2015-16学年北师版初一数学第二学期期中试卷

合集下载

2015-2016第二学期期中七年级数学参考答案

2015-2016第二学期期中七年级数学参考答案

2015—2016学年度第二学期期中质量评估试题七年级数学参考答案及评分标准11. 9; 12. 80°; 13.(5,0); 14. 4; 15. 100°;16. 一 三、解答题(一)17. 解:34)2(3-----=3+2-2-3 ……………4分 =0 ……………6分 18. 解:∵a ∥b∴∠2=∠3 ……………2分 ∵∠1+∠3=180°∴∠1+∠2=180° ……………4分 ∴∠2=180°-∠1 ∵∠1=118°∴∠2=180°-118°=62° ……………6分 19.(1)图(略) 图……………4分(2)A 1(0,6);B 1(-1,2) ……………6分 四、解答题(二) 20. 解: )223(328)2(32---+-+-=2232322+--+- ……………4分 =2 ……………7分 21. 解:∵∠1=∠2∴AB ∥CD ……………2分 ∴∠3+∠4=180° ……………4分 ∴∠4=180°-∠3 ……………6分 ∵∠3=108°∴∠4=180°-108°=72° ……………7分 22.(每空1分)∵AB ∥DC (已知)∴∠1=∠CFE (两直线平行,同位角相等)……………2分 ∵AE 平分∠BAD (已知)∴∠1=∠2(角平分线的定义) ……………4分 ∴∠2=∠CFE ……………5分 ∵∠CFE=∠E (已知)∴∠2=∠E …………6分 ∴AD ∥BC (内错角相等,两直线平行). …………7分五、解答题(三) 23. 解:100)1(2=-x101±=-x …………4分 110+±=x11=x …………7分或9-=x …………9分24. 证明:∵DE ‖BC (已知)∴∠ADE =∠ABC (两直线平行,同位角相等) …………2分 ∵DF 、BE 分别平分∠ADE 、∠ABC ∴∠ADF =12∠ADE∠ABE =12∠ABC (角平分线的定义) …………4分∴∠ADF =∠ABE …………5分∴ DF ‖BE (同位角相等,两直线平行) …………7分 ∴∠FDE =∠DEB. (两直线平行,内错角相等) …………9分 25. 解:(1)C (0,2),D (4,2),…………2分(2)依题意,得S 四边形ABDC =AB ×OC=4×2=8; …………3分 (3)存在. …………4分。

北师大附15~16初一下数学期中

北师大附15~16初一下数学期中
x y 1 ∵ , x y 3 a 1 1 ∴ 2 , 1 a 3 4 a 4 解得: , a 8
∴4 a8. 做对一题得一分, 已知 26 人平均分不少于 4.75 分, 最低的得 3 分, 17.一次测验共出 5 道题, 至少有 3 人得 4 分,则得 5 分的有 答案 解析
).
答案 解析
B 依次代入计算得 B 不是方程的解.
5.有大小两种货车, 2 辆大货车与 3 辆小货车一次可以运货 15.5 吨, 5 辆大货车与 6 辆小货 车一次可以运货 35 吨,设一辆大货车一次可以运货 x 吨,一辆小货车一次可以运货 y 吨, 根据题意所列方程组正确的是(
2 x 3 y 15.5 A. 5 x 6 y 35 3 x 2 y 15.5 C. 5 x 6 y 35
答案
①②④ ② DAC BCA ,内错角相等,两直线平行,可以判定 AD ∥ BC . ③ ABD CDB ,不能判定 AD ∥ BC . ④ ∠ADB ∠CBD ,内错角相等,两直线平行,可以判定 AD ∥ BC . 能判断 AD ∥ BC 的有①②④.
解析 ① EDB CBD 180 ,同旁内角互补,两直线平行,可以判定 AD ∥ BC .
的值的范围是
答案
0 15

解析
∵折叠 5 次,就是 6 个 ,
∴ 90 6 15 ,
∵ 折叠 5 次,得到的交点 P6 仍位于 Q 的右侧, ∴ 最初的角度 的值的范围是 0 15 .
三、解方程组: (本题共 5 分)
3 x 2 y 19 19.解二元一次方程组: . 4 x 2 y 2
x 3 2

2015-2016北师大七年级数学下期中试题4套

2015-2016北师大七年级数学下期中试题4套

2015——2016学年度七年级第二学期期中考试数学试卷1考试时间90分钟;试卷总分100分 一、选择题(每题2分,共16分)1.下列计算正确的是 ( ) A.4442b b b =⋅ B. 633)(x x = C. a a a=÷910D. 2226)3(q p pq =-2.下列语句正确的是 ( ) A.过一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直 C.同位角相等 D.同角的余角相等3.计算3426)(2)2(a a -的结果是 ( ) A.0 B. 122a C 126a -. D. a -4.如图,将一个直角三角板和一把直尺如图所示放置,如果∠α=43°,则∠β的度数是 ( ) A.43° B.47° C.30° D.60°5.图(1)是一个长2m,宽为2n (m>n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是 ( )A. mn 2B. 2)(n m +C. 2)(n m -D. 22n m -6.已知,10=+b a 21=ab ,则22b a +的值为 ( )A.58B.79C.100D.1427.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s (m )关于时间t(min)的图象,那么符合小明行驶情况的大致图象是( )8.一个三角形的两条边长是6和10,则第三边长可能是 ( ) A.6 B.4 C.16 D. 17二、填空题(每小题2分,共16分)αβ(1)n m(2)D O s t CO s t B O s t A O st9.一种计算机每秒可做9104⨯次运算,它工作2105⨯s 可做运算次数是___________ (用科学记数法表示) 10.计算:015101010⨯÷- =_________ 11.计算:y y xy ÷+)3(=__________12.如图,AB 与CD 相交于点O ,∠AOD+∠BOC=280°,则∠AOC=__________12题图 13题图 15题图 16题图 13.如图,AC ⊥BC 于C,CD ⊥AB 于D,DE ⊥BC 于E,则表示点C 到AB 距离的线段是______,在△ADC 中,表示AD 边上高的线段是_________14.等腰△ABC 的顶角为x °,底角为y °,则y 与x 的关系式为______________ 15.如图,△ABC ≌△DEF,BE=4,AE=1,则DE 的长是______________16.如图所示,在△ABC 中,已知点D 、E 、F 分别为边BC 、AD 、CE 的中点,且△ABC 的面积是4cm 2,则阴影部分的面积等于______________cm 2 三、作图题(共4分)17.已知∠AOB 及一边上的点N (如图),请用尺规过点N 作OA 的平行线,不写作法,保留作图痕迹.四、计算题(18题12分,19题6分,共18分) 18.(1))3()2()21(2232xy y y y -⋅⋅÷-(2) )1032()103()102(253-⨯⋅⨯⋅⨯(3) 1221241232⨯- (4) )521()521()12(22-⋅+-+-x x x19.先化简,再求值:[]xy y x xy xy ÷+--+42)2)(2(22,其中x=10,y=251-E D B A CB E A DFO C D B A五、解答题(每小题6分,共12分) 20.一个角的余角比这个角的补角的31还小10°,求这个角(1) 写出y 与x 的关系式(2) 卖多少千克的苹果,可得14.5元?若卖出苹果10千克,则应得多少元?六、解答题(22题6分,23题8分,24、25各10分,共34分) 22.在下列空白处填上适当的内容:如图,一束平行光线AB 与DE 射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4. 可推出BC ∥EF 解:因为AB ∥DE 所以∠_____=∠_____(____________________________) 因为∠1=∠2,∠3=∠4 所以∠2=∠_____ (____________________________) 所以BC ∥EF(____________________________)23.如图,CD 是∠ECB 的平分线,∠ECB=50°,∠B=70°,DE ∥BC,求∠EDC 和∠BDC 的度数24.小华骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与离家距离的关系示意图.根据图中提供的信息回答下列问题: (1)小华家到学校的路程是多少米?(2)在整个上学的途中哪个时间段小华骑车速度最快,最快的速度是多少米/分? (3)小华在书店停留了多少分钟?(4)本次上学途中,小华一共行驶了多少米?FED C A B 4321(5)如果小华到校后立刻以300米/分的匀速度回家,请在原图上画出小华回家所用时间与离家距离的关系图象25. 如图所示,在△ABC中,∠ABC与∠ACB的平分线交于点O,根据下列条件,求出∠BOC的度数(1)已知∠ABC+∠ACB=100°,则∠BOC=(2)已知∠A=90°,求∠BOC的度数(3)从上述计算中,你能发现∠BOC与∠A的关系吗?请直接写出∠B0C与∠A的关系AOC。

北师大版七年级数学下册期中测试卷及答案

北师大版七年级数学下册期中测试卷及答案

(北师大版)七年级数学下册期中模拟检测试卷及答案(1)说明:本卷共六大题,全卷共24题,满分120分,考试时间为120分钟 一、选择题(本大题共6小题,每小题3分,共18分)每题只有一个正确的选项1.结果为 a 2的式子是(▲)A . a 6÷a 3B . a • aC .(a --1)2D . a 4-a 2=a 2 2.如图,AB ∥CD ,DB ⊥BC ,∠1=40°,则∠2的度数是(▲) A .40° B .50° C .60° D .140°3.已知三角形的两边长分别为4和9,则下列长度的四条线段中能作为第三边的是(▲)A .13B .6C .5D .44.如果(x ―5)(2x +m )的积中不含x 的一次项,则m 的值是(▲) A .5 B .-10 C .-5 D .105.若m +n =3,则2m 2+4mn +2n 2-6的值为( ) A .12 B .6C .3D .06.如图,过∠AOB 边OB 上一点C 作OA 的平行线,以C 为顶点的角与∠AOB 的关系是(▲)A .相等B .互补C .相等或互补D .不能确定二、填空题(本大题共8个小题,每小题3分,共24分) 7.已知∠α的余角的3倍等于它的补角,则∠α=_________;8.计 算:=_______________; 9.如果多项式x 2+mx +9是一个完全平方式,则m =_________;10.把一块含30°角的直角三角板放在两平行直线上,如图,则∠1+∠2=__________°;11.三角形的三边长为3、a 、7,且三角形的周长能被5整除,则a =__________; 12.如图,AB 与CD 相交于点O ,OA =OC ,还需增加一个条件:____________________, 可得△AOD ≌△COB (AAS ) ;13.AD 是△ABC 的边BC 上的中线,AB =12,AC =8,那么中线AD 的取值范围___________. 14.观察烟花燃放图形,找规律:B●OAC1210题ABDC O12题20201321)3()1(-⎪⎭⎫ ⎝⎛--π⨯-依此规律,第9个图形中共有_________个★. 三、解答题(本大题共4小题,每小题6分,共24分) 15.计 算:()2432a a a +÷解:16.计 算:)5)(14()32)(32(+--+-y y y y解:17.如图,∠ABC =∠BCD ,∠1=∠2,请问图中有几对平行线?并说明理由. 解:18.如图,C 、F 在BE 上,∠A =∠D ,AB ∥DE ,BF =EC .求证:AB =DE . 解:四、(本大题共2小题,每小题8分,共16分)19.先化简,再求值: , 其中2=x ,2-=y .解:()()[]x xy x y y y x 28422÷-+-+ AF CBED20.如图,直线CD 与直线AB 相交于点C ,根据下列语句画图(注:可利用三角尺画图,但要保持图形清晰)(1)过点P 作PQ ∥AB ,交CD 于点Q ;过点P 作PR ⊥CD ,垂足为R ; (2)若∠DCB =120°,则∠QPR 是多少度?并说明理由. 解:五、(本大题共2小题,每小题9分,共18分)21.如图,已知AB =AE ,BC =ED ,∠B =∠E ,AF ⊥CD ,F 为垂足, 求证:(1)AC =AD ; (2)CF =DF . 解:22.如图,在边长为1的方格纸中,△PQR 的三个顶点及A 、B 、C 、D 、E 五个点都在小方格的格点上,现以A 、B 、C 、D 、E 中的三个点为顶点画三角形. (1)请在图1中画出与△PQR 全等的三角形;(2)请在图2中画出与△PQR 面积相等但不全等的三角形;(3)顺次连结A 、B 、C 、D 、E 形成一个封闭的图形,求此图形的面积.CDBA ·P解:六、(本大题共2个小题,每小题10分,共20分)23.如图①是一个长为2a,宽为2b的长方形纸片,其长方形的面积显然为4ab,现将此长方形纸片沿图中虚线剪开,分成4个小长方形,然后拼成如图②的一个正方形.(1)图②中阴影正方形EFGH的边长为: _________________;(2)观察图②,代数式(a -b)2表示哪个图形的面积?代数式(a+b)2呢?(3)用两种不同方法表示图②中的阴影正方形EFGH的面积,并写出关于代数式(a+b)2、(a-b)2和4ab之间的等量关系;(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,求:(a -b)2的值.解:24.如图(1)线段AB、CD相交于点O,连接AD、CB.如图(2),在图(1)的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图(1)中,请直接写出∠A、∠B、∠C、∠D之间的等量关系;(2)在图(2)中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图(2)中,∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间数量关系.(直接写出结论即可)解:参考答案四、(本大题共2个小题,每小题各8分,共16分)19.解:原式=[4x2+4xy+y2-y2-4xy-8xy]÷2x=[4x2-8xy]÷2x=2x-4y 当x=2,y=-2时,原式=4+8=1220.解:(1)见图(2)∠QPR=300五、(本大题共2小题,每小题9分,共18分)21.解:(1) ∵AB=AE,BC=ED,∠B=∠E∴△ABC≌△AED∴AC=AD24.解: (1) ∠A+∠D=∠B+∠C (2) 由(1)可知,∠1+∠D=∠3+∠P, ∠2+∠P=∠4+∠B∴∠1-∠3=∠P-∠D,∠2-∠4=∠B-∠P 又∵AP、CP分别平分∠DAB和∠BCD∴∠1=∠2, ∠3=∠4 ∴∠P-∠D=∠B-∠P 即2∠P=∠B+∠D ∴∠P=(40°+30°)÷2=35°.(3)2∠P=∠B+∠D.CDBA·PQR。

北师大版七年级下数学期中试题及答案

北师大版七年级下数学期中试题及答案

七年级第二学期数学期中试题试卷满分100分,其中80%为容易题供选A 同学做,折成100分计入总分,20%稍难题为选B 同学做。

答题前请在左表中打“√”。

一、选择题(第1~6题为A 层次题目,每小题4分共24分;第1~8题为B 层次题目,每小题3分,共24分)1、单项式221ab -的系数和次数分别为 【 】 A 、 -21,2 B 、 -21,3 C 、21,2 D 、 21,3 2、用科学计数法表示0.0000907,并保留两个有效数字得 【 】A 、4101.9-⨯B 、5101.9-⨯C 、5100.9-⨯D 、51007.9-⨯ 3、下列计算正确的是 【 】A 、5322a b a =+B 、a a a =÷44C 、632a a a =⋅D 、()632a a -=- 4、如果两个不相等的角互为补角,那么这两个角 【 】A 、都是锐角B 、都是钝角C 、一个锐角,一个钝角D 、以上答案都不对5、两整式相乘的结果为122--a a 的是 【 】A 、()()43-+a aB 、()()43+-a aC 、()()26-+a aD 、()()26+-a a6、有一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是 【 】A 、154 B 、51 C 、31 D 、152 7、数学课上老师给出了下面的数据,请问哪一个数据是精确的。

【 】A 、2003年美国发动的伊拉克战争每月耗费约40..亿.美元 B 、地球上煤储量为5.万亿..吨左右 C 、人的大脑约有1.×.10..1.0.个细胞 D 、某次期中考试中小颖的数学成绩是98..分 8、某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的容,她突然发现一道题目:(2a 2+3ab-b 2)-(-3a 2+ab+5b 2)2,空格的地方被墨水弄脏了,请问空格中的一项是 【 】A 、+2abB 、+3abC 、+4abD 、-ab二、填空题(第9~14题为A 层次题目,每小题4分,共24分;第9~16题为B 层次题目,每小题3分,共24分)9、请你写出一个只含有字母m 、n 的单项式,使它的系数为2,次数为3。

北师大版七年级数学下册期中试题内含答案

北师大版七年级数学下册期中试题内含答案

七年级数学第二学期期中试题(一)一、 选择题(每小题3分,共30分) 二、填空题(每小题3分,共30分)11、等腰三角形的三边长分别为:x+1、 2x+3 、9 ,则x = 12、一个角的补角是它的余角的4倍,则这个角是_________度。

13、若x 2+mx +25是完全平方式,则m=___________。

14、已知 9))((2-=+-x a x a x , 那么 a = 。

15、若12,2m n a a =-=-,则=-n m a 3216、已知:如图1,∠EAD=∠DCF ,要得到AB//CD ,则需要的条件 。

(填一个..你认为正确的条件即可) 图117、若()223310a b ++-=,则ab =__________.18、在△ABC 中,∠A=800,∠ABC 与∠ACB 的平分线义交于点O , 则∠BOC=_______度。

19、观察:22225251644161533914224131==+⨯==+⨯==+⨯==+⨯你发现了什么规律?根据你发现的规律,请你用含一个字母的等式将上面各式呈现的规律表示出来。

20、现在规定两种新的运算“﹡”和“◎”:a ﹡b=22b a +;a ◎b=2ab,如(2﹡3)(2◎3)=(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= .三、解答题(21题12分,22、23、26各8分,24、25、各12分,共60分) 21、计算题 (1) ()()1201211 3.143π-⎛⎫-+--- ⎪⎝⎭(2)化简求值:)2)(2(2))(2()2(2y x y x y x y x y x +--+--+,其中21=x ,2-=y22、作图题(不写做法,保留作图痕迹)已知:∠α。

请你用直尺和圆规画一个∠BAC ,使∠BAC=∠α。

23、已知:如图,AB ∥CD ,∠A = ∠D ,试说明 AC ∥DE 成立的理由。

北师大版七年级下学期期中考试数学试卷及答案

北师大版七年级下学期期中考试数学试卷及答案

北师大版七年级数学下学期期中考试试题及答案一、选择题(每小题3分,共30分)1. 下列运算正确的是( )A .235a a a +=B .236a a a ⋅= C .236(2)6a a -=- D .624()()a a a -÷-=-2. 下列语句中错误的是( )A. 32ab -的系数是23- B. 单项式 m 的系数与次数都是 1 C. 215x -是单项式 D. 1xy a +-是二次三项式3. 如果一个角的补角是0150,那么这个角的余角的度数是( )A. 030 B. 060 C. 090 D. 0120 4. 如图,下列条件中,不能判断直线12l l ∥的是( )A.13∠=∠B. 45∠=∠C. 23∠=∠D. 024180∠+∠=5、一个口袋中装有4个红球,5个绿球,6个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球不是绿球的概率是( )A.154 B.52C. 31D.326. 若(2)()ax y x y +-展开式中,不含xy 项,则a 的值为( )A. 2-B. 0C. 1D.2 7.下面计算正确的是( )A . ()2336324x y x yx y -=- B. ()()232212x x x x x x --+-=-+C. 0121111222--⎛⎫⎛⎫⎛⎫÷-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D. ()()223535925a b a b a b --+=-8. 若2(1)4x m x --+是一个完全平方式,则m 的值为( )A .3-B . 3±C .5D .5或3- 9. 若23212296x x ++-=,则x 的值是( )第4题图A . 2 B. 3 C. 4 D. 不能确定 10. 将一副直角三角尺如图放置,若AE//BC ,则AFD ∠的度数为( )A. 090 B. 080 C. 075 D. 065二、填空题(每小题3分,共18分)11. 我国是一个严重缺水的国家,大家应加倍珍惜水资源,节约用水,据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升。

北师大版 2015—2016学年度七年级第二学期期中考试数学试题及答案

北师大版 2015—2016学年度七年级第二学期期中考试数学试题及答案

北师大版 2015—2016学年度七年级第二学期期中考试数学试题(考生注意:本卷满分120分,考试时间为100分钟)一、 认真选一选(本大题共10个小题,每小题3分,共30分):A .B .C .D . 2.下列关系式中,正确..的是( ) A . ()222b 2ab a b a +-=+ B. ()222b a b a -=-C . ()()22b a b a b a -=-+D . ()222b a b a +=+3.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q (升)与行驶时间t (时)的关系用图象表示应为图中的( )4.若∠1与∠2是同旁内角,∠1=500,则∠2的度数是( )(A )50° (B )130° (C )50°或130° (D )不能确定 5.在同一平面内,两直线的位置关系必是 ( )A .相交B .平行C .相交或平行D .垂直6.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x (kg)之间有下面的关系,下列说法不正确...的是( ). A . 326a a a ⋅=824a a a ÷=236()a a =224+a a a=B . x 与y 都是变量,且x 是自变量,y 是因变量C .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为23.5 cm7.如图,下列条件中,能判定DE ∥AC 的是 ( )A .∠EDC=∠EFCB .∠AFE=∠ACD (7题图)C .∠1=∠2D .∠3=∠48.把一块直尺与一块三角板如图放置,若∠1=40°,则 ∠2的度数为( )A .125°B .130°C .140°D .150°9.已知=+=--=22a ,6,5ab b b a 则( ) A. 13B. 19C. 26D. 3710.如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形的面积,验证了一个等式,则这个等式是( )A 、()()2222a b a b a ab b +-=+-B 、()()22a b a b a b -=+-C 、()2222a b a ab b -=-+ D 、()2222a b a ab b +=++二、仔细填一填:(每小题3分,共30分)11.已知变量y 与x 的关系式是2x 25x 3y -=,则当2=x 时,____y =.12.一个角的补角是它的余角的4倍,则这个角是_________度。

北师大版七年级数学第二学期期中试卷(含答案)

北师大版七年级数学第二学期期中试卷(含答案)

北师大版七年级数学第二学期期中试卷(考生注意:本卷满分100分,考试时间为100分钟)一.认真选一选(本大题共10个小题,每小题3分,共30分): 1.下列运算正确的是( ) A .a 3•a 2=a 6 B .(a 2)3=a 6 C .(ab )3=ab 3 D .a 8÷a 2=a 4 2.下列关系式中,正确..的是( ) A. ()222b 2ab a b a +-=+ B. ()222b a b a -=-C. ()()22b a b a b a -=-+D. ()222b a b a +=+ 3.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q (升)与行驶时间t (时)的关系用图象表示应为图中的( ) 4.若∠1与∠2是同旁内角,∠1=500,则∠2的度数是( ) (A )50° (B )130° (C )50°或130° (D )不能确定 5.在同一平面内,两直线的位置关系必是 ( ) A .相交 B .平行 C .相交或平行 D .垂直 6.已知粉笔盒里只有2支红色粉笔和3支白色粉笔,每支粉笔除颜色外其他均相同,现从中任取一支粉笔,则取出白色粉笔的概率是( )A .B .C .D .7.下列事件中,属于必然事件的是( ) A .随意抛掷一枚骰子,掷得偶数点 B .从一副扑克牌抽出一张,抽得红桃牌C .任意选择电视的某一频道,正在播放动画片D .在同一年出生的367名学生中,至少有两个人同月同日生8.如图,下列条件中,能判定DE ∥AC 的是 ( )A .∠EDC=∠EFCB .∠AFE=∠ACDC .∠1=∠2D .∠3=∠49.把一块直尺与一块三角板如图放置,若∠1=40°,则 ∠2的度数为( )A .125°B .130°C .140°D .150°10.已知=+=--=22a ,6,5ab b b a 则( )A. 13B. 19C. 26D. 37二、仔细填一填:(每小题3分,共24分)11.一个角的补角是它的余角的4倍,则这个角是_________。

北师大版七年级下册数学《期中检测卷》含答案

北师大版七年级下册数学《期中检测卷》含答案
15.若x2+2ax+16是一个完全平方式,则a=____________.
16.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=________.
17.现定义运算“△”,对于任意有理数a,b,都有a△b=a2﹣ab+b,例如:3△5=32﹣3×5+5=﹣1,由此算出(x﹣1)△(2+x)=________.
18.如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F;③HE平分∠AHG;④HE⊥AB,其中正确的是___(只填序号)
三.解答题(本大题共7个小题,共66分,)
19.计算下列各题:
(1)(﹣1)2018+3﹣2﹣(π﹣3 14)0
(2)(x+3)2﹣x2
(3)(x+2)(3x﹣y)﹣3x(x+y)
8.如图,点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列不正确的语句是()
A. 线段PC的长是点C到直线PA的距离
B. 线段AC的长是点A到直线PC的距离
C.PA、PB、PC三条线段中,PB最短
D. 线段PB的长是点P到直线a的距离
[答案]B
[解析]
[分析]
利用点到直线的距离的定义、垂线段最短分析.
(4)(2x+y+1)(2x+y﹣1)
20.已知6x﹣5y=﹣10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.
21.在括号内填写理由.
已知:如图,DG⊥BC AC⊥BC,EF⊥AB,∠1=∠2.求证:CD⊥AB
证明:∵DG⊥BC,AC⊥BC

河北省唐山市乐亭县七年级数学下学期期中试题(含解析) 北师大版-北师大版初中七年级全册数学试题

河北省唐山市乐亭县七年级数学下学期期中试题(含解析) 北师大版-北师大版初中七年级全册数学试题

某某省某某市乐亭县2015-2016学年七年级数学下学期期中试题一、用心选一选(每小题3分,共48分,每个小题给出的四个选项中,只有一个选项符合题意)1.地球上的陆地面积约为149000000km2.将149000000用科学记数法表示为()A.1.49×106B.1.49×107C.1.49×108D.1.49×1092.下列各组图形可以通过平移互相得到的是()A.B.C.D.3.下列运算中正确的是()A.a2•a3=a5B.(a2)3=a5C.a6÷a2=a3D.a5+a5=2a104.下列各组数是二元一次方程组的解的是()A.B.C.D.5.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,则∠2的度数为()A.65°B.50°C.45°D.40°6.下列命题是假命题的是()A.等角的补角相等B.内错角相等C.两点之间,线段最短D.两点确定一条直线7.如图,四边形ABCD中,AD∥BC,AC与BD相交于点O,若S△ABD=10cm2,S△ACD为()A.10B.9C.8D.78.若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为()A.5B.4C.3D.29.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1B.2C.3D.410.已知a,b满足方程组,则a+b的值为()A.﹣4B.4C.﹣2D.211.若(x﹣4)(x+8)=x2+mx+n,则m、n的值分别为()A.4,32B.4,﹣32C.﹣4,32D.﹣4,﹣3212.已知(a+b)2=7,(a﹣b)2=4,则a2+b2的值为()A.11B.3C.D.13.如图,已知a∥b,∠1=130°,∠2=90°,则∠3=()A.70°B.100°C.140°D.170°14.对于任意的整数n,能整除(n+3)(n﹣3)﹣(n+2)(n﹣2)的整数是()A.4B.3C.﹣5D.215.若3×9m×27m=311,则m的值为()A.5B.4C.3D.216.若5x=2,5y=,则x,y之间的关系为()A.x,y互为相反数B.x,y互为倒数C.x=yD.无法判断二、填空题(本大题共4个小题,每小题3分,共12分,答案写在题中的横线上)17.如图,如果∠=∠,可得AD∥BC.18.若实数m,n满足条件m+n=3,且m﹣n=1,则m=,n=.19.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有种购买方案.20.按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是.三、解答题(本题包括两个小题,每小题14分,共14分)21.(1)解方程组:.(2)已知2x=3,2y=5,则2x+y=;23x=;22x+y﹣1=.22.先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣2.23.如图,AB∥CD,直线EF分别与AB、CD交于点G,H,GM⊥EF,HN⊥EF,交AB于点N,∠1=50°.(1)求∠2的度数;(2)试说明HN∥GM;(3)∠HNG=°.24.观察下列式子:2×4+1=32;4×6+1=52;6×8+1=72;….(1)请你以上规律写出第4个等式:;(2)根据你发现的规律,请写出第n个等式;(3)你认为(2)中所写的等式一定成立吗?并说明理由.25.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大球水面升高cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?26.已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①,求证:OB∥AC.(2)如图②,若点E、F在线段BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.则∠EOC 的度数等于;(在横线上填上答案即可).(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA度数等于.(在横线上填上答案即可).2015-2016学年某某省某某市乐亭县七年级(下)期中数学试卷参考答案与试题解析一、用心选一选(每小题3分,共48分,每个小题给出的四个选项中,只有一个选项符合题意)1.地球上的陆地面积约为149000000km2.将149000000用科学记数法表示为()A.1.49×106B.1.49×107C.1.49×108D.1.49×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:149 000 000=1.49×108,故选:C.2.下列各组图形可以通过平移互相得到的是()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是C.【解答】解:观察图形可知图案C通过平移后可以得到.故选:C.3.下列运算中正确的是()A.a2•a3=a5B.(a2)3=a5C.a6÷a2=a3D.a5+a5=2a10【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法,可判断A;根据幂的乘方,可判断B;根据同底数幂的除法,可判断C;根据合并同类项,可判断D.【解答】解:A、同底数幂的乘法底数不变指数相加,故A正确;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、合并同类项系数相加字母部分不变,故D错误;故选:A.4.下列各组数是二元一次方程组的解的是()A.B.C.D.【考点】二元一次方程组的解.【分析】所谓“方程组”的解,指的是该数值满足方程组中的每一方程.此题直接解方程组或运用代入排除法作出选择.【解答】解:∵y﹣x=1,∴y=1+x.代入方程x+3y=7,得x+3(1+x)=7,即4x=4,∴x=1.∴y=1+x=1+1=2.解为x=1,y=2.故选A.5.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,则∠2的度数为()A.65°B.50°C.45°D.40°【考点】平行线的性质.【分析】由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDC=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.【解答】解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.故选B.6.下列命题是假命题的是()A.等角的补角相等B.内错角相等C.两点之间,线段最短D.两点确定一条直线【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、正确,根据平角的定义可以证明;B、错误,两直线平行,内错角相等;C、正确,是两点间距离的定义;D、正确,符合确定直线的条件.故选B.7.如图,四边形ABCD中,AD∥BC,AC与BD相交于点O,若S△ABD=10cm2,S△ACD为()A.10B.9C.8D.7【考点】平行线之间的距离.【分析】根据题意可知△ABD和△ACD如果都以AD做底边时,此时底边上的高相等,从而可以得到S△ACD的值.【解答】解∵四边形ABCD中,AD∥BC,AC与BD相交于点O,S△ABD=10cm2,∴△ABD和△ACD如果都以AD做底边时,此时底边上的高相等,∴S△ACD=10cm2,故选A.8.若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为()A.5B.4C.3D.2【考点】完全平方公式.【分析】两个代数式相等,即对应项的系数相同,把右边的式子化简,得到的常数项就是a 的值.【解答】解:∵(x+2)2﹣1=x2+4x+4﹣1=x2+4x+3,∴a的值为3.故选C.9.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1B.2C.3D.4【考点】平行线的判定.【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确.∴正确的为(1)、(3)、(4),共3个;故选:C.10.已知a,b满足方程组,则a+b的值为()A.﹣4B.4C.﹣2D.2【考点】解二元一次方程组.【分析】求出方程组的解得到a与b的值,即可确定出a+b的值.【解答】解:,①+②×5得:16a=32,即a=2,把a=2代入①得:b=2,则a+b=4,故选B.11.若(x﹣4)(x+8)=x2+mx+n,则m、n的值分别为()A.4,32B.4,﹣32C.﹣4,32D.﹣4,﹣32【考点】多项式乘多项式.【分析】把式子展开,根据对应项系数相等,列式求解即可得到m、n的值.【解答】解:∵(x﹣4)(x+8)=x2+mx+n,∴x2+4x﹣32=x2+mx+n,∴m=4,n=﹣32,故选B.12.已知(a+b)2=7,(a﹣b)2=4,则a2+b2的值为()A.11B.3C.D.【考点】完全平方公式.【分析】直接利用完全平方公式化简求出答案.【解答】解:∵(a+b)2=7,(a﹣b)2=4,∴a2+2ab+b2=7,a2﹣2ab+b2=4,∴2(a2+b2)=11,∴a2+b2=.故选:D.13.如图,已知a∥b,∠1=130°,∠2=90°,则∠3=()A.70°B.100°C.140°D.170°【考点】平行线的性质.【分析】延长∠1的边与直线b相交,然后根据两直线平行,同旁内角互补求出∠4,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,延长∠1的边与直线b相交,∵a∥b,∴∠4=180°﹣∠1=180°﹣130°=50°,由三角形的外角性质,∠3=∠2+∠4=90°+50°=140°.故选:C.14.对于任意的整数n,能整除(n+3)(n﹣3)﹣(n+2)(n﹣2)的整数是()A.4B.3C.﹣5D.2【考点】平方差公式.【分析】直接利用平方差公式计算,然后再合并同类项即可.【解答】解:(n+3)(n﹣3)﹣(n+2)(n﹣2),=(n2﹣9)﹣(n2﹣4),=n2﹣9﹣n2+4,=﹣5,故选C.15.若3×9m×27m=311,则m的值为()A.5B.4C.3D.2【考点】同底数幂的乘法.【分析】首先根据3×9m×27m=311,可得3×32m×33m=311;然后根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,求出m的值是多少即可.【解答】解:∵3×9m×27m=311,∴3×32m×33m=311,∴31+2m+3m=311,∴1+2m+3m=11,解得m=2.故选:D.16.若5x=2,5y=,则x,y之间的关系为()A.x,y互为相反数B.x,y互为倒数C.x=yD.无法判断【考点】同底数幂的乘法.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:由负整数指数幂与正整数指数幂互为倒数,得x,y互为相反数,故选:A.二、填空题(本大题共4个小题,每小题3分,共12分,答案写在题中的横线上)17.如图,如果∠ 1 =∠ 3 ,可得AD∥BC.【考点】平行线的判定.【分析】直接利用平行线的判定方法得出答案.【解答】解:如果∠1=∠3(答案不唯一),可得AD∥BC.故答案为:1,3.18.若实数m,n满足条件m+n=3,且m﹣n=1,则m= 2 ,n= 1 .【考点】解二元一次方程组.【分析】由题目可知m和n同时满足两个等式,即可列方程组进行求解.【解答】解:由题意列出方程组得:,解出.19.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有 2 种购买方案.【考点】二元一次方程的应用.【分析】设甲种运动服买了x套,乙种买了y套,根据准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x,y必需为整数可求出解.【解答】解:设甲种运动服买了x套,乙种买了y套,20x+35y=365,得x=,∵x,y必须为正整数,∴>0,即0<y<,∴当y=3时,x=13当y=7时,x=6.所以有两种方案.故答案为:2.20.按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是xy=z .【考点】规律型:数字的变化类.【分析】首项判断出这列数中,2的指数各项依次为 1,2,3,5,8,13,…,从第三个数起,每个数都是前两数之和;然后根据同底数的幂相乘,底数不变,指数相加,可得这列数中的连续三个数,满足xy=z,据此解答即可.【解答】解:∵21×22=23,22×23=25,23×25=28,25×28=213,…,∴x、y、z满足的关系式是:xy=z.故答案为:xy=z.三、解答题(本题包括两个小题,每小题14分,共14分)21.(1)解方程组:.(2)已知2x=3,2y=5,则2x+y= 15 ;23x= 27 ;22x+y﹣1=.【考点】解二元一次方程组;同底数幂的乘法;幂的乘方与积的乘方.【分析】(1)利用加减法解方程组;(2)利用同底数乘法和幂的乘方的逆运算进行变形,再整体代入计算.【解答】解:(1),①×2得;2x﹣2y=4③,②﹣③得:x=1,把x=1代入①中:y=﹣1,∴;(2)2x+y=2x•2y=3×5=15,23x=(2x)3=33=27,22x+y﹣1=22x•2y•2﹣1=32×5×=,故答案为:15,25,.22.先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣2.【考点】整式的混合运算—化简求值.【分析】首先利用完全平方公式和平方差公式计算,然后去括号、合并同类项即可化简,然后把x的值代入即可求解.【解答】解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5,当x=﹣2时,原式=4﹣5=﹣1.23.如图,AB∥CD,直线EF分别与AB、CD交于点G,H,GM⊥EF,HN⊥EF,交AB于点N,∠1=50°.(1)求∠2的度数;(2)试说明HN∥GM;(3)∠HNG=40 °.【考点】平行线的判定与性质.【分析】(1)根据平行线的性由AB∥CD得到∠EHD=∠1=50°,再根据对顶角相等可得到∠2的度数;(2)根据垂直的定义得到∠MGH=90°,∠NHF=90°,然后根据平行线的判定有HN∥GM;(3)先由HN⊥EF得到∠NHG=90°,再根据对顶角相等得∠NGH=∠1=50°,然后根据互余可计算出∠HNG=40°.【解答】解:(1)∵AB∥CD,∴∠EHD=∠1=50°,∴∠2=∠EHD=50°;(2)∵GM⊥EF,HN⊥EF,∴∠MGH=90°,∠NHF=90°,∴∠MGH=∠NHF,∴HN∥GM;(3)∵HN⊥EF,∴∠NHG=90°∵∠NGH=∠1=50°,∴∠HNG=90°﹣50°=40°.故答案为40.24.观察下列式子:2×4+1=32;4×6+1=52;6×8+1=72;….(1)请你以上规律写出第4个等式:8×10+1=9 2;(2)根据你发现的规律,请写出第n个等式2n(2n+2)+1=(2n+1) 2;(3)你认为(2)中所写的等式一定成立吗?并说明理由.【考点】规律型:数字的变化类.【分析】(1)根据2×4+1=32;4×6+1=52;6×8+1=72;…得出规律,第4个等式是8×10+1即可得出答案;(2)根据(1)中规律得出第n个等式是连续偶数相乘,进而得出一般规律;(3)利用一般规律利用多项式的乘法得出即可.【解答】解;(1)∵2×4+1=32;4×6+1=52;6×8+1=72;….∴8×10+1=9 2;(2)2n(2n+2)+1=(2n+1) 2;(3)一定成立,理由:2n(2n+2)+1=4n 2+4n+1,=(2n+1) 2.故答案为:8×10+1=9 2;2n(2n+2)+1=(2n+1) 2.25.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高 2 cm,放入一个大球水面升高 3 cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?【考点】二元一次方程组的应用;一元一次方程的应用.【分析】(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可;(2)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可.【解答】解:(1)设一个小球使水面升高x厘米,由图意,得3x=32﹣26,解得x=2;设一个大球使水面升高y厘米,由图意,得2y=32﹣26,解得:y=3.所以,放入一个小球水面升高2cm,放入一个大球水面升高3cm;(2)设应放入大球m个,小球n个.由题意,得解得:,答:如果要使水面上升到50cm,应放入大球4个,小球6个.26.已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①,求证:OB∥AC.(2)如图②,若点E、F在线段BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.则∠EOC 的度数等于40°;(在横线上填上答案即可).(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA度数等于60°.(在横线上填上答案即可).【考点】平行线的判定与性质.【分析】(1)由BC∥OA得∠B+∠O=180°,所以∠O=180°﹣∠B=80°,则∠A+∠O=180°,根据平行线的判定即可得到OB∥AC;(2)由OE平分∠BOF得到∠BOE=∠FOE,加上∠FOC=∠AOC,所以∠EOF+∠COF=∠AOB=40°;(3)由BC∥OA得到OCB=∠AOC,∠OFB=∠AOF,加上∠FOC=∠AOC,则∠AOF=2∠AOC,所以∠OFB=2∠OCB,(4)设∠AOC的度数为x,则∠OFB=2x,根据平行线的性质得∠OEB=∠AOE,则∠OEB=∠EOC+∠AOC=40°+x,再根据三角形内角和定理得∠OCA=180°﹣∠AOC﹣∠A=80°﹣x,利用∠OEB=∠OCA得到40°+x=80°﹣x,解得x=20°,所以∠OCA=80°﹣x=60°.【解答】(1)证明:∵BC∥OA,∴∠B+∠O=180°,∴∠O=180°﹣∠B=80°,而∠A=100°,∴∠A+∠O=180°,∴OB∥AC;(2)解:∵OE平分∠BOF,∴∠BOE=∠FOE,而∠FOC=∠AOC,∴∠EOF+∠COF=∠AOB=×80°=40°;(3)解:不改变.∵BC∥OA,∴∠OCB=∠AOC,∠OFB=∠AOF,∵∠FOC=∠AOC,∴∠AOF=2∠AOC,∴∠OFB=2∠OCB,即∠OCB:∠OFB的值为1:2;(4)解:设∠AOC的度数为x,则∠OFB=2x,∵∠OEB=∠AOE,∴∠OEB=∠EOC+∠AOC=40°+x,而∠OCA=180°﹣∠AOC﹣∠A=180°﹣x﹣100°=80°﹣x,∵∠OEB=∠OCA,∴40°+x=80°﹣x,解得x=20°,∴∠OCA=80°﹣x=80°﹣20°=60°.故答案为40°,60°.word 21 / 21。

北师大版七年级数学下册期中测试卷及答案

北师大版七年级数学下册期中测试卷及答案

(北师大版)七年级数学下册期中模拟检测试卷及答案(1)说明:本卷共六大题,全卷共24题,满分120分,考试时间为120分钟 一、选择题(本大题共6小题,每小题3分,共18分)每题只有一个正确的选项1.结果为 a 2的式子是(▲)A . a 6÷a 3B . a • aC .(a --1)2D . a 4-a 2=a 2 2.如图,AB ∥CD ,DB ⊥BC ,∠1=40°,则∠2的度数是(▲) A .40° B .50° C .60° D .140°3.已知三角形的两边长分别为4和9,则下列长度的四条线段中能作为第三边的是(▲)A .13B .6C .5D .44.如果(x ―5)(2x +m )的积中不含x 的一次项,则m 的值是(▲) A .5 B .-10 C .-5 D .105.若m +n =3,则2m 2+4mn +2n 2-6的值为( ) A .12 B .6C .3D .06.如图,过∠AOB 边OB 上一点C 作OA 的平行线,以C 为顶点的角与∠AOB 的关系是(▲)A .相等B .互补C .相等或互补D .不能确定二、填空题(本大题共8个小题,每小题3分,共24分) 7.已知∠α的余角的3倍等于它的补角,则∠α=_________;8.计 算:=_______________; 9.如果多项式x 2+mx +9是一个完全平方式,则m =_________;10.把一块含30°角的直角三角板放在两平行直线上,如图,则∠1+∠2=__________°;11.三角形的三边长为3、a 、7,且三角形的周长能被5整除,则a =__________; 12.如图,AB 与CD 相交于点O ,OA =OC ,还需增加一个条件:____________________, 可得△AOD ≌△COB (AAS ) ;13.AD 是△ABC 的边BC 上的中线,AB =12,AC =8,那么中线AD 的取值范围___________. 14.观察烟花燃放图形,找规律:B●OAC1210题ABDC O12题20201321)3()1(-⎪⎭⎫ ⎝⎛--π⨯-依此规律,第9个图形中共有_________个★. 三、解答题(本大题共4小题,每小题6分,共24分) 15.计 算:()2432a a a +÷解:16.计 算:)5)(14()32)(32(+--+-y y y y解:17.如图,∠ABC =∠BCD ,∠1=∠2,请问图中有几对平行线?并说明理由. 解:18.如图,C 、F 在BE 上,∠A =∠D ,AB ∥DE ,BF =EC .求证:AB =DE . 解:四、(本大题共2小题,每小题8分,共16分)19.先化简,再求值: , 其中2=x ,2-=y .解:()()[]x xy x y y y x 28422÷-+-+ AF CBED20.如图,直线CD 与直线AB 相交于点C ,根据下列语句画图(注:可利用三角尺画图,但要保持图形清晰)(1)过点P 作PQ ∥AB ,交CD 于点Q ;过点P 作PR ⊥CD ,垂足为R ; (2)若∠DCB =120°,则∠QPR 是多少度?并说明理由. 解:五、(本大题共2小题,每小题9分,共18分)21.如图,已知AB =AE ,BC =ED ,∠B =∠E ,AF ⊥CD ,F 为垂足, 求证:(1)AC =AD ; (2)CF =DF . 解:22.如图,在边长为1的方格纸中,△PQR 的三个顶点及A 、B 、C 、D 、E 五个点都在小方格的格点上,现以A 、B 、C 、D 、E 中的三个点为顶点画三角形. (1)请在图1中画出与△PQR 全等的三角形;(2)请在图2中画出与△PQR 面积相等但不全等的三角形;(3)顺次连结A 、B 、C 、D 、E 形成一个封闭的图形,求此图形的面积.CDBA ·P解:六、(本大题共2个小题,每小题10分,共20分)23.如图①是一个长为2a,宽为2b的长方形纸片,其长方形的面积显然为4ab,现将此长方形纸片沿图中虚线剪开,分成4个小长方形,然后拼成如图②的一个正方形.(1)图②中阴影正方形EFGH的边长为: _________________;(2)观察图②,代数式(a -b)2表示哪个图形的面积?代数式(a+b)2呢?(3)用两种不同方法表示图②中的阴影正方形EFGH的面积,并写出关于代数式(a+b)2、(a-b)2和4ab之间的等量关系;(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,求:(a -b)2的值.解:24.如图(1)线段AB、CD相交于点O,连接AD、CB.如图(2),在图(1)的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图(1)中,请直接写出∠A、∠B、∠C、∠D之间的等量关系;(2)在图(2)中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图(2)中,∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间数量关系.(直接写出结论即可)解:参考答案四、(本大题共2个小题,每小题各8分,共16分)19.解:原式=[4x2+4xy+y2-y2-4xy-8xy]÷2x=[4x2-8xy]÷2x=2x-4y 当x=2,y=-2时,原式=4+8=1220.解:(1)见图(2)∠QPR=300五、(本大题共2小题,每小题9分,共18分)21.解:(1) ∵AB=AE,BC=ED,∠B=∠E∴△ABC≌△AED∴AC=AD24.解: (1) ∠A+∠D=∠B+∠C (2) 由(1)可知,∠1+∠D=∠3+∠P, ∠2+∠P=∠4+∠B∴∠1-∠3=∠P-∠D,∠2-∠4=∠B-∠P 又∵AP、CP分别平分∠DAB和∠BCD∴∠1=∠2, ∠3=∠4 ∴∠P-∠D=∠B-∠P 即2∠P=∠B+∠D ∴∠P=(40°+30°)÷2=35°.(3)2∠P=∠B+∠D.CDBA·PQR。

北师大版初一下学期期中考试数学试卷含答案(word版)

北师大版初一下学期期中考试数学试卷含答案(word版)

北师大版七年级(下册)期中考试数学试卷一、选择题(每小题3分,共30分)1.如图,∠1与∠2是对顶角的是()A.B.C.D.2.在下列各式中正确的是()A.=﹣2B.=3C.=8D.=23.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°4.平面直角坐标系中,点A(﹣2,a)位于x轴的上方,则a的值可以是()A.0B.﹣1C.D.±35.在0,,0.101001…,,,这6个数中,无理数有()A.1个B.2个C.3个D.4个6.的平方根等于()A.2B.﹣4C.±4D.±27.如果是a的相反数,那么a的值是()A.B.C.D.8.在平面直角坐标系中,点A(3,﹣5)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限9.已知点M(a,b)在第三象限,则点N(﹣b,a)在第()象限.A.一B.二C.三D.四10.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.(0,12)或(0,﹣8)二、填空题(每小题3分,共15分)11.36的平方根是;的算术平方根是;=.12.如果两个角是对顶角,那么这两个角相等,是(真或假)命题,此命题的题设是,结论是.13.若≈44.90,≈14.20,则≈.14.已知点P在第四象限,且到x轴的距离是3,到y轴的距离是2,则点P的坐标为.15.如图所示第1个图案是由黑白两种颜色的正六边形的地面砖组成,第2个、第3个图案可以看作是第1个图案经过平移得到的,那么第4个图案中白色六边形地面砖块,第n个图案中白色地面砖块.三、解答题(共55分)16.(20分)解方程(1)x2=25 (2)﹣8(x﹣1)3+2=﹣25计算:(3)2++|| (4)(+)(5)+﹣|1﹣| (6)|1﹣|+×﹣17.(9分)如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy,按要求解答下列问题:(1)写出△ABC三个顶点的坐标;(2)画出△ABC向右平移6个单位后的图形△A1B1C1;(3)求△ABC的面积.18.(6分)已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M ﹣N的值.19.(10分)如图,已知AD⊥BC于D,EG⊥BC于G,∠E=∠1.试说明:AD平分∠BAC.20.(10分)如图①,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+=0,过C作CB⊥x轴于B.(1)求三角形ABC的面积;(2)如图②,若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,求∠AED 的度数;(3)在y轴上是否存在点P,使得三角形ACP和三角形ABC的面积相等?若存在,求出P点的坐标;若不存在,请说明理由.参考答案一、选择题(每小题3分,共30分)1.如图,∠1与∠2是对顶角的是()A.B.C.D.【分析】根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角,依次判定即可得出答案.【解答】解:A、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故A选项错误;B、∠1与∠2没有公共顶点,不是对顶角,故B选项错误;C、∠1与∠2的两边互为反向延长线,是对顶角,故C选项正确;D、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故D选项错误.故选:C.【点评】本题主要考查了对顶角的定义,对顶角是相对与两个角而言,是指的两个角的一种位置关系.它是在两直线相交的前提下形成的.2.在下列各式中正确的是()A.=﹣2B.=3C.=8D.=2【分析】算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为a.【解答】解:A、=2,故A选项错误;B、=±3,故B选项错误;C、=4,故C选项错误;D、=2,故D选项正确.故选:D.【点评】考查了算术平方根,非负数a的算术平方根a 有双重非负性:①被开方数a是非负数;②算术平方根a 本身是非负数.3.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、∠3=∠A,无法得到,AB∥CD,故此选项错误;B、∠1=∠2,根据内错角相等,两直线平行可得:AB∥CD,故此选项正确;C、∠D=∠DCE,根据内错角相等,两直线平行可得:BD∥AC,故此选项错误;D、∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得:BD∥AC,故此选项错误;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.4.平面直角坐标系中,点A(﹣2,a)位于x轴的上方,则a的值可以是()A.0B.﹣1C.D.±3【分析】根据平面直角坐标系可得a为正数,进而可选出答案.【解答】解:∵点A(﹣2,a)位于x轴的上方,∴a为正数,故选:C.【点评】此题主要考查了点的坐标,关键是掌握x轴的上方的点的纵坐标为正,x轴的下方的点的纵坐标为负.5.在0,,0.101001…,,,这6个数中,无理数有()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:0.101001…,,共3个.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.的平方根等于()A.2B.﹣4C.±4D.±2【分析】原式利用算术平方根,平方根定义计算即可得到结果.【解答】解:=4,4的平方根是±2,故选:D.【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.7.如果是a的相反数,那么a的值是()A.B.C.D.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:是a的相反数,那么a的值是1﹣,故选:A.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.8.在平面直角坐标系中,点A(3,﹣5)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答.【解答】解:点A(3,﹣5)所在象限为第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.已知点M(a,b)在第三象限,则点N(﹣b,a)在第()象限.A.一B.二C.三D.四【分析】根据第三象限内点的横坐标与纵坐标都是负数确定出a、b的正负情况,然后进行判断即可.【解答】解:∵点M(a,b)在第三象限,∴a<0,b<0,∴﹣b>0,∴点N(﹣b,a)在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.(0,12)或(0,﹣8)【分析】根据B点的坐标可知AP边上的高为2,而△PAB的面积为5,点P在x轴上,说明AP=5,已知点A的坐标,可求P点坐标.【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选:C.【点评】本题考查了直角坐标系中,利用三角形的底和高及面积,表示点的坐标.二、填空题(每小题3分,共15分)11.36的平方根是±6;的算术平方根是2;=﹣3.【分析】根据平方根、算术平方根、立方根的定义,即可解答.【解答】解:36的平方根是±6,=4,4的算术平方根是2,=﹣3.故答案为:±6,2,﹣3.【点评】本题考查了平方根、立方根、算术平方根,解决本题的关键是熟记平方根、算术平方根、立方根的定义.12.如果两个角是对顶角,那么这两个角相等,是真(真或假)命题,此命题的题设是两个角是对顶角,结论是这两个角相等.【分析】根据对顶角相等得出是真命题,再根据命题分为题设和结论两部分,题设是已知事项,结论是由已知事项推出的事项,从而得出答案.【解答】解:如果两个角是对顶角,那么这两个角相等,是真命题,此命题的题设是两个角是对顶角,结论是这两个角相等;故答案为:是,两个角是对顶角,这两个角相等.【点评】本题考查了命题与定理:许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.也考查了命题的真假判断.13.若≈44.90,≈14.20,则≈ 4.490.【分析】先将2016写成20.16×100,再运用二次根式的性质进行化简计算.【解答】解:∵≈44.90∴≈44.90即×≈44.90∴×10≈44.90即≈4.490故答案为:4.490【点评】本题主要考查了算术平方根,解决问题的关键是根据二次根式的性质进行化简.解题时需要运用公式:=×(a≥0,b≥0).14.已知点P在第四象限,且到x轴的距离是3,到y轴的距离是2,则点P的坐标为(2,﹣3).【分析】根据第四象限内点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答即可.【解答】解:∵点P在第四象限,且到x轴的距离是3,到y轴的距离是2,∴点P的横坐标是2,纵坐标是﹣3,∴点P的坐标为(2,﹣3).故答案为:(2,﹣3).【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.15.如图所示第1个图案是由黑白两种颜色的正六边形的地面砖组成,第2个、第3个图案可以看作是第1个图案经过平移得到的,那么第4个图案中白色六边形地面砖18块,第n 个图案中白色地面砖4n+2块.【分析】根据所给的图案,发现:第一个图案中,有6块白色地砖,后边依次多4块,由此规律解决问题.【解答】解:第1个图案中有白色六边形地面砖有6块;第2个图案中有白色六边形地面砖有6+4=10(块);第3个图案中有白色六边形地面砖有6+2×4=14(块);第4个图案中有白色六边形地面砖有6+3×4=18(块);第n个图案中有白色地面砖6+4(n﹣1)=4n+2(块).故答案为:18,4n+2.【点评】此题考查图形的变化规律,结合图案发现白色地砖的规律是解题的关键.三、解答题(共55分)16.(20分)解方程(1)x2=25(2)﹣8(x﹣1)3+2=﹣25计算:(3)2++||(4)(+)(5)+﹣|1﹣|(6)|1﹣|+×﹣【分析】(1)方程利用平方根开方即可求出解;(2)方程整理后,利用立方根定义开立方即可求出解;(3)原式利用绝对值的代数意义化简,合并即可得到结果;(4)原式利用二次根式乘法法则计算即可求出值;(5)原式利用平方根、立方根定义,以及绝对值的代数意义计算即可求出值;(6)原式利用绝对值的代数意义,以及平方根、立方根定义计算即可求出值.【解答】解:(1)开方得:x=5或x=﹣5;(2)方程整理得:(x﹣1)3=,开立方得:x﹣1=,解得:x=;(3)原式=2++﹣=4﹣;(4)原式=3+2=5;(5)原式=5﹣4﹣+1=2﹣;(6)原式=﹣1﹣×﹣=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.(9分)如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy,按要求解答下列问题:(1)写出△ABC三个顶点的坐标;(2)画出△ABC向右平移6个单位后的图形△A1B1C1;(3)求△ABC的面积.【分析】(1)根据坐标系得出各顶点坐标即可;(2)利用图形的平移性质得出对应点点坐标进而得出答案;(3)利用梯形的面积减去三角形的面积进而得出答案.【解答】解;(1)如图所示:A(﹣1,8),B(﹣5,3),C(0,6);(2)如图所示:(3)△ABC的面积为:×(5+1)×5﹣×1×2﹣×3×5=6.5.【点评】此题主要考查了图形的平移以及三角形的面积求法等知识,利用已知得出对应点坐标是解题关键.18.(6分)已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M ﹣N的值.【分析】根据算术平方根和立方根的定义得出方程组,求出m、n,再求出M、N,即可得出答案.【解答】解:∵M=是m+3的算术平方根,N=是n﹣2的立方根,∴n﹣4=2,2m﹣4n+3=3,解得:m=12,n=6,∴M==,N==,∴M﹣N=﹣.【点评】本题考查了算术平方根和立方根的定义,能根据算术平方根和立方根的定义求出m、n的值是解此题的关键.19.(10分)如图,已知AD⊥BC于D,EG⊥BC于G,∠E=∠1.试说明:AD平分∠BAC.【分析】先依据垂线的定义可得到∠ADC=∠EGC=90°,从而可证明AD∥EG,然后依据平行线的性质可得到∠1=∠2,∠E=∠3,通过等量代换可得到∠2=∠3,于是可得到问题的答案.【解答】解:∵AD⊥BC于D,EG⊥BC于G,∴∠ADC=∠EGC=90°,∴AD∥EG,∴∠1=∠2,∠E=∠3.又∵∠E=∠1,∴∠2=∠3,∴AD平分∠BAC.【点评】本题主要考查的是平行线的性质与判定,熟练掌握平行线的性质和判定定理是解题的关键.20.(10分)如图①,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+=0,过C作CB⊥x轴于B.(1)求三角形ABC的面积;(2)如图②,若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,求∠AED 的度数;(3)在y轴上是否存在点P,使得三角形ACP和三角形ABC的面积相等?若存在,求出P点的坐标;若不存在,请说明理由.【分析】(1)先依据非负数的性质可求得a、b的值,从而可得到点A和点C的坐标,接下来,再求得点B的坐标,最后,依据三角形的面积公式求解即可;(2)如图甲所示:过E作EF∥AC.首先依据平行线的性质可知∠ODB=∠6,∠CAB=∠5,接下来,依据平行公理的推理可得到BD∥AC∥EF,然后,依据平行线的性质可得到∠1=∠3,∠2=∠4,然后,依据角平分线的性质可得到∠3=∠CAB,∠4=∠ODB,最后,依据∠AED=∠1+∠2=∠3+∠4求解即可;(3)①当P在y轴正半轴上时,设点P(0,t),分别过点P,A,B作MN∥x轴,AN∥y轴,BM∥y轴,交于点M,N,然后,用含t的式子表示出AN,CM的长,然后依据S三角形ACP=S梯形MNAC ﹣S三角形ANP﹣S三角形CMP列出关于t的方程求解即可;②当P在y轴负半轴上时,如图丙分别过点P,A,B作MN∥x轴,AN∥y轴,BM∥y轴,交于点M,N,设点P(0,a),然后用含a的式子表示出AN、CM的长,最后,依据S三角形ACP =S梯形MNAC﹣S三角形ANP﹣S三角形CMP列方程求解即可.【解答】解:(1)∵(a+2)2+=0,∴a+2=0,b﹣2=0,∴a=﹣2,b=2,∴A(﹣2,0),C(2,2).∵CB⊥AB,∴B(2,0),∴AB=4,CB=2,则S三角形ABC=×4×2=4.(2)如图甲,过E作EF∥AC.∵CB⊥x轴,∴CB∥y轴,∠CBA=90°,∴∠ODB=∠6.又∵BD∥AC,∴∠CAB=∠5,∴∠CAB+∠ODB=∠5+∠6=180°﹣∠CBA=90°.∵BD∥AC,∴BD∥AC∥EF,∴∠1=∠3,∠2=∠4.∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠CAB,∠4=∠ODB,∴∠AED=∠1+∠2=∠3+∠4=(∠CAB+∠ODB)=45°.(3)①当P在y轴正半轴上时,如图乙.设点P(0,t),分别过点P,A,B作MN∥x轴,AN∥y轴,BM∥y轴,交于点M,N,则AN=t,CM=t﹣2,MN=4,PM=PN=2.∵S三角形ABC=4,∴S三角形ACP =S梯形MNAC﹣S三角形ANP﹣S三角形CMP=4,∴×4(t﹣2+t)﹣×2t﹣×2(t﹣2)=4,解得t=3,即点P的坐标为(0,3).②当P在y轴负半轴上时,如图丙,同①作辅助线.设点P(0,a),则AN=﹣a,CM=﹣a+2,PM=PN=2.∵S三角形ACP =S梯形MNAC﹣S三角形ANP﹣S三角形CMP=4,∴×4(﹣a+2﹣a)﹣×2•(﹣a)﹣×2(2﹣a)=4,解得a=﹣1,∴点P的坐标为(0,﹣1).综上所述,P点的坐标为(0,﹣1)或(0,3).【点评】本题主要考查的是三角形的综合应用,解答本题主要应用了非负数的性质、三角形的面积公式,平行线的性质,依据三角形的面积公式、梯形的面积公式依据图形中相关图形之间的面积关系列出关于a和t的方程是解题的关键.。

2015-2016学年度北师大七年级下期中考试数学试卷含答案

2015-2016学年度北师大七年级下期中考试数学试卷含答案

2015-2016 学年度七年级下期中考试数学试卷一、精心 一 .(本大 共 10 个小 ,每小 3 分,共 30 分. 1. 下列运算正确的是().A .a 5+ a 5 =a 10B .a 6× a 4=a 24C .a 0 ÷a - 1=aD .(a 2 ) 3=a 5 2. 下列关系式中,正确 的是()..A.(a -b) 2=a 2 -b 2B.(a +b)(a -b)=a 2- b 2C.(a + b) 2=a 2+b 2D.(a +b) 2=a 2 + ab +b 23. 大象是世界上最大的 栖 物, 它的体重的百万分之一相当于 ()的体重A. 袋鼠B. 啄木C. 蜜蜂D. 小 4. 如果一个角的 角是 130°,那么 个角的余角的度数是( ) A.20°B. 40 °C.70 ° D .130 ° 5. 下列哪 数能构成三角形 ( ) A 、4,5,9 B 、8,7,15 C、5,5,11 D 、 13,12,20 6. 如果一个等腰三角形的一边为 4 ㎝,另一边为 5 ㎝,则它的周长为 ()A 、14B 、 13C 、14 或 13D 、、无法计算7. 下列 法中,正确的是 ( ) A. 内 角相等. B. 同旁内角互 . C. 同角的 角相等. D.相等的角是 角.8. 以 3,5,7,10 的四条 段中的三条 ,能构成三角形的个数 ( )A .1B . 2C .3D .49. 如 1, 下列条件中,能判定 DE ∥ AC 的是 ( )A. ∠ EDC=∠ EFCB. ∠AFE=∠ACDC. ∠1=∠2D.∠3=∠410. 已知 x a =3,x b =5, x 2a - b =( )图 1A.36 C.9B.D. 1555二、 心填一填(每小 3 分,共 24)11. 有两根 3 ㎝、4 ㎝的木棒, 第三根木棒 成三角形, 第三根木棒第 范 是 。

北师大版数学七年级下-第二学期期中试题(2015.5).doc

北师大版数学七年级下-第二学期期中试题(2015.5).doc

鑫达捷初中数学试卷桑水出品2014-2015第二学期七年级数学期中试题(2015.5)请同学们注意:1.本次考试满分为120分,其中知识考查部分总分为115分,书写得分为5分.2.书写部分的得分标准为:⑴整张试卷书写认真,字迹清晰工整得2分;⑵解答题的解题过程从该题所留的答题空的最左侧开始书写得1分;⑶解答题的解题过程的书写遵循先上下、后左右的顺序的得1分;⑷试卷解答过程中需要你画出的各种图形(包括作辅助线)使用铅笔得1分.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 有下列长度的三条线段,能组成三角形的是( )A 、 2cm ,3cm ,4cmB 、 1cm ,4cm ,2cmC 、1cm ,2cm ,3cmD 、 6cm ,2cm ,3cm2.下列命题:①对顶角相等; ②若∠1+∠2=90°,则∠1与∠2互为余角; ③同旁内角互补④相等的角是对顶角.其中假命题有( ) A . 1个 B . 2个 C . 3个 D . 4个3.如图,直线a 、b 被直线c 所截,a ∥b ,∠1=130°,则∠2的度数是( ) A. 130° B. 60° C. 50° D. 40°4. 已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A. 相等B. 互余C. 互补D. 互为对顶角 5.如图所示,下列条件中不能判定DE ∥BC 的是( )A .∠1=∠CB .∠2=∠3C .∠1=∠2D .∠2+∠4=180 º 6. 如图所示,下列推理及所注理由错误的是( )A .因为∠1=∠3,所以AB ∥CD (内错角相等,两直线平行) B .因为AB ∥CD ,所以∠2=∠4(两直线平行,内错角相等)C .因为AD ∥BC ,所以∠2=∠4(两直线平行,内错角相等) D .因为∠2=∠4,所以AD ∥BC (内错角相等,两直线平行) 7.如图,l ∥m ,∠1=115º,∠2=95º,则∠3=( ) A .120º B .130º C .140º D .150º8.元一次方程组⎩⎨⎧==+x y y x 2,102的解是( )(A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D ⎩⎨⎧==.2,4y x9.如右图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于O 点,∠1=∠2.图中全等的三角形共有 ( )A .4对B ..3对C 2对D .1对10.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P , 作射线OP ,由作法得OCP ODP △≌△的根据是( ).A .SASB .SSSC .AASD .ASA 11、如图,已知∠1=∠2,则不一定...能使△ABD ≌△ACD 的条件是( ) A .AB =AC B .BD =CD C .∠B =∠C D .∠ BDA =∠CDA12、如图5-4-27,∠1=∠2,∠C=∠D ,AC 、BD 交于E , 则下列结论错误的是( )(A )∠DAB=∠CBA (B )△DAE ≌△CBE(C )无法确定CE ,DE 是否相等 (D )△AEB 为等腰三角形二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.) 13.等腰三角形两边长分别为9 cm 和4cm 时,它的周长为_____________。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E2015-16学年北师版初一数学第二学期期中试卷班级_____姓名_____学号_____分层班级_____成绩_____ 注意:时间100分钟,满分120分;一、选择题(每题3分,共30分) ( )B. C. 2. 下列图形中,不能..通过其中一个四边形平移得到的是 ( )3. 若a <b ,则下列结论正确的是( )A. -a <-bB.a 2>b 2C. 1-a <1-bD.a +3>b +34. 在平面直角坐标系xoy 中,若点P 在第四象限,且点P 到x 轴的距离为1,到y 轴的P 的坐标为( )A . (1,5- )B . (1,5-)C . (1,5-)D . (5,1-)5. 如图,AB ∥CD ∥EF ,AF ∥CG ,则图中与∠A (不包括∠A )相等的角有( )A .1个B .2个C .3个D .4个6. 在坐标平面上两点A (-a +2,-b +1)、B (3a , b ),若点A 向右移动2个单位长度后,再向下移动3个单位长度后与点B 重合,则点B 所在的象限为( ). A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限7. 下列命题中,是真命题的个数是()①两条直线被第三条直线所截,同位角相等②过一点有且只有一条直线与已知直线垂直③两个无理数的积一定是无理数④A.1个B.2个C.3个D.4个8.如图,∠ACB=90º,CD⊥AB于D,则下面的结论中,正确的是()①AC与BC互相垂直②CD和BC互相垂直③点B到AC的垂线段是线段CA④点C到AB的距离是线段CD⑤线段AC的长度是点A到BC的距离.A.①⑤B.①④C.③⑤D.④⑤9. 车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是()A.150°B.180°C.270°D.360°10. 对于不等式组⎩⎨⎧<>bxax(a、b是常数),下列说法正确的是()A.当a<b时无解B.当a≥b时无解C.当a≥b时有解D.当ba=时有解二、填空题(每题2分,共20分)11. 在下列各数0.51525354、0、0.2、3π、227、13111无理数有.12. 若一个数的算术平方根与它的立方根相同,则这个数是.13. 当x_________14. 如图所示,直线AB与直线CD相交于点O,EO⊥AB,∠EOD=25°,则∠AOC=__________,∠BOC=__________A BC15. 已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b的值为__________16. 把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:17. 已知点M (3a -8, a -1).(1) 若点M 在第二象限, 并且a 为整数, 则点M 的坐标为 _________________; (2) 若N 点坐标为 (3, -6), 并且直线MN ∥x 轴, 则点M 的坐标为 ___________ .18. 如图,一条公路修到湖边时,需拐弯绕湖而过; 如果第一次拐角∠A 是120°,第二次拐角∠B 是150°,第三次拐角是∠C ,这时的道路恰好和 第一次拐弯之前的道路平行,则∠C 是__________19. 如图,点A (1,0)第一次跳动至点A 1(-1,1), 第二次跳动至点A 2(2,1),第三次跳动至点 A 3(-2,2),第四次跳动至点A 4(3,2),…, 依此规律跳动下去,点A 第100次跳动至 点A 100的坐标是______________.20.如图a , ABCD 是长方形纸带(AD ∥BC ), ∠DEF =19°, 将纸带沿EF 折叠成图b , 再沿BF 折叠成图c , 则图c 中的∠CFE 的度数是_____________;如果按照这样的方式再继续折叠下去,直到不能折叠为止,那么先后一共折叠的次数是_____________.三、解答题(21-23每题4分,24-25每题5分,26-29每题6分,30题3分,共49分)21.计算:1. 22.解方程:3(1)64x -=第18题图图a图c ABCD EFBGD F第19题图23. 解不等式5122(43)x x --≤,并把解集在数轴上表示出来.24. 解不等式组⎪⎩⎪⎨⎧+<-+-≤-32121212x x x x ,并写出该不等式组的整数解.25. 已知:)0,4(A ,),3(y B ,点C 在x 轴上,5=AC . (1)直接写出点C 的坐标; (2)若10=∆ABC S ,求点B 的坐标.26. 某地为更好治理湖水水质,治污部门决定购买10台污水处理设备.现有A B ,两种型A 型设备比购买3台B 型设备少6万元. (1)求a b ,的值.(2)经预算:治污部门购买污水处理设备的资金不超过105万元,你认为该部门有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理的污水量不低于2040吨,为了节约资金,请你为治污部门设计一种最省钱的购买方案.7. 如图,点A 在∠O 的一边OA 上.按要求画图并填空:(1)过点A 画直线AB ⊥OA ,与∠O 的另一边相交于点B ;(2)过点A 画OB 的垂线段AC ,垂足为点C ; (3)过点C 画直线CD ∥OA ,交直线AB 于点D ; (4)∠CDB= °;(5)如果OA=8,AB=6,OB=10,则点A 到直线OB 的距离为 .28. 完成证明并写出推理根据:已知,如图,∠1=132o ,∠ACB =48o ,∠2=∠3,FH ⊥AB 于H , 求证:CD ⊥AB .证明:∵∠1=132o ,∠ACB =48o ,∴∠1+∠ACB =180° ∴DE ∥BC∴∠2=∠DCB(____________________________) 又∵∠2=∠3 ∴∠3=∠DCB∴HF ∥DC(____________________________) ∴∠CDB=∠FHB. (____________________________) 又∵FH ⊥AB,∴∠FHB=90°(____________________________) ∴∠CDB=________°.∴CD ⊥AB. (____________________________)29. 在平面直角坐标系中, A 、B 、C 三点的坐标分别为(-6, 7)、(-3,0)、(0,3).O(1)画出△ABC ,则△ABC 的面积为___________(2)在△ABC 中,点C 经过平移后的对应点为 C ’(5,4),将△ABC 作同样的平移得到△A ’B ’C ’画出平移后的△A ’B ’C ’,写出点A ’,B ’的坐标为 A ’ (_______,_____),B ’ (_______,______); (3)P (-3, m )为△ABC 中一点,将点P 向右平移4个单位后,再向下平移6个单位得到点Q (n ,-3),则m = ,n = .30.两条平行线中一条直线上的点到另一条直线的垂线段的长度叫做两条平行线间的距离。

定义:平面内的直线1l 与2l 相交于点O ,对于该平面内任意一点M ,点M 到直线1l ,2l 的距离分别为a 、b ,则称有序非负实数对(a,b )是点M 的“距离坐标”. 根据上述定义,距离坐标为(2,3)的点的个数是 .四、解答题(每题7分,共21分)31. 已知:如图, AE ⊥BC , FG ⊥BC , ∠1=∠2, ∠D =∠3+60︒, ∠CBD =70︒. (1)求证:AB ∥CD ; (2)求∠C 的度数.32. 已知非负数x 、y 、z 满足123234x y z ---==,设345x y z ω=++, 求ω的最大值与最小值.33. 如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 向上平移2个单位,再向右平移1个单位,得到点A ,B 的对应点分别是C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积ABDCS 四边形(2)在y 轴上是否存在点P ,连接P A ,PB ,使PAB S ∆=ABDCS 四边形,若存在这样的点,求出点P 的坐标,若不存在,试说明理由.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①DCP CPOBOP ∠+∠∠的值不变 ②DCP BOP CPO ∠+∠∠的值不变 ③CPDOPB S S ∆∆+的值可以等于52 ④CPDOPB S S ∆∆+的值可以等于134 以上结论中正确的是:______________第18题图初一数学参考答案及评分标准一、选择题(每题3分,共30分) BDCAD DAACB二、填空题(每题2分,共20分) 11. 无理数有0.51525354、3π12. 若一个数的算术平方根与它的立方根相同,则这个数是 0和1 .13. 当32x ≤14. 如图所示,直线AB 与直线CD 相交于点O ,EO ⊥AB , ∠EOD =25°,则∠AOC =____65°___,∠BOC =___115°____15. 已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b 的值为___-2_____16. “在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行” 17. 已知点M (3a -8, a -1). (1)点M _(-2,1)__; (2)点M ___(-23,-6)_ . 18. 如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A 是120°,第二次拐角∠B 是150°,第三次拐角是∠C ,这时 的道路恰好和第一次拐弯之前的道路平行,则∠C 是__150°_19. 如图,点A (1,0)第一次跳动至点A 1(-1,1), 第二次跳动至点A 2(2,1),第三次跳动至点 A 3(-2,2),第四次跳动至点A 4(3,2),…, 依此规律跳动下去,点A 第100次跳动至 点A 100的坐标是(51,50)20.图c 中的∠CFE 的度数是___123°____;如果按照这样的方式再继续折叠下去,直到不能折叠为止,那么先后一共折叠的次数是 __ 9________.三、解答题(21-23每题4分,24-25每题5分,26-29每题6分,30题3分,共49分)图a图cABC D EFBGDF21.计算:1+2)451(- .解:原式114+=134……………………4分22.解方程:3(1)64x -=解:3641=-x -----1分41=-x ------2分 5=x ------4分23. 解不等式5122(43)x x --≤,并把解集在数轴上表示出来. 解:去括号,得51286x x --≤.移项,得58612x x --+≤.…………………………………1分 合并,得36x -≤. …………………………………………2分 系数化为1,得2x -≥…………………………………………3分 不等式的解集在数轴上表示如下:…………………………………………4分24. 解不等式组⎪⎩⎪⎨⎧+<-+-≤-32121212x x x x ,并写出该不等式组的整数解.解:由不等式212+-≤-x x ,得1≤x ;………………1分由不等式32121xx +<-得: x >-5;………………2分 画出数轴: ………………3分所以该不等式组的解集为:-5<x≤1,………………4分所以该不等式组的整数解是-4,-3,-2,-1,0,1.………………5分 25. 已知:)0,4(A ,),3(y B ,点C 在x 轴上,5=AC . (1)直接写出点C 的坐标; (2)若10=∆ABC S ,求点B 的坐标.解:∵A (4,0),点C 在x 轴上,AC=5,所以点C 的坐标是(-1,0)或(9,0). ……………2分5y ⨯=10 解得y=4或-4………………………4分所以点B 坐标是B (3,-4)或(3,4)………………………5分26. 某地为更好治理湖水水质,治污部门决定购买10台污水处理设备.现有A B ,两种型号的设备,经调查:购买一台型设备比购买一台型设备多2万元,购买2台型设备比购买3台B 型设备少6万元.(1)求a b ,的值.(2)经预算:治污部门购买污水处理设备的资金不超过105万元,你认为该部门有哪几种购买方案. (3)在(2)问的条件下,若每月要求处理的污水量不低于2040吨,为了节约资金,请你为治污部门设计一种最省钱的购买方案. 解:(1)由题意得,⎩⎨⎧-==-6322b a b a ,解得 ⎩⎨⎧==1012b a .………………2分(2)设买x 台A 型,则买 (10-x)台B 型,有105)10(1012≤-+x x 解得:25≤x ………………3分 答:可买10台B 型;或 1台A 型,9台B 型;或2台A 型,8台B 型. ………………4分 (3) 设买x 台A 型,则由题意可得200(10)2040240x x +-≥………………5分 解得 1≥x当x=1时,花费 102910112=⨯+⨯ (万元) 当x=2时,花费 104810212=⨯+⨯ (万元)答:买1台A 型,9台B 型设备时最省钱.27. 如图,点A 在∠O 的一边OA 上.按要求画图并填空:(1)过点A 画直线AB ⊥OA ,与∠O 的另一边相交于点B (2)过点A 画OB 的垂线段AC ,垂足为点C ;(3)过点C 画直线CD ∥OA ,交直线AB 于点D ;(4)∠CDB= °;(5)如果OA=8,AB=6,OB=10,则点A 到直线OB 的距离为 .O解:(1)如图; ……………………………1分(2)如图; ………………… ………2分(3)如图; ………………… ………3分 (4)90; ………………………………4分(5)4.8. …………………………………6分28. 完成证明并写出推理根据:已知,如图,∠1=132o ,∠ACB =48o ,∠2=∠3,FH ⊥AB 于H ,求证:CD ⊥AB .证明:∵∠1=132o ,∠ACB =48o ,∴∠1+∠ACB =180° ∴DE ∥BC∴∠2=∠DCB(__两直线平行,内错角相等__) 又∵∠2=∠3 ∴∠3=∠DCB∴HF ∥DC(__同位角相等,两直线平行__)∴∠CDB=∠FHB. (_____两直线平行,同位角相等___) 又∵FH ⊥AB,∴∠FHB=90°(___垂直定义_______) ∴∠CDB=__90_°.∴CD ⊥AB. (____垂直定义_________)29. 在平面直角坐标系中, A 、B 、C 三点的坐标分别为(-6, 7)、(-3,0)、(0,3). (1)画出△ABC ,则△ABC 的面积为___________;(2)在△ABC 中,点C 经过平移后的对应点为C ’(5,4),将△ABC 作同样的平移得到△A ’B ’C ’,画出平移后的△A ’B ’C ’,并写出点A ’,B ’的坐标;(3)P (-3, m )为△ABC 中一点,将点P 向右平移4个单位后,再向下平移6个单位得到点Q (n ,-3),则m = ,n = .解:(1)如图,过A 作AH ⊥x 轴于点H .ABCAHB OBC AHOC S S S S ∆∆∆=--梯1()2AH OC HO =+⋅1122AH BH OB OC -⋅-⋅111(73)67333222=⨯+⨯-⨯⨯-⨯⨯15=. (1)分(2)画图△A ’B ’C ’,(18)A '-,,(2)B ',1; ··· 4分 (3)m =3,n =1. ……6分O30.两条平行线中一条直线上的点到另一条直线的垂线段的长度叫做两条平行线间的距离。

相关文档
最新文档