历年自学考试01297概率论与数理统计试题和答案
全国历自学考试概率论与数理统计(二)试题与答案
全国2011年4月自学考试概率论与数理统计(二)课程代码:02197 选择题和填空题详解试题来自百度文库 答案由王馨磊导师提供一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( A ) A .C B A B .C B A C .C B A D .C B A 2.设随机事件A 与B 相互独立, 且P (A )=51, P (B )=53, 则P (A ∪B )=( B ) A .253B .2517C .54D .25233.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( C ) A .0.352 B .0.432 C .0.784 D .0.936解:P{X ≥1}=1- P{X=0}=1-(1-0.4)3=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( C ) A .0.2 B .0.35 C .0.55 D .0.8解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4)3(2e2π21)(+-=x x f , 则E (X ), D (X )分别为( ) A .2,3- B .-3, 2 C .2,3 D .3, 2 与已知比较可知:E(X)=-3,D(X)=2,故选B. 6.设二维随机变量 (X , Y )的概率密度为⎩⎨⎧≤≤≤≤=,,0,20,20,),(其他y x c y x f 则常数c =( A ) A .41B .21C .2D .4解:设D 为平面上的有界区域,其面积为S 且S>0,如果二维随机变量 (X ,Y )的概率密度为则称 (X ,Y )服从区域D 上的均匀分布,由0≤x ≤2,0≤y ≤2,知S=4,所以c=1/4,故选A.7.设二维随机变量 (X , Y )~N (-1, -2;22, 32;0), 则X -Y ~ ( ) A .N (-3, -5) B .N (-3,13) C .N (1, 13) D .N (1,13)解:由题设知,X~N(-1,22),Y~N(-2,32),且X 与Y 相互独立, 所以E(X-Y)=E(X)-E(Y)=-1-(-2)=1,D(X-Y)=D(X)+D(Y)=13,故选D. 8.设X , Y 为随机变量, D (X )=4, D (Y )=16, Cov (X ,Y )=2, 则XY ρ=( )A .321 B .161 C .81D .419.设随机变量X ~2χ(2), Y ~2χ(3), 且X 与Y 相互独立, 则3/2/Y X ~ ( )A .2χ (5)B .t (5)C .F (2,3)D .F (3,2)10.在假设检验中, H 0为原假设, 则显着性水平α的意义是 ( ) A .P {拒绝H 0|H 0为真} B .P {接受H 0|H 0为真} C .P {接受H 0|H 0不真} D .P {拒绝H 0|H 0不真}解:在0H 成立的情况下,样本值落入了拒绝域W 因而0H 被拒绝,称这种错误为第一类错误;二、填空题 (本大题共15小题, 每小题2分, 共30分)请在每小题的空格中填上正确答案。
历年自学考试01297概率论与数理统计试题和答案
历年⾃学考试01297概率论与数理统计试题和答案全国2012年4⽉⾃学考试概率论与数理统计(⼆)试题⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共20分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。
错选、多选或未选均⽆分。
1.设A ,B 为随机事件,且A ?B ,则AB 等于()A. A BB. BC. AD. A2. 设A ,B 为随机事件,则P (A-B )=() A. P (A )-P (B )B. P (A )-P (AB )C. P (A )-P (B )+ P (AB )D. P (A )+P (B )- P (AB )3. 设随机变量X 的概率密度为f (x )= ??<<其他,,,0,6331x 则P {3A. P {1B. P {4C. P {3D. P {24. 已知随机变量X 服从参数为λ的指数分布,则X 的分布函数为()A. F (x )=≤>-.0,00,e x x λx ,λB. F (x )=≤>--.0,00,e 1x x λx ,λC. F (x )=?≤>--.0,00,e 1x x λx ,D. F (x )=?≤>+-.0,00,e 1x x λx ,5. 已知随机变量X~N (2,2σ), P {X ≤4}=0.84,则P {X ≤0}= () A. 0.16 B. 0.32 C. 0.68 D. 0.84 6. 设随机变量X 与Y 相互独⽴,且都服从标准正态分布,则2X -Y +1~ ()C. N (0,5)D. N (1,5)7. 设随机变量X 与Y 相互独⽴,它们的概率密度分别为f X (x ), f Y (y ),则(X ,Y )的概率密度为()A. 21[ f X (x )+f Y (y )] B. f X (x )+f Y (y ) C.21f X (x ) f Y (y ) D. f X (x ) f Y (y )8. 设随机变量X ~B (n ,p ),且E (X )=2.4, D (X )=1.44,则参数n ,p 的值分别为() A. 4和0.6 B. 6和0.4 C. 8和0.3 D.3和0.8 9. 设随机变量X 的⽅差D (X )存在,且D (X )>0,令Y =-X ,则ρXY =()A. -1B.0C. 1D.210. 设总体X ~N (2,32),x 1,x 2,…,x n 为来⾃总体X 的样本,x 为样本均值,则下列统计量中服从标准正态分布的是() A.32-x B.92-xC.nx /32-D.nx /92-⼆、填空题(本⼤题共15⼩题,每⼩题2分,共30分)请在每⼩题的空格上填上正确答案。
全国自学考试概率论与数理统计二历年真题及答案
全国2010年7月高等教育自学考试 概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 、B 为两事件,已知P (B )=21,P (A ⋃B )=32,若事件A ,B 相互独立,则P (A )=( ) A .91B .61C .31D .21 2.对于事件A ,B ,下列命题正确的是( ) A .如果A ,B 互不相容,则A ,B 也互不相容 B .如果A ⊂B ,则B A ⊂ C .如果A ⊃B ,则B A ⊃D .如果A ,B 对立,则A ,B 也对立3.每次试验成功率为p (0<p <1),则在3次重复试验中至少失败一次的概率为( ) A .(1-p )3 B .1-p 3C .3(1-p )D .(1-p )3+p (1-p )2+p 2(1-p )4.已知离散型随机变量X则下列概率计算结果正确的是( ) A .P (X =3)=0 B .P (X =0)=0 C .P (X >-1)=1D .P (X <4)=1 5.已知连续型随机变量X 服从区间[a ,b ]上的均匀分布,则概率P =⎭⎬⎫⎩⎨⎧+<32b a X ( )A .0B .31C .32 D .1A .(51,151)B .(151,51)C .(101,152) D .(152,101) 7.设(X ,Y )的联合概率密度为f (x ,y )=⎩⎨⎧≤≤≤≤+,,0,10,20),(其他y x y x k 则k =( )A .31B .21 C .1D .38.已知随机变量X ~N (0,1),则随机变量Y =2X +10的方差为( ) A .1 B .2 C .4D .149.设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计P (|X -2|≥3)≤( )A .91B .92C .31D .94 10.由来自正态总体X ~N (μ,22)、容量为400的简单随机样本,样本均值为45,则未知参数μ的置信度为0.95的置信区间是(u 0.025=1.96,u 0.05=1.645)( ) A .(44,46)B .(44.804,45.196)C .(44.8355,45.1645)D .(44.9,45.1)二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
《概率论与数理统计》考试题(含答案)
《概率论与数理统计》考试题一、填空题(每小题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)A (p ==,则a )、若B A ,互斥,则=)B -A (p 0.5 ;b )若B A ,独立,则=)B A (p 0.65 ;c )、若2.0)(=⋅B A p ,则=)B A (p 3/7 . 2、袋子中有大小相同的红球7只,黑球3只,(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为: 7/15 。
(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 21/50 。
(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 21/55 . 3、设随机变量X 服从泊松分布}8{}7{),(===X P X p λπ,则{}=X E 8 .4、设随机变量X 服从B (2,0. 8)的二项分布,则{}==2X p 0.64 , Y 服从B (8,0. 8)的二项分布, 且X 与Y 相互独立,则}1{≥+Y X P =1- 0.210,=+)(Y X E 8 。
5 设某学校外语统考学生成绩X 服从正态分布N (75,25),则该学校学生的及格率为 0.9987 ,成绩超过85分的学生占比}85{≥X P 为 0.0228 。
其中标准正态分布函数值9987.0)3(,9772.0)2(,8413.0)1(=Φ=Φ=Φ. 6、设二维随机向量),(Y X 的分布律是有 则=a _0.1_,X的数学期望=)(X E ___0.4___,Y X 与的相关系数=xy ρ___-0.25______。
7、设161,...,X X 及81,...,Y Y 分别是总体)16,8(N 的容量为16,8的两个独立样本,Y X ,分别为样本均值,2221,S S 分别为样本方差。
则:~X N(8,1) ,~Y X - N(0,1.5) ,{}5.12>-Y X p = 0.0456 ,~161521S )15(2χ,~2221S S F(15,7) 。
4月全国高等教育自学考试概率论与数理统计(二)试题及答案解析
全国2018年4月高等教育自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.从一批产品中随机抽两次,每次抽1件。
以A 表示事件“两次都抽得正品”,B 表示事件“至少抽得一件次品”,则下列关系式中正确的是( ) A .A ⊂B B .B ⊂A C .A=BD .A=B2.对一批次品率为p(0<p<1)的产品逐一检测,则第二次或第二次后才检测到次品的概率为( )A .pB .1-pC .(1-p)pD .(2-p)p3.设随机变量X~N (-1,22),则X 的概率密度f(x)=( ) A .8)1(2221+-x eπ B .8)1(2221--x eπC .4)1(241+-x eπ D .8)1(241+-x eπ4.设F (x )和f(x)分别为某随机变量的分布函数和概率密度,则必有( ) A .f(x)单调不减 B .⎰+∞∞-=1)(dx x FC .F (-∞)=0D .⎰+∞∞-=dx x f x F )()(5.设二维随机向量(X ,Y )的联合分布列为若X 与Y 相互独立,则( )A .α=92,β=91 B .α=91,β=92C .α=61,β=61D .α=185,β=1816.设二维随机向量(X ,Y )在区域G :0≤x ≤1,0≤y ≤2上服从均匀分布,f Y (y)为(X ,Y )关于Y 的边缘概率密度,则f Y (1)=( ) A .0 B .21 C .1D .27.设随机向量X 1,X 2…,X n 相互独立,且具有相同分布列: q=1-p,i=1,2,…,n. 令∑==ni i X n X 11,则D (X )=( ) A .2n pq B .npq C .pq D .npq8.设随机变量序列X 1,X 2,…,X n ,…独立同分布,且E (X i )=μ,D(X i )=2σ,0>σ,i=1,2,….)(x Φ为标准正态分布函数,则对于任意实数x ,=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≥-∑=∞→x n n X P n i in σμ1lim( )A .0B .Φ(x)C .1-Φ(x)D .19.设X 1,X 2,…,X 6是来自正态总体N (0,1)的样本,则统计量262524232221X X X X X X ++++服从 ( )A .正态分布B .2χ分布 C .t 分布D .F 分布10.设X 1,X 2,X 3是来自正态总体N (0,σ2)的样本,已知统计量c(2232221X XX +-)是方差σ2的无偏估计量,则常数c 等于( ),0<p<1,A .41 B .21 C .2 D .4二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
试概率论与数理统计(二)历年真题
全国2009年7月自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 与B 互不相容,且P(A)>0,P(B)>0,则有( ) A.P(A)=1-P(B) B.P(AB)=P(A)P(B) C.P(A B )=1 D.P(AUB)=P(A)+P(B)2.设A 、B 相互独立,且P(A)>0,P(B)>0,则下列等式成立的是( ) A.P(AB)=0 B.P(A-B)=P(A)P(B ) C.P(A)+P(B)=1 D.P(A | B)=03.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( ) A.0.125 B.0.25 C.0.375 D.0.504.设函数f (x)在[a ,b]上等于sin x ,在此区间外等于零,若f (x)可以作为某连续型随机变量的概率密度,则区间[a ,b]应为( )A.[2π-,0] B.[0,2π]C.[0,π]D.[0,2π3]5.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤<=其它021210)(x x x xx f ,则P(0.2<X<1.2)= ( )A.0.5B.0.6C.0.66D.0.76.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( ) A.61 B.41 C.31D.217.设随机变量X ,Y 相互独立,其联合分布为 XY1 2 3 1 61 91 181 221 α β则有( )A.α=91,β=92B. α=92,β=91C. α=31,β=32D. α=32,β=318.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( ) A.-2 B.0 C.21 D.2 9.设μn 是n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中发生的概率,则对于任意的ε>0,均有}|{|lim n εμ>-∞→p nP n( )A.=0B.=1C.>0D.不存在10.对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H 0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( ) A.必接受H 0 B.可能接受H 0,也可能拒绝H 0 C.必拒绝H 0 D.不接受,也不拒绝H 0 二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
全国自学考试概率论与数理统计二历年真题及答案
全国 2010 年 7 月高等教育自学考试概率论与数理统计(二)试题课程代码: 02197一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分 )在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设 A、B 为两事件,已知P(B)= 1,P(A B)= 2,若事件 A, B 相互独立,则P(A)=( )2 3A .1B .19 6 C.1 D .13 2 2.对于事件 A, B,下列命题正确的是( )A .如果 A,B 互不相容,则 A , B 也互不相容B.如果 A B,则 A BC.如果 A B,则 A BD.如果 A,B 对立,则 A , B 也对立3.每次试验成功率为p(0< p<1) ,则在3 次重复试验中至少失败一次的概率为( )3 B . 1-p 3A . (1-p)C. 3(1-p) D . (1- p)3+p(1- p) 2+p2(1-p)4.已知离散型随机变量X 的概率分布如下表所示:X -1 0 1 2 4P 1/ 10 1/5 1/10 1/5 2/5 则下列概率计算结果正确的是( )A . P(X=3)=0B . P(X=0)= 0C. P(X>-1)=1 D . P(X<4)= 15.已知连续型随机变量X 服从区间 [a,b] 上的均匀分布,则概率P X2a b( )3A . 0B .13C.2 D . 1 36.设 (X,Y)的概率分布如下表所示,当X 与 Y 相互独立时 ,(p,q)=( )Y-1 1 X0 1p 151 1 Q51 3 2510A.(1,1 ) B.(1,1)5 15 15 5C.(1,2) D.(2,1)10 15 15107.设 (X,Y)的联合概率密度为f(x,y)= k( xy),0 x 2,0 y 1, 则k=() 0, 其他 ,A .1B .13 2C. 1 D . 38.已知随机变量 X~ N (0, 1),则随机变量Y=2X+10 的方差为 ( ) A . 1 B . 2C. 4 D.149.设随机变量 X 服从参数为0.5 的指数分布,用切比雪夫不等式估计P(|X-2| ≥ 3) ≤ ( )A .1B .29 9C.1 D .43 910.由来自正态总体 X~ N (μ, 22)、容量为400 的简单随机样本,样本均值为45,则未知参数μ的置信度为0.95的置信区间是 (u0.025=1.96,u0.05=1.645)( )A . (44, 46)B . (44.804,45.196)C. (44.8355, 45.1645) D . (44.9, 45.1) 二、填空题 (本大题共15 小题,每小题2分,共 30 分)请在每小题的空格中填上正确答案。
4月全国概率论与数理统计(二)自考试题及答案解析
1全国2019年4月高等教育自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A ,B 为随机事件,且A ⊂B ,则B A 等于( ) A.A B.B C.ABD.B A2.同时掷3枚均匀硬币,则至多有1枚硬币正面向上的概率为( )A.81B.61 C.41 D.21 3.设随机变量X 的概率密度为f(x),则f(x)一定满足( ) A.0≤f(x)≤1B.⎰∞-=>Xdt )t (f }x X {PC.⎰+∞∞-=1dx )x (fD.f(+∞)=1) ,则P ({-2<X ≤4}-{X>2})=A.0B.0.2C.0.35D.0.555.设二维随机向量(X,Y )的概率密度为f(x,y),则P{X>1}=( ) A.⎰⎰+∞∞-∞-dy )y ,x (f dx1 B.⎰⎰+∞∞-+∞dy )y ,x (f dx1C.⎰∞-1dx )y ,x (fD.dx )y ,x (f 1⎰+∞6.设二维随机向量(X,Y )~N(μ1,μ2,ρσσ,,2221),则下列结论中错误..的是( ) A.X~N (21,1σμ),Y~N (222,σμ)B.X 与Y 相互独立的充分必要条件是ρ=0C.E (X+Y )=21μ+μ2D.D (X+Y )=2221σ+σ7.设随机变量X ,Y 都服从区间[0,1]上的均匀分布,则E (X+Y )=( )A.61 B.21C.1D.28.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( ) A.D(X+c)=D(X) B.D(X+c)=D(X)+c C.D(X-c)=D(X)-c D.D(cX)=cD(X) 9.设E (X )=E (Y )=2,Cov(X,Y)=,61-则E (XY )=( ) A.61-B.623C.4D.625 10.设总体X~N (μ,σ2),σ2未知,且X 1,X 2,…,X n 为其样本,X 为样本均值,S 为样本标准差,则对于假设检验问题H 0:μ=μ0↔H 1:μ≠μ0,应选用的统计量是( ) A.n /S X 0μ- B.1n /X 0-σμ-C.1n /S X 0-μ- D.n/X 0σμ-二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
概率论与数理统计试题及答案(自考)
概率论与数理统计试题及答案(自考)一、单选题1.如果D(X)=3,令Y=2X+5,则D(Y)为A、12B、18C、7D、11【正确答案】:A解析:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X),因此D(Y)=D(2X+5)=D(2X)=4D(X)=4×3=12,因此选A。
2.设总体X~N(μ1,σ12),Y~N(μ2,σ22),σ12=σ22未知,关于两个正态总体均值的假设检验为H0:μ1≤μ2,H1:μ1 > μ2,则在显著水平α下,H0的拒绝域为A、B、C、D、【正确答案】:B解析:无3.设总体为来自X的样本,为样本值,s为样本标准差,则的无偏估计量为( )。
A、sB、C、D、【正确答案】:C解析:样本均值是总体均值的无偏估计量。
故选C.4.设随机变量X的方差D(X)=2,则利用切比雪夫不等式估计概率P{|X-E(X)|≥8}的值为( )。
A、B、C、D、【正确答案】:B解析:5.如果D(X)=2,令Y=3X+1,则D(Y)为A、2B、18C、3D、4【正确答案】:B解析:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X),因此D(Y)=D(3X+1)=D(3X)=9D(X)=9×2=18,因此选B。
6.在假设检验中,H0为原假设,则显著性水平的意义是A、P{拒绝H0| H0为真}B、P {接受H0| H0为真}C、P {接受H0| H0不真}D、P {拒绝H0| H0不真}【正确答案】:A解析:本题考察假设检验“两类错误”内容。
选择A。
7.则k=A、0.1B、0.2C、0.3D、0.4【正确答案】:D解析:本题考察一维离散型随机变量分布律的性质:。
计算如下0.2 + 0.3 + k + 0.1=1,k=0.4故选择D。
8.掷四次硬币,设A表示恰有一次出现正面,则P(A)=A、1/2B、1/4C、3/16D、1/3【正确答案】:B解析:样本空间Ω={正正正正,正正正反,正正反正,正反正正,反正正正,正正反反,正反正反,反正正反,正反反正,反正反正,反反正正,正反反反,反反正反,反正反反,反反反正,反反反反};其中恰有一次正面向上的样本点是{正反反反,反反正反,反正反反,反反反正}所以概率就是1/4。
自考概率论与数理统计二试题及答案解析
自考概率论与数理统计二试题及答案解析10月高等教育自学考试全国统一命题考试概率论与数理统计(二) 试卷(课程代码 02197)本试卷共4页,满分l00分,考试时间l50分钟。
考生答题注意事项:1.本卷所有试题必须在答题卡上作答。
答在试卷上无效,试卷空白处和背面均可作草稿纸。
2.第一部分为选择题。
必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。
3.第二部分为非选择题。
必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。
4.合理安排答题空间,超出答题区域无效。
第一部分选择题(共20分)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设A与B是两个随机事件,则P(A-B)=2.设随机变量石的分布律为A.O.1 B.O.2 C.O.3 D.0.63.设二维随机变量∽,n的分布律为且X与y相互独立,则下列结论正确的是A.d=0.2,b=0,2 B.a=0-3,b=0.3C.a=0.4,b=0.2 D.a=0.2,b=0.44.设二维随机变量(x,D的概率密度为5.设随机变量X~N(0,9),Y~N(0,4),且X 与Y相互独立,记Z=X-Y,则Z~6.设随机变量x服从参数为jl的指数分布,贝JJ D(X)=7.设随机变量2服从二项分布召(10,0.6),Y服从均匀分布U(0.2),则E(X-2Y)=A.4 B.5 C.8 D.108.设(X,Y)为二维随机变量,且D(.固>0,D(功>0,为X与y的相关系数,则第二部分非选择题(共80分)二、填空题(本大题共l5小题,每小题2分,共30分)11.设随机事件A,B互不相容,P(A)=0.6,P(B)=0.4,则P(AB)=_______。
12.设随机事件A,B相互独立,且P(A)=0.5,P(B)=0.6,则=________。
历年自学考试01297概率论与数理统计(二)试题和答案
全国2012年4月自学考试概率论与数理统计(二)试题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1. 设A ,B 为随机事件,且A ⊂B ,则AB 等于( )A. A BB. BC. AD. A2. 设A ,B 为随机事件,则P (A-B )=( ) A. P (A )-P (B )B. P (A )-P (AB )C. P (A )-P (B )+ P (AB )D. P (A )+P (B )- P (AB )3. 设随机变量X 的概率密度为f (x )= ⎪⎩⎪⎨⎧<<其他,,,0,6331x 则P {3<X ≤4}=( )A. P {1<X ≤2}B. P {4<X ≤5}C. P {3<X ≤5}D. P {2<X ≤7}4. 已知随机变量X 服从参数为λ的指数分布, 则X 的分布函数为 ( )A. F (x )=⎩⎨⎧≤>-.0,00,e x x λx ,λB. F (x )=⎩⎨⎧≤>--.0,00,e 1x x λx ,λC. F (x )=⎩⎨⎧≤>--.0,00,e 1x x λx ,D. F (x )=⎩⎨⎧≤>+-.0,00,e 1x x λx ,5. 已知随机变量X~N (2,2σ), P {X ≤4}=0.84, 则P {X ≤0}= ( ) A. 0.16 B. 0.32 C. 0.68 D. 0.84 6. 设随机变量X 与Y 相互独立,且都服从标准正态分布,则2X -Y +1~ ( )A. N (0,1)B. N (1,1)C. N (0,5)D. N (1,5)7. 设随机变量X 与Y 相互独立,它们的概率密度分别为f X (x ), f Y (y ), 则(X ,Y ) 的概率密度为( )A. 21[ f X (x )+f Y (y )] B. f X (x )+f Y (y ) C.21f X (x ) f Y (y ) D. f X (x ) f Y (y )8. 设随机变量X ~B (n ,p ), 且E (X )=2.4, D (X )=1.44, 则参数n ,p 的值分别为( ) A. 4和0.6 B. 6和0.4 C. 8和0.3 D.3和0.8 9. 设随机变量X 的方差D (X )存在,且D (X )>0,令Y =-X ,则ρXY =( )A. -1B.0C. 1D.210. 设总体X ~N (2,32),x 1,x 2,…,x n 为来自总体X 的样本,x 为样本均值,则下列统计 量中服从标准正态分布的是( ) A.32-x B.92-xC.nx /32-D.nx /92-二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格上填上正确答案。
全国自考概率论与数理统计(二)试题及解析
全国 2021 年 7 月高等教育自学考试概率论与数理统计〔二〕试题课程代码: 02197一、单项选择题〔本大题共10 小题,每题2 分,共 20 分〕在每题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多项选择或未 选均无分。
1.设事件 A 与 B 互不相容,且 P(A)>0,P(B)>0, 那么有〔 〕 A.P(A B)=P(A)+P(B) B.P(AB)=P(A)P(B) C.A= BD.P(A|B)=P(A)2.某人独立射击三次,其命中率为 ,那么三次中至多击中一次的概率为〔〕3.设事件 {X=K} 表示在 n 次独立重复试验中恰好成功 K 次,那么称随机变量 X 服从〔〕A. 两点分布B. 二项分布C.泊松分布D.均匀分布4.设随机变量 X 的概率密度为 K (4x 2 x 2 ),1 x 2〕f(x)=那么 K= 〔, 其它 A. 5 B. 1 162C.3D.44 55.设二维随机向量〔 X , Y 〕的联合分布函数 F 〔x,y 〕,其联合分布列为Y12 X-10 0 00 1那么 F(1,1) = 〔 〕1(6 x y),0 x 2,2 y 4,6.设随机向量〔 X , Y 〕的联合概率密度为 f(x,y)= 80,其它 ;那么 P 〔 X<1,Y<3 〕 =〔〕1A. 3B.4 8 85 7C. D.8 87.随机量 X 与 Y 相互独立,且它分在区[-1 ,3] 和[2, 4]上服从均匀分布,E〔XY 〕 =〔〕8. X 1, X2 , ⋯ ,X n,⋯独立同分布的随机量序列,且都服从参数1的指数分布,当 n 充分大,随机量21 nX i 的概率分布近似服从〔〕Y n=n i 1A.N 〔 2, 4〕B.N 〔 2,4〕nC.N 〔1, 1 〕 D.N 〔 2n,4n〕2 4n1 2 nN〔 0,1〕的随机本,X 本均,2 本方差,有〔〕9. X ,X ,⋯, X (n≥ 2)来自正体SA. nX ~ N( 0,1) 2~χ2(n)(n 1)X ( n 1)X 12~ F(1, n 1)C. ~ t(n 1)D. nSX i2i 210.假设未知参数的估量,且足E〔〕 = ,称是的〔〕A. 无偏估量B. 有偏估量C.近无偏估量D.一致估量二、填空〔本大共15 小,每小 2 分,共 30 分〕在每小的空格中填上正确答案。
02197-概率论与数理统计(二)
第一部分 自学指导自学指导见教材中的自学考试大纲第二部分 复习思考题一.单选题:1.设A, B, C, 为随机事件, 则事件“A, B, C 都不发生”可表示为( )。
A 、C B A B 、C B A C 、C B AD 、C B A2.设随机事件A 与B 相互独立, 且P (A)=51, P (B)=53, 则P (A ∪B)= ( )。
A 、253B 、2517C 、54 D 、2523 3.设随机变量X~B (3, 0.4), 则P{X≥1}= ( )。
A 、0.352 B 、0.432 C 、0.784 D 、0.9364.已知随机变量X 的分布律为 ,则P{-2<X≤4}= ( )。
A 、0.2 B 、0.35 C 、0.55D 、0.8 5.设随机变量X 的概率密度为4)3(2e2π21)(+-=x x f , 则E (X), D (X)分别为 ( )。
A 、2,3-B 、-3, 2C 、2,3D 、3, 26.设二维随机变量 (X, Y)的概率密度为⎩⎨⎧≤≤≤≤=,,0,20,20,),(其他y x c y x f 则常数c= ( )。
A 、41B 、21 C 、2 D 、47.设二维随机变量 (X, Y)~N (-1, -2;22, 32;0), 则X-Y~ ( )。
A 、N (-3, -5)B 、N (-3,13)C 、N (1, 13)D 、N (1,13)8.设X, Y 为随机变量, D (X)=4, D (Y)=16, Cov (X,Y)=2, 则XY ρ=( )。
A 、321 B 、161 C 、81D 、41 9.设随机变量X~2χ(2), Y~2χ(3), 且X 与Y 相互独立, 则3/2/Y X ~ ( )。
A 、2χ (5) B 、t (5) C 、F (2,3)D 、F (3,2)10.在假设检验中, H 0为原假设, 则显著性水平α的意义是 ( )。
最新4月全国自考概率论与数理统计(二)试题及答案解析
1全国2018年4月自考概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 与B 是任意两个互不相容事件,则下列结论中正确的是( ) A.)(1)(B P A P -= B. )()(B P B A P =- C. )()()(B P A P AB P =D. )()(A P B A P =-2.设A ,B 为两个随机事件,且0)(,>⊂B P A B ,则=)(B A P ( ) A.1 B.)(A P C.)(B PD.)(AB P3.下列函数中可作为随机变量分布函数的是( ) A.⎩⎨⎧≤≤=.,0;10,1)(1其他x x FB.⎪⎩⎪⎨⎧≥<≤<-=.1,1;10,;0,1)(2x x x x x FC. ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(3x x x x x FD. ⎪⎩⎪⎨⎧≥<≤<=.1,2;10,;0,0)(4x x x x x F4.设离散型随机变量X 的分布律为则{}=≤<-11X P ( ) A.0.3 B.0.4 C.0.6D.0.75.设二维随机变量(X ,Y )的分布律为( )2且X 与Y 相互独立,则下列结论正确的是 A.a =0.2,b =0.6 B.a =-0.1,b =0.9 C.a =0.4,b =0.4D.a =0.6,b =0.2 6.设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧<<<<=,,0;20,20,41),(其他y x y x f则P {0>X <1,0<Y <1}=( )A.41B.21 C.43 D.17.设随机变量X 服从参数为21的指数分布,则E (X )=( ) A. 41 B.21 C.2D.48.设随机变量X 与Y 相互独立,且X ~N (0,9),Y ~N (0,1),令Z =X -2Y ,则D (Z )=( ) A.5 B.7 C.11D.139.设(X ,Y )为二维随机变量,且D (X )>0,D (Y )>0,则下列等式成立的是( ) A.E (XY )=E (X )·E (Y ) B.Cov )()(),(Y D X D Y X XY ••=ρ C. D (X +Y )=D (X )+D (Y )D.Cov(2X ,2Y )=2Cov(X ,Y )10.设总体X 服从正态分布N (2,σμ),其中2σ未知,x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,S 为样本标准差,欲检验假设0H :0μμ=,1H :0μμ≠,则检验统计量为3 ( ) A.σμ0-x n B. sx nμ- C.)(10μ--x n D.)(0μ-x n二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
概率论与数理统计(二)2019年4月自学考试试题+答案
2019年4月高等教育自学考试全国统一命题考试概率论与数理统计(二) (课程代码 02197)一、单项选择题:本大题共10小题,每小题2分,共20分。
1.设()0.6P B =,()0.5P A B =,则()P A B -= A.0.1B.0.2C.0.3D.0.42.设事件A ,B 为任意事件,且相互独立,则=)(B A P A.)()(B P A PB.)()(1B P A P -C.)()(B P A P +D.)()(1B P A P -3.甲袋中有3个红球1个白球,乙袋中有1个红球2个白球,从两袋中分别取出一个球,则两个球颜色相同的概率的概率是A.16B.14C.13D.5124.设随机变量X 的分布律为cPX241c210,则P{X>0}=A.14B.12C.34D.15.设随机变量X 的概率为,02()0,cx x f x ≤≤⎧=⎨⎩其他,则P{X ≤1}=A.14B.12 C.23D.346.已知随机变量X ~N (-2,2),则E (2X-1)= A.1B.21 C.32 D.437.设二维随机变量(X,Y )的分布律为则P{X+Y=1}= A.0.1B.0.4C.0.5D.0.78.设随机变量X 与Y 相互独立,且D (X )=4,D (Y )=2,则D (3X-2Y )= A.8B.16C.28D.449.设123,,x x x 是来自总体X 的样本,若E (X )=μ(未知),123132x ax ax μ=-+是μ的无偏估计,则常数a=A.16B.14C.13D.1210.设12,,,(1)n x x x n >为来自正态总体2(,)N μσ的样本,其中2,μσ均未知,x 和2s 分别是样本均值和样本方差,对于检验假设0000=H H μμμμ≠:,:,则显著性水平为α的检验拒绝域为A.02(1)x n αμ⎧⎫->-⎨⎬⎩⎭B.02x αμ⎧⎫->⎨⎬⎩⎭C.02(1)x n αμ⎧⎫-≤-⎨⎬⎩⎭ D.02x αμ⎧⎫-≤⎨⎬⎩⎭二、填空题:本大题共15小题,每小题2分,共30分。
历年自考《概率论与数理统计》试题及答案
历年自考《概率论与数理统计》试题及答案概率论与数理统计自考试题及答案概率论与数理统计作为一门重要的学科,旨在研究事物发生的概率和统计规律。
自考《概率论与数理统计》科目作为自考证书的一部分,对于自考学生来说具有重要的意义。
本文将为大家介绍历年自考《概率论与数理统计》试题及答案,供大家学习参考。
一、选择题试题及答案1. 以下哪种是属于离散型随机变量?A) 考试成绩B) 温度C) 股票价格D) 身高答案:A) 考试成绩2. 下列哪种是连续型随机变量?A) 投硬币的结果B) 抛骰子的结果C) 学生身高D) 班级人数答案:C) 学生身高3. 一批商品中有10%的次品,现在从中随机抽取5件商品,求至少有1件次品的概率。
A) 0.59B) 0.95C) 0.41D) 0.24答案:B) 0.95二、填空题试题及答案1. 对于一个事件的概率,有一个基本性质称为________。
答案:非负性2. 设事件A和事件B相互独立,P(A) = 0.3,P(B) = 0.4,则P(A∪B) = ________。
答案:0.523. 设事件A和事件B互斥,则P(A∪B) = ________。
答案:P(A) + P(B)三、简答题试题及答案1. 什么是条件概率?答案:条件概率是指在已知事件B发生的条件下,事件A发生的概率,记作P(A|B)。
2. 请解释经验概率和几何概率的概念。
答案:经验概率是通过实验或观察得出的概率值,是频率的极限;而几何概率是指基于数学原理和几何形状计算得出的概率值。
四、计算题试题及答案1. 一批商品中有10%的次品,现在从中随机抽取5件商品,求至少有1件次品的概率。
解答:设事件A为至少有1件次品。
根据题目可知,商品次品的概率为0.1。
则P(没有次品) = 0.9^5 = 0.59049所以,P(A) = 1 - P(没有次品) = 1 - 0.59049 = 0.40951因此,至少有1件次品的概率为0.40951。
全国自学考试概率论与数理统计二历年真题及答案
全国2010年7月高等教育自学考试 概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 、B 为两事件,已知P (B )=21,P (A ⋃B )=32,若事件A ,B 相互独立,则P (A )=( ) A .91B .61C .31D .21 2.对于事件A ,B ,下列命题正确的是( ) A .如果A ,B 互不相容,则A ,B 也互不相容 B .如果A ⊂B ,则B A ⊂ C .如果A ⊃B ,则B A ⊃D .如果A ,B 对立,则A ,B 也对立3.每次试验成功率为p (0<p <1),则在3次重复试验中至少失败一次的概率为( ) A .(1-p )3 B .1-p 3C .3(1-p )D .(1-p )3+p (1-p )2+p 2(1-p )4.已知离散型随机变量X则下列概率计算结果正确的是( ) A .P (X =3)=0 B .P (X =0)=0 C .P (X >-1)=1D .P (X <4)=1 5.已知连续型随机变量X 服从区间[a ,b ]上的均匀分布,则概率P =⎭⎬⎫⎩⎨⎧+<32b a X ( )A .0B .31C .32 D .1A .(51,151)B .(151,51)C .(101,152) D .(152,101) 7.设(X ,Y )的联合概率密度为f (x ,y )=⎩⎨⎧≤≤≤≤+,,0,10,20),(其他y x y x k 则k =( )A .31B .21 C .1D .38.已知随机变量X ~N (0,1),则随机变量Y =2X +10的方差为( ) A .1 B .2 C .4D .149.设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计P (|X -2|≥3)≤( )A .91B .92C .31D .94 10.由来自正态总体X ~N (μ,22)、容量为400的简单随机样本,样本均值为45,则未知参数μ的置信度为0.95的置信区间是(u 0.025=1.96,u 0.05=1.645)( ) A .(44,46)B .(44.804,45.196)C .(44.8355,45.1645)D .(44.9,45.1)二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
概率论与数理统计试题及答案(自考)
概率论与数理统计试题及答案(自考)一、单选题1.如果D(X)=3,令Y=2X+5,则D(Y)为A、12B、18C、7D、11【正确答案】:A解析:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X),因此D(Y)=D(2X+5)=D(2X)=4D(X)=4×3=12,因此选A。
2.设总体X~N(μ1,σ12),Y~N(μ2,σ22),σ12=σ22未知,关于两个正态总体均值的假设检验为H0:μ1≤μ2,H1:μ1 > μ2,则在显著水平α下,H0的拒绝域为A、B、C、D、【正确答案】:B解析:无3.设总体为来自X的样本,为样本值,s为样本标准差,则的无偏估计量为( )。
A、sB、C、D、【正确答案】:C解析:样本均值是总体均值的无偏估计量。
故选C.4.设随机变量X的方差D(X)=2,则利用切比雪夫不等式估计概率P{|X-E(X)|≥8}的值为( )。
A、B、C、D、【正确答案】:B解析:5.如果D(X)=2,令Y=3X+1,则D(Y)为A、2B、18C、3D、4【正确答案】:B解析:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X),因此D(Y)=D(3X+1)=D(3X)=9D(X)=9×2=18,因此选B。
6.在假设检验中,H0为原假设,则显著性水平的意义是A、P{拒绝H0| H0为真}B、P {接受H0| H0为真}C、P {接受H0| H0不真}D、P {拒绝H0| H0不真}【正确答案】:A解析:本题考察假设检验“两类错误”内容。
选择A。
7.则k=A、0.1B、0.2C、0.3D、0.4【正确答案】:D解析:本题考察一维离散型随机变量分布律的性质:。
计算如下0.2 + 0.3 + k + 0.1=1,k=0.4故选择D。
8.掷四次硬币,设A表示恰有一次出现正面,则P(A)=A、1/2B、1/4C、3/16D、1/3【正确答案】:B解析:样本空间Ω={正正正正,正正正反,正正反正,正反正正,反正正正,正正反反,正反正反,反正正反,正反反正,反正反正,反反正正,正反反反,反反正反,反正反反,反反反正,反反反反};其中恰有一次正面向上的样本点是{正反反反,反反正反,反正反反,反反反正}所以概率就是1/4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国2012年4月自学考试概率论与数理统计(二)试题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1. 设A ,B 为随机事件,且A ⊂B ,则AB 等于( )A. A BB. BC. AD. A2. 设A ,B 为随机事件,则P (A-B )=( ) A. P (A )-P (B )B. P (A )-P (AB )C. P (A )-P (B )+ P (AB )D. P (A )+P (B )- P (AB )3. 设随机变量X 的概率密度为f (x )= ⎪⎩⎪⎨⎧<<其他,,,0,6331x 则P {3<X ≤4}=( )A. P {1<X ≤2}B. P {4<X ≤5}C. P {3<X ≤5}D. P {2<X ≤7}4. 已知随机变量X 服从参数为λ的指数分布, 则X 的分布函数为 ( )A. F (x )=⎩⎨⎧≤>-.0,00,e x x λx ,λB. F (x )=⎩⎨⎧≤>--.0,00,e 1x x λx ,λC. F (x )=⎩⎨⎧≤>--.0,00,e 1x x λx ,D. F (x )=⎩⎨⎧≤>+-.0,00,e 1x x λx ,5. 已知随机变量X~N (2,2σ), P {X ≤4}=0.84, 则P {X ≤0}= ( ) A. 0.16 B. 0.32 C. 0.68 D. 0.84 6. 设随机变量X 与Y 相互独立,且都服从标准正态分布,则2X -Y +1~ ( )A. N (0,1)B. N (1,1)C. N (0,5)D. N (1,5)7. 设随机变量X 与Y 相互独立,它们的概率密度分别为f X (x ), f Y (y ), 则(X ,Y ) 的概率密度为( )A. 21[ f X (x )+f Y (y )] B. f X (x )+f Y (y ) C.21f X (x ) f Y (y ) D. f X (x ) f Y (y )8. 设随机变量X ~B (n ,p ), 且E (X )=2.4, D (X )=1.44, 则参数n ,p 的值分别为( ) A. 4和0.6 B. 6和0.4 C. 8和0.3 D.3和0.8 9. 设随机变量X 的方差D (X )存在,且D (X )>0,令Y =-X ,则ρXY =( )A. -1B.0C. 1D.210. 设总体X ~N (2,32),x 1,x 2,…,x n 为来自总体X 的样本,x 为样本均值,则下列统计 量中服从标准正态分布的是( ) A.32-x B.92-xC.nx /32-D.nx /92-二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格上填上正确答案。
错填、不填均无分。
11. 在一次读书活动中,某同学从2本科技书和4本文艺书中任选2本,则选中的书都是科 技书的概率为______.12. 设随机事件A 与B 相互独立,且P (A )=0.5,P (A B )=0.3,则P (B )=______. 13. 设A ,B 为随机事件,P (A )=0.5,P (B )=0.4,P (A │B )=0.8,则P (B │A )=______. 14. 设袋中有2个黑球、3个白球,有放回地连续取2次球,每次取一个,则至少取到一个 黑 球的概率是______.15. 设随机变量X 的分布律为2≥1}=______.16. 设二维随机变量(X ,Y x ≤2,0≤y ≤2.记(X , Y )的概率密度为f (x ,y ),则f (1,1)=______. 17. 设二维随机变量(X ,Y )的分布律为则P {X =Y }=______.F (x ,y )=⎪⎩⎪⎨⎧>>----其他,,0.0,0),e 1)(e 1(y x y x18. 设二维随机变量(X ,Y )的分布函数为 则P {X ≤1,Y ≤1}=______.19. 设随机变量X 服从参数为3的泊松分布,则E (X -3)=______.20. 设随机变量X 的分布律为 E (X )=0,则a -b =______.21. 设随机变量X ~N (1,1),应用切比雪夫不等式估计概率P {│X -E (X )│≥2}≤______. 22. 设总体X 服从二项分布B (2,0.3),x 为样本均值,则E (x )=______.23. 设总体X ~N (0,1),x 1,x 2,x 3为来自总体X 的一个样本,且2232221~x x x x ++(n ),则n=______.24. 设总体X ~N (μ,1),x 1,x 2为来自总体X 的一个样本,估计量,2112121ˆx x +=μ,2123231ˆx x +=μ则方差较小的估计量是______. 25. 在假设检验中,犯第一类错误的概率为0.01,则在原假设H 0成立的条件下,接受H 0的概率为______.三、计算题(本大题共2小题,每小题8分,共16分)26. 设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤.,010,2其他x cx求:(1)常数c ;(2)X 的分布函数F (x );(3)P ⎭⎬⎫⎩⎨⎧<<210X . 27. 设二维随机变量(X ,Y )的分布律为Y求:(1)(X,Y)关于X的边缘分布律;(2)X+Y的分布律.四、综合题(本大题共2小题,每小题12分,共24分)28. 设随机变量X与Y相互独立,且都服从标准正态分布,令.,YXYX-=+=ηξ求:(1)E);(),(),(),(ηξηξDDE(2).ξηρ29. 设总体X的概率密度⎪⎩⎪⎨⎧<<+=,,0,1,1;其他)()(xxxfθθθ其中未知参数,1->θx1,x2,…,x n是来自该总体的一个样本,求参数θ的矩估计和极大似然估计.五、应用题(10分)30. 某生产线上的产品按质量情况分为A,B,C三类.检验员定时从该生产线上任取2件产品进行抽检,若发现其中含有C类产品或2件都是B类产品,就需要调试设备,否则不需要调试设备.已知该生产线上生产的每件产品为A类品、B类品和C类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.求:(1)抽到的两件产品都为B类品的概率p1;(2)抽检后设备不需要调试的概率p2.1.C2.B3.B4.C5.A 6D 7D 8.B9.A 10.C()99.0.25ˆ.243.236.0.2241.212.0.200.19-1.184.0.170.168.0.1564.0.1464.0.134.0.12151.11121μ-e 填空题答案:()()(){}()(){}()(){}()()⎪⎩⎪⎨⎧≥<≤<====≥=≥===<≤=<≤==<=<====⎰⎰⎰⎰⎰⎰∞-.11113113112331311.26312321312xxxxXFXdxxdxxfXPxFxxdxxdxxfXPxFxdxxfXPxFxcxcdxcxxxx,,,,的分布函数为即;时,当;时,当;时,当;,得由解:参考答案:()()的分布律为解:XxdxxXP1.27.813213213212===⎭⎬⎫⎩⎨⎧<<⎰()的分布律为YX+2-1 0 10 0.2 0.1 0.31 0.1 0.2 0.1XY()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()().00022211211000000101.2822222222==-=-====+==+=+=-==+=+=+==-=-=-==+=+=+====ξηρξηηςηξ故,所以,,因为;;;;,所以,由题意得解:Y E X E Y X Cov Cov X E Y E X E X D X E Y D X D Y X D D Y D X D Y X D D Y E X E Y X E E Y E X E Y X E E Y D X D Y E X E()()()()()()()()()().1ln -ˆ0ln 1ln ln 1ln 11112ˆ2121211.291111110210-==++=++=⎪⎪⎭⎫⎝⎛+=+=--==++=++=++=+=∑∑∑∏∏⎰=====+ni ini i ni i n i i nni ixnx nd L d x n L x x L xx x x X E x dx x x X E θθθθθθθθθθθθθθθθθθθθθθθθθ的极大似然估计由上似然方程解得,,,的似然函数为易求;的矩估计,故,得由矩估计法,解:总体期望为.30解决这道题最简单的思维角度是设产品总数为100,则A 类有90件,B 类有5件,C 类有5件,第一问的概率=从B 类的5件中抽取2件比上从100件中抽取2件=1/495;在求第二问之前,应先求取到含有C 类产品的概率=(从C 类的5件中抽取2件+从A 、B 类的95件中抽取1件×从C 类的5件中抽取1件)比上从100件中抽取2件=97/990; 所以第二问的概率=1-1/495-97/990=9/10=0.9. ()().109990991990974951119909799509759950475102495199501013122100151952532100251=-=--=--==⨯⨯=⨯+=+==⨯==p p p C C C C p C C p ;设;全国2011年4月自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( ) A .C B A B .C B A C .C B AD .C B A2.设随机事件A 与B 相互独立, 且P (A )=51, P (B )=53, 则P (A ∪B )= ( )A .253B .2517C .54 D .2523 3.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( ) A .0.352 B .0.432 C .0.784 D .0.936 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( )A .0.2B .0.35C .0.55D .0.85.设随机变量X 的概率密度为4)3(2e2π21)(+-=x x f , 则E (X ), D (X )分别为 ( )A .2,3-B .-3, 2C .2,3D .3, 26.设二维随机变量 (X , Y )的概率密度为⎩⎨⎧≤≤≤≤=,,0,20,20,),(其他y x c y x f 则常数c = ( )A .41B .21 C .2D .47.设二维随机变量 (X , Y )~N (-1, -2;22, 32;0), 则X -Y ~ ( )A .N (-3, -5)B .N (-3,13)C .N (1,13)D .N (1,13)8.设X , Y 为随机变量, D (X )=4, D (Y )=16, C o v (X ,Y )=2, 则XY ρ=( )A .321B .161C .81 D .41 9.设随机变量X ~2χ(2), Y ~2χ(3), 且X 与Y 相互独立, 则3/2/Y X ~ ( ) A .2χ (5)B .t (5)C .F (2,3)D .F (3,2)10.在假设检验中, H 0为原假设, 则显著性水平α的意义是 ( )A .P {拒绝H 0|H 0为真}B .P {接受H 0|H 0为真}C .P {接受H 0|H 0不真}D .P {拒绝H 0|H 0不真}二、填空题 (本大题共15小题, 每小题2分, 共20分)请在每小题的空格中填上正确答案。