高等代数在初等数学中的一些应用
初等数学与高等数学有关问题的联系与区别
初等数学与高等数学有关问题的联系与区别一、导数的应用导数是研究函数的工具,利用导数研究函数的性质问题,可以比较容易地得到结果或找到解题的方向.导数的单调性:定理:设函数y=f(x)在[a,b]上连续,在(a,b)内可导:(1)如果在(a,b)内f′(x)0,那么函数y=f(x)在[a,b]上单调增加;(2)如果(a,b)在内f′(x)0,那么函数y=f(x)在[a,b]上单调减少.例:确定函数f(x)=x■-2x+4在哪个区间内是增函数,哪个区间内是减函数.解法一:设x■,x■是R上的任意两个实数,且x■x■,则f(x■)-f(x■)=(x■-x■)(x■+x■-2).因为x■-x■0,所以要使x■+x■-20,则x■x■1.于是f(x■)-f(x■)0.即x1时,f(x)是增函数;x1时,f(x)是减函数.解法二:f′(x)=2x-2令2x-210解得x1;因此,当x∈(1,+∞)时,f(x)是增函数.再令2x-20,解得x1,因此,当x∈(-∞,-1)时,f(x)是减函数.经过对两种方法的对比,我发现用大学数学解决此问题更方便快捷.当我们再回头看高中学的方法,觉得它在解决一些问题上存在一定的弊端.二、极限的应用学习极限是从一个“有限”到“无限”的飞跃.从数列极限或函数极限的变化趋势来理解极限问题是认识和解决问题的需要.数列极限:中学与大学的数列极限的概念虽相差不远,但大学的数列极限概念却引出了”收敛”一词,由此给出了收敛数列及其极限的准确定义.有了数列极限的精确定义,我们便可以用定义(又称“ε-N”定义)证明高中数列极限中所用的结论.例:证明■■=0(a,k均为常数,且k∈N■)在中学,我们直观地知道,当n→∞时,n■=∞,■■=0.这仅仅局限于直观得出结论.然而,在大学,我们可以通过极限的“ε-N”定义来证明这个结论的正确性.在高中,我们已经开始接触数列极限.总的来说,高中阶段的数列极限注重的是利用所给结论来求解所给数列的极限值,重点是培养解题能力,注重的是理性思维的培养和备考能力的提高.而大学的数列极限,更多的是利用抽象定义证明某一命题的正确性,强化锻炼的是抽象思维能力及逻辑思维能力.而且大学里对数列极限的深入介绍,不仅完善了我们对数列极限的认识,在求解一些极限问题上,思维也越发灵活.三、不等式的应用不等式是刻画现实世界中的不等关系的数学模型,反映了事物在量上的区别.不等式在解决优化问题中有广泛应用,也是学习高等数学的重要基础.不等式的内容体现了数学的精深.不等式的性质贯穿于不等式的证明、求解和实际应用.充分理解不等式的性质是学习不等式的关键.不等式作为中学教学内容,大体可以分为四个部分:一是不等式的概念与性质;二是解不等式;三是不等式的证明;四是不等式的应用.大学虽然没有专门介绍不等式,但不等式的应用,特别是几个常见的有关不等式的定理的应用,在整个大学数学几乎随处可见.不等式的证明:不等式的证明方法灵活多变,有时要用多种方法,并且不等式的证明常和函数联系,这体现了数学素质的要求.在中学,我们所学的不等式证明所用的最基本的方法主要有比较法、分析法、综合法、归纳法,以及放缩法、换元法、反证法、判别式法等.某些不等式,我们虽然可以用中学的解答,但是用大学所学的某些来解答,我们会发现明显简单得多.定理3.1(拉格朗日(Lagrange))中值定理:若函数f(x)满足如下条件:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导.则在开区间(a,b)内至少存在一点c,使得f′(c)=■例:证明:当ab0时,不等式nb■(a-b)<a■-b■> <na■(a-b)在n> 1时成立. </na■(a-b)在n> </a■-b■>在中学,我们可以用作差法来证明此题.这里不再证明.下面我们就用大学所学的拉格朗日中值定理证明此题.证明:设f(x)=x■,则f′(x)=nx■,当ab0时,对f(x)在区间[b,a]上应用拉格朗日中值定理有■=■=f′(c)=nc■其中b<c> <a因为n> 1时,n-10,所以</a因为n> </c>nb■■=nc■<na■.></na■.>故有nb■(a-b)<a■-b■> <na■(a-b).></n a■(a-b).> </a■-b■>运用精确的定义对高中的某些结论进行证明,也就让我们从只是纯粹地接受结论上升为自主地探讨结论的正确性,这本身就是在认识上的一个质的飞跃.而且大学的证明方法更简便快捷,使我们一目了然.初等数学与高等数学有机地紧密结合,以学习高等数学知识作指导,学习重温初等数学知识,可以达到一个新的高度.而以高等数学知识用以指导解题,常常可以居高临下地事先估测答案,确定解题思路.通过对初等数学与高等数学在解问题时的对比,提高了数学和科学素养,并促进了对数学分析、高等代数学科知识的进一步理解和掌握.。
(精品)高等代数知识在初等数学中的应用毕业设计
本科生毕业论文高等代数知识在初等数学中的应用摘要 (I)Abstract (I)第一章绪论 (1)第二章高等代数与初等数学的联系 (1)2.1知识方面的区别与联系 (2)2.2思想方法方面的区别与联系 (2)2.3观念方面的区别与联系 (4)第三章多项式理论在初等数学中的应用 (5)3.1去重因式分解多项式 (5)3.2 利用因数定理分解多项式 (5)3.3利用对称多项式与轮换多项式的性质分解多项式 (6)3.4多项式的一些应用 (6)第四章行列式在初等数学中的应用 (8)4.1应用行列式判定二元二次多项式的可分解性 (8)4.2应用行列式分解因式 (9)4.3应用行列式解决数列问题 (9)第五章线性方程组在初等数学中的应用 (12)5.1 在平面解析几何上的应用 (12)5.2在空间解析几何中的应用 (13)5.3在求解二元方程组上的应用 (14)第六章柯西不等式在初等数学中的应用 (15)6.1柯西不等式在解析几何中的应用 (15)6.2柯西不等式在解其它题方面的应用 (15)第七章结论 (18)参考文献 (19)致谢 (20)高等代数是现代数学中一个重要的分支,是在初等代数的基础上研究对象进一步的扩充.高等代数是初等数学的进化.高等代数不仅是初等数学的延拓,也是现代数学的基础,只有很好的掌握高等代数的基础知识才能适应数学发展和教材改革.高等代数知识在开阔视野,指导中学解题等方面的作用尤为突出.在许多问题中,如果我们能用高等代数知识解决一些初等数学中的问题,将命题转化为一般性的问题进行解决,往往能收到事半功倍的效果,使人耳目一新.文章一方面介绍了高等代数与初等数学的联系,从数学知识、数学思想方法、数学观念3个方面发掘一下高等数学类课程与中学数学的联系.另一方面介绍高等代数的一些知识在初等数学的应用.如多项式、行列式、线性方程组、柯西不等式在初等数学中的应用,高等代数应用于中学数学并不是简单的一题多解,而是一种知识的融会贯通和发展学生的发散和联想思维.用高等代数的观点去研究初等数学史新世纪对中学数学教师的高水平要求,教师是否具有较高的教学观点,是衡量教师数学素质的重要标准.教师具有高的观点,就能从高处看清中学教材的内在结构和本质联系,把握教材的重、难点;教师具有高观点,就能从认知的角度,在知识的各部分参透高等数学的观点,培养学生的创造性、判断性思维.关键词:高等代数多项式行列式柯西不等式初等代数应用AbstractHigher algebra is an important branch of modern mathematics, which is on the basis of the elementary algebra research object for further expansion. Advanced algebra is the evolution of elementary mathematics. Advanced algebra is not only the continuation of elementary mathematics, also is the foundation of modern mathematics, only good to master the basic knowledge of advanced algebra can adapt the mathematical development and teaching materials reform. Advanced algebra in the open field of vision of knowledge, especially the role of guiding middle school problem solving, etc. In many problems, if we can use the advanced algebra knowledge to solve some problems in the elementary mathematics, converting the proposition to general problems are solved, can often get twice the result with find everything new and fresh.Higher algebra and elementary mathematics were introduced on the one the other the application of elementary mathematics. Such as polynomial, determinant, system of linear equations, cauchy inequality in elementary mathematics, the application of advanced algebra to establish mathematics is not a simple problemsolution, but a mastery of knowledge and the development of students' divergent and associative thinking. In view of the new century of see the inner structure and the essence of the middle school teaching material from a from the perspective of cognition, in the knowledge of each part searches view of第一章绪论人类的文明进步和社会发展,无时无刻不受到数学的恩惠和影响,数学科学的应用和发展牢固地奠定了它作为整个科学技术乃至许多人文科学的基础的地位,当今时代,数学正突破传统的应用范围向几乎所有的人类知识领域渗透,它和其他学科的交互作用空前活跃,越来越直接地为人类物质生产与日常生活作出贡献,也成为其掌握者打开众多机会大门的钥匙.在长期开设高等代数等数学类课程的实践中一直存在两方面的问题,一方面由于中学知识难以与高等代数直接衔接,使不少大学生一接触到“数学分析”、“高等代数”等课程,就对数学专业课程产生了畏惧情绪:另一方面,由于高等代数理论与中学教学需要严重脱节,许多高师毕业生对如何用高等代数知识指导初等代数教学感到茫然.通过本文的介绍,使读者都能清楚地看到:高等代数知识在初等数学的继续喝提高,在思想方法上是初等数学的延续和扩张,在观念上是初等数学的深化和发展.这样学生学习高等代数的难度就会大大降低.高等代数与中学数学在思想方法方面的联系主要体现在抽象化思想、分类思想、结构思想、类比推理思想、公理化方法等方面.高等代数与中学数学的联系对比不但可以降低高等代数课的学习难度,而且增强了高等代数课对培养中学数学教师的指导作用.马克思曾说过:“一门学科只有成功地应用了数学时,才真正达到了完善的地步”.高等代数作为一门抽象的大学学科,虽然表面上是独立的知识体系,但并没有与初等代数内容严重脱节,而是相互参透,彼此相通。
高等代数与初等代数的运算
高等代数与初等代数的运算代数是数学中的一个重要分支,主要研究数与符号之间的关系及其运算规律。
高等代数和初等代数是代数学中的两个重要概念,二者在运算方式、范围以及应用领域上存在差异。
本文将从不同角度对高等代数和初等代数的运算进行介绍和比较。
一、高等代数的运算高等代数是代数学的一个分支,其运算更加抽象和广泛,常用于矩阵、向量以及多项式等数学对象的推理和计算。
在高等代数中,常见的运算包括加法、减法、乘法、除法、求导、积分等。
1. 加法和减法:高等代数中的加法和减法运算与初等代数类似,可以对不同的代数对象进行相加和相减。
如两个多项式的相加和相减,向量的加法和减法等。
2. 乘法:高等代数的乘法更加灵活多样。
在矩阵乘法中,高等代数可以对不同规模的矩阵进行乘法运算,并得到新的矩阵。
在多项式乘法中,高等代数可以将多个多项式相乘,并得到一个新的多项式。
此外,高等代数还引入了向量乘法、复数乘法等概念。
3. 除法:高等代数中的除法运算也有不同的形式。
在矩阵除法中,高等代数可以对两个矩阵进行除法运算,并得到新的矩阵。
在多项式除法中,高等代数可以对两个多项式进行除法运算,并得到一个商式和一个余式。
此外,高等代数还引入了向量除法、复数除法等概念。
4. 求导和积分:求导和积分是高等代数中常用的运算方法。
通过求导,可以求得函数的导数,进而分析函数的变化规律。
通过积分,可以求得函数的不定积分和定积分,进而计算曲线下的面积、弧长等。
二、初等代数的运算初等代数是代数学的基础,主要研究简单的数学运算和方程的解法。
初等代数在中学数学和大学数学中都有广泛应用,包括线性方程组、二次方程、因式分解、分式运算等。
1. 加法和减法:初等代数中的加法和减法运算是最基本的运算方法,适用于各种数学对象,如整数、分数、多项式等。
两个数相加或相减的结果可以直接计算得到。
2. 乘法和除法:初等代数中的乘法和除法运算也十分常见,适用于各种数学对象。
两个数相乘或相除的结果可以直接计算得到。
数学专业毕业论文选题 (1)
数学专业毕业论文选题一、计算机1.数据库图书查询管理设计2.最优轧板成品率的VFP6编程3.基于VFP6的通讯录设计4.基于Mathematicn的课件设计5.用Mathematica帮助理解中数问题6.基于VFP6的成绩统计7.实用的网上共享数据库录入程序8.通用答卷统计系统的总体设计方案9.通用答卷统计系统的录入编程10.通4用答卷统计系统的统计编程11.通用答卷统计系统的报表设计12.通用答卷统计系统的帮助系统设计二、常微分方程1.一阶常微分方程的奇解的求法(或判定)1.微分方程中的补助函数3.关于奇解的运用4.曲线的包络与微分方程的奇解5.用微分方程定义初等函数6.常微分方程唯一性定理及其应用7.求一阶显微分方程积分因子的方法8.二阶线性微分方程另几种可积类型9.满足某些条件黎卡提方程的解法10.一阶常微分方程方向场与积分曲线11.变换法在求解常微分方程中用应用12.通解中任意常数C的确定及意义13.三阶常系数线笥齐次方程的求解14.三维线性系统15.二阶常系数线性非齐次方程新解法探讨16.非线性方程的特殊解法17.可积组合法与低阶方程(方程组)三、数学分析1.多元函数连续、偏导数存在及可微之间的关系2.费尔马最后定理初探3.求极值的若干方法4.关于极值与最大值问题5.求函数极值应注意的几个问题6.n元一次不定方程整数解的矩阵解法7.导数的运用8.泰勒公式的几种证明法及其应用9.利用一元函数微分性质证明超越不等式10.利用柯西——施瓦兹不等式求极值11.函数列的各种收敛性及其相互关系12.复合函数的连续性初探13.关于集合的映射、等价关系与分类14.谈某些递推数列通项公式的求法15.用特征方程求线性分式递推数列的通项16.谈用生成函数法求递归序列通项17.高级等差数列18.组合恒等式证明的几种方法19.斯特林数列的通项公式20.一个递归数列的极限21.关于隶属函数的一些思考22.多元复合函数微分之难点及其注意的问题23.由数列递推公式求通项的若干方法24.定积分在物理学中的应用25.一个极限不等式的证明有及其应用26.可展曲面的几何特征27.再谈微分中值公式的应用28.求极限的若干方法点滴29.试用达布和理论探讨函数可积与连续的关系30.不定积分中的辅助积分法点滴四、复变函数1.谈残数的求法2.利用复数模的性质证解某些问题3.利用复函数理论解决中学复数中的有关问题3.谈复数理论在中学教学中的运用4.5.谈解析函数五、实变函数1.可测函数的等价定义2.康托分集的几个性质3.可测函数的收敛性4.用聚点原理推证其它实数基本定理5.可测函数的性质及其结构6.6.凸函数性质点滴7.凸(凹)函数在证明不等式中的应用8.谈反函数的可测性9.Lebesgue积分与黎曼广义积分关系点滴10.试用Lebesgue积分理论叙达黎曼积分的条件11.再谈CANTOR集六、高等几何1.二阶曲线渐近线的几种求法2.笛沙格定理在初等数学中的运用3.巴斯加定理在初等数学中的运用4.布里安香定理在初等数学中的运用5.二次曲线的几何求法6.二维射影对应的几何定义、性质定义、代数定义的等价性7.用巴斯加定理证明锡瓦一美耐劳斯定理8.仿射变换初等几何中的运用9.配极理论在初等几何中的运用10.二次曲线的主轴、点、淮线的几种求法11.关于巴斯加线和布利安香点的作图12.巳斯加和布利安香定理的代数证明及其应用13.关于作第四调和点的问题14.锡瓦一美耐劳斯定理的代数证明及应用15.关于一维几何形式的对合作图及应用七、概率论1.态分布浅谈3.用概率思想计算定视分的近似值3.欧拉函数的概率思想证明4.利用概率思想证明定积分中值定理5.关于均匀分布的几个问题6件概率的几种类型解题浅析7.概率思想证明恒等式8.古典概率计算中的模球模型9.独立性问题浅谈八、近世代数①集合及其子集的概念在不等式中的作用②论高阶等差数列②谈近世代数中与素数有关的重点结论④商集、商群与商环⑤关于有限映射的若干计算方法⑥关于环(Z2×2,+,、)⑦关于环(ZP2×2,+,、)(这里Zp是模p的剩余环,p为素数)⑧关于环(Z23×3,+,、)⑨关于环(zPQ2×2,+,、)(这里p、q是两个素数)⑩关于环(Znxn, +、)九、高等代数1.关于循环矩阵2.行列式的若干应用3.行列式的解法技巧4.欧氏空间与柯两不等式5.《高等代数》在中学数学中的指导作用6.关于多项式的整除问题7.虚根成对定理的又一证法及其应用8.范德蒙行列式的若干应用9.几阶行列式的一个等价定义10.反循环矩阵及其性质11.矩阵相似及其应用12.矩阵的迹及其应用13.关于整数环上的矩阵14.关于对称矩阵的若干问题15.关于反对称短阵的性质16.关于n阶矩阵的次对有线的若干问题17.关于线性映射的若干问题18.线性空间与整数环上的矩阵十、教学法1.关于学生能力与评价量化的探索2.浅谈类比在教学中的若干应用3.浅谈选择题的解法4.谈谈中学数学课自学能力的培养5.怎样培养学生列方程解题的能力6.谈通过平面几何教学提高学生思维能力7.谈数列教学与培养学生能力的体会8.创造思维能力的培养与数学教学9.数学教学中的心理障碍及其克服10.关于启发式教学11.浅谈判断题的解法12.对中学数学教学中非智力因素的认识13.数学教学中创新能力培养的探讨14.计算机辅助数学教学初探15.在数学课堂教学中运用情感教育16.在数学教学中恰当进行数学实验17.数学语言、思维及其教学18.在平面几何教学中渗透为类比、猜想、归纳推理的思想方法19.试论数学学习中的迁移20.数学例题教学应遵循的原则十一、初等数学1.数学证题中的等价变换与充要条件2.关于充要条件的理解和运用3.参数方程的运用4.极坐标方程的运用5.怎样证明条件恒等式6.不等式证明方法7.极值与不等式8.证明不等式的一种重要方法9.谈中学二次函数解析式的求法10.二元二次方程组的解11.谈数列求和的若干12.谈立体几何问题转化为平面几何问题的方法13.求异面直线距离的若干方法14.利用对称性求平面几何中的极值15.浅谈平面几何证明中的辅助线16.浅谈对称性在中学数学解题中的运用17.浅谈韦达定理的运用18.论分式方程的增根19.数列通项公式的几种推导方法20.函数的周期及其应用21.数学归纳法的解题技巧22.等价关系的几种判定方法23.数学归纳法及其推广和变形24.浅谈用几何方法证明不等式25.浅谈初等数学中的不等式与极值26.几个不等式的推广27.函数的概念及发展28.组合恒等式的初等证明法29.谈用生成函数计算组合与排列30.试论一次函数的应用。
高等数学在中学数学中的应用----毕业论文
【标题】高等数学在中学数学中的应用【作者】丁海云【关键词】高等数学中学数学联系应用【指导老师】陈强【专业】数学与应用数学【正文】1 引言近几年来,高等师范院校数学系的不少大学生对学习高等数学存在不少看法,如“现在学的高等数学好像与初等数学没有多大联系”,“学习高等数学对今后当中学数学教师作用不大”,有的甚至提出“高等数学在中学教学里根本用不上”等等.这些看法正如著名数学家克莱因早已指出的那样:“新的大学生一入学就发现,他面对的问题好像和中学里学过的东西一点也没有联系似的,当然他很快就忘了中学学的知识.但是毕业以后当了老师,他们又突然发现,要他们按老师的教法来教传统的初等数学,由于缺乏指导,他们很难辨明当前数学内容和所受大学数学训练之间的联系,于是很快坠入相沿成习的教学方法,而他们所受的大学训练至多成为一种愉快的回忆,对他们对教学毫无影响”.然而在新的数学教材中已经出现了一些基础的高等数学知识,可以说是数学发展的一种必然.现在的中学数学教师必须掌握高等数学的基础知识以适应数学发展和教材改革,而高等数学知识在开阔视野、指导数学解题、指导数学教学、对初等数学问题加以诠释等方面的作用就尤为突出了.本文探讨一些高等数学知识和方法在初等数学中的应用.2 初等数学与高等数学的联系一般说来,数学史家把数学的发展分成四个阶段(萌芽时期、初等数学时期、古典高等数学时期、现代高等数学时期)或五个时期(再加上“当代时期”).无论何种方法,都把第二发展时期叫做“初等数学时期”,这个时期的数学知识和经验就是“初等数学”,而把第三、第四或第三、四、五阶段叫做“高等数学时期”,这些阶段的数学知识和经验就是“高等数学”.理论意义下的初等数学和高等数学是按照恩格斯(Engles)的经典分法:所谓初等数学就是指常量数学,高等数学就是指变量数学,并把笛卡尔(R?Descartes)1637年发明的解析几何看成为出现高等数学或进入高等数学时期的标志.而教育意义下的初等数学和高等数学是依据教育的发展历程和教育的等级加以区分的,即视普通初等、中等教育(即中、小学教育)阶段的数学主要内容为初等数学,视高等教育阶段的数学主要内容为高等数学.当然,由于社会和教育的思想、方法、手段尤其是教育内容都在不断发展,“初等数学”和“高等数学”也是一个变化的客体对象,两者没有严格的概念区别.事实上,数学科学是一个不可分割的整体,它的生命力在于各部分之间的有机联系,只从学科表面上看,难以看清两者之间的内在联系,这就需要深入研究初等数学,理清其中最基本的思想和方法,努力寻求初等数学和高等数学的结合点.2.1 知识方面的联系高等代数在知识上是中学数学的继续和提高.它能解释许多中学数学未能说清楚的问题,如多项式的根及因式分解理论、线性方程组理论等.从以下几个方面说明:首先,中学代数讲多项式的加、减、乘、除运算法则.高等代数在拓宽多项式的含义,严格定义多项式的次数及加法、乘法运算的基础上,接着讲多项式的整除理论及最大公因式理论;中学代数给出了多项式因式分解的常用方法.高等代数首先用不可约多项式的严格定义解释了“不可再分”的含义,接着给出了不可约多项式的性质、唯一因式分解定理及不可约多项式在三种常见数域上的判定;中学代数讲一元一次方程、一元二次方程的求解方法及一元二次方程根与系数的关系.高等代数接着讲一元n次方程根的定义,复数域上一元n次方程根与系数的关系及根的个数,实系数一元n次方程根的特点,有理系数一元n次方程有理根的性质及求法,一元n次方程根的近似解法及公式解简介;中学代数讲二元一次、三元一次方程组的消元解法.高等代数讲线性方程组的行列式解法和矩阵消元解法、讲线性方程组解的判定及解与解之间的关系.中学代数学习的整数、有理数、实数、复数为高等代数的数环、数域提供例子;中学代数学习的有理数、实数、复数、平面向量为高等代数的向量空间提供例子.中学代数中的坐标旋转公式成为高等代数中坐标变换公式的例子.其次,中学几何的内容体系主要是由平面几何、立体几何和平面解析几何三部分构成.平面几何研究由点的集合而形成的平面几何图形的性质;立体几何研究空间几何图形的性质诸如直线、平面及旋转体;平面解析几何研究形与数结合的问题,重点是二次曲线理论的研究.侧重研究直线间的合同、相似极度量关系,就二次曲线而言也侧重于定义的直观描述和各自所具有的性质.作为高等几何而言,侧重于对直线形的结合关系、顺序关系及二次曲线一般理论的研究,具有普适性、全面性.中学几何学习的向量的长度和夹角为欧氏空间向量的长度和夹角提供模型,三角形不等式为欧氏空间中两点间距离的性质提供模型,线段在平面上的投影为欧氏空间中向量在子空间的投影提供模型.第三,高等数学分支之一数学分析的形成和发展体现了数学发展的每个新时期,不仅内容上更加丰富,更在思想方法上发生了根本性的变化.它的形成是深深扎根于初等数学基础之上,它的一些基本概念如导数、积分、无穷级数的收敛等,都是在初等数学有关问题的基础上发展起来的.如导数是在运用代数运算求直线斜率这一问题的基础上,发展成为运用极限方法求曲线上的点的斜率而形成的.可以这样讲,数学分析的形成是初等数学发展到一定阶段的必然结果.第四,集合论是关于无穷集合和超穷数的数学理论.它的建立是数学发展史上的一个里程碑,它给数学奠下了坚实的基础,其思想已渗透到数学的各个领域.它是整个数学的基础,它是数学的基本语言,同时也树立了现代数学的传统.我国中学数学中已经渗透了集合论的内容,如集合、映射及分类的思想,并使用了点集、解集合等集合论语言.综上所述可知,高等代数在知识上的确是中学数学的继续和提高.它不但解释了许多中学数学未能说清楚的如多项式的根及因式分解理论、线性方程组理论等问题,而且以整数、实数、复数、平面向量为实例,引入了数环、数域、向量空间、欧氏空间等代数系统.这对用现代数学的观点、原理和方法指导中学数学教学是十分有用的.2.2 思想方面的联系中学数学思想和方法主要体现为三个层次,第一层次指数学各分科的具体解题方法和解题模式,如代数中的加减消元法、代入消元法、韦达法、判别式法、公式法、非负数法、放缩法、错位相消法、复数法、数学归纳法等等;几何中的平移、旋转、对称、相似、辅助线及辅助面的作法、面积方法、体积方法、图形及几何体的割补方法、三角形奠基法等等;还有在解题教学中教师概括出来的具体解题模式、教科书给出的各种具体的解题程序和模式.第二层次指适用面很广的一些“通法”,如配方法、换元法、待定系数法、分离系数法、消元法、降次法、数形结合法、一般化与特殊化法、参数法、反证法、同一法、观察与实验、比较与分类、分解与组合、分析与综合、归纳与演绎、类比与联想、抽象与概括等等.第三层次指数学观念,即人们对数学的基本看法和概括认识,如推理意识、整体意识、抽象意识、化归意识、数学美的意识等等.在高等数学教育活动中,上述数学思想和方法将得到进一步强化,高等数学各分支学科中几乎渗透了三个层次的思想和方法,在空间解析几何、高等几何、微分几何等学科中明显渗透着第一层次的思想和方法,第二、第三层次的思想和方法是数学学习和研究的重要方法,在各层次的数学教学活动中都应该重视这些思想和方法的训练.除上述所举的思想和方法外,高等数学各分支学科中也渗透着许多新的思想和方法,如分析中的极限法、微分法、积分法等等;代数中的求公因式法、线性方程组的矩阵解法、二次型的正负判定法、线性变换法等等.现代中学数学和高等数学教学的一个显著特征就是注重知识形成过程的教学,形成和发展学生的数学思想和方法,会用数学思想和方法来解决问题.3 高等数学在中学数学中的应用用高等数学的观点、原理和方法,认识、理解和解决中学数学问题是我们大多数人的共同目的,也是高等数学价值的一种体现,尤其是在指导教学、指导解题、诠释初等数学问题等方面,体现非常明显.3.1 高等数学在中学数学教学中的作用我们知道,初等数学与高等数学之间无论在观点上还是在方法上都有着很大的区别.正因为这个原因,有许多学者就认为:学生不需要懂得什么高等数学知识,教师只要能照本本讲下去就可以了,其实这是一种误解.诚然,我们在课堂上不能把高等数学知识传授给学生,但我们作为一名教师倘若仅仅停留在本本上,那是很不够的,有时甚至连自己对一些初等数学问题也可能会感到费解,这是因为:一方面,高等数学是初等数学的继续和提高;另一方面,初等数学里很多理论遗留问题必须在高等数学中才能得以澄清.因此,我们对高等数学在初等数学教学中的作用不能掉以轻心,下面就这个问题谈谈笔者的一些初浅的体会.3.1.1 高等数学原理与中学数学教学首先,注重高等数学对初等数学的指导作用,运用原理,把握本质.多数教育工作者实践中认识到:教师只有深人研究高等数学,才能深刻把握初等数学的本质,使数学课堂教学不失科学性,做到居高临下,把课教活.如有这样一道题目:例1 解方程.解此题若按三次方程求解相当困难.但若将“”看作“未知数”,看作常量,则是一个关于“”的“一元二次方程”,,解之得= .所以原方程的解为,.可以看出,该题很好的把握了题目的主旨—变量和函数的观点.虽然变量与函数是数学分析研究的对象,中学数学中以常量问题为主,但有时若将这些问题中的字母,甚至常数看作变量,而将字母间的关系看作函数关系,运用变量和函数的观点去考察它,会使一些问题变得容易或为解题提示一种可行的思路.另外,中学数学教材中的数学知识,由于充分考虑到数学的社会性原则和学生的可接受性原则,往往是以教育形态(不是学术形态)的呈现,因此中学数学教材中的一些知识内容不可能严谨透彻,例如高中代数中的指数函数(a> 0且a≠1),由于中学阶段指数概念仅推广到有理数,而指数函数的定义域是实数集.然而要在中学阶段讲清这个问题是不大容易的,需要涉及极限理论.事实上,指数函数是群(R, +)到群(R+, )的同构映射,且保持序结构.同时,一些重要的数学基本定理,根据其在中学数学中的地位与作用,大都以“公理”的形式直接加以肯定,并予以直观的描述,严格的证明需通过高等数学的知识加以证明和完善.可以说,运用高等数学的知识能将中学数学中不能或很难彻底解决的基本理论加以严格地证明;反过来,中学数学中的问题也为高等数学的理论提供可靠的背景和模型.因此,教师学习和运用高等数学知识可以加深理解中学数学教学内容的安排意图,更利于提高高师生数学解题能力.其次,在教学中讲解高等数学在初等数学中的渗透,深化对中学知识的掌握高等数学中的概念、思想、方法很多已渗透到中学数学中,在教学中注意这方面的讲解,就能使学生充分地认识到高等数学对中学数学教学的指导意义,也说明教师充分认识到了“居高临下”的重要性.另外在中学数学中,对有些概念和方法没有加以解释和说明,就交给学生应用,虽然使用时能解决问题,但深入理解是不可能的.而作为未来的中学数学教师,对这些概念的理解与掌握就不能只停留在中学时的水平上,而应该更清楚和深刻.如:中学数学中把“形如a+bi(a,b都是实数)的数”叫作复数.这里的“+”是什么意思?a与bi是两个不同单位的元素,怎么可以相加?因此,这里的“+”只能看作是将a与bi连结成一个整体的符号.那么,能不能把这个符号理解为普通实数的加法符号呢?为此,就必须学习了近世代数中复数的构造性理论后才能解答.C是复数集,+,分别表示复数的加法与乘法,则(C;+,)是一个域,叫复数域.在对应关系:(a,0) a之下可证集合与实数域同构,故可把(a,0)看成实数a,即(a,0)=a,从而复数域就是实数域的一个扩域.由复数乘法的定义得.因此复数(0,1)和的性质相同.它是方程的一个根,令(0,1)=i,i为虚数单位.故任意复数(a,b)就可以写成(a,b)=(a,0)+(0,b)=a+bi中的“+”不仅是形式上的符号,它与实数算术运算中的“+”完全一致.3.1.2 高等数学观点与中学数学教学中学数学教学以渗透高等数学思想、观点,使它们相结合.现代高等数学的新思想、新理念、新观点及许多美妙而诱人的技巧和方法,使它更具有魅力.3.1.2.1 数学分析的辩证观点与中学数学教学数学分析不仅继承了初等数学的方法,而且又引进新的思想方法———极限法.运用极限方法,“常量”与“变量”、“直”与“曲”、“均匀”与“非均匀”等可实现相互转化.所以,从方法论的角度来讲,数学分析的有关知识和方法对理解和解决一些中学数学问题会起导向作用.例2 设有三次函数y= (p、q∈R),用微分方法求函数极值.解所以当>0时,无驻点,因而也无极值点;当=0时,驻点=0,但此时在=0两侧不变号,故=0不是极值点,即=0时无极值点;当 0时,有二驻点,又所以函数在处取得极大值在处取得极小值.这从思想、方法上更有指导性的是数学分析中的辩证观点,运用这样的方法,将会使我们中学数学问题的解决思路大为开阔,方法更加灵活有效,从而摆脱对问题束手无策或盲目乱试的困境.另外高等数学知识进一步探讨和学习,可增强学生的求知欲,达到培养学生的学习兴趣.教师运用高等数学知识可以提高对学生提出的一些问题的回答的正确性及敏捷性.3.1.2.2 高等几何思想与中学数学教学高等几何对教材内容的安排一般不同于中学几何,它是先给出定义、定理而后直观解释和证明,中学几何一般是先通过实例描述而后给出重要的概念和定理.前者训练抽象思维,后者训练形象思维,出发点不同,对同一问题得出的结论相同.全面了解欧氏几何、仿射几何、射影几何的联系与区别,从本质上认识,从整体上把握,又从局部上深入,才能深刻认识动与静、特殊与一般的辩证关系.就内容而言,高等几何比中学几何丰富,而且分析问题、处理问题的观点新颖,方法独特.如对偶原则,在研究点几何的同时,也研究了线几何的内容,对二次曲线的定义,既有几何定义,又有代数定义,开拓了认识眼界.从方法论来看,高等几何对具体问题处理的方法独特,而且灵活,对解决中学几何的有关命题提供了一种新的模式,也为中学几何的有关问题提供了知识背景.如利用中心射影投影一直线到无穷远来证明中学几何问题:若在平面上给定一个与直线有关的本质上是射影性质的几何命题,则只要恰当选择射影中心和向平面,总可以使直线的象直线是上的无穷远直线.由于无穷远直线的特殊性,有时可以将原命题化成上容易证明的新命题.既然射影变换保持射影性质不变,那么只要证明了新命题,则原命题也得到了证明.3.1.2.3 集合论的观点和方法与中学数学教学集合论是整个数学的基础,它不仅是数学的基本语言,而且树立了现代数学的传统.它蕴含着极其深刻的数学思想和丰富的数学方法,对分析和理解中学数学具有指导意义.映射是集合论的有力研究工具,也是数学中十分重要的化归方法,利用映射可以把不容易研究的集合上的问题转化到容易研究的集合上去,从而实现由未知(难、复杂)到已知(易、简单)的转化.映射方法的基本思想是:当处理某问题甲有困难时,可联想适当的映射,把问题甲及关系结构R映成与它有一一对应关系且易于考察的问题及关系结构;在新的关系结构中对问题处理完毕后,再把所得结果通过逆映射反演到R,求得关于问题甲所需的结果.这样启发了解题思路,又可用来指导数学发现.如:数学模型方法. 数学模型方法是指把所考察的实际问题化为数学问题,构造相应的数学模型,通过对数学模型的研究,使实际问题得以解决的一种数学方法.中学数学中的解应用题是最简单的数学模型方法.过程如下图:图1:运用数学模型方法解题过程框图3.2 高等数学在中学数学解题过程中的作用初等数学是高等数学的基础,二者有本质的联系.将高等数学的理论应用于初等数学,使其内在的本质联系得以体现,进而去指导初等数学的教学工作,是一个值得研究的课题.俗话说,站得高才能看得远.因此,笔者认为,作为中学教师,除掌握中学数学各种类型题的已熟知的初等方法外,还应善于用高等数学方法解决中学数学问题,特别是一些用初等数学方法难以解决或虽能解决但显得难、繁,而用高等数学方法则易于解决的中学数学问题,从而拓广解题思路和技巧,提高教师专业水平,促进中学数学教学.下面略几举例说明之:3.2.1 变换角度,化繁为简例3 求满足方程.解如果从中学数学考虑的话那颇费周折.但换种思路从变量和函数的观点来看是两个变量,上面的方程只能确定之间的函数关系,而不能求出其具体的值.茅盾的根源在于:中学数学中求未知数总是方程的个数和未知数的个数相同才能求出,但题目里面却是两个未知数一个方程.可以得出启发:应当设法构造出两个关于的方程.在实数范围内,将一个等式分成几个等式,最常见的方法是利用非负数,即若几个非负数之和为零,则其中每个必须为零.根据此思路,可将方程变形为进而变为,由是锐角知,上式中两项均为负,故都都等于零.从而解得.另外,许多初等数学中的问题,往往蕴含着数学中的较高层次理论的再实践的问题.如能在教学中有意将高等数学的原理、方法应用于一些初等数学的证明、计算,不仅可以开拓学生的视野,而且可使学生体会到教师所使用的高等数学的原理、方法在解决初等数学问题时的驾轻驭熟的感觉,进而更加有兴趣学习数学.3.2.2 利用函数的单调性证明不等式不等式是数学中不可缺少的工具之一,有许多不等式在数学研究中有着重要的作用.但用初等数学知识证明一些不等式比较困难,下面利用高等数学的原理和方法,就不等式的证明给出证法以帮助理解.我们知道对定义在区间(a,b)内的函数,若>0(或<0),则函数在(a,b)内严格增加(或严格减少),根据函数的单调性,可证明不等式.例4 证明不等式(其中x>0).证明:先证:.设,则在[0,+ )单调增加,又,当时,,即:.再证:.设,则, 当时,,即:.以上方法体现了用初等数学知识证明比较难的不等式时,可充分利用高等数学的原理和方法思考,进而收到很好的效果.3.2.3 利用高等几何思想解初等几何问题在中学数学教学中往往会碰到一些初等几何问题,欲用传统的综合证法,苦于找不到解决问题的思路,而用解析法却轻而易举,可又不能将此法告知学生,面临如何将它转化为纯几何的证明方法的问题,往往十分棘手.但利用高等几何知识进行思考,可收到很好的效果.例5 过一圆的弦AB的中点M引任意两弦CD和EF,连结CF和ED交AB弦于P、Q.求证:PM=MQ. (蝴蝶定理)分析:如图2,此题若局限在平面几何范围内去研究,虽能找到多种不同的证法,如:为使、是全等三角形的对应边,宜将沿直线翻折至,则有, ,故知.这样,又将线段相等归结为角的相等,而角的相等关系在圆上又可利用圆周角定理进行转化,即因,故内接于圆.再由内接于圆和、对称得出结论.但以上结论的得出来之不易,如果我们利用高等几何的交比来证明,就非常容易了.证明:如图,E(AF,DB)=C(AF,DB) (1)E(AF,DB)=(AM,QB) (2)E(AF,DB)=(AP,MB) (3)由(1)、(2)、(3)式得(AM,QB)=(AP,MB)(AM,QB)=(AP,MB)即亦即(4)因为 AM=BM,设PM=x,MQ=y,AM=BM=a,则由(4)式得图2所以故 PM=MQ这种证法不仅简单地证明了结论,而且还把结论推广到了二次曲线的情形.即如果把“蝴蝶定理”中的园换成椭圆、双曲线、抛物线,一对平行线或一对相交直线,结论仍成立.高等数学的许多方法和技巧都能直接应用于中学数学解题,常能起到以简驭繁,并能使问题得以深化和拓广的作用.以上只是给出两个实例说明高等数学能指导中学数学解题(初等代数和初等几何),且收到了很好的效果.在教学过程中,结合具体内容,不失时机地介绍给学生,对于丰富学生的解题方法,特别是作为教师在将来的数学教学中用它来预测答案,确定初等解法的路线,构造习题,检验结果都有重要的作用.3.2.4 微积分在中学数学解题中的指导作用微积分在高等数学里占有非常高的地位,它之所以能解决初等数学不能解决的问题,其根本原因是在初等数学的基础上它引进了一种新的思想方法——极限法.俗话说,站得高才能看得远.笔者认为,作为中学数学教师,利用微积分思想解决中学数学问题特别是一些用初等数学方法难以解决或虽能解决但显得难、繁,而用微积分思想则易于解决的中学数学问题,从而拓广解题思路和技巧,提高教师专业水平.例6 分解因式.解把看作变量,看作常量.令,求对的导数得。
浅谈高等数学在初等数学中的应用
浅谈高等数学在初等数学中的应用初等数学是学习高等数学基础,高等数学是初等数学的继续和提高,它不但解释了许多初等数学未能说清楚的问题,并使许多初等数学束手无策的问题,至此迎刃而解了。
本文从三个方面探讨高等数学在初等数学中的作用。
高等数学是在初等数学的基础上发展起来的,与初等数学有着紧密的联系。
站在高等数学的角度来看中学数学的某些问题又会更深刻、更全面。
运用高等数学的知识可以解决一些用初等方法难以解决的初等数学问题,以便使学生了解到高等数学对于初等数学的指导作用。
标签:初等数学;高等数学;联系;应用数学是一门科学性、概括性、逻辑性很强的学科。
它源自于古希腊,是研究数量、结构、变化以及空间模型等概念。
透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。
数学的基本要素是:逻辑和直观、分析和推理、共性和个性。
问题的提出许多学生经常提出这样的问题:我们为什么要学这么多高等数学?这些问题长期以来困扰着我们。
本文通过讨论初等与高等数学的联系,使他们真正觉得高等数学对初等数学教学有向导性意义,帮助他们用高等数学知识去分析和理解初等数学教材,从而站得更高,对中学数学的来龙去脉看得更清楚。
一、初等数学初等数学时期从公元前五世纪到公元十七世纪,延续了两千多年、由于高等数学的建立而结束。
这个时期最明显的结果就是系统地创立了初等数学,也就是现在中小学课程中的算术、初等代数、初等几何(平面几何和立体几何)和平面三角等内容。
二、高等数学内容包括函数与极限、一元函数微积分、向量代数与空间解析几何、多元函数微积分、级数、常微分方程等。
其中极限论是基础:微分、积分是是核心,是从连续的侧面揭示和研究函数变化的规律性,微分是从微观上揭示函数的局部性质,积分是从宏观上揭示函数的整体性质:级数理论是研究解析函数的主要手段:解析几何为微积分的研究提供了解析工具,為揭示函数的性质提供了直观模型:微分方程又从方程的角度把函数、微分、积分犹记得联系起来,揭示了它们之间内在的依赖转化关系。
高等数学与初等数学的联系及一些应用
高等数学与初等数学的联系及一些应用摘要:众所周知,初等数学是高等数学的基础,高等数学是初等数学的延伸和发展。
由于现阶段数学数字化时代的发展,中学教师要是掌握一定的高等数学的知识与方法,并在教学中与初等数学的知识有机结合起来,那么将能提高学生的思维,开阔学生的思路,培养学生的数学修养并提高其解决问题的能力。
因而,本文着重把高等数学与初等数学联系起来,通过几个例子来阐述高等数学在初等数学中的一些重要的应用。
关键词:高等数学;初等数学;应用1.引言数学是一门概括性、逻辑性很强的学科,将它从自然科学中分离出来而成为一门独立的学科与自然科学、社会科学并驾齐驱,在修完高等数学课程之后才能体会到这个主张是非常科学的。
因此有人把它叫做思维的体操,也有人把它称作其他自然科学必备的基础工具。
这些都是基于这种认识和理解,是有一定的道理的。
中小学的数学,即使是高中数学的教学,它所要承担的教学任务和培养的目标只能是学会基本的运算和简单的推理,由于学生的接受能力有限,更深一层次的研究只能在大学进行。
只有通过大学高等数学各门必修课程和选修课程的学习和理解,才能深切感受到数学这门充满生机、古老的学科的庞大的体系和深邃的理论,才能认识到数学区别于其他学科的三种特性:抽象性、严谨性和高度的概括性。
2.国内外研究现状大学课程学习的思维单向性很强。
大学的学习给学生的感觉是用中学知识去学习大学课程中的内容,学生几乎感觉不到能用大学知识解决中学数学中的问题或对解中学数学问题有什么帮助。
“用”的观念淡薄了,“学”的热情自然而然的就少了。
抓住高等数学与初等数学之间的联系,加强高等数学对初等数学的指导作用及高等数学在初等数学中的一些应用是本课题研究的重点和关键问题。
中学数学教材中的教学难点经常让新教师费劲口舌,但学生仍然晕头转向,不知其意。
比如极限定义、集合和函数等。
一位新数学教师在解释从非空数集A到数集B的映射是函数时常常讲不清楚函数的值域到底是不是B。
级数理论及其在初等数学中的应用正文
级数理论及其在初等数学中的应用级数理论是大学数学分析这门课程中的一部分,也是在许多相关数学分支与自然科学领域和生产实际中有着十分重要应用的基础知识。
如果能将级数知识的各部分内容有机的整合,领会知识的背景和作用,不仅能延伸到后续的其他内容或课程中,提高数学思维能力和数学方法的应用能力,还能从更深处解决初等数学中的部分问题。
1 级数理论部分1.1 级数的基本概念定义1(级数定义) 给定一个数列{}n u ,对它的各项依次用“+”号连结起来的表达式++++n u u u 21 (1)称为数项级数或无穷级数,简称级数,记为∑∞=1n n u ,其中n u 称为数项(1)的通项.数项级数(1)的前n 项之和,记为∑==nk k n u S 1,称之为(1)的前n 项部分和,简称为部分和.定义2 (级数收敛、发散定义) 若级数(1)的部分和数列{}n S 收敛于S (即S S n n =∞→lim ),则称级数(1)收敛,并称S 为(1)的和,记为∑∞==1n n u S .若{}n S 是发散数列,则称级数(1)发散.1.2 级数理论的知识体系级数理论包括常数项级数和函数项级数两大部分知识. 1.2.1常数项级数包括:概念、性质、收敛性判别法、绝对收敛与条件收敛。
其中在收敛性判别法中,根据常数项级数的不同类型又有相应的不同的判别方法。
详见附录1《常数项级数收敛性判别法》。
1.2.2 函数项级数.包括:概念、收敛域、一致收敛、幂级数、傅里叶级数。
下面重点谈一下幂级数及其收敛域。
因为基本初等函数在一定范围内都可展成幂级数,幂级数有许多方便的运算性质,在研究初等函数方面成为一个很有力的工具。
利用幂级数的展开式来表示函数,利用幂级数和函数.的分析性质等,常常能解决许多初等数学中的疑难问题。
1.2.2.1 幂级数的定义:形如()∑∞=-1n nnx x a 的函数项级数称为幂级数,通过变换可化为∑∞=1n nnxa1.2.2.2 幂级数的收敛半径、收敛区间、收敛域定理1(阿贝尔引理)对幂级数∑∞=1n n n x a ,若它在点00≠x 收敛,则对满足不等式0x x <的任何x ,幂级数∑∞=1n nn x a 亦收敛且绝对收敛;若∑∞=1n n n x a 在点00≠x 发散,则对满足不等式0x x >的任何x 都发散.由此易得幂级数∑∞=1n n n x a 的收敛域是以原点为中心的区间,若以R 2表示区间的长度,称R 为收敛半径,称()R R ,-为收敛区间,而收敛域可能包括收敛区间的端点.1.2.2.3幂级数的收敛半径R 的求法定理2 若ρ=∞→n n n a lim ,则当(1)+∞<<ρ0时,ρ1=R ;(2)0=ρ时,+∞=R ; (3)∞=ρ时,0=R .注 当n n n a ∞→lim 不存在时,可以上极限代之,结论不变. 定理3 若ρ=+∞→nn n a a 1lim,则当(1)+∞<<ρ0时,ρ1=R ;(2)0=ρ时,+∞=R ; (3)∞=ρ时,0=R . 注 我们知道:若ρ=+∞→nn n a a 1lim,则ρ=∞→n n n a lim .这样,从理论上讲,定理2是定理1的特例,但在实际应用中各有优势,当函数项级数的系数为n 次幂的形式,常用定理18;若系数含有阶乘或连乘积的形式,则常用定理2 .若定理上极限代之,结论仍然成立. 1.2.2.4 幂级数的性质1中的极限不存在,则可用定理4 若∑∞=1n n n x a 的收敛半径0>R ,则它在()R R ,-内任一闭区间都一致收敛且绝对收敛;若∑∞=1n nn R a 收敛,则∑∞=1n n n x a 在[]R ,0一致收敛.定理5 若幂级数∑∞=1n n n x a 的收敛半径0>R ,则其和函数在()R R ,-内连续、可积、可微,且有任意n 阶导数,并满足逐项可积和逐项求导法则.注 幂级数与其诱导级数(逐项求导或求积)具有相同的收敛半径,但其收敛域有可能变化,即收敛区间端点的收敛性可能发生变化. 1.2.2.5函数的幂级数展开1 泰勒级数若f 在()0x U 存在任意阶导数,称幂级数()()()()()() +-++-'+n n x x n x f x x x f x f 00000!为函数()x f 在0x 的泰勒级数.注(1)泰勒级数未必收敛;(2)泰勒级数即使收敛,亦未必收敛于()x f .如()⎪⎩⎪⎨⎧=≠=-0,00,21x x e x f x 在0=x 点.2 收敛定理定理6 设f 在点0x 具有任意阶导数,那么f 在()0x U 内等于它的泰勒级数的和函数的充分必要条件是:)(0x U x ∈∀,()0lim =∞→x R n n .这里()x R n 是f 在0x 的泰勒公式余项.定理7 若函数f 在()0x U 存在任意阶导数,且0>∃M ,有()()M x f n ≤, ,2,1=n ,()0x U x ∈,则()()()()∑∞=-=000!n n n x x n x f x f . 若函数()x f 在0x 的泰勒级数收敛于()x f ,则称泰勒级数为f 在0x 的泰勒展开式或幂级数展开式,也称f 在0x 可展为幂级数或泰勒级数.当00=x 时的泰勒级数又称为马克劳林级数.3 初等函数的幂级数展开式(1)∑∞==0!n n xn x e ,R x ∈;(2)()()∑∞=----=1121!121sin n n n n x x ,R x ∈;(3)()()∑∞=-=02!21cos n nnn x x ,R x ∈;(4)()()∑∞=--=+1111ln n n n nx x ,]1,1(-∈x ;(5)()()()∑∞=+--+=+1!1111n n x n n x αααα,当1-≤α时,()1,1-∈x ;当01<<-α时,]1,1(-∈x ;当0>α时,]1,1[-∈x ;(6)∑∞==-011n n x x ,1<x ;(7)()∑∞=-=+0111n n nx x ,1<x .2 级数理论在初等数学中的应用2.1 采用幂级数定义三角函数三角函数是数学中属于初等函数中的超越函数的一类函数。
211272525_矩阵理论——在初等数学中的应用
矩阵理论在初等数学中的应用吴应富(浙江省杭州市夏衍中学ꎬ浙江杭州310017)摘㊀要:高等代数是数学系大一新生的必修科目ꎬ每一位高中数学教师都学习过这门课程.但是ꎬ大部分数学教师认为:大学数学知识与高中数学没有太大联系ꎬ故线性代数的知识早已被抛到九霄云外.当然ꎬ这样的认知是很自然的ꎬ因为在大学课本中鲜有介绍线性代数理论在初等数学中的应用.新课程标准中提到:高中数学课程的基本理念之一是 构建共同基础ꎬ提供发展平台.为了满足部分对数学有兴趣的学生更高的数学需求ꎬ在人教版«普通高中课程标准实验教科书 矩阵与变换(选修4-2)»中介绍了一些简单的二阶矩阵知识ꎬ但现行的新版教材中将这块内容删掉了.本文将介绍利用线性代数中的矩阵理论解决初等数学中的部分经典问题.关键词:矩阵ꎻ线性代数ꎻ数列中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)09-0050-04收稿日期:2022-12-25作者简介:吴应富(1990.7-)ꎬ男ꎬ浙江省乐清人ꎬ本科ꎬ中学一级教师ꎬ从事中学数学教学研究.㊀㊀由于本文涉及线性代数中矩阵的知识ꎬ若有需要ꎬ可参考本文的参考文献[1]ꎬ当然也可以选择其它的高等代数或线性代数教材.与微积分一样ꎬ矩阵也是数学知识体系中非常有力的工具.笔者将介绍矩阵理论在求数列通项中的应用以及在分式线性函数迭代中的应用.1二阶矩阵的幂为了方便本文定理的证明ꎬ这里ꎬ我们先介绍二阶矩阵幂的求法.我们将二阶矩阵A分为两种类型ꎬ类型一:复数域上的二阶矩阵A有两个不相等的特征根ꎻ类型二:复数域上的二阶矩阵A有两个相等的特征根.为了求这两种类型的二阶矩阵的任意次正整数幂ꎬ我们给出以下引理.引理1㊀若复数域上的二阶矩阵A有两个不相等的特征根x1与x2ꎬ则存在某个可逆矩阵Tꎬ使得An=Txn100xn2æèççöø÷÷T-1.由线性代数知识知ꎬ矩阵T就是二阶矩阵A的两个特征向量构成的矩阵ꎬ容易求得.再由公式T-1=1TT∗ꎬ即可求出T-1(其中T指矩阵T的行列式ꎬT∗指矩阵T的伴随矩阵).也就是说ꎬ类型一中的二阶矩阵A的任意有限次正整数幂由引理1彻底解决.接下来笔者将介绍类型二中的矩阵A的任意有限次正整数幂的求法.引理2㊀若复数域上的二阶矩阵A=abcdæèçöø÷有两个相等的特征根x0ꎬ则An=xn000xn0æèççöø÷÷+nxn-1000xn-10æèççöø÷÷a-x0bcd-x0æèççöø÷÷.引理2彻底解决了类型二中的二阶矩阵A的任意有限次正整数幂.至此ꎬ我们彻底解决了复数域上的二阶矩阵的任意有限次正整数幂问题.在具体解题时ꎬ不必背引理1和引理2ꎬ只需掌握求解方法即可.2二阶矩阵在分式线性函数迭代中的应用引理3㊀记f(x)=cx+dax+bꎬf1(x)=f(x)ꎬf2(x)=f[f1(x)]ꎬ ꎬfn(x)=f[fn-1(x)]ꎬ若记f(x)对应的矩阵为cdabæèçöø÷ꎬ则fn(x)对应的矩阵为cdabæèçöø÷n.例1㊀已知f(x)=4x-32x-1ꎬ记f1(x)=f(x)ꎬf2(x)=f[f1(x)]ꎬ ꎬfn(x)=f[fn-1(x)]ꎬ求f10(x).解㊀由引理3知ꎬ我们只需求A10=4-32-1æèçöø÷10即可求得f10(x).而矩阵A的特征方程x2-3x+2=0的两根为x1=1ꎬx2=2.接下来我们可以利用引理1的方法ꎬ求得矩阵A属于特征根x1=1的特征向量为线性方程组-33-22æèçöø÷xyæèçöø÷=00æèçöø÷的一个基础解系11æèçöø÷ꎬ矩阵A属于特征根x2=2的特征向量为线性方程组-23-23æèçöø÷xyæèçöø÷=00æèçöø÷的一个基础解系32æèçöø÷.即存在T=1312æèçöø÷与T-1=-231-1æèçöø÷ꎬ使得T-1AT=1002æèçöø÷ꎬʑ(T-1AT)10=1001024æèçöø÷⇒A10=T1001024æèçöø÷T-1=3070-30692046-2045æèçöø÷.ʑ我们得到f10(x)=3070x-30692046x-2045.笔者对例题的编写源于引理3ꎬ由例1我们看到ꎬ矩阵理论在初等数学中也大有用武之地ꎬ是解决很多数学问题强有力的工具.虽然在高考中不会出现这样的考题ꎬ但是矩阵理论之于热爱数学的学生和教师而言可以开阔视野ꎬ激发学习与研究数学的兴趣ꎬ是大有裨益的.3特征根法求数列的通项公式在多数高中数学竞赛教材中都有提及利用特征根法求二阶实系数线性递推公式的数列通项问题.比起待定系数法而言要简单许多ꎬ只需记住几个简洁的结论即可快速解题ꎬ深受竞赛学子的追捧.但是多数竞赛教材并未提及该方法的来源ꎬ这令多数阅读教材的师生仅知其然而不知其所以然.笔者将于此给出一个满意的解答.定理1㊀二阶齐次线性递推公式an+2=pan+1+qan所对应的特征方程为x2=px+qꎬ(1)若特征方程有两个不相等的非零复根x1ꎬx2ꎬ则an=Axn1+Bxn2(其中A=a1x2-a2x1(x2-x1)ꎬB=a2-a1x1x2(x2-x1))ꎻ(2)若特征方程有两个相等的非零复根x0ꎬ则an=Axn-10+B(n-1)xn-10.(其中A=a1ꎬB=a2-a1x0x0).(注:若存在特征根0ꎬ则q=0ꎬan{}是等比数列ꎬan{}的通项容易求得ꎬ此处不再讨论.)证明㊀(1)方法一㊀(初等证法ꎬ仅证明结论正确ꎬ不揭示结论来源)由复数域上多项式根与系数的关系:x1+x2=pꎬx1x2=-q得an+2-x1an+1=x2(an+1-x1an).ʑan+1-x1an=(a2-x1a1)xn-12ꎬʑan=x1an-1+(a2-x1a1)xn-22ꎬ等式两边同除以xn-22得x22anxn2=x1x2an-1xn-12+(a2-x1a1)ꎬ记bn=anxn2ꎬ则x22bn=x1x2bn-1+a2-x1a1ꎬ由构造法得x22[bn-a2-x1a1x2(x2-x1)]=x1x2[bn-1-a2-x1a1x2(x2-x1)]⇒bn-a2-x1a1x2(x2-x1)=[a1x2-a2-x1a1x2(x2-x1)]x1x2æèçöø÷n-1.整理并化简得an=a1x2-a2x1(x2-x1)xn1+a2-a1x1x2(x2-x1)xn2.方法二㊀(矩阵法ꎬ揭示结论来源)我们将数列的递推公式写成矩阵相乘的形式:an+2an+1æèççöø÷÷=pq10æèçöø÷an+1anæèççöø÷÷ꎬ逐次迭代得anan-1æèççöø÷÷=pq10æèçöø÷n-2a2a1æèççöø÷÷.记矩阵A=pq10æèçöø÷的特征方程为x-p-q-1x=0⇒x2-px-q=0两个不同的特征根为x1ꎬx2.由引理1知ꎬ我们容易计算矩阵A的n-2次幂.我们先求得矩阵A属于特征根x1的特征向量为x1-p-q-1x1æèççöø÷÷xyæèçöø÷=00æèçöø÷的一个基础解系x11æèçöø÷ꎬ同理我们可求得矩阵A属于特征根x2的特征向量为x21æèçöø÷.即我们构造T=x1x211æèçöø÷ꎬ有T-1AT=x100x2æèççöø÷÷ꎬT-1=1TT∗=1x1-x21-x2-1x1æèççöø÷÷.容易计算得到:An-2=Txn-2100xn-22æèççöø÷÷T-1ꎬ将矩阵T与T-1代入得An-2=1x1-x2xn-11-xn-12-x2xn-11+x1xn-12xn-21-xn-22-x2xn-21+x1xn-22æèççöø÷÷.又由anan-1æèççöø÷÷=An-2a2a1æèççöø÷÷可得an=a1x2-a2x1(x2-x1)xn1+a2-a1x1x2(x2-x1)xn2.(2)方法一㊀(初等证法ꎬ仅证明结论正确ꎬ不揭示结论来源)由(1)得an=x0an-1+(a2-x0a1)xn-20ꎬ等式两边同除以xn-20得anxn0{}是首项为a1x0ꎬ公差为a2-x0a1x20的等差数列.ʑan=a1xn-10+(n-1)a2-x0a1x0xn-10.方法二㊀(矩阵法ꎬ揭示结论来源)由复数域上多项式根与系数的关系:p=2x0ꎬq=-x20ꎬAn-2=2x0-x2010æèçöø÷n-2=[x000x0æèççöø÷÷+x0-x201-x0æèççöø÷÷]n-2.由引理2知ꎬAn-2=x000x0æèççöø÷÷n-2+(n-2)x000x0æèççöø÷÷n-3x0-x201-x0æèççöø÷÷=(n-1)xn-20(2-n)xn-10(n-2)xn-30(3-n)xn-20æèççöø÷÷ꎬ又由anan-1æèççöø÷÷=An-2a2a1æèççöø÷÷可得an=(n-1)a2xn-20+2a1xn-10-na1xn-10=a1xn-10+(n-1)a2-x0a1x0xn-10.证毕.定理1的两个小结论都采用了两种方法进行证明ꎬ其中方法一高中生亦能理解ꎬ但是留给我们一连串巨大的问号.是谁这么聪明发明了这个方法?数列的特征根又是什么?事实上从方法二就能看出特征根法求数列通项的本源ꎬ数列并没有特征根ꎬ特征根是矩阵的.定理1只是用初等数学的语言将结论表示给中学生看ꎬ它的优点在于避开了高等数学ꎬ但笔者认为作为数学教师ꎬ追本溯源才能真正理解该方法的本质ꎬ才能发现更多类似定理1的有趣结论.事实上ꎬ数列可以理解为一种特殊的矩阵ꎬ故矩阵理论在数列中的应用是非常广泛的.对于这些中学课本与大学课本都未涉及的经典应用ꎬ笔者将给出以下例题.例2㊀求著名的斐波那契数列的通项:已知a1=a2=1ꎬan+2=an+1+an求an.解㊀由定理1ꎬ求得特征方程x2=x+1的两根为x1=1+52ꎬx2=1-52.利用待定系数法及a1=a2=1求得A=15ꎬB=-15.ʑan=551+52æèçöø÷n-551-52æèçöø÷n.例3㊀㊀已知a1=a2=1ꎬan+2=6an+1-9anꎬ求an.解㊀特征根为x1=x2=3ꎬ利用待定系数法求得A=1ꎬB=-23.ʑan=(5-2n)3n-2.由例2ꎬ例3我们看出ꎬ用特征根法求二阶线性递推公式的通项是多么的简洁ꎬ求系数A与B时不必背定理1的结论ꎬ只需使用待定系数法求解即可.例4㊀已知a1=-13ꎬa2=19ꎬ3an+2=2an+1+an+1ꎬ求an.解㊀an+2=23an+1+13an+13①an+1=23an+13an-1+13②①式减去②式我们得到:an+2-an+1=23(an+1-an)+13(an-an-1)ꎬ令bn=an+1-an得bn+1=23bn+13bn-1.计算特征方程x2=23x+13的根为x1=1ꎬx2=-13.再由待定系数法求得A=14ꎬB=-712.故bn=14-712(-13)nꎬ再利用累加法容易求得an=n4-716+716(-13)n.例5㊀已知a1=-1ꎬa2=1ꎬan+2=2an+1+3an+3nꎬ求an.解㊀等式两边同除以3n即可转化为例4的类型ꎬ这里不再赘述ꎬ只给出本题的参考答案:an=116[(4n-7)3n+7(-1)n].由例4ꎬ例5我们看出ꎬ非齐次的二阶线性递推公式以及部分非线性的递推公式求通项只需稍作处理即可转化为齐次线性递推公式.至此ꎬ定理1即可彻底解决二阶线性递推公式求通项的问题.当然例3的解法很多ꎬ例如我们可以使用母函数法ꎬ这将涉及数学分析中的幂级数理论ꎬ且计算量较特征根法要大很多ꎬ这里就不作介绍了ꎬ感兴趣的读者可参考本文的参考文献[4]第83页例3.36.例6㊀已知a1=a2=2018ꎬan+2=-an+1-anꎬ求an.解㊀特征根为x1=-1+3i2ꎬx2=-1-3i2ꎬ由待定系数法求得A=B=-2018.ʑan=-2018[(-1+3i2)n+(-1-3i2)n].例7㊀已知a1=1ꎬa2=2ꎬan+2=(i+1)an+1-ianꎬ求an.解㊀特征根为x1=iꎬx2=1ꎬ由定理1得:an=12(i-1)in+12i+32.由例6ꎬ例7我们看出ꎬ定理1对虚特征根以及虚系数的二阶线性递推公式求通项也是非常方便的.细心的读者或许已经发现笔者编制的例4是周期为3的周期数列ꎬ求通项的意义并不大ꎬ但是此题仍具有一定的代表性.5笔者的点滴感悟作为高中数学教师ꎬ笔者以为ꎬ高观点下的初等数学更显深刻ꎬ更显本质.掌握一些与高中数学有关的高等代数㊁数学分析㊁解析几何㊁初等数论㊁复变函数㊁概率论等大学数学知识是大有裨益的.于学生ꎬ我们倡导积极主动㊁勇于探索的学习方式ꎻ于己ꎬ又何尝不应如此?毕竟ꎬ学习ꎬ是一辈子的事情.参考文献:[1]张禾瑞ꎬ郝鈵新.高等代数(第五版)[M].北京:高等教育出版社ꎬ2007.[2]蔡小雄ꎬ孙惠华.新课标高中数学竞赛通用教材(高二分册ꎬ第三版)[M].杭州:浙江大学出版社ꎬ2009.[3]陈唐明.矩阵求法递推数列通项公式再探[J].高中数学教与学ꎬ2010(09):11-13.[4]李胜宏ꎬ李名德.高中数学竞赛培优教程(专题讲座)(第二版)[M].杭州:浙江大学出版社ꎬ2009. [5]欧阳光中ꎬ朱学炎ꎬ金福临ꎬ陈传璋.数学分析下册(第三版)[M].北京:高等教育出版社ꎬ2007.[6]中华人民共和国教育部.普通高中数学课程标准(实验)[M].北京:人民教育出版社ꎬ2003.[责任编辑:李㊀璟]。
高等代数的应用
高等代数的应用徐宇轩一、高等代数在线性规划中的应用1.一个简单的模型引例某工厂生产一种型号的机床,每台机床上需要2.9m、2.1m和1.5m长的三种轴各一根。
这些轴需要同一种圆钢制作,圆钢的长度为7.4m,如果要生产100台机床,应如何下料,才能使得用料最省?分析:对于每一根长为7.4m的圆钢,截成2.9m、2.1m和1.5m长的毛坯,可以有若干种下料的方式。
把它截成我们需要的长度,有8种下料方式,如下表:下料方式及每种类型的数目下料方式是按从大到小,从长到短的顺序考虑的:B方式下料,需要用料100根;(1)若考虑用3(2)若采用木工师傅的下料方法:先下最长的,再下次长的,最后下短的,如下表所示。
动一下脑筋,就可以节约用料4根,但这仍然不是最好的下料方法。
木工师傅的下料情况(3)如果要我们安排下料,暂不排除8种下料方式中的任何一种,可通过建立数学模型(线性规划数学模型)进行求解,寻找最好的下料方案。
设用1B ,2B ,3B ,4B ,5B ,6B ,7B ,8B 方式下料的根数分别为1x 、2x 、3x 、4x 、8765,,x x x x ,则可以建立线性规划数学模型:minS=87654321x x x x x x x x +++++++s.t.⎪⎪⎩⎪⎪⎨⎧≥≥+++++≥++++≥+++0,,,,,,,1004323100232100287654321876431765324321x x x x x x x x x x x x x x x x x x x x x x x用LINGO 软件求解,程序如下:min =87654321x x x x x x x x +++++++ st2x1+x2+x3+x4>=1002x2+x3+3x5+2x6+x7>=100 x1+x3+3x4+2x6+3x7+4x8>=100 end根据输出结果,得1x =10,2x =50,3x =0,4x =30,5x =0,6x =0,7x =0,8x =0,min S=90;或1x =40, 2x =20, 3x =0, 4x =0, 5x =0, 6x =30, 7x =0, 8x =0,minS=90,这就是最优的下料方案。
浅谈高等代数中的等价思想及其应用
浅谈高等代数中的等价思想及其应用蒋红梅高等代数是数学专业学生必修的一门基础课程,该课程概念多,定理多,教学内容抽象。
对于大学一年级学生来说,基本上是介绍新的代数理论,利用新的定义、定理、方法解决代数问题,缺少数学模型,学生总感到难学,遇到新的问题就不知如何下手。
究其原因在于学生不了解高等代数与初等代数的区别,用中学生的思想观念和学习方法来学习,未领会高等代数中蕴含的数学方法和思想,对概念和定理的理解不足,缺少对数学方法的理解和总结。
高等代数涉及的数学思想有很多,比如等价、类比、化归、结构、分类等思想,了解和应用这些数学思想可以更好地了解和掌握高代中的数学知识。
等价思想是高等代数中比较重要的一种思想方法,是学生从计算解题到学习代数结构的结合点,为后续课程的学习起到了铺垫的作用。
在教学中,教师应深刻理解和把握课程内容,澄清教学体系,学科思想,把握重点,化解难点,解决疑点,达到帮助学生更好地学习和掌握高等代数知识的目的,也有助于我系高等代数精品课程的建设。
本文就高等代数中的等价思想及其应用作了一些探究。
1、高等代数中的等价关系1.1关于矩阵的等价关系高等代数中关于矩阵的等价关系有矩阵的等价、矩阵的相似、矩阵的合同,弄清它们的联系与区别是十分必要的。
首先,这三者的研究对象不同,矩阵的等价、矩阵的相似、矩阵的合同的研究对象分 别是mn A ,n A ,n A ;其次,满足的条件不一样,但n 阶实对称矩阵既相似又合同,相似或 合同的矩阵是等价的,等价矩阵不一定相似或合同。
在()F M mn 中矩阵等价是等价关系,由于初等变换法不改变矩阵的秩,因此矩阵的秩 是等价关系的完全不变量,每一类的代表元是⎪⎪⎭⎫⎝⎛000rI ,r 为矩阵的秩,按等价关系可以分为{}1,m in +n m 类。
用消元法求解线性方程组时,运用矩阵的初等变换法将线性方程组化为同解线性方程组的问题转化为增广矩阵的等价问题。
在()F M n 中矩阵的相似是等价关系,由于相似矩阵有相同的行列式因子、不变因子、初等因子和Jordan 标准形,因而行列式因子、不变因子、初等因子和Jordan 标准形是()F M n 上矩阵相似的完全不变量,而特征多项式、秩、迹只是矩阵相似的不变量。
812 高等代数-概述说明以及解释
812 高等代数-概述说明以及解释1.引言1.1 概述概述在数学领域中,高等代数是一门重要的学科。
它涵盖了许多重要的数学概念和技巧,旨在研究关于向量空间、线性变换、行列式、矩阵和线性方程组等内容的理论和方法。
高等代数作为现代数学的核心领域之一,具有广泛的应用价值。
无论是在纯数学领域还是在应用数学领域,高等代数都扮演着不可或缺的角色。
它为其他学科提供了重要的数学基础,并帮助我们解决各种实际问题。
本文将首先介绍高等代数的基本概念和基本原理,包括向量空间、线性变换和线性方程组等。
然后,我们将深入探讨行列式和矩阵的性质以及它们在高等代数中的应用。
此外,我们还将讨论特征值和特征向量、正交性和对称性等重要概念,并介绍它们在高等代数中的重要性。
在这篇文章中,我们将着重介绍高等代数的基础知识,并尽量提供清晰和易于理解的解释。
我们将逐步展开讨论,并通过一些例子和应用场景来帮助读者更好地理解高等代数的概念和原理。
总之,本文将为读者提供一个全面的高等代数概述,帮助他们建立起对这门学科的基本理解。
无论是对于对高等代数感兴趣的学生还是对于需要在实际问题中应用高等代数知识的专业人士来说,本文都将是一个有价值的参考资料。
文章结构部分的内容可以包括对整篇文章的组织和章节安排进行介绍。
可以提及文章主题和各个章节的内容概览,以及每个章节的重点和目标。
以下是文章结构部分的参考内容:1.2 文章结构本文旨在介绍高等代数的相关概念和应用。
文章分为引言、正文和结论三个主要部分,每个部分都涵盖了特定的内容。
下面将对每个部分的内容进行概述:引言部分(Section 1)主要介绍了本文的背景和目的。
在1.1概述部分中,将对高等代数的重要性进行简要阐述,并强调了该学科在数学和其他领域中的应用。
1.2 文章结构部分则对整篇文章进行了概览,说明了各个章节的内容和目标。
正文部分(Section 2)是本文的核心内容,包括多个章节,分别介绍了高等代数中的不同要点。
初等数学与高等数学的联系及一些应用
初等数学与高等数学的联系及一些应用作者:刘晓兵来源:《幸福家庭·教育论坛》2013年第03期摘要:初等数学是高等数学的基础,高等数学是初等数学的延伸和发展。
由于现阶段数学数字化时代的发展,中学教师要掌握一定的高等数学的知识与方法,并在教学中与初等数学的知识有机结合起来,那么将能提高学生的思维,开阔学生的思路,培养学生的数学修养并提高其解决问题的能力。
因而,本文着重把高等数学与初等数学联系起来,通过几个例子来阐述高等数学在初等数学中的一些重要的应用。
关键词:高等数学;初等数学;联系;应用1 数学学科特点数学是一门概括性、逻辑性很强的学科,将它从自然科学中分离出来而成为一门独立的学科与自然科学、社会科学并驾齐驱,在修完高等数学课程之后才能体会到这个主张是非常科学的。
因此有人把它叫做思维的体操,也有人把它称作其他自然科学必备的基础工具。
这些都是基于这种认识和理解,是有一定的道理的。
中小学的数学,即使是高中数学的教学,它所要承担的教学任务和培养的目标只能是学会基本的运算和简单的推理,由于学生的接受能力有限,更深一层次的研究只能在大学进行。
只有通过大学高等数学各门必修课程和选修课程的学习和理解,才能深切感受到数学这门充满生机、古老的学科的庞大的体系和深邃的理论,才能认识到数学区别于其他学科的3种特性:抽象性、严谨性和高度的概括性。
2 高等数学与初等数学的联系高等数学是初等数学的延伸和发展,而初等数学却是高等数学的基础。
作为学习和研究数学的步骤,无疑应该是先学习和掌握初等数学,然后才能学习和应用高等数学。
反之,学习高等数学能加深对初等数学的理解和掌握,可以开阔思路、提高数学修养和解决问题的能力。
为了解决上述长期存在的问题,笔者认为研究高等数学与中学数学的联系是一项有效的措施。
3 高等数学在初等数学中的一些应用3.1 柯西——施瓦兹不等式应用柯西——施瓦兹不等式是高等代数的一个重要不等式,它在中学数学中有广泛的应用。
高等代数(绪论)讲解课件
目录
• 高等代数的定义与重要性 • 高等代数的历史与发展 • 高等代数的应用领域
• 高等代数的基本定理与性质 • 高等代数的解题方法与技巧
高等代数的定义与重要性
高等代数的定 义
• 高等代数的定义:高等代数是数 学的一个重要分支,主要研究向 量空间、线性变换、线性方程组、 矩阵理论等抽象代数结构。它建 立在中学代数的初等代数基础之 上,引入了更为抽象的概念和性 质。
机械工程是设计和制造各种机械系统 的科学。高等代数中的许多概念和工 具,如向量空间和线性映射等,在机 械工程中有着广泛的应用。例如,在 机构学中,我们使用向量和矩阵来表 示和分析机械系统的运动。
计算机科学是研究计算机的一门科学。 高等代数中的许多概念和工具,如模、 张量和外代数等,在计算机科学中有 着广泛的应用。例如,在密码学中, 我们使用模和同余来加密和解密信息。
物理领域的应用
量子力学
量子力学是描述微观粒子行为的一门科 学。高等代数中的许多概念和工具,如 张量和外代数等,在量子力学中有着广 泛的应用。例如,在量子力学中,我们 使用张量来表示和操作量子态。
VS
理论物理
理论物理是研究物理现象的一门科学。高 等代数中的许多概念和工具,如群论和环 论等,在理论物理中有着广泛的应用。例 如,在粒子物理学中,我们使用群论来表 示和分析粒子的对称性。
高等代数的基本概念
向量与向量空 间
向量与向量的模
向量是具有大小和方向的几何实体。 向量的模是衡量其大小的一个度量。
向量空间
线性组合与线性无关
线性组合是向量空间中向量的一种运 算,线性无关则描述了向量集合的一 种性质。
向量空间是一个由向量构成的集合, 满足一定的封闭性和结合性。
高等代数在中学数学中的一些应用
1 行列式的应用
111 应用于因式分解
因式分解是中学数学的一个重要内容 ,虽然在中学数学中有很多方法可以解决因式分解问题 ,但对
于某些因式分解问题如果构造与之对应的行列式 ,然后使用行列式的性质去解决 , 会起到事半功倍的效
果。 例 1 对 a3 + b3 + c3 - 3 abc 因式分解。
ui + 1
1
,A=
1 ,则有 U i = AUi - 1 ,且 U0 =
u1
= 1 ,于是 , U1 = AU0 , U2 = AU1 = A2 U0 , …,
ui
10
u0
1
Un = AnU0 ,
因为
1+ 5 2
A= P
1
1+ 5 1- 5
P - 1 ,其中 P = 2
2 , P- 1 =
5
- 1- 5 25 ,
Jul. 2006 Vol. 27 Suppl .
高等代数在中学数学中的一些应用
曹福桃
(南宁外国语学校 ,广西 南宁 530006)
[ 摘 要 ] 以几个例子说明了高等代数作为一种工具在中学数学中的一些应用 。 [ 关键词 ] 高等代数 ;中学数学 ;构造法 [ 中图分类号 ] G63316 [ 文献标识码 ] A [ 文章 编号 ] 1002 - 5227(2006) S - 0135 - 03
在标准内积下 ,有 :
( a1 b1 +
a 2 b2 +
…+
a n bn )
2
≤(
a
2 1
+
a
2 2
+
…+ a2n)
演变历程从初等代数到高等代数的转变
演变历程从初等代数到高等代数的转变在数学领域中,代数是一门关于数、符号和运算的学科。
代数的发展经历了漫长的历程,其中初等代数和高等代数是两个重要的里程碑。
本文将探讨从初等代数到高等代数的转变的演变历程。
1. 初等代数的兴起初等代数起源于古希腊和古巴比伦的数学研究,但其真正的发展始于16世纪的欧洲。
早期的代数研究集中在求解代数方程和处理多项式的运算上。
这些运算包括加法、减法、乘法和除法,以及一元和二元方程的解法。
随着数学的发展,初等代数逐渐成为中学数学课程的一部分。
通过初等代数,学生可以学习到基本的代数概念和技巧,例如因式分解、绝对值、方程组的解法等。
初等代数以其简单明了的表达方式和具体的应用而受到广泛的关注和应用。
2. 高等代数的诞生随着数学的深入研究,人们开始考虑更加抽象和普遍的数学概念,这就催生了高等代数的发展。
高等代数主要关注代数结构的研究,例如群、环、域等。
这些抽象结构不仅仅是用于解决特定的应用问题,更具有一般性的数学内涵。
高等代数的诞生可以追溯到18世纪的欧洲,数学家对初等代数的限制感到不满,开始寻求一种更加广泛适用的数学工具。
通过引入抽象的代数结构和符号,数量关系得到了更加丰富和深入的研究。
3. 初等代数与高等代数的关系初等代数和高等代数之间存在着密切的联系和转变关系。
初等代数可以看作是高等代数的基础,高等代数则是对初等代数的拓展和推广。
初等代数的概念和技巧为学习高等代数奠定了基础。
通过对初等代数的学习,学生可以了解和掌握基本的代数运算和方程求解方法,这为他们进一步学习高等代数提供了必要的基础。
同时,高等代数可以为初等代数提供更加深入的解释和理论支持。
通过引入抽象的代数结构,高等代数可以更好地理解和解释初等代数中的概念和方法。
高等代数的发展也为初等代数的教学和研究提供了更广阔的空间。
4. 初等代数到高等代数的转变初等代数到高等代数的转变不仅仅是数学知识的深化,更是思维方式的转变。
初等代数主要关注具体问题的求解和应用,而高等代数则更加强调抽象和一般性的概念。
浅谈高等数学在中学数学中的应用
浅谈高等数学在中学数学中的应用摘要本文探讨了初等数学和高等数学在知识体系上的差别以及应用上的联系,同时也探讨了他们地位上的差别和各自的重要性。
通过讨论可以得知,高等数学在很大程度上是初等数学的扩展。
本文第三部分重点介绍了微积分,不等式,行列式,以及高等几何等在初等数学中的应用,探讨了应用高等数学的思想方法解决初等数学的有关问题。
另外还探讨了高等数学在高考试题上体现的情况和如何解决相应的问题。
关键词高等数学中学数学微积分行列式AbstractThis study of elementary mathematics and higher mathematics in knowledge on the difference between system and application links, also discussed their differences on the status and importance of each. Through discussion can see that higher mathematics is to a large extent is an extension of elementary mathematics. This article focuses on the second part of calculus, inequality, determinants, as well as the application of higher geometry in elementary mathematics, explored the application of higher mathematics thought method to solve problems of elementary mathematics. Discussion also reflected on the college entrance examination in higher mathematics and how to solve the problemKey words advanced mathematics Mathematics calculus目录摘要 (I)Abstract (II)第一章前言 (1)1.1 研究背景 (1)1.2 课题研究意义 (1)1.3 文献综述 (2)1.4 研究方法 (2)1.5 创新之处 (2)第二章高等数学与初等数学的地位与联系 (3)2.1 初等数学与高等数学的定位 (3)2.2 高等数学与中学数学的联系 (4)2.2.1 中学数学与大学数学的统一性 (4)2.2.2 中学数学与大学数学的连贯性 (4)2.3 高等数学对初等数学的拓展 (5)2.3.1 代数方面 (5)2.3.2 几何方面 (6)第三章高等数学在初等数学中的应用 (8)3.1 高等代数在中学数学中的应用 (8)3.2.1 行列式的应用 (8)3.2.2 柯西—施瓦兹不等式应用 (9)3.2 微积分方法在中学数学的应用 (9)3.2.1 微积分方法在求函数的极值、最值中的应用 (10)3.2.2 用微积分知识直接用来处理初等数学的问题而达到简便的目的 (10)3.2.3 积分在空间立体体积与表面积中的应用 (12)3.2.4 积分在求曲线弧长中的应用 (14)3.3 高等几何在初等几何的应用 (14)3.3.1 仿射变换的应用 (14)3.3.2 射影几何观点在初等几何中的应用 (15)3.3.2.1 仿射变换的应用 (15)3.3.2.2 笛沙格定理的应用 (16)3.3.2.3 点列中四点的交比 (17)3.3.2.4 线束中四条直线的交比的应用 (18)第四章高考试题中的微积分在解题中的应用 (20)4.1 拉格朗日中值定理 (20)4.2 有关级数的应用 (23)总结 (26)参考文献............................................................ 错误!未定义书签。
高等代数学习心得二
高等代数学习心得二高等代数学习心得篇4代数学从高等代数的问题出发,又发展成为包括许多独立分支的一个大的数学科目,比如:多项式代数,线性代数等。
代数学研究的对象也已不仅是数,还有矩阵,向量,向量空间的变换等。
对于这些对象,都可以进行运算。
虽然也叫做加法或乘法,但是关于书的基本运算定律,有时不再保持有效。
因此代数学的内容可以概括为研究带有运算的一些集合,在数学中把这样的一些集合叫做代数系统。
的算为效men:比如:群,环,域等。
多项式是一类最常见,最简单的函数,他的应用非常广泛。
多项式理论是以代数方程的根的计算和分布作为中心问题的,也叫做方程论。
研究多项式理论,主要在于探讨代数方程的性质,从而寻找简易的解方程的方法。
多项式代数所研究额内容,包括整除性理论,最大公因式,重因式等。
这些大体和中学代数里的内容相同。
多项式的整除性质对于解代数方程是很有用的。
解代数方程无非就是求对应多项式的零点,零点不存在的时候,多对应的代数方程就没有解。
我们把一次方程叫做线性方程,讨论线性方程的代数叫做线性代数。
在线性代数中最重要的内容就是行列式和矩阵。
行列式的概念最早是由十七世界日本数学家孝和提出来的。
他在写了一部叫做《解伏题之法》的著作,标题的意思是解行列式问题的方法,书里对行列式的概念和他的展开已经有了清楚的叙述。
欧洲第一个提出行列式概念的是德国的数学家莱布尼茨。
德国数学家雅可比总结并提出了行列式的系统理论。
行列式有一定的计算规则,利用行列式可以把一个线性方程组的解表示成公式,因此行列式是解线性方程组的工具。
行列式可以把一个线性方程组的解表示成公式,也就是说行列式代表着一个数。
因为行列式要求行数等于列数,排成的表总是正方形的,通过对它的研究又发现了矩阵的理论。
矩阵也是由数排成行和列的数表,可是行数和列数相等也可以不相等。
矩阵和行列式是两部完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法。
利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量,这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等等一系列理论上的问题,都可以得到彻底的解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l
n
最大 ( 小) 特征值. 例 9 设 f ( x ) = x + 2x y + 3 y , 且满足 x + y = 1, 求 f ( x ) 的最大值和最小值 . 解 二次型 f ( x , y ) 的矩阵 A = ! - 1 - 1
2 2
在欧氏空间 R 里 , 取 = ( a1 , a2 , #, an ) , =
c 均为整数 , 又因为它们的乘积为 1, 所以 a = a b b = c c = 1 , 故| a| = | b | = | c| . a
1 多项式理论的应用
多项式理论是高等代数的主要内容之一, 它 与中学数学有着密切的联系. 它解决了初等数学 中关于多项式的很多遗留问题, 如多项式的根及 因式分解理论, 对中学数学解题有 居高临下 的 作用 . 例1 解 多项式 f ( x ) = x 4 - 5x 3 + 4x 2 - 3x + 将条件等式变形为 x 2 - 4 x = 1, 由 1| f
2 2得 a= 1, b = - 2, c= - 4 , d = - 1, 即 f ( x ) = x 3 - 2x 2 - 4x - 1. 例 4 试分解多项式 x 3 + y 3 + z 3 - 3 x y z . 解 即 x D= 而 x+ y+ z D= z y x + y+ z x z 1 1 1 y = x x + y+ z y x = z y y x z z y = x + y + z - 3xy z . x
在我国高等师范院校中所开设的专业课程, 应都是中学内容的加深加广、 螺旋上升 , 而数学课 程则是个例外, 因为高等数学与初等数学的研究 对象、 方法出现了很大的差异 , 数学专业师范类的 学生一直认为 教中学用不上高等代数 , 因而学 习积极性不高, 甚至产生了厌学思想, 所以学生毕 业后不能及时的进入工作 , 居高 而不能 临下 . 因此 , 寻找二者的联系迫在眉急. 作为现代数学基 础的高等代数, 更应首先从其中探究它与初等数 学的联系 . 本文通过举例从几个方面展示了高等 代数在初等数学中的运用 , 以希望对高等数学和 初等数学的结合有所帮助 . 于是
2
a(- 1 ) + b(- 1 ) + c(- 1) + d = 0, a ! 1 + b ! 1 + c ! 1 + d = - 6, a ! 2 + b ! 2 + c ! 2 + d = - 9, a ! 3 + b ! 3 + c ! 3 + d = - 4, 把上式看成关于 a, b, c, d 的线性方程组 , 它的系 数行列式为范德蒙行列式
2 2 2 2 2 2
1 1
1 3
,则
| ! I - A |=
- 1 2 = ! - 4! + 2, ! - 3
解得 ! 1 = 2+ 2, ! 2 = 22 , 于是由以上定理可 得, f ( x ) 在 x + y = 1 下的最大值为 2+ 2 , 最小 值为 2- 2 . 用高等的观点去研究初等数学是新世纪对中 学数学教师高水平的要求 , 教师是否具有较高的 数学观点 , 是衡量教师数学素质的重要标准 . 教师 具有高的观点 , 就能从高处看清中学教材的内在 结构和本质联系, 把握教材的重难点; 教师具有高 观点 . 就能从认知的角度 , 在知识的各部分渗透高 等数学的观点 , 培养学生的创造性、 批判性思维.
3 2 3 3 3 2 2 2
17, 当 x 2 = 4 x + 1 时 , 求此多项式的值. ( x ) , 所以 x - 4x | f ( x ) . 由多项式的除法, 得 f ( x ) = ( x 2 - x ) ( x 2 - 4 x ) - 3x + 17, 在将 x 2 - 4x = 1 代入上式 , 可得 f ( x ) = x - 4 x + 17 = 18 . 例2 a b 已知 a、 b、 c 为整数, 且满足 + + b c
2
2 行列式的应用
对于中学数学的一些典型问题比如求函数的 解析式, 多项式的因式分解等问题 , 如果能构造适 当的行列式, 会起到事半功倍的效果. 例 3 已知函数 f ( x ) = ax 3 + bx 2 + cx + d, 满足 f ( - 1) = 0, f ( 1 ) = - 6 , f ( 2) = - 9 , f ( 3 ) = - 4, 求 f ( x ) . 解 由已知条件 , 得
4 柯西不等式的应用
定理 1 ( 柯西 施瓦茨不等式) 在欧氏空 间里 , 对于任意向量 , 有不等式 < , > ∀ < , > < , > , 当且仅当 与 线性相关时 , 等号成立.
2 [ 1]
设 n 元二次型 f ( x ) = x A x , 则 f X i = 1 下的大 ( 小 ) 值恰为矩阵 A 的
About the Use of High Algebra in the Elementary Mathematics
WA N G Qi , REN Wen long , L i H ui
( Schoo l o f M athematics and Informat ion , G ansu L ianhe U niv ersity , L anzhou 730000, China)
c a c b 与 + + 均为整数 , 求证| a | = | b| = | c | . a c b c
收稿日期 : 2008 04 20. 基金项目 : 本项目为 2007 年甘肃联合大学学生科研训练项目 ( 07031413) .
56 (- 1) 3 1 3
3
甘肃联合大学学报 ( 自然科学版 )
[ 1] 张禾瑞 , 郝炳 新 . 高等 代数 [ M ] . 北 京 : 高等教 育出 版
社 , 1999. [ 2] 扬家骥 . 高等代数在初等数学中的应用 [ M ] . 济南 : 山 东教育出版社 , 1992. [ 3] 杨远廷 . 用高 等数学的观点看中学数学教 学 [ J] . 德 阳 教育学院学报 , 2000, 14( 1) : 44 45.
ABC
构造一个行列式 D , 使它等于此多项式 ,
= ad 1 + bd 2 + cd 3 ,
要证结论成立 , 只要证 ( a + b + c ) ( ad 1 + bd 2 + cd 3 ) ∃ ( a + b + c) 2 , d 1 d2 d 3 由柯西不等式上式显然成立, 所以 a + b + c ∃ ( a + b + c) 2 . d1 d2 d3 2S A BC
n
( b1 , b2 , #, bn ) 时, 就有 柯西不等式 对任意的实数组 a1 , a2 , #, a n 和 b 1 , b2 , #, bn , 有 ( a1 b 1 + a2 b2 + #+ a nb n ) 2 ∀ ( a 1 + a2 + # + a n ) ( b1 + b 2 + # + b n ) . 当且仅当 a i = kb i ( i = 1 , 2) 时 , 上式的等号成立.
王奇等 : 高等代数在初等数学中的一 些应用
57
教师是否具有高观点 , 也是提高教学质量、 培养高 层次人才的重要保证 . 中学教师绝大多数毕业于 师范院校本、 专科 , 具有高等数学知识是无疑的, 但能用高等数学的观点去指导中学数学教学的却 不多见 [ 3] . 因此, 作为将来从事中学数学教学的大 学生 , 学好高等数学 , 使自己成为一名高素质的中 学教师, 是时代赋予我们的义不容辞的责任. 参考文献 :
2
特别的, b i = 1 ( i= 1, 2 , #, n) 时 , 有 ( a1 + a 2 + # + an )
2
∀ n( a + a + # + a ) .
2 1 2 2 2 n
所以 , 柯西不等式是高等代数的重要内容之 一, 它是柯西 施瓦次不等式在欧氏空间 Rn 中的 具体体现 , 在国内外数学竞赛问题中有较广泛的 应用 , 也是初等数学与高等代数的结合点之一 , 运 用它解决中学中一些问题 , 有时会显得即直观又 简洁 .
高等代数在初等数学中的一些应用
王
摘
奇, 任文龙, 李
慧
( 甘肃联合大学 数信学院 , 甘肃 兰州 730000) 要 : 通过一些典型的例子从几个方面展示了高等代数在 初等数学 中的运用 , 对消除 大学生中 中学 数学教
学用不上高等代数 的偏见 , 调动他们学习的积极性与主 动性有一定的作用 . 关键词 : 高等代数 ; 初等数学 ; 应用 中图分类号 : G633. 6 文献标识 码 : B
(x + y + z) z x y z
2 2 2 3 3 3
5 二次型的应用
二次型是高等代数的重要内容之一, 若用它 解决初等数学中的一些问题, 有时会起到意想不 到的效果 . 定理 在条件
i= 1 [ 2]
( x + y + z ) ( x + y + z - xy - y z - zx ) . 所以 , x + y + z - 3x y z 可分解为 ( x + y + z ) ( x 2 + y 2 + z 2 - xy - y z - zx ) .
第 22 卷 2008 年 5 月