图是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,直线123y x =+与x 轴交于点A ,与y 轴交于点B ,点D 在x 轴的正半轴上,OD OA =,过点D 作CD x ⊥轴交直线AB 于点C ,若反比例函数(0)ky k x=≠的图象经过点C ,则k 的值为_________________.14.下面是“作已知圆的内接正方形”的尺规作图过程. 已知:⊙O .求作:⊙O 的内接正方形. 作法:如图,(1)作⊙O 的直径AB ;(2)分别以点A ,点B 为圆心,大于AB 的长为半径作弧,两弧分别相交于M 、N 两点;(3)作直线MN 与⊙O 交于C 、D 两点,顺次连接A 、C 、B 、D .即四边形ACBD 为所求作的圆内接正方形.请回答:该尺规作图的依据是_____.15.已知抛物线y=x 2﹣x+3与y 轴相交于点M ,其顶点为N ,平移该抛物线,使点M 平移后的对应点M′与点N重合,则平移后的抛物线的解析式为_____.16.一次函数y=kx+b 的图像如图所示,则当kx+b>0 时,x 的取值范围为___________.17.如图,在反比例函数y=10x(x>0)的图象上,有点P1,P2,P3,P4,…,它们的横坐标依次为2,4,6,8,…分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S1,S2,S3,…,S n,则S1+S2+S3+…+S n=_____(用含n的代数式表示)18.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:2231422a a aa a a-÷--+-,其中a与2,3构成ABC∆的三边,且a为整数.20.(6分)在抗洪抢险救灾中,某地粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到没有受洪水威胁的A,B两仓库,已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为60吨,B库的容量为120吨,从甲、乙两库到A、B两库的路程和运费如表(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨•千米)甲库乙库甲库乙库A库20 15 12 12B库25 20 10 8若从甲库运往A库粮食x吨,(1)填空(用含x的代数式表示):①从甲库运往B库粮食吨;②从乙库运往A库粮食吨;③从乙库运往B库粮食吨;(2)写出将甲、乙两库粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式,并求出当从甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?21.(6分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.22.(8分)城市小区生活垃圾分为:餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四种不同的类型.(1)甲投放了一袋垃圾,恰好是餐厨垃圾的概率是;(2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率.23.(8分)如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.求证:△ABE≌△CAD;求∠BFD的度数.24.(10分)(问题发现)(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为;(拓展探究)(2)如图(2)在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN 的形状,并说明理由;(解决问题)(3)如图(3)在正方形ABCD中,AB=22,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.25.(10分)如图,已知□ABCD的面积为S,点P、Q时是▱ABCD对角线BD的三等分点,延长AQ、AP,分别交BC,CD于点E,F,连结EF。

江西省上饶市2019-2020学年中考第三次质量检测数学试题含解析

江西省上饶市2019-2020学年中考第三次质量检测数学试题含解析

江西省上饶市2019-2020学年中考第三次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若x=-2是关于x的一元二次方程x2+32ax-a2=0的一个根,则a的值为()A.-1或4 B.-1或-4C.1或-4 D.1或42.如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是()A.点B、点C都在⊙A内B.点C在⊙A内,点B在⊙A外C.点B在⊙A内,点C在⊙A外D.点B、点C都在⊙A外3.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为( )A.6 B.8C.10 D.124.如图,AD∥BC,AC平分∠BAD,若∠B=40°,则∠C的度数是()A.40°B.65°C.70°D.80°5.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是( )A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2D.y=2(x﹣3)26.如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②△OAE∽△OPA;③当正方形的边长为3,BP=1时,cos∠DFO=35,其中正确结论的个数是( )A.0 B.1 C.2 D.37.若kb<0,则一次函数y kx b=+的图象一定经过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限8.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x件,乙种奖品y件.依题意,可列方程组为()A.204030650x yx y+=⎧⎨+=⎩B.204020650x yx y+=⎧⎨+=⎩C.203040650x yx y+=⎧⎨+=⎩D.704030650x yx y+=⎧⎨+=⎩9.如图,△ABC中,若DE∥BC,EF∥AB,则下列比例式正确的是( )A.AD DEDB BC=B.BF EFBC AD=C.AE BFEC FC=D.EF DEAB BC=10.下列事件中是必然事件的是()A.早晨的太阳一定从东方升起B.中秋节的晚上一定能看到月亮C.打开电视机,正在播少儿节目D.小红今年14岁,她一定是初中学生11.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y212.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.48二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:3a2﹣12=___.14.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为____米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)15.如图,利用图形面积的不同表示方法,能够得到的代数恒等式是____________________(写出一个即可).16.函数y=13x-1x-x的取值范围是_____.17.分解因式:mx2﹣6mx+9m=_____.18.若一个圆锥的侧面展开图是一个半径为6cm,圆心角为120°的扇形,则该圆锥的侧面面积为______cm (结果保留π).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)随着社会经济的发展,汽车逐渐走入平常百姓家.某数学兴趣小组随机抽取了我市某单位部分职工进行调查,对职工购车情况分4类(A:车价40万元以上;B:车价在20—40万元;C:车价在20万元以下;D:暂时未购车)进行了统计,并将统计结果绘制成以下条形统计图和扇形统计图.请结合图中信息解答下列问题:(1)调查样本人数为__________,样本中B类人数百分比是_______,其所在扇形统计图中的圆心角度数是________;(2)把条形统计图补充完整;(3)该单位甲、乙两个科室中未购车人数分别为2人和3人,现从中选2人去参观车展,用列表或画树状图的方法,求选出的2人来自不同科室的概率.20.(6分)解方程:x 2-4x -5=021.(6分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a 元(a 为常数,且40<a <100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x 万件乙产品时需上交0.5x 2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y 1(万元)、y 2(万元)与相应生产件数x (万件)(x 为正整数)之间的函数关系式,并指出自变量的取值范围; (2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?22.(8分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图统计图:根据统计图所提供的倍息,解答下列问题: (1)本次抽样调查中的学生人数是多少人; (2 )补全条形统计图;(3)若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;(4)现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率.23.(8分)抛物线M :()2410y ax ax a a =-+-≠与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .(1)抛物线M 的对称轴是直线________; (2)当2AB =时,求抛物线M 的函数表达式;(3)在(2)的条件下,直线l :()0y kx b k =+≠经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为()330x x >,若当21n -≤≤-时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围.24.(10分)用你发现的规律解答下列问题.111122=-⨯ 1112323=-⨯ 1113434=-⨯ ┅┅计算111111223344556++++=⨯⨯⨯⨯⨯ .探究1111......122334(1)n n ++++=⨯⨯⨯+ .(用含有n 的式子表示)若1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值. 25.(10分)如图,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于点A 、B ,与y 轴交于点C ,直线y=x+4经过点A 、C ,点P 为抛物线上位于直线AC 上方的一个动点. (1)求抛物线的表达式;(2)如图,当CP//AO 时,求∠PAC 的正切值;(3)当以AP、AO为邻边的平行四边形第四个顶点恰好也在抛物线上时,求出此时点P的坐标. 26.(12分)小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究.下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x米,篱笆长为y米.则y关于x的函数表达式为________;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:x 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5y 17 10 8.3 8.2 8.7 9.3 10.8 11.6描点、画函数图象:如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当x=________时,y有最小值.由此,小强确定篱笆长至少为________米.27.(12分)如图,在矩形ABCD中,对角线AC,BD相交于点O.画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】试题解析:∵x=-2是关于x 的一元二次方程22302x ax a +-=的一个根, ∴(-2)2+32a×(-2)-a 2=0,即a 2+3a-2=0, 整理,得(a+2)(a-1)=0, 解得 a 1=-2,a 2=1. 即a 的值是1或-2. 故选A .点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根. 2.D 【解析】 【分析】先求出AB 的长,再求出AC 的长,由B 、C 到A 的距离及圆半径的长的关系判断B 、C 与圆的关系. 【详解】由题意可求出∠A=30°,∴AB=2BC=4, 由勾股定理得Q >3,∴点B 、点C 都在⊙A 外.故答案选D. 【点睛】本题考查的知识点是点与圆的位置关系,解题的关键是熟练的掌握点与圆的位置关系. 3.D 【解析】 【分析】根据正方形的性质可得出AB ∥CD ,进而可得出△ABF ∽△GDF ,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF 、AG 的长度,由AD ∥BC ,DG=CG ,可得出AG=GE ,即可求出AE=2AG=1. 【详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴AG DGGE CG==1,∴AG=GE∴AE=2AG=1.故选:D.【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.4.C【解析】【分析】根据平行线性质得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度数.【详解】解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=40°,∴∠BAD=140°,∵AC平分∠DAB,∴∠DAC=12∠BAD=70°,∵A∥BC,∴∠C =∠DAC =70°, 故选C . 【点睛】本题考查了平行线性质和角平分线定义,关键是求出∠DAC 或∠BAC 的度数. 5.C 【解析】 【分析】按照“左加右减,上加下减”的规律,从而选出答案. 【详解】y =2x 2向左平移3个单位得到的抛物线的解析式是y =2(x +3)2,故答案选C. 【点睛】本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律. 6.C 【解析】 【分析】由四边形ABCD 是正方形,得到AD=BC,90DAB ABC ∠=∠=︒, 根据全等三角形的性质得到∠P=∠Q ,根据余角的性质得到AQ ⊥DP ;故①正确;根据勾股定理求出5,AQ ==,DFO BAQ ∠=∠直接用余弦可求出. 【详解】详解:∵四边形ABCD 是正方形, ∴AD=BC,90DAB ABC ∠=∠=o , ∵BP=CQ , ∴AP=BQ ,在△DAP 与△ABQ 中, AD ABDAP ABQ AP BQ =⎧⎪∠=∠⎨⎪=⎩,∴△DAP ≌△ABQ , ∴∠P=∠Q ,∵90Q QAB ∠+∠=o, ∴90P QAB ∠+∠=o , ∴90AOP ∠=o ,∴AQ ⊥DP ; 故①正确;②无法证明,故错误. ∵BP=1,AB=3, ∴4BQ AP ==,5,AQ == ,DFO BAQ ∠=∠∴3cos cos .5AB DFO BAQ AQ ∠=∠== 故③正确, 故选C . 【点睛】考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高. 7.D 【解析】 【分析】根据k ,b 的取值范围确定图象在坐标平面内的位置关系,从而求解. 【详解】 ∵kb<0, ∴k 、b 异号。

江西省上饶市2019-2020学年中考数学第三次押题试卷含解析

江西省上饶市2019-2020学年中考数学第三次押题试卷含解析

江西省上饶市2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是( )A .5﹣2=3B .4 =±2C .a 6÷a 2=a 3D .(﹣a 2)3=﹣a 6 2.已知关于x 的方程2222x x a x x x x x +-+=--恰有一个实根,则满足条件的实数a 的值的个数为( ) A .1 B .2 C .3 D .43.如图,在△ABC 中,∠AED=∠B ,DE=6,AB=10,AE=8,则BC 的长度为( )A .152 B .154 C .3 D .834.如图,点E 是四边形ABCD 的边BC 延长线上的一点,则下列条件中不能判定AD ∥BE 的是()A .12∠=∠B .34∠=∠C .D 5∠∠= D .B BAD 180∠∠+=o 5.如图,AB ∥CD,FE ⊥DB,垂足为E ,∠1=50°,则∠2的度数是( )A .60°B .50°C .40°D .30°6.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1.其中合理的是()A.①B.②C.①②D.①③7.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()A.B.C.D.8.如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为()A.13 B.17 C.18 D.259.下列事件中,属于不确定事件的是()A.科学实验,前100次实验都失败了,第101次实验会成功B.投掷一枚骰子,朝上面出现的点数是7点C.太阳从西边升起来了D.用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形10.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是()A.红花、绿花种植面积一定相等B.紫花、橙花种植面积一定相等C.红花、蓝花种植面积一定相等D.蓝花、黄花种植面积一定相等11.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为( )A.30x=456x+B.30x=456x-C.306x-=45xD.306x+=45x12.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×108二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.14.如图,∠1,∠2是四边形ABCD的两个外角,且∠1+∠2=210°,则∠A+∠D=____度.15.一次函数y=(k﹣3)x﹣k+2的图象经过第一、三、四象限.则k的取值范围是_____.16.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.17.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是_____.18.若式子2x 有意义,则x 的取值范围是_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在Rt △ABC 中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆,分别与BC ,AB 相交于点D ,E ,连结AD .已知∠CAD=∠B .求证:AD 是⊙O 的切线.若BC=8,tanB=12,求⊙O 的半径.20.(6分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了________名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.21.(6分)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE ,求证:CE =CF ;如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果∠GCE =45°,请你利用(1)的结论证明:GE =BE +GD ;运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC ,E 是AB 上一点,且∠DCE =45°,BE =4,DE=10, 求直角梯形ABCD 的面积.22.(8分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措. 二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(假设生男生女机会均等,且与顺序无关).(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好都是女孩的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中恰好是2女1男的概率.23.(8分)如图,在Rt △ABC 中,90ACB ∠=︒,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE.求证:CE=AD ;当D 在AB 中点时,四边形BECD是什么特殊四边形?说明理由;若D 为AB 中点,则当A ∠=______时,四边形BECD 是正方形.24.(10分)解方程式:1x 2-- 3 = x 12x-- 25.(10分)解不等式组11232x x --≤,并将它的解集在数轴上表示出来.26.(12分)已知:如图,在正方形ABCD 中,点E 在边CD 上,AQ ⊥BE 于点Q ,DP ⊥AQ 于点P .求证:AP=BQ ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.27.(12分)先化简,再求值:(x ﹣2y )2+(x+y )(x ﹣4y ),其中x =5,y =15.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算.【详解】A. 不是同类二次根式,不能合并,故A选项错误;,故B选项错误;C. a6÷a2=a4≠a3,故C选项错误;D. (−a2)3=−a6,故D选项正确.故选D.【点睛】本题主要考查了二次根式的运算法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键.2.C【解析】【分析】先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一个实数根,因此,方程①的根有两种情况:(1)方程①有两个相等的实数根,此二等根使x(x-2)≠1;(2)方程①有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.针对每一种情况,分别求出a的值及对应的原方程的根.【详解】去分母,将原方程两边同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情况有两种:(1)方程①有两个相等的实数根,即△=9﹣3×2(3﹣a)=1.解得a=238.当a=238时,解方程2x2﹣3x+(﹣72+3)=1,得x1=x2=34.(2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为1或2.(i)当x=1时,代入①式得3﹣a=1,即a=3.当a=3时,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即这时方程①的另一个根是x=1.4.它不使分母为零,确是原方程的唯一根.(ii)当x=2时,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.当a=5时,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣12.x1是增根,故x=﹣12为方程的唯一实根;因此,若原分式方程只有一个实数根时,所求的a的值分别是238,3,5共3个.故选C.【点睛】考查了分式方程的解法及增根问题.由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论.理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键.3.A【解析】∵∠AED=∠B,∠A=∠A∴△ADE∽△ACB∴AE DE AB BC=,∵DE=6,AB=10,AE=8,∴8610BC=,解得BC=15 2.故选A.4.A【解析】【分析】利用平行线的判定方法判断即可得到结果.【详解】∵∠1=∠2,∴AB∥CD,选项A符合题意;∵∠3=∠4,∴AD∥BC,选项B不合题意;∵∠D=∠5,∴AD∥BC,选项C不合题意;∵∠B+∠BAD=180°,∴AD∥BC,选项D不合题意,故选A.【点睛】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.5.C【解析】试题分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故选C.考点:平行线的性质.6.B【解析】①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.1.错误,故选B.【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.7.A【解析】【分析】由三视图的俯视图,从左到右依次找到最高层数,再由主视图和俯视图之间的关系可知,最高层高度即为主视图高度.【详解】解:几何体从左到右的最高层数依次为1,2,3,所以主视图从左到右的层数应该为1,2,3,故选A.【点睛】本题考查了三视图的简单性质,属于简单题,熟悉三视图的概念,主视图和俯视图之间的关系是解题关键. 8.C【解析】在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在Rt△ABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=12AB,所以△ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.9.A【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、是随机事件,故A符合题意;B、是不可能事件,故B不符合题意;C、是不可能事件,故C不符合题意;D、是必然事件,故D不符合题意;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.C【解析】【分析】图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.【详解】解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.故选择C.【点睛】本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.11.A【解析】【分析】设甲每小时做x个,乙每小时做(x+6)个,根据甲做30 个所用时间与乙做45 个所用时间相等即可列方程.【详解】设甲每小时做x 个,乙每小时做(x+6)个,根据甲做30 个所用时间与乙做45 个所用时间相等可得30x =456x +. 故选A .【点睛】本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.12.A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.0000000076用科学计数法表示为97.610-⨯.故选A.【点睛】本题考查了用科学计数法表示较小的数,一般形式为a×10n -,其中110a ≤<,n 为由原数左边起第一个不为0的数字前面的0的个数所决定.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.10【解析】【分析】由正方形性质的得出B 、D 关于AC 对称,根据两点之间线段最短可知,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可.【详解】如图,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小.∵四边形ABCD 是正方形,∴B 、D 关于AC 对称,∴PB=PD ,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE ,∴AE=6,AB=8,∴=10,故PB+PE 的最小值是10.故答案为10.14.210.【解析】【分析】利用邻补角的定义求出∠ABC+∠BCD ,再利用四边形内角和定理求得∠A+∠D.【详解】∵∠1+∠2=210°,∴∠ABC+∠BCD =180°×2﹣210°=150°,∴∠A+∠D =360°﹣150°=210°. 故答案为:210.【点睛】本题考查了四边形的内角和定理以及邻补角的定义,利用邻补角的定义求出∠ABC+∠BCD 是关键. 15.k >3【解析】分析:根据函数图象所经过的象限列出不等式组3020k k ->⎧⎨-+<⎩,通过解该不等式组可以求得k 的取值范围. 详解:∵一次函教y=(k−3)x−k+2的图象经过第一、三、四象限,∴3020k k ->⎧⎨-+<⎩, 解得,k>3.故答案是:k>3.点睛:此题主要考查了一次函数图象,一次函数y kx b =+的图象有四种情况:①当0,0k b >>时,函数y kx b =+的图象经过第一、二、三象限;②当0,0k b ><时,函数y kx b =+的图象经过第一、三、四象限;③当0,0k b <>时,函数y kx b =+的图象经过第一、二、四象限;④当0,0k b <<时,函数y kx b =+的图象经过第二、三、四象限.16.3【解析】分析:由已知条件易得:EF ∥AB ,且EF :AB=1:2,从而可得△CEF ∽△CAB ,且相似比为1:2,设S △CEF =x ,根据相似三角形的性质可得方程:194x x =+,解此方程即可求得△EFC 的面积. 详解: ∵在△ABC 中,点E ,F 分别是AC ,BC 的中点,∴EF 是△ABC 的中位线,∴EF ∥AB ,EF :AB=1:2,∴△CEF ∽△CAB ,∴S △CEF :S △CAB =1:4,设S △CEF =x ,∵S △CAB =S △CEF +S 四边形ABFE ,S 四边形ABFE =9, ∴194x x =+, 解得:3x =,经检验:3x =是所列方程的解.故答案为:3.点睛:熟悉三角形的中位线定理和相似三角形的面积比等于相似比的平方是正确解答本题的关键. 17.x >﹣1.【解析】【分析】根据函数y=3x+b 和y=ax-3的图象交于点P (-1,-5),然后根据图象即可得到不等式 3x+b >ax-3的解集.【详解】解:∵函数y=3x+b 和y=ax-3的图象交于点P (-1,-5),∴不等式 3x+b >ax-3的解集是x >-1,故答案为:x >-1.【点睛】本题考查一次函数与一元一次不等式、一次函数的图象,熟练掌握是解题的关键.18.x≥﹣2且x≠1.【解析】20x +≥,∴2x ≥-,又∵x 在分母上,∴0x ≠.故答案为2x ≥-且0x ≠.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)r =.【解析】【分析】(1)连接OD ,由OD=OB ,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r ,利用锐角三角函数定义求出AB 的长,再利用勾股定理列出关于r 的方程,求出方程的解即可得到结果.【详解】(1)证明:连接OD ,OB OD =Q ,3B ∴∠=∠,1B ∠=∠Q ,13∴∠=∠,在Rt ACD ∆中,1290∠+∠=︒,()41802390∴∠=︒-∠+∠=︒,OD AD ∴⊥,则AD 为圆O 的切线;(2)设圆O 的半径为r ,在Rt ABC ∆中,tan 4AC BC B ==, 根据勾股定理得:224845AB =+=45OA r ∴=,在Rt ACD ∆中,1tan 1tan 2B ∠==, tan 12CD AC ∴=∠=,根据勾股定理得:22216420AD AC CD =+=+=,在Rt ADO ∆中,222OA OD AD =+,即()22520r r =+, 解得:352r =. 【点睛】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.20.50 见解析(3)115.2° (4)3 5【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.21.(1)、(2)证明见解析(3)28【解析】试题分析:(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;试题解析:(1)如图1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)如图2,延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.AE=AB-BE=12-4=8,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中,AE2+AD2=DE2,则82+(12-x)2=(4+x)2,解得:x=1.则DE=4+1=2.【点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.22.(1)P(两个小孩都是女孩)=14;(2)P(三个小孩中恰好是2女1男)=38.【解析】【分析】(1)画出树状图即可解题,(2)画出树状图即可解题.【详解】(1)画树状图如下:由树状图可知,生育两胎共有4种等可能结果,而这两个小孩恰好都是女孩的有1种可能,∴P(两个小孩都是女孩)=1 4 .(2)画树状图如下:由树状图可知,生育两胎共有8种等可能结果,其中这三个小孩中恰好是2女1男的有3种结果,∴P(三个小孩中恰好是2女1男)=3 8 .【点睛】本题考查了画树状图求解概率,中等难度,画出树状图找到所有可能性是解题关键. 23.(1)详见解析;(2)菱形;(3)当∠A=45°,四边形BECD是正方形.【解析】【分析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.【详解】(1)∵DE⊥BC,∴∠DFP=90°,∵∠ACB=90°,∴∠DFB=∠ACB,∴DE//AC,∵MN//AB,∴四边形ADEC为平行四边形,∴CE=AD;(2)菱形,理由如下:在直角三角形ABC中,∵D为AB中点,∴BD=AD,∵CE=AD,∴BD=CE,∴MN//AB,∴BECD是平行四边形,∵∠ACB=90°,D是AB中点,∴BD=CD,(斜边中线等于斜边一半)∴四边形BECD是菱形;(3)若D为AB中点,则当∠A=45°时,四边形BECD是正方形,理由:∵∠A=45°,∠ACB=90°,∴∠ABC=45°,∵四边形BECD是菱形,∴DC=DB,∴∠DBC=∠DCB=45°,∴∠CDB=90°,∵四边形BECD是菱形,∴四边形BECD是正方形,故答案为45°.【点睛】本题考查了平行四边形的判定与性质,菱形的判定、正方形的判定,直角三角形斜边中线的性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.24.x=3【解析】【分析】先去分母,再解方程,然后验根.【详解】解:去分母,得1-3(x-2)=1-x,1-3x+6=1-x,x=3,经检验,x=3是原方程的根.【点睛】此题重点考察学生对分式方程解的应用,掌握分式方程的解法是解题的关键.25.x≤1,解集表示在数轴上见解析【解析】【分析】首先根据不等式的解法求解不等式,然后在数轴上表示出解集.【详解】去分母,得:3x﹣2(x﹣1)≤3,去括号,得:3x﹣2x+2≤3,移项,得:3x﹣2x≤3﹣2,合并同类项,得:x≤1,将解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式,解题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.26.(1)证明见解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.【解析】试题分析:(1)利用AAS证明△AQB≌△DPA,可得AP=BQ;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等可写出4对线段.试题解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于点Q,DP⊥AQ于点P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.考点:(1)正方形;(2)全等三角形的判定与性质.27.2x2﹣7xy,1【解析】【分析】根据完全平方公式及多项式的乘法法则展开,然后合并同类项进行化简,然后把x、y的值代入求值即可. 【详解】原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,当x=5,y=15时,原式=50﹣7=1.【点睛】完全平方公式和多项式的乘法法则是本题的考点,能够正确化简多项式是解题的关键.。

江西省上饶市2019-2020学年中考中招适应性测试卷数学试题(3)含解析

江西省上饶市2019-2020学年中考中招适应性测试卷数学试题(3)含解析

江西省上饶市2019-2020学年中考中招适应性测试卷数学试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A .2 cmB .32cmC .42cmD .4cm2.如图⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为( )A .B .4C .D .83.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm 和3cm ,大圆的弦AB 与小圆相切,则劣弧AB 的长为( )A .2πcmB .4πcmC .6πcmD .8πcm4.在Rt △ABC 中,∠C =90°,如果AC =4,BC =3,那么∠A 的正切值为( )A .34B .43C .35D .455.安徽省在一次精准扶贫工作中,共投入资金4670000元,将4670000用科学记数法表示为( ) A .4.67×107 B .4.67×106 C .46.7×105 D .0.467×1076.下列事件中,必然事件是( )A .若ab=0,则a=0B .若|a|=4,则a=±4C .一个多边形的内角和为1000°D .若两直线被第三条直线所截,则同位角相等7.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC=62°,则A.31°B.28°C.62°D.56°8.湿地旅游爱好者小明了解到鄂东南市水资源总量为42.4亿立方米,其中42.4亿用科学记数法可表示为()A.42.4×109B.4.24×108C.4.24×109D.0.424×1089.﹣6的倒数是()A.﹣B.C.﹣6 D.610.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0;②﹣1≤a≤23;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个11.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+112.下列图形中,周长不是32 m的图形是( )A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1= 度.14.已知点A(x 1,y 1),B(x 2,y 2)在直线y =kx +b 上,且直线经过第一、三、四象限,当x 1<x 2时,y 1与y 2的大小关系为______________.15.如图,点A ,B ,C 在⊙O 上,∠OBC=18°,则∠A=_______________________.16.如图,矩形ABCD ,AB=2,BC=1,将矩形ABCD 绕点A 顺时针旋转90°得矩形AEFG ,连接CG 、EG ,则∠CGE=________.17.如图,矩形ABCD 中,8AB =,4BC =,将矩形沿AC 折叠,点D 落在点'D 处.则重叠部分AFC ∆的面积为______.18.如图,在矩形ABCD 中,AB=5,BC=3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降分率各是多少.20.(6分)计算53 2224mmm m-⎛⎫+-÷⎪--⎝⎭.21.(6分)先化简,再求值:22111mm m⎛⎫⋅-⎪-⎝⎭,其中m=2.22.(8分)如图,B、E、C、F在同一直线上,AB=DE,BE=CF,∠B=∠DEF,求证:AC=DF.23.(8分)某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.求从这五名翻译中随机挑选一名会翻译英语的概率;若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.24.(10分)如图,现有一块钢板余料ABCED,它是矩形缺了一角,90,6,10,A B D AB dm AD dm∠=∠=∠=︒==4,2BC dm ED dm==.王师傅准备从这块余料中裁出一个矩形AFPQ(P为线段CE上一动点).设AF x=,矩形AFPQ的面积为y.(1)求y与x之间的函数关系式,并注明x的取值范围;(2)x为何值时,y取最大值?最大值是多少?25.(10分)解不等式组:2(2)3{3122x xx+>-≥-,并将它的解集在数轴上表示出来.26.(12分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?27.(12分)某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少学生进行了抽样调查?本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?若该校九年级共有200名学生,如图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请估计全校六至九年级学生中最喜欢跳绳活动的人数约为多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.【详解】圆锥的底面半径为4π÷2π=2(cm),=cm).故选C.【点睛】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=2n r180π;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.2.C【解析】【详解】∵直径AB垂直于弦CD,∴CE=DE=12 CD,∵∠A=22.5°,∴∠BOC=45°,∴OE=CE,设OE=CE=x,∵OC=4,∴x2+x2=16,解得:,即:,∴,故选C.3.B【解析】【分析】首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB可求,根据弧长公式即可求出劣弧AB的长.【详解】解:如图,连接OC,AO,∵大圆的一条弦AB与小圆相切,∴OC⊥AB,∵OA=6,OC=3,∴OA=2OC,∴∠A=30°,∴∠AOC=60°,∴∠AOB=120°,∴劣弧AB的长=1206180π⨯⨯=4π,故选B.【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.4.A【解析】【分析】根据锐角三角函数的定义求出即可.【详解】解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴ tanA=34 BCAC=.故选A.【点睛】本题考查了锐角三角函数的定义,熟记锐角三角函数的定义内容是解题的关键.5.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将4670000用科学记数法表示为4.67×106,本题考查了科学记数法—表示较大的数,解题的关键是掌握科学记数法的概念进行解答.6.B【解析】【分析】直接利用绝对值的性质以及多边形的性质和平行线的性质分别分析得出答案.【详解】解:A、若ab=0,则a=0,是随机事件,故此选项错误;B、若|a|=4,则a=±4,是必然事件,故此选项正确;C、一个多边形的内角和为1000°,是不可能事件,故此选项错误;D、若两直线被第三条直线所截,则同位角相等,是随机事件,故此选项错误;故选:B.【点睛】此题主要考查了事件的判别,正确把握各命题的正确性是解题关键.7.D【解析】【分析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】42.4亿=4240000000, 用科学记数法表示为:4.24×1. 故选C .【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.9.A【解析】解:﹣6的倒数是﹣.故选A .10.C【解析】【分析】①由抛物线的顶点横坐标可得出b=-2a ,进而可得出4a+2b=0,结论①错误;②利用一次函数图象上点的坐标特征结合b=-2a 可得出a=-3c ,再结合抛物线与y 轴交点的位置即可得出-1≤a≤-23,结论②正确; ③由抛物线的顶点坐标及a <0,可得出n=a+b+c ,且n≥ax 2+bx+c ,进而可得出对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,将直线下移可得出抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,进而可得出关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.【详解】:①∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴-2b a=1, ∴b=-2a ,∴4a+2b=0,结论①错误;②∵抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0),∴a-b+c=3a+c=0,∴a=-3c . 又∵抛物线y=ax 2+bx+c 与y 轴的交点在(0,2),(0,3)之间(包含端点),∴2≤c≤3,∴-1≤a≤-23,结论②正确; ③∵a <0,顶点坐标为(1,n ),∴n=a+b+c ,且n≥ax 2+bx+c ,∴对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,又∵a <0,∴抛物线开口向下,∴抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,∴关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.故选C .【点睛】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.11.B【解析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,,…,, 下边三角形的数字规律为:1+2,,…,, n考点:规律型:数字的变化类.12.B【解析】【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】试题分析:∵△ABC为等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m∥n,∴∠1=1°;故答案为1.考点:等腰直角三角形;平行线的性质.14.y1<y1【解析】【分析】直接利用一次函数的性质分析得出答案.【详解】解:∵直线经过第一、三、四象限,∴y随x的增大而增大,∵x1<x1,∴y1与y1的大小关系为:y1<y1.故答案为:y1<y1.【点睛】此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.15.72°.【详解】解:∵OB=OC ,∠OBC=18°,∴∠BCO=∠OBC=18°,∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,∴∠A=12∠BOC=12×144°=72°. 故答案为 72°.【点睛】本题考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是本题的解题关键.16.45°【解析】试题解析:如图,连接CE ,∵AB=2,BC=1,∴DE=EF=1,CD=GF=2,在△CDE 和△GFE 中,CD GF CDE GFE DE EF =⎧⎪∠=∠⎨⎪=⎩∴△CDE ≌△GFE(SAS),∴CE=GE ,∠CED=∠GEF ,90AEG GEF ∠+∠=o Q ,90CEG AEG CED ∴∠=∠+∠=o ,45.CGE ∴∠=o 故答案为45.o 17.10【解析】根据翻折的特点得到'AD F CBF ∆≅∆,AF CF =.设BF x =,则8FC AF x ==-.在Rt BCF ∆中,222BC BF CF +=,即()22248x x +=-,解出x,再根据三角形的面积进行求解. 【详解】∵翻折,∴'4AD AD BC ===,'90D B ∠=∠=︒,又∵'AFD CFB ∠=∠,∴'AD F CBF ∆≅∆,∴AF CF =.设BF x =,则8FC AF x ==-.在Rt BCF ∆中,222BC BF CF +=,即()22248x x +=-,解得3x =,∴5AF =, ∴11541022AFC S AF BC ∆=⋅=⨯⨯=. 【点睛】此题主要考查勾股定理,解题的关键是熟知翻折的性质及勾股定理的应用.18 【解析】【详解】解:连接AG ,由旋转变换的性质可知,∠ABG=∠CBE ,BA=BG=5,BC=BE ,由勾股定理得,,∴DG=DC ﹣CG=1,则, ∵ BA BG BC BE=,∠ABG=∠CBE , ∴△ABG ∽△CBE , ∴35CE BC AG AB ==,解得,CE=5,.【点睛】本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.40%【解析】【分析】先设第次降价的百分率是x ,则第一次降价后的价格为500(1-x )元,第二次降价后的价格为500(1-2x ),根据两次降价后的价格是240元建立方程,求出其解即可.【详解】第一次降价的百分率为x ,则第二次降价的百分率为2x ,根据题意得:500(1﹣x )(1﹣2x )=240,解得x 1=0.2=20%,x 2=1.3=130%.则第一次降价的百分率为20%,第二次降价的百分率为40%.【点睛】本题考查了一元二次方程解实际问题,读懂题意,找出题目中的等量关系,列出方程,求出符合题的解即可.20.26m +【解析】 分析:先计算522m m +--,再做除法,结果化为整式或最简分式. 详解: 532224m m m m -⎛⎫+-÷ ⎪--⎝⎭()()()2252423m m m m m +---=⋅-- ()222923m m m m --=⋅--()()()332223m m m m m -+-=⋅-- 26m =+.点睛:本题考查了分式的混合运算.解题过程中注意运算顺序.解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.21.1m m-+,原式23=-. 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把m 的值代入计算即可求出值.【详解】原式()()21111m m m m m mm -⋅=-+-+, 当m =2时,原式23=-. 【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.见解析【解析】【分析】由BE =CF 可得BC =EF ,即可判定()ABC DEF SAS ∆∆≌,再利用全等三角形的性质证明即可.【详解】∵BE =CF ,∴BE EC EC CF ++=,即BC =EF ,又∵AB =DE ,∠B =∠DEF ,∴在ABC ∆与DEF ∆中, AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ∆∆≌,∴AC =DF .【点睛】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解决本题的关键.23.(1)45;(2)710. 【解析】 【分析】 (1)直接利用概率公式计算;(2)只会翻译西班牙语用A 表示,三名只会翻译英语的用B 表示,一名两种语言都会翻译用C 表示,画树状图展示所有20种等可能的结果数,找出该组能够翻译上述两种语言的结果数,然后根据概率公式求解.【详解】解:(1)从这五名翻译中随机挑选一名会翻译英语的概率=45; (2)只会翻译西班牙语用A 表示,三名只会翻译英语的用B 表示,一名两种语言都会翻译用C 表示 画树状图为:共有20种等可能的结果数,其中该组能够翻译上述两种语言的结果数为14,所以该纽能够翻译上述两种语言的概率=1472010= . 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.24.(1)2213169(),410326y x x =--+≤≤;(1)132x =时,y 取最大值,为1696. 【解析】【分析】(1)分别延长DE ,FP ,与BC 的延长线相交于G ,H ,由AF=x 知CH=x-4,根据CH PH CG GE =,即4664x z --= 可得z=2623x -,利用矩形的面积公式即可得出解析式; (1)将(1)中所得解析式配方成顶点式,利用二次函数的性质解答可得.【详解】解:(1)分别延长DE ,FP ,与BC 的延长线相交于G ,H ,设AQ=z,PH=BQ=6-z,∵PH∥EG,∴CH PHCG GE=,即4664x z--=,化简得z=2623x-,∴y=2623x-•x=-23x1+263x (4≤x≤10);(1)y=-23x1+263x=-23(x-132)1+1696,当x=132dm时,y取最大值,最大值是1696dm1.【点睛】本题考查了二次函数的应用,解题的关键是根据相似三角形的性质得出矩形另一边AQ的长及二次函数的性质.25.-1≤x<4,在数轴上表示见解析.【解析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.试题解析:()223{3x122x x+>-≥-①②,由①得,x<4;由②得,x⩾−1.故不等式组的解集为:−1⩽x<4.在数轴上表示为:26.(1);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元.【解析】【分析】根据题可设出一般式,再由图中数据带入可得答案,根据题目中的x的取值可得结果.②由总利润=数量×单间商品的利润可得函数式,可得解析式为一元二次式,配成顶点式可求出最大利润时的销售价,即可得(1). (2) 根据题意,得:∵∴当时,随x 的增大而增大 ∵∴当时,取得最大值,最大值是144答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【点睛】熟悉掌握图中所给信息以及列方程组是解决本题的关键.27.(1)50(2)36%(3)160【解析】【分析】(1)根据条形图的意义,将各组人数依次相加即可得到答案;(2)根据条形图可直接得到最喜欢篮球活动的人数,除以(1)中的调查总人数即可得出其所占的百分比;(3)用样本估计总体,先求出九年级占全校总人数的百分比,然后求出全校的总人数;再根据最喜欢跳绳活动的学生所占的百分比,继而可估计出全校学生中最喜欢跳绳活动的人数.【详解】(1)该校对50名学生进行了抽样调查.()2本次调查中,最喜欢篮球活动的有18人,18100%36%50⨯=, ∴最喜欢篮球活动的人数占被调查人数的36%.(3)()130%26%24%20%-++=,20020%1000÷=人,8100%100016050⨯⨯=人. 答:估计全校学生中最喜欢跳绳活动的人数约为160人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.。

江西省上饶市2019-2020学年高考数学仿真第三次备考试题含解析

江西省上饶市2019-2020学年高考数学仿真第三次备考试题含解析

江西省上饶市2019-2020学年高考数学仿真第三次备考试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.己知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,点,M N 分别在抛物线C 上,且30MF NF +=u u u r u u u r r,直线MN 交l 于点P ,NN l '⊥,垂足为N ',若MN P '∆的面积为243,则F 到l 的距离为( ) A .12 B .10C .8D .6【答案】D 【解析】 【分析】作MM l '⊥,垂足为M ',过点N 作NG MM '⊥,垂足为G ,设(0)NF m m =>,则3MF m =,结合图形可得2MG m =,||4MN m =,从而可求出60NMG ∠=︒,进而可求得6MP m =,3N P m '=,由MN P '∆的面积12△MN P S MM N P '''=⋅⋅243=即可求出m ,再结合F 为线段MP 的中点,即可求出F 到l 的距离. 【详解】 如图所示,作MM l '⊥,垂足为M ',设(0)NF m m =>,由30MF NF +=u u u r u u u r,得3MF m =,则3MM m '=,NN m '=.过点N 作NG MM '⊥,垂足为G ,则M G m '=,2MG m =, 所以在Rt MNG ∆中,2MG m =,||4MN m =,所以||1cos ||2MG GMN MN ∠==, 所以60NMG ∠=︒,在Rt PMM '∆中,||3MM m '=,所以6cos60MM MP m '==o,所以2NP m =,3N P m '=, 所以 113324322MN P S MM N P m m '''=⋅⋅=⋅⋅=△.解得4=m , 因为||||||3||FP FN NP m FM =+==,所以F 为线段MP 的中点, 所以F 到l 的距离为||3622MM mp '===. 故选:D 【点睛】本题主要考查抛物线的几何性质及平面几何的有关知识,属于中档题.2.阅读如图的程序框图,若输出的值为25,那么在程序框图中的判断框内可填写的条件是( )A .5i >B .8i >C .10i >D .12i >【答案】C 【解析】 【分析】根据循环结构的程序框图,带入依次计算可得输出为25时i 的值,进而得判断框内容. 【详解】根据循环程序框图可知,0,1S i == 则1,3S i ==,4,5S i ==, 9,7S i ==, 16,9S i ==, 25,11S i ==,此时输出S ,因而9i =不符合条件框的内容,但11=i 符合条件框内容,结合选项可知C 为正确选项,故选:C. 【点睛】本题考查了循环结构程序框图的简单应用,完善程序框图,属于基础题.3.幻方最早起源于我国,由正整数1,2,3,……,2n 这2n 个数填入n n ⨯方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫n 阶幻方.定义()f n 为n 阶幻方对角线上所有数的和,如(3)15f =,则(10)f =( )A .55B .500C .505D .5050【答案】C 【解析】 【分析】因为幻方的每行、每列、每条对角线上的数的和相等,可得2123()n f n n+++⋅⋅⋅+=,即得解.【详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以n 阶幻方对角线上数的和()f n 就等于每行(或每列)的数的和, 又n 阶幻方有n 行(或n 列),因此,2123()n f n n+++⋅⋅⋅+=,于是12399100(10)50510f +++⋅⋅⋅++==.故选:C 【点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.4.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若(,)DE AB AD R λμλμ=+∈u u u v u u u v u u u v,则λμ+等于( ).A.12-B.12C.1D.1-【答案】A【解析】【分析】由平面向量基本定理,化简得13DE AB AD44u u u v u u u v u u u v=-,所以13λ,μ44==-,即可求解,得到答案.【详解】由平面向量基本定理,化简()11DE DA AE DA AC AD AB AD44=+=+=-++u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v13AB AD44=-u u u v u u u v,所以13λ,μ44==-,即1λμ2+=-,故选A.【点睛】本题主要考查了平面向量基本定理的应用,其中解答熟记平面向量的基本定理,化简得到13DE AB AD44u u u v u u u v u u u v=-是解答的关键,着重考查了运算与求解能力,数基础题.5.各项都是正数的等比数列{}n a的公比1q≠,且2311,,2a a a成等差数列,则3445a aa a++的值为()A15-B51+C51-D51+51-【答案】C【解析】分析:解决该题的关键是求得等比数列的公比,利用题中所给的条件,建立项之间的关系,从而得到公比q所满足的等量关系式,解方程即可得结果.详解:根据题意有213122a a a+=⋅,即210q q--=,因为数列各项都是正数,所以152q+=,而344515115a aa a q+-===++,故选C.点睛:该题应用题的条件可以求得等比数列的公比q,而待求量就是1q,代入即可得结果.6.如图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.则下列结论中表述不正确...的是( )A .从2000年至2016年,该地区环境基础设施投资额逐年增加;B .2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C .2012年该地区基础设施的投资额比2004年的投资额翻了两番 ;D .为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立了投资额y 与时间变量t 的线性回归模型ˆ9917.5y t =+,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元. 【答案】D 【解析】 【分析】根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项. 【详解】对于A 选项,由图像可知,投资额逐年增加是正确的.对于B 选项,20002004-投资总额为1119253537127++++=亿元,小于2012年的148亿元,故描述正确.2004年的投资额为37亿,翻两翻得到374148⨯=,故描述正确.对于D 选项,令10t =代入回归直线方程得9917.510274+⨯=亿元,故D 选项描述不正确.所以本题选D. 【点睛】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题. 7.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是18人,则该班的学生人数是( )A .45B .50C .55D .60【答案】D 【解析】 【分析】根据频率分布直方图中频率=小矩形的高×组距计算成绩低于60分的频率,再根据样本容量=频数频率求出班级人数. 【详解】根据频率分布直方图,得:低于60分的频率是(0.005+0.010)×20=0.30, ∴样本容量(即该班的学生人数)是180.30=60(人). 故选:D. 【点睛】本题考查了频率分布直方图的应用问题,也考查了频率=频数样本容量的应用问题,属于基础题8.射线测厚技术原理公式为0t I I e ρμ-=,其中0I I ,分别为射线穿过被测物前后的强度,e 是自然对数的底数,t 为被测物厚度,ρ为被测物的密度,μ是被测物对射线的吸收系数.工业上通常用镅241(241Am )低能γ射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为( )(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,ln 20.6931≈,结果精确到0.001) A .0.110 B .0.112C .0.114D .0.116【答案】C 【解析】 【分析】根据题意知,010.8,7.6,2I t I ρ===,代入公式0t I I e ρμ-=,求出μ即可. 【详解】由题意可得,010.8,7.6,2I t I ρ===因为0t I I e ρμ-=, 所以7.60.812e μ-⨯⨯=,即ln 20.69310.1147.60.8 6.08μ==≈⨯. 所以这种射线的吸收系数为0.114. 故选:C 【点睛】本题主要考查知识的迁移能力,把数学知识与物理知识相融合;重点考查指数型函数,利用指数的相关性质来研究指数型函数的性质,以及解指数型方程;属于中档题.9.某几何体的三视图如右图所示,则该几何体的外接球表面积为( )A .12πB .16πC .24πD .48π【答案】A 【解析】 【分析】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算. 【详解】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为2, 底面为等腰直角三角形,斜边长为22,如图:ABC ∆∴的外接圆的圆心为斜边AC 的中点D ,OD AC ⊥,且OD ⊂平面SAC ,2SA AC ==Q ,SC ∴的中点O 为外接球的球心,∴半径3R =∴外接球表面积4312S ππ=⨯=.故选:A 【点睛】本题考查了由三视图求几何体的外接球的表面积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键. 10.记集合(){}22,16A x y xy =+≤和集合(){},4,0,0B x y x y x y =+≤≥≥表示的平面区域分别是1Ω和2Ω,若在区域1Ω内任取一点,则该点落在区域2Ω的概率为( )A .14πB .1πC .12πD .24ππ- 【答案】C 【解析】 【分析】据题意可知,是与面积有关的几何概率,要求M 落在区域2Ω内的概率,只要求A 、B 所表示区域的面积,然后代入概率公式21P Ω=Ω区域的面积区域的面积,计算即可得答案.【详解】根据题意可得集合22{(,)|16}A x y x y =+„所表示的区域即为如图所表示:的圆及内部的平面区域,面积为16π,集合{(,)|40B x y x y =+-„,0x …,0}y …表示的平面区域即为图中的Rt AOB ∆,14482AOB S ∆=⨯⨯=, 根据几何概率的计算公式可得81162P ππ==, 故选:C . 【点睛】本题主要考查了几何概率的计算,本题是与面积有关的几何概率模型.解决本题的关键是要准确求出两区域的面积.11.在正方体1111ABCD A B C D -中,点E ,F ,G 分别为棱11A D ,1D D ,11A B 的中点,给出下列命题:①1AC EG ⊥;②//GC ED ;③1B F ⊥平面1BGC ;④EF 和1BB 成角为4π.正确命题的个数是( ) A .0 B .1C .2D .3【答案】C 【解析】 【分析】建立空间直角坐标系,利用向量的方法对四个命题逐一分析,由此得出正确命题的个数. 【详解】设正方体边长为2,建立空间直角坐标系如下图所示,()()()12,0,0,0,2,2,2,1,2AC G ,()()()()()()10,2,0,1,0,2,0,0,0,2,2,2,0,0,1,2,2,0C E D B F B .①,()()112,2,2,1,1,0,2200AC EG AC EG =-=⋅=-++=u u u u r u u u r u u u u r u u u r,所以1AC EG ⊥,故①正确.②,()()2,1,2,1,0,2GC ED =--=--u u u r u u u r ,不存在实数λ使GC ED λ=u u u r u u u r,故//GC ED 不成立,故②错误. ③,()()()112,2,1,0,1,2,2,0,2B F BG BC =---=-=-u u u u r u u u r u u u u r ,1110,20B F BG B F BC ⋅=⋅=≠u u u u r u u u r u u u u r u u u u r,故1B F ⊥平面1BGC 不成立,故③错误.④,()()11,0,1,0,0,2EF BB =--=u u u r u u u r ,设EF 和1BB 成角为θ,则1122cos222EF BB EF BB θ⋅-===⨯⋅u u u r u u u ru u ur u u u r ,由于0,2πθ⎛⎤∈ ⎥⎝⎦,所以4πθ=,故④正确.综上所述,正确的命题有2个. 故选:C【点睛】本小题主要考查空间线线、线面位置关系的向量判断方法,考查运算求解能力,属于中档题.12.已知函数2()ln(1)33x x f x x x -=++-,不等式()22(4)50f a x f x +++…对x ∈R 恒成立,则a 的取值范围为( ) A .[2,)-+∞ B .(,2]-∞-C .5,2⎡⎫-+∞⎪⎢⎣⎭D .5,2⎛⎤-∞- ⎥⎝⎦【答案】C 【解析】 【分析】确定函数为奇函数,且单调递减,不等式转化为2a⎫=-,利用双勾函数单调性求最值得到答案.【详解】())33(),()x xf x x f x f x--=+-=-是奇函数,())3333x x x xf x x--=+=+--,易知,33x xy y y-==-=均为减函数,故()f x且在R上单调递减,不等式()2(50f f x++„,即()2(5f f x--„,结合函数的单调性可得25x--,即2a⎫=-,设t=,2t≥,故1y tt⎛⎫=-+⎪⎝⎭单调递减,故max52⎫-=-,当2t=,即0x=时取最大值,所以52a-….故选:C.【点睛】本题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。

江西省上饶上饶县联考2019-2020学年中考数学模拟考试试题

江西省上饶上饶县联考2019-2020学年中考数学模拟考试试题

江西省上饶上饶县联考2019-2020学年中考数学模拟考试试题一、选择题1.下列图形既是轴对称图形,又是中心对称图形的是( ) A. B. C. D.2.一个不透明的袋子中装有红球3个,白球1个,除颜色外无其他差别随机摸出一个球后不放回,再摸出一个球,则两次都摸到红球的概率是( )A .916B .34C .38 D .123.如图,▱ABCD 中,点A 在反比例函数y=(0)k k x ≠的图像上,点D 在y 轴上,点B 、点C 在x 轴上.若▱ABCD 的面积为10,则k 的值是( )A .5B .5-C .10D .10-4.下列图形中,即是轴对称图形又是中心对称图形的是( )A. B.C. D.5.根据以下程序,当输入x =2时,输出结果为( )A.﹣1B.﹣4C.1D.116.如图,反比例函数y =k x(k≠0)的图象经过A ,B 两点,过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥x 轴,垂足为D ,连接AO ,连接BO 交AC 于点E ,若OC =CD ,四边形BDCE 的面积为2,则k 的值为( )A.﹣183B.﹣173C.﹣163D.﹣1537.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x尺,绳子长为y尺,则下列符合题意的方程组是()A.4.5112y xy x=+⎧⎪⎨=+⎪⎩B.4.5112y xy x=+⎧⎪⎨=-⎪⎩C.4.5112y xy x=-⎧⎪⎨=+⎪⎩D.4.5112y xy x=-⎧⎪⎨=-⎪⎩8.某超市四月份赢利a万元,计划五、六月份平均每月的增长率为x,那么该超市第二季度共赢利()A.a(1+x)万元B.a(1+x)2万元C.a(1+x)+a(1+x)2万元D.a+a(1+x)+a(1+x)2万元9.下列关系式中,y不是自变量x的函数的是()A.y=x B.y=x2C.y=|x| D.y2=x10.如图,△ABC内接于⊙O,若∠OAB=35°,则∠C的度数是()A.35°B.45°C.65°D.55°11.一次函数图象经过A(1,1),B(﹣1,m)两点,且与直线y=2x﹣3无交点,则下列与点B(﹣1,m)关于y轴对称的点是()A.(﹣1,3)B.(﹣1,﹣3)C.(1,3)D.(1,﹣3)12.计算a2•(a2)3的结果是()A.a7B.a10C.a8D.a12二、填空题13.函数y=23-x中自变量x的取值范围是_____.14.已知8,3,m na a==则m na+=_____.15.如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=__________°.16.如果关于x的方程kx2﹣6x+9=0有两个相等的实数根,那么k的值为_____.17.已知函数y=mx2+(m2﹣m)x+2的图象关于y轴对称,则m=_____.18.比﹣3大5的数是_____.三、解答题19.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分.分组家庭用水量x/吨家庭数/户A 0≤x≤4.0 4B 4.0<x≤6.513C 6.5<x≤9.0D 9.0<x≤11.5E 11.5<x≤14.0 6F x>14.0 3根据以上信息,解答下列问题:(1)本次抽样调查的家庭数为______户.(2)家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是______;(3)家庭用水量的中位数在______组.(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.20.我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.(1)另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.(2)然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=12(m2﹣n2),b=mn,c=12(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.21.“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划把68吨有机化肥运送到果园,为节省时间需要在一天之内运完.货运站有甲、乙两种货车,果农决定租用甲、乙两种货车共18辆,两种型号的货车的运输量和租金如下表(所租用货车都按一整天收费):型号甲乙每辆每天运输量(吨) 5 3每辆每天租金(元)400 300(2)请你帮该果农设计一种使租金总费用最少的方案,并求出所付的最少租金.22.计算:21122sin452-⎛⎫--+ ⎪⎝⎭o23.计算:14011(2018)|13|2sin602π-︒⎛⎫-+---+--⎪⎝⎭24.(1)求不等式组2151132523(2)x xx x-+⎧-≤⎪⎨⎪-<+⎩的整数解;(2)化简2234221121x xx x x x++⎛⎫-÷⎪---+⎝⎭25.小红和小明在操场做游戏,规则是:每人蒙上眼睛在一定距离外向设计好的图形内掷小石子,若掷中阴影部分则小红胜,否则小明胜,未掷入图形内则重掷一次.(1)若第一次设计的图形(图1)是半径分别为20cm和30cm的同心圆.求游戏中小红获胜的概率你认为游戏对双方公平吗?请说明理由.(2)若第二次设计的图形(图2)是两个矩形,其中大矩形的长为80cm、宽为60cm,且小矩形到矩形的边宽相等.要使游戏对双方公平,则边宽x应为多少cm?【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D D D B D C B D D D D C13.x≥2314.2415.16.17.1或0.18.2三、解答题19.(1)50;(2)18%;(3)C;(4)128.【解析】【分析】(1)B组的人数除以其所占的百分比即可求得总人数;(2)利用D组所占百分比及户数可算出调查家庭的总数,从而算出D组的百分比;(3)从第二问知道调查户数为50,则中位数为第25、26户的平均数,由表格可得知落在C组;(4)计算调查户中用水量不超过9.0吨的百分比,再乘以小区内的家庭数就可以算出.【详解】解:(1)观察表格可得4.0<x≤6.5的家庭有13户,占被调查家庭数的百分比为26%,所以被调查的总人数为13÷26%=50户,故答案为:50;(2)调查的家庭数为:13÷26%=50,6,5<x≤9.0 的家庭数为:50×30%=15,D组9.0<x≤11.5 的家庭数为:50-4-13-6-3-15=9,9,0<x≤11.5 的百分比是:9÷50×100%=18%;(3)调查的家庭数为50户,则中位数为第25、26户的平均数,从表格观察都落在C组;故答案为:(1)50;(2)18%;(3)C;(4)调查家庭中不超过9.0吨的户数有:4+13+15=32,3250×200=128(户),答:该月用水量不超过9.0吨的家庭数为128户.【点睛】本题考查了扇形统计图、统计表,解题的关键是要明确题意,找出所求问题需要的条件.20.(1)证明见解析;(2)当n=5时,一边长为37的直角三角形另两边的长分别为12,35.【解析】【分析】(1)根据题意只需要证明a2+b2=c2,即可解答(2)根据题意将n=5代入得到a=12(m2﹣52),b=5m,c=12(m2+25),再将直角三角形的一边长为37,分别分三种情况代入a=12(m2﹣52),b=5m,c=12(m2+25),即可解答【详解】(1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,∴a2+b2=c2,∵n为正整数,∴a、b、c是一组勾股数;(2)解:∵n=5∴a=12(m2﹣52),b=5m,c=12(m2+25),∵直角三角形的一边长为37,∴分三种情况讨论,①当a=37时,12(m2﹣52)=37,解得m (不合题意,舍去) ②当y=37时,5m=37,解得m=375(不合题意舍去);③当z=37时,37=12(m2+n2),解得m=±7,∵m>n>0,m、n是互质的奇数,∴m=7,把m=7代入①②得,x=12,y=35.综上所述:当n=5时,一边长为37的直角三角形另两边的长分别为12,35.【点睛】此题考查了勾股数和勾股定理,熟练掌握勾股定理是解题关键21.(1)y=100x+5400;(2)租用7辆甲型货车,11辆乙型货车所付的租金最少,最少租金为6100元.【解析】【分析】(1)租用甲型货车数量x(辆),则租用乙型货车数量(18﹣x)(辆),根据题意即可求出所付的货车租金总费用y(元)与租用甲型货车数量x(辆)的函数关系式;(2)根据题意可得不等式5x+3(18﹣x)≥68,解得x≥7,再根据一次函数的性质解答即可求解.【详解】解:(1)租用甲型货车数量x(辆),则租用乙型货车数量(18﹣x)(辆),根据题意得, y=400x+300(18﹣x)=100x+5400;(2)根据题意可得,5x+3(18﹣x)≥68,解得x≥7,∵k=100>0,∴y随x的增大而增大,∴当x=7时,y最小=100×7+5400=6100,即租用7辆甲型货车,11辆乙型货车所付的租金最少,最少租金为6100元.【点睛】本题主要考查了一次函数和一元一次不等式的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值.22.【解析】【分析】根据绝对值,特殊角的三角函数值和负指数幂进行计算即可【详解】原式 =3【点睛】此题考查绝对值,特殊角的三角函数值和负指数幂,掌握运算法则是解题关键23.1【解析】【分析】直接利用零指数幂、负指数幂的性质以及绝对值的性质和特殊角的三角函数值分别化简得出答案.【详解】解:原式=11(2)122-+---⨯=﹣﹣1=1.【点睛】此题主要考查了实数运算,正确应用整数指数幂和绝对值的性质化简各数是解题关键.24.(1)﹣1,0,1,2,3;(2)11 xx-+.【解析】【分析】(1)根据解不等式组的方法可以求得该不等式组的解集,从而可以求得整数解;(2)根据分式的减法和除法可以解答本题.【详解】解:(1)2151132523(2)x xx x-+⎧-≤⎪⎨⎪-<+⎩①②由不等式①得,x≥﹣1,由不等式②得,x<4,∴原不等式组的解集为:﹣1≤x<4,故其整数解为﹣1,0,1,2,3;(2)原式=2 3422(1) (1)(1)(1)(1)(2)x x xx x x x x⎛⎫++--⋅⎪+-+-+⎝⎭=22(1) (1)(1)(2)x xx x x+-⋅+-+=11 xx-+.【点睛】本题考查分式的混合运算、一元一次不等式组的整数解,解答本题的关键是明确它们各自的计算方法.25.(1)游戏对双方不公平.(2)边宽x为10cm时,游戏对双方公平.【解析】【分析】(1)根据几何概率的求法:小红获胜的概率就是阴影部分面积与总面积的比值,小明获胜的概率就是阴影之外的部分面积与总面积的比值即可判断游戏是否公平;(2)由于游戏公平,则两部分面积相等,由此列出方程求解即可.【详解】(1)P(小红获胜)=22232539πππ⨯-⨯=⨯,P(小明获胜)=1-59=49,∴游戏对双方不公平;(2)根据题意可得:(80﹣2x)(60﹣2x)=2400即x2﹣70x+600=0,∴x1=10,x2=60(不符合题意,舍去)∴边宽x为10cm时,游戏对双方公平.【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.。

江西省上饶市中考数学三模考试试卷

江西省上饶市中考数学三模考试试卷

江西省上饶市中考数学三模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2020·南通模拟) 下列运算正确的是()A .B .C .D .2. (2分)已知下列命题:①若a>b,则c﹣a<c﹣b;②若a>0,则;③对角线互相平分且相等的四边形是菱形;④如果两条弧相等,那么它们所对的圆心角相等.其中原命题与逆命题均为真命题的个数是()A . 4个B . 3个C . 2个D . 1个3. (2分)在直线上,且到坐标轴距离为1的点有()A . 4个B . 3个C . 2个D . 1个4. (2分)(2020·泰州) 如图,电路图上有个开关、、、和个小灯泡,同时闭合开关、或同时闭合开关、都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是()A . 只闭合1个开关B . 只闭合2个开关C . 只闭合3个开关D . 闭合4个开关5. (2分)如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A . 4B . 5C . 6D . 106. (2分)(2018·南宁模拟) 如图,平行四边形ABCD中,AE平分,,,则CE 等于A . 6B . 5C . 4D . 3二、填空题 (共12题;共14分)7. (1分)计算()﹣2=________8. (1分)请你写出一个正方形具有而平行四边形不一定具有的特征:________.9. (1分) (2019八下·广东月考) 若,则不等式的解集是________。

10. (1分)(2018·寮步模拟) 关于x的一元二次方程有两个不相等的实数根,m的取值范围为________.11. (2分)在反比例函数y=的图象所在的每个象限中,如果函数值y随自变量的x值增大而增大,那么常数k的取值范围是________12. (1分) (2017九下·盐都期中) 如图,在△ABC中,∠C=90°,AC=6,BC=8,点D、M分别在BC、AC上,Rt△BDE、Rt△EFG、Rt△GHI、Rt△IJK、Rt△KMA的斜边都在AB上,则五个小直角三角形的周长和为________.13. (1分)(2016·梅州) 在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为,那么口袋中小球共有________个.14. (1分)有一些乒乓球,不知其数量,先取6个作了标记,把它们放回袋中,混合均匀后又取了20个,发现含有两个做标记,可估计袋中乒乓球有________ 个.15. (1分)已知点M(0,2),N(﹣3,6)到直线L的距离分别为1,4,则满足条件的直线L的条数是________.16. (1分)(2018·黄浦模拟) 如图,点D、E分别为△ABC边CA、CB上的点,已知DE∥AB,且DE经过△ABC 的重心,设,,则 ________(用、表示)17. (1分) (2019九上·博白期中) 如图所示,四边形ABCD是边长为3的正方形,点E在BC上,BE=1,△ABE绕点A逆时针旋转后得到△ADF,则FE的长等于________.18. (2分)(2020·谷城模拟) 如图,在矩形ABCD中,AD=3AB=3 ,点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则MN=________.三、解答题 (共7题;共33分)19. (5分) (2017八上·贵港期末) 先化简,再求值:÷(a+2﹣),其中a2+3a﹣1=0.20. (5分) (2020七下·扬州期中) 解方程组:(1)(2)21. (2分)(2019·广州模拟) 如图1,点A是⊙O外一点.(1)过点A作⊙O的切线(要求:尺规作图,保留作图痕迹,不写作法);(2)如图2,设AC是⊙O的切线,点C是切点,已知tan∠A=,求tan∠ABC的值.22. (2分) (2017七下·独山期末) 某超市经销A、B两种商品,A种商品每件进价20元,售价30元;B种商品每件进价35元,售价48元.(1)该超市准备用800元去购进A、B两种商品若干件,怎样购进才能使超市经销这两种商品所获利润最大?(其中B种商品不少于7件)(2)在“五•一”期间,该商场对A、B两种商品进行如下优惠促销活动:打折前一次购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打八折超过400元售价打七折促销活动期间小颖去该超市购买A种商品,小华去该超市购买B种商品,分别付款210元与268.8元.促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元?23. (15分)(2011·福州) 已知,如图,二次函数y=ax2+2ax﹣3a(a≠0)图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线l:对称.(1)求A、B两点坐标,并证明点A在直线l上;(2)求二次函数解析式;(3)过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值.24. (2分)(2018·定兴模拟) 已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.25. (2分)(2017·碑林模拟) 如图,直径为10的半圆O,tan∠DBC= ,∠BCD的平分线交⊙O于F,E 为CF延长线上一点,且∠EBF=∠GBF.(1)求证:BE为⊙O切线;(2)求证:BG2=FG•CE;(3)求OG的值.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共12题;共14分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共33分)19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、24-4、25-1、25-2、25-3、。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省上饶市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为()A.30°B.35°C.40°D.50°2.如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.243.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是()A.选科目E的有5人B.选科目A的扇形圆心角是120°C.选科目D的人数占体育社团人数的1 5D.据此估计全校1000名八年级同学,选择科目B的有140人4.下列代数运算正确的是()A.(x+1)2=x2+1 B.(x3)2=x5C.(2x)2=2x2D.x3•x2=x55.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,A.赚了10元B.赔了10元C.赚了50元D.不赔不赚6.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.7.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC 的周长为()A.16 B.14 C.12 D.108.如图:已知AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是()A.3 B.3.5 C.4 D.59.如图所示的几何体的俯视图是()A.B.C.D.10.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC 的是( )A.DEBC=23B.DEBC=25C.AEAC=23D.AEAC=2511P2m 1m mA.B.C.D.12.实数a,b,c在数轴上对应点的位置如图所示,则下列结论中正确的是()A.a+c>0 B.b+c>0 C.ac>bc D.a﹣c>b﹣c二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知一组数据3,4,6,x,9的平均数是6,那么这组数据的方差等于________.14.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM 的周长为_____.15.如图,已知AB∥CD,若14ABCD,则OAOC=_____.16.大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连市内开往庄河,则汽车距庄河的路程y(千米)与行驶的时间x(小时)之间的函数关系式为_____.17.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O 的切线:若⊙O的半径为2,则图中阴影部分的面积为_____.18.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图).请回答以下问题:(1)该班学生选择观点的人数最多,共有人,在扇形统计图中,该观点所在扇形区域的圆心角是度.(2)利用样本估计该校初三学生选择“中技”观点的人数.(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答).20.(6分)如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(﹣1,0).(1)求此抛物线的解析式;(2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PE∥y轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当∠BQE+∠DEQ=90°时,求此时点P的坐标.有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.22.(8分)观察下列算式:① 1 × 3 - 22 =" 3" - 4 = -1② 2 × 4 - 32 =" 8" - 9 = -1③3 × 5 - 42 =" 15" - 16 = -1④……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.23.(8分)如图,在⊙O的内接四边形ABCD中,∠BCD=120°,CA平分∠BCD.(1)求证:△ABD是等边三角形;(2)若BD=3,求⊙O的半径.24.(10分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线点F.问:图中△APD与哪个三角形全等?并说明理由;求证:△APE∽△FPA;猜想:线段PC,PE,PF之间存在什么关系?并说明理由.25.(10分)如图所示,已知CFE BDC 180,DEF B ︒∠+∠=∠=∠,试判断AED ∠与ACB ∠的大小关系,并说明理由.26.(12分)从一幢建筑大楼的两个观察点A ,B 观察地面的花坛(点C ),测得俯角分别为15°和60°,如图,直线AB 与地面垂直,AB =50米,试求出点B 到点C 的距离.(结果保留根号)27.(12分)近几年“雾霾”成为全社会关注的话题某校环保志愿者小组对该市2018年空气质量进行调查,从全年365天中随机抽查了50天的空气质量指数(AQI ),得到以下数据:43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、1. (1)请你完成如下的统计表; AQI0~50 51~100 101~150 151~200 201~250 300以上 质量等级A (优)B (良)C (轻度污染)D (中度污染)E (重度污染)F (严重污染) 天数(2)请你根据题中所给信息绘制该市2018年空气质量等级条形统计图;(3)请你估计该市全年空气质量等级为“重度污染”和“严重污染”的天数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解【详解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故选A.【点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键2.B【解析】【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出S△ABC的值.【详解】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴1 169xx=+,解得:x=2,∴S△ABC=18,故选B.的关键.3.B【解析】【分析】A选项先求出调查的学生人数,再求选科目E的人数来判定,B选项先求出A科目人数,再利用A科目人数总人数×360°判定即可,C选项中由D的人数及总人数即可判定,D选项利用总人数乘以样本中B人数所占比例即可判定.【详解】解:调查的学生人数为:12÷24%=50(人),选科目E的人数为:50×10%=5(人),故A选项正确,选科目A的人数为50﹣(7+12+10+5)=16人,选科目A的扇形圆心角是1650×360°=115.2°,故B选项错误,选科目D的人数为10,总人数为50人,所以选科目D的人数占体育社团人数的15,故C选项正确,估计全校1000名八年级同学,选择科目B的有1000×75=140人,故D选项正确;故选B.【点睛】本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中找到准确信息.4.D【解析】【分析】分别根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式进行逐一计算即可.【详解】解:A. (x+1)2=x2+2x+1,故A错误;B. (x3)2=x6,故B错误;C. (2x)2=4x2,故C错误.D. x3•x2=x5,故D正确.故本题选D.【点睛】本题考查的是同底数幂的乘法、幂的乘方与积的乘方、完全平方公式,熟练掌握他们的定义是解题的关键. 5.A试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用6.B【解析】【分析】根据面动成体以及长方形绕一边所在直线旋转一周得圆柱即可得答案.【详解】由图可知所给的平面图形是一个长方形,长方形绕一边所在直线旋转一周得圆柱,故选B.【点睛】本题考查了点、线、面、体,熟记各种常见平面图形旋转得到的立体图形是解题关键.7.B【解析】【分析】根据切线长定理进行求解即可.【详解】∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选B.【点睛】本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.8.A【解析】【分析】根据直线外一点和直线上点的连线中,垂线段最短的性质,可得答案.【详解】解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得AP≥3.5,故选:A.【点睛】本题考查垂线段最短的性质,解题关键是利用垂线段的性质.9.B【解析】【分析】根据俯视图是从上往下看得到的图形解答即可.【详解】从上往下看得到的图形是:故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线10.D【解析】【分析】根据平行线分线段成比例定理的逆定理,当AD AEDB EC=或AD AEAB AC=时,DE BDP,然后可对各选项进行判断.【详解】解:当AD AEDB EC=或AD AEAB AC=时,DE BDP,即23AEEC=或25AEAC=.所以D选项是正确的.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.11.B【解析】根据第二象限中点的特征可得:2-m0 1m0 2>⎧⎪⎨>⎪⎩,解得:m2 m0<⎧⎨>⎩.在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征12.D【解析】分析:根据图示,可得:c<b<0<a,c a b>>,据此逐项判定即可.详解:∵c<0<a,|c|>|a|,∴a+c<0,∴选项A不符合题意;∵c<b<0,∴b+c<0,∴选项B不符合题意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴选项C不符合题意;∵a>b,∴a﹣c>b﹣c,∴选项D符合题意.故选D.点睛:此题考查了数轴,考查了有理数的大小比较关系,考查了不等关系与不等式.熟记有理数大小比较法则,即正数大于0,负数小于0,正数大于一切负数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5.2【解析】分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案.详解:∵平均数为6,∴(3+4+6+x+9)÷5=6,解得:x=8,∴方差为:()()()()()2222213646668696 5.25⎡⎤-+-+-+-+-=⎣⎦. 点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键.14.1.【解析】【分析】根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO 、OM 、AM 即可解决问题.【详解】解:∵四边形ABCD 是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴2210AC AB BC =+=,∵AO=OC ,∴152BO AC ==, ∵AO=OC ,AM=MD=4, ∴132OM CD ==, ∴四边形ABOM 的周长为AB+OB+OM+AM=6+5+3+4=1.故答案为:1.【点睛】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.15.14【解析】【分析】利用相似三角形的性质即可解决问题;【详解】∵AB ∥CD ,∴△AOB ∽△COD ,∴14OA AB OC CD ==, 故答案为14. 【点睛】本题考查平行线的性质,相似三角形的判定和性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.16.y=160﹣80x(0≤x≤2)【解析】【分析】根据汽车距庄河的路程y(千米)=原来两地的距离﹣汽车行驶的距离,解答即可.【详解】解:∵汽车的速度是平均每小时80千米,∴它行驶x小时走过的路程是80x,∴汽车距庄河的路程y=160﹣80x(0≤x≤2),故答案为:y=160﹣80x(0≤x≤2).【点睛】本题考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解题的关键.17.2 233π-【解析】试题分析:连接OC,求出∠D和∠COD,求出边DC长,分别求出三角形OCD的面积和扇形COB的面积,即可求出答案.连接OC,∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴∠COD=60°,在Rt△OCD中,∠OCD=90°,∠D=30°,OC=2,∴CD=23,∴阴影部分的面积是S△OCD﹣S扇形COB=12×2×23﹣2602360π⨯=23﹣23π,故答案为23﹣23π.考点:1.等腰三角形性质;2.三角形的内角和定理;3.切线的性质;4.扇形的面积.18.40︒.【解析】【分析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.【详解】连续左转后形成的正多边形边数为:4559÷=,则左转的角度是360940︒÷=︒.故答案是:40︒.【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(4)A高中观点.4.446;(4)456人;(4).【解析】试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460°乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;(4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;(4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解.试题解析:(4)该班学生选择A高中观点的人数最多,共有60%×50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%×460°=446°;(4)∵800×44%=456(人),∴估计该校初三学生选择“中技”观点的人数约是456人;(4)该班选择“就业”观点的人数=50×(4-60%-44%)=50×8%=4(人),则该班有4位女同学和4位男生选择“就业”观点,列表如下:共有44种等可能的结果数,其中出现4女的情况共有4种.所以恰好选到4位女同学的概率=.考点:4.列表法与树状图法;4.用样本估计总体;4.扇形统计图.20.(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(52,74).【解析】【分析】(1)由抛物线y=ax2+bx+3与y轴交于点A,可求得点A的坐标,又OA=OC,可求得点C的坐标,然后分别代入B,C的坐标求出a,b,即可求得二次函数的解析式;(2)首先延长PE交x轴于点H,现将解析式换为顶点解析式求得D(1,4),设直线CD的解析式为y=kx+b,再将点C(3,0)、D(1,4)代入,得y=﹣2x+6,则E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根据d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N,根据题意在(2)的条件下先证明△DQT≌△ECH,再根据全等三角形的性质即可得ME=4﹣2(﹣2t+6),QM= t﹣1+(3﹣t),即可求得答案.【详解】解:(1)当x=0时,y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵抛物线y=ax2+bx+3经过点B(﹣1,0),C(3,0)∴30 9330 a ba b-+=⎧⎨++=⎩,解得:12ab=-⎧⎨=⎩,∴抛物线的解析式为:y=﹣x2+2x+3;(2)如图1,延长PE交x轴于点H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),设直线CD的解析式为y=kx+b,将点C(3,0)、D(1,4)代入,得:430k bk b+=⎧⎨+=⎩,解得:26kb=-⎧⎨=⎩,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如图2,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N,∵D(1,4),B(﹣1,0),C(3,0),∴BK=2,KC=2,∴DK垂直平分BC,∴BD=CD,∴∠BDK=∠CDK,∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME,∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,∴△DQT≌△ECH,∴DT=EH,QT=CH,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t﹣1+(3﹣t),4﹣2(﹣2t+6)=t﹣1+(3﹣t),解得:t=52,∴P(52,74).【点睛】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的相关知识点. 21.(1)15人;(2)补图见解析.(3).【解析】【分析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=.【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.22.⑴;⑵答案不唯一.如;⑶.【解析】(1)根据①②③的算式中,变与不变的部分,找出规律,写出新的算式;(2)将(1)中,发现的规律,由特殊到一般,得出结论;(3)一定成立.利用整式的混合运算方法加以证明.23.(1)详见解析;(2)3.【解析】【分析】(1)因为AC平分∠BCD,∠BCD=120°,根据角平分线的定义得:∠ACD=∠ACB=60°,根据同弧所对的圆周角相等,得∠ACD=∠ABD,∠ACB=∠ADB,∠ABD=∠ADB=60°.根据三个角是60°的三角形是等边三角形得△ABD是等边三角形.(2)作直径DE,连结BE,由于△ABD是等边三角形,则∠BAD =60°,由同弧所对的圆周角相等,得∠BED=∠BAD=60°.根据直径所对的圆周角是直角得,∠EBD=90°,则∠EDB=30°,进而得到DE=2BE.设EB=x,则ED=2x,根据勾股定理列方程求解即可.【详解】解:(1)∵∠BCD=120°,CA平分∠BCD,∴∠ACD=∠ACB=60°,由圆周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,∴△ABD是等边三角形;(2)连接OB、OD,作OH⊥BD于H,则DH=12BD=32,∠BOD=2∠BAD=120°,∴∠DOH=60°,在Rt△ODH中,OD=sin DHDOH=3,∴⊙O的半径为3.【点睛】本题是一道圆的简单证明题,以圆的内接四边形为背景,圆的内接四边形的对角互补,在圆中往往通过连结直径构造直角三角形,再通过三角函数或勾股定理来求解线段的长度.24.(1)△CPD.理由参见解析;(2)证明参见解析;(3)PC2=PE•PF.理由参见解析.【解析】【分析】(1)根据菱形的性质,利用SAS来判定两三角形全等;(2)根据第一问的全等三角形结论及已知,利用两组角相等则两三角形相似来判定即可;(3)根据相似三角形的对应边成比例及全等三角形的对应边相等即可得到结论.【详解】解:(1)△APD≌△CPD.理由:∵四边形ABCD是菱形,∴AD=CD,∠ADP=∠CDP.又∵PD=PD,∴△APD≌△CPD(SAS).(2)∵△APD≌△CPD,∴∠DAP=∠DCP,∵CD∥AB,∴∠DCF=∠DAP=∠CFB,又∵∠FPA=∠FPA,∴△APE∽△FPA(两组角相等则两三角形相似).(3)猜想:PC2=PE•PF.理由:∵△APE∽△FPA,∴AP PEFP PA=即PA2=PE•PF.∵△APD≌△CPD,∴PA=PC.∴PC2=PE•PF.【点睛】本题考查1.相似三角形的判定与性质;2.全等三角形的判定;3.菱形的性质,综合性较强.25.AED ACB∠=∠.【解析】【分析】首先判断∠AED与∠ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.【详解】解:∠AED=∠ACB.理由:如图,分别标记∠1,∠2,∠3,∠1.∵∠1+∠1=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠1.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).【点睛】本题重点考查平行线的性质和判定,难度适中.+26.(5005003)【解析】【详解】试题分析:根据题意构建图形,结合图形,根据直角三角形的性质可求解. 试题解析:作AD⊥BC于点D,∵∠MBC=60°,∴∠ABC=30°,∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,则∠ACB=45°,在Rt△ADB中,AB=1000,则AD=500,BD=5003+在Rt△ADC中,AD=500,CD=500,则BC=5003+米.答:观察点B到花坛C的距离为(5005003)考点:解直角三角形27.(1)补全统计表见解析;(2)该市2018年空气质量等级条形统计图见解析;(3)29天.【解析】【分析】(1)由已知数据即可得;(2)根据统计表作图即可得;(3)全年365天乘以样本中“重度污染”和“严重污染”的天数和所占比例.【详解】(1)补全统计表如下:AQI 0~50 51~100 101~150 151~200 201~250 300以上质量等级A(优)B(良)C(轻度污染)D(中度污染)E(重度污染)F(严重污染)天数16 20 7 3 3 1(2)该市2018年空气质量等级条形统计图如下:(3)估计该市全年空气质量等级为“重度污染”和“严重污染”的天数为365×3150≈29天.【点睛】本题考查了条形统计图的应用与用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.。

相关文档
最新文档