高考物理动能定理的综合应用技巧 阅读训练策略及练习题(含答案)含解析
高考物理动能定理的综合应用解题技巧和训练方法及练习题(含答案)
3.一个平板小车置于光滑水平面上,其右端恰好和一个 光滑圆弧轨道 AB 的底端等高对
接,如图所示.已知小车质量 M=3.0kg,长 L=2.06m,圆弧轨道半径 R=0.8m.现将一
质量 m=1.0kg 的小滑块,由轨道顶端 A 点无初速释放,滑块滑到 B 端后冲上小车.滑块
与小车上表面间的动摩擦因数
.(取 g=10m/s2)试求:
(1)滑块到达 B 端时,轨道对它支持力的大小;
(2)小车运动 1.5s 时,车右端距轨道 B 端的距离;
(3)滑块与车面间由于摩擦而产生的内能.
【答案】(1)30 N(2)1 m(3)6 J 【解析】
(1)滑块从 A 端下滑到 B 端,由动能定理得
(1 分)
在 B 点由牛顿第二定律得
1 2
mvC2
2mgR
1 2
mv12
5 2
mgR
解得
0 R vC2 2m ; 5g
对小球能在圆轨道上到达的最大高度小于半径的情况应用机械能守恒可得
1 2
mvC2
mgh
mgR
解得
R vC2 =5m ; 2g
故小球进入圆轨道后,要使小球不脱离轨道,则竖直圆弧轨道的半径 R≥5m 或 0<R≤2m;
v0
vy tan
2 gh,只有弹簧弹力做功,故由动能定理可得:弹簧被压缩时的弹性势能为
(2)小球在 A 处的速度为
Ep
1 2
mv02
4.5J ;
vA
v0 cos
5m/s
小球从 A 到 C 的运动过程只有重力、摩擦力做功,故由动能定理可得
mgL1 sin
mgL1
cos
(2 分)
解得轨道对滑块的支持力
高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)
高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试动能定理的综合应用1.质量 1.5m kg =的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行 2.0t s =停在B 点,已知A 、B 两点间的距离 5.0s m =,物块与水平面间的动摩擦因数0.20μ=,求恒力F 多大.(210/g m s =)【答案】15N 【解析】 设撤去力前物块的位移为,撤去力时物块的速度为,物块受到的滑动摩擦力对撤去力后物块滑动过程应用动量定理得由运动学公式得对物块运动的全过程应用动能定理由以上各式得 代入数据解得思路分析:撤去F 后物体只受摩擦力作用,做减速运动,根据动量定理分析,然后结合动能定律解题试题点评:本题结合力的作用综合考查了运动学规律,是一道综合性题目.2.如图,I 、II 为极限运动中的两部分赛道,其中I 的AB 部分为竖直平面内半径为R 的14光滑圆弧赛道,最低点B 的切线水平; II 上CD 为倾角为30°的斜面,最低点C 处于B 点的正下方,B 、C 两点距离也等于R.质量为m 的极限运动员(可视为质点)从AB 上P 点处由静止开始滑下,恰好垂直CD 落到斜面上.求:(1) 极限运动员落到CD 上的位置与C 的距离; (2)极限运动员通过B 点时对圆弧轨道的压力; (3)P 点与B 点的高度差.【答案】(1)45R (2)75mg ,竖直向下(3)15R【解析】 【详解】(1)设极限运动员在B 点的速度为v 0,落在CD 上的位置与C 的距离为x ,速度大小为v ,在空中运动的时间为t ,则xcos300=v 0t R-xsin300=12gt 2 0tan 30v gt =解得x=0.8R(2)由(1)可得:025v gR =通过B 点时轨道对极限运动员的支持力大小为F N20N v F mg m R-=极限运动员对轨道的压力大小为F N ′,则F N ′=F N , 解得'75N F mg =,方向竖直向下; (3) P 点与B 点的高度差为h,则mgh=12mv 02 解得h=R/53.我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1-所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m/s 2匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m .为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1530 J ,g 取10 m/s 2.(1)求运动员在AB 段下滑时受到阻力F f 的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大?【答案】(1)144 N (2)12.5 m 【解析】试题分析:(1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,斜面的倾角为α,则有 v B 2=2ax根据牛顿第二定律得 mgsinα﹣F f =ma 又 sinα=H x由以上三式联立解得 F f=144N(2)设运动员到达C点时的速度为v C,在由B到达C的过程中,由动能定理有mgh+W=12mv C2-12mv B2设运动员在C点所受的支持力为F N,由牛顿第二定律得 F N﹣mg=m2 C v R由运动员能承受的最大压力为其所受重力的6倍,即有 F N=6mg 联立解得 R=12.5m考点:牛顿第二定律;动能定理【名师点睛】本题中运动员先做匀加速运动,后做圆周运动,是牛顿第二定律、运动学公式、动能定理和向心力的综合应用,要知道圆周运动向心力的来源,涉及力在空间的效果,可考虑动能定理.4.在某电视台举办的冲关游戏中,AB是处于竖直平面内的光滑圆弧轨道,半径R=1.6m,BC是长度为L1=3m的水平传送带,CD是长度为L2=3.6m水平粗糙轨道,AB、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g取10m/s2.求:(1)参赛者运动到圆弧轨道B处对轨道的压力;(2)若参赛者恰好能运动至D点,求传送带运转速率及方向;(3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N,方向竖直向下(2)顺时针运转,v=6m/s(3)720J【解析】(1) 对参赛者:A到B过程,由动能定理mgR(1-cos60°)=12m2Bv解得v B=4m/s在B处,由牛顿第二定律N B-mg=m2 B v R解得N B=2mg=1 200N根据牛顿第三定律:参赛者对轨道的压力N′B=N B=1 200N,方向竖直向下.(2) C到D过程,由动能定理-μ2mgL2=0-1 2 m2Cv解得v C=6m/sB到C过程,由牛顿第二定律μ1mg=ma解得a=4m/s2(2分)参赛者加速至v C历时t=C Bv va-=0.5s位移x1=2B Cv v+t=2.5m<L1参赛者从B到C先匀加速后匀速,传送带顺时针运转,速率v=6m/s.(3) 0.5s内传送带位移x2=vt=3m参赛者与传送带的相对位移Δx=x2-x1=0.5m传送带由于传送参赛者多消耗的电能E=μ1mgΔx+12m2Cv-12m2Bv=720J.5.如图所示,一质量为m的滑块从高为h的光滑圆弧形槽的顶端A处无初速度地滑下,槽的底端B与水平传送带相接,传送带的运行速度恒为v0,两轮轴心间距为L,滑块滑到传送带上后做匀加速运动,滑到传送带右端C时,恰好加速到与传送带的速度相同,求:(1)滑块到达底端B时的速度大小v B;(2)滑块与传送带间的动摩擦因数μ;(3)此过程中,由于克服摩擦力做功而产生的热量Q.【答案】(12gh2)222v ghglμ-=(3)(222m v gh-【解析】试题分析:(1)滑块在由A到B的过程中,由动能定理得:212Bmgh mv-=,解得:2Bghν=(2)滑块在由B到C的过程中,由动能定理得:μmgL=12mv02−12mv B2,解得,222v ghgLμ-=;(3)产生的热量:Q=μmgL 相对,()2200(2)2B gh L g相对=νννμ--=(或200(2) gh L ν-), 解得,201(2)2Q m gh ν-=; 考点:动能定理【名师点睛】本题考查了求物体速度、动摩擦因数、产生的热量等问题,分析清楚运动过程,熟练应用动能定理即可正确解题.6.如图甲所示,静止在水平地面上一个质量为m =4kg 的物体,其在随位移均匀减小的水平推力作用下运动,推力F 随位移x 变化的图象如图乙所示.已知物体与地面之间的动摩擦因数为μ=0.5,g =10m/s 2.求:(1)运动过程中物体的最大加速度大小为多少; (2)距出发点多远时物体的速度达到最大; (3)物体最终停在何处?【答案】(1)20m/s 2(2)3.2m (3)10m 【解析】 【详解】(1)物体加速运动,由牛顿第二定律得:F -μmg =ma当推力F =100N 时,物体所受的合力最大,加速度最大,代入数据得:2max 20m/s Fa g mμ=-=, (2)由图象得出,推力F 随位移x 变化的数值关系为:F =100 – 25x ,速度最大时,物体加速度为零,则F=μmg=20N ,即x = 3.2m(3)F 与位移x 的关系图线围成的面积表示F 所做的功,即01200J 2F W Fx ==对全过程运用动能定理,W F −μmgx m =0代入数据得:x m =10m7.如图所示,倾角 θ=30°的斜面足够长,上有间距 d =0.9 m 的 P 、Q 两点,Q 点以上斜面光滑,Q 点以下粗糙。
高中物理动能定理的综合应用技巧 阅读训练策略及练习题(含答案)
高中物理动能定理的综合应用技巧 阅读训练策略及练习题(含答案)一、高中物理精讲专题测试动能定理的综合应用1.如图所示,一条带有竖直圆轨道的长轨道水平固定,底端分别与两侧的直轨道相切,半径R =0.5m 。
物块A 以v 0=10m/s 的速度滑入圆轨道,滑过最高点N ,再沿圆轨道滑出,P 点左侧轨道光滑,右侧轨道与物块间的动摩擦因数都为μ=0.4,A 的质量为m =1kg (A 可视为质点) ,求:(1)物块经过N 点时的速度大小; (2)物块经过N 点时对竖直轨道的作用力; (3)物块最终停止的位置。
【答案】(1)5m/s v =;(2)150N ,作用力方向竖直向上;(3)12.5m x = 【解析】 【分析】 【详解】(1)物块A 从出发至N 点过程,机械能守恒,有22011222mv mg R mv =⋅+ 得20445m /s v v gR =-=(2)假设物块在N 点受到的弹力方向竖直向下为F N ,由牛顿第二定律有2N v mg F m R+=得物块A 受到的弹力为2N 150N v F m mg R=-=由牛顿第三定律可得,物块对轨道的作用力为N N 150N F F '==作用力方向竖直向上(3)物块A 经竖直圆轨道后滑上水平轨道,在粗糙路段有摩擦力做负功,动能损失,由动能定理,有20102mgx mv μ-=-得12.5m x =2.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =25017N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x =175m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求:(1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小;(3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度.【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】(1)小球从A 到B 过程,由动能定理得:212B Fx mv = 解得:v B =10 m/s(2)在C 点,由牛顿第二定律得mg +F N =2c v m R又据题有:F N =2.6mg 解得:v C =6 m/s.(3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =221122c B mv mv - 解得克服摩擦力做的功:W f =12 J(4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h =12gt 2由小球垂直打在斜面上可知:cgtv =tan 45° 联立解得:h =0.2 m 【点睛】本题关键是对小球在最高点处时受力分析,然后根据向心力公式和牛顿第二定律求出平抛的初速度,最后根据平抛运动的分位移公式列式求解.3.如图所示,光滑曲面与光滑水平导轨MN 相切,导轨右端N 处于水平传送带理想连接,传送带长度L =4m ,皮带轮沿顺时针方向转动,带动皮带以恒定速率v =4.0m/s 运动.滑块B 、C 之间用细绳相连,其间有一压缩的轻弹簧,B 、C 与细绳、弹簧一起静止在导轨MN 上.一可视为质点的滑块A 从h =0.2m 高处由静止滑下,已知滑块A 、B 、C 质量均为m =2.0kg ,滑块A 与B 碰撞后粘合在一起,碰撞时间极短.因碰撞使连接B 、C 的细绳受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离.滑块C 脱离弹簧后以速度v C =2.0m/s 滑上传送带,并从右端滑出落至地面上的P 点.已知滑块C 与传送带之间的动摩擦因数μ=0.2,重力加速度g 取10m/s 2.(1)求滑块C 从传送带右端滑出时的速度大小; (2)求滑块B 、C 与细绳相连时弹簧的弹性势能E P ;(3)若每次实验开始时弹簧的压缩情况相同,要使滑块C 总能落至P 点,则滑块A 与滑块B 碰撞前速度的最大值v m 是多少? 【答案】(1) 4.0m/s (2) 2.0J (3) 8.1m/s 【解析】 【分析】 【详解】(1)滑块C 滑上传送带到速度达到传送带的速度v =4m/s 所用的时间为t ,加速度大小为a ,在时间t 内滑块C 的位移为x ,有mg ma μ=C v v at =+212C x v t at =+代入数据可得3m x = 3m x L =<滑块C 在传送带上先加速,达到传送带的速度v 后随传送带匀速运动,并从右端滑出,则滑块C 从传送带右端滑出时的速度为v=4.0m/s(2)设A 、B 碰撞前A 的速度为v 0,A 、B 碰撞后的速度为v 1,A 、B 与C 分离时的速度为v 2,有2012A A m gh m v =01()A A B m v m m v =+ 12()()A B A B C C m m v m m v m v +=++A 、B 碰撞后,弹簧伸开的过程系统能量守恒222A 1A 2111()()222P B B C C E m m v m m v m v ++=++代入数据可解得2.0J P E =(3)在题设条件下,若滑块A 在碰撞前速度有最大值,则碰撞后滑块C 的速度有最大值,它减速运动到传送带右端时,速度应当恰好等于传送带的速度v .设A 与B 碰撞后的速度为1v ',分离后A 与B 的速度为2v ',滑块C 的速度为'C v ,C 在传送带上做匀减速运动的末速度为v =4m/s ,加速度大小为2m/s 2,有22()Cv v a L '-=- 解得Cv '= 以向右为正方向,A 、B 碰撞过程1()A m A B m v m m v '=+弹簧伸开过程12()()A B C C A B m m v m v m m v '''+=++22212111+()()+222p A B A B C C E m m v m m v m v '''+=+代入数据解得8.1m v =≈m/s .4.如图所示,光滑圆弧的半径为80cm ,一质量为1.0kg 的物体由A 处从静止开始下滑到B 点,然后又沿水平面前进3m ,到达C 点停止。
高考物理动能定理的综合应用答题技巧及练习题(含答案)及解析
高考物理动能定理的综合应用答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。
设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:(1)汽车所能达到的最大速度;(2)汽车从启动至到达最大速度的过程中运动的位移。
【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】(1)汽车匀加速结束时的速度11120m /s v a t ==由P=Fv 可知,匀加速结束时汽车的牵引力11F Pv ==1×104N 由牛顿第二定律得11F f ma -=解得f =5000N汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力F=f =5000N由P Fv =可知,汽车的最大速度:v=P PF f==40m/s (2)汽车匀加速运动的位移x 1=1140m 2v t = 对汽车,由动能定理得2112102F x Pt fs mv =--+解得s =480m2.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)求滑块与斜面间的动摩擦因数μ;(2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值;(3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR -μmgcos37°2sin 37R︒=0-0 解得:μ=0.375⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N≥0 ①在C 点时,根据牛顿第二定律有:mg +N =2Cv m R② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37°2sin 37R ︒=212C mv -2012mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④在竖直方向的位移为:y =212gt ⑤ 根据图中几何关系有:tan37°=2R yx-⑥ 由④⑤⑥式联立解得:t =0.2s考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.3.某物理小组为了研究过山车的原理提出了下列的设想:取一个与水平方向夹角为θ=53°,长为L 1=7.5m 的倾斜轨道AB ,通过微小圆弧与足够长的光滑水平轨道BC 相连,然后在C 处连接一个竖直的光滑圆轨道.如图所示.高为h =0.8m 光滑的平台上有一根轻质弹簧,一端被固定在左面的墙上,另一端通过一个可视为质点的质量m =1kg 的小球压紧弹簧,现由静止释放小球,小球离开台面时已离开弹簧,到达A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小物块与AB 间的动摩擦因数为μ=0.5,g 取10m/s 2,sin53°=0.8.求:(1)弹簧被压缩时的弹性势能; (2)小球到达C 点时速度v C 的大小;(3)小球进入圆轨道后,要使其不脱离轨道,则竖直圆弧轨道的半径R 应该满足什么条件. 【答案】(1)4.5J ;(2)10m/s ;(3)R ≥5m 或0<R ≤2m 。
高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)及解析
高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。
设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:(1)汽车所能达到的最大速度;(2)汽车从启动至到达最大速度的过程中运动的位移。
【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】(1)汽车匀加速结束时的速度11120m /s v a t ==由P=Fv 可知,匀加速结束时汽车的牵引力11F Pv ==1×104N 由牛顿第二定律得11F f ma -=解得f =5000N汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力F=f =5000N由P Fv =可知,汽车的最大速度:v=P PF f==40m/s (2)汽车匀加速运动的位移x 1=1140m 2v t = 对汽车,由动能定理得2112102F x Pt fs mv =--+解得s =480m2.如图,固定在竖直平面内的倾斜轨道AB ,与水平光滑轨道BC 相连,竖直墙壁CD 高0.2H m =,紧靠墙壁在地面固定一个和CD 等高,底边长0.3L m =的斜面,一个质量0.1m kg =的小物块(视为质点)在轨道AB 上从距离B 点4l m =处由静止释放,从C 点水平抛出,已知小物块在AB 段与轨道间的动摩擦因数为0.5,达到B 点时无能量损失;AB段与水平面的夹角为37.(o 重力加速度210/g m s =,sin370.6=o ,cos370.8)o =(1)求小物块运动到B 点时的速度大小; (2)求小物块从C 点抛出到击中斜面的时间;(3)改变小物块从轨道上释放的初位置,求小物块击中斜面时动能的最小值. 【答案】(1) 4/m s (2)115s (3) 0.15J 【解析】 【分析】(1)对滑块从A 到B 过程,根据动能定理列式求解末速度;(2)从C 点画出后做平抛运动,根据分位移公式并结合几何关系列式分析即可; (3)动能最小时末速度最小,求解末速度表达式分析即可. 【详解】()1对滑块从A 到B 过程,根据动能定理,有:2B 1mglsin37μmgcos37mv 2-=o o ,解得:B v 4m /s =;()2设物体落在斜面上时水平位移为x ,竖直位移为y ,画出轨迹,如图所示:对平抛运动,根据分位移公式,有:0x v t =,21y gt 2=, 结合几何关系,有:H y H 2x L 3-==, 解得:1t s 15=; ()3对滑块从A 到B 过程,根据动能定理,有:2B 1mglsin37μmgcos37mv 2-=o o ,对平抛运动,根据分位移公式,有:0x v t =,21y gt 2=, 结合几何关系,有:H y H 2x L 3-==, 从A 到碰撞到斜面过程,根据动能定理有:21mglsin37μmgcos37l mgy mv 02-⋅+=-oo联立解得:22125y 9H 18H mv mg 21616y 16⎛⎫=+- ⎪⎝⎭,故当225y 9H 1616y =,即3y H 0.12m 5==时,动能k E 最小为:km E 0.15J =; 【点睛】本题是力学综合问题,关键是正确的受力分析,明确各个阶段的受力情况和运动性质,根据动能定理和平抛运动的规律列式分析,第三问较难,要结合数学不等式知识分析.3.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J4.质量为m =0.5kg 、可视为质点的小滑块,从光滑斜面上高h 0=0.6m 的A 点由静止开始自由滑下。
高考物理动能定理的综合应用解题技巧分析及练习题(含答案)及解析
高考物理动能定理的综合应用解题技巧分析及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.小明同学根据上海迪士尼乐园游戏项目“创极速光轮”设计了如图所示的轨道。
一条带有竖直圆轨道的长轨道固定在水平面上,底端分别与两侧的直轨道相切,其中轨道AQ 段粗糙、长为L 0=6.0m ,QNP 部分视为光滑,圆轨道半径R =0.2m ,P 点右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.5m 。
一玩具电动小车,通电以后以P =4W 的恒定功率工作,小车通电加速运动一段时间后滑入圆轨道,滑过最高点N ,再沿圆轨道滑出。
小车的质量m =0.4kg ,小车在各粗糙段轨道上所受的阻力恒为f =0.5N 。
(重力加速度g =10m/s 2;小车视为质点,不计空气阻力)。
(1)若小车恰能通过N 点完成实验,求进入Q 点时速度大小; (2)若小车通电时间t =1.4s ,求滑过N 点时小车对轨道的压力; (3)若小车通电时间t≤2.0s ,求小车可能停在P 点右侧哪几段轨道上。
【答案】(1)22m/s ;(2)6N ,方向竖直向上;(3)第7段和第20段之间 【解析】 【分析】 【详解】(1)小车恰能过N 点,则0N v =,Q →N 过程根据动能定理2211222N mg R mv mv -⋅=- 代入解得22m/s v =(2)A →N 过程2011202Pt fL mg R mv --⋅=- 代入解得15m/s v =在N 点时21N mv mg F R+= 代入解得N 6N F =根据牛顿第三定律可得小汽车对轨道压力大小6N ,方向竖直向上。
(3)设小汽车恰能过最高点,则0020Pt fL mg R --⋅=代入解得0 1.15s 2s t =<此时小汽车将停在12mg R n fL ⋅=代入解得1 6.4n =因此小车将停在第7段; 当通电时间 2.0s t =时020Pt fL n fL --=代入解得220n =因此小车将停在第20段;综上所述,当t ≤2.0s 时,小汽车将停在第7段和第20段之间。
高考物理动能定理的综合应用答题技巧及练习题(含答案)及解析
高考物理动能定理的综合应用答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m的倾斜轨道AB ,通过微小圆弧与长为L 2=32m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=3,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB相切时R3=BC•tan 60°=1.5 m即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R应该满足的条件是 0<R≤1.08 m.考点:平抛运动;动能定理2.某滑沙场的示意图如图所示,某旅游者乘滑沙橇从A点由静止开始滑下,最后停在水平沙面上的C点.设滑沙橇和沙面间的动摩擦因数处处相同,斜面和水平面连接处可认为是圆滑的,滑沙者保持一定姿势坐在滑沙橇上不动,若测得AC间水平距离为x,A点高为h,求滑沙橇与沙面间的动摩擦因数μ.【答案】h/x【解析】【分析】对A到C的全过程运用动能定理,抓住动能的变化量为零,结合动能定理求出滑沙橇与沙面间的动摩擦因数.【详解】设斜面的倾角为θ,对全过程运用动能定理得,因为,则有,解得.【点睛】本题考查了动能定理的基本运用,运用动能定理解题关键选择好研究的过程,分析过程中有哪些力做功,再结合动能定理进行求解,本题也可以结合动力学知识进行求解.3.我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1-所示,质量m=60 kg的运动员从长直助滑道AB的A处由静止开始以加速度a=3.6 m/s2匀加速滑下,到达助滑道末端B时速度v B=24 m/s,A与B的竖直高度差H=48 m.为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5 m,运动员在B、C间运动时阻力做功W=-1530 J,g取10 m/s2.(1)求运动员在AB段下滑时受到阻力F f的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大?【答案】(1)144 N (2)12.5 m 【解析】试题分析:(1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,斜面的倾角为α,则有 v B 2=2ax根据牛顿第二定律得 mgsinα﹣F f =ma 又 sinα=H x由以上三式联立解得 F f =144N(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理有 mgh+W=12mv C 2-12mv B 2 设运动员在C 点所受的支持力为F N ,由牛顿第二定律得 F N ﹣mg=m 2Cv R由运动员能承受的最大压力为其所受重力的6倍,即有 F N =6mg 联立解得 R=12.5m 考点:牛顿第二定律;动能定理【名师点睛】本题中运动员先做匀加速运动,后做圆周运动,是牛顿第二定律、运动学公式、动能定理和向心力的综合应用,要知道圆周运动向心力的来源,涉及力在空间的效果,可考虑动能定理.4.质量为m =2kg 的小玩具汽车,在t =0时刻速度为v 0=2m/s ,随后以额定功率P =8W 沿平直公路继续前进,经t =4s 达到最大速度。
高考物理动能定理的综合应用技巧 阅读训练策略及练习题(含答案)含解析
高考物理动能定理的综合应用技巧 阅读训练策略及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.质量 1.5m kg =的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行 2.0t s =停在B 点,已知A 、B 两点间的距离 5.0s m =,物块与水平面间的动摩擦因数0.20μ=,求恒力F 多大.(210/g m s =)【答案】15N 【解析】 设撤去力前物块的位移为,撤去力时物块的速度为,物块受到的滑动摩擦力对撤去力后物块滑动过程应用动量定理得由运动学公式得对物块运动的全过程应用动能定理由以上各式得 代入数据解得思路分析:撤去F 后物体只受摩擦力作用,做减速运动,根据动量定理分析,然后结合动能定律解题试题点评:本题结合力的作用综合考查了运动学规律,是一道综合性题目.2.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求:(1)参赛者运动到圆弧轨道B 处对轨道的压力;(2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】(1) 对参赛者:A 到B 过程,由动能定理mgR(1-cos 60°)=12m 2B v 解得v B =4m /s在B 处,由牛顿第二定律N B -mg =m 2Bv R解得N B =2mg =1 200N根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理-μ2mgL 2=0-12m 2C v 解得v C =6m /sB 到C 过程,由牛顿第二定律μ1mg =ma 解得a =4m /s 2(2分) 参赛者加速至v C 历时t =C Bv v a-=0.5s 位移x 1=2B Cv v +t =2.5m <L 1 参赛者从B 到C 先匀加速后匀速,传送带顺时针运转,速率v =6m /s . (3) 0.5s 内传送带位移x 2=vt =3m 参赛者与传送带的相对位移Δx =x 2-x 1=0.5m 传送带由于传送参赛者多消耗的电能 E =μ1mg Δx +12m 2C v -12m 2B v =720J .3.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。
高考物理动能定理的综合应用解题技巧和训练方法及练习题(含答案)及解析
高考物理动能定理的综合应用解题技巧和训练方法及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,一条带有竖直圆轨道的长轨道水平固定,底端分别与两侧的直轨道相切,半径R =0.5m 。
物块A 以v 0=10m/s 的速度滑入圆轨道,滑过最高点N ,再沿圆轨道滑出,P 点左侧轨道光滑,右侧轨道与物块间的动摩擦因数都为μ=0.4,A 的质量为m =1kg (A 可视为质点) ,求:(1)物块经过N 点时的速度大小; (2)物块经过N 点时对竖直轨道的作用力; (3)物块最终停止的位置。
【答案】(1)5m/s v =;(2)150N ,作用力方向竖直向上;(3)12.5m x = 【解析】 【分析】 【详解】(1)物块A 从出发至N 点过程,机械能守恒,有22011222mv mg R mv =⋅+ 得20445m /s v v gR =-=(2)假设物块在N 点受到的弹力方向竖直向下为F N ,由牛顿第二定律有2N v mg F m R+=得物块A 受到的弹力为2N 150N v F m mg R=-=由牛顿第三定律可得,物块对轨道的作用力为N N 150N F F '==作用力方向竖直向上(3)物块A 经竖直圆轨道后滑上水平轨道,在粗糙路段有摩擦力做负功,动能损失,由动能定理,有20102mgx mv μ-=-得12.5m x =2.北京老山自行车赛场采用的是250m 椭圆赛道,赛道宽度为7.6m 。
赛道形如马鞍形,由直线段、过渡曲线段以及圆弧段组成,圆弧段倾角为45°(可以认为赛道直线段是水平的,圆弧段中线与直线段处于同一高度)。
比赛用车采用最新材料制成,质量为9kg 。
已知直线段赛道每条长80m ,圆弧段内侧半径为14.4m ,运动员质量为61kg 。
求: (1)运动员在圆弧段内侧以12m/s 的速度骑行时,运动员和自行车整体的向心力为多大;(2)运动员在圆弧段内侧骑行时,若自行车所受的侧向摩擦力恰为零,则自行车对赛道的压力多大;(3)若运动员从直线段的中点出发,以恒定的动力92N 向前骑行,并恰好以12m/s 的速度进入圆弧段内侧赛道,求此过程中运动员和自行车克服阻力做的功。
高考物理动能定理的综合应用答题技巧及练习题(含答案)含解析
高考物理动能定理的综合应用答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.由相同材料的细杆搭成的轨道如图所示,其中细杆AB 、BC 、CD 、DE 、EF ……长均为 1.5m L =,细杆OA 和其他细杆与水平面的夹角都为()37sin370.6,cos370.8β︒︒︒===,一个可看成质点的小环套在细杆OA 上从图中离轨道最低点的竖直高度 1.32m h =处由静止释放,小环与细杆的动摩擦因数都为0.2μ=,最大静摩擦力等于相同压力下的滑动摩擦力,在两细杆交接处都用短小曲杆相连,不计动能损失,使小环能顺利地经过,重力加速度g 取210m /s ,求: (1)小环在细杆OA 上运动的时间t ; (2)小环运动的总路程s ; (3)小环最终停止的位置。
【答案】(1)1s ;(2)8.25m ;(3)最终停在A 点 【解析】 【分析】 【详解】(1)因为sin cos mg mg βμβ>,故小环不能静止在细杆上,小环下滑的加速度为2sin cos 4.4m/s mg mg a mβμβ-==设物体与A 点之间的距离为0L ,由几何关系可得0 2.2m sin37hL ︒== 设物体从静止运动到A 所用的时间为t ,由2012L at =,得 1s t =(2)从物体开始运动到最终停下的过程中,设总路程为s ,由动能定理得cos3700mgh mgs μ︒=--代入数据解得s =8.25m(3)假设物体能依次到达B 点、D 点,由动能定理有201(sin37)cos37()2B mg h L mg L L mv μ︒︒+=-- 解得20B v <说明小环到不了B 点,最终停在A 点处2.如图所示,一条带有竖直圆轨道的长轨道水平固定,底端分别与两侧的直轨道相切,半径R =0.5m 。
物块A 以v 0=10m/s 的速度滑入圆轨道,滑过最高点N ,再沿圆轨道滑出,P 点左侧轨道光滑,右侧轨道与物块间的动摩擦因数都为μ=0.4,A 的质量为m =1kg (A 可视为质点) ,求:(1)物块经过N 点时的速度大小; (2)物块经过N 点时对竖直轨道的作用力; (3)物块最终停止的位置。
高考物理动能定理的综合应用答题技巧及练习题(含答案)含解析
高考物理动能定理的综合应用答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.由相同材料的细杆搭成的轨道如图所示,其中细杆AB 、BC 、CD 、DE 、EF ……长均为 1.5m L =,细杆OA 和其他细杆与水平面的夹角都为()37sin370.6,cos370.8β︒︒︒===,一个可看成质点的小环套在细杆OA 上从图中离轨道最低点的竖直高度 1.32m h =处由静止释放,小环与细杆的动摩擦因数都为0.2μ=,最大静摩擦力等于相同压力下的滑动摩擦力,在两细杆交接处都用短小曲杆相连,不计动能损失,使小环能顺利地经过,重力加速度g 取210m /s ,求: (1)小环在细杆OA 上运动的时间t ; (2)小环运动的总路程s ; (3)小环最终停止的位置。
【答案】(1)1s ;(2)8.25m ;(3)最终停在A 点 【解析】 【分析】 【详解】(1)因为sin cos mg mg βμβ>,故小环不能静止在细杆上,小环下滑的加速度为2sin cos 4.4m/s mg mg a mβμβ-==设物体与A 点之间的距离为0L ,由几何关系可得0 2.2m sin37hL ︒== 设物体从静止运动到A 所用的时间为t ,由2012L at =,得 1s t =(2)从物体开始运动到最终停下的过程中,设总路程为s ,由动能定理得cos3700mgh mgs μ︒=--代入数据解得s =8.25m(3)假设物体能依次到达B 点、D 点,由动能定理有201(sin37)cos37()2B mg h L mg L L mv μ︒︒+=-- 解得20B v <说明小环到不了B 点,最终停在A 点处2.为了备战2022年北京冬奥会,一名滑雪运动员在倾角θ=30°的山坡滑道上进行训练,运动员及装备的总质量m=70 kg.滑道与水平地面平滑连接,如图所示.他从滑道上由静止开始匀加速下滑,经过t=5s到达坡底,滑下的路程 x=50 m.滑雪运动员到达坡底后又在水平面上滑行了一段距离后静止.运动员视为质点,重力加速度g=10m/s2,求:(1)滑雪运动员沿山坡下滑时的加速度大小a;(2)滑雪运动员沿山坡下滑过程中受到的阻力大小f;(3)滑雪运动员在全过程中克服阻力做的功W f.【答案】(1)4m/s2(2)f = 70N (3)1.75×104J【解析】【分析】(1)运动员沿山坡下滑时做初速度为零的匀加速直线运动,已知时间和位移,根据匀变速直线运动的位移时间公式求出下滑的加速度.(2)对运动员进行受力分析,根据牛顿第二定律求出下滑过程中受到的阻力大小.(3)对全过程,根据动能定理求滑雪运动员克服阻力做的功.【详解】(1)根据匀变速直线运动规律得:x=1at22解得:a=4m/s2(2)运动员受力如图,根据牛顿第二定律得:mgsinθ-f=ma解得:f=70N(3)全程应用动能定理,得:mgxsinθ-W f =0解得:W f =1.75×104J【点睛】解决本题的关键要掌握两种求功的方法,对于恒力可运用功的计算公式求.对于变力可根据动能定理求功.3.如图所示,轨道ABC被竖直地固定在水平桌面上,A距水平地面高H=0.75m,C距水平地面高h=0.45m。
高考物理动能定理的综合应用解题技巧讲解及练习题(含答案)及解析
高考物理动能定理的综合应用解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,一条带有竖直圆轨道的长轨道水平固定,底端分别与两侧的直轨道相切,半径R =0.5m 。
物块A 以v 0=10m/s 的速度滑入圆轨道,滑过最高点N ,再沿圆轨道滑出,P 点左侧轨道光滑,右侧轨道与物块间的动摩擦因数都为μ=0.4,A 的质量为m =1kg (A 可视为质点) ,求:(1)物块经过N 点时的速度大小; (2)物块经过N 点时对竖直轨道的作用力; (3)物块最终停止的位置。
【答案】(1)5m/s v =;(2)150N ,作用力方向竖直向上;(3)12.5m x = 【解析】 【分析】 【详解】(1)物块A 从出发至N 点过程,机械能守恒,有22011222mv mg R mv =⋅+ 得20445m /s v v gR =-=(2)假设物块在N 点受到的弹力方向竖直向下为F N ,由牛顿第二定律有2N v mg F m R+=得物块A 受到的弹力为2N 150N v F m mg R=-=由牛顿第三定律可得,物块对轨道的作用力为N N 150N F F '==作用力方向竖直向上(3)物块A 经竖直圆轨道后滑上水平轨道,在粗糙路段有摩擦力做负功,动能损失,由动能定理,有20102mgx mv μ-=-得12.5m x =2.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。
设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:(1)汽车所能达到的最大速度;(2)汽车从启动至到达最大速度的过程中运动的位移。
【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】(1)汽车匀加速结束时的速度11120m /s v a t ==由P=Fv 可知,匀加速结束时汽车的牵引力11F Pv ==1×104N 由牛顿第二定律得11F f ma -=解得f =5000N汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力F=f =5000N由P Fv =可知,汽车的最大速度:v=P PF f==40m/s (2)汽车匀加速运动的位移x 1=1140m 2v t = 对汽车,由动能定理得2112102F x Pt fs mv =--+ 解得s =480m3.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2=32m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=3,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m 即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是 0<R≤1.08 m . 考点:平抛运动;动能定理4.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。
高考物理动能定理的综合应用解题技巧和训练方法及练习题(含答案)含解析
高考物理动能定理的综合应用解题技巧和训练方法及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,AB 是竖直面内的四分之一圆弧形光滑轨道,下端B 点与水平直轨道相切.一个小物块自A 点由静止开始沿轨道下滑,已知轨道半径为R =0.2m ,小物块的质量为m =0.1kg ,小物块与水平面间的动摩擦因数μ=0.5,g 取10m/s 2.求:(1)小物块在B 点时受到的圆弧轨道的支持力大小; (2)小物块在水平面上滑动的最大距离. 【答案】(1)3N (2)0.4m 【解析】(1)由机械能守恒定律,得在B 点联立以上两式得F N =3mg =3×0.1×10N =3N. (2)设小物块在水平面上滑动的最大距离为l ,对小物块运动的整个过程由动能定理得mgR -μmgl =0, 代入数据得【点睛】解决本题的关键知道只有重力做功,机械能守恒,掌握运用机械能守恒定律以及动能定理进行解题.2.如图所示,半径2R m =的四分之一粗糙圆弧轨道AB 置于竖直平面内,轨道的B 端切线水平,且距水平地面高度为h =1.25m ,现将一质量m =0.2kg 的小滑块从A 点由静止释放,滑块沿圆弧轨道运动至B 点以5/v m s =的速度水平飞出(g 取210/m s ).求:(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功; (2)小滑块经过B 点时对圆轨道的压力大小; (3)小滑块着地时的速度大小.【答案】(1) 1.5f W J = (2) 4.5N F N = (3)152/v m s = 【解析】 【分析】 【详解】(1)滑块在圆弧轨道受重力、支持力和摩擦力作用,由动能定理mgR -W f =12mv 2W f =1.5J(2)由牛顿第二定律可知:2N v F mg m R-=解得:4.5N F N =(3)小球离开圆弧后做平抛运动根据动能定理可知:22111m m 22mgh v v =-解得:152m/s v =3.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;4.如图,固定在竖直平面内的倾斜轨道AB ,与水平光滑轨道BC 相连,竖直墙壁CD 高0.2H m =,紧靠墙壁在地面固定一个和CD 等高,底边长0.3L m =的斜面,一个质量0.1m kg =的小物块(视为质点)在轨道AB 上从距离B 点4l m =处由静止释放,从C 点水平抛出,已知小物块在AB 段与轨道间的动摩擦因数为0.5,达到B 点时无能量损失;AB段与水平面的夹角为37.(o 重力加速度210/g m s =,sin370.6=o ,cos370.8)o =(1)求小物块运动到B 点时的速度大小; (2)求小物块从C 点抛出到击中斜面的时间;(3)改变小物块从轨道上释放的初位置,求小物块击中斜面时动能的最小值. 【答案】(1) 4/m s (2)115s (3) 0.15J 【解析】 【分析】(1)对滑块从A 到B 过程,根据动能定理列式求解末速度;(2)从C 点画出后做平抛运动,根据分位移公式并结合几何关系列式分析即可; (3)动能最小时末速度最小,求解末速度表达式分析即可. 【详解】()1对滑块从A 到B 过程,根据动能定理,有:2B 1mglsin37μmgcos37mv 2-=o o ,解得:B v 4m /s =;()2设物体落在斜面上时水平位移为x ,竖直位移为y ,画出轨迹,如图所示:对平抛运动,根据分位移公式,有:0x v t =,21y gt 2=, 结合几何关系,有:H y H 2x L 3-==, 解得:1t s 15=; ()3对滑块从A 到B 过程,根据动能定理,有:2B 1mglsin37μmgcos37mv 2-=o o ,对平抛运动,根据分位移公式,有:0x v t =,21y gt 2=, 结合几何关系,有:H y H 2x L 3-==, 从A 到碰撞到斜面过程,根据动能定理有:21mglsin37μmgcos37l mgy mv 02-⋅+=-oo联立解得:22125y 9H 18H mv mg 21616y 16⎛⎫=+- ⎪⎝⎭,故当225y 9H 1616y =,即3y H 0.12m 5==时,动能k E 最小为:km E 0.15J =; 【点睛】本题是力学综合问题,关键是正确的受力分析,明确各个阶段的受力情况和运动性质,根据动能定理和平抛运动的规律列式分析,第三问较难,要结合数学不等式知识分析.5.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC 长L =6m ,始终以v 0=6m/s 的速度顺时针运动.将一个质量m =1kg 的物块由距斜面底端高度h 1=5.4m 的A 点静止滑下,物块通过B 点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H =5m ,g 取10m/s 2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h3=1.8m②当离传送带高度为h4时物块进入传送带后一直匀减速运动,h4=9.0m所以当离传送带高度在1.8m~9.0m的范围内均能满足要求即1.8m≤h≤9.0m6.如图所示,一质量为m的小球从半径为R的竖直四分之一圆弧轨道的顶端无初速释放,圆弧轨道的底端水平,离地面高度为R。
高考物理动能定理的综合应用答题技巧及练习题(含答案)及解析
高考物理动能定理的综合应用答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,一条带有竖直圆轨道的长轨道水平固定,底端分别与两侧的直轨道相切,半径R =0.5m 。
物块A 以v 0=10m/s 的速度滑入圆轨道,滑过最高点N ,再沿圆轨道滑出,P 点左侧轨道光滑,右侧轨道与物块间的动摩擦因数都为μ=0.4,A 的质量为m =1kg (A 可视为质点) ,求:(1)物块经过N 点时的速度大小; (2)物块经过N 点时对竖直轨道的作用力; (3)物块最终停止的位置。
【答案】(1)5m/s v =;(2)150N ,作用力方向竖直向上;(3)12.5m x = 【解析】 【分析】 【详解】(1)物块A 从出发至N 点过程,机械能守恒,有22011222mv mg R mv =⋅+ 得20445m /s v v gR =-=(2)假设物块在N 点受到的弹力方向竖直向下为F N ,由牛顿第二定律有2N v mg F m R+=得物块A 受到的弹力为2N 150N v F m mg R=-=由牛顿第三定律可得,物块对轨道的作用力为N N 150N F F '==作用力方向竖直向上(3)物块A 经竖直圆轨道后滑上水平轨道,在粗糙路段有摩擦力做负功,动能损失,由动能定理,有20102mgx mv μ-=-得12.5m x =2.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m的倾斜轨道AB ,通过微小圆弧与长为L 2=32m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=3,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是 0<R≤1.08 m . 考点:平抛运动;动能定理3.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J4.质量为m =2kg 的小玩具汽车,在t =0时刻速度为v 0=2m/s ,随后以额定功率P =8W 沿平直公路继续前进,经t =4s 达到最大速度。
高考物理动能定理的综合应用解题技巧和训练方法及练习题(含答案)及解析
高考物理动能定理的综合应用解题技巧和训练方法及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,人骑摩托车做腾跃特技表演,以1.0m/s 的初速度沿曲面冲上高0.8m 、顶部水平的高台,若摩托车冲上高台的过程中始终以额定功率1.8kW 行驶,经过1.2s 到达平台顶部,然后离开平台,落至地面时,恰能无碰撞地沿圆弧切线从A 点切入光滑竖直圆弧轨道,并沿轨道下滑.A 、B 为圆弧两端点,其连线水平.已知圆弧半径为R =1.0m ,人和车的总质量为180kg ,特技表演的全过程中不计一切阻力(计算中取g =10m/s2,sin53°=0.8,cos53°=0.6).求:(1)人和车到达顶部平台的速度v ;(2)从平台飞出到A 点,人和车运动的水平距离x ; (3)圆弧对应圆心角θ;(4)人和车运动到圆弧轨道最低点O 时对轨道的压力. 【答案】(1)3m/s (2)1.2m (3)106°(4)7.74×103N 【解析】 【分析】 【详解】(1)由动能定理可知:221011Pt mgH mv 22mv -=- v =3m/s (2)由2221H gt ,s vt 2==可得:2H s v 1.2m g== (3)摩托车落至A 点时,其竖直方向的分速度y 2v gt 4m /s ==设摩托车落地时速度方向与水平方向的夹角为α,则4tan 3yv v α==,即α=53° 所以θ=2α=106° (4)在摩托车由最高点飞出落至O 点的过程中,由机械能守恒定律可得:2211mg[H R(1cos )]mv mv 22α'+-=-在O 点:2v N mg m R-= 所以N =7740N由牛顿第三定律可知,人和车在最低点O 时对轨道的压力为7740N2.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】(1) 35(2) -3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J3.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求:(1)参赛者运动到圆弧轨道B 处对轨道的压力;(2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】(1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12m 2B v 解得v B =4m /s在B 处,由牛顿第二定律N B -mg =m 2Bv R解得N B =2mg =1 200N根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理-μ2mgL 2=0-12m 2C v 解得v C =6m /sB 到C 过程,由牛顿第二定律μ1mg =ma 解得a =4m /s 2(2分) 参赛者加速至v C 历时t =C Bv v a-=0.5s 位移x 1=2B Cv v +t =2.5m <L 1 参赛者从B 到C 先匀加速后匀速,传送带顺时针运转,速率v =6m /s . (3) 0.5s 内传送带位移x 2=vt =3m参赛者与传送带的相对位移Δx =x 2-x 1=0.5m 传送带由于传送参赛者多消耗的电能 E =μ1mg Δx +12m 2C v -12m 2B v =720J .4.某人欲将质量50kg m =的货箱推上高 1.0m h =的卡车,他使用的是一个长 5.0m L =的斜面(斜面与水平面在A 处平滑连接)。
高考物理动能定理的综合应用的基本方法技巧及练习题及练习题(含答案)含解析
高考物理动能定理的综合应用的基本方法技巧及练习题及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6m,始终以v0=6m/s的速度顺时针运动.将一个质量m=1kg 的物块由距斜面底端高度h1=5.4m的A点静止滑下,物块通过B点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H=5m,g取10m/s2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h3=1.8m②当离传送带高度为h4时物块进入传送带后一直匀减速运动,h 4=9.0m所以当离传送带高度在1.8m ~9.0m 的范围内均能满足要求 即1.8m≤h≤9.0m2.如图所示,在粗糙水平面上有一质量为M 、高为h 的斜面体,斜面体的左侧有一固定障碍物Q,斜面体的左端与障碍物的距离为d .将一质量为m 的小物块置于斜面体的顶端,小物块恰好能在斜面体上与斜面体一起保持静止;现给斜面体施加一个水平向左的推力,使斜面体和小物块一起向左匀加速运动,当斜面体到达障碍物与其碰撞后,斜面体立即停止运动,小物块水平抛出,最后落在障碍物的左侧P 处(图中未画出),已知斜面体与地面间的动摩擦因数为μ1,斜面倾角为θ,重力加速度为g,滑动摩擦力等于最大静摩擦力,求:(1)小物块与斜面间的动摩擦因数μ2;(2)要使物块在地面上的落点P 距障碍物Q 最远,水平推力F 为多大; (3)小物块在地面上的落点P 距障碍物Q 的最远距离. 【答案】(1)2tan μθ= (2)()()1sin cos tan M m g F M m g sin θμθθθ+=++-(3)2sin cos tan tan hd hsin θθθθθ- 【解析】 【分析】对m 受力分析,由共点力平衡条件可以求出动摩擦因数;以m 为研究对象,求出最大加速度,以系统为研究对象,由牛顿第二定律求出最大推力;对系统由动能定理求出最大速度,然后由平抛运动规律求出最大水平位移. 【详解】(1)对m 由平衡条件得:mgsinθ-μ2mgcosθ=0 解得:μ2=tanθ(2)对m 设其最大加速度为a m ,由牛顿第二定律得 水平方向:Nsinθ+μ2Ncosθ=ma m 竖直方向:Ncosθ-μ2Nsinθ-mg =0 解得:2sin cos tan sin g a θθθθ=-对M 、m 整体由牛顿第二定律得:F -μ1(M +m )g =(M +m )a m 解得:()()12sin cos tan sin M m g F M m g θμθθθ+=++- (3)对M 、m 整体由动能定理得:()()2112Fd M m gd M m v μ-+=+ 解得:sin cos tan sindgvθθθθ=-对m由平抛运动规律得:水平方向:tanphx vtθ+=竖直方向:212h gt=解得:2sin2cos tan sin tanphd hxθθθθθ=--【点睛】本题主要考查了应用平衡条件、牛顿第二定律、动能定理、平抛运动规律即可正确解题.3.如图所示,一质量为m的滑块从高为h的光滑圆弧形槽的顶端A处无初速度地滑下,槽的底端B与水平传送带相接,传送带的运行速度恒为v0,两轮轴心间距为L,滑块滑到传送带上后做匀加速运动,滑到传送带右端C时,恰好加速到与传送带的速度相同,求:(1)滑块到达底端B时的速度大小v B;(2)滑块与传送带间的动摩擦因数μ;(3)此过程中,由于克服摩擦力做功而产生的热量Q.【答案】(12gh2)222v ghglμ-=(3)(222m v gh-【解析】试题分析:(1)滑块在由A到B的过程中,由动能定理得:212Bmgh mv-=,解得:2Bghν=(2)滑块在由B到C的过程中,由动能定理得:μmgL=12mv02−12mv B2,解得,222v ghgLμ-=;(3)产生的热量:Q=μmgL相对,()2200(2)2BghLg相对=νννμ--=(或2 0(2)ghLν-),解得,21(2)2Q m ghν-=;考点:动能定理【名师点睛】本题考查了求物体速度、动摩擦因数、产生的热量等问题,分析清楚运动过程,熟练应用动能定理即可正确解题.4.如图所示,四分之一的光滑圆弧轨道AB 与水平轨道平滑相连,圆弧轨道的半径为R=0.8m,有一质量为m=1kg 的滑块从A端由静止开始下滑,滑块与水平轨道间的动摩擦因数为μ=0.5,滑块在水平轨道上滑行L=0.7m 后,滑上一水平粗糙的传送带,传送带足够长且沿顺时针方向转动,取g=10m/s2,求:(1)滑块第一次滑上传送带时的速度v1 多大?(2)若要滑块再次经过B点,传送带的速度至少多大?(3)试讨论传送带的速度v与滑块最终停下位置x(到B点的距离)的关系。
高考物理动能定理的综合应用的基本方法技巧及练习题及练习题(含答案)含解析
高考物理动能定理的综合应用的基本方法技巧及练习题及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.由相同材料的细杆搭成的轨道如图所示,其中细杆AB 、BC 、CD 、DE 、EF ……长均为 1.5m L =,细杆OA 和其他细杆与水平面的夹角都为()37sin370.6,cos370.8β︒︒︒===,一个可看成质点的小环套在细杆OA 上从图中离轨道最低点的竖直高度 1.32m h =处由静止释放,小环与细杆的动摩擦因数都为0.2μ=,最大静摩擦力等于相同压力下的滑动摩擦力,在两细杆交接处都用短小曲杆相连,不计动能损失,使小环能顺利地经过,重力加速度g 取210m /s ,求: (1)小环在细杆OA 上运动的时间t ; (2)小环运动的总路程s ; (3)小环最终停止的位置。
【答案】(1)1s ;(2)8.25m ;(3)最终停在A 点 【解析】 【分析】 【详解】(1)因为sin cos mg mg βμβ>,故小环不能静止在细杆上,小环下滑的加速度为2sin cos 4.4m/s mg mg a mβμβ-==设物体与A 点之间的距离为0L ,由几何关系可得0 2.2m sin37hL ︒== 设物体从静止运动到A 所用的时间为t ,由2012L at =,得 1s t =(2)从物体开始运动到最终停下的过程中,设总路程为s ,由动能定理得cos3700mgh mgs μ︒=--代入数据解得s =8.25m(3)假设物体能依次到达B 点、D 点,由动能定理有201(sin37)cos37()2B mg h L mg L L mv μ︒︒+=-- 解得20B v <说明小环到不了B 点,最终停在A 点处2.如图所示,一条带有竖直圆轨道的长轨道水平固定,底端分别与两侧的直轨道相切,半径R =0.5m 。
物块A 以v 0=10m/s 的速度滑入圆轨道,滑过最高点N ,再沿圆轨道滑出,P 点左侧轨道光滑,右侧轨道与物块间的动摩擦因数都为μ=0.4,A 的质量为m =1kg (A 可视为质点) ,求:(1)物块经过N 点时的速度大小; (2)物块经过N 点时对竖直轨道的作用力; (3)物块最终停止的位置。
高考物理动能定理的综合应用解题技巧和训练方法及练习题(含答案)及解析
高考物理动能定理的综合应用解题技巧和训练方法及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)求滑块与斜面间的动摩擦因数μ;(2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值;(3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR -μmgcos37°2sin 37R︒=0-0 解得:μ=0.375⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N≥0 ①在C 点时,根据牛顿第二定律有:mg +N =2Cv m R② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37°2sin 37R ︒=212C mv -2012mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④在竖直方向的位移为:y =212gt ⑤ 根据图中几何关系有:tan37°=2R yx-⑥ 由④⑤⑥式联立解得:t =0.2s考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.2.如图所示,AC 为光滑的水平桌面,轻弹簧的一端固定在A 端的竖直墙壁上.质量1m kg =的小物块将弹簧的另一端压缩到B 点,之后由静止释放,离开弹簧后从C 点水平飞出,恰好从D 点以10/D v m s =的速度沿切线方向进入竖直面内的光滑圆弧轨道(DEF 小物体与轨道间无碰撞).O 为圆弧轨道的圆心,E 为圆弧轨道的最低点,圆弧轨道的半径1R m =,60DOE ∠=o ,37.EOF ∠=o小物块运动到F 点后,冲上足够长的斜面FG ,斜面FG 与圆轨道相切于F 点,小物体与斜面间的动摩擦因数0.5.sin370.6μ==o ,cos370.8=o ,取210/.g m s =不计空气阻力.求:(1)弹簧最初具有的弹性势能;(2)小物块第一次到达圆弧轨道的E 点时对圆弧轨道的压力大小;(3)判断小物块沿斜面FG 第一次返回圆弧轨道后能否回到圆弧轨道的D 点?若能,求解小物块回到D 点的速度;若不能,求解经过足够长的时间后小物块通过圆弧轨道最低点E 的速度大小.【答案】()11?.25J ;()2 30N ;()3 2/m s . 【解析】 【分析】 【详解】(1)设小物块在C 点的速度为C v ,则在D 点有:C D v v cos60o=设弹簧最初具有的弹性势能为p E ,则:2P C 1E mv 2= 代入数据联立解得:p E 1.25J =;()2设小物块在E 点的速度为E v ,则从D 到E 的过程中有:()22E D 11mgR 1cos60mv mv 22-=-o 设在E 点,圆轨道对小物块的支持力为N ,则有:2E v N mg R-=代入数据解得:E v 25m /s =,N 30N =由牛顿第三定律可知,小物块到达圆轨道的E 点时对圆轨道的压力为30 N ;()3设小物体沿斜面FG 上滑的最大距离为x ,从E 到最大距离的过程中有:()()2E 1mgR 1cos37mgsin37μmgcos37x 0mv 2o o o ---+=-小物体第一次沿斜面上滑并返回F 的过程克服摩擦力做的功为f W ,则f W 2x μmgcos37=o小物体在D 点的动能为KD E ,则:2KD D 1E mv 2=代入数据解得:x 0.8m =,f W 6.4J =,KD E 5J = 因为KD f E W <,故小物体不能返回D 点.小物体最终将在F 点与关于过圆轨道圆心的竖直线对称的点之间做往复运动,小物体的机械能守恒,设最终在最低点的速度为Em v ,则有:()2Em 1mgR 1cos37mv 2-=o 代入数据解得:Em v 2m /s =答:()1弹簧最初具有的弹性势能为1.25J ;()2小物块第一次到达圆弧轨道的E 点时对圆弧轨道的压力大小是30 N ;()3小物块沿斜面FG 第一次返回圆弧轨道后不能回到圆弧轨道的D 点.经过足够长的时间后小物块通过圆弧轨道最低点E 的速度大小为2 m /s . 【点睛】(1)物块离开C 点后做平抛运动,由D 点沿圆轨道切线方向进入圆轨道,知道了到达D 点的速度方向,将D 点的速度分解为水平方向和竖直方向,根据角度关系求出水平分速度,即离开C 点时的速度,再研究弹簧释放的过程,由机械能守恒定律求弹簧最初具有的弹性势能;()2物块从D 到E ,运用机械能守恒定律求出通过E 点的速度,在E 点,由牛顿定律和向心力知识结合求物块对轨道的压力;()3假设物块能回到D 点,对物块从A 到返回D 点的整个过程,运用动能定理求出D 点的速度,再作出判断,最后由机械能守恒定律求出最低点的速度.3.如图所示,AB 是竖直面内的四分之一圆弧形光滑轨道,下端B 点与水平直轨道相切.一个小物块自A 点由静止开始沿轨道下滑,已知轨道半径为R =0.2m ,小物块的质量为m =0.1kg ,小物块与水平面间的动摩擦因数μ=0.5,g 取10m/s 2.求:(1)小物块在B 点时受到的圆弧轨道的支持力大小; (2)小物块在水平面上滑动的最大距离. 【答案】(1)3N (2)0.4m【解析】(1)由机械能守恒定律,得在B 点联立以上两式得F N =3mg =3×0.1×10N =3N. (2)设小物块在水平面上滑动的最大距离为l ,对小物块运动的整个过程由动能定理得mgR -μmgl =0, 代入数据得【点睛】解决本题的关键知道只有重力做功,机械能守恒,掌握运用机械能守恒定律以及动能定理进行解题.4.如图所示,位于竖直平面内的轨道BCDE ,由一半径为R=2m 的14光滑圆弧轨道BC 和光滑斜直轨道DE 分别与粗糙水平面相切连接而成.现从B 点正上方H=1.2m 的A 点由静止释放一质量m=1kg 的物块,物块刚好从B 点进入14圆弧轨道.已知CD 的距离L=4m ,物块与水平面的动摩擦因数μ=0.25,重力加速度g 取10m/s 2,不计空气阻力.求:(1)物块第一次滑到C 点时的速度; (2)物块第一次滑上斜直轨道DE 的最大高度; (3)物块最终停在距离D 点多远的位置. 【答案】(1) 8m/s (2) 2.2m (3) 0.8m 【解析】 【分析】根据动能定理可求物块第一次滑到C 点时的速度;物块由A 到斜直轨道最高点的过程,由动能定理求出物块第一次滑上斜直轨道DE 的最大高度;物块将在轨道BCDE 上做往返运动,直至停下,设物块在水平轨道CD 上通过的总路程为S ,根据动能定理求出. 【详解】解:(1)根据动能定理可得21()2mg H R mv += 解得8/v m s =(2)物块由A 到斜直轨道最高点的过程,由动能定理有:()0mg H R mgL mgh μ+--=解得: 2.2h m =(3)物块将在轨道BCDE 上做往返运动,直至停下,设物块在水平轨道CD 上通过的总路程为S ,则:()0mg H R mgS μ+-= 解得:12.8S m =因: 30.8S L m =+,故物块最终将停在距离D 点0.8m 处的位置.5.如图所示,固定斜面的倾角α=30°,用一沿斜面向上的拉力将质量m =1kg 的物块从斜面底端由静止开始拉动,t =2s 后撤去该拉力,整个过程中物块上升的最大高度h =2.5m ,物块与斜面间的动摩擦因数μ=3.重力加速度g =10m/s 2.求:(1)拉力所做的功; (2)拉力的大小.【答案】(1)40J F W = (2)F =10N 【解析】 【详解】(1)物块从斜面底端到最高点的过程,根据动能定理有:cos 0sin F hW mg mgh μαα-⋅-= 解得拉力所做的功40F W J = (2)F W Fx =由位移公式有212x at = 由牛顿第二定律有cos sin F mg mg ma μαα--=解得拉力的大小F=10N.6.如图的竖直平面内,一小物块(视为质点)从H =10m 高处,由静止开始沿光滑弯曲轨道AB 进入半径R =4m 的光滑竖直圆环内侧,弯曲轨道AB 在B 点与圆环轨道平滑相接。
高考物理动能定理的综合应用解题技巧讲解及练习题(含答案)及解析
高考物理动能定理的综合应用解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。
设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:(1)汽车所能达到的最大速度;(2)汽车从启动至到达最大速度的过程中运动的位移。
【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】(1)汽车匀加速结束时的速度11120m /s v a t ==由P=Fv 可知,匀加速结束时汽车的牵引力11F Pv ==1×104N 由牛顿第二定律得11F f ma -=解得f =5000N汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力F=f =5000N由P Fv =可知,汽车的最大速度:v=P PF f==40m/s (2)汽车匀加速运动的位移x 1=1140m 2v t = 对汽车,由动能定理得2112102F x Pt fs mv =--+解得s =480m2.某物理小组为了研究过山车的原理提出了下列的设想:取一个与水平方向夹角为θ=53°,长为L 1=7.5m 的倾斜轨道AB ,通过微小圆弧与足够长的光滑水平轨道BC 相连,然后在C 处连接一个竖直的光滑圆轨道.如图所示.高为h =0.8m 光滑的平台上有一根轻质弹簧,一端被固定在左面的墙上,另一端通过一个可视为质点的质量m =1kg 的小球压紧弹簧,现由静止释放小球,小球离开台面时已离开弹簧,到达A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小物块与AB 间的动摩擦因数为μ=0.5,g 取10m/s 2,sin53°=0.8.求:(1)弹簧被压缩时的弹性势能; (2)小球到达C 点时速度v C 的大小;(3)小球进入圆轨道后,要使其不脱离轨道,则竖直圆弧轨道的半径R 应该满足什么条件. 【答案】(1)4.5J ;(2)10m/s ;(3)R ≥5m 或0<R ≤2m 。
高中物理动能定理的综合应用解题技巧和训练方法及练习题(含答案)含解析
高中物理动能定理的综合应用解题技巧和训练方法及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.由相同材料的细杆搭成的轨道如图所示,其中细杆AB 、BC 、CD 、DE 、EF ……长均为 1.5m L =,细杆OA 和其他细杆与水平面的夹角都为()37sin370.6,cos370.8β︒︒︒===,一个可看成质点的小环套在细杆OA 上从图中离轨道最低点的竖直高度 1.32m h =处由静止释放,小环与细杆的动摩擦因数都为0.2μ=,最大静摩擦力等于相同压力下的滑动摩擦力,在两细杆交接处都用短小曲杆相连,不计动能损失,使小环能顺利地经过,重力加速度g 取210m /s ,求: (1)小环在细杆OA 上运动的时间t ; (2)小环运动的总路程s ; (3)小环最终停止的位置。
【答案】(1)1s ;(2)8.25m ;(3)最终停在A 点 【解析】 【分析】 【详解】(1)因为sin cos mg mg βμβ>,故小环不能静止在细杆上,小环下滑的加速度为2sin cos 4.4m/s mg mg a mβμβ-==设物体与A 点之间的距离为0L ,由几何关系可得0 2.2m sin37hL ︒== 设物体从静止运动到A 所用的时间为t ,由2012L at =,得 1s t =(2)从物体开始运动到最终停下的过程中,设总路程为s ,由动能定理得cos3700mgh mgs μ︒=--代入数据解得s =8.25m(3)假设物体能依次到达B 点、D 点,由动能定理有201(sin37)cos37()2B mg h L mg L L mv μ︒︒+=-- 解得20B v <说明小环到不了B 点,最终停在A 点处2.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理动能定理的综合应用技巧 阅读训练策略及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.为了备战2022年北京冬奥会,一名滑雪运动员在倾角θ=30°的山坡滑道上进行训练,运动员及装备的总质量m=70 kg .滑道与水平地面平滑连接,如图所示.他从滑道上由静止开始匀加速下滑,经过t=5s 到达坡底,滑下的路程 x=50 m .滑雪运动员到达坡底后又在水平面上滑行了一段距离后静止.运动员视为质点,重力加速度g=10m/s2,求:(1)滑雪运动员沿山坡下滑时的加速度大小a ; (2)滑雪运动员沿山坡下滑过程中受到的阻力大小f ; (3)滑雪运动员在全过程中克服阻力做的功W f . 【答案】(1)4m/s 2(2)f = 70N (3)1.75×104J 【解析】 【分析】(1)运动员沿山坡下滑时做初速度为零的匀加速直线运动,已知时间和位移,根据匀变速直线运动的位移时间公式求出下滑的加速度.(2)对运动员进行受力分析,根据牛顿第二定律求出下滑过程中受到的阻力大小. (3)对全过程,根据动能定理求滑雪运动员克服阻力做的功. 【详解】(1)根据匀变速直线运动规律得:x=12at 2 解得:a=4m/s 2(2)运动员受力如图,根据牛顿第二定律得:mgsinθ-f=ma解得:f=70N(3)全程应用动能定理,得:mgxsinθ-W f =0 解得:W f =1.75×104J 【点睛】解决本题的关键要掌握两种求功的方法,对于恒力可运用功的计算公式求.对于变力可根据动能定理求功.2.质量 1.5m kg =的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行 2.0t s =停在B 点,已知A 、B 两点间的距离 5.0s m =,物块与水平面间的动摩擦因数0.20μ=,求恒力F 多大.(210/g m s =)【答案】15N 【解析】 设撤去力前物块的位移为,撤去力时物块的速度为,物块受到的滑动摩擦力对撤去力后物块滑动过程应用动量定理得由运动学公式得对物块运动的全过程应用动能定理由以上各式得 代入数据解得思路分析:撤去F 后物体只受摩擦力作用,做减速运动,根据动量定理分析,然后结合动能定律解题试题点评:本题结合力的作用综合考查了运动学规律,是一道综合性题目.3.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。
【答案】(12gh (2)h s【解析】 【详解】解:(1)小物体沿弧形轨道下滑的过程,根据机械能守恒定律可得:212mgh mv = 解得小物体刚滑到弧形轨道底端时的速度大小:2v gh(2)对小物体从开始下滑直到最终停下的过程,根据动能定理则有:0mgh mgs μ-= 解得水平轨道与物体间的动摩擦因数:h sμ=4.一种氢气燃料的汽车,质量为m =2.0×103kg ,发动机的额定输出功率为80kW ,行驶在平直公路上时所受阻力恒为车重的0.1倍。
若汽车从静止开始先匀加速启动,加速度的大小为a =1.0m/s 2。
达到额定输出功率后,汽车保持功率不变又加速行驶了800m ,直到获得最大速度后才匀速行驶。
求:(g =10m/s 2) (1)汽车的最大行驶速度。
(2)汽车从静止到获得最大行驶速度所用的总时间。
【答案】(1)40m/s ;(2)55s 【解析】 【详解】(1)设汽车的最大行驶速度为v m .汽车做匀速直线运动,牵引力等于阻力,速度达到最大,即有:F =f根据题意知,阻力为:f =0.1mg =2000N 再根据公式 P=Fv 得:v m =P /f =40m/s ; 即汽车的最大行驶速度为40m/s(2)汽车匀变速行驶的过程中,由牛顿第二定律得F f ma -=得匀变速运动时汽车牵引力4000N F =则汽车匀加速运动行驶得最大速度为020/Pv m s F== 由a 1t 1=v 0,得汽车匀加速运动的时间为:t 1=20s汽车实际功率达到额定功率后到速度达到最大的过程,由动能定理W F +W f =△E k ,即得: Pt 2-0.1mgs 2=2201122m mv mv - 得:t 2=35s所以汽车从静止到获得最大行驶速度所用的总时间为:t =t 1+t 2=55s5.质量为m =2kg 的小玩具汽车,在t =0时刻速度为v 0=2m/s ,随后以额定功率P =8W 沿平直公路继续前进,经t =4s 达到最大速度。
该小汽车所受恒定阻力是其重力的0.1倍,重力加速度g =10m/s 2。
求: (1)小汽车的最大速度v m ; (2)汽车在4s 内运动的路程s 。
【答案】(1)4 m/s ,(2)10m 。
【解析】 【详解】(1)当达到最大速度时,阻力等于牵引力:m m P Fv fv == 0.1f mg =解得:m 4m/s v =;(2)从开始到t 时刻根据动能定理得:22m 01122Pt fs mv mv -=-解得:10m s =。
6.在真空环境内探测微粒在重力场中能量的简化装置如图所示,P 是一个微粒源,能持续水平向右发射质量相同、初速度不同的微粒.高度为h 的探测屏AB 竖直放置,离P 点的水平距离为L ,上端A 与P 点的高度差也为h .(1)若微粒打在探测屏AB 的中点,求微粒在空中飞行的时间; (2)求能被屏探测到的微粒的初速度范围;(3)若打在探测屏A 、B 两点的微粒的动能相等,求L 与h 的关系. 【答案】3h g 42g g v h h≤≤22h 【解析】 【分析】 【详解】(1)若微粒打在探测屏AB 的中点,则有:32h =12gt 2, 解得:3h t g=(2)设打在B 点的微粒的初速度为V1,则有:L=V 1t 1,2h=12gt 12 得:14g v h=同理,打在A 点的微粒初速度为:22g v h= 所以微粒的初速度范围为:4g h ≤v≤2g h(3)打在A 和B 两点的动能一样,则有:12mv 22+mgh=12mv 12+2mgh 联立解得:2h7.如图所示,在海滨游乐场里有一种滑沙运动.某人坐在滑板上从斜坡的高处A 点由静止开始滑下,滑到斜坡底端B 点后,沿水平的滑道再滑行一段距离到C 点停下来.如果人和滑板的总质量m =60kg ,滑板与斜坡滑道和水平滑道间的动摩擦因数均为μ=0.5,斜坡的倾角θ=37°(sin 37°=0.6,cos 37°=0.8),斜坡与水平滑道间是平滑连接的,整个运动过程中空气阻力忽略不计,重力加速度g 取10m/s 2. 求:(1)人从斜坡上滑下的加速度为多大?(2)若由于场地的限制,水平滑道的最大距离BC 为L =20.0m ,则人在斜坡上滑下的距离AB 应不超过多少?【答案】(1)2.0 m/s 2; (2)50m 【解析】 【分析】(1)根据牛顿第二定律求出人从斜坡上下滑的加速度.(2)根据牛顿第二定律求出在水平面上运动的加速度,结合水平轨道的最大距离求出B 点的速度,结合速度位移公式求出AB 的最大长度. 【详解】(1)根据牛顿第二定律得,人从斜坡上滑下的加速度为:a 1=3737mgsin mgcos mμ︒-︒=gsin37°-μgcos37°=6-0.5×8m/s 2=2m/s 2.(2)在水平面上做匀减速运动的加速度大小为:a 2=μg =5m /s 2,根据速度位移公式得,B 点的速度为:222520/102/B v a L m s m s ⨯⨯===. 根据速度位移公式得:212005024B AB v L m m a ===. 【点睛】本题考查了牛顿第二定律和运动学公式的基本运用,知道加速度是联系力学和运动学的桥梁,本题也可以结合动能定理进行求解.8.滑板运动是深受青少年喜爱的一项极限运动。
如图所示为某一滑道的示意图,轨道 AB 可视为竖直平面内半径为R 的14光滑圆弧,圆心为O ,OA 水平。
轨道最低点B 距水平面CD 高度为14R ,C 点位于B 点正下方。
滑板和运动员(可看作质点)总质量为m ,由A 点静止下滑,从轨道中B 点飞出,落在水平面上的E 点。
重力加速度为g 。
求: (1)运动员运动到B 点时速度的大小; (2)运动员运动到B 点时对轨道压力的大小; (3)C 、E 两点间的距离。
【答案】(1) 2B v gR =mg (3)R 【解析】 【详解】(1) 运动员从A 到B ,根据动能定理2B 102mgR mv =-解得:B 2v gR (2) 运动员到达B 点时2BB v N mg m R-=运动员对轨道的压力为'B 3N N mg ==(3)运动员空中飞行时间212h gt =解得:2R t g=C 、E 间距离为B x v t R ==9.如图所示,光滑曲面与粗糙平直轨道平滑相接,B 为连接点,滑块(视为质点)自距水平轨道高为h 的A 点,由静止自由滑下,滑至C 点速度减为零.BC 间距离为L .重力加速度为g ,忽略空气阻力,求:(1)滑块滑至B 点的速度大小; (2)滑块与水平面BC 间的动摩擦因数;(3)若在平直轨道BC 间的D 点平滑接上一半圆弧形光滑竖直轨道(轨道未画出),34DC L =,再从A 点释放滑块,滑块恰好能沿弧形轨道内侧滑至最高点.不考虑滑块滑入半圆弧形光滑轨道时碰撞损失的能量,半圆弧的半径应多大?【答案】(1) 2v gh =h L μ= (3) 310R h =【解析】 【详解】(1)滑块从A 到B ,由动能定理: 212mgh mv =解得滑块经过B 点的速度2v gh = (2)滑块从A 到C ,由全程的动能定理:0mgh fL -=滑动摩擦力:N f F μ=而N F mg =,联立解得:hLμ=. (3)设滑块刚好经过轨道最高点的速度为0v ,轨道半径为R , 滑块刚好经过轨道最高点时,20v mg m R= 滑块从A 到轨道最高点,由能量守恒201-242L mgh mgmg R mv μ=+ 联立解得 310R h =.10.如图所示,水平轨道与竖直平面内的圆弧轨道平滑连接后固定在水平地面上,圆弧轨道B 端的切线沿水平方向.质量m=1.0kg 的滑块(可视为质点)在水平恒力F=10.0N 的作用下,从A 点由静止开始运动,当滑块运动的位移x=0.50m 时撤去力F .已知A 、B 之间的距离x 0=1.0m ,滑块与水平轨道间的动摩擦因数μ=0.10,取g=10m/s 2.求:(1)在撤去力F 时,滑块的速度大小; (2)滑块通过B 点时的动能;(3)滑块通过B 点后,能沿圆弧轨道上升的最大高度h=0.35m ,求滑块沿圆弧轨道上升过程中克服摩擦力做的功.【答案】(1)3.0m/s ;(2)4.0J ;(3)0.50J . 【解析】试题分析:(1)滑动摩擦力f mg μ=(1分) 设滑块的加速度为a 1,根据牛顿第二定律1F mg ma μ-=(1分)解得219.0/a m s =(1分)设滑块运动位移为 0.50m 时的速度大小为v ,根据运动学公式212v a x =(2分)解得 3.0/v m s =(1分)(2)设滑块通过B 点时的动能为kB E从A 到B 运动过程中,依据动能定理有 k W E =∆合 0 kB F x fx E -=, (4分)解得 4.0kB E J =(2分)(3)设滑块沿圆弧轨道上升过程中克服摩擦力做功为f W ,根据动能定理0f kB mgh W E --=-(3分)解得0.50f W J =(1分) 考点:牛顿运动定律 功能关系11.甲图是我国自主研制的200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞行试验验证,有望在2015年全面应用于我国航天器.离子电推进系统的核心部件为离子推进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙原子P 喷注入腔室C 后,被电子枪G 射出的电子碰撞而电离,成为带正电的氙离子.氙离子从腔室C 中飘移过栅电极A 的速度大小可忽略不计,在栅电极A 、B 之间的电场中加速,并从栅电极B 喷出.在加速氙离子的过程中飞船获得推力.已知栅电极A 、B 之间的电压为U ,氙离子的质量为m 、电荷量为q .(1)将该离子推进器固定在地面上进行试验.求氙离子经A 、B 之间的电场加速后,通过栅电极B 时的速度v 的大小;(2)配有该离子推进器的飞船的总质量为M ,现需要对飞船运行方向作一次微调,即通过推进器短暂工作让飞船在与原速度垂直方向上获得一很小的速度Δv ,此过程中可认为氙离子仍以第(1)中所求的速度通过栅电极B .推进器工作时飞船的总质量可视为不变.求推进器在此次工作过程中喷射的氙离子数目N .(3)可以用离子推进器工作过程中产生的推力与A 、B 之间的电场对氙离子做功的功率的比值S 来反映推进器工作情况.通过计算说明采取哪些措施可以增大S ,并对增大S 的实际意义说出你的看法. 【答案】(1)(2)(3)增大S 可以通过减小q 、U 或增大m 的方法.提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】试题分析:(1)根据动能定理有解得:(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv 解得:(3)设单位时间内通过栅电极A 的氙离子数为n ,在时间t 内,离子推进器发射出的氙离子个数为N nt =,设氙离子受到的平均力为F ',对时间t 内的射出的氙离子运用动量定理,F t Nmv ntmv ='=,F '= nmv根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小F=F '= nmv 电场对氙离子做功的功率P= nqU 则根据上式可知:增大S 可以通过减小q 、U 或增大m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. (说明:其他说法合理均可得分)考点:动量守恒定律;动能定理;牛顿定律.12.一辆质量m =2×103kg 的小轿车沿平直路面运动,发动机的额定功率P =80kW ,运动时受到的阻力大小为f =2×103N .试求: (1)小轿车最大速度的大小;(2)小轿车由v 0=10m/s 的速度开始以额定功率运动60s 前进的距离(汽车最后的速度已经达到最大).【答案】(1)40m/s (2)1650m 【解析】 【详解】(1)设小轿车运动的最大速度的大小为m v ,当车子达到最大速度时, 有=F f 牵 根据公式m P fv = 解得v m =40m/s(2)根据题意和动能定理得:2211=22W mv mv -合末初则有:22m 011=22Pt fs mv mv -- 解得小轿车60s 内前进的距离为s =1650m。