大学物理少学时期末复习题库第一篇力学

合集下载

大学物理期末试题及答案

大学物理期末试题及答案
详细描述
热机是将热能转化为机械能的装置,其效率受到热力学第二定律的限制。热力学第二定律指出,不可能从单一热源吸收热量并将其完全转化为有用的功而不引起其他变化。
总结词:理解热传导和热辐射的基本原理,掌握相关的计算公式。
光学部分
光的干涉光的干涉是光波在空间相遇时,由于存在相位差而产生明暗相间的现象。
大学物理期末试题及答案
汇报时间:202X-01-04
汇报人:
力学部分电磁学部分热学部分光学部分近代物理部分
力学部分
描述物体运动规律的基本法则。
牛顿运动定律包括第一定律(惯性定律)、第二定律(动量定律)和第三定律(作用与反作用定律)。这些定律描述了物体运动的基本规律,是经典力学的基础。
描述物体运动时质量和速度的乘积以及转动时惯性和角速度的乘积。
机械能守恒定律指出,在一个没有外力做功或者外力做功为零的孤立系统中,系统的机械能总量保持不变。机械能包括动能和势能,动能与物体质量和速度有关,势能与物体位置有关。
电磁学部分
·
电场是由电荷产生的,对放入其中的电荷有力的作用。
高斯定理在计算电场分布、电通量密度以及解决某些电场问题时非常有用。
高斯定理表述为:通过任一闭合曲面的电场强度通量等于该闭合曲面所包围的电荷量与真空中的介电常数的比值。
THANKS
光的干涉当两束或多束相干光波在空间某一点相遇时,它们的光程差会导致光波的叠加,从而产生明暗相间的干涉现象。干涉在光学仪器、光通信等领域有广泛应用。
光的衍射光的衍射是指光波在传播过程中遇到障碍物时,绕过障碍物边缘继续传播的现象。
光的衍射当光波遇到障碍物时,由于光波的波动性,它会绕过障碍物的边缘继续传播,形成衍射现象。衍射在光学仪器、光谱分析等领域有重要应用。

大学物理力学题库及答案

大学物理力学题库及答案

一、选择题:(每题3分)1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向.(B) 匀加速直线运动,加速度沿x 轴负方向.(C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ d ]2、一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4、5 s 时,质点在x 轴上的位置为(A) 5m. (B) 2m.(C) 0. (D) -2 m. (E) -5 m 、 [ b ] 3、图中p 就是一圆的竖直直径pc 的上端点,一质点从p 开始分别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比较就是(A) 到a 用的时间最短. (B) 到b 用的时间最短. (C) 到c 用的时间最短. (D) 所用时间都一样. [ d ]4、 一质点作直线运动,某时刻的瞬时速度=v 2 m/s,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s.(C) 等于2 m/s. (D) 不能确定. [ d ] 5、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ b ] 6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ d ]7、 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0、 [ b ] 8、 以下五种运动形式中,a 保持不变的运动就是(A) 单摆的运动. (B) 匀速率圆周运动.(C) 行星的椭圆轨道运动. (D) 抛体运动.(E) 圆锥摆运动. [ d ]9、对于沿曲线运动的物体,以下几种说法中哪一种就是正确的:(A) 切向加速度必不为零.-12a p(B) 法向加速度必不为零(拐点处除外).(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零.(D) 若物体作匀速率运动,其总加速度必为零. (E) 若物体的加速度a 为恒矢量,它一定作匀变速率运动. [ b ] 10、 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d , (4) t a t =d /d v .(A) 只有(1)、(4)就是对的.(B) 只有(2)、(4)就是对的.(C) 只有(2)就是对的.(D) 只有(3)就是对的.[ d ]11、 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系就是(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ b c ] 12、 一物体从某一确定高度以0v 的速度水平抛出,已知它落地时的速度为t v ,那么它运动的时间就是(A) g t 0v v -. (B) gt 20v v - . (C) ()g t2/1202v v -. (D) ()g t 22/1202v v - 、 [ c ]13、一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有: (A)v v v,v == (B)v v v,v =≠ (C)v v v,v ≠≠ (D)v v v,v ≠= [ d ] 14、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i 、j 表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为 (A) 2i +2j . (B) -2i +2j . (C) -2i -2j . (D) 2i -2j . [ b ]15、一条河在某一段直线岸边同侧有A 、B 两个码头,相距1 km.甲、乙两人需要从码头A 到码头B ,再立即由B 返回.甲划船前去,船相对河水的速度为4 km/h;而乙沿岸步行,步行速度也为4 km/h.如河水流速为 2 km/h, 方向从A 到B ,则(A) 甲比乙晚10分钟回到A . (B) 甲与乙同时回到A .(C) 甲比乙早10分钟回到A . (D) 甲比乙早2分钟回到A .[ a ]16、一飞机相对空气的速度大小为 200 km/h, 风速为56 km/h,方向从西向东.地面雷达站测得飞机速度大小为 192 km/h,方向就是(A) 南偏西16、3°. (B) 北偏东16、3°.(C) 向正南或向正北. (D) 西偏北16、3°.(E) 东偏南16、3°. [ e c ]17、 下列说法哪一条正确?(A) 加速度恒定不变时,物体运动方向也不变.(B) 平均速率等于平均速度的大小.(C) 不管加速度如何,平均速率表达式总可以写成(v 1、v 2 分别为初、末速率) ()2/21v v v +=.(D) 运动物体速率不变时,速度可以变化. [ d ]18、 下列说法中,哪一个就是正确的?(A) 一质点在某时刻的瞬时速度就是2 m/s,说明它在此后1 s 内一定要经过2m 的路程.(B) 斜向上抛的物体,在最高点处的速度最小,加速度最大.(C) 物体作曲线运动时,有可能在某时刻的法向加速度为零.(D) 物体加速度越大,则速度越大. [ c ]19、 某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来?(A) 北偏东30°. (B) 南偏东30°.(C) 北偏西30°. (D) 西偏南30°.c ]20、在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断?(A) 2a 1. (B) 2(a 1+g ).(C) 2a 1+g. (D) a 1+g. [ c ]21、 水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如图所示.欲使物体A 有最大加速度,则恒力F 与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ. (C) tg θ =μ. (D) ctg θ =μ. [ d c ]22、 一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为M 的直杆,悬线突然断开,小猴则沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为 (A) g 、 (B) g M m 、 (C) g M m M +、 (D) g mM m M -+ 、 (E) g M m M -、 [ c ] 23、如图所示,质量为m 的物体A 用平行于斜面的细线连结置于光滑的斜面上,若斜面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为a 1(A) g sin θ. (B) g cos θ.(C) g ctg θ. (D) g tg θ. [ c ]24、如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为m 1与m 2的重物,且m 1>m 2.滑轮质量及轴上摩擦均不计,此时重物的加速度的大小为a .今用一竖直向下的恒力g m F 1=代替质量为m 1的物体,可得质量为m 2的重物的加速度为的大小a ′,则(A) a ′= a (B) a ′> a(C) a ′< a (D) 不能确定、[ b ]25、升降机内地板上放有物体A ,其上再放另一物体B ,二者的质量分别为M A、M B .当升降机以加速度a 向下加速运动时(a <g ),物体A 对升降机地板的压力在数值上等于(A) M A g 、(B) (M A +M B )g 、(C) (M A +M B )(g +a )、 (D) (M A +M B )(g -a )、 d ]26、如图,滑轮、绳子质量及运动中的摩擦阻力都忽略不计,物体A 的质量m 1大于物体B 的质量m 2.在A 、B 运动过程中弹簧秤S 的读数就是(A) .)(21g m m + (B) .)(21g m m - (C) .22121g m m m m + (D) .42121g m m m m + [ a d ] 27、如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为(A) θcos mg 、 (B) θsin mg 、(C) θcos mg 、 (D) θsin mg 、 [ c ] 28、光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1与m 2,且m 1<m 2.今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N 应有(A) N =0、 (B) 0 < N < F 、(C) F < N <2F 、 (D) N > 2F 、 [ b ] 29、 用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f(A) 恒为零.(B) 不为零,但保持不变.(C) 随F 成正比地增大.(D) 开始随F 增大,达到某一最大值后,就保持不变 [30、两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示.将绳子剪断的瞬间,球1与球2的加速度分别为(A) a 1=g,a 2=g. (B) a 1=0,a 2=g. (C) a 1=g,a 2=0. (D) a 1=2g,a 2=0.[ b d ] 31、竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 1紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A 不下落,圆筒转动的角速度ω至少应为(A) R g μ (B)g μ(C) Rg μ (D)R g [ a c ] 32、 一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则摆锤转动的周期为(A) g l 、 (B) gl θcos 、 (C) g l π2、 (D) gl θπcos 2 、 [ d ] 33、一公路的水平弯道半径为R ,路面的外侧高出内侧,并与水平面夹角为θ.要使汽车通过该段路面时不引起侧向摩擦力,则汽车的速率为(A) Rg 、 (B) θtg Rg 、(C) θθ2sin cos Rg 、 (D) θctg Rg[ b ]34、 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦系数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率(A) 不得小于gR μ. (B) 不得大于gR μ.(C) 必须等于gR 2. (D) 还应由汽车的质量M 决定. [ b ]35、 在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动,则转台的角速度ω应满足(A) Rg s μω≤、 (B) R g s 23μω≤、 (C) R g s μω3≤、 (D) Rg s μω2≤、 [ a ] 36、质量为m 的质点,以不变速率v 沿图中正三角形ABC的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为 (A) m v . (B) m v .(C) m v . (D) 2m v . [ a c ]37、一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍与原来一样远. (D) 条件不足,不能判定. 38、 如图所示,砂子从h =0.8 m 高处下落到以3 m /s的速率水平向右运动的传送带上.取重力加速度g =10 m /s 2.传送带给予刚落到传送带上的砂子的作用力的方向为(A) 与水平夹角53°向下. (B) 与水平夹角53°向上.(C) 与水平夹角37°向上.θ l ωO R A Ah 1v v 23(D) 与水平夹角37°向下. [ b ]39、 质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s 、 (B) -9 N·s .(C)10 N·s . (D) -10 N·s . [ a ] 40、质量分别为m A 与m B (m A >m B )、速度分别为A v 与B v (v A > v B )的两质点A 与B ,受到相同的冲量作用,则(A) A 的动量增量的绝对值比B 的小.(B) A 的动量增量的绝对值比B 的大.(C) A 、B 的动量增量相等.(D) A 、B 的速度增量相等. [ c ]41、在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车与炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒.42、 质量为20 g 的子弹,以400 m/s 的速率沿图示方向射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为(A) 2 m/s. (B) 4 m/s.(C) 7 m/s . (D) 8 m/s. [ b ] 43、A 、B 两木块质量分别为m A 与m B ,且m B =2m A ,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示.若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E KA /E KB 为(A) 21. (B) 2/2. (C) 2. (D) 2. [ d ]44、质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) m v . (B) 0.(C) 2m v . (D) –2m v . [ d45、机枪每分钟可射出质量为20 g 的子弹900颗,子弹射出的速率为800 m/s,则射击时的平均反冲力大小为(A) 0、267 N. (B) 16 N.(C)240 N. (D) 14400 N. [ d c ]46、人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ c ]47、一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断改变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ c ]48、一个质点同时在几个力作用下的位移为: k j i r 654+-=∆ (SI)其中一个力为恒力k j i F 953+--= (SI),则此力在该位移过程中所作的功为(A) -67 J. (B) 17 J.(C) 67 J. (D) 91 J. [ c ]49、质量分别为m 与4m 的两个质点分别以动能E 与4E 沿一直线相向运动,它们的总动量大小为 (A) 2mE 2 (B) mE 23. (C) mE 25. (D) mE 2)122(- [ b ]50、如图所示,木块m 沿固定的光滑斜面下滑,当下降h 高度时,重力作功的瞬时功率就是: (A)21)2(gh mg . (B)21)2(cos gh mg θ. (C)21)21(sin gh mg θ. (D)21)2(sin gh mg θ. [ d ]51、已知两个物体A 与B 的质量以及它们的速率都不相同,若物体A 的动量在数值上比物体B 的大,则A 的动能E KA 与B 的动能E KB 之间(A) E KB 一定大于E KA . (B) E KB 一定小于E KA .(C) E KB =E KA . (D) 不能判定谁大谁小. [ d ]52、对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 合外力为0.(B) 合外力不作功.(C) 外力与非保守内力都不作功.(D) 外力与保守内力都不作功. [ d ]53、下列叙述中正确的就是(A)物体的动量不变,动能也不变.(B)物体的动能不变,动量也不变.(C)物体的动量变化,动能也一定变化.(D)物体的动能变化,动量却不一定变化. [ d ]54、作直线运动的甲、乙、丙三物体,质量之比就是 1∶2∶3.若它们的动能相等,并且作用于每一个物体上的制动力的大小都相同,方向与各自的速度方向相反,则它们制动距离之比就是(A) 1∶2∶3. (B) 1∶4∶9.(C) 1∶1∶1. (D) 3∶2∶1.(E) 3∶2∶1. [ d ]55、 速度为v 的子弹,打穿一块不动的木板后速度变为零,设木板对子弹的阻力就是恒定的.那么,当子弹射入木板的深度等于其厚度的一半时,子弹的速度就是(A) v 41. (B) v 31. θ h m(C) v 21. (D) v 21. [ d ] 56、 考虑下列四个实例.您认为哪一个实例中物体与地球构成的系统的机械能不守恒?(A) 物体作圆锥摆运动.(B) 抛出的铁饼作斜抛运动(不计空气阻力).(C) 物体在拉力作用下沿光滑斜面匀速上升.(D) 物体在光滑斜面上自由滑下. [ c ]57、一竖直悬挂的轻弹簧下系一小球,平衡时弹簧伸长量为d .现用手将小球托住,使弹簧不伸长,然后将其释放,不计一切摩擦,则弹簧的最大伸长量(A) 为d . (B) 为d 2.(C) 为2d . (D) 条件不足无法判定. [ c ]58、A 、B 两物体的动量相等,而m A <m B ,则A 、B 两物体的动能(A) E KA <E K B . (B) E KA >E KB .(C) E KA =E K B . (D) 孰大孰小无法确定. [ b ]59、如图所示,一个小球先后两次从P 点由静止开始,分别沿着光滑的固定斜面l 1与圆弧面l 2下滑.则小球滑到两面的底端Q 时的(A) 动量相同,动能也相同. (B) 动量相同,动能不同.(C) 动量不同,动能也不同.(D) 动量不同,动能相同. [ a ]60、一物体挂在一弹簧下面,平衡位置在O 点,现用手向下拉物体,第一次把物体由O 点拉到M 点,第二次由O 点拉到N 点,再由N 点送回M 点.则在这两个过程中(A) 弹性力作的功相等,重力作的功不相等. (B) 弹性力作的功相等,重力作的功也相等. (C) 弹性力作的功不相等,重力作的功相等. (D) 弹性力作的功不相等,重力作的功也不相等. [ b ]61、物体在恒力F 作用下作直线运动,在时间∆t 1内速度由0增加到v ,在时间∆t 2内速度由v 增加到2 v ,设F 在∆t 1内作的功就是W 1,冲量就是I 1,在∆t 2内作的功就是W 2,冲量就是I 2.那么,(A) W 1 = W 2,I 2 > I 1. (B) W 1 = W 2,I 2 < I 1.(C) W 1 < W 2,I 2 = I 1. (D) W 1 > W 2,I 2 = I 1. [ c ]62、两个质量相等、速率也相等的粘土球相向碰撞后粘在一起而停止运动、 在此过程中,由这两个粘土球组成的系统,(A) 动量守恒,动能也守恒.(B) 动量守恒,动能不守恒.(C) 动量不守恒,动能守恒.(D) 动量不守恒,动能也不守恒. [ c ]63、 一子弹以水平速度v 0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析就是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加. [ b ]64、一光滑的圆弧形槽M 置于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析就是对的?(A) 由m 与M 组成的系统动量守恒.(B) 由m 与M 组成的系统机械能守恒.(C) 由m 、M 与地球组成的系统机械能守恒.(D) M 对m 的正压力恒不作功.65、两木块A 、B 的质量分别为m 1与m 2,用一个质量不计、劲度系数为k 的弹簧连接起来.把弹簧压缩x 0并用线扎住,放在光滑水平面上,A 紧靠墙壁,如图所示,然后烧断扎线.判断下列说法哪个正确.(A) 弹簧由初态恢复为原长的过程中,以A 、B 、弹簧为系统,动量守恒.(B) 在上述过程中,系统机械能守恒.(C) 当A 离开墙后,整个系统动量守恒,机械能不守恒.(D) A 离开墙后,整个系统的总机械能为2021kx ,总动量为零. [ c ] 66、两个匀质圆盘A 与B 的密度分别为A ρ与B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 与J B ,则(A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ b ]67、 关于刚体对轴的转动惯量,下列说法中正确的就是(A)只取决于刚体的质量,与质量的空间分布与轴的位置无关.(B)取决于刚体的质量与质量的空间分布,与轴的位置无关.(C)取决于刚体的质量、质量的空间分布与轴的位置.(D)只取决于转轴的位置,与刚体的质量与质量的空间分布无关.[ c ]68、 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种就是正确的? (A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ b ]69、 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动、若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少. 6568、69、(C) 不会改变. (D) 如何变化,不能确定. [ b ]70、 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) 02ωmRJ J +. (B) ()02ωR m J J +. (C) 02ωmRJ . (D) 0ω. [ a ] 71、 如图所示,一水平刚性轻杆,质量不计,杆长l =20cm ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为ω0,再烧断细线让两球向杆的两端滑动.不考虑转轴的与空气的摩擦,当两球都滑至杆端时,杆的角速度为(A) 2ω0. (B)ω 0.(C) 21 ω 0. (D)041ω. [ ] 72、 刚体角动量守恒的充分而必要的条件就是(A) 刚体不受外力矩的作用.(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力与合外力矩均为零.(D) 刚体的转动惯量与角速度均保持不变. [ ]73、 一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土与方板系统,如果忽略空气阻力,在碰撞中守恒的量就是(A) 动能. (B) 绕木板转轴的角动量.(C) 机械能. (D) 动量. [ ]74、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量与角动量均守恒. [ ]75、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台与小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度与旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针.大学物理力学题库及答案[ ]76、 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人、把人与圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能与角动量都守恒.(E) 动量、机械能与角动量都不守恒. [ ]77、光滑的水平桌面上有长为2l 、质量为m 的匀质细杆,可绕通过其中点O 且垂直于桌面的竖直固定轴自由转动,转动惯量为231ml ,起初杆静止.有一质量为m 的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度就是(A) 12v l . (B) l32v . (C) l 43v . (D) lv 3. [ ] 78、如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为 (A) ML m v . (B) MLm 23v . (C) ML m 35v . (D) MLm 47v . [ ] 79、光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 (A) L 32v . (B) L54v . (C) L 76v . (D) L98v . (E) L712v . [ ] 80、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为 (A) 31ω0. (B) ()3/1 ω0.78、v 俯视图79、O v俯视图大学物理力学题库及答案 (C) 3 ω0. (D) 3 ω0.[ ]二、填空题: 81、一物体质量为M ,置于光滑水平地板上.今用一水平力F 通过一质量为m 的绳拉动物体前进,则物体的加速度a =______________,绳作用于物体上的力T =_________________.82、图所示装置中,若两个滑轮与绳子的质量以及滑轮与其轴之间的摩擦都忽略不计,绳子不可伸长,则在外力F 的作用下,物体m 1与m 2的加速度为a =______________________,m 1与m 2间绳子的张力T=________________________.83、在如图所示的装置中,两个定滑轮与绳的质量以及滑轮与其轴之间的摩擦都可忽略不计,绳子不可伸长,m 1与平面之间的摩擦也可不计,在水平外力F 的作用 下,物体m 1与m 2的加速度a =______________,绳中的张力T =_________________. 84、如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度a max =_______________________________________. 85、一物体质量M =2 kg,在合外力i t F )23(+= (SI )的作用下,从静止开始运动,式中i 为方向一定的单位矢量, 则当t=1 s 时物体的速度1v =__________.86、设作用在质量为1 kg 的物体上的力F =6t +3(SI).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2、0 s 的时间间隔内,这个力作用在物 体上的冲量大小I=__________________.87、一质量为m 的小球A ,在距离地面某一高度处以速度v 水平抛出,触地后反跳.在抛出t 秒后小球A 跳回原高度,速度仍沿水平方向,速度大小也与抛出时相同,如图.则小球A 与地面碰撞过程中,地面给它的冲量的方向为 ________________,冲量的大小为____________________.88、两个相互作用的物体A 与B ,无摩擦地在一条水平直线上运动.物体A 的动量就是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t 就是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:(1) 开始时,若B 静止,则 P B 1=______________________;(2) 开始时,若B的动量为 – P 0,则P B 2 = _____________.89、有两艘停在湖上的船,它们之间用一根很轻的绳子连接.设第一艘船与人的总质量为250 kg , 第二艘船的总质量为500 kg,水的阻力不计.现在站在第一艘船上的人用F = 50 N 的水平力来拉绳子,则5 s 后第一艘船的速度大小为_________;第二艘船的速度大小为______. 81 83、87 2大学物理力学题库及答案90、质量为m 的小球自高为y 0处沿水平方向以速率v 0抛出,与地面碰撞后跳起的最大高度为21y 0,水平速率为21v 0,则碰撞过程中 (1) 地面对小球的竖直冲量的大小为 ________________________; (2) 地面对小球的水平冲量的大小为________________________. 91、质量为M 的平板车,以速度v 在光滑的水平面上滑行,一质量为m 的物 体从h 高处竖直落到车子里.两者一起运动时的速度大小为_______________.92、如图所示,质量为M 的小球,自距离斜面高度为h 处自由下落到倾角为30°的光滑固定斜面上.设碰撞就是完全弹性的,则小球对斜面的冲量的大小为________,方向为____________________________. 93、一质量为m 的物体,以初速0v 从地面抛出,抛射角θ=30°,如忽略空气阻力,则从抛出到刚要接触地面的过程中(1) 物体动量增量的大小为________________,(3) 物体动量增量的方向为________________. 94、如图所示,流水以初速度1v 进入弯管,流出时的速度为2v ,且v 1=v 2=v .设每秒流入的水质量为q ,则在管子转弯处,水对管壁的平均冲力大小就是______________,方向__________________.(管内水受到的重力不考虑)95、质量为m 的质点,以不变的速率v 经过一水平光滑轨道的︒60弯角时,轨道作用于质点的冲量大小I=________________.96、质量为m 的质点,以不变的速率v 经过一水平光滑轨道的︒60弯角时,轨道作用于质点的冲量大小I=________________.97、质量为M 的车以速度v 0沿光滑水平地面直线前进,车上的人将一质量为m 的物体相对于车以速度u 竖直上抛,则此时车的速度v =______.98、一质量为30 kg 的物体以10 m·s -1的速率水平向东运动,另一质量为20 kg 的物体以20 m·s -1的速率水平向北运动。

大学物理期末复习卷

大学物理期末复习卷

大学物理期末复习卷一、力学部分1. 质点运动的描述- 位置矢量:描述质点在坐标系中的位置。

- 速度:描述质点位置随时间的变化率。

- 加速度:描述质点速度随时间的变化率。

2. 牛顿运动定律- 第一定律(惯性定律):物体保持静止或匀速直线运动状态,除非外力迫使它改变这种状态。

- 第二定律(动力学基本定律):F = ma,力等于质量与加速度的乘积。

- 第三定律(作用与反作用定律):对于每一个作用力,都有一个大小相等、方向相反的反作用力。

3. 动量守恒定律和能量守恒定律- 动量守恒:在没有外力作用下,系统总动量保持不变。

- 能量守恒:在一个封闭系统中,能量不能被创造或销毁,只能从一种形式转换为另一种形式。

二、热学部分1. 温度和热量- 温度:物体冷热程度的度量。

- 热量:能量的一种形式,与物体内部分子运动有关。

2. 热力学第一定律- 能量守恒在热学中的应用,表述为系统内能的增加等于其吸收的热量与对其做功之和。

3. 热力学第二定律- 表述了热量传递的方向性,例如热量自然从高温流向低温,不可能自发地从低温流向高温。

三、电磁学部分1. 电场和磁场- 电场:电荷周围存在的一种力场。

- 磁场:运动电荷或电流产生的另一种力场。

2. 库仑定律和安培定律- 库仑定律:描述了两个点电荷之间相互作用力的定律。

- 安培定律:描述了电流产生磁场的基本规律。

3. 电磁感应和电磁波- 法拉第电磁感应定律:变化的磁场可以产生电动势。

- 麦克斯韦方程:总结了电场和磁场如何相互转化并形成电磁波。

四、现代物理部分1. 量子力学基础- 普朗克假说:能量以量子的形式发射或吸收。

- 海森堡不确定性原理:粒子的位置和动量不能同时被精确测量。

2. 相对论基础- 狭义相对论:爱因斯坦提出的时间膨胀和长度收缩概念。

- 广义相对论:引力是由物质对时空的曲率造成的理论。

通过以上复习要点,希望能够帮助同学们更好地掌握大学物理的核心概念和原理,为期末考试做好充分准备。

大学物理-力学考题[精品文档]

大学物理-力学考题[精品文档]

一、填空题(运动学)1、一质点在平面内运动, 其1c r =,2/c dt dv =;1c 、2c 为大于零的常数,则该质点作 运动。

2.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段时间内所经过的路程为422t tS ππ+=,式中S 以m 计,t 以s 计,则在t 时刻质点的角速度为 , 角加速度为 。

3.一质点沿直线运动,其坐标x 与时间t 有如下关系:x=A e -β t ( A. β皆为常数)。

则任意时刻t 质点的加速度a = 。

4.质点沿x 轴作直线运动,其加速度t a 4=m/s 2,在0=t 时刻,00=v ,100=x m ,则该质点的运动方程为=x 。

5、一质点从静止出发绕半径R 的圆周作匀变速圆周运动,角加速度为β,则该质点走完半周所经历的时间为______________。

6.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段时间内所经过的路程为2t t s ππ+=式中S 以m 计,t 以s 计,则t=2s 时,质点的法向加速度大小n a = 2/s m ,切向加速度大小τa = 2/s m 。

7. 一质点沿半径为0.10 m 的圆周运动,其角位移θ 可用下式表示32t +=θ (SI). (1) 当2s =t 时,切向加速度t a = ______________; (2) 当的切向加速度大小恰为法向加速度大小的一半时,θ= ______________。

(rad s m 33.3,/2.12)8.一质点由坐标原点出发,从静止开始沿直线运动,其加速度a 与时间t 有如下关系:a=2+ t ,则任意时刻t 质点的位置为=x 。

(动力学)1、一质量为kg m 2=的质点在力()()N t F x 32+=作用下由静止开始运动,若此力作用在质点上的时间为s 2,则该力在这s 2内冲量的大小=I ;质点在第s 2末的速度大小为 。

大学物理期末复习题(力学,静电场,电磁学部分)

大学物理期末复习题(力学,静电场,电磁学部分)

大学物理期末复习题(含力学 电磁学部分)(力学部分)第一章重点:质点运动求导法和积分法,圆周运动角量和线量。

第二章重点:三大守恒律---动量守恒定律、机械能守恒定律、角动量守恒定律 第三章重点:刚体定轴转动定律和角动量守恒定律1.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段时间内所经过的路程为422t t S ππ+=,式中S 以m 计,t 以s 计,则在t 时刻质, (求导法)2.质点沿x 轴作直线运动,其加速度t a 4=m/s 2,在0=t 时刻,00=v ,100=xm ,则该质点的运动方程为=x (积分法)3.一质点从静止出发绕半径R 的圆周作匀变速圆周运动,角加速度为β,则该质点走完半周所经历的时间为。

(积分法)4.一质点在平面内运动, 其1c r =ρ,2/c dt dv =;1c 、2c 为大于零的常数,则该质点作 匀加速圆周运动 。

5.伽利略相对性原理表明对于不同的惯性系牛顿力学的规律都具有相同的形式。

6.一质量为kg m 2=的质点在力()()N t F x 32+=作用下由静止开始运动,若此力作用在质点上的时间为s 2,则该力在这s 2内冲量的大小=I 10 NS ;质点在第s 2末的速度大小为 5 m/s 。

(动量定理和变力做功)7.一质点受力26x F -=的作用,式中x 以m 计,F 以N 计,则质点从0.1=x m沿X 轴运动到x=2.0 m 时,该力对质点所作的功A (变力做功)8.一滑冰者开始自转时其动能为20021ωJ ,当她将手臂收回, 其转动惯量减少为3J ,则她此时自转的角速度ω(角动量守恒定律)9.一质量为m 半径为R 的滑轮,如图所示,用细绳绕在其边缘,绳的另一端系一个质量也为m 的物体。

设绳的长度不变,绳与滑轮间无相对滑动,且不计滑轮与轴间的摩擦力矩,则滑轮的角加mg F =拉绳的一端,则滑轮的角加速(转动定律)10.一刚体绕定轴转动,初角速度80=ωrad/s ,现在大小为8(N ·m )的恒力矩作用下,刚体转动的角速度在2秒时间内均匀减速到4=ωrad/s ,则刚体在此恒力矩的作用下的角加速度=α,刚体对此轴的转动惯量=J 4kg •m 2 。

物理力学复习题

物理力学复习题

物理力学复习题物理力学是自然科学中研究物体的运动和力的学科。

它是物理学的一个重要分支,对于理解和解释宇宙中各种物体和现象的运动规律具有重要意义。

本文将通过一系列物理力学复习题,帮助读者巩固和回顾相关概念与知识。

一、力和运动1. 什么是力?它的基本特征是什么?2. 根据运动定律,当物体受到力的作用时,会发生什么变化?3. 弹力和重力是常见的力的形式,请分别解释它们的特点和应用。

二、牛顿运动定律4. 列举并解释牛顿第一定律。

5. 牛顿第二定律是什么?它如何描述物体受力情况和运动状态之间的关系?6. 根据牛顿第三定律,力的作用和反作用具有什么特点和关系?三、惯性与非惯性参照系7. 什么是惯性系?它与非惯性系有何区别?8. 非惯性参照系中的物体受到的力有何特点和如何计算?四、加速度和速度9. 加速度是什么?它与速度的区别和联系是什么?10. 加速度的计算公式是什么?列举几个具体的计算例子。

11. 如何通过速度、时间和距离计算加速度?五、摩擦力和滑动摩擦系数12. 什么是摩擦力?摩擦力的产生原因是什么?13. 如何计算滑动摩擦系数?列举几个具体的计算例子。

六、力的分解和合成14. 什么是力的分解和合成?它们的物理意义和应用有哪些?15. 解释平衡力和合力的概念及其计算方法。

七、万有引力定律16. 请简要描述万有引力定律及其物理意义。

17. 解释万有引力定律中的引力公式和引力与质量、距离的关系。

八、斜面静摩擦力和垂直力18. 什么是斜面静摩擦力?它与斜面角度的关系如何?19. 如何计算斜面上的垂直力?列举一个具体的计算例子。

九、力的势能和动能20. 力的势能是什么?它与位置的关系如何?21. 动能是什么?它与速度的关系如何?22. 解释机械能守恒定律及其应用。

通过解答上述物理力学复习题,读者可以回顾和巩固力和运动、牛顿运动定律、惯性与非惯性参照系、加速度和速度、摩擦力和滑动摩擦系数、力的分解和合成、万有引力定律、斜面静摩擦力和垂直力、力的势能和动能等相关概念和知识点。

《大学物理》(I1)期末复习题及答案.doc

《大学物理》(I1)期末复习题及答案.doc

大物期末复习题(II)、单项选择题1、质量为加= 0.5畑的质点,在oxy坐标平面内运动,其运动方程为x = 5t,y = 0.5/2,从t二2s到t二4s这段时间内,外力对质点做的功为()A、 1.5JB、3JC、 4.5JD、-1.5J2、对功的概念有以下几种说法:①作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。

②保守力作正功时,系统内相应的势能增加。

③质点运动经一闭合路径,保守力对质点作的功为零。

在上述说法中:()(A)①、②是正确的。

(B)②、③是正确的。

(C)只有②是正确的。

(D)只有③是正确的。

3、如图3所示1/4圆弧轨道(质量为M)与水平面光滑接触,一物体(质量为m)自轨道顶端滑下,M与ni间有摩擦,则A> M与m组成系统的总动量及水平方向动量都守恒,M、m与地组成的系统机械能守恒。

M与m组成系统的总动量及水平方向动量都守恒,M、m与地组成的系统机械能不守恒。

C、M与ni组成的系统动量不守恒,水平方向动量不守恒,M、ni与地组成的系统机械能守恒。

D、M与m组成的系统动量不守恒,水平方向动量守恒,M、m与地组成的系统机械能不守恒。

图34、一个圆形线环,它的一半放在一分布在方形区域的匀强磁场中,另一半位于磁场之外,如图所示。

磁场的方 向垂直指向纸内。

预使圆环中产生逆 时针方向的感应电流,应使()线环向右平移 B 、线环向上平线环向左平移 D 、磁场强度 减 若尺寸相同的铁环与铜环所包围的而积中穿过相同变化率的磁通量,则在两 环屮( )(A) 感应电动势相同,感应电流不同.(B) 感应电动势不同,感应电流也不同.(C) 感应电动势不同,感应电流相同.(D) 感应电动势相同,感应电流也相同.6、线圈与一通有恒定电流的直导线在同一平面内,下列说法正确的是 A 、 当线圈远离导线运动时,线圈中有感应电动势B 、 当线圈上下平行运动时,线圈中有感应电流C 、 直导线中电流强度越大,线圈中的感应电流也越大D 、 以上说法都不对7.真空带电导体球而与一均匀带电介质球体,它们的半径和所带的电量都相 等,设带电球面的静电能为W1,球体的静电能为W2,则()A 、W1>W 2;B 、W 1<W 2;C 、W 1=W2D 、无法比较 &关于高斯定理的理解有下面几种说法,其中正确的是:()(A) 如果高斯面上E 处处为零,则该面内必无电荷(B) 如果高斯面内无电荷,则高斯面上E 处处为零(C) 如果高斯面上E 处处不为零,则高斯面内必有电荷(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零9•两个同心的均匀带电球面,内球面半径为R 】、带有电荷外球面半径为&、 带有电荷则在内球面里面、距离球心为r(r<R.<R 2)处的P 点的场强大小E 为:()(A)(B)—+ ―(C)-^ (D)0 4亦0广 4亦()/?2「 4齊厂 A 、移C、弱10•如图所示,螺绕环截面为矩形,通有电流I,导线总匝数为M内外半径分别为R1和R2,则当R2 >r >R1时,磁场的分布规律为()11. 4、一根很长的电缆线由两个同轴的圆柱面导体组成,若这两个圆柱面的半 径分别为召和用(召〈施),通有等值反向电流,那么下列哪幅图正确反映了电流 产生的磁感应强度随径向距离的变化关系?()12、一个半径为厂的半球面如图放在均匀磁场屮,通过半球面的磁通量 为( )(A) 2nr 2B(B) Ttr 2B (C) 2nr 2Bcosa (D) 7ir 2Bcosa 13. 带电导体达到静电平衡时, 其正确结论是A 、 导体表面上曲率半径小处电荷密度小B 、 表面曲率较小处电势较高C 、 导体内部任一点电势都为零D 、 导体内任一点与其表面上任一点的电势差等于零M &NI⑷ 0 (B) ^7 (C) Kr (D) 1 N^S J B °、R\ R 214.在电场中的导体内部的()(A)电场和电势均为零;(B)(C)电势和表面电势相等;(D)15•对于带电的孤立导体球,()A、导体球内部的场强和电势均为零C、导体内电势比导体表面高法确定16.如图所示,绝缘带电导体上a, b, c三点,屯荷密度是(),屯势是()A、a点最大B、b点最大C^ c点最大D^ d点最大导体17.电量分别为6, q2,细的三个点电荷分别位于同一圆周的三个点上,如图所示.设无穷远处为电势零点,圆半径为R,则b点处的电势______________ 18.—个不带电的空腔导体壳,内半径为R,在腔内离球心的距离为a处放一点电荷+q,如图所示,用导线把球壳接地后,再把地线撤去。

安徽大学期末试卷大学物理力学题库及答案(考试常考).doc

安徽大学期末试卷大学物理力学题库及答案(考试常考).doc

一、选择题:(每题3分)1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向.(B) 匀加速直线运动,加速度沿x 轴负方向.(C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ ]2、一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为(A) 5m .(B) 2m . (C) 0. (D) -2 m . (E) -5 m. [ b ]3、图中p 是一圆的竖直直径pc 的上端点,一质点从p 开始分别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比较是(A) 到a 用的时间最短.(B) 到b 用的时间最短.(C) 到c 用的时间最短.(D) 所用时间都一样. [ d ]4、 一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s .(C) 等于2 m/s . (D) 不能确定. [ d ]5、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r ϖϖϖ22+=(其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ ]6、一运动质点在某瞬时位于矢径()y x r ,ϖ的端点处, 其速度大小为 (A) t r d d (B) t r d d ϖ (C) t r d d ϖ (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ ]7、 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为-12O a p(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0. [ ]8、 以下五种运动形式中,a ϖ保持不变的运动是(A) 单摆的运动. (B) 匀速率圆周运动.(C) 行星的椭圆轨道运动. (D) 抛体运动.(E) 圆锥摆运动. [ ]9、对于沿曲线运动的物体,以下几种说法中哪一种是正确的:(A) 切向加速度必不为零.(B) 法向加速度必不为零(拐点处除外).(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零.(D) 若物体作匀速率运动,其总加速度必为零. (E) 若物体的加速度a ϖ为恒矢量,它一定作匀变速率运动. [ ]10、 质点作曲线运动,r ϖ表示位置矢量,v ϖ表示速度,a ϖ表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d , (4) t a t =d /d v ϖ.(A) 只有(1)、(4)是对的.(B) 只有(2)、(4)是对的.(C) 只有(2)是对的.(D) 只有(3)是对的. [ ]11、 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ ] 12、 一物体从某一确定高度以0v ϖ的速度水平抛出,已知它落地时的速度为t v ϖ,那么它运动的时间是(A) g t 0v v -. (B) gt 20v v - . (C)()g t 2/1202v v -. (D) ()g t 22/1202v v - . [ ] 13、一质点在平面上作一般曲线运动,其瞬时速度为v ϖ,瞬时速率为v ,某一时间内的平均速度为v ϖ,平均速率为v ,它们之间的关系必定有:(A )v v v,v ==ρρ (B )v v v,v =≠ρρ(C )v v v,v ≠≠ρρ (D )v v v,v ≠=ρρ [ d ]14、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i ϖ、j ϖ表示),那么在A 船上的坐标系中,B 船的速度(以m/s为单位)为 (A) 2i ϖ+2j ϖ. (B) -2i ϖ+2j ϖ. (C) -2i ϖ-2j ϖ. (D) 2i ϖ-2j ϖ. [ ]15、一条河在某一段直线岸边同侧有A 、B 两个码头,相距1 km .甲、乙两人需要从码头A 到码头B ,再立即由B 返回.甲划船前去,船相对河水的速度为4 km/h ;而乙沿岸步行,步行速度也为4 km/h .如河水流速为 2 km/h, 方向从A到B ,则(A) 甲比乙晚10分钟回到A . (B) 甲和乙同时回到A .(C) 甲比乙早10分钟回到A . (D) 甲比乙早2分钟回到A .[ ]16、一飞机相对空气的速度大小为 200 km/h, 风速为56 km/h ,方向从西向东.地面雷达站测得飞机速度大小为 192 km/h ,方向是(A) 南偏西16.3°. (B) 北偏东16.3°.(C) 向正南或向正北. (D) 西偏北16.3°.(E) 东偏南16.3°. [ ]17、 下列说法哪一条正确?(A) 加速度恒定不变时,物体运动方向也不变.(B) 平均速率等于平均速度的大小.(C) 不管加速度如何,平均速率表达式总可以写成(v 1、v 2 分别为初、末速率) ()2/21v v v +=.(D) 运动物体速率不变时,速度可以变化. [ ]18、 下列说法中,哪一个是正确的?(A) 一质点在某时刻的瞬时速度是2 m/s ,说明它在此后1 s 内一定要经过2 m的路程.(B) 斜向上抛的物体,在最高点处的速度最小,加速度最大.(C) 物体作曲线运动时,有可能在某时刻的法向加速度为零.(D) 物体加速度越大,则速度越大. [ c ]19、 某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来?(A) 北偏东30°. (B) 南偏东30°.(C) 北偏西30°. (D) 西偏南30°.c]20、在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断?(A) 2a1. (B) 2(a 1+g ).(C) 2a 1+g .(D) a 1+g . [ ]21、 水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F ϖ如图所示.欲使物体A 有最大加速度,则恒力F ϖ与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ. (C) tg θ =μ. (D) ctg θ =μ. [ ]22、 一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为M 的直杆,悬线突然断开,小猴则沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为 (A) g . (B) g M m . (C) g M m M +. (D) g mM m M -+ . (E) g M m M -. [ ]23、如图所示,质量为m 的物体A 用平行于斜面的细线连结置于光滑的斜面上,若斜面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为(A) g sin θ. (B) g cos θ.(C) g ctg θ. (D) g tg θ. [ ]24、如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为m 1和m 2的重物,且m 1>m 2.滑轮质量及轴上摩擦均不计,此时重物的加速度的大小为a .今用一竖直向下的恒力g m F 1=代替质量为m 1的物体,可得质量为m 2的重物的加速度为的大小a ′,则(A) a ′= a (B) a ′> a(C) a ′< a (D) 不能确定. [ ]25、升降机内地板上放有物体A ,其上再放另一物体B ,二者的质量分别为M A 、a 1M B .当升降机以加速度a 向下加速运动时(a <g ),物体A 对升降机地板的压力在数值上等于(A) M A g. (B) (M A +M B )g.(C) (M A +M B )(g +a ). (D) (M A +M B )(g -a ). [ ]26、如图,滑轮、绳子质量及运动中的摩擦阻力都忽略不计,物体A 的质量m 1大于物体B 的质量m 2.在A 、B 运动过程中弹簧秤S 的读数是(A) .)(21g m m + (B) .)(21g m m -(C) .22121g m m m m + (D) .42121g m m m m + [ ]27、如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为(A) θcos mg . (B) θsin mg . (C) θcos mg . (D) θsin mg . [ ] 28、光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1<m 2.今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N应有 (A) N =0. (B) 0 < N < F.(C) F < N <2F. (D) N > 2F. [ ]29、 用水平压力F ϖ把一个物体压着靠在粗糙的竖直墙面上保持静止.当F ϖ逐渐增大时,物体所受的静摩擦力f(A) 恒为零.(B) 不为零,但保持不变.(C) 随F 成正比地增大.(D) 开始随F 增大,达到某一最大值后,就保持不变 [ ]30、两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示.将绳子剪断的瞬间,球1和球2的加速度分别为(A) a 1=g,a 2=g. (B) a 1=0,a 2=g.(C) a 1=g,a 2=0. (D) a 1=2g,a 2=0.[ ]31、竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使1物块A 不下落,圆筒转动的角速度ω至少应为 (A) R g μ (B)g μ(C) Rg μ (D)R g [ ]32、 一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则摆锤转动的周期为(A) g l . (B) gl θcos . (C) g l π2. (D) g l θπcos 2 . [ ] 33、一公路的水平弯道半径为R ,路面的外侧高出内侧,并与水平面夹角为θ.要使汽车通过该段路面时不引起侧向摩擦力,则汽车的速率为(A) Rg . (B) θtg Rg .(C) θθ2sin cos Rg . (D) θctg Rg [ ]34、 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦系数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率(A) 不得小于gR μ. (B) 不得大于gR μ.(C) 必须等于gR 2. (D) 还应由汽车的质量M 决定. [ ]35、 在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动,则转台的角速度ω应满足(A) Rg s μω≤. (B) R g s 23μω≤. (C) R g s μω3≤. (D) Rg s μω2≤. [ ]36、质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为(A) m v . (B) m v .(C) m v . (D) 2m v .[ ]37、一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作θ l ωO R A A23自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定. [ ]38、 如图所示,砂子从h =0.8 m 高处下落到以3 m /s 的速率水平向右运动的传送带上.取重力加速度g =10 m /s 2.传送带给予刚落到传送带上的砂子的作用力的方向为(A)与水平夹角53°向下. (B) 与水平夹角53°向上.(C)与水平夹角37°向上.(D) 与水平夹角37°向下. [ b ]39、 质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s . (B) -9 N·s .(C)10 N·s . (D) -10 N·s . [ ]40、质量分别为m A 和m B (m A >m B )、速度分别为A v ϖ和B v ϖ (v A > v B )的两质点A 和B ,受到相同的冲量作用,则(A) A 的动量增量的绝对值比B 的小.(B) A 的动量增量的绝对值比B 的大.(C) A 、B 的动量增量相等.(D) A 、B 的速度增量相等. [ ]41、在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒. [ ]42、 质量为20 g 的子弹,以400 m/s 的速率沿图示方向射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s . [ ]43、A 、B 两木块质量分别为m A 和m B ,且m B =2m A ,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示.若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E KA /E KB 为(A) 21. (B) 2/2. (C) 2. (D) 2. [ ]44、质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) m v . (B) 0.(C) 2m v . (D) –2m v . [45、机枪每分钟可射出质量为20 g 的子弹900颗,子弹射出的速率为800 m/s ,则射击时的平均反冲力大小为(A) 0.267 N . (B) 16 N .(C)240 N . (D) 14400 N . [ ]46、人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ]47、一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断改变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ]48、一个质点同时在几个力作用下的位移为: k j i r ρρρρ654+-=∆ (SI) 其中一个力为恒力k j i F ρρρρ953+--= (SI),则此力在该位移过程中所作的功为(A) -67 J . (B) 17 J .(C) 67 J . (D) 91 J . [ ]49、质量分别为m 和4m 的两个质点分别以动能E 和4E 沿一直线相向运动,它们的总动量大小为(A) 2mE 2 (B) mE 23.m A m B(C) mE 25. (D) mE 2)122(- [ ]50、如图所示,木块m 沿固定的光滑斜面下滑,当下降h 高度时,重力作功的瞬时功率是: (A)21)2(gh mg . (B)21)2(cos gh mg θ. (C)21)21(sin gh mg θ. (D)1)2(sin gh mg θ. [ ]51、已知两个物体A 和B 的质量以及它们的速率都不相同,若物体A 的动量在数值上比物体B 的大,则A 的动能E KA 与B 的动能E KB 之间(A) E KB 一定大于E KA . (B) E KB 一定小于E KA .(C) E KB =E KA . (D) 不能判定谁大谁小. [ ]52、对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 合外力为0.(B) 合外力不作功.(C) 外力和非保守内力都不作功.(D) 外力和保守内力都不作功. [ ]53、下列叙述中正确的是(A)物体的动量不变,动能也不变.(B)物体的动能不变,动量也不变.(C)物体的动量变化,动能也一定变化.(D)物体的动能变化,动量却不一定变化. [ a ]54、作直线运动的甲、乙、丙三物体,质量之比是 1∶2∶3.若它们的动能相等,并且作用于每一个物体上的制动力的大小都相同,方向与各自的速度方向相反,则它们制动距离之比是(A) 1∶2∶3. (B) 1∶4∶9.(C) 1∶1∶1. (D) 3∶2∶1.(E) 3∶2∶1. [ ]55、 速度为v 的子弹,打穿一块不动的木板后速度变为零,设木板对子弹的阻力是恒定的.那么,当子弹射入木板的深度等于其厚度的一半时,子弹的速度是(A) v 41. (B) v 31. (C) v 21. (D) v 21. [ ]56、 考虑下列四个实例.你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A) 物体作圆锥摆运动.(B) 抛出的铁饼作斜抛运动(不计空气阻力).(C) 物体在拉力作用下沿光滑斜面匀速上升.(D) 物体在光滑斜面上自由滑下. [ ]57、一竖直悬挂的轻弹簧下系一小球,平衡时弹簧伸长量为d .现用手将小球托住,使弹簧不伸长,然后将其释放,不计一切摩擦,则弹簧的最大伸长量(A) 为d . (B) 为d 2.(C) 为2d .(D) 条件不足无法判定. [ ]58、A 、B 两物体的动量相等,而m A <m B ,则A 、B 两物体的动能(A) E KA <E K B . (B) E KA >E KB .(C) E KA =E K B . (D) 孰大孰小无法确定. [ ]59、如图所示,一个小球先后两次从P 点由静止开始,分别沿着光滑的固定斜面l 1和圆弧面l 2下滑.则小球滑到两面的底端Q 时的(A) 动量相同,动能也相同.(B) 动量相同,动能不同. (C) 动量不同,动能也不同.(D) 动量不同,动能相同. [ ]60、一物体挂在一弹簧下面,平衡位置在O 点,现用手向下拉物体,第一次把物体由O 点拉到M 点,第二次由O点拉到N 点,再由N 点送回M 点.则在这两个过程中(A) 弹性力作的功相等,重力作的功不相等. (B) 弹性力作的功相等,重力作的功也相等. (C) 弹性力作的功不相等,重力作的功相等. (D) 弹性力作的功不相等,重力作的功也不相等. [ ]61、物体在恒力F 作用下作直线运动,在时间∆t 1内速度由0增加到v ,在时间∆t 2内速度由v 增加到2 v ,设F 在∆t 1内作的功是W 1,冲量是I 1,在∆t 2内作的功是W 2,冲量是I 2.那么,(A) W 1 = W 2,I 2 > I 1. (B) W 1 = W 2,I 2 < I 1.(C) W 1 < W 2,I 2 = I 1. (D) W 1 > W 2,I 2 = I 1. [ ]62、两个质量相等、速率也相等的粘土球相向碰撞后粘在一起而停止运动. 在此过程中,由这两个粘土球组成的系统,(A) 动量守恒,动能也守恒.(B) 动量守恒,动能不守恒.(C) 动量不守恒,动能守恒.(D) 动量不守恒,动能也不守恒. [ ]63、 一子弹以水平速度v 0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加. [ ]64、一光滑的圆弧形槽M 置于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的?(A) 由m 和M 组成的系统动量守恒.(B) 由m 和M 组成的系统机械能守恒.(C) 由m 、M 和地球组成的系统机械能守恒.(D) M 对m 的正压力恒不作功. [ c ]65、两木块A 、B 的质量分别为m 1和m 2,用一个质量不计、劲度系数为k 的弹簧连接起来.把弹簧压缩x 0并用线扎住,放在光滑水平面上,A 紧靠墙壁,如图所示,然后烧断扎线.判断下列说法哪个正确.(A) 弹簧由初态恢复为原长的过程中,以A 、B 、弹簧为系统,动量守恒.(B) 在上述过程中,系统机械能守恒.(C) 当A 离开墙后,整个系统动量守恒,机械能不守恒.(D) A 离开墙后,整个系统的总机械能为2021kx ,总动量为零. [ ] 66、两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则(A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ ]67、 关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]6568、 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]69、 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少.(C) 不会改变. (D) 如何变化,不能确定. [ ]70、 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) 02ωmRJ J +. (B) ()02ωR m J J +. (C) 02ωmRJ . (D) 0ω. [ ] 71、 如图所示,一水平刚性轻杆,质量不计,杆长l=20 cm ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为ω 0,再烧断细线让两球向杆的两端滑动.不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为(A) 2ω 0. (B)ω 0.(C) 21 ω 0. (D)041ω. [ d ] 72、 刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用.(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ b ]73、 一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是(A) 动能. (B) 绕木板转轴的角动量.68、69、(C) 机械能. (D) 动量. [ ]74、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]75、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针. [ ]76、 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能和角动量都守恒.(E) 动量、机械能和角动量都不守恒. [ ]77、光滑的水平桌面上有长为2l 、质量为m 的匀质细杆,可绕通过其中点O 且垂直于桌面的竖直固定轴自由转动,转动惯量为231ml ,起初杆静止.有一质量为m 的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度是(A) 12v l . (B) l32v . (C) l 43v . (D) lv 3. [ ]78、如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为 (A) ML m v . (B) MLm 23v . (C) MLm 35v . (D) ML m 47v . [ ] 79、光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 (A) L 32v . (B) L54v . (C) L 76v . (D) L98v . (E) L712v . [ ] 80、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A) 31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ]二、填空题:81、一物体质量为M ,置于光滑水平地板上.今用一水平力F ϖ通过一质量为m 的绳拉动物体前进,则物体的加速度a =______________,绳作用于物体上的力T =_________________.82、图所示装置中,若两个滑轮与绳子的质量以及滑轮与其轴之间的摩擦都忽略不计,/绳子不可伸长,则在外力F 的作用下,物体m 1和m 2的加速78、ϖ v ϖ 俯视图79、O v俯视图 8183、在如图所示的装置中,两个定滑轮与绳的质量以及滑轮与其轴之间的摩擦都可忽略不计,绳子不可伸长,m 1与平面之间的摩擦也可不计,在水平外力F 的作用下,物体m 1与m 2的加速度a =______________,绳中的张力T =_________________.84、如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度 a max =_______________________________________.85、一物体质量M =2 kg ,在合外力i t F ϖ)23(+= (SI )的作用下,从静止开始运动,式中i ϖ为方向一定的单位矢量, 则当t=1 s 时物体的速度1v ϖ=__________.86、设作用在质量为1 kg 的物体上的力F =6t +3(SI ).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I=__________________.87、一质量为m 的小球A ,在距离地面某一高度处以速度v ϖ水平抛出,触地后反跳.在抛出t 秒后小球A 跳回原高度,速度仍沿水平方向,速度大小也与抛出时相同,如图.则小球A 与地面碰撞过程中,地面给它的冲量的方向为________________,冲量的大小为____________________.88、两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动.物体A 的动量是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t 是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:83、87ϖ安徽大学期末试卷(1) 开始时,若B 静止,则 P B 1=______________________;(2) 开始时,若B的动量为 – P 0,则P B 2 = _____________.89、有两艘停在湖上的船,它们之间用一根很轻的绳子连接.设第一艘船和人的总质量为250 kg , 第二艘船的总质量为500 kg ,水的阻力不计.现在站在第一艘船上的人用F = 50 N 的水平力来拉绳子,则5 s 后第一艘船的速度大小为_________;第二艘船的速度大小为______.90、质量为m 的小球自高为y 0处沿水平方向以速率v 0抛出,与地面碰撞后跳起的最大高度为21y 0,水平速率为21v 0,则碰撞过程中 (1) 地面对小球的竖直冲量的大小为 ________________________;(2) 地面对小球的水平冲量的大小为________________________.91、质量为M 的平板车,以速度v ϖ在光滑的水平面上滑行,一质量为m 的物 体从h 高处竖直落到车子里.两者一起运动时的速度大小为_______________.92、如图所示,质量为M 的小球,自距离斜面高度为h 处自由下落到倾角为30°的光滑固定斜面上.设碰撞是完全弹性的,则小球对斜面的冲量的大小为________,方向为____________________________. 93、一质量为m 的物体,以初速0v ϖ从地面抛出,抛射角θ=30°,如忽略空气阻力,则从抛出到刚要接触地面的过程中(1) 物体动量增量的大小为________________,(3) 物体动量增量的方向为________________.y 21y安徽大学期末试卷94、如图所示,流水以初速度1v ϖ进入弯管,流出时的速度为2v ϖ,且v 1=v 2=v .设每秒流入的水质量为q ,则在管子转弯处,水对管壁的平均冲力大小是______________,方向__________________.(管内水受到的重力不考虑)95、质量为m 的质点,以不变的速率v 经过一水平光滑轨道的︒60弯角时,轨道作用于质点的冲量大小I=________________.96、质量为m 的质点,以不变的速率v 经过一水平光滑轨道的︒60弯角时,轨道作用于质点的冲量大小I=________________.97、质量为M 的车以速度v 0沿光滑水平地面直线前进,车上的人将一质量为m 的物体相对于车以速度u 竖直上抛,则此时车的速度v =______.98、一质量为30 kg 的物体以10 m·s -1的速率水平向东运动,另一质量为20 kg 的物体以20 m·s -1的速率水平向北运动。

大学物理力学题库及答案

大学物理力学题库及答案

一、选择题:(每题3分)1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向.(B) 匀加速直线运动,加速度沿x 轴负方向.(C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ d ]2、一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为(A) 5m . (B) 2m. (C) 0. (D) -2 m . (E) -5 m. [ b ]3、图中p 是一圆的竖直直径pc 的上端点,一质点从p 开始分别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比较是(A) 到a 用的时间最短.(B) 到b 用的时间最短.(C) 到c 用的时间最短.(D) 所用时间都一样. [ d ]4、 一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s .(C) 等于2 m/s . (D) 不能确定. [ d ]5、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r ϖϖϖ22+=(其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ b ]6、一运动质点在某瞬时位于矢径()y x r ,ϖ的端点处, 其速度大小为 (A) t r d d (B) t r d d ϖ (C) t r d d ϖ (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ d ]7、 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T-12O a p(A) 单摆的运动. (B) 匀速率圆周运动.(C) 行星的椭圆轨道运动. (D) 抛体运动.(E) 圆锥摆运动. [ d ]9、对于沿曲线运动的物体,以下几种说法中哪一种是正确的:(A) 切向加速度必不为零.(B) 法向加速度必不为零(拐点处除外).(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零.(D) 若物体作匀速率运动,其总加速度必为零. (E) 若物体的加速度a ϖ为恒矢量,它一定作匀变速率运动. [ b ]10、 质点作曲线运动,r ϖ表示位置矢量,v ϖ表示速度,a ϖ表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d , (4) t a t =d /d v ϖ.(A) 只有(1)、(4)是对的.(B) 只有(2)、(4)是对的.(C) 只有(2)是对的.(D) 只有(3)是对的. [ d ]11、 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ b c ] 12、 一物体从某一确定高度以0v ϖ的速度水平抛出,已知它落地时的速度为t v ϖ,那么它运动的时间是(A) g t 0v v -. (B) gt 20v v - . (C)()g t 2/1202v v -. (D) ()g t 22/1202v v - . [ c ] 13、一质点在平面上作一般曲线运动,其瞬时速度为v ϖ,瞬时速率为v ,某一时间内的平均速度为v ϖ,平均速率为v ,它们之间的关系必定有:(A )v v v,v ==ρρ (B )v v v,v =≠ρρ(C )v v v,v ≠≠ρρ (D )v v v,v ≠=ρρ [ d ]14、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i ϖ、j ϖ表示),那么在A 船上的坐标系中,B 船的速度(以m/s为单位)为 (A) 2i ϖ+2j ϖ. (B) -2i ϖ+2j ϖ. (C) -2i ϖ-2j ϖ. (D) 2i ϖ-2j ϖ. [ b ]15、一条河在某一段直线岸边同侧有A 、B 两个码头,相距1 km .甲、乙两人需要从码头A 到码头B ,再立即由B 返回.甲划船前去,船相对河水的速度为4 km/h ;而乙沿岸步行,步行速度也为4 km/h .如河水流速为 2 km/h, 方向从A到B ,则(A) 甲比乙晚10分钟回到A . (B) 甲和乙同时回到A .(C) 甲比乙早10分钟回到A . (D) 甲比乙早2分钟回到A .[ a ]16、一飞机相对空气的速度大小为 200 km/h, 风速为56 km/h ,方向从西向东.地面雷达站测得飞机速度大小为 192 km/h ,方向是(A) 南偏西16.3°. (B) 北偏东16.3°.(C) 向正南或向正北. (D) 西偏北16.3°.(E) 东偏南16.3°. [ e c ]17、 下列说法哪一条正确?(A) 加速度恒定不变时,物体运动方向也不变.(B) 平均速率等于平均速度的大小.(C) 不管加速度如何,平均速率表达式总可以写成(v 1、v 2 分别为初、末速率) ()2/21v v v +=.(D) 运动物体速率不变时,速度可以变化. [ d ]18、 下列说法中,哪一个是正确的?(A) 一质点在某时刻的瞬时速度是2 m/s ,说明它在此后1 s 内一定要经过2 m的路程.(B) 斜向上抛的物体,在最高点处的速度最小,加速度最大.(C) 物体作曲线运动时,有可能在某时刻的法向加速度为零.(D) 物体加速度越大,则速度越大. [ c ]19、 某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来?(A) 北偏东30°. (B) 南偏东30°.(C) 北偏西30°. (D) 西偏南30°. [ a c ]20、在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断?(A) 2a 1. (B) 2(a 1+g ).(C) 2a 1+g . (D) a 1+g . [ c ]21、 水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F ϖ如图所示.欲使物体A 有最大加速度,则恒力F ϖ与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ.(C) tg θ =μ.(D) ctg θ =μ. [ d c ]22、 一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为M 的直杆,悬线突然断开,小猴则沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为(A) g . (B) g M m . (C) g M m M +. (D) g mM m M -+ . (E) g M m M -. [ c ]23、如图所示,质量为m 的物体A 用平行于斜面的细线连结置于光滑的斜面上,若斜面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为(A) g sin θ. (B) g cos θ.(C) g ctg θ. (D) g tg θ. [ c ]24、如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为m 1和m 2的重物,且m 1>m 2.滑轮质量及轴上摩擦均不计,此时重物的加速度的大小为a .今用一竖直向下的恒力g m F 1=代替质量为m 1的物体,可得质量为m 2的重物的加速度为的大小a ′,则(A) a ′= a (B) a ′> a(C) a ′< a (D) 不能确定. [ b ]25、升降机内地板上放有物体A ,其上再放另一物体B ,二者的质量分别为M A 、M B .当升降机以加速度a 向下加速运动时(a <g ),物体A 对升降机地板的压力在数值上等于a 1(A) M A g. (B) (M A +M B )g.(C) (M A +M B )(g +a ). (D) (M A +M B )(g -a ). [ d ]26、如图,滑轮、绳子质量及运动中的摩擦阻力都忽略不计,物体A 的质量m 1大于物体B 的质量m 2.在A 、B 运动过程中弹簧秤S 的读数是(A) .)(21g m m + (B) .)(21g m m -(C) .22121g m m m m + (D) .42121g m m m m + [ a d ]27、如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为(A) θcos mg . (B) θsin mg . (C) θcos mg . (D) θsin mg .[ c ]28、光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1<m 2.今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N应有(A) N =0. (B) 0< N < F.(C) F < N <2F. (D) N > 2F. [ b ]29、 用水平压力F ϖ把一个物体压着靠在粗糙的竖直墙面上保持静止.当F ϖ逐渐增大时,物体所受的静摩擦力f(A) 恒为零.(B) 不为零,但保持不变.(C) 随F 成正比地增大.(D) 开始随F 增大,达到某一最大值后,就保持不变 [ a b ]30、两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示.将绳子剪断的瞬间,球1和球2的加速度分别为(A) a 1=g,a 2=g. (B) a 1=0,a 2=g.(C) a 1=g,a 2=0. (D) a 1=2g,a 2=0.[ b d ]31、竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A 不下落,圆筒转动的角速度ω至少应为1(A) R g μ (B)g μ(C) Rg μ (D)R g [ a c ]32、 一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则摆锤转动的周期为(A) g l . (B) gl θcos . (C) g l π2. (D) g l θπcos 2 . [ d ] 33、一公路的水平弯道半径为R ,路面的外侧高出内侧,并与水平面夹角为θ.要使汽车通过该段路面时不引起侧向摩擦力,则汽车的速率为(A) Rg . (B) θtg Rg .(C) θθ2sin cos Rg . (D) θctg Rg [ b ]34、 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦系数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率(A) 不得小于gR μ. (B) 不得大于gR μ.(C) 必须等于gR 2. (D) 还应由汽车的质量M 决定. [ b ]35、 在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动,则转台的角速度ω应满足(A) Rg s μω≤. (B) R g s 23μω≤. (C) R g s μω3≤. (D) Rg s μω2≤. [ a ]36、质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为(A) m v . (B) m v .(C) m v . (D) 2m v .[ a c ]37、一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)θ l ωO R A A23(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定. [ a ]38、 如图所示,砂子从h =0.8 m 高处下落到以3 m /s 的速率水平向右运动的传送带上.取重力加速度g =10 m /s 2.传送带给予刚落到传送带上的砂子的作用力的方向为(A)与水平夹角53°向下. (B) 与水平夹角53°向上.(C)与水平夹角37°向上.(D) 与水平夹角37°向下. [ b ]39、 质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s . (B) -9 N·s .(C)10 N·s . (D) -10 N·s . [ a ]40、质量分别为m A 和m B (m A >m B )、速度分别为A v ϖ和B v ϖ (v A > v B )的两质点A 和B ,受到相同的冲量作用,则(A) A 的动量增量的绝对值比B 的小.(B) A 的动量增量的绝对值比B 的大.(C) A 、B 的动量增量相等.(D) A 、B 的速度增量相等. [ c ]41、在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒. [ a c ]42、 质量为20 g 的子弹,以400 m/s 的速率沿图示方向射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s . [ b ]43、A 、B 两木块质量分别为m A 和m B ,且m B =2m A ,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示.若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E KA /E KB 为(A)21. (B) 2/2. (C) 2. (D) 2. [ d ]44、质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) m v . (B) 0.(C) 2m v . (D) –2m v . [ d45、机枪每分钟可射出质量为20 g 的子弹900颗,子弹射出的速率为800 m/s ,则射击时的平均反冲力大小为(A) 0.267 N . (B) 16 N .(C)240 N . (D) 14400 N . [ d c ]46、人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ c ]47、一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断改变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ c ]48、一个质点同时在几个力作用下的位移为: k j i r ρρρρ654+-=∆ (SI) 其中一个力为恒力k j i F ρρρρ953+--= (SI),则此力在该位移过程中所作的功为(A) -67 J . (B) 17 J .(C) 67 J . (D) 91 J . [ c ]49、质量分别为m 和4m 的两个质点分别以动能E 和4E 沿一直线相向运动,它们的总动量大小为(A) 2mE 2 (B) mE 23.(C) mE 25. (D) mE 2)122(- [ b ]m A m B50、如图所示,木块m 沿固定的光滑斜面下滑,当下降h 高度时,重力作功的瞬时功率是: (A)21)2(gh mg . (B)21)2(cos gh mg θ. (C)21)21(sin gh mg θ. (D)1)2(sin gh mg θ. [ d ]51、已知两个物体A 和B 的质量以及它们的速率都不相同,若物体A 的动量在数值上比物体B 的大,则A 的动能E KA 与B 的动能E KB 之间(A) E KB 一定大于E KA . (B) E KB 一定小于E KA .(C) E KB =E KA . (D) 不能判定谁大谁小. [ d ]52、对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 合外力为0.(B) 合外力不作功.(C) 外力和非保守内力都不作功.(D) 外力和保守内力都不作功. [ d ]53、下列叙述中正确的是(A)物体的动量不变,动能也不变.(B)物体的动能不变,动量也不变.(C)物体的动量变化,动能也一定变化.(D)物体的动能变化,动量却不一定变化. [ d ]54、作直线运动的甲、乙、丙三物体,质量之比是 1∶2∶3.若它们的动能相等,并且作用于每一个物体上的制动力的大小都相同,方向与各自的速度方向相反,则它们制动距离之比是(A) 1∶2∶3. (B) 1∶4∶9.(C) 1∶1∶1. (D) 3∶2∶1.(E) 3∶2∶1. [ d ]55、 速度为v 的子弹,打穿一块不动的木板后速度变为零,设木板对子弹的阻力是恒定的.那么,当子弹射入木板的深度等于其厚度的一半时,子弹的速度是(A) v 41. (B) v 31. (C) v 21. (D) v 21. [ d ]56、 考虑下列四个实例.你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A) 物体作圆锥摆运动.(B) 抛出的铁饼作斜抛运动(不计空气阻力).(C) 物体在拉力作用下沿光滑斜面匀速上升.(D) 物体在光滑斜面上自由滑下. [ c ]57、一竖直悬挂的轻弹簧下系一小球,平衡时弹簧伸长量为d .现用手将小球托住,使弹簧不伸长,然后将其释放,不计一切摩擦,则弹簧的最大伸长量(A) 为d . (B) 为d 2.(C) 为2d .(D) 条件不足无法判定. [ c ]58、A 、B 两物体的动量相等,而m A <m B ,则A 、B 两物体的动能(A) E KA <E K B . (B) E KA >E KB .(C) E KA =E K B . (D) 孰大孰小无法确定. [ b ]59、如图所示,一个小球先后两次从P 点由静止开始,分别沿着光滑的固定斜面l 1和圆弧面l 2下滑.则小球滑到两面的底端Q 时的(A) 动量相同,动能也相同. (B) 动量相同,动能不同.(C) 动量不同,动能也不同.(D) 动量不同,动能相同. [ a ]60、一物体挂在一弹簧下面,平衡位置在O 点,现用手向下拉物体,第一次把物体由O 点拉到M 点,第二次由O点拉到N 点,再由N 点送回M 点.则在这两个过程中(A) 弹性力作的功相等,重力作的功不相等. (B) 弹性力作的功相等,重力作的功也相等. (C) 弹性力作的功不相等,重力作的功相等. (D) 弹性力作的功不相等,重力作的功也不相等. [ b ]61、物体在恒力F 作用下作直线运动,在时间∆t 1内速度由0增加到v ,在时间∆t 2内速度由v 增加到2 v ,设F 在∆t 1内作的功是W 1,冲量是I 1,在∆t 2内作的功是W 2,冲量是I 2.那么,(A) W 1 = W 2,I 2 > I 1. (B) W 1 = W 2,I 2 < I 1.(C) W 1 < W 2,I 2 = I 1. (D) W 1 > W 2,I 2 = I 1. [ c ]62、两个质量相等、速率也相等的粘土球相向碰撞后粘在一起而停止运动. 在此过程中,由这两个粘土球组成的系统,(A) 动量守恒,动能也守恒.(B) 动量守恒,动能不守恒.(C) 动量不守恒,动能守恒.(D) 动量不守恒,动能也不守恒. [ c ]63、 一子弹以水平速度v 0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加. [ b ]64、一光滑的圆弧形槽M 置于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的?(A) 由m 和M 组成的系统动量守恒.(B) 由m 和M 组成的系统机械能守恒.(C) 由m 、M 和地球组成的系统机械能守恒.(D) M 对m 的正压力恒不作功. [ b ]65、两木块A 、B 的质量分别为m 1和m 2,用一个质量不计、劲度系数为k 的弹簧连接起来.把弹簧压缩x 0并用线扎住,放在光滑水平面上,A 紧靠墙壁,如图所示,然后烧断扎线.判断下列说法哪个正确.(A) 弹簧由初态恢复为原长的过程中,以A 、B 、弹簧为系统,动量守恒.(B) 在上述过程中,系统机械能守恒.(C) 当A 离开墙后,整个系统动量守恒,机械能不守恒.(D) A 离开墙后,整个系统的总机械能为2021kx ,总动量为零. [ c ] 66、两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则(A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ b ]67、 关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ c ]6568、 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ b ]69、 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少.(C) 不会改变. (D) 如何变化,不能确定. [ b ]70、 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) 02ωmRJ J +. (B) ()02ωR m J J +. (C) 02ωmRJ . (D) 0ω. [ a ] 71、 如图所示,一水平刚性轻杆,质量不计,杆长l=20 cm ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为ω 0,再烧断细线让两球向杆的两端滑动.不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为(A) 2ω 0. (B)ω 0.(C) 21 ω 0. (D)041ω. [ ] 72、 刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用.(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ ]73、 一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是(A) 动能. (B) 绕木板转轴的角动量.68、69、(C) 机械能. (D) 动量. [ ]74、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]75、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针. [ ]76、 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能和角动量都守恒.(E) 动量、机械能和角动量都不守恒. [ ]77、光滑的水平桌面上有长为2l 、质量为m 的匀质细杆,可绕通过其中点O 且垂直于桌面的竖直固定轴自由转动,转动惯量为231ml ,起初杆静止.有一质量为m 的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度是(A) 12v l . (B) l32v . (C) l 43v . (D) lv 3. [ ]78、如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为 (A) ML m v . (B) MLm 23v . (C) MLm 35v . (D) ML m 47v . [ ] 79、光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 (A) L 32v . (B) L54v . (C) L 76v . (D) L98v . (E) L712v . [ ] 80、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A) 31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ]二、填空题:81、一物体质量为M ,置于光滑水平地板上.今用一水平力F ϖ通过一质量为m 的绳拉动物体前进,则物体的加速度a =______________,绳作用于物体上的力T =_________________.82、图所示装置中,若两个滑轮与绳子的质量以及滑轮与其轴之间的摩擦都忽略不计,绳子不可伸长,则在外力F 的作用下,物体m 1和m 2的加速78、ϖ v ϖ 俯视图79、O v俯视图 8183、在如图所示的装置中,两个定滑轮与绳的质量以及滑轮与其轴之间的摩擦都可忽略不计,绳子不可伸长,m 1与平面之间的摩擦也可不计,在水平外力F 的作用下,物体m 1与m 2的加速度a =______________,绳中的张力T =_________________.84、如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度 a max =_______________________________________.85、一物体质量M =2 kg ,在合外力i t F ϖ)23(+= (SI )的作用下,从静止开始运动,式中i ϖ为方向一定的单位矢量, 则当t=1 s 时物体的速度1v ϖ=__________.86、设作用在质量为1 kg 的物体上的力F =6t +3(SI ).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I=__________________.87、一质量为m 的小球A ,在距离地面某一高度处以速度v ϖ水平抛出,触地后反跳.在抛出t 秒后小球A 跳回原高度,速度仍沿水平方向,速度大小也与抛出时相同,如图.则小球A 与地面碰撞过程中,地面给它的冲量的方向为________________,冲量的大小为____________________.88、两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动.物体A 的动量是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t 是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:83、87ϖ—(1) 开始时,若B 静止,则 P B 1=______________________;(2) 开始时,若B的动量为 – P 0,则P B 2 = _____________.89、有两艘停在湖上的船,它们之间用一根很轻的绳子连接.设第一艘船和人的总质量为250 kg , 第二艘船的总质量为500 kg ,水的阻力不计.现在站在第一艘船上的人用F = 50 N 的水平力来拉绳子,则5 s 后第一艘船的速度大小为_________;第二艘船的速度大小为______.90、质量为m 的小球自高为y 0处沿水平方向以速率v 0抛出,与地面碰撞后跳起的最大高度为21y 0,水平速率为21v 0,则碰撞过程中 (1) 地面对小球的竖直冲量的大小为 ________________________;(2) 地面对小球的水平冲量的大小为________________________.91、质量为M 的平板车,以速度v ϖ在光滑的水平面上滑行,一质量为m 的物 体从h 高处竖直落到车子里.两者一起运动时的速度大小为_______________.92、如图所示,质量为M 的小球,自距离斜面高度为h 处自由下落到倾角为30°的光滑固定斜面上.设碰撞是完全弹性的,则小球对斜面的冲量的大小为________,方向为____________________________. 93、一质量为m 的物体,以初速0v ϖ从地面抛出,抛射角θ=30°,如忽略空气阻力,则从抛出到刚要接触地面的过程中(1) 物体动量增量的大小为________________,(3) 物体动量增量的方向为________________.y 21y—94、如图所示,流水以初速度1v ϖ进入弯管,流出时的速度为2v ϖ,且v 1=v 2=v .设每秒流入的水质量为q ,则在管子转弯处,水对管壁的平均冲力大小是______________,方向__________________.(管内水受到的重力不考虑)95、质量为m 的质点,以不变的速率v 经过一水平光滑轨道的︒60弯角时,轨道作用于质点的冲量大小I=________________.96、质量为m 的质点,以不变的速率v 经过一水平光滑轨道的︒60弯角时,轨道作用于质点的冲量大小I=________________.97、质量为M 的车以速度v 0沿光滑水平地面直线前进,车上的人将一质量为m 的物体相对于车以速度u 竖直上抛,则此时车的速度v =______.98、一质量为30 kg 的物体以10 m·s -1的速率水平向东运动,另一质量为20 kg 的物体以20 m·s -1的速率水平向北运动。

大学物理力学考试题目及答案

大学物理力学考试题目及答案

大学物理力学考试题目及答案一、选择题(每题3分,共30分)1. 一个物体的质量为2kg,受到的力为10N,那么它的加速度是多少?A. 5 m/s²B. 10 m/s²C. 15 m/s²D. 20 m/s²答案:B2. 根据牛顿第三定律,以下哪项描述是错误的?A. 作用力和反作用力大小相等,方向相反B. 作用力和反作用力同时产生,同时消失C. 作用力和反作用力作用在相同的物体上D. 作用力和反作用力作用在不同的物体上答案:C3. 一个物体从静止开始自由下落,忽略空气阻力,其下落的位移与时间的关系是:A. s = gtB. s = 1/2 gt²C. s = 1/2 g(t-1)²D. s = g(t² + 1)答案:B4. 一个物体在水平面上以恒定的加速度运动,以下哪个物理量不守恒?A. 动能B. 动量C. 机械能D. 质能答案:C5. 以下哪个选项不是惯性参考系的特点?A. 静止或做匀速直线运动的参考系B. 相对于其他惯性参考系做匀速直线运动的参考系C. 相对于地球做匀速直线运动的参考系D. 相对于太阳做匀速直线运动的参考系答案:C6. 一个物体在竖直平面内做圆周运动,当它通过最高点时,以下哪个说法是正确的?A. 向心力为零B. 向心力向上C. 向心力向下D. 向心力大小不变答案:B7. 两个质量相同的物体,以相同的初速度在水平面上做匀减速直线运动,它们的加速度相同吗?A. 相同B. 不相同答案:A8. 一个物体在斜面上做匀速直线运动,以下哪个力不做功?A. 重力B. 斜面的支持力C. 摩擦力D. 外力答案:B9. 以下哪个选项是正确的动量守恒条件?A. 系统合外力为零B. 系统合外力不为零,但作用时间很短C. 系统合外力不为零,但作用点相同D. 系统合外力不为零,但作用方向相反答案:A10. 一个物体在水平面上做匀速圆周运动,以下哪个说法是正确的?A. 向心力始终指向圆心B. 向心力始终垂直于速度C. 向心力始终与速度方向相反D. 向心力大小不变答案:ABD二、填空题(每题4分,共20分)11. 牛顿第二定律的数学表达式是:________。

大学物理1期末复习题库第一篇力学

大学物理1期末复习题库第一篇力学

大学物理(1)期末复习题库第一篇 力学一、判断题1. 平均速度和瞬时速度通常都是相等的。

( )2. 若力矢量F 沿任何闭合路径的积分0=⋅⎰Ll d F ,则该力为保守力( ) 3. 任意刚体的形状、大小和质量确定,则该刚体的转动惯量大小确定。

( )4. 在狭义相对论时空观下,一个惯性系中同时(异地)发生的两件事,在另一个与它相对运动的惯性系中则一定不同时发生。

( )5. 物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零。

( )6. 在太阳系中,行星相对于太阳的的角动量不守恒。

( )7. 因为 r r ∆=∆,所以速率等于速度的大小。

( )8. 物体的运动方向与合外力方向不一定相同。

( )。

9. 若系统外力所作的功0≠ext W ,只要0int,=+non ext W W ,则系统机械能保持不变。

( )10. 在高速飞行的光子火箭中的观测者观测到地球上的钟变慢了,则地球上的观测者可认为光子火箭中的钟变快了。

( )11. 假设光子在某惯性系中的速度为c ,那么存在这样的一个惯性系,光子在这个惯性系中的速度不等于c 。

( )。

12. 一物体可以具有恒定的速率但仍有变化的速度( )13. 物体运动的方向一定与它所受的合外力方向相同( )14. 物体运动的速率不变,所受合外力一定为零( )15. 相对论的运动时钟变慢和长度收缩效应是一种普遍的时空属性,与过程的具体性质无关( )16. 质点作圆周运动的加速度不一定指向圆心。

( )17. 有一竖直悬挂的均匀直棒,可绕位于悬挂点并垂直于棒的一端的水平轴无摩擦转动,原静止在平衡位置。

当一质量为m 的小球水平飞来,并与棒的下端垂直地相撞,则在水平方向上该系统的动量守恒 。

( )18. 一物体可具有机械能而无动量,但不可能具有动量而无机械能。

( )19. 内力不改变质点系的总动量,它也不改变质点的总动能。

( )20. 在某个惯性系中同时发生在相同地点的两个事件,对于相对该系有相对运动的其它惯性系一定是不同时的。

大学物理期末复习题及答案(1)

大学物理期末复习题及答案(1)

j i r )()(t y t x +=大学物理期末复习题力学部分一、填空题:1. 已知质点的运动方程,则质点的速度为 ,加速度为 。

2.一质点作直线运动,其运动方程为221)s m 1()s m 2(m 2t t x --⋅-⋅+=,则从0=t 到s 4=t 时间间隔内质点的位移大小 质点的路程 。

3. 设质点沿x 轴作直线运动,加速度t a )s m 2(3-⋅=,在0=t 时刻,质点的位置坐标0=x 且00=v ,则在时刻t ,质点的速度 ,和位置 。

4.一物体在外力作用下由静止沿直线开始运动。

第一阶段中速度从零增至v,第二阶段中速度从v 增至2v ,在这两个阶段中外力做功之比为 。

5.一质点作斜上抛运动(忽略空气阻力)。

质点在运动过程中,切向加速度是 ,法向加速度是 ,合加速度是 。

(填变化的或不变的) 6.质量m =40 kg 的箱子放在卡车的车厢底板上,已知箱子与底板之间的静摩擦系数为s =0.40,滑动摩擦系数为k =0.25,试分别写出在下列情况下,作用在箱子上的摩擦力的大小和方向.(1)卡车以a = 2 m/s 2的加速度行驶,f =_________,方向_________.(2)卡车以a = -5 m/s 2的加速度急刹车,f =________,方向________.7.有一单摆,在小球摆动过程中,小球的动量 ;小球与地球组成的系统机械能 ;小球对细绳悬点的角动量 (不计空气阻力).(填守恒或不守恒)二、单选题:1.下列说法中哪一个是正确的( )(A )加速度恒定不变时,质点运动方向也不变(B )平均速率等于平均速度的大小(C )当物体的速度为零时,其加速度必为零(D )质点作曲线运动时,质点速度大小的变化产生切向加速度,速度方向的变化产生法向加速度。

2. 质点沿Ox 轴运动方程是m 5)s m 4()s m 1(122+⋅-⋅=--t t x ,则前s 3内它的( )(A )位移和路程都是m 3 (B )位移和路程都是-m 3(C )位移为-m 3,路程为m 3 (D )位移为-m 3,路程为m 53. 下列哪一种说法是正确的( )(A )运动物体加速度越大,速度越快(B )作直线运动的物体,加速度越来越小,速度也越来越小(C )切向加速度为正值时,质点运动加快(D )法向加速度越大,质点运动的法向速度变化越快4.一质点在平面上运动,已知质点的位置矢量的表示式为j i r 22bt at +=(其中a 、b 为常量),则该质点作( )(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动5. 用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时,它( )(A )将受到重力,绳的拉力和向心力的作用(B )将受到重力,绳的拉力和离心力的作用(C )绳子的拉力可能为零(D )小球可能处于受力平衡状态6.功的概念有以下几种说法(1)保守力作功时,系统内相应的势能增加(2)质点运动经一闭合路径,保守力对质点作的功为零(3)作用力和反作用力大小相等,方向相反,所以两者作功的代数和必为零以上论述中,哪些是正确的( )(A )(1)(2) (B )(2)(3)(C )只有(2) (D )只有(3)7.质量为m 的宇宙飞船返回地球时,将发动机关闭,可以认为它仅在地球引力场中运动,当它从与地球中心距离为1R 下降到距离地球中心2R 时,它的动能的增量为( )(A )2E R mm G ⋅ (B )2121E R R R R m Gm - (C )2121E R R R m Gm - (D )222121E R R R R m Gm --8.下列说法中哪个或哪些是正确的( )(1)作用在定轴转动刚体上的力越大,刚体转动的角加速度应越大。

大学物理力学综合复习资料Word版

大学物理力学综合复习资料Word版

《 大学物理(力学) 》期末综合复习资料一、选择题1、一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r22+=(其中a 、b 为常量)则该质点作(A )匀速直线运动.(B )变速直线运动.(C )抛物线运动.(D )一般曲线运动. 2、 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是(A )匀加速运动.(B )匀减速运动.(C )变加速运动.(D )变减速运动.3、下列说法哪一条正确?(A )加速度恒定不变时,物体运动方向也不变. (B )平均速率等于平均速度的大小.(C )不管加速度如何,平均速率表达式总可以写成 2/)(21v v v +=.(D )运动物体速率不变时,速度可以变化.4、一质点作直线运动,某时刻的瞬时速度2=v m /s ,瞬时加速度2-=a m / s 2,则一秒钟后质点的速度(A )等于零. (B )等于2-m / s .(C )等于 2 m / s . (D )不能确定.5、质点作半径为 R 的变速圆周运动时的加速度大小为(V 表示任一时刻质点的速率)(A )dtdv. (B )R v 2.(C )dt dv +R v 2. (D )[2)(dtdv +)(24R v ]1/2.6、两物体A 和B ,质量分别为1m 和2m ,互相接触放在光滑水平面上,如图所示.对物体A 以水平推力F ,则物体A 对物体B 的作用力等于(A )F m m m 211+ (B )F(C)F m m m 212+ (D) F m m127、质量分别为m 和M 的滑块A 和B ,叠放在光滑水平桌面上,如图所示.A 、B 间静摩擦系数为s μ,滑动摩擦系数为k μ,系统原处于静止.今有一水平力作用于A 上,要使A 、B 不发生相对滑动,则应有(A )mg F s μ≤ (B )mg M m F s )/1+≤(μ . (C )g M F s )1+≤(μ(D ) MmM mgF k +≤μ. 8、两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示.将绳子剪断的瞬间,球1和球2的加速度分别为 (A) a 1=g,a 2=g. (B) a 1=0,a 2=g.(C) a 1=g,a 2=0. (D) a 1=2g,a 2=0.球1球29、一质点在如图所示的坐标平面内作圆周运动,有一力)(0j y i x F F+=作用在质点上.在该质点从坐标原点运动到(0,2R )位置过程中,力F对它所作的功为(A) 20R F . (B) 202R F .(C) 203R F . (D) 204R F .11、质量为m 的质点在外力作用下,其运动方程为j t B i t A rωωsin cos +=,式中ω、、B A 都是正常数,则外力在0=t 到ωπ2/=t 这段时间内所作的功为:)(D )(C )(B )(A 222222222222212121A B m B A m B A m B A m --++ωωωω)()()()(12、一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变。

大学物理力学题库及答案(一)

大学物理力学题库及答案(一)

大学物理力学题库及答案(一)引言概述:大学物理力学是大多数理工科学生必修的一门课程。

为了帮助学生更好地掌握力学的知识,这篇文档将提供一个包含题库及答案的资源。

以下将根据五个主要的大点,对大学物理力学题库及其答案进行详细介绍。

1. 稳定平衡与静力学- 分析静止物体的平衡条件- 计算静止物体受力和力矩- 掌握各种简化模型的平衡问题- 解决悬挂、倾斜、张力等相关问题- 熟悉稳定平衡的实际应用场景2. 动力学与运动学- 掌握受力物体的运动规律- 理解牛顿三定律- 计算受力物体的加速度、速度和位移- 解决各种复杂运动问题,比如自由落体、坡面上滑动等- 分析运动过程中的相关力和能量转化3. 力学中的能量与功- 理解能量与功的基本概念- 利用动能定理、功率定律等计算能量和功- 研究势能和机械能的转化- 分析简谐振动和受迫振动的能量问题- 应用能量与功的概念解决实际场景中的问题4. 质点系与质心运动- 理解质点系和质心的概念- 计算质点系的质心位置与速度- 研究质点系的动量、冲量与动量守恒定律- 掌握碰撞过程中动量和动能的转化- 解决质点系和质心运动相关的实际问题5. 力学中的旋转运动- 熟悉转动惯量和角动量的概念- 掌握刚体的转动动力学和平衡条件- 计算刚体在旋转过程中的角速度和角加速度- 分析几何体在滚动和转动过程中的运动特性- 研究转动和平衡问题在实际应用中的应用总结:本文介绍了大学物理力学题库及答案,包括稳定平衡与静力学、动力学与运动学、力学中的能量与功、质点系与质心运动以及力学中的旋转运动等五个主要大点。

透过对这些知识的学习和理解,学生将能更好地掌握物理力学的基本概念和解题能力,从而在学术和实际应用中取得突破。

大学物理(少学时)试题库

大学物理(少学时)试题库

大学物理(少学时)试题库大学物理(少学时)期末复习题库第一篇力学一、判断题1.一质点的运动方程为x=x(t),y=y(t),故r =故速度dr v dt=。

() 2. 势能是相对量;而一对作用力与反作用力的功却是绝对量。

()3.在太阳系中,行星相对于太阳的的角动量不守恒。

()4. 所有惯性系对物理基本规律都是等价的。

()5. 若两物体发生完全弹性碰撞,则在碰撞前后,系统的总动量守恒,但系统的总动能有损失。

()6. 物体做匀速圆周运动时,合加速度为零。

()7. 若力矢量F 沿任何闭合路径的积分0=??Ll d F ,则该力为保守力,存在势能。

()8. 在惯性系S 中观察者看来同时发生的两个事件,在相对S 作匀速直线运动的惯性系S '中观察者看来一定不会同时发生。

()9. 质点作圆周运动的加速度不一定指向圆心。

()10. 对一个物体系而言,如果它受到的合外力为零,则该系统的机械能必守恒。

()11. 一物体可具有机械能而无动量,但不可能具有动量而无机械能。

()12. 内力不改变质点系的总动量,它也不改变质点的总动能。

()13. 在某个惯性系中同时发生的两个事件,对于与该系有相对运动的其它惯性系一定是不同时的。

()14. 圆周运动中,切向加速度只反映速度大小的变化。

()15. 刚体绕定轴转动时,它的角加速度与所受合外力矩成正比,与刚体对转轴的转动惯量也成正比。

()16. 如果所有外力和非保守内力对系统都不做功,则在系统运动的全过程中,它的机械能保持不变。

()二、填空题1. 一小球沿斜面向上运动,其运动方程为258s t t =+-,则小球运动到最高的时刻是秒。

2. 狭义相对论的两条基本假设是和。

3. 质点的运动方程为23t x =。

从0=t 时开始运动,则在s t 11=到s t 32=的时间间隔内,质点的平均速度为。

4. 刚体定轴转动时的转动定律为。

5. 小球沿斜面向上运动,其运动方程为288s t t =+-,则小球运动到最高点的时刻为。

大学物理-力学考题

大学物理-力学考题

一、填空题(运动学)1、一质点在平面内运动, 其1c r =,2/c dt dv =;1c 、2c 为大于零的常数,则该质点作运动。

2.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段时间内所经过的路程为422t tS ππ+=,式中S 以m 计,t 以s 计,则在t 时刻质点的角速度为 , 角加速度为 。

3.一质点沿直线运动,其坐标x 与时间t 有如下关系:x=A e - t( A. 皆为常数)。

则任意时刻t 质点的加速度a = 。

4.质点沿x 轴作直线运动,其加速度t a 4=m/s 2,在0=t 时刻,0=v,100=x m ,则该质点的运动方程为=x 。

5、一质点从静止出发绕半径R 的圆周作匀变速圆周运动,角加速度为β,则该质点走完半周所经历的时间为______________。

6.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段时间内所经过的路程为2t ts ππ+=式中S 以m 计,t 以s 计,则t=2s 时,质点的法向加速度大小na = 2/s m ,切向加速度大小τa =2/s m 。

7. 一质点沿半径为0.10 m 的圆周运动,其角位移θ 可用下式表示32t +=θ (SI). (1) 当2s =t 时,切向加速度ta = ______________; (2) 当的切向加速度大小恰为法向加速度大小的一半时,θ= ______________。

(rad sm 33.3,/2.12)8.一质点由坐标原点出发,从静止开始沿直线运动,其加速度a 与时间t 有如下关系:a=2+ t ,则任意时刻t 质点的位置为=x 。

(动力学)1、一质量为kg m 2=的质点在力()()N t F x32+=作用下由静止开始运动,若此力作用在质点上的时间为s 2,则该力在这s 2内冲量的大小=I ;质点在第s 2末的速度大小为 。

2、一质点受力23x F -=的作用,式中x 以m 计,F 以N计,则质点从0.1=x m 沿X 轴运动到0.2x =m 时,该力对质点所作功=A 。

大学物理之力学复习题及答案

大学物理之力学复习题及答案

力学复习题一、选择题1.以下运动方程中表示质点的运动轨迹为直线的是()(A)jt i t r)12(3-+=(B)jt i t r)12(32-+=(C)jt i e r t)12(32-+=(D)jt i t r)12(63-+=2.下面选项中表示运动轨迹为椭圆的运动方程是()(A)jt i t r)12(3-+=(B)jt i t r2sin 42cos 3+=(C)jt i e r t)12(32-+=(D)jt i t r)12(63-+=3.下面运动方程中,表示为匀速直线运动的是[](A)t x 2=(B)22t x =(C)te x 2=(D)t x 2cos 3=4.关于速度和加速度的说法中正确的是()(A)质点运动速度大,则加速度也大(B)质点具有恒定的速率,则质点的加速度一定保持不变(C)质点速度方向恒定,则加速度的方向也一定保持不变(D)质点作曲线运动时,有可能在某时刻法向加速度为零5.质点以速度)/(4s m v =沿Ox 轴做匀速直线运动,并已知s t 3=时,质点位于m x 9=处,则该质点的运动学方程为(A )tx 2=(B )3-4t x =(C )123143-+=t t x (D )123143++=t t x 6.质点作曲线运动,r表示位置矢量,v 表示速度,a表示加速度,S 表示路程,a t 表示切向加速度,下列表达式中,(1)d /d t a =v ,(2)d /d r t =v ,(3)d /d S t =v ,(4)d /d t t a =v .(A )只有(1)、(4)是对的.(B )只有(2)、(4)是对的.(C )只有(2)是对的.(D )只有(3)是对的.7.若一质点做直线运动其速度为)(t v v =,则以下选项中表示质点在0到1t 时间内的路程的是()(A )⎰1)(t dtt v (C )dtdv(D )1vt8.质点沿O x 轴做直线运动,并已知某时刻的瞬时速度为s m v /2=时,且位置坐标为m x 2=则一秒钟后该质点的的位置坐标为=x (A )4m (B )0(C )3m (D )不能确定9.对于沿曲线运动的物体,以下几种说法中哪一种时正确的?(A )切向加速度必不为零.(B )法向加速度有可能为零.(C )法向加速度必为零.(D )若物体的加速度为恒矢量,它一定作匀变速率运动.10.某质点作直线运动的运动学方程为6533+-=t t x (SI),则该质点作(A)匀加速直线运动,加速度沿x 轴正方向.(B)匀加速直线运动,加速度沿x 轴负方向.(C)变加速直线运动,加速度沿x 轴正方向.(D)变加速直线运动,加速度沿x 轴负方向.11.质点沿半径为R的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A)T R /2π,T R /2π.(B)0,T R /2π(C)0,0.(D)T R /2π,0.12.一质点沿x 轴运动,它的速度v 和时间t 的关系如下图所示,在1t -0时间内,质点沿x 轴()向作()运动,在21t -t 时间内,质点沿x 轴()向作()运动(A )负,匀减速直线,正,匀减速直线(B )负,匀加速直线,正,匀减速直线(C )负,匀加速直线,负,匀减速直线(D )负,匀减速直线,负,匀加速直线13.下列说法中正确的是()(A )加速度恒定不变时,物体运动方向也不变.(B )平均速率等于平均速度的大小.(C )无论加速度如何,平均速率表达式总可以写为(V 1+V 2)/2.(D )运动物体速率不变时,速度可以变化.14.一质点作直线运动,某时刻的瞬时速度为2m/s ,瞬时加速度a=—2m/s 2,则1s 后质点的速度()(A )0m/s .(B )2m/s .(C )3m/s .(D )不能确定.15.某质点作直线运动的运动方程为)(6533SI t t x +-=,则质点作(A)匀加速直线运动,加速度沿x 轴正方向.(B)匀加速直线运动,加速度沿x 轴负方向.(C)变加速直线运动,加速度沿x 轴正方向.(D)变加速直线运动,加速度沿x 轴负方向.16.一物体做直线运动,运动方程为3226t t x -=,其中x 的单位为m ,t 的单位为s.则该物体在t=0时的速度为(A)mv .(B)-2m/s(C)6m/s .(D)0.17.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是()(A )匀加速运动.(B )匀速运动.(C )变加速运动.(D )减速运动.18.三个质量相等的物体A 、B 、C 紧靠在一起,置于光滑水平面上,如图。

大学物理一期末复习题(力学)

大学物理一期末复习题(力学)

2011年春大学物理一期末复习题(力学)一、选择题(30分,每小题3分)1. (0604) 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ ] 2. (0603)下列说法中,哪一个是正确的?(A) 一质点在某时刻的瞬时速度是2 m/s ,说明它在此后1 s 内一定要经过2 m 的路程.(B) 斜向上抛的物体,在最高点处的速度最小,加速度最大.(C) 物体作曲线运动时,有可能在某时刻的法向加速度为零.(D) 物体加速度越大,则速度越大. [ ]3.(0042) 两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示.将绳子剪断的瞬间,球1和球2的加速度分别为(A) a 1=g,a 2=g. (B) a 1=0,a 2=g.(C) a 1=g,a 2=0. (D) a 1=2g,a 2=0.[ ]4.(0385) 一质量为M 的斜面原来静止于水平光滑平面上,将一质量为m 的木块轻轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将(A) 保持静止. (B) 向右加速运动. (C) 向右匀速运动. (D) 向左加速运动.[ ] 5. (0654)图示系统置于以g a 21=的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮 轴上和桌面上的摩擦并不计空气阻力,则绳中张力为(A) mg . (B) m g 21.(C) 2mg . (D) 3mg / 4. [ ]6. (0084)一质量为m 的质点,在半径为R 的半球形容器中,由静止开始自边缘上的A 点滑下,到达最低点B 时,它对容器的正压力为N .则质点自A 滑到B 的过程中,摩擦力对其作的功为(A) )3(21mg N R -. (B) )3(21N mg R -. (C) )(21mg N R -. (D) )2(21mg N R -. [ ] 7. (0179)空中有一气球,下连一绳梯,它们的质量共为M .在梯上站一质量为m 的人,起始时气球与人均相对于地面静止.当人相对于绳梯以速度v 向上爬时,气球的速度为(以向上为正)(A) M m m +-v . (B) Mm M +-v . a A B(C) M m v -. (D) mM m v )(+-. (E) M M m v )(+-. [ ] 8. (0668)有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的小球分别从这两个斜面的顶点,由静止开始滑下,则(A) 小球到达斜面底端时的动量相等.(B) 小球到达斜面底端时动能相等.(C) 小球和斜面(以及地球)组成的系统,机械能不守恒.(D) 小球和斜面组成的系统水平方向上动量守恒. [ ]9. (0128)如图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体(A) 动能不变,动量改变.(B) 动量不变,动能改变.(C) 角动量不变,动量不变. (D) 角动量改变,动量改变. (E) 角动量不变,动能、动量都改变.10. (5028)如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB . (C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ]二、填空题(30分)11. (5分)(0002)两辆车A 和B ,在笔直的公路上同向行驶,它们从同一起始线上同时出发,并且由出发点开始计时,行驶的距离 x 与行驶时间t 的函数关系式:x A = 4 t +t 2,x B = 2 t 2+2 t 3 (SI),(1) 它们刚离开出发点时,行驶在前面的一辆车是______________;(2) 出发后,两辆车行驶距离相同的时刻是____________________;(3) 出发后,B 车相对A 车速度为零的时刻是__________________.12.(3分)(0526)倾角为30°的一个斜面体放置在水平桌面上.一个质量为2 kg 的物体沿斜面下滑,下滑的加速度为 3.0 m/s 2.若此时斜面体静止在桌面上不动,则斜面体与桌面间的静摩擦力f =____________.13.(4分)(0625)画出物体A 、B 的受力图:(1) 在水平圆桌面上与桌面一起做匀速转动的物体A ;(2) 和物体C 叠放在一起自由下落的物体B .14.(3分)(0634)如图所示,钢球A 和B 质量相等,正被绳牵着以ω0=4 rad/s 的角速度绕竖直轴转动,二球与轴的距离都为r 1=15cm .现在把轴上环C 下移,使得两球离轴的距离缩减为r 2=5 cm .则(1)B (2)钢球的角速度ω=__________.15. (3分)(0082)图中,沿着半径为R 圆周运动的质点,所受的几个力中有一个是恒力0F ,方向始终沿x 轴正向,即i F F 00=.当质点从A 点沿逆时针方向走过3 /4圆周到达B 点时,力 0F 所作的功为W =__________.16. (3分)(0147) 决定刚体转动惯量的因素是________________________________________________________________________________________________.17. (3分)(0682)质量为M = 0.03 kg 、长为l = 0.2 m 的均匀细棒,可在水平面内绕通过棒中心并与棒垂直的光滑固定轴转动,其转动惯量为M l2 / 12.棒上套有两个可沿棒滑动的小物体,它们的质量均为m = 0.02 kg .开始时,两个小物体分别被夹子固定于棒中心的两边,到中心的距离均为r = 0.05 m ,棒以 0.5π rad/s 的角速度转动.今将夹子松开,两小物体就沿细棒向外滑去,当达到棒端时棒的角速度ω =______________________.18. (3分)(4362)静止时边长为 50 cm 的立方体,当它沿着与它的一个棱边平行的方向相对于地面以匀速度 2.4×108 m ·s -1运动时,在地面上测得它的体积是____________.19. (3分)(4176)当粒子的动能等于它的静止能量时,它的运动速度为______________. 三、计算题(40分)20. (10分)(0530) 一质量为60 kg 的人,站在质量为30 kg 的底板上,用绳和滑轮连接如图.设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳子不可伸长.欲使人和底板能以1 m/s 2的加速度上升,人对绳子的拉力T 2多大?人对底板的压力多大? (取g =10 m/s 2)21.(5分)(0376)一质点的运动轨迹如图所示.已知质点的质量为20 g ,在A 、B 二位置处的速率都为20 m/s ,A v 与x 轴成45°角,B v 垂直于y 轴,求质点由A 点到B 点这段时间内,作用在质点上外力的总冲量.22. (5分)(0434)个弹簧下端挂质量为0.1 kg 的砝码时长度为0.07m ,挂0.2 kg 的砝码时长度为0.09 m .现在把此弹簧平放在光滑桌面上,并要沿水平方向从长度l 1=0.10 m 缓慢拉长到l 2=0.14 m ,外力需作功多少?x y O B A B v A v23. (5分)(0467)如图所示,质量为m 2的物体与轻弹簧相连,弹簧另一端与一质量可忽略的挡板连接,静止在光滑的桌面上.弹簧劲度系数为k .今有一质量为m 1速度为0v 的物体向弹簧运动并与挡板正碰,求弹簧最大的被压缩量.24.(5分)(5357)设有宇宙飞船A 和B ,固有长度均为l 0 = 100 m ,沿同一方向匀速飞行,在飞船B 上观测到飞船A 的船头、船尾经过飞船B 船头的时间间隔为∆t = (5/3)×10-7 s ,求飞船B 相对于飞船A 的速度的大小.25.(5分)(4735)已知μ 子的静止能量为 105.7 MeV ,平均寿命为 2.2×10-8 s .试求动能为 150 MeV 的μ 子的速度v 是多少?平均寿命τ 是多少?26.(5分)(8018)设惯性系S ′相对于惯性系S 以速度u 沿x 轴正方向运动,如果从S ′系的坐标原点O ′沿x ′(x ′轴与x 轴相互平行)正方向发射一光脉冲,则(1) 在S ′系中测得光脉冲的传播速度为c .(2) 在S 系中测得光脉冲的传播速度为c + u .以上二个说法是否正确?如有错误,请说明为什么错误并予以改正.2007年春大学物理一期末复习题答案(力学)一、选择题1 C,2 C,3 D,4 A,5 D,6 A,7 A,8 D, 9E, 10 C二、填空题11. A 1分t= 1.19 s 2分t= 0.67 s 2分12. 5.2N 3分13. (1) 见图. 2分 (2) 见图. 2分14. 36rad/s 3分15. –F 0R16. 刚体的质量和质量分布以及转轴的位置(或刚体的形状、大小、密度分布和转轴位置;或刚体的质量分布及转轴的位置.) 3分17. 0.2πrad ·s -1 3分18. 0.075 m 3 3分Bg AN f g m A (1)(2)19.c 321 3分 三、计算题20. 人受力如图(1) 图2分 a m g m N T 112=-+ 1分 底板受力如图(2) 图2分a m g m N T T 2221=-'-+ 2分212T T = 1分N N ='由以上四式可解得a m m g m g m T )(421212+=--∴5.2474/))((212=++=a g m m T N 1分 5.412)(21=-+=='T a g m N N N 1分21. 解:由动量定理知质点所受外力的总冲量 I =12v v v m m m -=∆)( 由A →BA B Ax Bx x m m m m I v v v v --=-=cos45°=-0.683 kg·m·s -1 1分 I y =0- m v Ay = - m v A sin45°= - 0.283 kg·m·s -1 1分 I =s N 739.022⋅=+y x I I 2分方向:==11/tg θθx y I I 202.5° (θ 1为与x 轴正向夹角) 1分22. 解:设弹簧的原长为l 0,弹簧的劲度系数为k ,根据胡克定律: 0.1g =k (0.07-l 0) , 0.2g =k (0.09-l 0)解得: l 0=0.05 m ,k =49 N/m 2分拉力所作的功等于弹性势能的增量:W =E P 2-E P 1=201202)(21)(21l l k l l k ---=0.14 J 3分23. 解:弹簧被压缩量最大距离时,m 1、m 2相对速度为零.这时动量守恒 v v )(2101m m m += 2分机械能守恒 222120121)(2121kx m m m ++=v v 2分 由上二式可解得弹簧的最大被压缩量为)(21210m m k m m x +=v 1分24. 解:设飞船A 相对于飞船B 的速度大小为v ,这也就是飞船B 相对于飞船A 的速度大小.在飞船B 上测得飞船A 的长度为20)/(1c l l v -= 1分故在飞船B 上测得飞船A 相对于飞船B 的速度为20)/(1)/(/c t l t l v v -==∆∆ 2分图(1) a 图(2) 1T g m 1解得 82001068.2)/(1/⨯=+=∆∆t c l tl v m/s所以飞船B 相对于飞船A 的速度大小也为2.68×108 m/s . 2分25. 解:据相对论动能公式 202c m mc E K -=得 )1)/(11(220--=c c m E K v 即 419.11)/(11202==--c m E c K v 解得 v = 0.91c 3分平均寿命为 8201031.5)/(1-⨯=-=c v ττ s2分26. 答:(1) 是正确的.2分 (2) 是错误的,因为不符合光速不变原理. 1分 应改为在S 系中测得光脉冲的传播速度为c . 2分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理(少学时)期末复习题库第一篇 力学一、判断题1.一质点的运动方程为x=x(t),y=y(t),故r =故速度dr v dt=。

( ) 2. 势能是相对量;而一对作用力与反作用力的功却是绝对量。

( )3.在太阳系中,行星相对于太阳的的角动量不守恒。

( )4. 所有惯性系对物理基本规律都是等价的。

( )5. 若两物体发生完全弹性碰撞,则在碰撞前后,系统的总动量守恒,但系统的总动能有损失。

( )6. 物体做匀速圆周运动时,合加速度为零。

( )7. 若力矢量F 沿任何闭合路径的积分0=⋅⎰Ll d F ,则该力为保守力,存在势能。

( )8. 在惯性系S 中观察者看来同时发生的两个事件,在相对S 作匀速直线运动的惯性系S '中观察者看来一定不会同时发生。

( )9. 质点作圆周运动的加速度不一定指向圆心。

( )10. 对一个物体系而言,如果它受到的合外力为零,则该系统的机械能必守恒 。

( )11. 一物体可具有机械能而无动量,但不可能具有动量而无机械能。

( )12. 内力不改变质点系的总动量,它也不改变质点的总动能。

( )13. 在某个惯性系中同时发生的两个事件,对于与该系有相对运动的其它惯性系一定是不同时的。

( )14. 圆周运动中,切向加速度只反映速度大小的变化。

( )15. 刚体绕定轴转动时,它的角加速度与所受合外力矩成正比,与刚体对转轴的转动惯量也成正比。

( )16. 如果所有外力和非保守内力对系统都不做功,则在系统运动的全过程中,它的机械能保持不变。

( )二、填空题1. 一小球沿斜面向上运动,其运动方程为258s t t =+-,则小球运动到最高的时刻是 秒。

2. 狭义相对论的两条基本假设是 和 。

3. 质点的运动方程为23t x =。

从0=t 时开始运动,则在s t 11=到s t 32=的时间间隔内,质点的平均速度为 。

4. 刚体定轴转动时的转动定律为 。

5. 小球沿斜面向上运动,其运动方程为288s t t =+-,则小球运动到最高点的时刻为 。

6. 质点动能的公式 ,刚体转动动能的公式 。

7. 圆周运动中的切向加速度t a = ,法向加速度=n a 。

8. 惯性参照系是牛顿运动定律 的参照系。

9. 弹簧弹性力的功为W= 。

10. 质量为kg m 2=的质点,受力()SI i t F 2=的作用,式中t 为时间。

在0=t 时质点以s m j v /2 =的速度通过坐标原点,则质点任意时刻的位置矢量为 。

11. 静质量为0m 的物体,当它相对观察者以速度v 匀速运动时,观察者测得的物体的质量为 。

12. 一质点的运动方程为j t i t r 243-=(SI ),则其速度为 (SI )。

加速度为 (SI )。

13. 一观测者测出某被加速的电子的质量为02m [0m 为电子的静止质量],则该电子相对观测者的运动速度为 c (c 是真空中的光速)。

14. 一质点的运动方程为2r t i j tk =++,则在1t s =时的速度是 ,2t s =时的加速度是 。

(式中r 、t 分别以m 、s 为单位)15. 静质量为0m 的物体,当它相对观察者以速度v 匀速运动时,观察者测得的物体的能量为 。

16. 粒子B 的质量是离子A 的质量的2倍,开始时离子A 的速度为(34i j +),离子B 的速度为27i j -,由于两者相互作用,离子A 变为(74i j -),此时离子B 的速度等于 。

17. 静质量为0m 的物体,/2匀速运动时,观察者测得的物体的质量为 。

三、选择题1. 在相对地面静止得坐标系内,A 、B 两船都以2/m s 的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。

今在A 船上设置与静止坐标系方向相同的坐标系(,x y 方向单位矢量用,i j 表示),那么从A 船看B 船,它对A 船的速度为多少?( )A. (22)/i j m s +B. (22)/i j m s -C. (22)/i j m s -+D. (22)/i j m s --2. 一质点受力23()F x N =,沿正向运动,在0x =到2x m =的过程中,力F 做功为( )A. 8J ;B. 12J ;C. 16J ;D. 24J 。

3. 刚体作定轴转动时,其角动量守恒的条件是:( )A. 刚体所受的合外力为零B. 刚体所受的合外力矩为零C. 刚体受到一恒定外力D. 刚体所受的合外力矩为一常量4. 一小球沿斜面向上运动,其运动方程为2042s s t t =++(SI ),则小球将在何时从斜面向下运动?( )A. 4sB. 6sC. 2sD. 3s5. 火箭发射之前,地面工作人员测得火箭总长为15米,火箭以速度v 升空后,地面上的工作人员再次测得火箭总长为( )A. 不确定B. 仍为15米C. 小于15米D. 大于15米6. 关于刚体对轴的转动惯量,下列说法中正确的是( )A. 只取决于刚体的质量,与质量的空间分布和轴的位置无关B. 取决于刚体的质量和质量的空间分布,与轴的位置无关C. 取决于刚体的质量、质量的空间分布和轴的位置D. 只取决于转轴的位置,与刚体的质量和质量的空间分布无关7. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为0J ,角速度为0ω,然后她将两臂收回,使转动惯量减小为01J ,这时她转动的角速度将变为( )A.01ωB. 0ωC. 03ωD. 08. 有两个飞轮,一个是木制的,周围镶上铁制的轮缘,另一个是铁制的,周围镶上木制的轮缘,若这两个飞轮的半径相同,总质量相等,以相同的角速度绕通过飞轮中心的轴转动,则:( )A. 铁制飞轮动能较大;B. 两者的动能一样大;C. 木制飞轮动能较大;D. 不能确定。

9. 一个观察者测得一沿长度方向匀速运动着的米尺的长度为0.6m ,则此米尺以多大的速度接近观察者( ),光速用c 表示。

A. 0.4c ;B. 0.5c ;C. 0.6c ;D. 0.8c 。

10. 关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是( )A. 不受外力作用的系统,其动量和机械能必然同时守恒.B. 所受合外力为零,内力都是保守力的系统,其机械能必然守恒.C. 不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒.D. 外力对一个系统做的功为零,则该系统的机械能和动量必然同时守恒.11. 质量为m 的铁锤竖直下落,打在木桩上后静止下来,若打击时间为t ,碰撞前的速率为v ,则在打击时间之内,铁锤受到的平均冲力为:( )A . t mv /B . t mv /2C . mg t mv +/ D. mg t mv -/12. 在地球上一场足球赛持续了90分钟,在以0.8c 的速率相对地球运动的飞船上的乘客看来,这场球赛进行了:( )A . 1小时B . 1.5小时C . 2小时 D. 2.5小时四、计算与证明题1. 一艘正在行驶的快艇,在发动机关闭后,有一个与它速度方向相反的加速度,其大小与它的速度平方成正比,即:2kv dtdv -=,式中k 为常数。

试证明快艇在关闭发动机后又行驶x 距离时的速度为kx e v v -=0,其中v 0是发动机关闭时的速度。

2. 一根质量为m ,长为l 的均匀细棒OA ,可绕通过其一端的水平光滑转轴O 在铅垂平面内转动,如图所示。

今使棒由水平位置从静止开始绕O 轴转动,不计空气阻力,(已知棒对O 点的转动惯量为/32ml ),求:⑴棒在水平位置上刚起动时的角加速度;⑵棒转到铅垂位置时的角速度;⑶棒在铅垂位置时,棒的A 端和中点的速度和加速度。

3. 一质量为0.5kg 的球,系在长为1m 的轻绳的一端,绳不能伸长,绳的另一端固定在横梁上。

移动小球,使绳与铅垂方向成030角,然后放手让它从静止开始运动。

求:(1)在绳索从030到00角的过程中,重力和张力所做的功。

(2)物体在最低点位置时的动能和速率。

(3)在最低位置时的张力。

4. 一根长为l 、质量为m 的均匀细直棒可绕其一端,且与棒垂直的水平光滑固定轴转动。

抬起另一端向上与水平面成60︒ ,然后无初速地将棒释放,已知棒对轴的转动惯量为/32ml ,求: (1)放手时棒的角加速度(2)棒转到水平位置时的角速度5. 一质量为m 的物体,最初静止于x 0 处,在力 2/F k x =-的作用下沿 x 轴作直线运动,证明它在x 处的速度为:)11(20x x m k v -=6. 一劲度系数为k 的细弹簧,一端固定在A 点,另一端连一质量为m 的物体,弹簧原长为AB 。

此物体靠在光滑的半径为a 的圆柱体表面上,在变力F 作用下,极缓慢地沿表面从位置B 移到C ,如图所示。

求力F 所作的功。

7. 井水水面离地面2m ,一人用质量为1kg 的桶从井中提10kg 的水,但由于水桶漏水,每升高0.5m 要漏去0.2kg 的水。

求水桶匀速地从井中提到地面的过程中人所做的功。

O ω A m '0v 8. 如图,长为l ,质量M 的匀质细棒可绕过端点O 的水平光滑轴在铅垂面内转动。

棒的另一端A 自然下垂。

现有一质量m ,速度为0v 的子弹击中棒的A 端,并留置在棒内。

求棒摆到水平位置时的角速度。

(不计任何阻力,匀质细棒对O 点的转动惯量为213J Ml =)9. 质量为m 的小球系在倔强系数为k 的弹簧的一端,弹簧原长为0l ,弹簧另一端固定在O 点。

开始时弹簧在水平位置,处于自然状态,小球由位置A 释放,下落到O 点正下方位置B 时,弹簧的长度变为l 。

求小球到达B 时的速度大小。

10. 一质量为kg m 2.1=、长为m l 50.0=的均匀细棒OA ,可绕通过棒的端点O 且与棒垂直的轴在水平面内转动。

开始时棒是静止的,一质量为kg m 2.0='的小球,以水平速度s m v /150=运动,并与棒的另一端A 垂直于棒作弹性碰撞。

求碰撞后的小球弹回的速度v 和棒的角速度ω。

摩擦阻力不计。

11. 如图所示,在光滑水平面上,质量为M 的小木块系在劲度系数为k 的轻弹簧一端,弹簧的另一端固定在O 点,开始时,木块与弹簧静止在A 点,且弹簧为原长l 0。

一颗质量为m 的子弹以初速度v 0击入木块并嵌在木块内。

当木块到达B 点时,弹簧的长度为L ,且OB ⊥OA 。

求木块到达B 点时的速度。

12. 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0 时质点的速度为0v ,证明(1)t 时刻的速度为t m k e v v)(0-=;(2)由0到t 的时间内经过的距离为]1)[()(0t m k e k mv x --=。

13. 如图,长为l ,质量M 的匀质细棒可绕过端点O的水平光滑轴在铅垂面内转动。

相关文档
最新文档