内蒙古鄂尔多斯市东胜区七年级数学上册 2 整式的加减 2.1 整式 2 单项式学案新人教版 精
新人教版七年级数学上册第2章整式的加减复习教材全解(重难点、例题解析)
新人教版七年级数学上册第2章整式的加减复习教材全解(重难点、例题解析)复习内容:列式表示数量关系、单项式、多项式、整式等有关概念以及整式加减运算.复习目标:1.知识与技能进一步理解单项式、多项式、整式及其有关概念,准确确定单项式的系数、次数、多项式的项、次数;理解同类项概念,掌握合并同类项法则和去括号规律,熟练地进行整式加减运算.2.过程与方法通过回顾与思考,帮助学生梳理本章内容,提高学生分析、归纳、语言表达能力;提高运算能力及综合应用数学知识的能力.3.情感态度与价值观培养严谨的学习态度和积极思考的学习习惯,通过列式表示数量关系,体会数学知识与实际问题的联系.一、本章知识结构框架图二、易错知题分析误区一书写不规范致误例1 用代数式表示下列语句:(1)比x 与y 的和的平方小x 与y 的和的数 (2)a 的2倍与b 的31的差除以a 与b 的差的立方。
错解(1)(22y x +)-(x+y ) (2)(2a-1/3b )÷(x+y)剖析:(1)要表示的是“比x 与y 的和的平方小x 与y 的和的数”,应该先求和再求平方即应该是)()(2y x y x +-+,而不应该是(22y x +)-(x+y )。
(2)是书写不规范,除号要用分数线代替,即应该写成3)(312b a ba --。
正解:(1))()(2y x y x +-+ (2)3)(312b a ba -- 误区二 概念不清致误例2、判断下列各组是否是同类项:(1)0.2x 2y 与0.2xy 2 (2)4abc 与4ac (3)-130与15 (4)-532m n 与423n m(5)-++()()a b a b 332与 (6)7311pq p q n n n n ++与错解:(1)(3)(4)(6)是同类项,(2)(5)不是同类项。
剖析:(1)0.2x 2y 与0.2xy 2因为字母x 的指数不同,字母y 的指数也不同,所以不是同类项。
人教版七年级数学上册整式的加减《整式(第2课时)》示范教学设计
2.1整式(第2课时)教学目标1.理解单项式、单项式的系数和次数的概念;会判断一个式子是否是单项式,能准确地说出一个单项式的系数和次数.2.经历单项式的概念的形成过程,提高观察、分析、归纳、概括能力.教学重点理解单项式、单项式的系数和次数的概念.教学难点会准确迅速地确定一个单项式的系数和次数.教学过程新课导入填空,并观察所填式子的特点:1.边长为m的正方形的周长是4m,面积是m2 .2.一辆汽车的速度是v km/h,行驶t h所走过的路程为vt km.3.半径为b的圆的周长为2πb,面积为πb2.4.设a表示一个数,则它的相反数是-a .新知探究一、探究学习【问题】下列式子有什么特点?4m,m2,vt,2πb,πb2,-a.【思考】π是字母吗?【师生活动】学生独立回答π是否为字母.【设计意图】为后面学习单项式、确定单项式的系数做铺垫.二、新知精讲【新知】通过对所给出的式子进行分类,引入单项式的概念.【师生活动】引导学生分析各个式子,找出各式之间的共同特点.教师指出,单独的一个数或一个字母也是单项式.【设计意图】认识单项式,为后面引出单项式的系数、次数等相关概念做铺垫.【新知】单项式的相关概念:-3x2y3单项式中的数字因数叫做这个单项式的系数.一个单项式中,所有字母的指数的和叫做这个单项式的次数.上面所给单项式中,单项式的系数为-3,单项式的次数为2+3=5.【师生活动】学生独立回答所给单项式的系数和次数分别是什么.【设计意图】通过实例让学生认识单项式的系数、次数等概念.【问题】a和-a的系数和次数分别是什么?由此得出什么结论?【师生活动】学生独立回答.【设计意图】让学生进一步加深对单项式的系数的认识,知道系数要包括数字因数前面的性质符号.三、典例精讲【例1】下列式子中,单项式有哪些?(1)-3;(2)13x2y;(3)2a;(4)23m;(5)-12ab2;(6)729x-+;(7)n2;(8)π+2.【答案】单项式有(1)(2)(4)(5)(7)(8).【师生活动】紧扣定义,对每个式子进行分析.【设计意图】巩固学生对单项式的概念的理解.【思考】判定单项式时,需要注意什么?【师生活动】学生根据解题过程,结合前面的新知进行总结.【设计意图】巩固对单项式的概念的理解,加深认识.【例2】用单项式填空,并指出它们的系数和次数:(1)每包书有12册,n包书有______册;(2)底边长为a cm,高为h cm的三角形的面积是_____cm2;(3)棱长为a cm的正方体的体积是_____cm3;(4)一台电视机原价b元,现按原价的九折出售,这台电视机现在的售价是_____元;(5)一个长方形的长是0.9 m,宽是b m,这个长方形的面积是_____m2.【答案】解:(1)12n,它的系数是12,次数是1;(2)12ah,它的系数是12,次数是2;(3)a3,它的系数是1,次数是3;(4)0.9b,它的系数是0.9,次数是1;(5)0.9b,它的系数是0.9,次数是1.【师生活动】学生单独写出单项式,再小组讨论确定单项式的系数和次数.【设计意图】让学生熟悉用单项式表示数量关系,并复习巩固单项式的系数与次数的概念.【思考】怎样确定一个单项式的系数和次数呢?【师生活动】学生总结,教师进行完善补充.【设计意图】准确地掌握确定单项式的系数和次数的技巧,正确答题.课堂小结板书设计一、单项式的定义二、单项式的系数三、单项式的次数课后任务完成教材第57页练习1~2题.。
人教版七年级数学上册教案(RJ) 第二章 整式的加减
第二章 整式的加减 2.1 整式(2课时) 第1课时 单项式1.使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数. 2.初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系.重点掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数. 难点识别单项式的系数和次数.一、创设情境,导入新课师:出示图片. 青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?(2)t 小时呢? 二、推进新课(一)用含字母的式子表示数量关系. 师:出示第54页例1.生:解答例1后,讨论问题,用字母表示数有什么意义?学生经过讨论得出一定的答案,但可能不会太规范,教师总结.师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式.一个数或表示数的字母也是代数式).师生共同完成例2,进一步体会用字母表示数的意义.巩固练习:第56页练习. (二)单项式的概念. 师:出示问题.引言与例1中的式子100t ,0.8p ,mn ,a 2h ,-n 这些式子有什么特点? 生:通过观察、对比、讨论得出,各式都是数或字母的积.师:指出单项式的概念,特别地,单独的一个数或字母也是单项式. 巩固练习:下列各式是单项式的式子是____________. 0.7,-a ,-3+b ,2a 2b 7,0,1x .(三)单项式的系数,次数.师:提出问题,观察单项式,6a 2,2.5x ,-n ,2a 2b7,它们各由哪几个部分组成? 生:观察讨论得出结果.师:指出,单项式中的数字因数叫做这个单项式的系数.应当注意的是,单项式的系数包括它前面的性质符号.而如-n,a3这样的式子的系数分别是-1和1,不能说没有系数.师:进一步提出问题:以上各式中的字母部分,每个字母的指数是多少?每个单项式中所有字母的指数的和是多少?生:举手回答.师:指出,一个单项式中,所有字母的指数的和叫做这个单项式的次数.一般地,一个单项式的次数是几,我们就称它为几次单项式.如:6a2叫二次单项式,-n叫做一次单项式,你能举出一个三次单项式的例子吗?练习:第57页练习第1题.(四)例题讲解.例3:用单项式填空,并指出它们的系数和次数:(1)每包书有12册,n包书有________册.(2)底边长为a,高为h的三角形面积是________.(3)一个长方体的长和宽都是a,高是h,它的体积是________.(4)一台电视机原价是a元,现按原价的9折出售,现在的售价是________.(5)一个长方形的长是0.9,宽是a,这个长方形的面积是________.生:独立完成,然后举手回答.师:针对学生的问题,进行点拨和进一步的解释.师:进一步提出问题,观察(4),(5)两个题的答案,你有什么看法?生:自由发表意见.师总结:用字母表示数,相同的字母在同一个式子中表示的意义相同,在不同的式子中可以有不同的含义.请同学们大胆想一想,你还能赋予0.9a什么实际的意义.生:自由发言即可.(教师不必太苛求学生,对学生的回答只要符合题意,就一律给予鼓励)三、练习与小结练习:第57页练习第2题.小结:学习本节内容以后,(1)请你谈一谈你对用字母表示数的认识;(2)请你谈一谈你对单项式的认识.四、布置作业习题2.1第1题.教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.第2课时多项式1.掌握多项式的概念,进而理解整式的概念.2.掌握多项式的项数、次数的概念,并能熟练地说出多项式的项数和次数.重点多项式的概念及多项式的项数、次数的概念.难点多项式的次数.一、创设情境,导入新课师:出示问题(投影).观察一列数1,4,9,16,25,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?观察一列数2,5,10,17,26,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?生:思考得出答案,第一列中第6个数是36,第n 个数是n 2,第二列中第6个数是37,第n 个数是n 2+1. 师:我们知道,n 2是一个单项式,而n 2+1不是单项式,那么,它属于哪一类代数式呢?这就是我们今天要解决的问题. 二、推进新课(一)多项式及多项式的项数、次数的概念师:引导学生回想课本55页例2的内容,进一步观察所列之式υ+2.5,υ-2.5,3x +5y +2z ,12ab -πr 2,x 2+2x +18,有何特点?生:思考讨论.师:进一步提出问题,以上各式显然不是单项式,它们和单项式有联系吗? 生:讨论,交流.自由发言回答上面的问题.师:指出多项式的概念及其相关的几个概念.每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式有几个单项式组成,我们就把它叫做几项式,如2x -3可以叫做二项多项式,3x +5y +2x 可以叫做三项多项式.师:进一步引导学生探究多项式次数的概念. 生:可以发挥自己的想象去探究给多项式的次数命名的方法,教师不必苛求学生怎样想,让学生大胆发言,只要能发挥他们的想象力即可.师:在这一过程中教师可以引导,多项式的次数是不是也可以将所有字母的指数加在一块呢?如果字母多的话是不是有点太乱呢?如果这样的话我们是不是派个代表就行了,派谁当代表呢?引导学生说出,以次数最高的项的次数作为代表.师:多项式中次数最高的项的次数叫做多项式的次数.同单项式一样,一个多项式的次数是几,我们就称它为几次式.如2x -3可以叫做一次二项式,3x +5y +2z 可以叫做一次三项式.(二)整式的概念学生阅读教材,找出整式的概念.师:什么是整式?生:单项式和多项式统称为整式.师:进一步提问,你能说一说单项式、多项式和整式三者之间的关系吗? 生:讨论后回答.师:根据学生回答情况予以点拨、强调. (三)例题例4:如图,用式子表示圆环的面积,当R =15 cm ,r =10 cm 时,求圆环的面积.(π取3.14)解析:圆环的面积是外部大圆的面积与内部小圆面积的差.生:写解答过程.师:巡回指导,发现问题,及时点拨.三、练习与小结练习:58~59页练习.小结:1.说一说单项式、多项式、整式各有什么特点?2.它们三者之间的关系是怎样的?四、布置作业习题2.1第2题.本课的知识点比较简单,属于概念介绍型的,先让学生自己阅读课本,了解相关的概念,然后完成自学检测.教师进行适当点评后,学生完成分层练习,巩固对概念的掌握.整节课基本以学生自学为主线,完成整个教学过程,意在培养学生的自学能力.2.2整式的加减(4课时)第1课时同类项1.理解同类项的概念,在具体情境中,认识同类项.2.理解合并同类项的概念,掌握合并同类项的法则.重点理解同类项的概念,掌握合并同类项的法则.难点根据同类项的概念在多项式中找同类项.活动1:创设情境,导入新课师出示图片引言中的问题2.在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段的时间是2.1t小时,这段路的全长(单位:千米)是100t+120×2.1t,即100t+252t.怎样化简这个式子呢?活动2:探究同类项及合并同类项的方法教师出示教材第62页探究1;学生讨论完成,然后教师继续出示63页探究2内容,学生讨论交流完成.师生共同归纳特点,引出同类项的定义.像100t与252t,3ab2与-4ab2这样的式子,它们所含字母相同,并且相同字母的指数也相同的项叫做同类项.师进一步提出问题,在探究2中,你是如何化简的?学生观察、讨论、交流,然后归纳出合并同类项的法则.尝试运用:化简:4x2+2x+7+3x-8x2-2(找出多项式中的同类项)=(4x2-8x2)+(2x+3x)+(7-2)(运用运算律进行整理)=(4-8)x2+(2+3)x+(7-2)(运用分配律进行合并)=-4x2+5x+5一般结果按某个字母的升降幂排列.活动3:巩固运用法则教师出示例1.师生共同完成,教师要给学生示范,可以采用学生口述,教师板书的方法.过程中注意结合法则和方法.练习:教材第65页练习第1题.教师出示例3.学生尝试独立完成,然后同学交流.教师点拨:这里的结果用整式表示.练习:教材第65页练习2,3题.活动4:小结与作业小结:谈谈你对同类项及合并同类项的认识.作业:习题2.2第1题.本节课在概念的讲解时通过典型的例题让学生充分去感受概念的意义,启发学生,鼓励学生合作交流,让学生充分发表意见,使学生真正成为学习的主人.因而,人人都开动脑筋,积极发言,积极参与,掌握知识效果较好.第2课时去括号法则能运用运算律探究去括号法则,并且利用去括号法则将整式化简.重点去括号法则,准确应用法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:创设情境,导入新课师:数学爱好者发现了一个非常有趣的现象,将一个两位数的个位和十位对调得到一个新的两位数以后,这两个数的差能被9整除,和能被11整除,这是为什么呢?提示:如果设这个两位数的个位数字是a,十位数字是b,如何表示这个两位数?学生讨论以后师生共同得出以下结果:原数10b+a,新数10a+b差是10b+a-(10a+b),和是10b+a+(10a+b).将10b,a,10a,b看做几个数,类似小学中的计算,你能化简这两个式子吗?学生讨论交流,然后尝试完成.10b+a+(10a+b)=10b+a+10a+b==11a+11b10b+a-(10a+b)=10b+a-10a-b=9b-9a现在你能说明为什么一个能被9,另一个能被11整除了吗?再看下面的问题,你能化简这两个式子吗?你的依据是什么?100u+120(u-0.5)100u-120(u-0.5)学生交流讨论,然后尝试完成.活动2:归纳去括号法则师:观察以上各式,在去括号的过程中,你发现有什么规律?学生讨论交流.归纳:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,对于形如+(10a+b),-(10a+b)的式子,可以将因数看做1或者-1.活动3:运用法则教材展示教材例4.教师提示:先观察判断是哪种类型的去括号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.易犯错误:①括号前是“-”时,去括号以后,只是第一项改变了符号,而其他各项未变号.②括号前面的系数不为1或者-1时,容易漏乘除第一项以外的项.师生共同完成,学生口述,教师板书.教师展示例5.问题:船在水中航行时它的速度都与哪些量有关,它们之间的关系如何?学生思考、小组交流.然后学生完成,同学间交流.活动4:练习与小结练习:教材第67页练习.小结:1.谈谈你对去括号法则的认识.2.去括号的依据是什么?活动5:作业布置习题2.2第2,5,8题.通过回顾小学学过的去括号方法,运用类比方法,得到了整式的去括号法则,这样的设计起点低,学生学起来更自然,对新知识更容易接受.第3课时去括号法则的深入1.使学生进一步掌握去括号法则,并能熟练运用去括号法则解决问题.2.培养学生分析解决问题的能力.重点准确应用去括号法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:复习提问,导入新课师提出问题:①合并同类项法则的内容是什么?②去括号法则的内容是什么?活动2:熟练运用合并同类项,去括号法则师:刚才我们回忆了合并同类项,去括号法则,它们是进行整式加减运算的基础.师:出示教材例6.计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).分析:根据法则,应如何进行计算?学生讨论后,教师归纳:先去括号,然后合并同类项.师生共同完成,边讲解边叙述法则.解:(1)(2x-3y)+(5x+4y)=2x-3y+5x+4y………………………………去括号=(2x+5x)+(-3y+4y)……………………找同类项=7x+y ……………………………………合并同类项(2)略教师出示教材例7.教师引导学生从不同的角度去列算式,①小明花________元,小红花________元,二人共花________元.②买笔记本花________元,买圆珠笔花________元,共花________元.学生独立完成,然后交流.教师出示教材例2.(这里将教材内容做了一个调整,没有完全按照教材次序,一来是出于对第一课时时间过紧的考虑,二是为下一节课的化简求值作准备)学生独立完成,教师告诉学生一般这种类型题目先化简再求值.活动3:练习与小结练习:教材第69页练习1,2题.小结:谈谈你这节课的收获.活动4:布置作业习题2.2第3,6题.本节课采用去括号法则与实例相结合的方式导入,经历对同一问题的数量关系的不同表示方法,让学生更形象更具体地体会去括号法则的合理性,整个过程以学生为主,让学生观察思考、合作交流来发现并亲身体会去括号法则的过程和数与式之间的关系,收到效果较好.但在教学中还应给予学生较多的思考反思总结的时间效果会更好些.第4课时整式的加减让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.重点整式的加减.难点总结出整式的加减的一般步骤.一、创设情境,复习引入练习:化简:(1)(x+y)-(2x-3y);(2)2(a2-2b2)-3(2a2+b2).提问:以上化简实际上进行了哪些运算?怎样进行整式的加减运算?二、推进新课师:出示投影.例8:做两个长方体纸盒,尺寸如下(单位:cm)(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?分析:做一个纸盒用料多少,实际上是在求什么?学生回答.大盒用料多少,小盒用料多少?请列式表示.解:略教师讲解后归纳:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.教师出示教材例9.教师点拨:求代数式的值的问题,一般地,先对多项式进行化简,然后再代入求值.三、练习与小结练习:教材第69页练习第3题.小结:如何进行整式的加减,你能谈谈你学完本节的收获吗?四、布置作业习题2.2第4,7题.其实整式的加减本质上就是合并同类项的问题,重点是让学生较好的记住法则,依据法则去解决问题.只是学生的基本计算能力有待加强,计算出现的错误比较多,说明学生计算的基本功有待加强.有理数的学习不够优秀是本章学习的一大难题.。
部编人教版七年级数学上册 第2章 整式的加减 2.1 第1课时 用字母表示数【习题课件】
夯实基础逐点练
11.如图①是一个长为2m、宽为2n的长方形,其中m>n,先 用剪刀沿图中虚线(对称轴)剪开,将它分成四块形状和 大小都一样的小长方形,再将这四块小长方形拼成一个如 图②的正方形,则中间空白部分的面积是( )
A. 2mn B.(m+n)2 C.(m-n)2 D. m2-n2
夯实基础逐点练
解:第 n 个等式是(n+1)22-n2-1=n.
链接中考真题练
16.【2017·云南】观察下列各个等式的规律:
第一个等式:22-122-1=1, 第二个等式:32-222-1=2, 第三个等式:42-322-1=3… 请用上述等式反映出的规律解决下列问题: (1)直接写出第四个等式; 解:第四个等式是52-422-1=4.
链接中考真题练
(2)猜想第n个等式(用含n的式子表示).
共多少元?列式为( D )
A. m-2
B. m+2
m C. 2
D. 2m
夯实基础逐点练
9.【2018·大庆】某商品打七折后价格为 a 元,则原价
为( B )
A. a 元
B. 170a 元
C. 30%a 元
D. 170a 元
夯实基础逐点练
10.【2018•枣庄】如图,将边长为3a的正方形沿虚线 剪成两个正方形和两个长方形.若拿掉边长为2b的 小正方形后,再将剩下的图形拼成一块长方形, 则这个长方形较长的边长为( A ) A. 3a+2b B. 3a+4b C. 6a+2b D. 6a+4b
14.全国统一鞋号成年男鞋共有14种尺码,其中最小的尺码
是23.5厘米,各相邻的两个尺码都相差0.5厘米,如果从尺
码最小的鞋开始标号,所对应的尺码(单位:厘米)如下
表所示:
七年级数学上册目录及知识点汇总
人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程一——合并同类项与移项3.3 解一元一次方程二——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数..根据需要;有时在正数前面也加上“+”②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数..与正数具有相反意义..③0既不是正数也不是负数..0是正数和负数的分界;是唯一的中性数..注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数1整数:正整数、0、负整数统称整数;2分数;正分数和负分数统称分数;3有理数:整数和分数统称有理数..2、数轴1定义:通常用一条直线上的点表示数;这条直线叫数轴;2数轴三要素:原点、正方向、单位长度;3原点:在直线上任取一个点表示数0;这个点叫做原点;4数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来;但数轴上的点;不都是表示有理数..3、相反数:只有符号不同的两个数叫做互为相反数..例:2的相反数是-2;0的相反数是04、绝对值:1数轴上表示数a的点与原点的距离叫做数a的绝对值;记作|a|..从几何意义上讲;数的绝对值是两点间的距离..2 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0..两个负数;绝对值大的反而小..1.3 有理数的加减法①有理数加法法则:1、同号两数相加;取相同的符号;并把绝对值相加..2、绝对值不相等的异号两数相加;取绝对值较大的加数的符号;并用较大的绝对值减去较小的绝对值..互为相反数的两个数相加得0..3、一个数同0相加;仍得这个数..加法的交换律和结合律②有理数减法法则:减去一个数;等于加这个数的相反数..1.4 有理数的乘除法①有理数乘法法则:两数相乘;同号得正;异号得负;并把绝对值相乘;任何数同0相乘;都得0;乘积是1的两个数互为倒数..乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数;等于乘这个数的倒数;两数相除;同号得正;异号得负;并把绝对值相除;0除以任何一个不等于0的数;都得0..1.5 有理数的乘方1、求n个相同因数的积的运算;叫乘方;乘方的结果叫幂..在a的n次方中;a叫做底数;n叫做指数..负数的奇次幂是负数;负数的偶次幂是正数..正数的任何次幂都是正数;0的任何次幂都是0..2、有理数的混合运算法则:先乘方;再乘除;最后加减;同级运算;从左到右进行;如有括号;先做括号内的运算;按小括号、中括号、大括号依次进行..3、把一个大于10的数表示成a×10的n次方的形式;使用的就是科学计数法;注意a的范围为1≤a <10..4、从一个数的左边第一个非0数字起;到末位数字止;所有数字都是这个数的有效数字..四舍五入遵从精确到哪一位就从这一位的下一位开始;而不是从数字的末尾往前四舍五入..比如:3.5449精确到0.01就是3.54而不是3.55.第二章整式的加减2.1 整式1、单项式:由数字和字母乘积组成的式子..系数;单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此;判断代数式是否是单项式;关键要看代数式中数与字母是否是乘积关系;即分母中不含有字母;若式子中含有加、减运算关系;其也不是单项式.2、单项式的系数:是指单项式中的数字因数;3、单项数的次数:是指单项式中所有字母的指数的和.4、多项式:几个单项式的和..判断代数式是否是多项式;关键要看代数式中的每一项是否是单项式.每个单项式称项;常数项;多项式的次数就是多项式中次数最高的次数..多项式的次数是指多项式里次数最高项的次数;这里是次数最高项;其次数是6;多项式的项是指在多项式中;每一个单项式.特别注意多项式的项包括它前面的性质符号.5、它们都是用字母表示数或列式表示数量关系..注意单项式和多项式的每一项都包括它前面的符号..6、单项式和多项式统称为整式..2.2整式的加减1、同类项:所含字母相同;并且相同字母的指数也相同的项..与字母前面的系数≠0无关..2、同类项必须同时满足两个条件:1所含字母相同;2相同字母的次数相同;二者缺一不可.同类项与系数大小、字母的排列顺序无关3、合并同类项:把多项式中的同类项合并成一项..可以运用交换律;结合律和分配律..4、合并同类项法则:合并同类项后;所得项的系数是合并前各同类项的系数的和;且字母部分不变;5、去括号法则:去括号;看符号:是正号;不变号;是负号;全变号..6、整式加减的一般步骤:一去、二找、三合1如果遇到括号按去括号法则先去括号. 2结合同类项. 3合并同类项第三章一元一次方程3.1 一元一次方程1、方程是含有未知数的等式..2、方程都只含有一个未知数元x;未知数x的指数都是1次;这样的方程叫做一元一次方程..注意:判断一个方程是否是一元一次方程要抓住三点:1未知数所在的式子是整式方程是整式方程;2化简后方程中只含有一个未知数;3经整理后方程中未知数的次数是1.3、解方程就是求出使方程中等号左右两边相等的未知数的值;这个值就是方程的解..4、等式的性质: 1等式两边同时加或减同一个数或式子;结果仍相等;2等式两边同时乘同一个数;或除以同一个不为0的数;结果仍相等..注意:运用性质时;一定要注意等号两边都要同时变;运用性质2时;一定要注意0这个数.3.2 、3.3解一元一次方程在实际解方程的过程中;以下步骤不一定完全用上;有些步骤还需重复使用. 因此在解方程时还要注意以下几点:①去分母:在方程两边都乘以各分母的最小公倍数;不要漏乘不含分母的项;分子是一个整体;去分母后应加上括号;去分母与分母化整是两个概念;不能混淆;②去括号:遵从先去小括号;再去中括号;最后去大括号;不要漏乘括号的项;不要弄错符号;③移项:把含有未知数的项移到方程的一边;其他项都移到方程的另一边移项要变符号移项要变号;④合并同类项:不要丢项;解方程是同解变形;每一步都是一个方程;不能像计算或化简题那样写能连等的形式;⑤系数化为1::字母及其指数不变系数化成1;在方程两边都除以未知数的系数a;得到方程的解..不要分子、分母搞颠倒..3.4 实际问题与一元一次方程一.概念梳理⑴列一元一次方程解决实际问题的一般步骤是:①审题;特别注意关键的字和词的意义;弄清相关数量关系;②设出未知数注意单位;③根据相等关系列出方程;④解这个方程;⑤检验并写出答案包括单位名称..⑵一些固定模型中的等量关系及典型例题参照一元一次方程应用题专练学案..二、思想方法本单元常用到的数学思想方法小结⑴建模思想:通过对实际问题中的数量关系的分析;抽象成数学模型;建立一元一次方程的思想.⑵方程思想:用方程解决实际问题的思想就是方程思想.⑶化归思想:解一元一次方程的过程;实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形;不断地用新的更简单的方程来代替原来的方程;最后逐步把方程转化为x=a的形式. 体现了化“未知”为“已知”的化归思想.⑷数形结合思想:在列方程解决问题时;借助于线段示意图和图表等来分析数量关系;使问题中的数量关系很直观地展示出来;体现了数形结合的优越性.⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论;在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.三、数学思想方法的学习1. 解一元一次方程时;要明确每一步过程都作什么变形;应该注意什么问题.2. 寻找实际问题的数量关系时;要善于借助直观分析法;如表格法;直线分析法和图示分析法等.3. 列方程解应用题的检验包括两个方面:⑴检验求得的结果是不是方程的解;⑵是要判断方程的解是否符合题目中的实际意义.四、一元一次方程典型例题例1. 已知方程2x m-3+3x=5是一元一次方程;则m= .解:由一元一次方程的定义可知m-3=1;解得m=4.或m-3=0;解得m=3所以m=4或m=3警示:很多同学做到这种题型时就想到指数是1;从而写成m=1;这里一定要注意x的指数是m-3.例2. 已知2x=-是方程ax2-2a-3x+5=0的解;求a的值.解:∵x=-2是方程ax2-2a-3x+5=0的解∴将x=-2代入方程;得a·-22-2a-3·-2+5=0化简;得 4a+4a-6+5=01∴ a=8点拨:要想解决这道题目;应该从方程的解的定义入手;方程的解就是使方程左右两边值相等的未知数的值;这样把x=-2代入方程;然后再解关于a的一元一次方程就可以了.例3. 解方程2x+1-34x-3=91-x.解:去括号;得 2x+2-12x+9=9-9x;移项;得 2+9-9=12x-2x-9x.合并同类项;得 2=x;即x=2.点拨:此题的一般解法是去括号后将所有的未知项移到方程的左边;已知项移到方程的右边;其实;我们在去括号后发现所有的未知项移到方程的左边合并同类项后系数不为正;为了减少计算的难度;我们可以根据等式的对称性;把所有的未知项移到右边去;已知项移到方程的左边;最后再写成x=a的形式.例4. 解方程 175321416181=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+-x . 解析:方程两边乘以8;再移项合并同类项;得111351642x ⎡-⎤⎛⎫++= ⎪⎢⎥⎝⎭⎣⎦同样;方程两边乘以6;再移项合并同类项;得113142x -⎛⎫+= ⎪⎝⎭ 方程两边乘以4;再移项合并同类项;得112x -= 方程两边乘以2;再移项合并同类项;得x=3.说明:解方程时;遇到多重括号;一般的方法是从里往外或从外往里运用乘法的分配律逐层去特号;而本题最简捷的方法却不是这样;是通过方程两边分别乘以一个数;达到去分母和去括号的目的..例5. 解方程4 1.550.8 1.20.50.20.1x x x ----=. 解析:方程可以化为 (4 1.5)2(50.8)5(1.2)100.520.250.110x x x -⨯-⨯-⨯-=⨯⨯⨯ 整理;得 2(4 1.5)5(50.8)10(1.2)x x x ---=-去括号移项合并同类项;得 -7x=11;所以x=117-. 说明:一见到此方程;许多同学立即想到老师介绍的方法;那就是把分母化成整数;即各分数分子分母都乘以10;再设法去分母;其实;仔细观察这个方程;我们可以将分母化成整数与去分母两步一步到位;第一个分数分子分母都乘以2;第二个分数分子分母都乘以5;第三个分数分子分母都乘以10.例6. 解方程 1.6122030x x x x +++= 解析:原方程可化为1.23344556x x x x +++=⨯⨯⨯⨯ 方程即为 1.23344556xx x x x x x x -+-+-+-=所以有 1.26x x -=再来解之;就能很快得到答案: x=3.知识链接:此题如果直接去分母;或者通分;数字较大;运算烦琐;发现分母6=2×3;12=3×4;20=4×5;30=5×6;联系到我们小学曾做过这样的分式化简题;故采用拆项法解之比较简便.例7. 参加某保险公司的医疗保险;住院治疗的病人可享受分段报销;•保险公司制度的报销细则如下表;某人今年住院治疗后得到保险公司报销的金额是1260元;那么此人的实际医疗费是A. 2600元元解析:设此人的实际医疗费为x元;根据题意列方程;得500×0+500×60%+x-500-500 ×80%=1260.解之;得x=2200;即此人的实际医疗费是2200元. 故选B.点拨:解答本题首先要弄清题意;读懂图表;从中应理解医疗费是分段计算累加求和而得的. 因为500×60%<1260<2000×80%;所以可知判断此人的医疗费用应按第一档至第三档累加计算.例8. 我市某县城为鼓励居民节约用水;对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米;则按每立方米1元收费;若每月用水超过7立方米;则超过部分按每立方米2元收费. 如果某户居民今年5月缴纳了17元水费;那么这户居民今年5月的用水量为__________立方米.解析:由于1×7<17;所以该户居民今年5月的用水量超标.设这户居民5月的用水量为x立方米;可得方程:7×1+2x-7=17; 解得x=12.所以;这户居民5月的用水量为12立方米.例9. 足球比赛的记分规则为:胜一场得3分;平一场得1分;输一场得0分;一支足球队在某个赛季中共需比赛14场;现已比赛了8场;输了1场;得17分;请问:⑴前8场比赛中;这支球队共胜了多少场⑵这支球队打满14场比赛;最高能得多少分⑶通过对比赛情况的分析;这支球队打满14场比赛;得分不低于29分;就可以达到预期的目标;请你分析一下;在后面的6场比赛中;这支球队至少要胜几场;才能达到预期目标解析:⑴设这个球队胜了x场;则平了8-1-x场;根据题意;得:3x+8-1-x=17.解得x=5.所以;前8场比赛中;这个球队共胜了5场.⑵打满14场比赛最高能得17+14-8×3=35分.⑶由题意知;以后的6场比赛中;只要得分不低于12分即可.∴胜不少于4场;一定能达到预期目标. 而胜了3场;平3场;正好达到预期目标. 所以在以后的比赛中;这个球队至少要胜3场.例10. 国家为了鼓励青少年成才;特别是贫困家庭的孩子能上得起大学;设置了教育储蓄;其优惠在于;目前暂不征收利息税. 为了准备小雷5年后上大学的学费6000元;他的父母现在就参加了教育储蓄;小雷和他父母讨论了以下两种方案:⑴先存一个2年期;2年后将本息和再转存一个3年期;⑵直接存入一个5年期.你认为以上两种方案;哪种开始存入的本金较少教育储蓄整存整取年利率一年:2. 25%;二年:2. 27%;三年:3. 24%;五年:3. 60%.解析:了解储蓄的有关知识;掌握利息的计算方法;是解决这类问题的关键;对于此题;我们可以设小雷父母开始存入x元. 然后分别计算两种方案哪种开始存入的本金较少.⑴2年后;本息和为x1+2. 70%×2=1. 054x;再存3年后;本息和要达到6000元;则1. 054x1+3. 24%×3=6000.解得 x≈5188.⑵按第二种方案;可得方程 x1+3. 60%×5=6000.解得 x≈5085.所以;按他们讨论的第二种方案;开始存入的本金比较少.例11. 扬子江药业集团生产的某种药品包装盒的侧面展开图如图所示. 如果长方体盒子的长比宽多4cm;求这种药品包装盒的体积.分析:从展开图上的数据可以看出;展开图中两高与两宽和为14cm;所以一个宽与一个高的和为7cm;如果设这种药品包装盒的宽为xcm;则高为7-xcm;因为长比宽多4cm;所以长为x+4cm;根据展开图可知一个长与两个高的和为13cm;由此可列出方程.解:设这种药品包装盒的宽为xcm;则高为7-xcm;长为x+4cm.根据题意;得x+4+27-x=13;解得 x=5;所以7-x=2;x+4=9.故长为9cm;宽为5cm;高为2cm.所以这种药品包装盒的体积为:9×5×2=90cm3.例12. 某石油进口国这个月的石油进口量比上个月减少了5%;由于国际油价上涨;这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率.解:设这个月的石油价格相对上个月的增长率为x. 根据题意得1+x1-5%=1+14%解得x=20%答:这个月的石油价格相对上个月的增长率为20%.点评:本题是一道增长率的应用题. 本月的进口石油的费用等于上个月的费用加上增加的费用;也就是本月的石油进口量乘以本月的价格. 设出未知数;分别表示出每一个数量;列出方程进行求解. 列方程解应用题的关键是找对等量关系;然用代数式表示出其中的量;列方程解答.例13. 某市参加省初中数学竞赛的选手平均分数为78分;其中参赛的男选手比女选手多50%;而女选手的平均分比男选手的平均分数高10%;那么女选手的平均分数为____________.解析:总平均分数和参赛选手的人数及其得分有关. 因此;必须增设男选手或女选手的人数为辅助未知数. 不妨设男选手的平均分数为x分;女选手的人数为a人;那么女选手的平均分数为1. 1x 分;男选手的人数为1. 5a 人;从而可列出方程1.5 1.1781.5a x x a a a⋅+⋅=+;解得x=75;所以1. 1x=82. 5. 即女选手的平均分数为82. 5分.第四章 几何图形初步4.1 几何图形1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形..2、立体图形:这些几何图形的各部分不都在同一个平面内..3、平面图形:这些几何图形的各部分都在同一个平面内..4、虽然立体图形与平面图形是两类不同的几何图形;但它们是互相联系的..立体图形中某些部分是平面图形..5、三视图:从左面看;从正面看;从上面看6、展开图:有些立体图形是由一些平面图形围成的;将它们的表面适当剪开;可以展开成平面图形..这样的平面图形称为相应立体图形的展开图..7、⑴几何体简称体;包围着体的是面;面面相交形成线;线线相交形成点;⑵点无大小;线、面有曲直;⑶几何图形都是由点、线、面、体组成的;⑷点动成线;线动成面;面动成体;⑸点:是组成几何图形的基本元素..4.2 直线、射线、线段1、直线公理:经过两点有一条直线;并且只有一条直线..即:两点确定一条直线..2、当两条不同的直线有一个公共点时;我们就称这两条直线相交;这个公共点叫做它们的交点..3、把一条线段分成相等的两条线段的点;叫做这条线段的中点.. ma 4、线段公理:两点的所有连线中;线段做短两点之间;线段最短..5、连接两点间的线段的长度;叫做这两点的距离..6、直线的表示方法:如图的直线可记作直线AB或记作直线m.1用几何语言描述右面的图形;我们可以说:点P 在直线AB 外;点A 、B 都在直线AB 上.2如图;点O 既在直线m 上;又在直线n 上;我们称直线m 、n 相交;交点为O .7、在直线上取点O;把直线分成两个部分;去掉一边的一个部分;保留点0和另一部分就得到一条射线;如图就是一条射线;记作射线OM 或记作射线a .注意:射线有一个端点;向一方无限延伸.8、在直线上取两个点A 、B;把直线分成三个部分;去掉两边的部分;保留点A 、B 和中间的一部分就得到一条线段.如图就是一条线段;记作线段AB 或记作线段a . 注意:线段有两个端点.4.3 角1. 角的定义:有公共端点的两条射线组成的图形叫角..这个公共端点是角的顶点;两条射线为角的两边..如图;角的顶点是O;两边分别是射线OA 、OB .2、角有以下的表示方法:① 用三个大写字母及符号“∠”表示.三个大写字母分别是顶点和两边上的任意点;顶点的字母必须写在中间.如上图的角;可以记作∠AOB 或∠BOA . ② 用一个大写字母表示.这个字母就是顶点.如上图的角可记作 1O B Am a∠O.当有两个或两个以上的角是同一个顶点时;不能用一个大写字母表示.③用一个数字或一个希腊字母表示.在角的内部靠近角的顶点处画一弧线;写上希腊字母或数字.如图的两个角;分别记作∠ 、∠12、以度、分、秒为单位的角的度量制;叫做角度制..角的度、分、秒是60进制的..1度=60分 1分=60秒 1周角=360度 1平角=180度3、角的平分线:一般地;从一个角的顶点出发;把这个角分成两个相等的角的射线;叫做这个角的平分线..4、如果两个角的和等于90度直角;就说这两个叫互为余角;即其中每一个角是另一个角的余角;如果两个角的和等于180度平角;就说这两个叫互为补角;即其中每一个角是另一个角的补角..5、同角等角的补角相等;同角等角的余角相等..6、方位角:一般以正南正北为基准;描述物体运动的方向..。
2022七年级数学上册第二章整式的加减2.1整式第2课时单项式习题课件新版新人教版
• 1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月11日星期五上午10时12分9秒 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,
给那些善于独立思考的人,给那些具有锲而不舍的人。2022年3月上午10时12分22.3.1110:12March 11, 2022
3
•13.若3xmyn是含有字母x和y的五次单项式,m,n均为正整数,则mn的最大
值为 9
.
考查角度 由单项式的次数求字母的值 •14.若(m+2)x3y|m|是关于x,y的五次单项式,求m的值. •解:由题意,得3+|m|=5, •所以|m|=2, •所以m=±2. •又因为m+2≠0, •所以m=2.
• 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022年3月11日星期五10时12分9秒10:12:0911 March 2022
谢谢观赏
You made my day!
我们,还在路上……
第二章 整式的加减
2.1 整 式
第2课时 单项式
知识点一 单项式及其系数与次数
•1.下列各式:3 ,a-3,-3 ,-m ,2y3,其中单项式的个数为( C )
m
2
2
•A.1个
B.2个
•C.3个
D.4个
•2.(2019·怀化)单项式-5ab的系数是( B )
•A.5
B.-5
•C.2
D.-2
3.下列各式中,是四次单项式的为( C )
6
4
-ab2 -1
3
知识点二 单项式的实际应用
•6.某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它
新人教版初中数学七年级上册《第二章整式的加减:2.2整式的加减:合并同类项》公开课教案_1
课题:2.2 整式的加减(1)合并同类项第一课时一、三维目标1、知识与技能(1)了解同类项、合并同类项的概念,掌握合并同类项法则,•能正确合并同类项.(2)能先合并同类项化简后求值.经历类比有理数的运算律,探究合并同类项法则,培养学生观察、探索、分类、归纳等能力.3、情感态度与价值观掌握规范的解题步骤,养成良好的学习习惯,通过比较两种求代数式值的方法,体会合并同类项的作用.二、 教学重、难点与关键(1)重点:掌握合并同类项法则,熟练地合并同类项.(2)难点:多字母同类项的合并.(3)关键:正确理解同类项概念和合并同类项法则..三、 教学过程,1、引入新课实际生活中,我们身边的同一类事物有很多,为了需要,往往我们要将它们进行分类。
又哪位同学愿意给大家举个例子呢?你会做吗?(1) 卓玛从家里带了3朵花到教室,尼玛从家里带了2朵花到教室。
请问现在教室里到底有几朵花?(2) (2)扎西家里有12头奶牛,有3只绵羊。
请问扎西家共有几头奶牛?2、讲授新课1.试一试 ?312532752222=+=+=+y x ab ab ab aa a2.导学提纲:(议一议)观察下列各单项式,把你认为相同类型的式子归类,并说出分类依据。
0.3ab 2 、 -4a 2b 、9xy 、 -xy -ab 2观察0.3ab 2,-ab 2中都含有相同字母a 和b ,并且相同字母a 的指数都是1, 相同字母b 的指数是2;而9xy 和 –xy 都含有相同字母x 和y,且相同字母x 指数都是1,相同字母y 指数都是1.3、归纳: 像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,•几个常数项也是同类项.4. 练习。
判断下列各组中的两项是否是同类项,不是同类项的请说明原因:(1) -5ab 3与3a 3b( ) (2)3xy 与3x( )(3)0.5ab 与2ba ( )(4)53与35 ( )(5)x 3与53 ( ) (6) -5m 2n 3与2n 3m 2( )理解同类项应注意:两个相同:所含字母相同,相同字母的指数相同。
2019七年级数学上册 第2章 整式的加减 2.1 整式 第3课时 多项式及整式备课素材
2.1 整式第3课时多项式置疑导入归纳导入类比导入悬念激趣情景导入如图2-1-15,我们学校的操场由一个长方形和两个半圆组成.图2-1-15(1)两个半圆的面积和是多少?(2)整个操场的面积是多少?(待得出以上两个答案后)观察这两个式子之间有哪些区别和联系呢?这就是我们这节课要研究的整式.[说明与建议] 说明:从学生身边的情境出发,使学生了解整式的实际背景,进一步理解字母表示数的意义,既巩固了旧知识,又可以借此自然引入新课.建议:在丰富的情境中,学生再一次经历了用字母表示数量关系的过程,有效地激发了学生的学习兴趣,调动了学生学习的积极性.也可以采取以下方式提问学生:(1)是单项式,(2)是单项式吗?和(1)相比有什么区别呢?用字母表示数:(1)若长方形的长与宽分别为a,b,则长方形的周长是__2(a+b)__;(2)若某班有男生x人,女生21人,则这个班共有学生__(x+21)__人;(3)鸡兔同笼,鸡a只,兔b只,则共有头__(a+b)__个,脚__(2a+4b)__只.观察以上所得出的四个式子,与上节课所学的单项式有何区别.[说明与建议] 说明:由于本课的主题是多项式,通过用字母表示数引入多项式,既是对前面知识的回顾,又由此导入新课,既符合学生的认知水平,又能为学生学习新知识提供丰富的素材.建议:由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼了他们的语言表达能力.通过特征的讲述,由学生自己归纳出多项式的定义,教师可给予适当的提示及补充.[命题角度1] 多项式的有关概念多项式的项数是由组成该多项式的单项式的个数确定的,有几个单项式就有几项,多项式的次数是“多项式中次数最高的项的次数”.例 [佛山中考] 多项式1+2xy -3xy 2的次数及次数最高的项的系数分别是( A ) A .3,-3 B .2,-3 C .5,-3 D .2,3 [命题角度2] 多项式的项及次数的应用根据多项式的有关概念,列出方程,解方程求出待定字母的值,再代入所求的式子求值即可.例 [济宁中考] 如果整式x n -2-5x +2是关于x 的二次三项式,那么n 等于( B )A .3B .4C .5D .6P58练习 1.填空:(1)a ,b 分别表示长方形的长和宽,则长方形的周长l =________,面积S =________,当a =2 cm ,b =3 cm 时,l =________ cm ,S =________ cm 2;(2)a ,b 分别表示梯形的上底和下底,h 表示梯形的高,则梯形的面积S =________,当a =2 cm ,b =4 cm ,h =5 cm 时,S =________ cm 2.[答案] (1)2(a +b ) ab 10 6(2)(a +b )2h 152.用整式填空,指出单项式的次数以及多项式的次数和项: (1)每袋大米5 kg ,x 袋大米( )kg ;(2)如图(图中长度单位:m),阴影部分的面积是( )m 2; (3)体重由x kg 增加2 kg 后是( )kg. [答案] (1)5x ,次数为1;(2)x 2+3x +6,次数为2,有三项:x 2,3x ,6; (3)x +2,次数为1,有两项:x ,2. P59习题2.1 复习巩固1.列式表示:(1)棱长为a cm 的正方体的表面积.(2)每件a 元的上衣,降价20%后的售价是多少元?(3)一辆汽车的行驶速度是v km/h ,t h 行驶多少千米?(4)长方形绿地的长、宽分别是a m ,b m ,如果长增加x m ,新增加的绿地面积是多少平方米?[答案] (1)6a 2 cm 2;(2)a (1-20%);(3)vt ;(4)xb . 2.列式表示:(1)温度由t ℃上升5 ℃后是多少?(2)两车同时、同地、同向出发,快车行驶速度是x km/h,慢车行驶速度是y km/h,3 h 后两车相距多千米?(3)某种苹果的售价是每千克x元(x<10),用50元买5 kg这种苹果,应找回多少钱?(4)如图(图中长度单位:cm),钢管的体积是多少?[答案] (1)t+5;(2)3(x-y);(3)50-5x;(4)πa(R2-r2).3.填表:,综合运用4.测得一种树苗的高度与树苗生长的年数的有关数据如下表(树苗原高100 cm):述关系,用式子表示生长了n年的树苗的高度.[答案] 前四年树苗高度每年增长5 cm.生长了n年的树苗的高度是(100+5n)cm.5.礼堂第1排有a个座位,后面每排都比前一排多一个座位. 第2排有多少个座位?第3排呢?用式子表示第n排的座位数.如果第1排有20个座位,计算第19排的座位数.[答案] 第2排有(a+1)个座位,第3排有(a+2)个座位,第n排的座位数为(a+n-1)个.第19排的座位数;20+19-1=38(个).6.一块三角尺的形状和尺寸如图所示.如果圆孔的半径是r ,三角尺的厚度是h ,用式子表示这块三角尺的体积V .若a =6 cm ,r =0.5 cm ,h =0.2 cm ,求V 的值(π取3).[答案] V =12a 2h -πr 2h ,当a =6 cm ,r =0.5 cm ,h =0.2 cm ,π=3时,V =12×62×0.2-3×0.52×0.2=3.45(cm 3).拓广探索7.设n 表示任意一个整数,用含n 的式子表示: (1)任意一个偶数; (2)任意一个奇数. [答案] (1)2n ;(2)2n +1.8.3个球队进行单循环比赛(参加比赛的每一个队都与其他所有的队各赛一场),总的比赛场数是多少?4个队呢?5个队呢?n 个队呢?[答案] 3个队赛3场,4个队赛6场,5个队赛 10场,n 个队赛n (n -1)2场.9.对于密码L dp d vwxghqw ,你能看出它代表什么意思吗?如果给你一把破译它的“钥匙”x -3,联想英语字母表中字母的顺序,你再试试能不能解读它.英语字母表中字母是按以下顺序排列的:a b c d e f g h i j k 1 m n o p q r s t u v w x y z如果规定a 又接在z 的后面,使26个字母排成圈,并能想到x -3可以代表“把一个字母换成字母表中从它向前移动3位的字母”,按这个规律就有L dp d vwxghqw ―→I am a student. 这样你就能解读它的意思了.为了保密,许多情况下都要采用密码,这时就需要有破译密码的“钥匙”.上面的例子中,如果写和读密码的双方事先约定了作为“钥匙”的式子x -3的含义,那么他们就可以用一种保密方式通信了.你和同伴不妨也利用数学式子来制定一种类似的“钥匙”,并互相合作,通过游戏试试如何进行保密通信.[答案] 略.[当堂检测]1. 多项式-x 2- 3x+2的各项分别是( )A. -x 2、 3x 、 2B. -x 2、- 3x 、2C. -x 2、3x +2D. x 2、- 3x 、+22. 在代数式x 2+5, -1, x 2-3x+2, π,xx2,x 2+a1,0中,整式有( ) A .3个 B .4个 C .5个 D .6个3. 一组按规律排列的多项式:a+b ,a 2-b 3,a 3+b 5,a 4-b 7,…,其中第10个式子是( )A .a 10+b 19B .a 10-b19C .a 10-b 17D .a 10-b 214..代数式:5)1(223-+-x x x 是___ 次___项式,其中二次项的系数是______ .5. 某班级中一个小组5人,在一次测试中,小华得了72分,其余4人的平均分数为a 分,则这个小组的平均分数是_______ .参考答案: 1. B 2. C 3. B 4. 三 四 - 52 5. 5724+a[能力培优]专题一 用代数式表示实际问题 1.10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是( )2.某种商品进价为a 元/件,在销售旺季,商品售价较进价高30%;销售旺季过后,商品又以7折(即原售价的70%)的价格开展促销活动,这时一件该商品的售价为( ). A.a 元 B.0.7 a 元 C.1.03 a 元 D.0.91a 元 专题二 单项式的系数与次数3.代数式-23xy 3的系数与次数分别是( )A .-2,4B .-6,3C .-2,3D .-8,44.如果-33a m b 2是7次单项式,则m 的值是( )3a , 12 xy 2,-5xy 4 ,a π ,-x , 13 (a +1), 1x .专题三 考查多项式的项、项数与次数7.如果一个多项式的次数是6,则这个多项式的任何一项的次数都( ) A.小于6 B.等于6 C.不大于6 D.不小于68.若2210a a +-=,则2242013a a ++= . 9.m 为何值时,2123(2)3m m x y xy -+-是五次二项式?专题四 列代数式解决中考中的规律探索题10.(2012·山西)如图,是由形状相同的正六边形和正三角形组合成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 (用含有n 的代数式表示).11.(2012·桂林)下图是在正方形网格中按规律填成的阴影,根据此规律,第n 个图中的阴影部分小正方形的个数是 .12.(2011·汕头)如图数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数; (2)用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数. 知识要点: 1.单项式的概念:数或字母的积,这样的代数式叫做单项式.单独的一个数或字母也是单项式. 2.单项式的系数和次数:单项式中的数字因数叫做这个单项式的系数.一个单项式中,所有字母的指数的和叫做这个单项式的次数.单独一个非零的数,规定它的次数为0.3. 多项式的定义:几个单项式的和叫做多项式.4.多项式的有关概念.多项式中的每一个单项式叫做多项式的项,其中不含字母的项叫做常数项. 多项式里,次数最高项的次数,叫做这个多项式的次数. 5.整式的定义:单项式和多项式统称为整式.温馨提示:1.用字母表示数要点:(1)字母与字母相乘,乘号一般省略不写,字母的排列顺序一般按字母表的顺序.如a ×b 写成ab ;(2)数与字母相乘,乘号一般也省略不写,但数一定要写在字母的前面,当数是带分数时,一定要化为假分数.如a ×3要写成3a ,不要写为a 3;313×m 要写为310m ,不要写成313m ; (3)带括号的式子与字母的地位相同.如a ×(b -2)可写为a (b -2),也可以写成(b-2)a ;(π-3)×2可写为2(π-3),但不要写成(π-3)2; (4)含字母的除法中,一般不用除号,而改为分数线.如x与y的商一般写为yx,而不写x ÷y ; (5)和或差关系,又带单位的代数式要用括号括起来后再写上单位.如气温从t ℃下降6℃后是(t -6)℃,不要写为t -6℃. 2.与单项式有关的注意事项:(1)确定一个单项式的系数,要注意包括它前面的性质符号.(2)看上去只含有字母因式的单项式,其系数是1或1-,1往往省略不写.(3)计算单项式的次数时,应注意是所有字母指数的和,不要漏掉字母指数是1的指数. (4)单项式的次数只和字母的指数有关,与系数的指数无关. 3.与多项式有关的注意事项:(1)多项式中的每一项要包括它前面的符号.(2)“×次×项式”,用大写“一、二、三…”表示. 方法技巧:1.本节概念性的东西较多,熟记概念是做好题目的保证.2.与图形有关的规律探索问题,往往先从最简单的前1至3个入手,找到它们共同的规律(规律一般是与图形的序号有关的式子),然后将要解决的复杂图形的问题,代入到前面发现的规律中,得到问题的解. 答案:1. B 解析:先求出这15个人的总成绩10x +5×84=10x +420,再除以15可求得平均值为1042015x +.2. D 解析 :因为商品每件a 元,按进价提高30%出售,则售价为(1+30%)a =1.3a 元,商品以7折销售时售价为1.3a ×70% =0.91a 元.3. D 解析:该单项式的因数是-23,即-8,所以该单项式的系数是-8.字母x 、y 的指数分别是1和3,指数和是4,所以该单项式的次数是4.4. B 解析:由题意得,所有字母的指数和为7,即m +2=7,则m =5.5.解析:根据四次单项式的定义,x 2y 2,x 3y ,xy 3等都符合题意(答案不唯一). 6.解析:3a 表示3与a 相乘,是单项式,系数为3,次数为1; 12 xy 2表示12 与xy 2相乘,是单项式,系数为12,次数为3;-5xy 4 表示-54 与xy 相乘,是单项式,系数为-54,次数为2; aπ表示1π与a 相乘,是单项式,系数为1π,次数为1;-x 表示-1与x 相乘,是单项式,系数为-1,次数为1; 13 (a +1)表示a 与1的和的31倍,含有加法运算,不是单项式. 1x表示1与x 的商,不是单项式. 7.C 解析:由于多项式的次数是“多项式中次数最高的项的次数”,因此六次多项式中,次数最高的项是六次的,其余项的次数可以是六次的,也可以是小于六次的,却不能是大于六次的.因此六次多项式中的任何一项都是不大于六次的.8.2015 解析:222420132(2)2013220132015a a a a ++=++=+=.9.解析:根据条件,有m 2-1+2=5,且m +2≠0.所以m =2.10. 4n -2 解析:第1个图案中阴影小三角形的个数是2;第2个图案中阴影小三角形的个数是6=2+4×1;第三个图案中阴影小三角形的个数是10=2+4×2;第4个图案中阴影小三角形的个数是14=2+4×3;…,所以第n 个图案中阴影小三角形的个数是2+4(n -1)=4n -2.11. n (n +1)+2或 n 2+n +2 解析:根据图形可知:第一个图形中阴影部分小正方形个数为4=2+2=1×2+2, 第二个图形中阴影部分小正方形个数为8=6+2=2×3+2, 第三个图形中阴影部分小正方形个数为14=12+2=3×4+2, …所以第n 个图形中阴影部分小正方形个数为n (n +1)+2或 n 2+n +2.12.(1)64 8 15 (2)2(1)1n -+ 2n 21n -解析:(1)观察所给数阵可知,每行最右侧的数是该行序号的平方.每一行数字的个数是每行的序号乘以2减去1.所以第8行的最后一个数是自然数8的平方,即82=64,共有2×8-1=15个数;(2)第n -1行的最后一个数为2(1)n -,所以第n 行的第一个数是2(1)1n -+,最后一个数为2n ,第n 行共有2n -1个数.整式陷阱面面观整式是单项式和多项式的统称.其中单项式是数字因数和字母因数的乘积形式,单独的一个数字也是单项式;多项式是几个单项式和的形式,它的很多概念都和单项式息息相关.正确把握整式及其相关概念,有助于我们学好整式运算.但同时,这些概念的把握不准,极有可能掉进一个个的陷阱.陷阱一:单项式的系数错例:1.单项式22r π的系数是2. 2.单项式232xy a b -、的系数都是0. 点拨:单项式的系数指的是单项式的数字因数....,而不是数字..,尤其这个数字因数以分数或科学记数法的形式出现或有常数π时易出现错误.因此判断单项式系数时,关键在于正确分离单项式的因数成分.正解:1.单项式22r π的系数是2π. 2.单项式232xy a b -、的系数分别是1和-1. 陷阱二:单项式的次数错例:1.单项式22xy 次数是2次. 2.222ab 是五次单项式.点拨:单项式的次数指的是所有字母指数的和........,而不是部分指数的和......,特别是当字母没有指数时,应理解为指数为1,而不是0;但同时,因为单项式次数,只和字母指数有关,因此在判断单项式次数时,也并非“见指数就相加......”. 正解:1.单项式22xy 次数是3次. 2.222ab 是三次单项式. 陷阱三:多项式的项、项数错例:多项式222331x x x x --+-有5项构成,他们分别是222 3 3 1x x x x 、、、、. 点拨:我们知道,几个单项式的和叫做多项式,在多项式中,每一个单项式称作该多项式的项,其中不含有字母的项叫做常数项.因此,多项式中的项必须带有“前边的符号.....”.而判断多项式的项数的前提是必须把多项式化为最简..,即要把多项式合并. 正解:多项式222331x x x x --+-有3项构成,他们分别是22 1x x ---、、. 陷阱四:多项式的次数错例:多项式325234x x x -+-是六次四项式.点拨:多项式的次数指的是多项式中最高次数项的次数.........不要理解为多项式中所有项的次.数之和....所以判断多项式次数时,应该逐项判断构成多项式的每一项的次数,然后找到最高次数项的次数,而不是将她们相加.正解:多项式325234x x x -+-是三次四项式. 陷阱五:同类项错例:1.3-xy xy 和不是同类项. 2. 22-35yx zx yz 和不是同类项. 3.222-3ab a b 和是同类项.点拨:同类项是整式加减运算的基础,它的概念是:含有相同字母....,并且相同字母的指......数也相同....的项.它和字母的先后顺序,项的系数及次数没有任何关系. 正解:1.3-xy xy 和是同类项. 2. 22-35yx z x yz 和是同类项. 3. 222-3ab a b 和不是同类项.。
鄂尔多斯市七年级数学上册第二单元《整式加减》-解答题专项阶段练习(答案解析)
一、解答题1.奇奇同学发现按下面的步骤进行运算,所得结果一定能被9整除.请你用我们学过的整式的知识解释这一现象.解析:见解析.【分析】设原来的两位数十位数字为a,个位数字为b,表示出原来两位数与新的两位数,相减得到结果,即可得出结果.【详解】解:设原来的两位数十位数字为a,个位数字为b,则原来两位数为10a+b,交换后的新两位数为10b+a,(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b),则这个结果一定是被9整除.【点睛】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.2.给定一列分式:3xy,52xy-,73xy,94xy-,…(其中0x≠).(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.解析:(1)任意一个分式除以前面一个分式,都得2xy-.(2)第7个分式为157xy,第8个分式为178 xy -.【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子.【详解】解:(1)5352223x x x y x y y y x y, 757223235x x x y x y y y x y , 979324347x x x y x y y y x y , …… ∴任意一个分式除以前面一个分式,都得2x y-. (2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x 15,第8个分子上是x 17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157x y,第8个分式为178x y -. 【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键. 3.已知多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同,求m ,n 的值.解析:m =1,n =4.【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得m 的值,根据单项式的次数是单项式中所有字母指数和,可得n 的值.【详解】∵多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同, ∴2+2m +1=5,n +4m ﹣3=5,解得m =1,n =4.【点睛】本题考查了多项式,利用多项式的次数是多项式中次数最高的单项式的次数,单项式的次数是单项式中所有字母指数和得出m 、n 的值是解题关键.4.求多项式的值222232424a b ab a b ab --+-,其中1a =-,2b =-.解析:24a b --,-2.【分析】原式合并同类项后代入字母的值计算即可.【详解】解:原式24a b =--,当1a =-,2b =-时,原式2=-.【点睛】本题考查了整式的化简求值,正确的将原式合并同类项是解决此题的关键.5.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.解析:3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可.【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+.【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.6.先化简,再求值:()22323(2)x xy x y xy y --+-+,其中1,32x y =-=. 解析:8xy -,12【分析】根据题意,对原式利用整式的混合运算法则进行化简,然后将x ,y 的值代入求解即可.【详解】解:原式2236328x xy x y xy y xy =--+--=-, 当1,32x y =-=时,原式183122⎛⎫=-⨯-⨯= ⎪⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.7.已知一个多项式加上223x y xy -得222x y xy -,求这个多项式.佳佳的解题过程如下:解:222223x y xy x y xy ---①224x y xy =-②请问佳佳的解题过程是从哪一步开始出错的?并写出正确的解题过程.解析:是从第①步开始出错的,见解析【分析】根据多项式的加减运算法则进行运算即可求解.【详解】解:佳佳是从第①步开始出错的,正确的解题过程如下:根据题意,得:()()222223x y xy x y xy ---222223x y xy x y xy =--+222x y xy =+,∴这个多项式为222x y xy +.故答案为222x y xy +.【点睛】本题考查了多项式的加减混合运算,注意:只有同类项才能进行加减运算.8.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.9.观察下列等式.第1个等式:a 1=113⨯=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=135⨯=12×1135⎛⎫- ⎪⎝⎭; 第3个等式:a 3=157⨯=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=179⨯=12×1179⎛⎫- ⎪⎝⎭; …请解答下列问题.(1)按以上规律列出第5个等式:a 5=____=____;(2)求a 1+a 2+a 3+a 4+…+a 100的值.解析:(1)1911⨯;12×11911⎛⎫- ⎪⎝⎭;(2)100201. 【分析】 (1)根据连续奇数乘积的倒数等于这两个奇数的倒数差的一半列式可得;(2)根据以上所得规律列式111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再进一步计算可得. 【详解】(1)由观察知, 左边:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1,右边:这两个奇数的倒数差的一半,∴第5个式子是:()()111115215219112911⎛⎫==⨯- ⎪⨯-⨯-⨯⎝⎭; 故答案为:1911⨯;12×11911⎛⎫- ⎪⎝⎭; (2)a 1+a 2+a 3+a 4+…+a 100111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111111233557199201⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111111111233557199201⎛⎫=⨯-+-+-++- ⎪⎝⎭1112201⎛⎫=⨯- ⎪⎝⎭ 12002201=⨯ 100201=. 【点睛】 本题主要考查了数字的变化规律,解题的关键是根据已知等式得出规律:连续奇数乘积的倒数等于这两个奇数的倒数差的一半.10.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a ,那么第二年的产量是多少?解析:15a【分析】设第一年的产量为a ,以15%的速度增长,表示在m 的基础上增长a 的15%.【详解】解:根据题意,得设第一年的产量为a,以15%的速度增长,∴第二年的产量为a(1+15%)=1.15a.【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系.11.用代数式表示:(1)比x的平方的5倍少2的数;(2)x的相反数与y的倒数的和;(3)x与y的差的平方;(4)某商品的原价是a元,提价15%后的价格;(5)有一个三位数,个位数字比十位数字少4,百位数字是个位数字的2倍,设x表示十位上的数字,用代数式表示这个三位数.解析:(1)5x2-2;(2)-x+1y;(3)(x-y)2;(4)(1+15%)a;(5)200(x-4)+10x+(x-4).【分析】(1)明确是x的平方的5倍与2的差;(2)先求出x的相反数与y的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数.【详解】(1)5x2-2;(2)-x+1y;(3)(x-y)2;(4)(1+15%)a;(5)200(x-4)+10x+(x-4) .【点睛】本题考查了列代数式,能够根据运算顺序正确书写,同时注意数位的意义,注意“多,少,积,差”等关键字的把握.12.数学课上,老师出示了这样一道题目:“当1,22a b==-时,求多项式3233233733631061a ab a a b a b a a b+++----的值”.解完这道题后,张恒同学指出:“1,22a b==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x取任何值,多项式2233x mx nx x-++-+的值都不变,求系数m、n的值”.请你解决这个问题.解析:(1)见解析;(2)3n =,1m =.【分析】(1)将原式进行合并同类项,然后进一步证明即可;(2)将原式进行合并同类项,根据“无论x 取任何值,多项式值不变”进一步求解即可.【详解】(1)3233233733631061a a b a a b a b a a b +++----=3332233731033661a a a a b a b a b a b +-+-+--=1-,∴该多项式的值与a 、b 的取值无关, ∴1,22a b ==-是多余的条件. (2)2233x mx nx x -++-+=2233x nx mx x -++-+=2(3n)(1)3x m x -++-+∵无论x 取任何值,多项式值不变,∴30n -+=,10m -=,∴3n =,1m =.【点睛】本题主要考查了多项式运算中的无关类问题,熟练掌握相关方法是解题关键.13.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列; (2)请指出该多项式的次数,并写出它的二次项和常规项.解析:(1)432215253x x x x -+++-;(2)该多项式的次数为4,二次项是22x ,常数项是13-.【分析】(1)按照x 的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项.【详解】(1)按的降幂排列为原式432215253x x x x -+++-. (2)∵234212553x x x x ++--中次数最高的项是-5x 4, ∴该多项式的次数为4,它的二次项是22x ,常数项是13-. 【点睛】本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.14.化简与求值:(1)若1a =-,则式子21a -的值为______;(2)若1a b +=,则式子12a b ++的值为______; (3)若534a b +=-,请你仿照以上求式子值的方法求出()()2422a b a b +++-的值. 解析:(1)0;(2)32;(3)-10. 【分析】(1)把a 的值代入计算即可;(2)把a+b 的值代入计算即可;(3)原式去括号转化为含有(5a+3b)的式子,然后代入5a+3b 的值计算即可.【详解】解:(1)()221110a -=--=;(2)1311222a b ++=+=; (3)()()()()24221062253224210a b a b a b a b +++-=+-=+-=⨯--=-.【点睛】本题考查的是整式的化简求值和整体代换的思想.只要原式化简出含有已知的式子,再代入求值即可.15.观察下列单项式:﹣x ,2x 2,﹣3x 3,…,﹣9x 9,10x 10,…从中我们可以发现: (1)系数的规律有两条:系数的符号规律是系数的绝对值规律是(2)次数的规律是(3)根据上面的归纳,可以猜想出第n 个单项式是 .解析:(1)奇数项为负,偶数项为正;与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx -【分析】通过观察题意可得:奇数项的系数为负,偶数项的系数为正,且系数的绝对值与自然数序号相同,次数也与与自然数序号相同.由此可解出本题.【详解】(1)奇数项为负,偶数项为正,与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx -.本题考查了单项式的有关概念.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.16.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快者获胜,可以得到一个奖品.下面我们用四个卡片代表四名同学(如下):(1)列式,并计算:①3-经过A ,B ,C ,D 的顺序运算后,结果是多少?②5经过B ,C ,A ,D 的顺序运算后,结果是多少?(2)探究:数a 经过D ,C ,A ,B 的顺序运算后,结果是45,a 是多少? 解析:(1)①7;②206;(2)256a =-或256a =--【分析】(1)把-3和5经过A ,B ,C ,D 的运算顺序计算即可;(2)根据已知条件列列出关于a 的方程计算即可;【详解】(1)①2[(3)2(5)]67-⨯--+=;②2[5(5)]26206--⨯+=;(2)()()226545a +--=,()2620a +=,解得256a =-或256a =--.【点睛】本题主要考查了规律型数字变化类,一元二次方程的求解,准确计算是解题的关键. 17.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案.【详解】解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.18.已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4【分析】 根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.19.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n )2017的值.解析:-1【分析】先把多项式进行合并同类项得(n-3)x 2+(m-1)x+3,由于关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 无关,即不含x 的项,所以n-3=0,m-1=0,然后解出m 、n ,代入计算(2m-n )2017的值即可.【详解】合并同类项得(n ﹣3)x 2+(m ﹣1)x+3,根据题意得n ﹣3=0,m ﹣1=0,解得m=1,n=3,所以(2m ﹣n )2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 20.已知单项式﹣2x 2y 的系数和次数分别是a ,b .(1)求a b ﹣ab 的值;(2)若|m|+m=0,求|b ﹣m|﹣|a+m|的值.解析:(1)﹣2;(2)1.【分析】(1)根据单项式的系数是数字因数,次数是字母指数的和,可得a 、b 的值,根据代数式求值,可得答案;(2)非正数的绝对值是它的相反数,可得m 的取值范围,根据差的绝对值是大数减小数,可得答案.【详解】解:由题意,得a=﹣2,b=2+1=3.a b ﹣ab=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2;(2)由|m|+m=0,得m≤0.|b ﹣m|﹣|a+m|=b ﹣m+(a+m )=b+a=3+(﹣2)=1;【点睛】本题考查了单项式的系数和次数的性质,掌握单项式中数字因数叫做单项式的系数,所有的字母的指数之和为次数是解决本题的关键.21.观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.22.国庆期间,王老师计划组织朋友去晋西北游览两日.经了解,现有甲、乙两家旅行社针对组团两日游的游客报价均为每人500元,且提供的服务完全相同.甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按八折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x 人. (1)请列式表示甲、乙两家旅行社收取组团两日游的总费用;(2)若王老师组团参加两日游的人数共有30人,请你通过计算,在甲、乙两家旅行社中,帮助王老师选择收取总费用较少的一家.解析:(1)甲旅行社收取组团两日游的总费用为425x 元;若人数不超过20人时,乙旅行社收取组团两日游的总费用为450x 元;若人数超过20人时,乙旅行社收取组团两日游的总费用为(4001000x +)元;(2)王老师应选择甲旅行社.【分析】(1)根据总费用等于人数乘以打折后的单价,易得甲旅行社的费用=500 x×0.85,对于乙家旅行社的总费用,应分类讨论:当0≤x≤20时,乙旅行社的费用=500 x×0.9;当x >20时,乙旅行社的费用=500×20×0.9+500(x-20)×0.8;(2)把x=30分别代入(1)中对应关系计算甲旅行社的费用和乙旅行社的费用的值,然后比较大小即可.【详解】(1)甲旅行社收取组团两日游的总费用为:5000.85425x x ⨯=元若人数不超过20人时,乙旅行社收取组团两日游的总费用为:5000.9450x x ⨯=元 若人数超过20人时,乙旅行社收取组团两日游的总费用为:()500(20)0.8500200.94001000-⨯+⨯⨯=+x x 元(2)因为王老师组团参加两日游的人数共有30人,所以甲旅行社收取组团两日游的总费用为:4253012750⨯=元乙旅行社收取组团两日游的总费用为40030100013000⨯+=元1275013000<,王老师应选择甲旅行社.【点睛】本题考查了代数式,能根据具体情境列代数式并求代数式的值是关键.23.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由.解析:(1)十字框中五个数的和是正中心数的5倍;(2)十字框中五个数的和是正中心数的5倍,理由见解析;(3)不能,理由见解析;(4)这五个数是404,403,405,397,411.【分析】(1)把框住的数相加即可求解;(2)设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +,相加即可得到规律;(3)由(2)得五个数的和为5a ,令5a=180,根据解得情况即可求解;(4)由(2)得五个数的和为5a ,令5a=2020,根据解得情况即可求解;【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511=++++==⨯,∴十字框中五个数的和是正中心数的5倍.(2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +.11775a a a a a a +-+++-++=,∴十字框中五个数的和是正中心数的5倍.(3)十字框中五个数的和不能等于180.∵当5180a =时,解得36a =,36751÷=,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020.∵当52020a =时,解得404a =,4047575÷=,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411.【点睛】此题主要考查一元一次方程的应用,解题的关键是设中心的数为a ,求出十字框中五个数的和为5a.24.已知A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+1223ab + (1)当a =﹣1,b =﹣2时,求4A ﹣(3A ﹣2B )的值;(2)若(1)中式子的值与a 的取值无关,求b 的值.解析:(1)4ab ﹣2a+13;(2)b=12 【分析】(1)将a=﹣1,b=﹣2代入A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23,求出A 、B 的值,再计算4A ﹣(3A ﹣2B )的值即可;(2)把(1)结果变形,根据结果与a 的值无关求出b 的值即可.【详解】(1)4A ﹣(3A ﹣2B )=4A ﹣3A+2B=A+2B ,∵A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23, ∴A+2B=2a 2+3ab ﹣2a ﹣1+2(﹣a 2+12ab+23) =2a 2+3ab ﹣2a ﹣1﹣2a 2+ab+43 =4ab ﹣2a+13; (2)因为4ab ﹣2a+13 =(4b ﹣2)a+13, 又因为4ab ﹣2a+13的值与a 的取值无关, 所以4b ﹣2=0,所以b=12. 【点睛】本题考查了整式的加减、化简求值,熟练掌握运算法则是解答本题的关键.25.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当2a =-,2018b =,求222221(324)2(23)2()12a b ab a a b a ab a b -+--++-的值”.小明做完后对同桌说:“老师给的条件2018b =是多余的,这道题不给b 的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?解析:-21【分析】首先化简代数式,通过去括号、合并同类项,得出结论即含有b 的代数式相加为0,即可说明.【详解】解()()222221324223212a b ab a a b a ab a b ⎛⎫-+--++- ⎪⎝⎭=222223244621a b ab a a b a ab a b -+-+++-=101a -当2a =-时原式=()1021⨯--=-21.【点睛】考查整式的化简求值,熟练掌握去括号法则以及合并同类项法则是解题的关键. 26.已知:A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3. (1)求3A ﹣(4A ﹣2B )的值;(2)当x 取任意数值,A ﹣2B 的值是一个定值时,求(a+314A )﹣(2b+37B )的值. 解析:(1)(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)﹣312. 【分析】(1)先化简原式,再分别代入A 和B 的表达式,去括号并合并类项即可;(2)先代入A 和B 的表达式并去括号并合并类项,由题意可令x 和x 2项的系数为零,求解出a 和b 的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴原式=3A ﹣4A+2B=﹣A+2B=﹣2x 2﹣ax+5y ﹣b+2bx 2﹣3x ﹣5y ﹣6=(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴A ﹣2B=2x 2+ax ﹣5y+b ﹣2bx 2+3x+5y+6=(2﹣2b )x 2+(a+3)x+(b+6),由x 取任意数值时,A ﹣2B 的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a ﹣2b+314(A ﹣2B )=﹣3﹣2+32=﹣312.【点睛】理解本题中x 取任意数值时A ﹣2B 的值均是一个定值的意思是整式化简后的x 和x 2项的系数均为零是解题关键.27.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y . 解析:132【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题原式222222244442x xy x y x xy y x y =-+--+-=-, 当12,2x y =-=-时,原式174.22=-= 28.我们将不大于2020的正整数随机分为两组.第一组按照升序排列得到121010a a a <<<,第二组按照降序排列得到121010b b b >>>, 求112210101010a b a b a b -+-++-的所有可能值.解析:1020100【分析】 由题意知,对于代数式的任何一项:|a k -b k |(k=1,2,…1010),较大的数一定大于1010,较小的数一定不大于1010,即可得出结论.【详解】解:(1)若a k ≤1010,且b k ≤1010,则a 1<a 2<…<a k ≤1010,1010≥b k >b k+1>…>b 1010,则a 1,a 2,…a k ,b k ,……,b 1010,共1011个数,不大于1010不可能;(2)若a k >1010,且b k >1010,则a 1010>a 1009>…>a k+1>a k >1010及b 1>b 2>…>b k >1010,则b 1,……,b k ,a k ……a 1010共1011个数都大于100,也不可能;∴|a 1-b 1|,……,|a 1010-b 1010|中一个数大于1010,一个数不大于1010,∴|a 1-b 1|+|a 2-b 2|+…+|a 1010-b 1010|=1010×1010=1020100.【点睛】本题考查数字问题,考查学生的计算能力,属于中档题.29.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….(2)通过猜想写出与第n个点阵图相对应的等式.解析:(1) 1+3+5+7=42; 1+3+5+7+9=52;(2)1+3+5+…+(2n-1)=n2.【分析】根据图示和数据可知规律是:等式左边是连续的奇数和,等式右边是等式左边的首数与末数的平均数的平方,据此进行解答即可.【详解】(1)由图①知黑点个数为1个,由图②知在图①的基础上增加3个,由图③知在图②基础上增加5个,则可推知图④应为在图③基础上增加7个即有1+3+5+7=42,图⑤应为1+3+5+7+9=52,故答案为④1+3+5+7=42;⑤1+3+5+7+9=52;(2)由(1)中推理可知第n个图形黑点个数为1+3+5+…+(2n-1)=n2.【点睛】本题考查了规律型——数字的变化类,解答此类问题的关键是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.30.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,中间是边长为(a+b)米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a、b的式子表示)(2)求出当a=20,b=12时的绿化面积.解析:(1)(5a2+3ab)平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b的式子表示出整个长方形的面积,然后用含有a,b的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a=20,b=12分别代入(1)问中求出的关系式即可解决.【详解】解:(1)(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣(a2+2ab+b2)=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,答:绿化的面积是(5a2+3ab)平方米;(2)当a=20,b=12时5a2+3ab=5×202+3×20×12=2000+720=2720,答:当a=20,b=12时的绿化面积是2720平方米.【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤.。
内蒙古鄂尔多斯市东胜区七年级数学上册 2 整式的加减 2.1 整式 2 单项式学案(无答案)(新版)
本文档仅供文库使用。
百度文库是百度发布的供网友在线分享文档的平台。
百度文库的文档由百度用户上传,需要经过百度的审核才能发布,百度自身不编辑或修改用户上传的文档内容。
网友可以在线阅读和下载这些文档。
百度文库的文档包括教学资料、考试题库、专业资料、公文写作、法律文件等多个领域的资料。
百度用户上传文档可以得到一定的积分,下载有标价的文档则需要消耗积分。
当前平台支持主流的doc(.docx)、.ppt(.pptx)、.xls(.xlsx)、.pot、.pps、.vsd、.rtf、.wps、.et、.dps、.pdf、.txt文件格式。
2.1.2整式—单项式一、学习目标目标A:理解单项式的概念,能熟练找出单项式的系数和次数。
目标B:学会用单项式表示实际问题中的数量关系。
目标C:利用单项式的次数求未知的字母二、问题引领问题A:理解单项式的概念,能熟练找出单项式的系数和次数。
请用含有字母的式子填空,看看列出的式子包含哪些运算?有什么共同特点?(1)若正方体的棱长为a,则它的表体积是;(2)铅笔的单价是x元,圆珠笔的单价是铅笔的3.5倍,圆珠笔的单价是;(3)一辆汽车的速度是v千米/小时,行驶t小时所走的路程是千米;(4)设n是一个不为0的数,则它的平方的相反数是。
请观察所列代数式包含哪些运算,有何共同特征?【归纳】由或的积组成的式子称为单项式。
单独的_________或___________也是单项式,如a,-5。
【试一试】判断下列各代数式哪些是单项式?如果是,请分别指出它们的数字因数和各字母的指数和。
(口答)(1)21+x; (2)ab; (3)b2; (4)x1; (5)y;(6)-xy2 ; (7)-5;(8)2πr,(9)a bc,【归纳】单项式的系数是指:。
(单项式表示数字与字母相乘时,通常把数字写在前面。
)单项式的次数是指:。
注意:对于单独一个非零的数,规定它的次数为___。
训练A:填表问题B:填空:(1)全校学生总数是x,其中女生占总数48%,则女生人数是,男生人数是;(2)一辆长途汽车从杨柳村出发,3小时后到达相距s千米的溪河镇,这辆长途汽车的平均速度是千米/时;(3)产量由m千克增长10%,就达到千克。
内蒙古鄂尔多斯市东胜区七年级数学上册2整式的加减2.1整式3多项式学案无答案 新人教版
2.1.3整式—多项式一、学习目标目标A:理解多项式的概念,能确定多项式的项和次数;目标B:利用多项式解决实际问题。
目标C:求多项式中未知字母的值。
二、问题引领问题A:1.下列说法或书写是否正确:_________________①1x②-1x③a3 ④a÷2 ⑤⑥m的系数为1,次数为0⑦的系数为2,次数为22.列代数式:(1)长方形的长与宽分别为a、b,则长方形的周长是;(2)某班有男生x人,女生21人,则这个班共有学生人;(3)一个数比x的2倍小3,则这个数为_________;(4)鸡兔同笼,鸡a只,兔b只,则共有头个,脚只。
观察以上所得出的四个代数式与上节课所学单项式有何区别?【归纳】1.像上面这些代数式这样,的和叫做多项式。
在多项式中,每个单项式叫做多项式。
其中,不含字母的项,叫做。
例如,在多项式2x-3中,2x和-3是它的项,其中-3是常数项;多项式有项,它的项分别是,和,其中常数项是。
2.一个多项式含有几项,就叫几项式。
多项式里,次数最高项的次数,就是这个多项式的。
例如,多项式是一个次项式。
3. 与统称为整式。
多项式里__________________的次数,叫作这个多项式的次数。
例如:多项式2x-3中次数最高的项是_________,这个多项式的次数是______;多项式中,次数最高的项是,这个多项式的次数是 ; 训练A:1.指出下列多项式的项和次数:(1)3x-1+3x2 (2)4x3+2x-2y2注意:(1)多项式的次数不是所有项的次数之和; (2)多项式的每一项都包括它前面的符号。
2.填表问题B:如图所示,用式子表示圆环的面积.当R=15cm,r=10cm时,求圆环的面积(取3.14).问题C.已知代数式3x n-(m-1)x+1是关于x的三次二项式,求m、n的值三、专题训练1.判断下列说法是否正确,若错误请指出并更正。
(1)多项式a3-a2b+a b2-b3的项为a3、a2b、a b2、b3,次数为12;(2)多项式3n4-2n2-1的次数为4,常数项为1。
内蒙古鄂尔多斯市东胜区七年级数学上册 2 整式的加减复习学案(新版)新人教版
第二章 整式一.相关概念:1.〔1〕单项式: 或 的积叫做单项式。
特别地, 。
单项式中________叫做这个 单项式的系数;单项式中___________叫做这个单项式的 次数;(2)多项式:几个 的和,叫做多项式。
_________ 叫做常数项。
多项式中____________的次数,就是这个多项式的次数。
2.同类项、合并同类项:〔1〕同类项: 叫做同类项; 〔2〕合并同类项: 叫做合并同类项; 〔3〕合并同类项法那么: 。
〔4〕去括号法那么:括号前是“+〞号, 。
括号前是“-〞号, 。
3.整式的加减:〔1〕如果有括号,应 ;〔2〕去括号后,如果有同类项,要 。
二.专题训练:〔一〕.填空题1.单项式342xy -的系数为________,次数为________2.多项式5253323+-+-y x y x xy 的次数是 .最高次项系数是 ,常数项是_________3.以下各式: 13,,23,21,,21,3,124222+--+-++x x r b a x xy x b ab a π,其中 单项式有_______________________, 多项式有___________________________.4.与3差的相反数可用式子表示为__________________5.假设523m xy +与3n x y 的和仍是单项式,那么mn=___________ 6.我校七年级学生在今年植树节中栽了m 棵树,假设八年级学生栽树比七年级多n 棵,那么两个年级共栽树〔________________〕棵7.一个两位数,个位数字是十位数字的2倍,假设个位数字为a ,那么这个两位数可表示为__________ 8.长方形的长是56+x ,宽是14-x ,那么它的周长为__________9.以下图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,...,按此规律排列,那么第⑦个图形中小圆圈的个数为__________ 10.观察以下图并填表〔单位:cm 〕11.如下图,由一些点组成形如三角形的图形,每条“边〞〔包括两个顶点〕有()1,>n n 个点,每个图形总的点数S 是多少?当11,7,5=n 时,S 时多少?2=n 3=n 4=n 5=n(二).计算题梯形个数 1 2 3 4 5 6 … n 图形周长5a8a11a14a…(1) 3(3a-2b)- 2(a-3b) (2) ()()22313222---+-x x x x(3))32(5)5(422x x x x +-- (4) ()()222243543ab b a ab b a ---(三).先化简下式,再求值 (1) )23(31423223x x x x x x -+--+,其中3-=x(2) )3(2)(2)3(322222222y y x x y x y x +++--,其中1-=x ,2=y(四). 应用题1.某船顺水航行3小时,逆水航行2小时,(1)轮船在静水中前进的速度是m 千米/时,水流的速度是a 千米/时,那么轮船共航行多少千米?(2)轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,那么轮船共航行多少千米?2.某市有甲、乙两种出租车,他们的效劳质量相同.甲的计价方式为:当行驶路程不超过3千米时收费10元,每超过1千米那么另外收费1.2元〔缺乏1千米按1千米收费〕;乙的计价方式为:当行驶路程不超过3千米时收费8元,每超过1千米那么另外收费1.8元〔缺乏1千米按1千米收费〕.某人到该市出差,需要乘坐的路程为x 千米.〔1〕用代数式表示此人分别乘坐甲、乙出租车各所需要的费用;〔2〕假设此人乘坐的路程为13千米多一点,请问他乘坐哪种车较合算?3.小卢做一道题:“两个多项式A ,B ,计算A -B 〞.小卢误将A -B 看作A +B ,求得结果是9x 2-2x +7.假设B =x 2+3x -2,请你帮助小卢求出A -B 的正确答案.4.:A=2x 2+3ax -2x -1, B=-x 2+ax -1,且3A+6B 的值与 x 无关,求a 的值.。
鄂尔多斯市七年级数学上册第二单元《整式的加减》检测(答案解析)
一、选择题1.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+ 2.某人连续休假4天,这四天的日期之和是74,他休假第一天的日期是( )A .17号B .18号C .19号D .20号3.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( ) A .5袋B .6袋C .7袋D .8袋4.下列方程中,是一元一次方程的是( ) A .243x x -= B .0x =C .21x y +=D .11x x-=5.关于x 的方程2x m3-=1的解为2,则m 的值是( ) A .2.5B .1C .-1D .36.“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的 A 、B 两种长方体形状的无盖纸盒.现 有正方形纸板 120 张,长方形纸板 360 张,刚好全部用完,问能做成多少个 A 型盒子?”则下列结论 正确的个数是( )①甲同学:设 A 型盒子个数为 x 个,根据题意可得: 4x + 3 ⋅1202x- = 360 ②乙同学:设 B 型盒中正方形纸板的个数为 m 个,根据题意可得: 3 ⋅ 2m+ 4(120 - m ) = 360③A 型盒 72 个④B 型盒中正方形纸板 48 个 A .1B .2C .3D .47.下列说法正确的是( ) A .若a c =bc,则a=b B .若-12x=4y ,则x=-2yC .若ax=bx ,则a=bD .若a 2=b 2,则a=b8.整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值.则关于x 的方程8mx n --=的解为( ) x-2 -1 0 1 2 mx n + -12-8-44A .1x =-B .0x =C .1x =D .2x =9.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系是( ) A .m>n>kB .n>k>mC .k>m>nD .m> k> n10.甲、乙、丙三辆卡车所运货物的质量之比为,已知甲车比乙车少运货物吨,则三辆卡车共运货物( ) A .吨B .吨C .吨D .吨11.若代数式的值为,则的值为( ) A .B .C .D .12.四位同学解方程,去分母分别得到下面四个方程:①;②;③;④.其中错误的是( )A .②B .③C .②③D .①④二、填空题13.如果3m -与21m +互为相反数,则m =________.14.一条船顺流航行,每小时行驶20千米;逆流航行,每小时行驶16千米若水的流速与船在静水中的速度都是不变的,则轮船在静水中的速度为______________千米/小时. 15.某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.16.对于数a ,b 定义这样一种运算:*2a b b a =-,例如1*3231=⨯-,若()3*11x +=,则x 的值为______.17.若4a +9与3a +5互为相反数,则a 的值为_____. 18.解方程:2(1)3x --=-.解:去括号,得__________;移项,得____________;合并同类项,得____________. 19.如果ma mb =,那么下列等式一定成立的是_______. ①a b =;②66ma mb -=-;③1122ma mb -=-;④88ma mb +=+;⑤3131ma mb -=-;⑥33ma mb -=+. 20.已知21535a x y -和2547a x y +是同类项,则可得关于a 的方程为________. 三、解答题21.解方程:(1)36156x x -=--;(2)45173x x +=-; (3) 2.57.5516y y y --=-;(4)11481.5533z z +=-. 22.解方程:121(2050)(52)(463210)0x x x ++++=-. 23.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2015年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a= ,若居民乙用电200千瓦时,交电费 元.(2)若某用户某月用电量超过300千瓦时,设用电量为x 千瓦时,请你用含x 的代数式表示应交的电费.(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?24.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②. 25.一批皮鞋,按成本加5成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降价后的新售价是每双63元,问这批皮鞋每双的成本价是多少元按降价后的新售价每双还可赚多少元?26.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.【参考答案】***试卷处理标记,请不要删除一、选择题解析:D 【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解. 【详解】等式两边同乘4得:2(1)4(3)x x -=-+, 故选:D. 【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.2.A解析:A 【解析】 【分析】设休假第一天日期为x 号,则其余三天的日期为(x +1),(x +2),(x +3),根据四天的日期之和为74建立方程求出其解即可. 【详解】解:设休假第一天日期为x 号,由题意,得: x +(x +1)+(x +2)+(x +3)=74, 解得:x =17, 故选A. 【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用, 相邻两个整数之间相差1的关系的运用,解答时根据四天的日期之和为74建立方程是关键.3.A解析:A 【解析】 【分析】要求驴子原来所托货物的袋数,要先设出未知数,通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,才恰好驮的一样多)=驴子原来所托货物的袋数加上1,据这个等量关系列方程求解. 【详解】解:设驴子原来驮x 袋,根据题意,得到方程: 2(x -1)-1-1=x +1,解得:x =5, 答:驴子原来所托货物的袋数是5, 故选A . 【点睛】本题主要考查列方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.解析:B 【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a ,b 是常数且a≠0). 【详解】解:A 、最高项的次数是2,故不是一元一次方程,选项不符合题意; B 、正确,符合题意;C 、含有2个未知数,故不是一元一次方程,选项不符合题意;D 、不是整式方程,故不是一元一次方程,选项不符合题意; 故选:B . 【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.5.B解析:B 【解析】 由已知得413m-= ,解得m=1;故选B. 6.D解析:D 【分析】根据题意可知,A 型纸盒需要4个长方形纸板,1个正方形纸板,B 型纸盒需要3个长方形纸板和2个正方形纸板,设A 型盒子个数为x 个,可得A 型纸盒需要长方形纸板的数量和B 型纸盒需要长方形纸板的数量,可列出方程对①进行判断;设B 型盒中正方形纸板的个数为m 个,可得B 型纸盒需要长方形纸板的数量和A 型纸盒需要长方形纸板的数量,可列出方程对②进行判断;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则可得A 型盒子x 个,B 型盒子y 个,根据长方形纸板360张,正方形纸板120张,可得出方程组,求出A 型纸盒和B 型纸盒的数量可对③④进行判断. 【详解】设A 型盒子个数为x 个,则A 型纸盒需要长方形纸板4x 张,正方形纸板x 张,由于制作一个B 型纸盒需要两张正方形纸板,因此可得B 型纸盒的数量为1202x-个,需要长方形纸板3×1202x -张,因此可得120433602xx -+=,故①正确; 设B 型盒中正方形纸板的个数为m 个,则B 型纸盒有2m 个,需要长方形纸板3×2m个,A 型纸盒有(120-m )个,则需长方形纸板4(120-m )个,所以可得方程3×2m+4(120-m )=120,故②正确;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则有,212043360x y x y +=⎧⎨+=⎩解得,7224x y =⎧⎨=⎩即,A 型纸盒有72个,B 型纸盒有24个,所以B 型盒中正方形纸板 48 个 故③④正确. 故选D. 【点睛】本题考查了列一元一次方程和二元一次方程组的应用,解答本题时注意无盖盒子中的长方形及正方形的个数之间的关系是解答的关键.7.A解析:A 【分析】按照分式和整式的性质解答即可. 【详解】解:A .因为C 做分母,不能为0,所以a=b ; B .若-x=4y ,则x=-8y ;C .当x=0的时候,不论a ,b 为何数,00a b ⨯=⨯,但是a 不一定等于b ;D .a 和b 可以互为相反数. 故选 :A 【点睛】本题考查了整式和分式的性质,掌握整式和分式的性质是解答本题的关键.8.A解析:A 【分析】根据题意得出方程组,求出m 、n 的值,再代入求出x 即可. 【详解】根据表格可知0x =时,4mx n +=-, 所以4n =-.2x =时,4mx n +=,所以244m -=, 移项得244m =+, 合并同类项,得28m = 系数化为1,得4m =.所以原方程为448x -+=,移项,得484x -=-.合并同类项,得44x -=x=-.系数化为1,得1故选A.【点睛】本题考查了解一元一次方程和二元一次方程的解,能求出m、n的值是解此题的关键.9.A解析:A【分析】要比较m、n、k的大小,只有从给出已知条件中,算出其值,比较它们的大小,就会迎刃而解了.【详解】解:(1)∵|2x−3|+m=0无解,∴m>0.(2)∵|3x−4|+n=0有一个解,∴n=0.(3)∵|4x−5|+k=0有两个解,∴k<0.∴m>n>k.故选:A.【点睛】本题主要考查的是含有绝对值符号的一元一次方程的拓展计算题,要充分利用已知条件.难易适中.10.C解析:C【解析】【分析】本题可以设甲,乙,丙三辆卡车所运货物的质量分别为:6x,7x,4.5x,根据乙车运货量-甲车运货量=12吨,可以列出方程7x-6x=12,解得即可.【详解】解:设甲,乙,丙三辆卡车所运货物的质量分别为:6x吨,7x吨,4.5x吨,根据题意得:7x-6x=12,解得:x=12.所以三辆卡车共运货物=6x+7x+4.5x=17.5x=17.5×12=210.故选:C.【点睛】此题考查了一元一次方程的应用,解题的关键是:根据题意设甲,乙,丙三辆卡车所运货物的质量分别为:6x吨,7x吨,4.5x吨,找到等量关系,然后列出方程.11.A解析:A【解析】【分析】根据题意列出方程,求出方程的解即可得到x的值.【详解】根据题意得:2x+3=6,移项合并得:2x=3,解得:x=,故选:A.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.12.D解析:D【解析】【分析】把分母中的根式化去的过程称为分母有理化,所有分母的最小公倍数是6,因此两边同时乘6;把得到的方程去括号得到另一个形式的方程,由此判断.【详解】把分母中的根式化去的过程称为分母有理化,分母的最简公分母是6,则两边同时乘6得:2(x-1)-(x+2)=3(4-x),故③正确;去括号得:2x-2-x-2=12-3x,故②正确,故选:D.【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.二、填空题13.-4【分析】根据互为相反数的两个数的和为0列出方程解方程即可【详解】∵3-m与2m+1互为相反数∴3-m=-(2m+1)去括号得:3-m=-2m-1移项并合并同类项得:m=-4故答案是:-4【点睛】解析:-4【分析】根据互为相反数的两个数的和为0列出方程,解方程即可.【详解】∵3-m与2m+1互为相反数,∴3-m=-(2m+1)去括号,得:3-m=-2m-1移项并合并同类项,得:m=-4.故答案是:-4.【点睛】考查了用一元一次方程解决相反数的问题;用到的知识点为:a 的相反数为-a,则它们的和为0.14.18【分析】设轮船在静水中的速度为千米小时则水流速度为千米小时由逆水速度静水速度水流速度列出方程可求解【详解】解:设轮船在静水中的速度为千米小时则水流速度为千米小时由题意可得:解得:轮船在静水中的速解析:18 【分析】设轮船在静水中的速度为x 千米/小时,则水流速度为(20)x -千米/小时,由逆水速度=静水速度-水流速度,列出方程,可求解. 【详解】解:设轮船在静水中的速度为x 千米/小时,则水流速度为(20)x -千米/小时, 由题意可得:(20)16x x --=, 解得:18x =,∴轮船在静水中的速度为18千米/小时,故答案为:18. 【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,掌握公式:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度.15.100【分析】根据利润率(售价进价)进价先利用售价标价折数10求出售价进而代入利润率公式列出关于进价的方程即得【详解】商品每件标价为150元按标价打8折后售价为:(元/件)设该商品每件的进价为元由题解析:100 【分析】根据利润率=(售价-进价) ÷进价100%⨯,先利用售价=标价⨯折数÷10求出售价,进而代入利润率公式列出关于进价的方程即得. 【详解】商品每件标价为150元∴按标价打8折后售价为:1500.8120⨯=(元/件) ∴设该商品每件的进价为x 元由题意得:()120100%20%-⨯=x x 解得:100x =答:该商品每件的进价为100元. 故答案为:100 【点睛】本题考查一元一次方程应用中的销售问题,通常利润率计算公式为销售问题等量关系是解题关键点.16.1【分析】根据新定义的运算法则代入计算即可得到答案【详解】解:∵∴∴∴;故答案为:1【点睛】本题考查了新定义的运算法则解题的关键是熟练掌握新定义的运算法则进行运算解析:1 【分析】根据新定义的运算法则,代入计算即可得到答案. 【详解】解:∵*2a b b a =-, ∴()3*12(1)31x x +=+-=, ∴211x -=, ∴1x =; 故答案为:1. 【点睛】本题考查了新定义的运算法则,解题的关键是熟练掌握新定义的运算法则进行运算.17.-2【分析】利用相反数的性质求出a 的值即可【详解】解:根据题意得:4a+9+3a+5=0移项合并得:7a =﹣14解得:a =﹣2故答案为﹣2【点睛】本题考查了解一元一次方程以及相反数熟练掌握运算法则是解析:-2 【分析】利用相反数的性质求出a 的值即可. 【详解】解:根据题意得:4a +9+3a +5=0, 移项合并得:7a =﹣14, 解得:a =﹣2, 故答案为﹣2. 【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.18.【解析】【分析】根据解方程的过程方程去括号移项合并把x 系数化为1即可求出解【详解】去括号得;移项得;合并同类项得【点睛】本题考查了解一元一次方程熟练掌握计算法则是解题关键解析:213x -+=-, 321x =--+, 4x =-. 【解析】 【分析】根据解方程的过程,方程去括号,移项合并,把x 系数化为1,即可求出解. 【详解】2(1)3x --=-.去括号,得213x -+=-; 移项,得321x =--+;合并同类项,得4x =-【点睛】本题考查了解一元一次方程,熟练掌握计算法则是解题关键.19.②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母等式仍成立即可解决【详解】当m =0时a =b 不一定成立故 解析:②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立; ②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【详解】当m =0时,a =b 不一定成立.故①错误;ma =mb ,根据等式的性质1,两边同时减去6,就得到ma−6=mb−6.故②正确;根据等式的性质2,两边同时乘以−12,即可得到1122ma mb -=-,故③正确; 根据等式的性质1,两边同时加上8就可得到ma +8=mb +8.故④正确; 根据等式的性质2,两边同时乘以3,即可得到33ma mb =,根据等式的性质1,两边同时减去1就可得到3ma-1=3mb-1,故⑤正确;根据等式的性质1,ma mb =两边同时加或减3,结果仍相等,故⑥错误,故答案为:②③④⑤.【点睛】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.20.2a-1=a+2【解析】【分析】根据同类项的定义:所含字母相同并且相同字母的指数也相同可得出关于a 的一元一次方程【详解】∵和是同类项∴2a-1=a+2故答案为:2a-1=a+2【点睛】本题考查了由实解析:2a-1=a+2【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得出关于a 的一元一次方程.【详解】 ∵21535a x y -和2547a x y +是同类项, ∴2a-1=a+2.故答案为:2a-1=a+2.【点睛】本题考查了由实际问题抽象出元一次方程的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同,据此列方程.三、解答题21.(1)1x =-;(2)66x =-;(3)56y =;(4)407z =- 【分析】(1)先移项,再合并同类项,最后系数化为1即可.(2)先移项,再合并同类项,最后系数化为1即可.(3)先移项,再合并同类项,最后系数化为1即可.(4)先移项,再合并同类项,最后系数化为1即可.【详解】(1)移项,得36156x x +=-+.合并同类项,得99x =-.系数化为1,得1x =-. (2)移项,得41753x x -=--. 合并同类项,得1223x =-. 系数化为1,得66x =-.(3)移项,得 2.57.5165y y y --+=. 合并同类项,得65y =.系数化为1,得56y =. (4)移项,得11841.5533z z -=--. 合并同类项,得7410z =-. 系数化为1,得407z =-. 【点睛】 本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键.22.52x =- 【分析】方程去括号,移项合并,把x 系数化为1,即可求出解.【详解】 解:原方程可化为52(25)(25)(2335)0x x x ++-+=+.将(25)x +看作一个整体,合并同类项,得521(25)033x ⎛⎫+-+=⎪⎝⎭. 整理,得4(25)03x +=. 故250x +=.移项,得25x =-.系数化为1,得52x =-. 【点睛】本题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.(1)0.6;122.5.(2)0.9x ﹣82.5.(3)250千瓦.【分析】(1)根据100<150结合应交电费60元即可得出关于a 的一元一次方程,解之即可得出a 值;再由150<200<300,结合应交电费=150×0.6+0.65×超出150千瓦时的部分即可求出结论;(2)根据应交电费=150×0.6+(300-150)×0.65+0.9×超出300千瓦时的部分,即可得出结论;(3)设该居民用电x 千瓦时,其当月的平均电价每千瓦时为0.62元,分x 在第二档及第三档考虑,根据总电费=均价×数量即可得出关于x 的一元一次方程,解之即可得出x 值,结合实际即可得出结论.【详解】(1)∵100<150,∴100a=60,∴a=0.6,若居民乙用电200千瓦时,应交电费150×0.6+(200-150)×0.65=122.5(元), 故答案为0.6;122.5;(2)当x >300时,应交的电费150×0.6+(300-150)×0.65+0.9(x ﹣300)=0.9x ﹣82.5; (3)设该居民用电x 千瓦时,其当月的平均电价每千瓦时为0.62元,当该居民用电处于第二档时,90+0.65(x ﹣150)=0.62x ,解得:x=250;当该居民用电处于第三档时,0.9x ﹣82.5=0.62x ,解得:x≈294.6<300(舍去).综上所述该居民用电不超过250千瓦时,其当月的平均电价每千瓦时不超过0.62元.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据数量关系列式计算;(2)根据数量关系列出代数式;(3)根据总电费=均价×数量列出关于x 的一元一次方程.24.(1)5;(2)138; 【分析】①方程去括号,移项合并,把x系数化为1,即可求出解;②方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】①去括号得:3x−7x+7=3−2x−6,移项合并得:−2x=−10,解得:x=5;②去分母,去括号得:10−2x−6=6x−9,移项合并得:8x=13,解得:x=13 8.【点睛】此题考查解一元一次方程,解题关键在于掌握方程的解法.25.成本价是56元,按降价后的新售价每双还可赚7元.【分析】若设成本价为x元,则成本加5成后的售价为(1+50%)x元,再按七五折后的售价为0.75(1+50%)x元,根据降价后的新售价是每双63元即可得方程0.75(1+50%)x=63,解方程求得x的值,根据盈利=售价-进价即可求得答案.【详解】设成本价为x元,则成本加5成后的售价为(1+50%)x元,再按七五折后的售价为0.75(1+50%)x元.根据题意得:0.75(1+50%)x=63,解得:x=56,所以成本价是56元,按降价后的新售价每双还可赚7元.【点睛】本题考查了一元一次方程的应用,解决问题时弄清加五成和七五折这些概念.26.《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【解析】试题分析:首先设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,然后根据两本书的售价总和为80元列出一元一次方程,从而求出x的值,得出答案.试题设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,根据题意得:50%x+60%(150﹣x)=80,解得:x=100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.。
内蒙古鄂尔多斯市东胜区七年级数学上册2整式的加减2.2整式的加减(1)—同类项学案(无答案)新人教
内蒙古鄂尔多斯市东胜区七年级数学上册 2 整式的加减 2.2 整式的加减(1)—同类项学案(无答案)(新版)新人教版内蒙古鄂尔多斯市东胜区七年级数学上册2 整式的加减2.2 整式的加减(1)—同类项学案(无答案)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(内蒙古鄂尔多斯市东胜区七年级数学上册2 整式的加减2.2 整式的加减(1)—同类项学案(无答案)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为内蒙古鄂尔多斯市东胜区七年级数学上册2 整式的加减2.2 整式的加减(1)—同类项学案(无答案)(新版)新人教版的全部内容。
1 / 41整式的加减(1)一、学习目标目标A:理解同类项的概念,在具体情景中,认识同类项.目标B:在多项式中找出同类项。
目标C:在多项式中找出作为整体的同类项二、问题引领问题A:1.运用有理数的运算律计算:(1)100×2+252×2=,(2)100×(—2)+252×(—2)=______________,(3)100t+252t= ,2。
请根据上面得到结论的方法探究下面各式的结果:(1)100t-252t=()t(2)3x2+ 2 x2 = () x2(3)3ab2- 4 ab2 = () ab2思考:上述运算有什么共同特点,你能从中得出什么规律。
【归纳】同类项的定义:1、观察:3x2和 2 x2; 3ab2与-4 ab2在结构上有哪些相同点和不同点?2、归纳:_____________相同,并且_______________________也相同的项叫做同类项.____________________也是同类项。
内蒙古鄂尔多斯市东胜区七年级数学上册2整式的加减2.1整式1用字母表示数学案(无答案)新人教版(2
内蒙古鄂尔多斯市东胜区七年级数学上册 2 整式的加减 2.1 整式 1 用字母表示数学案(无答案)(新版)新人教版1 / 51内蒙古鄂尔多斯市东胜区七年级数学上册 2 整式的加减 2.1 整式 1 用字母表示数学案(无答案)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(内蒙古鄂尔多斯市东胜区七年级数学上册 2 整式的加减 2.1 整式 1 用字母表示数学案(无答案)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为内蒙古鄂尔多斯市东胜区七年级数学上册 2 整式的加减 2.1 整式 1 用字母表示数学案(无答案)(新版)新人教版的全部内容。
2.1。
1整式—用字母表示数一、学习目标目标A :会用含有字母的式子表示数量关系;目标B :掌握书写含有字母的式子的方法和注意事项。
二、问题引领问题A1。
列车在冻土地段的行驶速度是100km/h,那么,(1)列车2h行驶的路程是 km;(2)列车4h行驶的路程是 km;(3)列车th行驶的路程是 km;(4)字母t表示时间有什么意义?(5)如果列车行驶速度为v km/h,行驶th列车行驶的路程是 km;(6)回顾以前所学知识,口答用字母表示数或数量关系的例子.训练A:用含有字母的式子填空(1)苹果原价是每千克p元,按8折优惠出售,则苹果的现价是元(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,则去年的产量是件__________________(3)一个长方体包装盒的长和宽都是a cm,高是h cm,则它的体积是 cm3 (4)数n的相反数是___________________总结:列式时基本书写规则要求如下:(1)数与字母相乘或字母与字母相乘,可省略乘号.或写成“·”,(2)数与字母相乘,数写在字母前面.如果数字为带分数的,应化为假分数.(3)除法运算要用分数线,一般不写“÷”,而是写成分数的形式.如1÷a写成1a (4)带单位的代数式:从总体上看代数式,若结果是乘除关系的,直接在后面写单位;若结果是加减关系时,先把式子用括号括起来,再在后面写上单位.问题B:1、(1)一条河的水流速度是2.5 km/h,船在静水中的速度是v km/h,用式子表示船在这条河中顺水行驶和逆水行驶时的速度;(2)买一个篮球需要x元,买一个排球需要y元,买一个足球需要z 元,用式子表示买 3个篮球、5个排球、2个足球共需要的钱数;(3)礼堂第1排有20个座位,后面每排都比前一排多一个座位。
内蒙古鄂尔多斯市东胜区第二中学人教版七年级数学上册
第 _____ 教案_____年_____月_____日星期_____教学过程设计
课题第二章. 整式复习与小结[.Com]备课人高瑞芬知识与目标[.Com]
方法与策略
学生活动教师活动(师生互动)个性化设计
课型新授课教法“2+2”师友互助审核人吴振华
教学目标
知识
与技能
让学生掌握正式的加减运算及整式的应用
过程
与方法
自主探究,合作交流,理解概念,提高解题能力
情感态度
与价值观
培养学生主动探索、敢于实践的意识,培养学生“一切事物之间是互
相联系的”的辩证唯物主义观点。
重点整式的加减运算
难点整式的实际应用
教学过程设计
板书设计第二章.整式复习与小结
知识与目标
方法与策略
学生活动教师活动(师生互动)个性化设计
相关概念: 1.独立完成 1.对学生的回答进行
归纳和补充。
2.引导写知识框架。
专题训练1.生独立完成,
后师友查错,交
流并讲解;
2.归纳总结解题
方法、步骤及
易错点.
3.师友纠错
1.环视学生进行及时
引导
2.归纳总结
3.总结易错点
集
体
意
见
课
后
反
思
老师给学生一个机会,学生就会给老师一个惊喜;老师给学生一个引导,学生就会走得更远。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.2整式—单项式
一、学习目标
目标A:理解单项式的概念,能熟练找出单项式的系数和次数。
目标B:学会用单项式表示实际问题中的数量关系。
目标C:利用单项式的次数求未知的字母
二、问题引领
问题A:理解单项式的概念,能熟练找出单项式的系数和次数。
请用含有字母的式子填空,看看列出的式子包含哪些运算?有什么共同特点?
(1)若正方体的棱长为a,则它的表体积是;
(2)铅笔的单价是x元,圆珠笔的单价是铅笔的3.5倍,圆珠笔的单价是;
(3)一辆汽车的速度是v千米/小时,行驶t小时所走的路程是千米;
(4)设n是一个不为0的数,则它的平方的相反数是。
请观察所列代数式包含哪些运算,有何共同特征?
【归纳】由或的积组成的式子称为单项式。
单独的_________或___________也是单项式,如a,-5。
【试一试】判断下列各代数式哪些是单项式?如果是,请分别指出它们的数字因数和各字母的指数和。
(口答)
(1)
21
+
x
; (2)ab; (3)b2; (4)
x
1; (5)y;
(6)-xy2 ; (7)-5;(8)2πr,(9)a bc,
【归纳】单项式的系数是指:。
(单项式表示数字与字母相乘时,通常把数字写在前面。
)
单项式的次数是指:。
注意:对于单独一个非零的数,规定它的次数为___。
训练A:填表
问题B:填空:
(1)全校学生总数是x,其中女生占总数48%,则女生人数是,男生人数
是;
(2)一辆长途汽车从杨柳村出发,3小时后到达相距s千米的溪河镇,这辆长途汽车的平均速度是千米/时;
(3)产量由m千克增长10%,就达到千克。
注意:①单项式中不含加减运算和不含字母作分母的除法运算;
②单独的数字和字母都是单项式;③圆周率π是常数;
④单项式的系数包括前面的符号。
当一个单项式的系数是1或-1时,“1”通常省略不写;
⑤单项式的次数只与字母指数有关,不要漏了指数为1的字母,也不要把数字的指数当成
字母的指数。
问题C:利用单项式的次数求未知的字母
1.写出单项式
3
22
2xy
π
-的系数和次数。
2.若()n y
x
m2
2
-是关于x,y 的一个四次单项式,求m,n应满足的条件。
训练C:
1.若单项式22y x m 的次数是5,则m= ;
2.若n
m y x m 214
--是系数为1-的五次单项式,求n m 、的值。
三、专题训练
1. 下列式子: ① x 52 ② m y x 25 ③ 3
1+x ④ 4x+3 ⑤ a
⑥ -2
1
⑦
2
2
r π ⑧ (-2)3m
2
属于单项式的是:
2.单项式 2xy 的系数是 ,次数是 单项式 -32
x 2
y 的系数是 ,次数是
单项式 2
3ab
的系数是 ,次数是
3.有一系列单项式:,a -,2
2a ,2
2a -,42a .,20,1922 a a -,
(1)写出第n 个单项式;
(2)写出第100个、第2017个单项式;
(3)写出第n 2个单项式,第12+n 个单项式.
四、课堂小结:谈谈收获与困惑
班级 小组 姓名________________
五、课后作业(预计完成时间:25分钟)
1.请你写出一个单项式,并使它的系数是-2,次数是4,那么该单项式可以 是 。
2.对单项式“5x”,我们可以这样来解释:某人以5千米/小时的速度走了x 小时,他一共走的路程是5x 千米,请你对“5x”再给出另一个生活实际方面的解释 元.
3.单项式3
58ab π-的系数是 ,次数是 .
4.某商品标价是a 元,现按标价打9折出售,则售价是 元.
5.已知一个单项式的系数是2,次数是3,则这个单项式可以是( ) A .22xy - B .2
3x C .3
2xy D .3
2x
6.下列代数式中,次数为4的单项式是 ( ) A .4
4x
y + B .x 2y C .4xy D . 3x y
7.判断下列各代数式哪些是单项式?属于单项式的是: (1)
2
1+x ; (2)abc ;(3) 2b ; (4)25-ab ;(5)x y +;(6)2
xy -;(7)-5. 8.填空:
【精彩一题】
1.已知单项式
n m n m y x y x -++42232与的次数相同,求n 的值。