复数高考题分类大全

合集下载

2024年高考数学真题分类汇编03:复数和平面向量

2024年高考数学真题分类汇编03:复数和平面向量

复数和平面向量一、单选题1.(2024·全国)若1i 1zz =+-,则z =()A .1i--B .1i-+C .1i-D .1i+2.(2024·全国)已知向量(0,1),(2,)a b x ==,若(4)b b a ^-,则x =()A .2-B .1-C .1D .23.(2024·全国)已知1i z =--,则z =()A .0B .1C D .24.(2024·全国)已知向量,a b 满足1,22a a b =+=,且()2b a b -^,则b =()A .12B C D .15.(2024·全国)设z =,则z z ×=()A .-iB .1C .-1D .26.(2024·全国)设5i z =+,则()i z z +=()A .10iB .2iC .10D .2-7.(2024·全国)已知向量()()1,,,2a x x b x =+=,则()A .“3x =-”是“a b ^”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ^”的充分条件D .“1x =-”是“//a b ”的充分条件8.(2024·北京)已知i 1iz=-,则z =().A .1i-B .i-C .1i--D .19.(2024·北京)已知向量a ,b ,则“()()·0a b a b +-=”是“a b =或a b =-”的()条件.A .必要而不充分条件B .充分而不必要条件C .充分且必要条件D .既不充分也不必要条件二、填空题10.(2024·天津)已知i 是虚数单位,复数))i 2i ×=.11.(2024·天津)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC ==+uur uu r uu u r l m ,则l m +=;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ×的最小值为.12.(2024·上海)已知()(),2,5,6,k a b k Î==R ,且//a b ,则k 的值为.13.(2024·上海)已知虚数z ,其实部为1,且()2z m m z+=ÎR ,则实数m 为.参考答案:1.C【分析】由复数四则运算法则直接运算即可求解.【解析】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.2.D【分析】根据向量垂直的坐标运算可求x 的值.【解析】因为()4b b a ^-,所以()40b b a ×-=,所以240b a b -×=即2440x x +-=,故2x =,故选:D.3.C【分析】由复数模的计算公式直接计算即可.【解析】若1i z =--,则z ==故选:C.4.B【分析】由()2b a b -^得22b a b =×,结合1,22a a b =+=,得22144164a b b b +×+=+=,由此即可得解.【解析】因为()2b a b -^,所以()20b a b -×=,即22b a b =×,又因为1,22a a b =+=,所以22144164a b b b +×+=+=,从而22=b .故选:B.5.D【分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【解析】依题意得,z =,故22i 2zz =-=.故选:D 6.A【分析】结合共轭复数与复数的基本运算直接求解.【解析】由5i 5i,10z z z z =+Þ=-+=,则()i 10i z z +=.故选:A 7.C【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【解析】对A ,当a b ^时,则0a b ×=,所以(1)20x x x ×++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b ==,故0a b ×=,所以a b ^,即充分性成立,故C 正确;对B ,当//a b 时,则22(1)x x +=,解得1x =±B 错误;对D ,当1x =-时,不满足22(1)x x +=,所以//a b 不成立,即充分性不立,故D 错误.故选:C.8.C【分析】直接根据复数乘法即可得到答案.【解析】由题意得()i i 11i z =-=--,故选:C.9.A【分析】根据向量数量积分析可知()()0a b a b +×-=等价于a b =,结合充分、必要条件分析判断.【解析】因为()()220a b a b a b +×-=-=,可得22a b =,即a b =,可知()()0a b a b +×-=等价于a b =,若a b =或a b =-,可得a b =,即()()0a b a b +×-=,可知必要性成立;若()()0a b a b +×-=,即a b =,无法得出a b =或a b =-,例如()()1,0,0,1a b ==,满足a b =,但a b ¹且a b ¹-,可知充分性不成立;综上所述,“()()0a b a b +×-=”是“a b ¹且a b ¹-”的必要不充分条件.故选:A.10.7【分析】借助复数的乘法运算法则计算即可得.【解析】))i 2i 527×=-+=.故答案为:7.11.43518-【分析】解法一:以{},BA BC 为基底向量,根据向量的线性运算求BE ,即可得l m +,设BF BEk =uu u r uur,求,AF DG uu u r uuu r ,结合数量积的运算律求AF DG ×的最小值;解法二:建系标点,根据向量的坐标运算求BE ,即可得l m +,设()1,3,,03F a a a éù-Î-êúëû,求,AF DG uu u r uuu r ,结合数量积的坐标运算求AF DG ×的最小值.【解析】解法一:因为12CE DE =,即23CE BA =uur uu r ,则13BE BC CE BA BC =+=+uu u r uur u uu ur r uu u r ,可得1,13l m ==,所以43l m +=;由题意可知:1,0BC BA BA BC ==×=,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+Î,则113AF AB BF AB k BE k BA k BC æö=+=+=-+ç÷èø,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC æöæö=+=-+=-+-ç÷ç÷èøèø,可得11111113232AF DG k BA k BC k BA k BC éùéùæöæöæö×=-+×-+-ç÷ç÷ç÷êúêúèøèøèøëûëû22111563112329510k k k k æöæöæö=-+-=--ç÷ç÷ç÷èøèøèø,又因为[]0,1k Î,可知:当1k =时,AF DG ×取到最小值518-;解法二:以B 为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E æö---ç÷èø,可得()()11,0,0,1,,13BA BC BE æö=-==-ç÷èø,因为(),BE BA BC l m l m =+=-,则131l m ì-=-ïíï=î,所以43l m +=;因为点F 在线段1:3,,03BE y x x éù=-Î-êúëû上,设()1,3,,03F a a a éù-Î-êúëû,且G 为AF 中点,则13,22a G a -æö-ç÷èø,可得()131,3,,122a AF a a DG a +æö=+-=--ç÷èø,则()()22132331522510a AF DG a a a +æöæö×=+---=+-ç÷ç÷èøèø,且1,03a éùÎ-êúëû,所以当13a =-时,AF DG ×取到最小值为518-;故答案为:43;518-.12.15【分析】根据向量平行的坐标表示得到方程,解出即可.【解析】//a b ,256k \=´,解得15k =.故答案为:15.13.2【分析】设1i z b =+,直接根据复数的除法运算,再根据复数分类即可得到答案.【解析】设1i z b =+,b ÎR 且0b ¹.则23222231i i 1i 11b b b z b m z b b b æöæö+-+=++=+=ç÷ç÷+++èøèø,mÎR,2232310 1bmbb bbì+=ïï+\í-ï=ï+î,解得2m=,故答案为:2.。

第12章复数章末题型归纳总结 高考数学

第12章复数章末题型归纳总结 高考数学

又∠ ∈ , ,所以∠ = .



故答案为:






= ,
试卷讲评课件
例11.(2024 ⋅高一·江苏·专题练习)在复平面内,O是原点,向量OZ对应
的复数是−1 +
− 2
复数为_____.
π
i,将OZ绕点O按逆时针方向旋转 ,则所得向量对应的
4
【解析】如图,由题意可知 = −, ,与
经典题型六:复数的三角表示
模块三:数学思想与方法
①分类与整合思想②等价转换思想③
数形结合的思想
试卷讲评课件
模块一:本章知识思维导图
试卷讲评课件
模块二:典型例题
经典题型一:复数的概念
例1.(2024
z
⋅高三·河南商丘·阶段练习)若复数z满足 为纯虚数,且
2+i
z = 1,则z的虚部为(

2 5
A.±
若 = ,则有 = , = , ∴ = ,反之由 = ,
推不出 = ,如 = +, = − 时, = ,故C正确;
D中两个复数不能比较大小,但任意两个复数的模总能比较大小,∴
错.
选.
试卷讲评课件
【解析】复数 = + ,则 = +

= − + = −,
−=

又是实数,因此
,解得 = −,
= −
所以实数的值是−.
试卷讲评课件
z1
z1
(2)若 是纯虚数,求
z2
z2
+
z1 2
z2
+
z1 3

高中数学《复数》高考真题汇总(详解)——精品文档

高中数学《复数》高考真题汇总(详解)——精品文档

高中数学《复数》高考真题汇总(详解)1.对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+2.复数231i i -⎛⎫= ⎪+⎝⎭( )A.34i --B.34i -+C.34i -D.34i +3.复数z =1ii+在复平面上对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限4.设a,b 为实数,若复数11+2ii a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b ==5.已知(x+i )(1-i )=y ,则实数x ,y 分别为( ) A.x=-1,y=1 B. x=-1,y=2 C. x=1,y=1 D. x=1,y=26.已知21i =-,则i(1)=( )i i C.i D.i 7.设i 为虚数单位,则51ii-=+( ) A.-2-3i B.-2+3i C.2-3iD.2+3i8.已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 3 9.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i10. i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i11. i 是虚数单位,复数31ii+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i 12.i 是虚数单位,复数1312ii-+=+( )A.1+iB.5+5iC.-5-5iD.-1-i 13.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2i B. 2+i C. 2+2i D.3 14. i 是虚数单位,41i ()1-i+等于 ( ) A .i B .-i C .1D .-115.复数3223ii+=-( ) A.i B.i - C.12-13i D. 12+13i16.已知2(,)a i b i a b i +=+2a ib i i+=+(a,b ∈R ),其中i 为虚数单位,则a+b=( ) A.-1 B.1 C.2 D.3 17. i 33i=+ ( ) A.13412- B.13412+ C.1326i + D.1326- 18.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i+的点是( )A.EB.FC.GD.H19.某程序框图如左图所示,若输出的S=57,则判断框内位( ) A. k >4? B.k >5? C. k >6? D.k >7? 20.如果执行下图(左)的程序框图,输入6,4n m ==,那么输出的p 等于( )A.720B.360C.240D.12021.如果执行上图(右)的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于( ) A.1m nC - B.1m nA - C.m n C D.mn A22.某程序框图如下图(左)所示,若输出的S=57,则判断框内为( ) A.k >4? B.k >5? C. k >6? D. k >7?23.【2010·天津文数】阅读右边的程序框图,运行相应的程序,则输出s 的值为( ) A.-1 B.0 C.1 D.3标准答案1.【答案】D【解析】可对选项逐个检查,A 项,y z z 2≥-,故A 错;B 项,xyi y x z 2222+-=,故B 错;C 项,y z z 2≥-,故C 错;D 项正确.本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题. 2.【答案】A【解析】本试题主要考查复数的运算.231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 3.【答案】A【解析】本题考查复数的运算及几何意义.1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 4.【答案】A【解析】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力. 由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A.5.【答案】D【解析】考查复数的乘法运算.可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2. 6.【答案】B【解析】直接乘开,用21i =-代换即可.(1)i i =,选B. 7.【答案】C【解析】本题主要考察了复数代数形式的四则运算,属容易题. 8.【答案】B 9.【答案】C 10. 【答案】A【解析】由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i )=-1. 11.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题.进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1.331+24121-(1-)(1+)2i i i ii i i i +++===+()() 12.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。

复数高考题分类大全

复数高考题分类大全

复数高考题分类大全 Revised by BETTY on December 25,2020复数高考真题分类汇编题型一 复数的概念及分类1.(2015·天津卷)i 是虚数单位,若复数))(21(i a i +-是纯虚数,则=a .2.(2016·江苏卷)复数)3)(21(i i z -+=,i 为虚数单位,则z 的实部是 .3.(2016·上海卷)设i iz 23+=,其中i 为虚数单位,则其虚部为 .4.(2017·天津卷)已知R a ∈,i 为虚数单位,若i i a +-2为实数,则a 的值为 . 5.(2017·全国卷)设有下面四个命题::1p 若复数满足R z∈1,则R z ∈; :2p 若复数满足R z ∈2,则R z ∈; :3p 若复数1z 、2z 满足R z z ∈21,则21z z =; :4p 若复数R z ∈,则R z ∈; 其中真命题为( )A .1p ,3pB .1p ,4pC .2p ,3pD .2p ,4p 题型二 与共轭复数、复数相等有关的问题1.(2013·山东卷)复数满足5)2)(3(=--i z (i 为虚数单位),则z 的共轭复数为( )A .i +2B .i -2C .i +5D .i -52.(2013·安徽卷)设i 是虚数单位,若z i z z 22=+⋅,则=z ( )A .i +1B .i -1C .i +-1D .i --1 3.(2013·福建卷)已知复数的共轭复数i z 21+=(i 为虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.(2013·湖北卷)在复平面内,复数ii z +=12(i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.(2013·四川卷)如图,在复平面内,点A 表示复数,则图中表示的共轭复数的点是_____6.(2013·天津卷)已知R b a ∈、,i 是虚数单位,若bi i i a =++)1)((,则=+bi a .7.(2014·陕西卷)原命题为“若21,z z 互为共轭复数,则21z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真假真B .假假真C .真真假D .假假假8.(2014·山东卷)已知R b a ∈、,i 是虚数单位,若i a -与bi +2互为共轭复数,则=+2)(bi a ( )A .i 45-B .i 45+C . i 43-D .i 43+ 9.(2014·江西卷)z 是z 的共轭复数.若2=+z z ,2)(=-i z z ,i 为虚数单位,则=z ( )A .i +1B .i --1C .i +-1D . i -1 10.(2014·安徽卷)设i 是虚数单位,z 表示复数z 的共轭复数.若i z +=1,则=⋅+z i iz ( )A .2-B .i 2-C .2D .i 211.(2014·全国卷)设ii z +=310,则z 的共轭复数为( ) A .i 31+- B .i 31-- C .i 31+D .i 31-12.(2014·福建卷)复数i i z )23(-=的共轭复数为( )A .i 32--B .i 32+-C .i 32-D . i 32+ 13.(2015·广东卷)若复数)23(i i z -=(i 是虚数单位),则=z ( )A .i 32-B .i 32+C .i 23+D .i 23- 14.(2015·湖北卷)i 为虚数单位,607i 的共轭复数为( )A .iB .i -C .1D .1- 15.(2015·全国卷Ⅱ)若a 为实数,且i i a ai 4)2)(2(-=-+,则=a ( )A .1-B .0C . 1D . 2 16.(2015·山东卷)若复数满足i iz =-1,其中i 为虚数单位,则=z ( )A .i -1B .i +1C .i --1D .i +-1 17.(2016·山东卷)若复数满足i z z 232-=+,其中i 为虚数单位,则=z ( )A .i 21+B .i 21-C .i 21+-D .i 21-- 18.(2016·天津卷)已知R b a ∈、,i 是虚数单位,若a bi i =-+)1)(1(,则b a 的值为______.19.(2017·山东卷)已知R a ∈,i 是虚数单位,若i a z 3+=,4=⋅z z ,则=a ( )A .1或1-B .3或3-C .3-D .320.(2017·浙江卷)已知R b a ∈、,i bi a 43)(2+=+(i 是虚数单位),则=+22b a ______,=ab ________.题型三 复数的模1.(2013·辽宁卷)复数11-=i z 的模为( )A .21B .22C .2D .22.(2013·江苏卷)设2)2(i z -=(i 为虚数单位),则复数z 的模为______.3.(2013·陕西卷)设21z z 、是复数,则下列命题中的假命题是( )A .若021=-z z ,则21z z =B .若21z z =,则21z z =C .若21z z =,则2211z z z z ⋅=⋅D .若21z z =,则2221z z =4.(2013·重庆卷)已知复数i iz 215+=(i 是虚数单位),则=z _____.5.(2015·全国卷)设复数z 满足i z z=-+11,则=z ( )A .1B .2C .3D .26.(2015·江苏卷)设复数满足i z 432+=(i 是虚数单位),则z 的模为_____.7.(2015·重庆卷)设复数bi a +(R b a ∈,)的模为3,则=-+))((bi a bi a ____.8.(2016·全国卷)设yi x i +=+1)1(,其中y x 、是实数,则=+yi x ( )A .1B .2C .3D .2 9.(2017·江苏卷)已知复数)21)(1(i i z ++=,曲终i 是虚数单位,则z 的模是______.10.(2017·全国卷Ⅲ)设复数z 满足i z i 2)1(=+,则=z ( )A .21B .22C .2D .2题型四 复数的四则运算1.(2013·全国卷)设复数满足i z i 2)1(=-,则=z ( )A .i +-1B .i --1C .i +1D .i -12.(2013·浙江卷)已知i 是虚数单位,则=-+-)2)(1(i i ( )A .i +-3B .i 31+-C .i 33+-D .i +-13.(2013·广东卷)若复数满足i z i 42+=⋅,则在复平面内,z 对应的点的坐标是( )A .)4,2(B .)4,2(-C .)2,4(-D .)2,4( 4.(2014·北京卷)复数=-+2)11(ii ______. 5.(2014·江苏卷)已知复数2)25(i z -=(i 为虚数单位),则z 的实部为____.6.(2014·四川卷)复数=+-ii 122______. 7.(2014·天津卷)i 是虚数单位,复数=++i i 437( ) A .i -1B .i +-1C .i 25312517+D .i 725717+- 8.(2014·全国卷)=-+23)1()1(i i ( ) A .i +1 B .i -1 C .i +-1D .i --1 9.(2014·辽宁卷)设复数满足5)2)(2(=--i i z ,则=z ( )A .i 32+B .i 32-C .i 23+D .i 23- 10.(2014·湖北卷)i 为虚数单位,则=+-2)11(ii ( ) A .1- B .1 C .i -D .i11.(2014·湖南卷)满足i zi z =+(i 是虚数单位)的复数=z ( ) A .i 2121+ B .i 2121- C .i 2121+- D .i 2121-- 12.(2014·广东卷)已知复数满足25)43(=+z i ,则=z ( )A .i 43+-B .i 43--C .i 43+D .i 43- 13.(2015·北京卷)复数=-)2(i i ( )A .i 21+B .i 21-C .i 21+-D .i 21-- 14.(2015·福建卷)若集合{}432,,,i i i i A =(i 是虚数单位),{}1,1-=B ,则=B A ( )A .{}1-B .{}1C .{}1,1-D .15.(2015·湖南卷)已知i z i +=-1)1(2(i 为虚数单位),则复数=z ( ) A .i +1 B .i -1 C .i +-1D .i --1 16.(2015·四川卷)设i 是虚数单位,则复数=-i i 23( ) A .i - B .i 3- C .iD .i 3 17.(2016·全国卷Ⅲ)若i z 21+=,则=-14z z i ( ) A .1 B .1- C .iD .i - 18.(2016·四川卷)设i 为虚数单位,则6)(i x +的展开式中含4x 的项为( )A .415x -B .415xC .420ix -D .420ix19.(2017全国卷Ⅱ)=++ii 13( ) A .i 21+ B .i 21-C .i +2D .i -2题型五 复数的几何意义 1.(2013·湖南卷)复数)1(i i z +=(i 为虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.(2013·福建卷)已知复数的共轭复数i z 21+=(i 为虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.(2013·湖北卷)在复平面内,复数ii z +=12(i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.(2013·四川卷)如图,在复平面内,点A 表示复数,则图中表示的共轭复数的点是_____5.(2014·全国卷Ⅱ)设复数21,z z 在复平面内的对应点关于虚轴对称,i z +=21,则=21z z ( )A .5-B .5C .i +-4D .i --4 6.(2014·重庆卷)在复平面内表示复数)21(i i -的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.(2015·安徽卷)设i 是虚数单位,则复数ii -12在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.(2016·北京卷)设R a ∈,若复数))(1(i a i ++在复平面内对应的点位于实轴上,则=a ________. 9.(2017·北京卷)若复数))(1(i a i +-在复平面内对应的点在第二象限,则实数a 的取值范围是( )A .)1,(-∞B .)1,(--∞C .),1(+∞D .),1(+∞-。

十年(2010-2019年)高考数学真题分类汇编:专题17 复数 (含答案解析)

十年(2010-2019年)高考数学真题分类汇编:专题17 复数 (含答案解析)

十年(2010-2019年)高考数学真题分类汇编专题17复数1.(2019·全国1·文T1)设z=3-i1+2i ,则|z|= ( ) A.2 B.√3 C.√2 D.1【答案】C 【解析】∵z=3-i1+2i , ∴z=(3-i )(1-2i )(1+2i )(1-2i )=15−75i,∴|z|=√(15)2+(-75)2=√2.故选C.2.(2019·全国3·理T2文T2)若z(1+i)=2i,则z=( ) A.-1-i B.-1+i C.1-i D.1+i【答案】D 【解析】z=2i 1+i=2i (1-i )(1+i )(1-i )=2+2i2=1+i.故选D.3.(2019·北京·理T1文T2)已知复数z=2+i,则z ·z =( ) A.√3 B.√5 C.3 D.5【答案】D【解析】∵z=2+i,∴z =2-i. ∴z ·z =(2+i)(2-i)=5. 故选D.4.(2019·全国2·文T2)设z=i(2+i),则z =( ) A.1+2i B.-1+2i C.1-2i D.-1-2i【答案】D【解析】z=2i+i 2=-1+2i,则z =-1-2i.故选D.5.(2019·全国1·理T2)设复数z 满足|z-i|=1,z 在复平面内对应的点为(x,y),则( ) A.(x+1)2+y2=1 B.(x-1)2+y2=1C.x2+(y-1)2=1D.x2+(y+1)2=1 【答案】C【解析】设z=x+yi(x,y ∈R). 因为z-i=x+(y-1)i, 所以|z-i|=√x 2+(y -1)2=1, 则x2+(y-1)2=1.故选C.6.(2019·全国2·理T2)设z=-3+2i,则在复平面内 对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】C【解析】由z=-3+2i,得z =-3-2i,则在复平面内z 对应的点(-3,-2)位于第三象限,故选C. 7.(2018·全国1·理T1文T2)设z=1-i1+i +2i,则|z|=( ) A.0 B.12C.1D.√2【答案】C 【解析】因为z=(1-i )2(1+i )(1-i )+2i=-2i2+2i=i,所以|z|=1.8.(2018·全国2·理T1)1+2i1-2i =( ) A.-45−35i B.-45+35iC.-35−45i D.-35+45i【答案】D 【解析】1+2i 1-2i=(1+2i )(1+2i )(1-2i )(1+2i )=1-4+4i 5=-35+45i. 9.(2018·全国2·文T1)i(2+3i)=( ) A.3-2i B.3+2iC.-3-2iD.-3+2i【答案】D【解析】i(2+3i)=2i+3i2=-3+2i.10.(2018·全国3·理T2文T2)(1+i)(2-i)=( )A.-3-iB.-3+iC.3-iD.3+i【答案】D【解析】(1+i)(2-i)=2+i-i2=3+i.11.(2018·北京·理T2文T2)在复平面内,复数11-i的共轭复数对应的点位于( ) A.第一象限 B.第二象限C.第三象限D.第四象限【答案】D【解析】∵11-i =1+i(1-i)(1+i)=1+i2=12+12i,∴12+12i的共轭复数为12−12i,而12−12i对应的点的坐标为(12,-12),点(12,-12)位于第四象限,故选D.12.(2018·浙江·4)复数21-i(i为虚数单位)的共轭复数是( ) A.1+i B.1-iC.-1+iD.-1-i【答案】B【解析】∵21-i =2(1+i)(1-i)(1+i)=2(1+i)2=1+i,∴复数21-i的共轭复数为1-i.13.(2017·全国1·理T3)设有下面四个命题p1:若复数z满足1z∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=z2;p4:若复数z∈R,则z∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4 【答案】B【解析】p1:设z=a+bi(a,b∈R),则1z =1a+bi=a-bia2+b2∈R,所以b=0,所以z∈R.故p1正确;p2:因为i2=-1∈R,而z=i∉R,故p2不正确;p3:若z1=1,z2=2,则z1z2=2,满足z1z2∈R,而它们实部不相等,不是共轭复数,故p3不正确;p4:实数的虚部为0,它的共轭复数是它本身,也属于实数,故p4正确.14.(2017·全国2·理T1)3+i1+i=( )A.1+2iB.1-2iC.2+iD.2-i【答案】D【解析】3+i1+i =(3+i)(1-i)(1+i)(1-i)=4-2i2=2-i,故选D.15.(2017·全国2·文T2)(1+i)(2+i)= ( )A.1-iB.1+3iC.3+iD.3+3i【答案】B【解析】(1+i)(2+i)=2+3i+i2=1+3i,故选B.16.(2017·山东·文T2)已知i是虚数单位,若复数z满足zi=1+i,则z2=( )A.-2iB.2iC.-2D.2【答案】A【解析】(方法一)∵z=1+ii =1+1i=1-i,∴z2=(1-i)2=1-2i+i2=-2i.(方法二)由zi=1+i,得(zi)2=(1+i)2,即-z2=2i.所以z2=-2i.17.(2017·全国3·理T2)设复数z满足(1+i)z=2i,则|z|=( )A.12B.√22C.√2D.2【答案】C【解析】由题意,得z=2i=1+i,故|z|=√12+12=√2.18.(2017·全国1·文T3)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)【答案】C【解析】∵i(1+i)2=2i2=-2,i2(1-i)=-1+i,(1+i)2=2i,i(1+i)=-1+i,∴(1+i)2=2i为纯虚数,故选C.19.(2017·山东·理T2)已知a∈R,i是虚数单位.若z=a+√3i,z·z=4,则a=()A.1或-1B.√7或-√7C.-√3D.√3 【答案】A【解析】由z=a+√3i,得z ·z =|z|2=a 2+3=4,所以a 2=1,a=±1,选A. 20.(2017·全国3·文T2)复平面内表示复数z=i(-2+i)的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】C【解析】由题意可得z=-1-2i,在复平面内对应点(-1,-2),则该点位于第三象限.故选C.21.(2017·北京·理T2)若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a 的取值范围是( ) A.(-∞,1)B.(-∞,-1)C.(1,+∞)D.(-1,+∞) 【答案】B【解析】设z=(1-i)(a+i)=(a+1)+(1-a)i,因为复数z 在复平面内对应的点 (a+1,1-a)在第二象限,所以{a +1<0,1-a >0,解得a<-1.故选B.22.(2016·全国2·理T1)已知z=(m+3)+(m-1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3) 【答案】A【解析】要使复数z 在复平面内对应的点在第四象限,应满足{m +3>0,m -1<0,解得-3<m<1,故选A.23.(2016·全国3·理T2)若z=1+2i,则zz -1=( ) A.1 B.-1C.iD.-I【答案】C【解析】由题意知z=1-2i,则zz-1=4i(1+2i)(1-2i)-1=4i5-1=i,故选C.24.(2016·北京·文T2)复数1+2i2-i=() A.i B.1+iC.-iD.1-I【答案】A【解析】1+2i2-i =(1+2i)(2+i)(2-i)(2+i)=2+i+4i-25=i,故选A.25.(2016·全国1·理T2)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=( )A.1B.√2C.√3D.2【答案】B【解析】(定义、性质)因为(1+i)x=1+yi,x,y∈R,所以x=1,y=x=1.所以|x+yi|=|1+i|=√2,故选B.26.(2016·全国1·文T2)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=( )A.-3B.-2C.2D.3【答案】A【解析】由已知(1+2i)(a+i)=a-2+(2a+1)i.∵(1+2i)(a+i)的实部与虚部相等,∴a-2=2a+1,解得a=-3,故选A.27.(2016·全国2·文T2)设复数z满足z+i=3-i,则z=( )A.-1+2iB.1-2iC.3+2iD.3-2i【答案】C【解析】由z+i=3-i,得z=3-2i,所以z=3+2i,故选C.28.(2016·全国3·文T2)若z=4+3i,则z|z|= ()A.1B.-1C.45+35i D.45−35i【答案】D【解析】因为z=4+3i,所以它的模为|z|=|4+3i|=√42+32=5,共轭复数为z =4-3i.故z |z |=4−3i,选D.29.(2016·山东·理T1)若复数z 满足2z+z =3-2i,其中i 为虚数单位,则z=( ) A.1+2i B.1-2i C.-1+2i D.-1-2i【答案】B【解析】设z=a+bi(a,b ∈R),则2z+z =3a+bi=3-2i,故a=1,b=-2,则z=1-2i,选B. 30.(2015·全国2·理T2)若a 为实数,且(2+ai)·(a-2i)=-4i,则a=( ) A.-1 B.0 C.1 D.2【答案】B【解析】∵(2+ai)(a-2i)=4a+(a 2-4)i=-4i, ∴{4a =0,a 2-4=-4,解之,得a=0. 31.(2015·全国·文T3)已知复数z 满足(z-1)i=1+i,则z=( ) A.-2-i B.-2+i C.2-i D.2+i【答案】C【解析】∵(z-1)i=1+i, ∴z=1+ii +1=(1+i )(-i )-i 2+1=1-i+1=2-i.32.(2015·全国2·文T2)若a 为实数,且2+ai1+i=3+i,则a=( )A.-4B.-3C.3D.4【答案】D【解析】由题意,得2+ai=(3+i)(1+i)=2+4i,则a=4.33.(2015·安徽·文T1)设i 是虚数单位,则复数(1-i)(1+2i)=( ) A.3+3i B.-1+3i C.3+i D.-1+i【答案】C【解析】由复数的乘法运算法则,得(1-i)(1+2i)=1-i+2i-2i2=1+i+2=3+i,因此选C. 34.(2015·湖南·文T1)已知(1-i )2z=1+i(i 为虚数单位),则复数z=( )A.1+iB.1-iC.-1+iD.-1-i【答案】D【解析】由已知得z=(1-i )21+i=-2i 1+i =-2i (1-i )(1+i )(1-i )=-2-2i2=-1-i. 35.(2015·全国1·理T1)设复数z 满足1+z1-z =i,则|z|=( ) A.1 B.√2 C.√3 D.2【答案】A 【解析】∵1+z =i,∴z=i -1=(i -1)(-i+1)(i+1)(-i+1)=i,∴|z|=1.36.(2015·湖北·理T1)i 为虚数单位,i 607的共轭复数....为( ) A.i B.-i C.1 D.-1【答案】A【解析】∵i607=i151×4+3=i3=-i,∴i607的共轭复数为i.37.(2015·安徽·理T1)设i 是虚数单位,则复数2i1-i 在复平面内所对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限 【答案】B【解析】由复数除法的运算法则可得,2i1-i =2i (1+i )(1-i )(1+i )=2i -22=-1+i,对应点为(-1,1)在第二象限.故选B. 38.(2014·全国2·理T2)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=( ) A.-5 B.5 C.-4+i D.-4-i【答案】A【解析】由题意知:z2=-2+i.又z1=2+i,所以z1z2=(2+i)(-2+i)=i2-4=-5.故选A.39.(2014·重庆·理T1)复平面内表示复数i(1-2i)的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限 【答案】A【解析】因为i(1-2i)=i+2,其在复平面内对应的点为(2,1),位于第一象限.故选A. 40.(2014·全国1·理T2)(1+i )3(1-i )2=()A.1+iB.1-iC.-1+iD.-1-I【答案】D 【解析】(1+i )3(1-i )2=(1+i )2(1+i )(1-i )2=2i (1+i )-2i=-1-i.故选D.41.(2014·全国2·文T2)1+3i1-i =( ) A.1+2i B.-1+2i C.1-2i D.-1-2i【答案】B 【解析】1+3i1-i=(1+3i )(1+i )(1-i )(1+i )=-2+4i2=-1+2i,故选B.42.(2014·全国1·文T3)设z=11+i +i,则|z|=( ) A.12B.√22C.√32D.2【答案】B 【解析】因为z=11+i +i=1-i (1+i )(1-i )+i=1-i 2+i=12+12i,所以|z|=|12+12i|=√(12)2+(12)2=√22,故选B.43.(2013·全国1·理T2)若复数z 满足(3-4i)z=|4+3i|,则z 的虚部为( ) A.-4 B.-45C.4D.45【答案】D【解析】∵(3-4i)z=|4+3i|, ∴z=53-4i =5(3+4i )(3-4i )(3+4i )=35+45i. 故z 的虚部为45,选D.44.(2013·全国2·文T2)|21+i |=( )A.2√2B.2C.√2D.1【答案】C 【解析】∵21+i =1-i,∴|21+i|=|1-i|=√2. 45.(2013·全国2·理T2)设复数z 满足(1-i)z=2i,则z=( ) A.-1+i B.-1-i C.1+i D.1-i【答案】A【解析】z=2i 1-i =2i (1+i )(1-i )(1+i )=-2+2i2=-1+i. 46.(2013·全国1·文T2)1+2i(1-i )2=()A.-1-12i B.-1+12i C.1+12i D.1-12i【答案】B 【解析】1+2i (1-i )2=1+2i-2i =(1+2i )i 2=-2+i 2=-1+12i.47.(2012·全国·理T3)下面是关于复数z=2-1+i 的四个命题: p1:|z|=2, p2:z2=2i, p3:z 的共轭复数为1+i, p4:z 的虚部为-1, 其中的真命题为( ) A.p2,p3 B.p1,p2C.p2,p4 D.p3,p4【答案】C 【解析】z=2(-1-i )(-1+i )(-1-i )=-1-i,故|z|=√2,p 1错误;z 2=(-1-i)2=(1+i)2=2i,p 2正确;z 的共轭复数为-1+i,p 3错误;p 4正确.48.(2012·全国·文T2)复数z=-3+i2+i的共轭复数是( )A.2+iB.2-iC.-1+iD.-1-i【答案】D【解析】z=-3+i 2+i =(-3+i )(2-i )(2+i )(2-i )=-5+5i5=-1+i,故z 的共轭复数为-1-i.49.(2011·全国·文T2)复数5i1-2i =( )A.2-iB.1-2iC.-2+iD.-1+2i【答案】C【解析】5i 1-2i =5i (1+2i )(1-2i )(1+2i )=-10+5i5=-2+i.50.(2010·全国·理T2)已知复数z=√3+i(1-√3i )2,z 是z 的共轭复数,则z ·z =() A.1 B.1C.1D.2【答案】A【解析】∵z=√3+i (1-√3i )2=√3+i1-2√3i+3i 2 =√3+i -2-23i =√3+i √3i (-2-23i )(-2+23i )=-√34+i 4, ∴z =-√34−i 4.∴z ·z =(-√34-i 4)(-√34+i 4)=316+116=14.51.(2010·全国·文T3)已知复数z=√3+i(1-√3i )2,则|z|等于( ) A.14 B.12 C.1 D.2【答案】B【解析】z=√3+i 1+3i 2-23i =-√3+i 2+2√3i =-12×2√3-2i 4=i -√34,|z|=14×2=12.52.(2018·天津·理T9文T9)i 是虚数单位,复数6+7i1+2i = .【答案】4-i【解析】6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=6-12i+7i+145=20-5i5=4-i.53.(2019·天津·理T9文T9)i 是虚数单位,则|5-i 1+i |的值为___________.【答案】√13【解析】5-i 1+i =(5-i )(1-i )2=4-6i2=2-3i.|5-i 1+i |=√4+9=√13.54.(2019·江苏·T 2)已知复数(a+2i)(1+i)的实部为0,其中i 为虚数单位,则实数a 的值是____ .【答案】2【解析】∵(a+2i)(1+i)=a+ai+2i+2i2=a-2+(a+2)i,∴a-2=0,∴a=2.55.(2018·上海·5)已知复数z 满足(1+i)z=1-7i(i 是虚数单位),则|z|= .【答案】5【解析】因为(1+i)z=1-7i,所以|1+i||z|=|1-7i|,即√2|z|=5√2,解得|z|=5.56.(2017·浙江·12)已知a,b ∈R,(a+bi)2=3+4i(i 是虚数单位),则a2+b2=_____,ab=________.【答案】5 2【解析】由题意可得a2-b2+2abi=3+4i,则{a 2-b 2=3,ab =2,解得{a 2=4,b 2=1,则a 2+b 2=5,ab=2. 57.(2017·江苏·T 2)已知复数z=(1+i)(1+2i),其中i 是虚数单位,则z 的模是 .【答案】√10【解析】由已知得z=(1+i)(1+2i)=-1+3i,故|z|=√(-1)2+32=√10,答案为√10.58.(2017·天津·理T9文T9)已知a ∈R,i 为虚数单位,若a -i 为实数,则a 的值为 .【答案】-2【解析】∵a -i 2+i =(a -i )(2-i )(2+i )(2-i )=2a -15−a+25i 为实数,∴-a+25=0,即a=-2. 59.(2016·江苏·T 2)复数z=(1+2i)(3-i),其中i 为虚数单位,则z 的实部是 .【答案】5【解析】因为z=(1+2i)(3-i)=5+5i,所以z 的实部是5.60.(2016·天津·理T9)已知a,b ∈R,i 是虚数单位,若(1+i)(1-bi)=a,则ab 的值为 .【答案】2【解析】(1+i)(1-bi)=1+b+(1-b)i=a,则{1+b =a ,1-b =0,所以{a =2,b =1,即a b =2.故答案为2. 61.(2016·北京·理T9)设a ∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a= .【答案】-1【解析】∵(1+i)(a+i)=a-1+(a+1)i∈R,∴a+1=0,即a=-1.62.(2015·天津·理T9)i是虚数单位,若复数(1-2i)(a+i)是纯虚数,则实数a的值为. 【答案】-2【解析】(1-2i)(a+i)=a+2+(1-2a)i.∵(1-2i)(a+i)是纯虚数,∴a+2=0,且1-2a≠0,∴a=-2.63.(2015·江苏·T 3)设复数z满足z2=3+4i(i是虚数单位),则z的模为.【答案】√5【解析】因为z2=3+4i,所以|z2|=√32+42=5,所以|z|=√5.64.(2015·重庆·理T11)设复数a+bi(a,b∈R)的模为√3 ,则(a+bi)(a-bi)= .【答案】3【解析】因为复数a+bi的模为√3,所以2+b2=√3,即a2+b2=3.于是(a+bi)(a-bi)=a2-(bi)2=a2+b2=3.。

高考数学必刷真题分类大全-专题02-复数

高考数学必刷真题分类大全-专题02-复数

专题02复数考向一复数的概念及运算【母题来源】2022年高考浙江卷【母题题文】已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则()A.1,3a b ==-B.1,3a b =-= C.1,3a b =-=- D.1,3a b ==【答案】B【试题解析】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=,故选:B.【命题意图】本题考查复数的四则运算,属于较为简单题目.【命题方向】这类试题在考查题型上主要以选择、填空题的形式出现.试题难度不大,多为低档题,是历年高考的热点,考查学生的基本运算能力.常见的命题角度有:(1)求复数的概念;(2)复数的模;(3)复数相等的四则运算;(4)复数在复平面内对应的点.【得分要点】解复数问题方法:(1)理解复数的基本概念.(2)解答中熟练应用复数的运算法则化简.(3)复数的乘法:复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类项,不含i 的看作另一类项,分别合并同类项即可.一、单选题1.(2022·青海·海东市第一中学模拟预测(理))设()31i 2z -=,则z =()A .2B C .1D .22.(2022·全国·模拟预测)若复数z 满足()32i i z +-(i 为虚数单位),则在复平面内z 所对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.(2022·全国·南京外国语学校模拟预测)已知复数211i 1iz =+-+(i 为虚数单位),则复数z 在复平面上对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限4.(2022·海南海口·二模)复数213i+的虚部为()A .35B .15C .15-D .35-5.(2022·江苏无锡·模拟预测)已知复数z 满足()i i 43i z -=+,则z =()A .B .3C .D .6.(2022·全国·模拟预测)已知i 32i z -=,i 为虚数单位,则z =()A .23i+B .23i-C .23i-+D .23i--7.(2022·青海·模拟预测(理))若2i21ix y -=+(x ,R y ∈,i 为虚数单位),则复数i x y +在复平面内所对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限8.(2022·广东茂名·二模)已知复数z 在复平面内对应的点为()11,,z 是z 的共轭复数,则1z=()A .11i22-+B .11i22+C .11i22-D .11i22--9.(2022·浙江湖州·模拟预测)已知a R ∈,若复数(i)(1i)z a =+-,复数z 的实部是4,则z 的虚部是()A .2i-B .2-C .2iD .210.(2022·浙江绍兴·模拟预测)人们对数学研究的发展一直推动着数域的扩展,从正数到负数、从整数到分数、从有理数到实数等等.16世纪意大利数学家卡尔丹和邦贝利在解方程时,首先引进了2i 1=-,17世纪法因数学家笛卡儿把i 称为“虚数”,用i(R)a b a b +∈、表示复数,并在直角坐标系上建立了“复平面”.若复数z 满足方程2250z z ++=,则z =()A .12i -+B .2i--C .12i-±D .2i-±二、填空题11.(2022·上海闵行·二模)若i1im ++为纯虚数(i 为虚数单位),则实数m =___________;12.(2022·天津·静海一中模拟预测)已知复数z 满足()1i 34i z +=-(其中i 为虚数单位),则||z =________13.(2022·江苏·扬中市第二高级中学模拟预测)若i 为虚数单位,复数z 满足11i z ≤++则1i z --的最大值为_______.14.(2022·浙江·三模)中国古代数学著作《九章算术》中记载了平方差公式,平方差公式是指两个数的和与这两个数差的积,等于这两个数的平方差.若复数53i,43i a b =+=+(i 为虚数单位),则22a b -=__________.15.(2022·全国·模拟预测)请写出一个同时满足①2i 2z z -=-;②22z =的复数z ,z =______.16.(2022·上海交大附中模拟预测)已知1z 、2C z ∈,且12i z =+,234z i =-(其中i 为虚数单位),则12z z -=____________.1.(2022·青海·海东市第一中学模拟预测(理))设()31i 2z -=,则z =()A 22B 2C .1D .2【答案】A 【解析】【分析】根据复数的四则运算法则及模的运算即可求得答案.【详解】由题意,3(1i)2i(1i)2(1i)-=--=-+,2i 12(1i)2-=-+,2||2z =.故选:A.2.(2022·全国·模拟预测)若复数z 满足()32i 3i z +=-(i 为虚数单位),则在复平面内z所对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【解析】【分析】根据复数的模长与乘法除法运算求解可得42i 55z =-,再根据复数的几何意义分析即可【详解】因为()32i 3i z +-,即()2i 3i z +=,故()()()22i 242i 2i 2i 2i 55z -===-++-,所以在复平面内z 所对应的点为42,55⎛⎫- ⎪⎝⎭,位于第四象限.故选:D .3.(2022·全国·南京外国语学校模拟预测)已知复数211i 1iz =+-+(i 为虚数单位),则复数z 在复平面上对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【解析】【分析】根据复数的运算求解复数z ,得到z ,根据复数的几何意义即可求解.()()()()()21i 211i 11311i i i 1i 1i 1i 1i 1i 1i 2222z +-=+=+=++-=+-+-++-,则31i 22z =-,在复平面上对应的点的坐标为31,22⎛⎫- ⎪⎝⎭,位于第四象限故选:D .4.(2022·海南海口·二模)复数213i+的虚部为()A .35B .15C .15-D .35-【答案】D 【解析】【分析】利用复数的除法运算法则即可求解.【详解】由已知得()()()213i 226i 13i 13i 13i 13i 1055--===-++-,则复数13i 55-的虚部为35-,故选:D.5.(2022·江苏无锡·模拟预测)已知复数z 满足()i i 43i z -=+,则z =()A .25B .3C .23D .32【答案】D 【解析】【分析】利用复数的除法运算求出z ,再利用共轭复数及模的意义求解作答.【详解】依题意,43ii iz +-=,则有(43i)(i)+i 34i i 33i i (i)z +-==-+=-⋅-,于是得33i z =+,所以223332z +=故选:D6.(2022·全国·模拟预测)已知i 32i z -=,i 为虚数单位,则z =()A .23i +B .23i-C .23i-+D .23i--【答案】B 【解析】根据复数的代数运算法则即可解出.【详解】因为i 32i z -=,所以()232i i 32i 23i23i i i 1z ++-+====--.故选:B .7.(2022·青海·模拟预测(理))若2i21ix y -=+(x ,R y ∈,i 为虚数单位),则复数i x y +在复平面内所对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【解析】【分析】根据给定条件,利用复数乘法结合复数相等求出x ,y 即可求解作答.【详解】因2i21i x y -=+,则有2i 22i x y y -=+,而,R x y ∈,有222x y y=⎧⎨-=⎩,解得2,1x y =-=-,所以复数i x y +在复平面内所对应的点(2,1)--位于第三象限.故选:C8.(2022·广东茂名·二模)已知复数z 在复平面内对应的点为()11,,z 是z 的共轭复数,则1z=()A .11i22-+B .11i22+C .11i22-D .11i22--【答案】B 【解析】【分析】求出z ,再由复数的除法运算可得答案.【详解】∵复数z 在复平面内对应的点为()11,,∴1i z =+,1i z =-,()()11i 1i 11i 1i 1i 222++===+-+z .故选:B .9.(2022·浙江湖州·模拟预测)已知a R ∈,若复数(i)(1i)z a =+-,复数z 的实部是4,则z 的虚部是()A .2i -B .2-C .2iD .2【答案】B 【解析】【分析】先化简复数z ,再根据复数z 的实部是4求解.【详解】解:()(i)(1i)11i =+-=++-z a a a ,因为复数z 的实部是4,所以14a +=,解得3a =,所以42i z =-,则z 的虚部是-2,故选:B10.(2022·浙江绍兴·模拟预测)人们对数学研究的发展一直推动着数域的扩展,从正数到负数、从整数到分数、从有理数到实数等等.16世纪意大利数学家卡尔丹和邦贝利在解方程时,首先引进了2i 1=-,17世纪法因数学家笛卡儿把i 称为“虚数”,用i(R)a b a b +∈、表示复数,并在直角坐标系上建立了“复平面”.若复数z 满足方程2250z z ++=,则z =()A .12i -+B .2i--C .12i-±D .2i-±【答案】C 【解析】【分析】设出复数z 的代数形式,再利用复数为0列出方程组求解作答.【详解】设i(,R)z a b a b =+∈,因2250z z ++=,则2(i)2(i)50a b a b ++++=,即22(25)2(1)i 0a b a b a -++++=,而,R a b ∈,则222502(1)0a b a b a ⎧-++=⎨+=⎩,解得12a b =-⎧⎨=±⎩,所以12i z =-±.故选:C 二、填空题11.(2022·上海闵行·二模)若i1im ++为纯虚数(i 为虚数单位),则实数m =___________;【答案】-1【解析】【分析】先利用复数的除法法则化简得到()()()()()i 1i 11i 1i 1i 2m m m +-++-=+-,根据i1im ++为纯虚数,得到方程,求出1m =-,检验后得到答案.【详解】()()()()()i 1i 11i 1i 1i 2m m m +-++-=+-,因为i1im ++为纯虚数,所以10m +=,解得:1m =-,此时ii 1im +=+,符合要求,故答案为:-112.(2022·天津·静海一中模拟预测)已知复数z 满足()1i 34i z +=-(其中i 为虚数单位),则||z =________【答案】522【解析】【分析】根据复数的乘除运算法则,化简得z ,进而根据共轭复数得到z ,根据模长公式即可求解.【详解】由()1i 34i z +=-得()()3-4i 1-i 34i 33i-4i 417i 1i 2222z ---====--+,所以17i 22z =-+,故221752||222z ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭故答案为52213.(2022·江苏·扬中市第二高级中学模拟预测)若i 为虚数单位,复数z 满足11i 2z ≤++则1i z --的最大值为_______.【答案】32【解析】【分析】利用复数的几何意义知复数z 对应的点Z 到点(1,1)C --的距离d 满足12d ≤,1i z --表示复数z 对应的点Z 到点(1,1)P 的距离,数形结合可求得结果.【详解】复数z 满足112z i ≤++≤,即()11i 2z ≤---≤即复数z 对应的点Z 到点(1,1)C --的距离d 满足12d ≤≤设(1,1)P ,1i z --表示复数z 对应的点Z 到点(1,1)P 的距离数形结合可知1i z --的最大值22||||222232AP CP =+=++=,故答案为:3214.(2022·浙江·三模)中国古代数学著作《九章算术》中记载了平方差公式,平方差公式是指两个数的和与这两个数差的积,等于这两个数的平方差.若复数53i,43i a b =+=+(i 为虚数单位),则22a b -=__________.【答案】96i +【解析】【分析】先要平方差公式,再按照复数的四则运算规则计算即可.【详解】()()()()2253i 43i 53i 43i 96i a b a b a b -=+-=++++--=+;故答案为:96i +.15.(2022·全国·模拟预测)请写出一个同时满足①2i 2z z -=-;②22z =的复数z ,z =______.【答案】()1i ±+【解析】【分析】设i R z a b a b =+∈,,,根据模长公式得出1a b ==±,进而得出z .【详解】设i R z a b a b =+∈,,()()222222a b a b +--+得a b =,故222221z a b a b =⇒+=⇒==±,()1i z =±+;故答案为:()1i ±+16.(2022·上海交大附中模拟预测)已知1z 、2C z ∈,且12i z =+,234z i =-(其中i 为虚数单位),则12z z -=____________.【答案】15i -+##5i 1-【解析】【分析】利用复数的减法化简可得结果.【详解】122i 34i 15i z z -=+-+=-+.故答案为:15i -+.。

复数—(2018-2022)高考真题汇编

复数—(2018-2022)高考真题汇编

复数—(2018-2022)高考真题汇编一、单选题(共35题;共70分)1.(2分)(2022·浙江)已知a,b∈R,a+3i=(b+i)i(i为虚数单位),则()A.a=1,b=−3B.a=−1,b=3C.a=−1,b=−3D.a=1,b=3【答案】B【解析】【解答】由题意得a+3i=bi−1,由复数相等定义,知a=−1,b=3.故答案为:B【分析】利用复数的乘法运算化简,再利用复数的相等求解.2.(2分)(2022·新高考Ⅱ卷)(2+2i)(1−2i)=()A.−2+4i B.−2−4i C.6+2i D.6−2i【答案】D【解析】【解答】(2+2i)(1−2i)=2+4−4i+2i=6−2i,故答案为:D【分析】根据复数代数形式的乘法法则即可求解.3.(2分)(2022·全国乙卷)设(1+2i)a+b=2i,其中a,b为实数,则()A.a=1,b=−1B.a=1,b=1C.a=−1,b=1D.a=−1,b=−1【答案】A【解析】【解答】易得(a+b)+2ai=2i,根据复数相等的充要条件可得a+b=0,2a=2,解得:a=1,b=−1.故选:A【分析】根据复数代数形式的乘法运算法则以及复数相等的充要条件即可求解.4.(2分)(2022·全国甲卷)若z=−1+√3i,则zzz̅−1=()A.−1+√3i B.−1−√3i C.−13+√33iD.−13−√33i【答案】C【解析】【解答】解:由题意得, z =−1−√3i ,则zz =(−1+√3i)(−1−√3i)=4 则z zz−1=−1+√3i 3=−13+√33i .故选:C【分析】由共轭复数的概念及复数的运算即可得解.5.(2分)(2022·全国甲卷)若 z =1+i .则 |iz +3z̅|= ( )A .4√5B .4√2C .2√5D .2√2【答案】D【解析】【解答】解:因为z=1+i ,所以iz +3z =i (1+i )+3(1−i )=2−2i ,所以 |iz +3z|=√4+4=2√2 . 故选:D【分析】根据复数代数形式的运算法则,共轭复数的概念先求得iz +3z =2−2i ,再由复数的求模公式即可求出.6.(2分)(2022·全国乙卷)已知 z =1−2i ,且 z +az̅+b =0 ,其中a ,b 为实数,则( )A .a =1,b =−2B .a =−1,b =2C .a =1,b =2D .a =−1,b =−2【答案】A【解析】【解答】易知 z̅=1+2i 所以 z +az̅+b =1−2i +a(1+2i)+b =(1+a +b)+(2a −2)i 由 z +az̅+b =0 ,得 {1+a +b =02a −2=0,即 {a =1b =−2 . 故选:A【分析】先求得 z̅ ,再代入计算,由实部与虚部都为零解方程组即可. 7.(2分)(2022·北京)若复数 z 满足 i ⋅z =3−4i ,则 |z|= ( )A .1B .5C .7D .25【答案】B【解析】【解答】由已知条件可知 z =3−4ii=−4−3i ,所以 |z|=√(−4)2+(−3)2=5 . 故答案为:B【分析】根据复数的代数运算以及模长公式,进行计算即可.8.(2分)(2022·新高考Ⅱ卷)若i(1−z)=1,则z+z̅=()A.-2B.-1C.1D.2【答案】D【解析】【解答】解:由题意得,z=1−1i=1−ii2=1+i,则z̅=1−i,则z+z̅=2,故选:D【分析】先由复数的四则运算,求得z,z̅,再求z+z̅即可.9.(2分)(2021·新高考Ⅱ卷)复数2−i1−3i在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【解答】解:2−i1−3i=(2−i)(1+3i)(1−3i)(1+3i)=5+5i10=12+12i,表示的点为(12,12),位于第一象限.故答案为:A【分析】根据复数的运算法则,及复数的几何意义求解即可10.(2分)(2021·北京)在复平面内,复数z满足(1−i)z=2,则z=()A.2+i B.2−i C.1−i D.1+i 【答案】D【解析】【解答】解:z=21−i=2(1+i)(1−i)(1+i)=1+i,故答案为:D【分析】根据复数的运算法则直接求解即可.11.(2分)(2021·浙江)已知a∈R,(1+ai)i=3+i,(i为虚数单位),则a=()A.-1B.1C.-3D.3【答案】C【解析】【解答】因为(1+ai)i=3+i,所以1+ai=3+ii=3i−1i·i=1−3i利用复数相等的充分必要条件可得:a=−3.故答案为:C.【分析】根据复数相等的条件,即可求得a的值。

历年(2019-2024)全国高考数学真题分类(复数)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(复数)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(复数)汇编考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .3102.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 .考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1B .0 ∙C .1D .22.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==-B .1,1a b ==C .1,1a b =-=D .1,1a b =-=-4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .22.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10iB .2iC .10D .23.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i -B .iC .0D .16.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1-B .1-C .13-D .13-8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2-B .1-C .1D .29.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1C D .22.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .53.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1B .5C .7D .255.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1CD .26.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .27.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= . 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .19.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 . 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ). A .第一象限B .第二象限C .第三象限D .第四象限2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i--在复平面内对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ). A .12i +B .2i -+C .12i -D .2i --5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y += B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x +=参考答案考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .310【答案】D【详细分析】利用复数的除法运算求出z 即可. 【答案详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【名师点评】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 2.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 . 【答案】3【详细分析】根据复数的运算法则,化简即可求得实部的值. 【答案详解】∵复数()()12z i i =+-∴2223z i i i i =-+-=+ ∴复数的实部为3.故答案为:3.【名师点评】本题考查复数的基本概念,是基础题.考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1 B .0 ∙ C .1 D .2【答案】C【详细分析】根据复数的代数运算以及复数相等即可解出.【答案详解】因为()()()22i 1i i i 21i 2a a a a a a a +-=-++=+-=,所以22210a a =⎧⎨-=⎩,解得:1a =. 故选:C.2.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==【详细分析】利用复数相等的条件可求,a b .【答案详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=, 故选:B.3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==- B .1,1a b == C .1,1a b =-= D .1,1a b =-=-【答案】A【详细分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.【答案详解】因为,a b ÎR ,()2i 2i a b a ++=,所以0,22a b a +==,解得:1,1a b ==-. 故选:A.4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==- B .1,2a b =-= C .1,2a b == D .1,2a b =-=-【答案】A【详细分析】先算出z ,再代入计算,实部与虚部都为零解方程组即可 【答案详解】12z i =-12i (12i)(1)(22)i z az b a b a b a ++=-+++=+++-由0z az b ++=,结合复数相等的充要条件为实部、虚部对应相等,得10220a b a ++=⎧⎨-=⎩,即12a b =⎧⎨=-⎩ 故选:A5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .2【详细分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【答案详解】依题意得,z =,故22i 2zz =-=. 故选:D2.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10i B .2i C .10 D .2【答案】A【详细分析】结合共轭复数与复数的基本运算直接求解. 【答案详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=. 故选:A3.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-. 故选:D4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +【答案】B【详细分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可. 【答案详解】由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++-=====-++-+-,则12i z =+. 故选:B.5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i - B .i C .0D .1【答案】A【详细分析】根据复数的除法运算求出z ,再由共轭复数的概念得到z ,从而解出. 【答案详解】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.6.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1- B .1- C .13-D .13-【答案】C【详细分析】由共轭复数的概念及复数的运算即可得解.【答案详解】1(1113 4.z zz =-=--=+=113z zz ==-- 故选 :C8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2- B .1- C .1 D .2【答案】D【详细分析】利用复数的除法可求z ,从而可求z z +.【答案详解】由题设有21i1i i iz -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D9.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +【答案】C【详细分析】利用复数的乘法和共轭复数的定义可求得结果.【答案详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+故选:C.考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1CD .2【答案】C【详细分析】由复数模的计算公式直接计算即可.【答案详解】若1i z =--,则z ==故选:C.2.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .5【答案】C【详细分析】由题意首先化简232i 2i ++,然后计算其模即可. 【答案详解】由题意可得232i 2i 212i 12i ++=--=-,则232i 2i 12i ++=-=故选:C.3.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1 B .5C .7D .25【答案】B【详细分析】利用复数四则运算,先求出z ,再计算复数的模.【答案详解】由题意有()()()34i i 34i 43i i i i z ---===--⋅-,故|5|z ==.故选:B .5.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1C D .2【答案】C【详细分析】先根据2i 1=-将z 化简,再根据复数的模的计算公式即可求出.【答案详解】因为31+2i i 1+2i i 1i z =+=-=+,所以 z ==. 故选:C .【名师点评】本题主要考查复数的模的计算公式的应用,属于容易题.6.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .2【答案】D【详细分析】由题意首先求得22z z -的值,然后计算其模即可.【答案详解】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.【名师点评】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题.7.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= .【答案】【详细分析】方法一:令1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,根据复数的相等可求得2ac bd +=-,代入复数模长的公式中即可得到结果.方法二:设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+, 根据复数的几何意义及复数的模,判定平行四边形12OZ PZ 为菱形,12OZ OZ 2OP ===,进而根据复数的减法的几何意义用几何方法计算12z z -. 【答案详解】方法一:设1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,12()z z a c b d i i ∴+=+++=+,1a cb d ⎧+=⎪∴⎨+=⎪⎩12||=||=2z z ,所以224a b +=,224cd +=, 222222()()2()4a c b d a c b d ac bd ∴+++=+++++=2ac bd ∴+=-12()()z z a c b d i ∴-=-+-===.故答案为:方法二:如图所示,设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+,由已知122OZ OZ OP ====,∴平行四边形12OZ PZ 为菱形,且12,OPZ OPZ 都是正三角形,∴12Z 120OZ ∠=︒,222221212121||||||2||||cos12022222()122Z Z OZ OZ OZ OZ =+-︒=+-⋅⋅⋅-=∴1212z z Z Z -==.【名师点评】方法一:本题考查复数模长的求解,涉及到复数相等的应用;考查学生的数学运算求解能力,是一道中档题.方法二:关键是利用复数及其运算的几何意义,转化为几何问题求解 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .1【答案】C【详细分析】先由复数的除法运算(分母实数化),求得z ,再求z .【答案详解】因为312iz i -=+,所以(3)(12)17(12)(12)55i i z i i i --==-+-,所以z =,故选C . 【名师点评】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解. 9.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 .【详细分析】先化简复数,再利用复数模的定义求所给复数的模.【答案详解】5(5)(1)231(1)(1)i i i i i i i ---==-=++-. 【名师点评】本题考查了复数模的运算,是基础题. 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .【答案】2【详细分析】本题先计算z ,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【答案详解】1|||1|2z i ==+.【名师点评】本题考查了复数模的运算,属于简单题.考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【详细分析】根据复数的乘法结合复数的几何意义详细分析判断.【答案详解】因为()()213i 3i 38i 3i 68i +-=+-=+,则所求复数对应的点为()6,8,位于第一象限.故选:A.2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-.故选:D3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i --在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详细分析】利用复数的除法可化简2i13i --,从而可求对应的点的位置. 【答案详解】()()2i 13i 2i 55i 1i 13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫⎪⎝⎭,该点在第一象限,故选:A.4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ).A .12i +B .2i -+C .12i -D .2i -- 【答案】B【详细分析】先根据复数几何意义得z ,再根据复数乘法法则得结果.【答案详解】由题意得12z i =+,2iz i ∴=-.故选:B.【名师点评】本题考查复数几何意义以及复数乘法法则,考查基本详细分析求解能力,属基础题. 5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【详细分析】先求出共轭复数再判断结果.【答案详解】由32,z i =-+得32,z i =--则32,z i =--对应点(‐3,‐2)位于第三象限.故选C .【名师点评】本题考点为共轭复数,为基础题目.6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x += 【答案】C【详细分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【答案详解】,(1),z x yi z i x y i =+-=+-1,z i -==则22(1)1y x +-=.故选C .【名师点评】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.。

复数十年高考题(带详细解析)

复数十年高考题(带详细解析)

复数十年高考题(带详细解析)1.设复数 $z_1=-1+i$,$z_2=z_1^3i$,则$arg(z_1)+\frac{arg(z_2)}{2}$ 等于()。

A。

$-\frac{7\pi}{12}$ B。

$\pi$ C。

$\frac{\pi}{2}$ D。

$\frac{\pi}{4}$2.复数 $z=m-2i$($m\in R$,$i$ 为虚数单位)在复平面上对应的点不可能位于()。

A。

第一象限 B。

第二象限 C。

第三象限 D。

第四象限3.如果 $\theta\in(\frac{\pi}{2},\pi)$,那么复数$(1+i)(\cos\theta+i\sin\theta)$ 的辐角的主值是()。

A。

$\theta+\frac{9\pi}{4}$ B。

$\theta+\frac{\pi}{4}$ C。

$\theta-\frac{\pi}{4}$ D。

$\theta+\frac{7\pi}{4}$4.复数 $\frac{1}{3}+i$ 的值是()。

A。

$-\frac{1}{3}+i$ B。

$i$ C。

$-\frac{1}{2}$ D。

$-\frac{1}{3}-i$5.如图 12-1,与复平面中的阴影部分(含边界)对应的复数集合是()。

图略]6.已知复数 $z=\frac{1}{2}+6i$,则 $arg(z)$ 是()。

A。

$\frac{11\pi}{6}$ B。

$\frac{6\pi}{7}$ C。

$\frac{3\pi}{5}$ D。

$\frac{5\pi}{3}$7.设复数 $z_1=-1-i$ 在复平面上对应向量 $OZ_1$,将$OZ_1$ 按顺时针方向旋转 $\frac{5\pi}{6}$ 后得到向量$OZ_2$,令 $OZ_2$ 对应的复数 $z_2$ 的辐角主值为 $\theta$,则 $\tan\theta$ 等于()。

A。

$2+\sqrt{3}$ B。

$-2+\sqrt{3}$ C。

高中数学集合、复数必做题型(含解析)

高中数学集合、复数必做题型(含解析)

集合,复数---高考题型一.选择题(共40小题)1.已知集合M={x||x﹣1|≥2},N={﹣1,0,1,2,3},则(∁R M)∩N=()A.{0,1,2}B.{1,2}C.{﹣1,0,1,2}D.{2,3}2.已知集合U={0,1,2,3},S={0,3},T={2},则∁U(S∪T)=()A.{1}B.{0,2}C.{1,2,3}D.{0,1,2,3} 3.设集合A={x|x<2},,则(∁U A)∩B=()A.(1,2)B.[1,2]C.[2,3)D.[2,3]4.设集合M={2m﹣1,m﹣3},若﹣3∈M,则实数m=()A.0B.﹣1C.0或﹣1D.0或15.已知集合M={x|x2+x﹣6<0},集合,则M∪N=()A.{x|﹣3<x<1}B.{x|﹣4<x<1}C.{x|﹣4<x<2}D.{x|﹣3<x<2} 6.设全集U={﹣3,﹣2,﹣1,0,1,2,3},集合A={﹣3,﹣2,2,3},B={﹣3,0,1,2},则(∁U A)∩B=()A.∅B.{1}C.{0,1}D.{0,1,2} 7.已知集合A={x|﹣1≤2x﹣1≤3},B={x|x2﹣3x<0},则A∪B=()A.(0,2]B.[0,2]C.[0,3)D.[0,3]8.设集合A={x|0<x≤1},B={x|x2﹣2x≤0},则A∩B=()A.[0,+∞)B.[0,1]C.(0,1]D.[0,1)9.已知集合A={x|x2≤4},集合B={x|x>0},则A∪B=()A.(﹣∞,﹣2]B.[﹣2,0)C.[﹣2,+∞)D.(0,2]10.已知集合A={x|x2﹣2<0},且a∈A,则a可以为()A.﹣2B.﹣1C.D.11.设集合A={x|1<2x<8},B={x||x+1|≥3},则A∩B=()A.(0,2]B.[2,3)C.(2,3]D.(0,3)12.已知集合,N={x||x﹣1|≤2},则M∩N=()A.[﹣1,3]B.[1,2]C.[﹣1,2)D.(2,3]13.若集合A={x|2x2+3x﹣9≤0},B={x|2x>﹣3,x∈Z},则A∩B=()A.{﹣3,﹣2,﹣1,0,1}B.{﹣2,﹣1,0}C.{﹣1,0,1}D.{﹣2,﹣1,0,1}14.已知集合A={x∈Z|x2﹣2x﹣3<0},则集合A的子集个数为()A.3B.4C.8D.16 15.若集合M={x|x2﹣3x﹣4≤0},N={x|﹣2≤x≤2},则M∪N=()A.[﹣1,2]B.[﹣1,4]C.[﹣2,2]D.[﹣2,4] 16.已知集合A={x∈Z|x2﹣2x﹣3<0},B={﹣2,﹣1,0,1},则A∪B=()A.{﹣2,﹣1}B.{﹣2,﹣1,0,1,2} C.{﹣2,﹣1,0}D.{0,1}17.已知集合,B={x||x﹣1|<2},则A∩B=()A.[2,3]B.[2,3)C.(2,3)D.(2,3] 18.已知集合A={x|﹣5<x<2},B={x||x|<3},则A∪B=()A.(﹣∞,2)B.(﹣∞,3)C.(﹣3,2)D.(﹣5,3)19.已知集合A={x|﹣2≤x≤2},B={x|0<x<2},则()A.A⊆B B.B⊆A C.A∪B=R D.A∩B=∅20.已知集合A={x|≥1},B={x|﹣2<x<1},则A∩(∁R B)=()A.(﹣2,2)B.[﹣1,1]C.(﹣∞,﹣2]∪[2,+∞)D.(﹣∞,﹣1)∪(1,+∞)21.设i是虚数单位,复数,则在复平面内z所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限22.设复数z=1﹣i,则=()A.B.C.D.23.已知i为虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限24.若复数z满足z•(2+3i)=3﹣2i,其中i为虚数单位,则|z|=()A.0B.﹣1C.D.1 25.复数的共轭复数是()A.i+2B.i﹣2C.﹣i﹣2D.2﹣i26.若复数z=2﹣i,则i•z的虚部是()A.2i B.i C.2D.127.若复数z=i(i﹣1),则|z﹣1|=()A.﹣2﹣i B.﹣i C.D.528.已知复数z满足z=(2+i)(1+3i)(i为虚数单位),则复数z的共轭复数的虚部为()A.﹣7i B.7i C.﹣7D.﹣129.已知a,b∈R,i为虚数单位,若,则|a+bi|=()A.3B.5C.9D.230.已知a,b∈R,a+i与3+bi互为共轭复数,则|a﹣bi|=()A.2B.3C.D.431.复数(2﹣3i)i的实部为()A.﹣2B.2C.﹣3D.332.设复数z在复平面内对应的点为(2,5),则1+z在复平面内对应的点为()A.(3,﹣5)B.(3,5)C.(﹣3,﹣5)D.(﹣3,5)33.已知复数(为虚数单位),则|z|=()A.2B.C.D.34.若复数z满足,则复数z的虚部为()A.B.C.D.35.复平面内表示复数的点位于()A.第一象限B.第二象限C.第三象限D.第四象限36.已知z+i=zi,则|z|=()A.B.0C.D.137.已知,i为虚数单位,则z=()A.﹣2+i B.2﹣i C.2+i D.﹣2﹣i38.已知复数,则=()A.B.C.D.39.若(z+1)i=z,则z2+i=()A.B.C.D.40.已知复数z满足(1﹣i)(z+4i)=2i,则z的虚部为()A.﹣3B.﹣3i C.﹣1D.﹣i集合,复数---高考题型参考答案与试题解析一.选择题(共40小题)1.已知集合M={x||x﹣1|≥2},N={﹣1,0,1,2,3},则(∁R M)∩N=()A.{0,1,2}B.{1,2}C.{﹣1,0,1,2}D.{2,3}【解答】解:集合M={x||x﹣1|≥2}={x|x≥3或x≤﹣1},则∁R M={x|﹣1<x<3},又N={﹣1,0,1,2,3},则(∁R M)∩N={0,1,2}.故选:A.2.已知集合U={0,1,2,3},S={0,3},T={2},则∁U(S∪T)=()A.{1}B.{0,2}C.{1,2,3}D.{0,1,2,3}【解答】解:U={0,1,2,3},S={0,3},T={2},根据集合补集的概念和运算得:S∪T={0,2,3},∁U(S∪T)={1}.故选:A.3.设集合A={x|x<2},,则(∁U A)∩B=()A.(1,2)B.[1,2]C.[2,3)D.[2,3]【解答】解:集合A={x|x<2},={x|1≤x<3},∴∁U A={x|x≥2},(∁U A)∩B={x|2≤x<3}.故选:C.4.设集合M={2m﹣1,m﹣3},若﹣3∈M,则实数m=()A.0B.﹣1C.0或﹣1D.0或1【解答】解:设集合M={2m﹣1,m﹣3},∵﹣3∈M,∴2m﹣1=﹣3或m﹣3=﹣3,当2m﹣1=﹣3时,m=﹣1,此时M={﹣3,﹣4};当m﹣3=﹣3时,m=0,此时M={﹣3,﹣1};所以m=﹣1或0.故选:C.5.已知集合M={x|x2+x﹣6<0},集合,则M∪N=()A.{x|﹣3<x<1}B.{x|﹣4<x<1}C.{x|﹣4<x<2}D.{x|﹣3<x<2}【解答】解:集合M={x|x2+x﹣6<0}={x|﹣3<x<2},集合={x|﹣4<x<1},则M∪N={x|﹣4<x<2}.故选:C.6.设全集U={﹣3,﹣2,﹣1,0,1,2,3},集合A={﹣3,﹣2,2,3},B={﹣3,0,1,2},则(∁U A)∩B=()A.∅B.{1}C.{0,1}D.{0,1,2}【解答】解:∵U={﹣3,﹣2,﹣1,0,1,2,3},A={﹣3,﹣2,2,3},B={﹣3,0,1,2},∴∁U A={﹣1,0,1},(∁U A)∩B={0,1}.故选:C.7.已知集合A={x|﹣1≤2x﹣1≤3},B={x|x2﹣3x<0},则A∪B=()A.(0,2]B.[0,2]C.[0,3)D.[0,3]【解答】解:因为A={x|﹣1≤2x﹣1≤3}={x|0≤x≤2}=[0,2],B={x|x2﹣3x<0}={x|0<x<3}=(0,3),所以A∪B=[0,2]∪(0,3)=[0,3).故选:C.8.设集合A={x|0<x≤1},B={x|x2﹣2x≤0},则A∩B=()A.[0,+∞)B.[0,1]C.(0,1]D.[0,1)【解答】解:x2﹣2x≤0,x(x﹣2)≤0,∴0≤x≤2,B=[0,2],又A=(0,1],则A∩B=(0,1].故选:C.9.已知集合A={x|x2≤4},集合B={x|x>0},则A∪B=()A.(﹣∞,﹣2]B.[﹣2,0)C.[﹣2,+∞)D.(0,2]【解答】解:由题意A={x|x2≤4}={x|﹣2≤x≤2},B={x|x>0},所以A∪B={x|﹣2≤x≤2}∪{x|x>0}={x|x≥﹣2}=[﹣2,+∞).故选:C.A.﹣2B.﹣1C.D.【解答】解:由题意可得集合A={x|﹣<x<},因为a∈A,所以﹣<a<,故选项B正确,ACD错误.故选:B.11.设集合A={x|1<2x<8},B={x||x+1|≥3},则A∩B=()A.(0,2]B.[2,3)C.(2,3]D.(0,3)【解答】解:因为1<2x<8⇒20<2x<23,所以0<x<3,即A=(0,3),且|x+1|≥3⇒x+1≥3或x+1≤﹣3,所以x≥2或x≤﹣4,即B=(﹣∞,﹣4]∪[2,+∞),所以A∩B=[2,3).故选:B.12.已知集合,N={x||x﹣1|≤2},则M∩N=()A.[﹣1,3]B.[1,2]C.[﹣1,2)D.(2,3]【解答】解:∵,N={x|﹣1≤x≤3},∴M∩N=(2,3].故选:D.13.若集合A={x|2x2+3x﹣9≤0},B={x|2x>﹣3,x∈Z},则A∩B=()A.{﹣3,﹣2,﹣1,0,1}B.{﹣2,﹣1,0}C.{﹣1,0,1}D.{﹣2,﹣1,0,1}【解答】解:由2x2+3x﹣9≤0解得,所以,因为B={x|2x>﹣3,x∈Z},所以,所以A∩B={﹣1,0,1},故选:C.A.3B.4C.8D.16【解答】解:∵集合A={x|x∈Z|x2﹣2x﹣3<0}={x∈Z|﹣1<x<3}={0,1,2},∴集合A的子集个数为23=8.故选:C.15.若集合M={x|x2﹣3x﹣4≤0},N={x|﹣2≤x≤2},则M∪N=()A.[﹣1,2]B.[﹣1,4]C.[﹣2,2]D.[﹣2,4]【解答】解:∵M={x|﹣1≤x≤4},N={x|﹣2≤x≤2},∴M∪N=[﹣2,4].故选:D.16.已知集合A={x∈Z|x2﹣2x﹣3<0},B={﹣2,﹣1,0,1},则A∪B=()A.{﹣2,﹣1}B.{﹣2,﹣1,0,1,2} C.{﹣2,﹣1,0}D.{0,1}【解答】解:∵B={﹣2,﹣1,0,1},集合A={x∈Z|x2﹣2x﹣3<0}={0,1,2},∴A∪B={﹣2,﹣1,0,1,2}.故选:B.17.已知集合,B={x||x﹣1|<2},则A∩B=()A.[2,3]B.[2,3)C.(2,3)D.(2,3]【解答】解:∵,B={x|﹣1<x<3},∴A∩B=(2,3).故选:C.18.已知集合A={x|﹣5<x<2},B={x||x|<3},则A∪B=()A.(﹣∞,2)B.(﹣∞,3)C.(﹣3,2)D.(﹣5,3)【解答】解:∵A={x|﹣5<x<2},B={x|﹣3<x<3},∴A∪B=(﹣5,3).故选:D.19.已知集合A={x|﹣2≤x≤2},B={x|0<x<2},则()A.A⊆B B.B⊆A C.A∪B=R D.A∩B=∅【解答】解:∵集合A={x|﹣2≤x≤2},B={x|0<x<2},∴B⊆A,A∪B=A,A∩B=B,因此选项B正确,选项A,C,D错误;故选:B.20.已知集合A={x|≥1},B={x|﹣2<x<1},则A∩(∁R B)=()A.(﹣2,2)B.[﹣1,1]C.(﹣∞,﹣2]∪[2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【解答】解:A={x|≥1}={x|x<﹣1或x≥2},B={x|﹣2<x<1},则∁R B={x|x≥1或x≤﹣2},故A∩(∁R B)=(﹣∞,﹣2]∪[2,+∞).故选:C.21.设i是虚数单位,复数,则在复平面内z所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:=,故在复平面内z所对应的点(﹣1,1)在第二象限.故选:B.22.设复数z=1﹣i,则=()A.B.C.D.【解答】解:由题意,,故.故选:B.23.已知i为虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:因为,所以,复数在复平面内对应的点的坐标为,位于第二象限.故选:B.24.若复数z满足z•(2+3i)=3﹣2i,其中i为虚数单位,则|z|=()A.0B.﹣1C.D.1【解答】解:z•(2+3i)=3﹣2i,则z=,故|z|==.故选:D.25.复数的共轭复数是()A.i+2B.i﹣2C.﹣i﹣2D.2﹣i【解答】解:∵复数==﹣2﹣i,∴共轭复数是﹣2+i故选:B.26.若复数z=2﹣i,则i•z的虚部是()A.2i B.i C.2D.1【解答】解:z=2﹣i,则iz=i(2﹣i)=1+2i,其虚部为2.故选:C.27.若复数z=i(i﹣1),则|z﹣1|=()A.﹣2﹣i B.﹣i C.D.5【解答】解:z=i(i﹣1)=﹣1﹣i,则z﹣1=﹣2﹣i,故|z﹣1|=|2﹣i|=.故选:C.28.已知复数z满足z=(2+i)(1+3i)(i为虚数单位),则复数z的共轭复数的虚部为()A.﹣7i B.7i C.﹣7D.﹣1【解答】解:因为z=(2+i)(1+3i)=﹣1+7i,所以,所以复数z的共轭复数的虚部为﹣7.故选:C.29.已知a,b∈R,i为虚数单位,若,则|a+bi|=()A.3B.5C.9D.2【解答】解:若,则a+bi=(2+i)(1﹣2i)=4﹣3i,故|a+bi|==5.故选:B.30.已知a,b∈R,a+i与3+bi互为共轭复数,则|a﹣bi|=()A.2B.3C.D.4【解答】解:∵a+i与3+bi互为共轭复数,∴a=3,b=﹣1,∴|a﹣bi|=|3+i|==.故选:C.31.复数(2﹣3i)i的实部为()A.﹣2B.2C.﹣3D.3【解答】解:(2﹣3i)i=3+2i,其实部为3.故选:D.32.设复数z在复平面内对应的点为(2,5),则1+z在复平面内对应的点为()A.(3,﹣5)B.(3,5)C.(﹣3,﹣5)D.(﹣3,5)【解答】解:复数z在复平面内对应的点为(2,5),则z=2+5i,故1+z=1+2+5i=3+5i,其在复平面内对应的点为(3,5).故选:B.33.已知复数(为虚数单位),则|z|=()A.2B.C.D.【解答】解:,则=.故选:D.34.若复数z满足,则复数z的虚部为()A.B.C.D.【解答】解:设z=a+bi(a,b∈R),则,∵,∴a﹣bi﹣3i=a+bi,即﹣b﹣3=b,解得b=.故选:B.35.复平面内表示复数的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:=﹣1﹣i,则z在复平面对应的点(﹣1,﹣1)位于第三象限.故选:C.36.已知z+i=zi,则|z|=()A.B.0C.D.1【解答】解:z+i=zi,则z(1﹣i)=﹣i,故z=,所以|z|=.故选:A.37.已知,i为虚数单位,则z=()A.﹣2+i B.2﹣i C.2+i D.﹣2﹣i 【解答】解:,则z=(1﹣2i)i=2+i.故选:C.38.已知复数,则=()A.B.C.D.【解答】解:==,则.故选:D.39.若(z+1)i=z,则z2+i=()A.B.C.D.【解答】解:由(z+1)i=z得:(1﹣i)z=i,即,所以.故选:D.40.已知复数z满足(1﹣i)(z+4i)=2i,则z的虚部为()A.﹣3B.﹣3i C.﹣1D.﹣i【解答】解:因为,所以z的虚部为﹣3.故选:A.。

高考复数函数压轴题型归类总结

高考复数函数压轴题型归类总结

高考复数函数压轴题型归类总结引言复数函数是高考数学中的重要内容之一,常出现在选择题和解析几何题型中。

本文将对高考复数函数的压轴题型进行归类总结,以帮助考生更好地掌握和应对这一题型。

类型一:复数的运算这类题目主要考察考生对复数的基本运算规则的掌握。

常见的题型包括:- 复数的加减法、乘法、除法;- 复数的整式、视作整数的合并化简。

类型二:复数的性质这类题目主要考察考生对复数的性质和特点的理解。

常见的题型包括:- 复数的模、辐角、共轭;- 复数的大小比较;- 复数的幂运算;- 复数方程的解。

类型三:复数与方程这类题目主要考察考生对复数与方程的应用能力。

常见的题型包括:- 根据复数方程的解形式进行方程的求解;- 根据复数方程求解几何问题。

类型四:复数与几何这类题目主要考察考生对复数与几何的联系和应用。

常见的题型包括:- 复数平面上点的位置关系;- 复数表示平面上的变换(平移、旋转、缩放);- 复数表示几何问题(如求面积、角度)。

类型五:综合应用这类题目将复数与其他数学内容结合起来,考察考生的综合应用能力。

常见的题型包括:- 复数与函数的综合应用;- 复数与三角函数的综合应用。

结论对于高考复数函数的压轴题型,考生应通过深入理解复数的基础知识,并结合几何概念和其他数学内容进行综合应用。

在备考过程中,多进行真题练习和模拟考试,总结题型的解题技巧,增强解题能力。

同时,注意对每种题型的巩固和复习,加强对一些常考题型的熟悉程度。

通过系统的复习和多样的练习,考生可以更好地应对高考中的复数函数压轴题型。

2022届全国高考数学真题分类(复数)汇编(附答案)

2022届全国高考数学真题分类(复数)汇编(附答案)

2022届全国高考数学真题分类(复数)汇编一、单选题1. (2022∙全国甲(理))若1z =-+,则1z zz =-( )A. 1-+B. 1-C. 1i 33-+D. 1i 33-- 2.(2022∙全国甲(文)) 若1i z =+.则|i 3|z z +=( )A. B. C. D. 3.(2022∙全国乙(文))设(12i)2i a b ++=,其中,a b 为实数,则( )A. 1,1a b ==-B. 1,1a b ==C. 1,1a b =-=D. 1,1a b =-=- 4.(2022∙全国乙(理))已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( )A. 1,2a b ==-B. 1,2a b =-=C. 1,2a b ==D. 1,2a b =-=- 5.(2022∙新高考Ⅰ卷)2. 若i(1)1z -=,则z z +=( )A. 2-B. 1-C. 1D. 2 6.(2022∙新高考Ⅱ卷)(22i)(12i)+-=( )A. 24i -+B. 24i --C. 62i +D. 62i -7.(2022∙北京卷T2) 若复数z 满足i 34i z ⋅=-,则z =( )A. 1B. 5C. 7D. 25 8.(2022∙浙江卷T2)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( )A. 1,3a b ==-B. 1,3a b =-=C. 1,3a b =-=-D. 1,3a b ==参考答案一、单选题1. 【答案】C【答案解析】【名师分析】由共轭复数的概念及复数的运算即可得解.2. 【答案】D【答案解析】【名师分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z +==.故选:D.3. 【答案】A【答案解析】【名师分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.【答案详解】因为,a b ÎR ,()2i 2i a b a ++=,所以0,22a b a +==,解得:1,1a b ==-. 故选:A.4. 【答案】A【答案解析】【名师分析】先算出z ,再代入计算,实部与虚部都为零解方程组即可 【答案详解】12i z =+ 12i (12i)(1)(22)i z az b a b a b a ++=-+++=+++- 由0z az b ++=,得10220a b a ++=⎧⎨-=⎩,即12a b =⎧⎨=-⎩ 故选:A5.【答案】D【答案解析】【名师分析】利用复数的除法可求z ,从而可求z z +. 【答案详解】由题设有21i 1i i i z -===-,故1+i z =,故()()1i 1i 2z z +=++-=, 故选:D6. 【答案】D【答案解析】【名师分析】利用复数的乘法可求()()22i 12i +-.【答案详解】()()22i 12i 244i 2i 62i +-=+-+=-, 故选:D.7.【答案】B【答案解析】【名师分析】利用复数四则运算,先求出z ,再计算复数的模.【答案详解】由题意有()()()34i i 34i 43i i i i z ---===--⋅-,故|5|z ==. 故选:B .8. 【答案】B【答案解析】【名师分析】利用复数相等的条件可求,a b .【答案详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=, 故选:B.。

高考数学专题复习题:复数的四则运算

高考数学专题复习题:复数的四则运算

高考数学专题复习题:复数的四则运算一、单项选择题(共15小题) 1.若(22i)i z −=,则z =( ) A .11i 44+B .11i 44−−C .11i 44−D .11i 44−+2.已知i 为虚数单位,则()()21i 21i ++−的值为( ) A .4 B .2C .0D .4i3.复数103iz =−+(i 为虚数单位),z 的共轭复数为( ) A .3i −−B .3i −+C .3i −D .3i +4.复数()()23i 1i z =−+的共轭复数z =( ) A .26i +B .26i −C .26i −+D .26i −−5.已知复数z 满足i 2i z =−,其中i 为虚数单位,则2iz=+( ) A .43i5+−B .43i5+ C .35i4+−D .34i5+ 6.复数()21i1iz −=+的共轭复数为( )A .1i −−B .12i −−C .1i −+D .12i −+7.若复数z 满足(1i)(1z −=+z 的共轭复数,则z 的虚部为( ) A .1B .1−C .iD .i −8.已知复数z 满足210z z ++=且z 是z 的共轭复数,则z z +=( ) A.1−B .1C D .9.已知i 为虚数单位,复数1i22iz −=+,则z 的共轭复数z =( ) A .11i 22−B .11i 22+C .1i 2D .1i 2−10.若复数z 满足()i 12i z −=,则z =( ) A .1i − B .1i +C .1i −−D .1i −+11.复数5i 2z =−的共轭复数为( ) A . i 2+B .i 2−C .2i −−D .2i −−12.已知复数123i z z ==,则12z z =( ) A.B.C.3i D.3i13.已知()2i m −为纯虚数,则实数m =( ) A .0B .1C .1−D .1±14.2020i =( ) A .iB .i −C .1D .1−15.已知2i +是实系数方程20x px q +−=的一个复数根,则p q +=( ) A .9−B .1−C .1D .9二、多项选择题(共5小题)16.已知方程1n x =在复数范围内有n 个根,且这n 个根在复平面内对应的点n 等分单位圆.下列复数是方程91x =的根的是( ) A .1 B .iC.12−D .cos40isin40+17.已知12,z z 是两个复数,下列结论中正确的是( ) A .若12z z =,则12z z ∈RB .若12z z +为实数,则12z z =C .若12,z z 均为纯虚数,则12z z 为实数D .若12z z 为实数,则12,z z 均为纯虚数18.已知复数12ω=−,ω为ω的共轭复数,则( ) A .1ωω⋅= B .22ωωωω+=+ C .210ωω++=D .2320241ωωωω++++=19.如果设12,z z 是关于x 的方程()20,x px q p q ++=∈R 的两个根,其中11i z =+,那么( ) A .12z z =B .2212z z =C .2p =−D .2q =20.设方程210x x ++=在复数范围内的两根分别为12,z z ,则下列关于12,z z 的说法正确的有( ) A .212z z =B .33120z z −= C .22120z z −= D .121z z =三、填空题(共10小题)21.若复数12,z z 是方程22100−+=x x 的两根,则211222z z z z ++=________. 22.i 是虚数单位,复数112i12i−=−________. 23.已知复数z 满足()2i 21z z +=−,则复数z =________. 24.i 是虚数单位,化简1i1i+−的结果为________. 25.复数2iiz −=(i 为虚数单位),则z =________. 26.写出一个满足()1i z +⋅∈R ,且2z >的复数z ,z =________. 27.已知复数z 满足()34i 5z −=,则z =________. 28.若2i1ia +−是纯虚数,则实数a 的值为________. 29.在复数范围内,方程416x =的解集为________. 30.若复数z 满足i(1)2z −=,则z =________.。

完整版复数高考题型归类

完整版复数高考题型归类

复数高考题型归类剖析一、基本运算型四、复数的几何意义型二、基本看法型练习:1.若是复数z=1+ai 满足条件 |z| < 2,那么实数 a 的取值范围是[]A. 2 2,2 2B.( -2 ,2)C.( -1 ,1)D.3,32.在平行四边形OABC 中,极点 O,A,C 分别表示 0,3→+ 2i,- 2+ 4i.则对角线 CA所表示的复数的模为;三、复数相等型3.已知复数z1= i(1 - i)2, |z|= 1,则 |z- z1 |的取值范围是;五、技巧运算型六、知识交汇型七、轨迹方程型练习:1.已知复数 z 满足 |z|2- 2|z|-3= 0,则复数z 对应点的轨迹是 ()个圆 B.线段 C.2 个点 D.2 个圆2.若是复数z 满足 |z+2i|+ |z- 2i|= 4,那么 |z+i + 1|的最小值是()B. 2 D.53.若 |z- 2|= |z+ 2|,则 |z- 1|的最小值是.复数高考题型归类剖析一、基本运算型四、复数的几何意义型二、基本看法型三、复数相等型练习:1.若是复数z=1+ai 满足条件 |z| < 2,那么实数 a 的取值范围是 []A. 2 2,22B. ( -2 ,2)C.( -1 ,1)D.3,32.在平行四边形OABC 中,极点 O,A,C 分别表示 0,3+ 2i,- 2+ 4i.则对角线→;CA所表示的复数的模为3.已知复数12, |z|= 1,则 |z-z1z = i(1 -i)|的最大值 .五、技巧运算型六、知识交汇型小值是()B.2D.5答案A剖析设复数- 2i,2i ,- (1+ i) 在复平面内对应的点分别为 Z1,Z2,Z3,因为 |z+ 2i|+ |z- 2i|= 4,Z1Z2= 4,所以复数z 的几何意义为线段Z1 Z2,以下列图,问题转化为:动点Z 在线段 Z1Z2上搬动,求ZZ3的最小值 .因此作 Z3 Z0⊥Z1Z2于 Z0,则 Z3与 Z0的距离即为所求的七、轨迹方程型最小值, Z0Z3= 1.应选 A.8.若 |z- 2|= |z+ 2|,则 |z- 1|的最小值是.答案1剖析由|z- 2|= |z+ 2|,知 z 对应点的轨迹是到(2,0)与到 (- 2,0)距离相等的点,即虚轴 .|z- 1|表示 z 对应的点与 (1,0)的距离 .∴ |z- 1| = 1.min已知复数 z 满足 |z|2- 2|z|- 3= 0,则复数 z 对应点的轨12.会集 M = { z||z- 1|≤ 1, z∈ C} , N= { z||z- 1- i|= |z 迹是 ()- 2|, z∈ C} ,会集 P= M∩ N.A.1 个圆B.线段(1)指出会集 P 在复平面上所表示的图形;C.2 个点D.2 个圆(2)求会集 P 中复数模的最大值和最小值 .答案A解 (1) 由 |z- 1|≤ 1 可知,会集 M 在复平面内所对应的剖析由题意可知 (|z|- 3)(|z|+ 1)= 0,点集是以点 E(1,0)为圆心,以 1 为半径的圆的内部及边即 |z|= 3或 |z|=- 1.界;由 |z- 1- i|= |z-2|可知,会集 N 在复平面内所对∵ |z|≥ 0,∴|z|= 3.应点集是以点 (1,1) 和 (2,0) 为端点的线段的垂直均分线∴复数 z 对应的轨迹是 1 个圆.l,因此会集 P 是圆面截直线 l 所得的一条线段 AB,如图所示 .(2)圆的方程为x2+ y2- 2x= 0,直线 l 的方程为y= x-1.x2+ y2- 2x= 0,解得y= x-12+ 222- 22A(2,2 ),B(2,-2 ).∴ |OA|=2+2, |OB|=2- 2.∵点 O 到直线 l 的距离为22,且过 O 向 l 作垂线,垂BE上,∴2足在线段 2 <2- 2.∴会集 P 中复数模的最大值为2+2,最小值为2 2 .。

高考真题复数题型及答案解析

高考真题复数题型及答案解析

高考真题复数题型及答案解析高考是中国学生普遍经历的一项重要考试,几乎关系到他们未来的发展。

在高考中,学生需面对各种不同的题型和难题。

其中,复数题型一直是让学生们头疼的问题。

本文将针对高考真题中的复数题型进行解析,帮助学生更好地应对这一考试难点。

一、选择题1.下列植物中,能够进行光合作用并产生氧气的是:A.藻类B.菌类C.苔藓D.蕨类正确答案:A解析:藻类是能够进行光合作用并产生氧气的植物,而菌类、苔藓、蕨类都没有这个能力。

因此,选项A是正确答案。

2.下列动物中,属于哺乳动物的是:A.鲨鱼B.蛇C.鸟D.猴子正确答案:D解析:只有猴子属于哺乳动物,其他动物都不属于这一类别。

因此,选项D是正确答案。

二、填空题3.某班级男生人数是女生人数的两倍,男生和女生总人数是48人。

那么男生人数是____。

(填写数字)正确答案:32解析:设男生人数为x,则女生人数为2x。

根据题意,有x + 2x = 48,解得x = 16。

因此,男生人数是32人。

4.一个矩形的长是宽的3倍,周长是20m。

那么矩形的长和宽分别是____m和____m。

(分别填写数字)正确答案:12和4解析:设矩形的宽为x,则矩形的长为3x。

根据题意,有2(3x + x) = 20,解得x = 2。

因此,矩形的长是12m,宽是4m。

三、解答题5.根据下图,求锐角三角形ADC的周长。

(图片描述:一个锐角三角形ADC,AD=6cm,角C为直角,线段AC=8cm)正确答案:18cm解析:根据勾股定理,可得BD = 10cm。

由ADC为锐角三角形可知,角A的余弦为正。

设角A为x,则有cos(x) = 6/8,解得x =36.87°。

因此,三角形ADC的周长为6 + 8 + 10 = 18cm。

四、分析题6.某班级有60名学生,其中男生人数是女生人数的1.5倍。

若班级中女生人数减少20%,则男生人数将是女生人数的多少倍?正确答案:1.2倍解析:设班级中女生人数为x,则男生人数为1.5x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数高考真题分类汇编题型一 复数的概念及分类1.(2015·天津卷)i 是虚数单位,若复数))(21(i a i +-是纯虚数,则=a .2.(2016·江苏卷)复数)3)(21(i i z -+=,i 为虚数单位,则z 的实部是 .3.(2016·上海卷)设ii z 23+=,其中i 为虚数单位,则其虚部为 . 4.(2017·天津卷)已知R a ∈,i 为虚数单位,若ii a +-2为实数,则a 的值为 . 5.(2017·全国卷)设有下面四个命题::1p 若复数满足R z ∈1,则R z ∈; :2p 若复数满足R z ∈2,则R z ∈; :3p 若复数1z 、2z 满足R z z ∈21,则21z z =; :4p 若复数R z ∈,则R z ∈; 其中真命题为( )A .1p ,3pB .1p ,4pC .2p ,3pD .2p ,4p 题型二 与共轭复数、复数相等有关的问题1.(2013·山东卷)复数满足5)2)(3(=--i z (i 为虚数单位),则z 的共轭复数为( )A .i +2B .i -2C .i +5D .i -52.(2013·安徽卷)设i 是虚数单位,若z i z z 22=+⋅,则=z ( )A .i +1B .i -1C .i +-1D .i --13.(2013·福建卷)已知复数的共轭复数i z 21+=(i 为虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.(2013·湖北卷)在复平面内,复数ii z +=12(i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.(2013·四川卷)如图,在复平面内,点A 表示复数,则图中表示的共轭复数的点是_____6.(2013·天津卷)已知R b a ∈、,i 是虚数单位,若bi i i a =++)1)((,则=+bi a .7.(2014·陕西卷)原命题为“若21,z z 互为共轭复数,则21z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真假真B .假假真C .真真假D .假假假8.(2014·山东卷)已知R b a ∈、,i 是虚数单位,若i a -与bi +2互为共轭复数,则=+2)(bi a ( )A .i 45-B .i 45+C . i 43-D .i 43+9.(2014·江西卷)z 是z 的共轭复数.若2=+z z ,2)(=-i z z ,i 为虚数单位,则=z ( )A .i +1B .i --1C .i +-1D . i -110.(2014·安徽卷)设i 是虚数单位,z 表示复数z 的共轭复数.若i z +=1,则=⋅+z i iz ( ) A .2- B .i 2- C .2 D .i 211.(2014·全国卷)设ii z +=310,则z 的共轭复数为( ) A .i 31+- B .i 31-- C .i 31+ D .i 31-12.(2014·福建卷)复数i i z )23(-=的共轭复数为( )A .i 32--B .i 32+-C .i 32-D . i 32+13.(2015·广东卷)若复数)23(i i z -=(i 是虚数单位),则=z ( )A .i 32-B .i 32+C .i 23+D .i 23-14.(2015·湖北卷)i 为虚数单位,607i 的共轭复数为( )A .iB .i -C .1D .1-15.(2015·全国卷Ⅱ)若a 为实数,且i i a ai 4)2)(2(-=-+,则=a ( )A .1-B .0C . 1D . 216.(2015·山东卷)若复数满足i i z =-1,其中i 为虚数单位,则=z ( ) A .i -1 B .i +1 C .i --1 D .i +-117.(2016·山东卷)若复数满足i z z 232-=+,其中i 为虚数单位,则=z ( )A .i 21+B .i 21-C .i 21+-D .i 21--18.(2016·天津卷)已知R b a ∈、,i 是虚数单位,若a bi i =-+)1)(1(,则ba 的值为______.19.(2017·山东卷)已知R a ∈,i 是虚数单位,若i a z 3+=,4=⋅z z ,则=a ( )A .1或1-B .3或3-C .3-D .320.(2017·浙江卷)已知R b a ∈、,i bi a 43)(2+=+(i 是虚数单位),则=+22b a ______,=ab ________.题型三 复数的模1.(2013·辽宁卷)复数11-=i z 的模为( ) A .21 B .22 C .2 D .22.(2013·江苏卷)设2)2(i z -=(i 为虚数单位),则复数z 的模为______.3.(2013·陕西卷)设21z z 、是复数,则下列命题中的假命题是( )A .若021=-z z ,则21z z =B .若21z z =,则21z z =C .若21z z =,则2211z z z z ⋅=⋅D .若21z z =,则2221z z = 4.(2013·重庆卷)已知复数ii z 215+=(i 是虚数单位),则=z _____. 5.(2015·全国卷)设复数z 满足i zz =-+11,则=z ( ) A .1 B .2 C .3 D .26.(2015·江苏卷)设复数满足i z 432+=(i 是虚数单位),则z 的模为_____.7.(2015·重庆卷)设复数bi a +(R b a ∈,)的模为3,则=-+))((bi a bi a ____.8.(2016·全国卷)设yi x i +=+1)1(,其中y x 、是实数,则=+yi x ( )A .1B .2C .3D .29.(2017·江苏卷)已知复数)21)(1(i i z ++=,曲终i 是虚数单位,则z 的模是______.10.(2017·全国卷Ⅲ)设复数z 满足i z i 2)1(=+,则=z ( )A .21 B .22 C .2 D .2题型四 复数的四则运算1.(2013·全国卷)设复数满足i z i 2)1(=-,则=z ( )A .i +-1B .i --1C .i +1D .i -12.(2013·浙江卷)已知i 是虚数单位,则=-+-)2)(1(i i ( )A .i +-3B .i 31+-C .i 33+-D .i +-13.(2013·广东卷)若复数满足i z i 42+=⋅,则在复平面内,z 对应的点的坐标是( )A .)4,2(B .)4,2(-C .)2,4(-D .)2,4(4.(2014·北京卷)复数=-+2)11(ii ______. 5.(2014·江苏卷)已知复数2)25(i z -=(i 为虚数单位),则z 的实部为____.6.(2014·四川卷)复数=+-ii 122______. 7.(2014·天津卷)i 是虚数单位,复数=++ii 437( ) A .i -1 B .i +-1 C .i 25312517+ D .i 725717+- 8.(2014·全国卷)=-+23)1()1(i i ( ) A .i +1 B .i -1 C .i +-1 D .i --19.(2014·辽宁卷)设复数满足5)2)(2(=--i i z ,则=z ( )A .i 32+B .i 32-C .i 23+D .i 23- 10.(2014·湖北卷)i 为虚数单位,则=+-2)11(ii ( ) A .1- B .1 C .i - D .i11.(2014·湖南卷)满足i zi z =+(i 是虚数单位)的复数=z ( ) A .i 2121+B .i 2121-C .i 2121+-D .i 2121-- 12.(2014·广东卷)已知复数满足25)43(=+z i ,则=z ( )A .i 43+-B .i 43--C .i 43+D .i 43- 13.(2015·北京卷)复数=-)2(i i ( )A .i 21+B .i 21-C .i 21+-D .i 21--14.(2015·福建卷)若集合{}432,,,i i i i A =(i 是虚数单位),{}1,1-=B ,则=B A ( )A .{}1-B .{}1C .{}1,1-D .Ø15.(2015·湖南卷)已知i zi +=-1)1(2(i 为虚数单位),则复数=z ( ) A .i +1 B .i -1C .i +-1D .i --116.(2015·四川卷)设i 是虚数单位,则复数=-ii 23( ) A .i - B .i 3- C .i D .i 317.(2016·全国卷Ⅲ)若i z 21+=,则=-14z z i ( ) A .1 B .1- C .i D .i -18.(2016·四川卷)设i 为虚数单位,则6)(i x +的展开式中含4x 的项为( )A .415x -B .415xC .420ix -D .420ix 19.(2017全国卷Ⅱ)=++ii 13( ) A .i 21+ B .i 21-C .i +2D .i -2题型五 复数的几何意义 1.(2013·湖南卷)复数)1(i i z +=(i 为虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.(2013·福建卷)已知复数的共轭复数i z 21+=(i 为虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.(2013·湖北卷)在复平面内,复数ii z +=12(i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.(2013·四川卷)如图,在复平面内,点A 表示复数,则图中表示的共轭复数的点是_____5.(2014·全国卷Ⅱ)设复数21,z z 在复平面内的对应点关于虚轴对称,i z +=21,则=21z z ( )A .5-B .5C .i +-4D .i --46.(2014·重庆卷)在复平面内表示复数)21(i i -的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.(2015·安徽卷)设i 是虚数单位,则复数ii -12在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.(2016·北京卷)设R a ∈,若复数))(1(i a i ++在复平面内对应的点位于实轴上,则=a ________.9.(2017·北京卷)若复数))(1(i a i +-在复平面内对应的点在第二象限,则实数a 的取值范围是( ) A .)1,(-∞ B .)1,(--∞ C .),1(+∞ D .),1(+∞-。

相关文档
最新文档