加法运算定律
五年级运算定律
五年级运算定律一、加法运算定律。
1. 加法交换律。
- 定义:两个数相加,交换加数的位置,和不变。
- 用字母表示:a + b=b + a。
例如:3+5 = 5+3,结果都是8。
2. 加法结合律。
- 定义:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
- 用字母表示:(a + b)+c=a+(b + c)。
例如:(2 + 3)+4=2+(3 + 4),(2+3)+4 =5+4=9,2+(3 + 4)=2 + 7 = 9。
二、乘法运算定律。
1. 乘法交换律。
- 定义:两个数相乘,交换因数的位置,积不变。
- 用字母表示:a×b = b×a。
例如:2×3 = 3×2,结果都是6。
2. 乘法结合律。
- 定义:三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。
- 用字母表示:(a×b)×c=a×(b×c)。
例如:(2×3)×4 = 2×(3×4),(2×3)×4=6×4 = 24,2×(3×4)=2×12 = 24。
3. 乘法分配律。
- 定义:两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加。
- 用字母表示:(a + b)×c=a×c + b×c。
例如:(2+3)×4=2×4+3×4,(2 + 3)×4=5×4 = 20,2×4+3×4 = 8+12 = 20。
三、减法的性质。
1. 定义:从一个数里连续减去两个数,可以减去这两个数的和。
- 用字母表示:a - b - c=a-(b + c)。
例如:10-3 - 2=10-(3 + 2),10 - 3-2 = 7 -2=5,10-(3 + 2)=10 - 5 = 5。
(完整版)加减乘除运算定律
加法
1.加法交换律:a+b = b+a
两个数相加,交换加数的位置,和不变。
2.加法结合律:a+b+c = (a+b)+c = a+(b+c)
三个数相加,先把前两个数相加,再和第三个数相加,或者先把后两个数相加,再和第一个数相加,和不变。
3.加法运算中综合运用交换律和结合律: a+b+c = (a+c)+b
减法
1.减法的性质:a–b–c = a–(b+c)
一个数连续减去两个数,可以用第一个数减去后面两个数的和,差不变。
乘法
1.乘法交换律:a×b = b×a
两个数相乘,交换乘数的位置,积不变。
2.乘法结合律:a×b×c = (a×b)×c = a×(b×c)
三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,积不变。
3.乘法运算中综合运用交换律和结合律: a×b×c = ( a×c)×b
4.乘法分配律:(a+b)×c = a×c+b×c
两个数的和与第三个数相乘,等于把这两个数分别与这个数相乘,再把它们的积加起来,结果不变。
5.乘法分配律的逆运用:a×c+b×c =(a+b)×c
除法
1.除法的性质:a÷b÷c = a÷(b×c)
一个数连续除以两个数,等于被除数除以两个除数的积,商不变。
《加法运算定律的应用》
03
加法结合律的应用
结合加数进行运算
计算多个加数的和
使用加法结合律可以将多个加数结合在一 起,简化计算过程。
在加法运算中,改变运算的顺序并不会影 响总和。例如,对于三个数a、b和c,有 a+b+c=b+a+c=c+a+b。通过改变运算 的顺序,我们可以得到不同的加法表达式 ,但它们的结果是相同的。
改变运算符号
总结词
加法交换律的应用在改变运算符号时,可以改变运算结果的表达形式,但不会改变其实际值。
详细描述
05
加法运算定律的综合应用
结合加法交换律和结合律进行运算
总结词
加法交换律和结合律是加法运算中的基本定律,通过结 合两者进行运算,可以简化计算过程。
详细描述
在实际运算中,加法交换律和结合律常常会同时出现。 例如,在计算多个数的和时,可以先将某些数组合并, 再与其他数相加,这样可以简化计算过程。
结合加法结合律和分配律进行运算
详细描述
加法分配律的表达式为a×(b+c)=a×b+a×c。该定律表明,当一个数与几个数相 加时,可以先把这个数分别与每个加数相乘,然后再把所得的积相加起来,所得 的和与原来相同。
02
加法交换律的应用
交换加数的位置
总结词
加法交换律的应用在交换加数的位置时,可以改变运算结果的表达形式,但不会改变其实际值。
加法结合律
总结词
加法结合律是指三个或更多加数相加时,任意改变它们的顺 序,和不变。
小学四年级数学加法运算定律知识点
小学四年级数学加法运算定律知识点
**知识点**
1、加法交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a
2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
(a+b)+c=a+(b+c) 加法的这两个定律往往结合起来一起使用。
3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。
a-b-c=a-(b+c)
**练习题**
1、36+( )=85+( ),这里运用了( )律,用字母表示为a+b=( )。
2、在笔算加法时,可以应用加法的( )律进行验算。
3、325+53+75+147=( + )+( + )
4、561-128-72=561-( + )
**参考答案**
1、36+( 85)=85+( 36 ),这里运用了( 加法交换)律,用字母表示为a+b=( b+a)。
2、在笔算加法时,可以应用加法的( 交换 )律进行验
算。
3、325+53+75+147=( 325+53 )+( 75+147 )
4、561-128-72=561-( 128+72 )
加法运算定律知识点就先到这儿了,我会持续为大家更新最新的内容,希望大家学有所成。
加减乘除的运算定律
运算定律与简便运算一.加法运算定律1. 加法交换律——两个加数交换位置,和不变。
字母公式:a+b+c = (b+a ) +c题例(简算过程):6+18+4=(6+4 ) +18=10+18=282. 加法结合律——先把前两个数相加,或者先把后两个数相加,和不变。
字母公式:a+b+c = a+(b+c)题例(简算过程):6+18+2=6+(18+2)=6+20=26二.乘法运算定律:1. 乘法交换律--- 两个乘数交换位置,积不变。
字母公式:a x b = b x a题例(简算过程):125 X 12 X 8=125 X 8 X 12=1000 X12=120002. 乘法结合律——先乘前两个数,或者先乘后两个数,积不变。
字母公式:a X b X c = a X (b X c)题例(简算过程):30 X25 X4=30 X (25 X 4)=30 X 100=30003. 乘法分配律一一两个数与一个数相乘,可以先把它们与这个数分别相乘,再相加。
字母公式:(a+b) x c=a x c+b x c题例(简算过程):(1)12 x 6.2+3.8 x 12=12 x (6.2+3.8)=12 x 10=120三.减法性质:一个数连续减去两个数,可以先把后两个数相加,再相减。
字母公式:A-B-C二A-(B+C)题例(简算过程):20-8-2=20-(8+2)=20-10=101. 一个数连续减去几个数,可以用这个数减去所有减数的和,差不变。
字母公式:A-B-C=A-(B+C)题例:6-1.99=6X100-1.99X100=(600-199)/100=4.01四.除法性质一个数连续除以两个数,可以先把后两个数相乘,再相除。
字母公式:a — b —c=a —(b x c)题例(简算过程):20 -8 - 1.25=20 - (8 x 1.25)=20 - 10=2被除数和除数同时乘上或除以相同的数( 0除外)它们的商不变。
(完整版)1-----四则运算(五大定律)及公式
四则运算 (五大定律)
(一)加法运算定律:
字母公式:a+b=b+a
2、先把前两个数相加,或者先把后两个数相加,和不
字母公式:(a+b) +c=a+(b+c)
(二)乘法运算定律:
字母公式:a×b=b×a
2、先乘前两个数,或者先乘后两个数,积不变,这叫做
字母公式:(a×b)×c=a×(b×c)
3、两个数的和与一个数相乘,可以先把它们与这个数
用字母公式:(a+b)×c=a×c+b×c或a×(b+c) =a×b+a×c
拓展:(a-b)×c=a×c-b×c或a×(b-c) =a×b-a×c
(三)减法简便运算:
1、一个数连续减去两个数,可以用这个数减去这两个数的和。
用字母表示:a-b-c=a-(b+c)
2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
用字母表示:a-b-c=a—c-b
(四)除法简便运算:
1、一个数连续除以两个数,可以用这个数除以这两个数的积。
用字母表示:a÷b÷c=a÷(b×c)
2、一个数连续除以两个数,可以用这个数先除以后一个数再除以前一个数。
用字母表示:a÷b÷c=a÷c÷b。
加减乘除法的运算定律
加减乘除法的运算定律加减乘除法是我们日常生活中经常使用的基本运算方式。
了解它们的运算定律,能够帮助我们更好地理解运算的规律,并在实际应用中运用得当。
本文将介绍加减乘除法的运算定律,并通过生动的例子进行解释,希望对大家有所启发。
一、加法的运算定律1. 加法的交换律:a + b = b + a可以简单地理解为,只要数字的顺序不变,加法的结果是相同的。
比如,2 + 3 = 3 + 2 = 5,无论是先加2再加3,还是先加3再加2,结果都是相同的。
2. 加法的结合律:(a + b) + c = a + (b + c)结合律告诉我们,加法的运算顺序可以改变,结果是不变的。
比如,(2 + 3) + 4 = 2 + (3 + 4) = 9,无论是先计算(2 + 3)再加4,还是先计算3 + 4再加2,结果都是9。
3. 加法的零元素:a + 0 = a加法的零元素指的是0,任何数和0相加,都等于它本身。
比如,2 + 0 = 2,3 + 0 = 3,无论加上多少个0,结果都不会改变。
二、减法的运算定律1. 减法的减去本身:a - a = 0减法的减去本身规定,任何数减去自身,结果为0。
比如,4 - 4 = 0,20 - 20 = 0。
2. 减法的零元素:a - 0 = a减法的零元素和加法一样,是0。
任何数减去0,结果都等于它本身。
比如,2 - 0 = 2,10 - 0 = 10。
三、乘法的运算定律1. 乘法的交换律:a × b = b × a乘法的交换律告诉我们,无论数字的顺序如何,乘法的结果都是相同的。
比如,2 × 3 = 3 × 2 = 6,无论先乘2再乘3,还是先乘3再乘2,结果都是6。
2. 乘法的结合律:(a × b) × c = a × (b × c)结合律适用于乘法运算,告诉我们乘法的运算顺序可以改变,结果是不变的。
比如,(2 × 3) × 4 = 2 × (3 × 4) = 24,无论是先计算(2 × 3)再乘4,还是先计算3 × 4再乘2,结果都是24。
加减乘除 运算定律
加法
1.加法交换律:a+b = b+a
两个数相加,交换加数的位置,和不变。
2.加法结合律:a+b+c = (a+b)+c = a+(b+c)
三个数相加,先把前两个数相加,再和第三个数相加,或者先把后两个数相加,再和第一个数相加,和不变。
3.加法运算中综合运用交换律和结合律: a+b+c = (a+c)+b
减法
1.减法的性质:a–b–c = a–(b+c)
一个数连续减去两个数,可以用第一个数减去后面两个数的和,差不变。
乘法
1.乘法交换律:a×b = b×a
两个数相乘,交换乘数的位置,积不变。
2.乘法结合律:a×b×c = (a×b)×c = a×(b×c)
三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,积不变。
3.乘法运算中综合运用交换律和结合律: a×b×c = ( a×c)×b
4.乘法分配律:(a+b)×c = a×c+b×c
两个数的和与第三个数相乘,等于把这两个数分别与这个数相乘,再把它们的积加起来,结果不变。
5.乘法分配律的逆运用:a×c+b×c =(a+b)×c
除法
1.除法的性质:a÷b÷c = a÷(b×c)
一个数连续除以两个数,等于被除数除以两个除数的积,商不变。
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。
四则运算定律概念及公式
四则运算定律概念及公式
四则运算是指加法、减法、乘法和除法这四种基本运算。
四则运算定律是指这四种基本运算中的一些性质和规则。
1.加法定律:
-交换律:对于任意的实数a和b,a+b=b+a。
-结合律:对于任意的实数a、b和c,(a+b)+c=a+(b+c)。
2.减法定律:
-减法与加法的关系:对于任意的实数a、b和c,如果a+b=c,那么c-b=a。
3.乘法定律:
-交换律:对于任意的实数a和b,a*b=b*a。
-结合律:对于任意的实数a、b和c,(a*b)*c=a*(b*c)。
4.除法定律:
-除法与乘法的关系:对于任意的实数a、b和c(其中b和c不为零),如果a*b=c,那么c/b=a。
-倒数:对于任意的非零实数a,存在一个实数b,使得a*b=1,这个b被称为a的倒数,记作1/a。
此外,还有一些其他的四则运算定律:
5.零元素:
-加法的零元素:对于任意的实数a,a+0=a。
-乘法的零元素:对于任意的实数a,a*0=0。
6.乘法的单位元:
-乘法的单位元:对于任意的实数a,a*1=a。
7.分配律:
-左分配律:对于任意的实数a、b和c,a*(b+c)=a*b+a*c。
-右分配律:对于任意的实数a、b和c,(a+b)*c=a*c+b*c。
以上是四则运算的一些基本定律和公式。
在进行四则运算时,这些定律和公式可以帮助我们简化和优化计算过程,提高计算的准确性和效率。
加减乘除 运算定律
加法
1.加法交换律:a+b = b+a
两个数相加,交换加数的位置,和不变。
2。
加法结合律:a+b+c = (a+b)+c = a+(b+c)
三个数相加,先把前两个数相加,再和第三个数相加,或者先把后两个数相加,再和第一个数相加,和不变。
3.加法运算中综合运用交换律和结合律: a+b+c = (a+c)+b
减法
1。
减法的性质:a–b–c = a–(b+c)
一个数连续减去两个数,可以用第一个数减去后面两个数的和,差不变。
乘法
1.乘法交换律:a×b = b×a
两个数相乘,交换乘数的位置,积不变。
2。
乘法结合律:a×b×c = (a×b)×c = a×(b×c)
三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,积不变.
3.乘法运算中综合运用交换律和结合律:a×b×c = ( a×c)×b
4.乘法分配律:(a+b)×c = a×c+b×c
两个数的和与第三个数相乘,等于把这两个数分别与这个数相乘,再把它们的积加起来,结果不变。
5。
乘法分配律的逆运用:a×c+b×c =(a+b)×c
除法
1.除法的性质:a÷b÷c = a÷(b×c)
一个数连续除以两个数,等于被除数除以两个除数的积,商不变。
加减法运算定律
加、减法运算定律1. 加法交换律定义:两个加数交换位置,与不变。
字母表示:a+=bba+例如:16+23=23+16 546+78=78+5462. 加法结合律定义:先把前两个数相加,或者先把后两个数相加,与不变。
字母表示:)a+b+++=c(a)b(c注意:加法结合律有着广泛的应用,如果其中有两个加数的与刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860= 63+(16+84)(4)63+1.6+8.4 (5)0.76+15+0.24 (6)1.4+639+8.6=(0.76+0.24)+15举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+245(4)0.46+67+0.54 (5)6.80+485+1.20 (6)1.55+657+2.45拓展3.减法交换律、结合律注:减法交换律、结合律是由加法交换律与结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b=---caa-cb例 2. 简便计算:198-75-98 346-58-46 7453-289-253= (198-98)-751.98-75-0.98 34.6-58-4.6 74.53-289-2.53减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的与。
字母表示:)-=--a+(cbacb例3.简便计算:(1)369-45-155 (2)896-580-120 (3)1823-254-746= 369-(45+155)(4)369-0.45-1.55 (5)896-0.58-0.12 (6)1823-2.54-7.46。
加减乘除的运算定律
运算定律与简便运算一.加法运算定律1.加法交换律-—两个加数交换位置,和不变。
字母公式:a+b+c =(b+a)+c题例(简算过程):6+18+4=(6+4)+18=10+18=282.加法结合律——先把前两个数相加,或者先把后两个数相加,和不变。
字母公式:a+b+c = a+(b+c)题例(简算过程):6+18+2=6+(18+2)=6+20=26二.乘法运算定律:1.乘法交换律——两个乘数交换位置,积不变。
字母公式:a×b = b×a题例(简算过程):125×12×8=125×8×12=1000×12=120002.乘法结合律—-先乘前两个数,或者先乘后两个数,积不变.字母公式:a×b×c = a×(b×c)题例(简算过程):30×25×4=30×(25×4)=30×100=30003.乘法分配律——两个数与一个数相乘,可以先把它们与这个数分别相乘,再相加。
字母公式:(a+b)×c=a×c+b×c题例(简算过程):(1)12×6.2+3.8×12=12×(6。
2+3。
8)=12×10=120三.减法性质:一个数连续减去两个数,可以先把后两个数相加,再相减。
字母公式:A—B-C=A—(B+C)题例(简算过程):20-8-2=20-(8+2)=20—10=101.一个数连续减去几个数,可以用这个数减去所有减数的和,差不变。
字母公式:A—B-C=A—(B+C)题例:6—1.99= 6X100-1.99X100=( 600—199)/100=4。
01四.除法性质一个数连续除以两个数,可以先把后两个数相乘,再相除.字母公式:a÷b÷c=a÷(b×c)题例(简算过程):20÷8÷1.25=20÷(8×1。
加法的运算定律和性质
加法运算定律和减法运算性质
加法运算定律和减法性质,我们一起来看一下。
加法运算定律是:只改变加数的位置,不改变运算的顺序。
我们可以用字母这样来表示a+b=b+a
加法结合律是:只改变运算的顺序,不改变加数的位置,用字母这样来表示:a+b+c=a+(b+c)
在一个连加算式当中,我们要先看算式中哪两个数,或者是哪几个数相加,可以凑成整十数,再用加法交换律结合律去进行简算。
一起来看一下这道题,283+136+117+64,我们发现283和117可以凑成整百数,136和64可以凑成整百数,我们要用加法交换律和加法结合律,把283和117结合,然后再把136+64结合去简算。
再来看一道:
3+5+7+9+297+295+293+291,
在这个数算式当中,我们发现3和297,5和295,7和293,9和291可以凑成一个整百数,我们要利用加法交换律和加法结合律,凑成整百数,去简算。
减法的运算性质,用字母这样来表示:a-b-c=a-c-b=a-(b+c)
在这儿我们要注意,在运用减法运算性质的时候,加括号或者去括号的时候注意改变运算符号。
一起来看一下这道题,674-126-174,我们发现674-174可以凑成一个整百数,我们要运用减法性质a-b-c=a-c-b去简算这道题。
674-126-174,我还发现126和174相加也是一个整百数,我们要利用减法性质:a-b-c=a-(b+c)也可以哦。
你学会了吗?。
(完整版)加减乘除运算定律
加法
1.加法互换律: a+b = b+a
两个数相加,互换加数的地点,和不变。
2.加法联合律: a+b+c = (a+b)+c = a+(b+c)
三个数相加,先把前两个数相加,再和第三个数相加,或许先把后两个数相加,再和第一个数相加,和不变。
3.加法运算中综合运用互换律和联合律 : a+b+c = (a+c)+b
减法
1.减法的性质: a–b–c = a –(b+c)
一个数连续减去两个数,能够用第一个数减去后边两个数的和,差不变。
乘法
1.乘法互换律: a×b= b×a
两个数相乘,互换乘数的地点,积不变。
2.乘法联合律: a×b×c= (a ×b) ×c= a×(b ×c)
三个数相乘,先把前两个数相乘,再和第三个数相乘,或许先把后两个数相乘,再和第一个数相乘,积不变。
3.乘法运算中综合运用互换律和联合律 : a×b×c= ( a ×c) ×b
4.乘法分派律: (a+b) ×c= a×c+b×c
两个数的和与第三个数相乘,等于把这两个数分别与这个数相乘,再把它们的积加起来,结果不变。
5.乘法分派律的逆运用: a×c+b×c =(a+b) ×c
除法
1.除法的性质: a÷b÷c= a÷( b×c)
一个数连续除以两个数,等于被除数除以两个除数的积,商不变。
小学数学五大运算定律
下面是小学数学五大运算定律,希望对同学们有帮助。
1、加法交换律
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2、加法结合律
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3、乘法交换律
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4、乘法结合律
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
5、乘法分配律
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。
也许会有很多人会有疑惑说,为什么数学只有加法和乘法的运算定律,而减法和除法却没有。
其实是因为,减法可以看作是加相反数,而除法可以看作是乘以倒数。
所以减法和除法实际上可以算作加法和乘法。
所以在我们学的时候就只有加法和乘法的运算定律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加法交换律
②
(47+39)+61= 47+(39+61)
加法结合律
③ 4+8=6+6
④
84+68+32=84+(68+32)
加法结合律
5 75+(48+25)=(75+25)+48
75+(48+25)=(75+25)+48 加法交换律和加法结合律
小结: 加法结合律也是加法的运算 定律之一,它往往要与加法的交换 律在一起使用.这样可以使几个数 连加时, 能凑成整十.整百.整千的 加数,先交换再结合后计算就比较 方便。
下面是李叔叔后四天的行程计划
第四天 第五天 第六天 第七天
城市A-B 城市B-C 城市C-D 城市D-E
D B
115千米 132千米 118千米 85千米
425+14+186
75+168+25
加法交换律、加法结合律
(5)425+14+186 (
)
245+180+20+155 67+25+33+75
下面哪些算式运用了加法运算定律? 分别运用了哪些运算定律。
76+18=18 +76
37+45=35+47 31+67+19=31+19+67 24+42+76+58=(24 +76)+(42+58)
加法交换律 75+(48+25)=75+(48+ 25 ) 加法结合律 75+(48+25)=(75+25)+48
根据运算定律,在下面的
里填上适当的数
287+129+118=287+( 129 +118) 183+(46+a)=(183+ 46 )+ a
(
+
+ )
= ___ + ) (___ + ___
C A
E
按照计划李叔叔在后四天还要行多少千米?
按照计划李叔叔在后四天还要 行多少千米?
115+132+118+85
加法交换律 =115+85+132+118 =(115+85)+(132+118) = 200 +250 =450(千米) 加法结合律
答:李叔叔在后四天还要行450千米。
计算下面各题,怎样简便就怎样计算。
观察比较:
(88+104
)+96=88+(104+96)
(69+172)+28=69+(172+28)
155+(145+207)=(155+145)+207
你发现了什么?
三个数相加,先把前两个 数相加或者先把后两个数相加, 和不变,这叫做加法结合律。
用字母表示:
(a+b)+c=a+(b+ c)
例1:李叔叔今 天骑了多少千 米?
=
40+56=56+40 你能再举出几 个这样的例 子吗?
请写在课本 第28页中间
两个加数交换位置,和不 变,这叫做加法交换律.
用字母表示:
a+b=b+a
运用加法交换律填上合适的数。
600 +__ 300 300+600=__
35 +65=__ 65 +35 __
(加法交换律) × (加法交换律)
56+72+28=56+(72+28) (加法结合律)
(加法交换律) (加法结合律)
我们在哪里用到过加法交换律?
876 + 1924 2800
验算:1924 + 876 2800
第一天:88千米 第二天:104千米 第三天:96千米
= 88+(104+96) (88+104)+96○
观察下面的○能填上“=”吗?
= 69+(172+28) (69+172)+28○ = (155+145)+207 155+(145+207)○ 比较这些算式,你发现了什 么?
(45+36)+64= 45+(36+64)
100
125+(75+88)= (125+75)+88
200
第三关:大显身手
联系今天所学;82+55 = (18+82) + (145+55)
= 100+ 200 = 300
5050
思考题:
1+2+3‥‥‥98+99+100的和 是多少?你能很快算出来吗?
第一关:现学现用 你能在_ 上填上合适的数吗? 96 96+35=35+__ 57 +204 204+57= __ 36 +__) 64 (45+36)+64=45+(__
70 140 )+___ 560+(140+70)=(560+__
a+24+76+b=(a+_ )+(__+76)
第二关:火眼金睛