中考数学题目之1.2垂直于弦的直径-强化训练(1)

合集下载

部编版人教初中数学九年级上册《24.1.2垂直于弦的直径 同步练习题(含答案)》最新精品优秀

部编版人教初中数学九年级上册《24.1.2垂直于弦的直径 同步练习题(含答案)》最新精品优秀

前言:
该同步练习题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。

以高质量的同步练习题助力考生查漏补缺,在原有基础上更进一步。

(最新精品同步练习题)
基础导练
1.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()
A.3 B.4 C.5 D.
7
2.如图,AB为圆O的弦,圆O的半径为5,OC⊥AB于点D,交圆
O于点C,
且CD=2,则AB的长是 .
能力提升
3.绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()
A.4m
B.5m
C.6m
D.8m
4.已知⊙O的半径为5cm,AB和CD是⊙O的弦,AB//CD, AB=6cm,CD=8cm,求AB与CD之间的距离是多少?
1。

人教版九年级数学上册 24.1.2垂直于弦的直径 同步练习题(含答案)

人教版九年级数学上册  24.1.2垂直于弦的直径 同步练习题(含答案)

人教版九年级数学上册第24章 24.1.2垂直于弦的直径 同步练习题一、选择题1.下列说法中,不正确的是(D)A .圆既是轴对称图形,又是中心对称图形B .圆绕着它的圆心旋转任意角度,都能与它自身重合C .圆的对称轴有无数条,对称中心只有一个D .圆的每一条直径都是它的对称轴2.下列说法正确的是(D)A .过弦的中点的直径平分弦所对的两条弧B .弦的垂直平分线平分它所对的两条弧,但不一定过圆心C .过弦的中点的直径垂直于弦D .平分弦所对的两条弧的直径平分弦3.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的是(D)A .CM =DM B.CB ︵=DB ︵C .∠ACD =∠ADC D .OM =MB4.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =5 cm ,CD =8 cm ,则OE =(C)A .4 cmB .5 cmC .3 cmD .2 cm5.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是(B)A.7 B.27 C.6 D.86.如图,⊙O的半径为10,M是AB的中点,且OM=6,则⊙O的弦AB等于(D)A.8 B.10 C.12 D.167.一块圆形宣传标志牌如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=8 dm,DC=2 dm,则圆形标志牌的半径为(B)A.6 dm B.5 dm C.4 dm D.3 dm8.已知AB,CD是⊙O的两条平行弦,AB=8,CD=6,⊙O的半径为5,则弦AB 与CD的距离为(D)A.1 B.7 C.4或3 D.7或1二、填空题9.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为5.10.如图,在⊙O中,AB,AC是互相垂直的两条弦,OD⊥AB于点D,OE⊥AC于点E,且AB=8 cm,AC=6 cm,那四边形OEAD的周长为14cm.11.如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与其摆至最低位置时的高度之差(即CD)为0.5米.12.如图,AB是⊙O的直径,弦CD⊥AB于点H,∠A=30°,CD=23,则⊙O 的半径是2.13.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为26寸.14.如图,在⊙O中,弦AB=1,点C在AB上移动,连接OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为1 2.15.如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C,D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为(2,6).三、解答题16.如图是某风景区的一个圆拱形门,路面AB宽为2米,净高5米,则圆拱形门所在圆的半径是多少米?解:连接OA.∵CD⊥AB,且CD过圆心O,∴AD=12AB=1米,∠CDA=90°.设⊙O的半径为R,则OA=OC=R,OD=5-R.在Rt△OAD中,由勾股定理,得OA2=OD2+AD2,即R2=(5-R)2+12,解得R=2.6.故圆拱形门所在圆的半径为2.6米.17.已知⊙O的直径是50 cm,⊙O的两条平行弦AB=40 cm,CD=48 cm,求弦AB与CD之间的距离.解:过点O作直线OE⊥AB于点E,直线OE与CD交于点F.又∵AB∥CD,∴OF⊥CD.①当AB,CD在点O两侧时,如图1.连接AO,CO,则AO=CO=25 cm,AE=20 cm,CF=24 cm.由勾股定理知OE=AO2-AE2=15 cm,OF=CO2-CF2=7 cm.∴EF=OE+OF=22 cm,即AB与CD之间的距离为22 cm;图1 图2②当AB,CD在点O同侧时,如图2.连接AO,CO.则AO=CO=25 cm,AE=20 cm,CF=24 cm.由勾股定理知OE=AO2-AE2=15 cm,OF=CO2-CF2=7 cm.∴EF=OE-OF=8 cm,即AB与CD之间的距离为8 cm.综上所述,AB与CD之间的距离为22 cm或8 cm.。

人教版数学九年级上册24-1-2垂直于弦的直径同步练习题(最新)

人教版数学九年级上册24-1-2垂直于弦的直径同步练习题(最新)

24.1.2垂直于弦的直径一、单选题 1.如图,⊙O 是△ABC 的外接圆,∠B=60°,⊙O 的半径为4,则AC 的长等于( )A .4√3B .6√3C .2√3D .82.如图,A ,B 是⊙O 上的两点,连接AB ,用尺规按①到③的步骤操作,下列结论正确的有( )①在⊙O 上任取一点C (不与A ,B 重合),连接AC ;②作AB 的垂线平分线交⊙O 于点M ,N ;③作AC 的垂直平分线交⊙O 于点E ,F结论Ⅰ:直线MN 与直线EF 的交点一定与点O 重合;结论Ⅱ:顺次连接M ,E ,N ,F 四点必能得到矩形;结论Ⅲ:⊙O 上存在唯一的点C ,使得MF⌢=2AE ⌢A .3个B .2个C .1个D .0个3.过⊙O 内一点M 的最长弦为10cm ,最短弦长为8cm ,则OM 的长为( )A .9cmB .6cmC .3cmD .√41cm4.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E .若∠A =30°,AC =2,则CD 的长是( )5.如图,在⊙O中,AE是直径,连接BE,若AB=8,OC⊥AB于点D,CD=2,则BE 的长是()A.5B.6C.7D.86.下列命题:①对角线垂直且相等的四边形是正方形;②垂直弦的直径平分这条弦;③过一点有且只有一条直线与已知直线平行;④各边相等的多边形是正多边形;⑤直线外一点到这条直线的垂线段叫做点到直线的距离.其中真命题有()个.A.1B.2C.3D.47.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB的宽为8cm,水面最深的地方高度为2cm,则该输水管的半径为()A.5cm B.6cm C.7cm D.8cm8.在半径为5cm的⊙O中,若弦AB与弦CD平行,且AB=6cm,CD=8cm,则AB与CD 之间的距离为()A.1cm B.7cm C.8cm D.1cm或7cm9.若⊙O的半径为10 cm,且两平行弦AC,BD的长分别为12 cm,16 cm,则两弦间的距离是()A.2 cm B.14 cm C.2 cm或14 cm D.6 cm或8 cm 10.如图,Rt△ABC中,∠C=90°,AB=4√3,F是线段AC上一点,过点A的⊙F交AB于点D,E是线段BC上一点,且ED=EB,则EF的最小值为()A.3√3B.2√3C.√3D.2二、填空题11.如图,AB,BC是⊙O的弦,∠B=60°,点O在∠B内,点D为AC⌢上的动点,点M,N,P别是AD,DC,CB的中点,若⊙O的半径为2,则PN+MN的长度的最大值是 .12.如图所示是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水的最大深度为2cm,则该输水管的直径为.13.一个圆柱体容器内装入一些水,截面如图所示,若⊙O中的直径为52cm,水面宽AB=48cm,则水的最大深度为cm.14.如图,已知⊙O的半径为5,点P是弦AB上的一动点,且弦AB的长为8.则OP 的取值范围为.15.如图4,点P在半径为3的⊙O内,OP=√3,点A为⊙O上一动点,弦AB过点P,则AB最长为,AB最短为.三、解答题16.凰仪桥始建于嘉泰以前,是绍兴市区的一座古桥,此桥可以看成是一种特殊的圆拱桥,已知此圆拱桥的跨径(桥拱圆弧所对的弦的长)为18.2m,拱高(桥拱圆弧的中点到弦的距离)为6.2m.求此桥拱圆弧的半径(精确到0.1m)17.如图,在平行四边行ABCD中,AB=5,BC=8,BC边上的高AH=3,点P是边BC 上的动点,以CP为半径的⊙C与边AD交于点E,F(点E在点F的左侧).(1)当⊙C经过点A时,求CP的长;(2)连接AP,当AP//CE时,求⊙C的半径及弦EF的长.18.在直径为1米的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB=0.8米,求油的最大深度.19.如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52∘,求∠DEB的度数;(2)若OC=3,BC=3√3,求弧AB^的长.20.如图,AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)证明:∠BCO=∠ACD;(2)若AE=2,BE=8,求弦CD的长.⌢的中点,在直径CD 21.如图:已知⊙O的直径CD为2,AC⌢的度数为60°,点B是AC上作出点P,使BP+AP的值最小,则BP+AP的最小值为多少?。

人教版九年级24.1.2垂直于弦的直径测试题

人教版九年级24.1.2垂直于弦的直径测试题

垂直于弦的直径练习一、选择题(每题4分,共计24分)1.如图所示,在⊙0中,直径MN⊥AB,垂足为C,则下列结论中错误的是()A.AC=CB B. C. D. OC=CN2.过⊙O内一点M的最长的弦长为4 cm,最短的弦长为2 cm,则OM的长等于()A.B. C. 8 cm D.3.如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,那么⊙O的半径等于()A.6 cm B.C.8 cm D.4.如果⊙O中弦AB与直径CD垂直,垂足为E,AE=4,CE=2,那么⊙O的半径等于()A. 5B.C.D.5. 如图所示,AB是⊙O的一固定直径,它把⊙O分成上、下两个半圆,自上半圆上一点C作弦CD⊥AB.∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A、B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C. 等分D.随C点的移动而移动6. 如图所示,同心圆中,大圆的弦AB交小圆于C、D两点,且AC=CD,AB的弦心距等于CD的一半。

则这两个同心圆的大小圆的半径之比()A. 3:1B.C.D.二、填空题(每题5分,共计40分)7.在半径为5 cm的圆内有两条平行弦。

分别为6 cm和8 cm.则两弦之间的距离是______.8.在圆中,垂直平分一条半径的弦长为,则此圆的半径等于_________.9.在半径为5cm的⊙O中,若O到弦AB的距离为,则∠AOB的度数为____,AB的长等于______.10.如图所示,⊙O的直径为10,弦AB=8,P是弦AB上的一个动点.那么OP长的取值范围是_______.11.如图所示,AB是⊙O的直径,CD是弦,AB、CD相交于点P.AP=8 cm,BP=2 cm,∠CPA=30°,那么CD的弦心距等于________.12. ⊙O的半径是20 cm,AB是⊙O的弦,∠AOB=120°,则S△AOB等于_____.13.有一圆弧形拱桥,拱形的半径为10m,拱的跨度为16m,则拱高等于____.14.若弓形的弦长为4,弓形的高为1,那么弓形所在圆的半径等于_____.三、解答题(15题16题各8分,17题18题各10分,共计36分)15. 如图所示,在Rt△ABC中,∠C=90°,AC=8,BC=15,以C为圆心,AC为半径的⊙C交AB于D,求AD长.16. 如图所示,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD,求证:△OCD是等腰三角形.17. 如图所示,AD是⊙O的直径,AC为弦,∠CAD=30°,OB⊥AD于O,交AC于B,AB=5,求BC 的长.18. 已知:等边三角形ABC的边长为a,试求其外接圆O的半径及圆心O到各边的距离d.。

垂直于弦的直径练习题

垂直于弦的直径练习题

垂直于弦的直径练习题垂直于弦的直径练习题在数学中,圆是一个广泛应用的几何形状,它具有许多有趣的性质和特征。

其中一个重要的性质是,对于任何一条弦,通过圆心的直径与该弦垂直相交。

本文将介绍一些与垂直于弦的直径相关的练习题,帮助读者更好地理解这个性质,并提高解决几何问题的能力。

练习题一:给定一个圆,半径为r,弦AB的长度为2d。

求证:通过弦中点M的垂直于弦的直径等于弦长。

解答:我们首先需要明确一些基本的几何性质。

对于任何一条弦,通过圆心的直径与该弦垂直相交。

因此,我们可以连接弦AB的中点M与圆心O,得到直径OM。

根据题目给出的条件,弦AB的长度为2d,因此弦AB的中点M到圆心O的距离为r。

由于直径OM垂直于弦AB,根据垂直线段的性质,我们可以得出OM= 2d。

练习题二:给定一个圆,半径为r,弦AB的长度为2d。

如果弦AB与弦CD相交于点E,求证:通过点E的垂直于弦AB的直径也垂直于弦CD。

解答:我们需要利用一些几何性质来解决这个问题。

首先,我们知道通过圆心的直径与任何弦垂直相交。

因此,我们可以连接弦AB的中点M与圆心O,得到直径OM。

根据练习题一的结论,我们知道OM垂直于弦AB。

同样地,我们可以连接弦CD的中点N与圆心O,得到直径ON。

根据练习题一的结论,我们知道ON垂直于弦CD。

现在,我们需要证明通过点E的垂直于弦AB的直径也垂直于弦CD。

我们可以连接弦AB与弦CD的交点E与圆心O,得到线段EO。

我们知道,如果EO垂直于弦AB,那么它也必然垂直于弦CD。

我们可以利用几何性质来证明这一点。

假设EO不垂直于弦AB,那么根据几何性质,我们可以找到一个更短的线段与弦AB垂直相交。

然而,这与题目给出的条件弦AB与弦CD相交于点E相矛盾。

因此,我们可以得出结论:通过点E的垂直于弦AB的直径也垂直于弦CD。

练习题三:给定一个圆,半径为r,弦AB的长度为2d。

如果弦AB与弦CD相交于点E,并且通过点E的垂直于弦AB的直径与弦CD相交于点F,求证:EF是弦AB和弦CD的中点连线。

2023-2024学年人教版九年级数学上册 24.1.2垂直于弦的直径同步练习(含答案)

2023-2024学年人教版九年级数学上册  24.1.2垂直于弦的直径同步练习(含答案)

2023-2024学年人教版九年级数学上册24.1.2垂直于弦的直径同步练习(含答案)24.1.2 垂直于弦的直径一、单选题1.如图,⊙O的直径为10,AB为弦,OC⊙AB,垂足为C,若OC=3,则弦AB的长为()A.8 B.6 C.4 D.102.如图是某高速公路的一个隧道的横截面,若它的形状是以点O为圆心,线段OA的长为半径的圆的一部分,路面AB=12米,隧道高CD=9米,则⊙O的半径OA= ()A.6米B.米C.7米D.米3.在中,直径,弦于点,若,则的周长为()A.13 B.14 C.15 D.164.如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,⊙A=⊙B=60°,则BC的长为()A.19 B.16 C.18 D.205.如下图:⊙O的直径为10,弦AB的长为8,点P是弦AB上的一个动点,使线段OP的长度为整数的点P有()A.3 个B.4个C.5个D.6个6.已知⊙O的半径为3,⊙ABC内接于⊙O,AB=3 ,AC=3 ,D是⊙O 上一点,且AD=3,则CD的长应是()A.3 B.6 C.D.3或6二、填空题7.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.8.如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为厘米.9.如图,是的直径,弦,垂足为点H.若,,则的半径长为.10.某市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图所示,污水水面宽度为60 cm,水面至管道顶的距离为10 cm,则修理人员准备更换的新管道的内径为.11.等腰⊙ABC的三个顶点都在⊙O上,底边BC=8cm,⊙O的半径为5cm,则⊙ABC的面积为.12.如图,半径为10的⊙O中,弦AB的长为16,则这条弦的弦心距为.13.已知的半径为2,中有两条平行的弦和,,,则两条弦之间的距离为.三、解答题14.如图,AB是⊙O的直径,弦CD⊙AB,垂足为E,如果AB=20,CD=16,求线段OE的长.15.已知排水管的截面为如图所示的⊙O,半径为10,圆心O到水面的距离是6,求水面宽AB.16.已知⊙O的弦AB长为10,半径长R为7,OC是弦AB的弦心距,求OC的长17.《九章算术》是我国古代数学成就的杰出代表作,书中记载:“今有中,不知大小.以锯锯之,深1寸,锯道长1尺,问经几何?“其意思为:“如图,今有一圆形木材在墙中,不知其大小用锯子去锯这个木材,锯口深DE=1寸,锯道长AB=10寸,问这块圆形木材的直径是多少?”18.如图所示,已知⊙O的直径AB垂直弦CD于点E,连接CO并延长交AD于点F.若CF⊙AD,AB=2,求CD的长.19.如图,AB、CD为⊙O的两条弦,AB⊙CD,经过AB中点E的直径MN与CD交于F点,求证:CF=DF20.如图,AB和CD是⊙O的弦,且AB=CD,E、F分别为弦AB、CD 的中点,证明:OE=OF.答案解析部分1.【答案】A2.【答案】B3.【答案】D4.【答案】D5.【答案】A6.【答案】D7.【答案】268.【答案】9.【答案】1310.【答案】100 cm11.【答案】32或812.【答案】613.【答案】或14.【答案】解:连接OC,⊙弦CD⊙AB,⊙CE= CD=8,在Rt⊙OCE中,OE= =6.15.【答案】解:如图,过O点作OC⊙AB,连接OB,根据垂径定理得出AB=2BC,再根据勾股定理求出BC== =8,从而求得AB=2BC=2×8=16.16.【答案】解:连接OA,那么在直角三角形OAC中据垂径定理可以得到AC=5,根据勾引股定理可以求的OC=.17.【答案】解:连接OA,⊙AB⊙CD,且AB=10,⊙AE=BE=AB =5(寸),设圆O的半径OA的长为x,则OC=OD=x⊙DE=1,⊙OE=x-1,在Rt⊙AOE 中,根据勾股定理得:OA2-OE2=AE2,解得:x=13所以CD=26(寸).故答案为CD=26寸.18.【答案】解:连接AC⊙AB⊙CD⊙CE=DE(垂径分弦)⊙AB垂直平分CD⊙AC=AD,⊙CF⊙AD,⊙AF=DF(垂径分弦),⊙CF垂直平分AD,⊙AC =CD,⊙AC=AD=CD,⊙⊙ACD为等边三角形,⊙⊙DCF=⊙ACD=30°,⊙CO=AO=AB=1,⊙DE=CE=CO× =;⊙CD=2DE=19.【答案】证明:⊙E为AB中点,MN过圆心O,⊙MN⊙AB ,⊙⊙MEB=90°,⊙AB⊙CD ,⊙⊙MFD=⊙MEB=90°,即MN⊙CD ,⊙CF=DF.20.【答案】证明:连结OA、OC,如图,⊙E、F分别为弦AB、CD的中点,⊙OE⊙AB,AE=BE,OF⊙CD,CF=DF,⊙AB=CD,⊙AE=CF,在Rt⊙AEO和Rt⊙COF中,,⊙Rt⊙AEO⊙Rt⊙COF(HL),⊙OE=OF。

初中数学人教版九年级上24.1.2-垂直于弦的直径精选练习题及答案

初中数学人教版九年级上24.1.2-垂直于弦的直径精选练习题及答案

24.1.2 垂直于弦的直径一、课前预习 (5分钟训练)1.如图24-1-2-1,AB 是⊙O 的弦,CD 是⊙O 的直径,CD ⊥AB ,垂足为E ,则可推出的相等关系是___________.图24-1-2-1 图24-1-2-2 图24-1-2-32.圆中一条弦把和它垂直的直径分成3 cm 和4 cm 两部分,则这条弦弦长为__________.3.判断正误.(1)直径是圆的对称轴; (2)平分弦的直径垂直于弦.4.圆O 的半径OA=6,OA 的垂直平分线交圆O 于B 、C,那么弦BC 的长等于___________. 二、课中强化(10分钟训练)1.圆是轴对称图形,它的对称轴是______________.2.如图24-1-2-2,在⊙O 中,直径MN 垂直于弦AB ,垂足为C ,图中相等的线段有__________,相等的劣弧有______________.3.在图24-1-2-3中,弦AB 的长为24 cm ,弦心距OC=5 cm ,则⊙O 的半径R=__________ cm.4.如图24-1-2-4所示,直径为10 cm 的圆中,圆心到弦AB 的距离为4 cm.求弦AB 的长.图24-1-2-4三、课后巩固(30分钟训练)1.如图24-1-2-5,⊙O 的半径OA=3,以点A 为圆心,OA 的长为半径画弧交⊙O 于B 、C,则BC 等于( )A.32B.33C.223 D.233图24-1-2-5 图24-1-2-62.如图24-1-2-6,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8 cm,OC=5 cm,则OD的长是( )A.3 cmB.2.5 cmC.2 cmD.1 cm3.⊙O半径为10,弦AB=12,CD=16,且AB∥CD.求AB与CD之间的距离.4.如图24-1-2-7所示,秋千链子的长度为3 m,静止时的秋千踏板(大小忽略不计)距地面0.5 m.秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为60°,则秋千踏板与地面的最大距离约为多少?图24-1-2-75. “五段彩虹展翅飞”,我省利用国债资金修建的,横跨南渡江的琼州大桥如图24-1-2-8(1)已于今年5月12日正式通车,该桥的两边均有五个红色的圆拱,如图24-1-2-8(1).最高的圆拱的跨度为110米,拱高为22米,如图(2),那么这个圆拱所在圆的直径为___________米.图24-1-2-86.如图24-1-2-9,要把破残的圆片复制完整,已知弧上三点A、B、C.(1)用尺规作图法,找出弧BAC所在圆的圆心O;(保留作图痕迹,不写作法)(2)设△ABC为等腰三角形,底边BC=10 cm,腰AB=6 cm,求圆片的半径R;(结果保留根号)(3)若在(2)题中的R满足n<R<m(m、n为正整数),试估算m和n的值.图24-1-2-97.⊙O的直径为10,弦AB的长为8,P是弦AB上的一个动点,求OP长的取值范围.4.(开放题)AB是⊙O的直径,AC、AD是⊙O的两弦,已知AB=16,AC=8,AD=8,求∠DAC的度数.4.如图,圆O与矩形ABCD交于E、F、G、H,EF=10,HG=6,AH=4.求BE的长.参考答案一、课前预习(5分钟训练)1.如图24-1-2-1,AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,则可推出的相等关系是___________.图24-1-2-1思路解析:根据垂径定理可得.答案:OC=OD、AE=BE、弧AC=弧BC、弧AD=弧BD2.圆中一条弦把和它垂直的直径分成3 cm和4 cm两部分,则这条弦弦长为__________.思路解析:根据垂径定理和勾股定理计算.答案:43cm3.判断正误.(1)直径是圆的对称轴; (2)平分弦的直径垂直于弦.思路解析:(1)圆的对称轴是直线,而不是线段;(2)这里的弦是直径,结论就不成立.由于对概念或定理理解不透,造成判断错误.答案:两个命题都错误.4.圆O的半径OA=6,OA的垂直平分线交圆O于B、C,那么弦BC的长等于___________.思路解析:由垂径定理及勾股定理可得或可证△BCO是等边三角形.答案:6二、课中强化(10分钟训练)1.圆是轴对称图形,它的对称轴是______________.思路解析:根据圆的轴对称性回答.答案:直径所在的直线2.如图24-1-2-2,在⊙O中,直径MN垂直于弦AB,垂足为C,图中相等的线段有__________,相等的劣弧有______________.图24-1-2-2 图24-1-2-3思路解析:由垂径定理回答.答案:OM=ON ,AC=BC 弧AM=弧BM3.在图24-1-2-3中,弦AB 的长为24 cm ,弦心距OC=5 cm ,则⊙O 的半径R=__________ cm.思路解析:连结AO ,得Rt △AOC ,然后由勾股定理得出. 答案:134.如图24-1-2-4所示,直径为10 cm 的圆中,圆心到弦AB 的距离为4 cm.求弦AB 的长.图24-1-2-4思路分析:利用“圆的对称性”:垂直于弦的直径平分这条弦. 由OM ⊥AB 可得OM 平分AB ,即AM=21AB.连结半径OA 后可构造Rt △,利用勾股定理求解. 解:连结OA. ∵OM ⊥AB ,∴AM=21AB. ∵OA=21×10=5,OM =4,∴AM=22OM OA =3.∴AB=2AM=6(cm). 三、课后巩固(30分钟训练)1.如图24-1-2-5,⊙O 的半径OA=3,以点A 为圆心,OA 的长为半径画弧交⊙O 于B 、C,则BC 等于( )A.32B.33C.223 D.233图24-1-2-5 图24-1-2-6思路解析:连结AB 、BO ,由题意知:AB=AO=OB ,所以△AOB 为等边三角形.AO 垂直平分BC, 所以BC=2×233=33.答案:B2.如图24-1-2-6,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB=8 cm ,OC=5 cm ,则OD 的长是( )A.3 cmB.2.5 cmC.2 cmD.1 cm思路解析:因为AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB=8 cm ,OC=5 cm ,连结OA ,在Rt △ODA 中,由勾股定理得OD=3 cm. 答案:A3.⊙O 半径为10,弦AB=12,CD=16,且AB ∥CD.求AB 与CD 之间的距离.思路分析:本题目属于“图形不明确型”题目,应分类求解.解:(1)当弦AB 与CD 在圆心O 的两侧时,如图(1)所示. 作OG ⊥AB ,垂足为G ,延长GO 交CD 于H ,连结OA 、OC. ∵AB ∥CD ,GH ⊥AB , ∴GH ⊥CD.∵OG ⊥AB ,AB=12,∴AG=21AB=6. 同理,CH=21CD=8.∴Rt △AOG 中,OG=22AG OA -=8. Rt △COH 中,OH=22CH OC -=6. ∴GH=OG +OH=14.(2)当弦AB 与CD 位于圆心O 的同侧时,如图(2)所示. GH=OG -OH=8-6=2.4.如图24-1-2-7所示,秋千链子的长度为3 m ,静止时的秋千踏板(大小忽略不计)距地面0.5 m.秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为60°,则秋千踏板与地面的最大距离约为多少?图24-1-2-7思路分析:设秋千链子的上端固定于A 处,秋千踏板摆动到最高位置时踏板位于B 处.过点A 、B 的铅垂线分别为AD 、BE ,点D 、E 在地面上,过B 作B C ⊥AD 于点C.解直角三角形即可.解:设秋千链子的上端固定于A 处,秋千踏板摆动到最高位置时踏板位于B 处.过点A 、B 的铅垂线分别为AD 、BE ,点D 、E 在地面上,过B 作BC ⊥AD 于点C.如图.在Rt △ABC 中,∵AB=3,∠CAB=60°, ∴AC=3×21=1.5(m ). ∴CD=3+0.5-1.5=2(m ). ∴BE=CD=2(m ).答:秋千摆动时踏板与地面的最大距离约为2 m.5. “五段彩虹展翅飞”,我省利用国债资金修建的,横跨南渡江的琼州大桥如图24-1-2-8(1)已于今年5月12日正式通车,该桥的两边均有五个红色的圆拱,如图24-1-2-8(1).最高的圆拱的跨度为110米,拱高为22米,如图(2),那么这个圆拱所在圆的直径为___________米.图24-1-2-8思路解析:本题考查垂径定理的应用,用列方程的方法解决几何问题,会带来许多方便. 连结OC.设圆拱的半径为R 米,则OF=(R -22)(米).∵OE ⊥CD ,∴CF=21CD=21×110=55(米). 根据勾股定理,得OC 2=CF 2+OF 2,即R 2=552+(R -22)2.解这个方程,得R=79.75(米).所以这个圆拱所在圆的直径是79.75×2=159.5(米). 答案:159.56.如图24-1-2-9,要把破残的圆片复制完整,已知弧上三点A 、B 、C.图24-1-2-9(1)用尺规作图法,找出弧BAC 所在圆的圆心O ;(保留作图痕迹,不写作法)(2)设△ABC 为等腰三角形,底边BC=10 cm ,腰AB=6 cm ,求圆片的半径R ;(结果保留根号) (3)若在(2)题中的R 满足n <R <m(m 、n 为正整数),试估算m 和n 的值.思路分析:(1)作AB 、AC 的中垂线即得圆片圆心O ;(2)已知BC 和AB 的长度,所以可以构造直角三角形利用勾股定理可求得半径R ;(3)根据半径的值确定m 、n 的值. (1)作法:作AB 、AC 的垂直平分线,标出圆心O.(2)解:连结AO 交BC 于E ,再连结BO.∵AB=AC ,∴AB=AC.∴AE ⊥BC.∴BE=21BC=5. 在Rt △ABE 中,AE=22BE AB -=2536-=11.在Rt △OBE 中,R 2=52+(R-11)2,解得R=1118(cm ).(3)解:∵5<39=1218<1118<918=6,∴5<R <6.∵n <R <m ,∴m=6,n=5.7.⊙O 的直径为10,弦AB 的长为8,P 是弦AB 上的一个动点,求OP 长的取值范围.思路分析:求出OP 长的最小值和最大值即得范围,本题考查垂径定理及勾股定理.该题创新点在于把线段OP 看作是一个变量,在动态中确定OP 的最大值和最小值.事实上只需作OM ⊥AB ,求得OM 即可.解:如图,作OM ⊥AB 于M ,连结OB ,则BM=21AB=21×8=4. 在Rt △OMB 中,OM 22BM OB -=2245-=3.当P 与M 重合时,OP 为最短;当P 与A (或B )重合时,OP 为最长.所以OP 的取值范围是3≤OP≤5.。

人教版九年级数学上24.1.2垂直于弦的直径同步练习卷含答案

人教版九年级数学上24.1.2垂直于弦的直径同步练习卷含答案

()
A. B.2
C. D.3
9.如图,半径为 3 的⊙O 内有一点 A,OA= ,点 P 在⊙O 上,当∠OPA最大时,PA的长等于
()
A. B. C.3 D.2 10.已知⊙O 的直径 CD=10cm,ABA. cm B. cm C. cm或 cm D. cm或 cm 11.已知⊙O 的面积为 2π,则其内接正三角形的面积为( )
A.AC=AB B.∠C= ∠BOD C.∠C=∠B D.∠A=∠BOD 7.如图,AB为圆 O 的直径,BC为圆 O 的一弦,自 O 点作 BC的垂线,且交 BC于 D 点.若 AB=16, BC=12,则△OBD的面积为何?( )
A.6 B.12
C.15 D.30
8.⊙O 过点 B,C,圆心 O 在等腰直角△ABC内部,∠BAC=90°,OA=1,BC=6,则⊙O 的半径为
A.4 B.6
C.2 D.8
4.如图,已知⊙O 的直径 AB⊥CD于点 E,则下列结论一定错误的是( )
A.CE=DE B.AE=OE C. = D.△OCE≌△ODE 5.在⊙O 中,圆心 O 到弦 AB的距离为 AB长度的一半,则弦 AB所对圆心角的大小为( ) A.30° B.45° C.60° D.90° 6.如图,在⊙O 中,直径 CD⊥弦 AB,则下列结论中正确的是( )
A.3 B.3
C.
D.
12.如图,⊙O 是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦 BC的长为( )
A. B.3 C.2 D.4 13.如图,⊙O 的直径 AB垂直于弦 CD,垂足为 E,∠A=22.5°,OC=4,CD的长为( )
A.2 B.4 C.4 D.8 二、填空题(共 16小题) 14.如图,AB是⊙O 的直径,CD为⊙O 的一条弦,CD⊥AB于点 E,已知 CD=4,AE=1,则⊙O 的半径 为______.

人教版九年级上册数学 24.1.2垂直于弦的直径 同步练习(含答案)

人教版九年级上册数学 24.1.2垂直于弦的直径 同步练习(含答案)

24.1.2垂直于弦的直径同步练习一.选择题1.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则BE的长为()A.2 B.4 C.6 D.82.如图,△ABC中,AB=5,AC=4,BC=2,以A为圆心AB为半径作圆A,延长BC交圆A于点D,则CD长为()A.5 B.4 C.D.23.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm4.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为()A.13 B.24 C.26 D.285.如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,∠AOB=60°,点C是的中点,且CD=5m,则这段弯路所在圆的半径为()A.(20﹣10)m B.20m C.30m D.(20+10)m 6.如图,已知⊙O的半径为6,弦AB,CD所对的圆心角分别是∠AOB,∠COD,若∠AOB 与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8 C.3D.67.小名同学响应学习号召,在实际生活中发现问题,并利用所学的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高a为160mm,直角顶点到轮胎与底面接触点AB长为320mm,请帮小名计算轮胎的直径为()mm.A.350 B.700 C.800 D.4008.如图,⊙O中,弦AB⊥CD于E,若已知AD=9,BC=12,则⊙O的半径为()A.5.5 B.6 C.7.5 D.89.如图,AB是⊙O的弦,半径OD⊥AB于点C,AE为直径,AB=8,CD=2,则线段CE 的长为()A.B.8 C.D.10.如图,⊙O的直径AB与弦CD相交于点P,且∠APC=45°,若PC2+PD2=8,则⊙O 的半径为()A.B.2 C.2D.4二.填空题11.已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为cm.12.在半径为的⊙O中,弦AB垂直于弦CD,垂足为P,AB=CD=4,则S△ACP=.13.如图,射线PB,PD分别交圆O于点A,B和点C,D,且AB=CD=8.已知圆O半径等于5,OA∥PC,则OP的长度为.14.如图,BC为半圆O的直径,EF⊥BC于点F,且BF:FC=5:1,若AB=8,AE=2,则AD的长为.15.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为m.三.解答题16.如图,点A,D,B,C在⊙O上,AB⊥BC,DE⊥AB于点E.若BC=3,AE=DE=1,求⊙O半径的长.17.如图,在一座圆弧形拱桥,它的跨度AB为60m,拱高PM为18m,当洪水泛滥到跨度只有30m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m,即PN=4m时,试通过计算说明是否需要采取紧急措施.18.如图,A,B,C,D在⊙O上,AB∥CD经过圆心O的线段EF⊥AB于点F,与CD交于点E.(1)如图1,当⊙O半径为5,CD=4,若EF=BF,求弦AB的长;(2)如图2,当⊙O半径为,CD=2,若OB⊥OC,求弦AC的长.参考答案1.解:∵CE=2,DE=8,∴CD=10,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,BE===4,故选:B.2.解:如图,过点A作AE⊥BD于点E,连接AD,∴AD=AB=5,根据垂径定理,得DE=BE,∴CE=BE﹣BC=DE﹣2,根据勾股定理,得AD2﹣DE2=AC2﹣CE2,∴52﹣DE2=42﹣(DE﹣2)2,解得DE=,∴CD=DE+CE=2DE﹣2=.故选:C.3.解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48cm,∴BD=AB=×48=24(cm),∵⊙O的直径为52cm,∴OB=OC=26cm,在Rt△OBD中,OD===10(cm),∴CD=OC﹣OD=26﹣10=16(cm),故选:C.4.解:设圆心为O,过O作OC⊥AB于C,交⊙O于D,连接OA,如图所示:∴AC=AB=×10=5,设⊙O的半径为r寸,在Rt△ACO中,OC=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故选:C.5.解:∵点O是这段弧所在圆的圆心,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB,设AB=OB=OA=rm,∵点C是的中点,∴OC⊥AB,∴C,D,O三点共线,∴AD=DB=rm,在Rt△AOD中,∴OD=r,∵OD+CD=OC,∴r+5=r,解得:r=(20+10)m,∴这段弯路的半径为(20+10)m故选:D.6.解:作OE⊥AB于点E,∵⊙O的半径为6,弦CD=6,∴OC=OD=CD,∴△DOC是等边三角形,∴∠DOC=60°,∵∠AOB与∠COD互补,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵OA=6,OE⊥AB,∴AE=OA•cos30°=6×=3,∴AB=2AE=6,故选:D.7.解:如图,连接OB,OC,作CD⊥OB于D.设⊙O半径为xmm,在Rt△OCD中,由勾股定理得方程,(x﹣160)2+3202=x2,解得,x=400,∴2x=800,答:车轱辘的直径为800mm.故选:C.8.解:连接DO并延长DO交圆O于点F,连接BD,AF,BF,∵∠DAE=∠DFB,∠AED=∠FBD=90°,∴∠ADC=∠FDB,∴∠ADF=∠CDB,∴,∴AF=BC=12,∵∠DAF=90°,∴DF=,∴⊙O的半径为7.5.故选:C.9.解:连结BE,如图,∵OD⊥弦AB,AB=8,∴AC=AB=4,设⊙O的半径OA=r,∴OC=OD﹣CD=r﹣2,在Rt△OAC中,r2=(r﹣2)2+42,解得:r=5,∴AE=2r=10;∵OD=5,CD=2,∴OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE===2.故选:D.10.解:作CM⊥AB于M,DN⊥AB于N,连接OC,OD,∴∠NDP=∠MCP=∠APC=45°又∵OC=OD,∴∠ODP=∠OCP,∵∠COM=45°+∠OCD,∠ODB=45°+∠ODC,∴∠NDO=∠COM,在Rt△ODN与Rt△COM中,,∴Rt△ODN≌Rt△COM,∴ON=CM=PM,OM=ND=PN又∵OC2=CM2+OM2,OD2=DN2+ON2∴OC2=CM2+PN2,OD2=DN2+PM2∴OC2+OD2=CM2+PN2+DN2+PM2=PC2+PD2=8∴OC2=4,∴OC=2,故选:B.11.解:如图,作OC⊥AB于C,连接OA,则AC=BC=AB=5,在Rt△OAC中,OC==12,所以圆心O到AB的距离为12cm.故答案为12.12.解:作OE⊥AB于E,OF⊥CD于F,连结OD、OB,则AE=BE=AB=2,DF=CF=CD=2,如图1,在Rt△OBE中,∵OB=,BE=2,∴OE==1,同理可得OF=1,∵AB⊥CD,∴四边形OEPF为矩形,∴PE=PF=1,∴P A=PC=1,∴S△APC==;如图2,同理:S△APC==;如图3,同理:S△APC==;故答案为:或或.13.解:作OE⊥AB于E,OF⊥CD于F,连接OP,如图,∵AB=CD,∴OE=OF,而OE⊥AB,OF⊥CD,∴PO平分∠BPD,∴∠APO=∠OPC,∵OA∥PC,∴∠AOP=∠OPC,∴∠APO=∠AOP,∴P A=AO=5,∵OE⊥AB,∴AE=BE=AB=4,在Rt△AOE中,OE==3,在Rt△POE中,PO==3.故答案为3.14.解:连接BE.∵BC是直径.∴∠AEB=∠BEC=90°在直角△ABE中,根据勾股定理可得:BE2=AB2﹣AE2=82﹣22=60.∵=5∴设FC=x,则BF=5x,BC=6x.又∵BE2=BF•BC即:30x2=60解得:x=,∴EC2=FC•BC=6x2=12∴EC=2,∴AC=AE+EC=2+2,∵AD•AB=AE•AC∴AD===.故答案为.15.解:∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m.故答案为:25.16.解:如图,连接AD,AC,连接CD与AB交于点F,∵AB⊥BC,∴∠ABC=90°.∴AC为直径.∴∠ADC=90°.∵AE=DE,DE⊥AB,∴∠DAB=∠ADE=45°.∴∠BCF=∠DAB=45°.∴BC=BF=3.在△ADF中,∠DAB=∠AFD=45°,∴EF=ED=1.∴AB=5.∴AC==.∴⊙O半径的长.17.解:设圆弧所在圆的圆心为O,连接OA、OA′,设半径为x米,则OA=OA′=OP,由垂径定理可知AM=BM,A′N=B′N,∵AB=60米,∴AM=30米,且OM=OP﹣PM=(x﹣18)米,在Rt△AOM中,由勾股定理可得AO2=OM2+AM2,即x2=(x﹣18)2+302,解得x=34,∴ON=OP﹣PN=34﹣4=30(米),在Rt△A′ON中,由勾股定理可得A′N===16(米),∴A′B′=32米>30米,∴不需要采取紧急措施.18.解:(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.∵AB∥CD,EF⊥AB,∴EF⊥CD,∴∠CEF=∠BFO=90°∴AF=BF=x,DE=EC=2,根据勾股定理可得:,解得(舍弃)或,∴BF=4,AB=2BF=8.(2)如图2中,作CH⊥AB于H.∵OB⊥OC,∴∠A=∠BOC=45°,∵AH⊥CH,∴△ACH是等腰直角三角形,∵AC=CH,∵AB∥CD,EF⊥AB,∴EF⊥CD,∠CEF=∠EFH=∠CHF=90°,∴四边形EFHC是矩形,∴CH=EF,在Rt△OEC中,∵EC=,OC=,OE===2,∵∠EOC+∠OCE=90°,∠EOC+∠FOB=90°,∴∠FOB=∠ECO,∵OB=OC,∴△OFB≌△CEO(AAS),∴OF=EC=,∴CH=EF=3,∴AC=EF=6.。

人教版九年级数学上册24.1.2 垂直于弦的直径 练习

人教版九年级数学上册24.1.2 垂直于弦的直径  练习

《 24.1.2垂直于弦的直径(1)》限时练班级: 姓名: 小组: 分数: 卷面:A卷基础过关题一、选择题(每小题6分,共30分)1、如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A.3cm B.4cm C.5cm D.6cm2、如图,已知⊙O的直径AB⊥CD于点E,则下列结论一定错误的是()A. CE=DE B.AE=OE C.=D.△OCE≌△ODE3、如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,C D的长为()A.2B.4 C.4D.84、如图,AB为圆O的直径,BC为圆O的一弦,自O点作BC的垂线,且交BC于D点.若AB=16,BC=12,则△OBD的面积为何?()A.6B.12C.15 D.305、如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A. B.C.3 D.2第1题第2题第3题第4题第5题二、填空题(每小题6分,共30分)6、如图,⊙O的弦AB、AC的夹角为50°,M、N分别是AB︵、AC︵的中点,则∠MON的度数是 .7、如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8 cm,OC=5 cm,则CD的长cm.8、如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.9、如图,已知点A(0,1),B(0,﹣1),以点A为圆心,以AB为半径作圆,交x轴的正半轴于点C,则点C的坐标是,.∠BAC等于______度.第6题第7题第8题10、在半径为5cm的圆中,弦AB∥CD,弦AB=6cm,弦CD=8cm,则AB和CD的距离是.三、解答题(11-14题每题10分,共40分)11、如图,在⊙O中,AB是弦,ABOC⊥于C.若5=OA,4=OC,求AB的长.第9题第10题C DOBAC EDO 12、如图,在⊙O 中,AB 是弦,AB OC ⊥于C .若6=OA ,8=AB ,求OC 的长;13、如图,在⊙O 中,AB 是弦,AB OC ⊥于C .若12=AB ,8=OC ,求⊙O 的半径;14、如图,在⊙O 中,AB 是弦,AB OC ⊥于C .若︒=∠120AOB ,10=OA OA =10,求AB 的长。

人教版九年级上数学24.1.2垂直于弦的直径练习题含答案

人教版九年级上数学24.1.2垂直于弦的直径练习题含答案

24.1.2 垂直于弦的直径01 基础题 知识点1 圆的对称性 1.下列说法正确的是(B)A .直径是圆的对称轴B .经过圆心的直线是圆的对称轴C .与圆相交的直线是圆的对称轴D .与半径垂直的直线是圆的对称轴 2.圆是轴对称图形,它的对称轴有(D)A .1条B .2条C .4条D .无数条 知识点2 垂径定理3.(黄石中考)如图所示,⊙O 的半径为13,弦AB 的长度是24,ON ⊥AB ,垂足为N ,则ON =(A)A .5B .7C .9D .114.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的是(D)A .CM =DM B.CB ︵=DB ︵C .△OCM ≌△ODMD .OM =MB5.(大同期中)如图,在半径为5 cm 的⊙O 中,圆心O 到弦AB 的距离为4 cm ,则AB =6__cm .6.(长沙中考)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为5.7.如图,已知⊙O的半径为4,OC垂直弦AB于点C,∠AOB=120°,则弦AB的长为43.知识点3垂径定理的推论8.如图,⊙O的半径为10,M是AB的中点,且OM=6,则⊙O的弦AB等于(D) A.8 B.10 C.12 D.16知识点4垂径定理的应用9.(金华中考)如图,在半径为13 cm的圆形铁片上切下一块高为8 cm的弓形铁片,则弓形弦AB 的长为(C)A.10 cmB.16 cmC.24 cmD.26 cm10.(茂名中考)如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与其摆至最低位置时的高度之差(即CD)为0.5米.11.如图是某风景区的一个圆拱形门,路面AB宽为2米,净高5米,求圆拱形门所在圆的半径是多少米.解:连接OA.∵CD ⊥AB ,且CD 过圆心O , ∴AD =12AB =1米,∠CDA =90°.设⊙O 的半径为R ,则 OA =OC =R ,OD =5-R. 在Rt △OAD 中,由勾股定理,得 OA 2=OD 2+AD 2,即R 2=(5-R)2+12,解得R =2.6. ∴圆拱形门所在圆的半径为2.6米.易错点 忽略垂径定理的推论中的条件“不是直径” 12.下列说法正确的是(D)A .过弦的中点的直径平分弦所对的两条弧B .弦的垂直平分线平分它所对的两条弧,但不一定过圆心C .过弦的中点的直径垂直于弦D .平分弦所对的两条弧的直径平分弦 02 中档题13.(呼和浩特中考)如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为M.若AB =12,OM ∶MD =5∶8,则⊙O 的周长为(B)A .26πB .13π C.96π5 D.3910π514.如图,在⊙O 中,AB ,AC 是互相垂直的两条弦,OD ⊥AB 于点D ,OE ⊥AC 于点E ,且AB =8 cm ,AC =6 cm ,那么⊙O 的半径OA 长为5__cm.15.(宿迁中考)如图,在△ABC 中,已知∠ACB =130°,∠BAC =20°,BC =2,以点C 为圆心,CB 为半径的圆交AB 于点D ,则BD 的长为23.16.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为4.17.(雅安中考)⊙O 的直径为10,弦AB =6,P 是弦AB 上一动点,则OP 的取值范围是4≤OP ≤5. 18.如图,已知⊙O 的直径AB 垂直弦CD 于点E ,连接CO 并延长交AD 于点F ,且CF ⊥AD.(1)求证:点E 是OB 的中点; (2)若AB =8,求CD 的长. 解:(1)证明:连接AC. ∵OB ⊥CD ,∴CE =ED ,即OB 是CD 的垂直平分线. ∴AC =AD. 同理AC =CD.∴△ACD 是等边三角形. ∴∠ACD =60°,∠DCF =30°. 在Rt △COE 中,OE =12OC =12OB.∴点E 是OB 的中点. (2)∵AB =8,∴OC =12AB =4.又∵BE =OE ,∴OE =2.∴CE =OC 2-OE 2=16-4=2 3.∴CD=2CE=4 3.19.(湖州中考)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图所示).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,求AC的长.解:(1)证明:过点O作OE⊥AB于点E.则CE=DE,AE=BE.∴AE-CE=BE-DE,即AC=BD.(2)连接OA,OC.由(1)可知,OE⊥AB且OE⊥CD,∴CE=OC2-OE2=82-62=27,AE=OA2-OE2=102-62=8.∴AC=AE-CE=8-27.03综合题20.太原市城市风貌提升工程正在火热进行中,检查中发现一些破旧的公交车候车亭有碍观瞻,现准备制作一批新的候车亭,查看了网上的一些候车亭图片后(如图1),设计师画出了如图2所示的侧面示意图,FG为水平线段,PQ⊥FG,点H为垂足,FG=2 m,FH=1.2 m,点P在弧FG上,且弧FG所在圆的圆心O到FG,PQ的距离之比为5∶2,则PH的长约为0.6__m.。

初三垂直于弦的直径练习题

初三垂直于弦的直径练习题

初三垂直于弦的直径练习题一、选择题1. 若一个弦垂直于直径,那么这个弦的长度与直径的关系是:A) 垂直弦的长度是直径的两倍B) 垂直弦的长度是直径的一半C) 垂直弦的长度等于直径D) 垂直弦的长度是直径的平方根2. 在一个圆的圆心处作一个角,它的两条腿分别交于圆上两点,则这两点与圆心连线的关系是:A) 垂直B) 平行C) 重叠D) 无法确定3. 在一个圆的圆心处作一个角,它的两条腿分别与圆交于两点,则这两点的连线与直径的关系是:A) 垂直B) 平行C) 重叠D) 无法确定4. 若两个弦垂直于直径,那么这两个弦的位置关系是:A) 平行B) 垂直C) 相交D) 无法确定5. 若一个圆上两个点的连线与直径垂直相交,那么这两个点与圆心连线的关系是:A) 平行B) 垂直C) 重叠D) 无法确定二、填空题1. 在一个圆的圆心处作一个角,它的两条腿分别与圆交于A、B两点,则直径AB的度数为____。

2. 圆O的直径长度为10 cm,一条垂直弦的长度为12 cm,则圆O 的半径长为____cm。

3. 在圆O上,直径AC与一个弦BD垂直相交于点E,若直径AC 的长度为16 cm,弦BD的长度为10 cm,则直径AC与弦DB的交点E 到圆心O的距离为____cm。

三、计算题1. 在一个半径为7 cm的圆O中,弦AB垂直于直径CD,若弦AB 的长度为12 cm,则直径CD的长度为多少?2. 在圆O中,直径AC的长度为10 cm,一个弦BD与直径AC垂直,且弦BD的长度为8 cm,则弦BD与圆心O的距离为多少?四、解答题已知半径为6 cm的圆O,弦AB与直径CD垂直相交于点E。

如果弦AB的长度为8 cm,求直径CD的长度和弦AB与圆心O的距离。

解:设直径CD的长度为x cm,根据垂直弦定理,有x * 8 = 6 * 88x = 48x = 6所以直径CD的长度为6 cm。

由于直径CD垂直于弦AB,弦AB与圆心O的距离等于半径OC的长度。

初中-数学-人教版-24.1.2垂直于弦的直径同步练习(一)

初中-数学-人教版-24.1.2垂直于弦的直径同步练习(一)

24.1.2垂直于弦的直径同步练习(一)一.选择题1、 已知二0的直径为10,圆心O 到弦.毎的距离OM 为3,则弦.IS 的长是( )A. 4B. 6 C 7 D. 82、 已知二0的一条弦长.lB=12cn ι,直径CD 二AB 于£,则丑的长为() A. 12Cm B. 6cm C. ICnl D. Scrn3、 如图,已知0。

的半径为7,弦的长为12,则圆心0到•松的距离为()A. √5 5.2√5 C2√7 D. √1I4、如图,在半径为5的圆O 中,脑,CD 是互相垂直的两条弦,垂足为P,且肋=CD=&5、在半径为5期的圆中,弦.1BZCD. AB=6cm, CD=Scm,则AB 和CD 的距离是() A. IanB. ICmC. ICnI 或 4cm D ・ ICm 或 IcW二、填空题 6、如图,肋为圆O 的直径,CD 为圆O 的弦,.IBCCD 于M,若ΛB=10m CD=Zcm, 则 AM=L Cnl.7、如图,二0的直径CQ 垂直弦,购于点E,且CE=2, AB=&则OB 的长为 ______________C ・ 3√2D∙ 4√2BZIB 是二O 的直径,点 D 平分C. AC=5. D£=1.5,则 OE=知大小・以锯锯之,深一寸,锯道长一尺.问:径几何?’'大意是:如图,CD 是匚。

的直径,ABZCD.垂足为E, CE=I 寸,J5=10寸,则CD=10、如图,二。

的半径为5,弦曲=& M 是弦曲上的动点,则OM 的最小值为___________11、 已知匚。

的弦,毎长为10,半径长R 为7, OC 是弦,购的弦心距,求OC 的长12、 一条排水管的截面如图所示,已知排水管的半径OA=Im,水而宽43=1加,某天下雨后,水管水面上升了 0.2加,求此时排水管水面的宽仞・13. 如图…松和CQ 是□O 的弦,且E 、F 分别为弦肿、CQ 的中点,证明OE=OF.8、如图,“今有圆材,埋在壁中,不三、解答题答案第1页.共6贞参考答案1、【答案】D【分析】连接QL 先根据垂径立理求^AM=-AB 9再根拯勾股左理求岀ZiM 的值.二二。

人教版九年级数学上册【推荐】24.1.2垂直于弦的直径同步练习(1).docx

人教版九年级数学上册【推荐】24.1.2垂直于弦的直径同步练习(1).docx

初中数学试卷桑水出品24.1.2 垂直于弦的直径1.已知:AB交圆O于C、D,且AC=BD.你认为OA=OB吗?为什么?2. 如图所示,是一个直径为650mm的圆柱形输油管的横截面,若油面宽AB=600mm,求油面的最大深度。

6003. 如图所示,AB是圆O的直径,以OA为直径的圆C与圆O的弦AD相交于点E。

你认为图中有哪些相等的线段?为什么?ADBOCE4.如图所示,OA是圆O的半径,弦CD⊥OA于点P,已知OC=5,OP=3,则弦CD=____________________。

5. 如图所示,在圆O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D、E,若AC=2cm,则圆O的半径为____________cm。

6. 如图所示,AB是圆O的直径,弦CD⊥AB,E为垂足,若AB=9,BE=1,则CD=_________________。

(4)题图 (5)题图 (6)题图 7. 如图所示,在△ABC 中,∠C =90°,AB =10,AC =8,以AC 为直径作圆与斜边交于点P ,则BP 的长为________________。

8. 如图所示,四边形ABCD 内接于圆O ,∠BCD=120°,则∠BOD=____________度。

9. 如图所示,圆O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段的OM 的长的取值范围是( ) A. 3≤OM ≤5 B. 4≤OM ≤5 C. 3<OM <5D. 4<OM <5(7)题图 (8)题图 (9)题图 10. 下列说法中,正确的是( )A. 到圆心的距离大于半径的点在圆内B. 圆的半径垂直于圆的切线C. 圆周角等于圆心角的一半D. 等弧所对的圆心角相等11. 若圆的一条弦把圆分成度数的比为1:3的两条弧,则劣弧所对的圆周角等于( ) A. 45°B. 90°C. 135°D. 270°12. 如图所示,A 、B 、C 三点在圆O 上,∠AOC=100°,则∠ABC 等于( ) A. 140°B. 110°C. 120°D. 130°13. △ABC 中,∠C=90°,AB=cm 4,BC=cm 2,以点A 为圆心,以cm 5.3长为半径画圆,则点C 在圆A___________,点B 在圆A_________;14. 圆的半径等于cm 2,圆内一条弦长23cm ,则弦的中点与弦所对弧的中点的距离等于_____________;15. 如图所示,已知AB 为圆O 的直径,AC 为弦,OD ∥BC 交AC 于D ,OD=cm 2,求BC 的长;ABCDO16. 如图所示,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.1.2 垂直于弦的直径
1.已知:AB交圆O于C、D,且AC=BD.你认为OA=OB吗?为什么?
2. 如图所示,是一个直径为650mm的圆柱形输油管的横截面,若油面宽AB=600mm,求油面的最大深度。

600
3. 如图所示,AB是圆O的直径,以OA为直径的圆C与圆O的弦AD相交于点E。

你认为图中有哪些相等的线段?为什么?
A
D
B
O
C
E
4.如图所示,OA是圆O的半径,弦CD⊥OA于点P,已知OC=5,OP=3,则弦CD=____________________。

5. 如图所示,在圆O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D、E,若AC=2cm,则圆O的半径为____________cm。

6. 如图所示,AB是圆O的直径,弦CD⊥AB,E为垂足,若AB=9,BE=1,则CD=_________________。

C
A P O
D
C
E O
A D B
(4)题图(5)题图(6)题图
7. 如图所示,在△ABC中,∠C=90°,AB=10,AC=8,以AC为直径作圆与斜边交于点P,则BP的长为________________。

8. 如图所示,四边形ABCD内接于圆O,∠BCD=120°,则∠BOD=____________度。

9.如图所示,圆O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()
A. 3≤OM≤5
B. 4≤OM≤5
C. 3<OM<5
D. 4<OM<5
(7)题图(8)题图(9)题图
10.下列说法中,正确的是()
A. 到圆心的距离大于半径的点在圆内
B. 圆的半径垂直于圆的切线
C. 圆周角等于圆心角的一半
D. 等弧所对的圆心角相等
11.若圆的一条弦把圆分成度数的比为1:3的两条弧,则劣弧所对的圆周角等于()
A. 45°
B. 90°
C. 135°
D. 270°
12. 如图所示,A、B、C三点在圆O上,∠AOC=100°,则∠ABC等于()
A. 140°
B. 110°
C. 120°
D. 130°
13. △ABC 中,∠C=90°,AB=cm 4,BC=cm 2,以点A 为圆心,以cm 5.3长为半径画圆,则点C 在圆A___________,点B 在圆A_________;
14. 圆的半径等于cm 2,圆内一条弦长23cm ,则弦的中点与弦所对弧的中点的距离等于_____________;
15. 如图所示,已知AB 为圆O 的直径,AC 为弦,OD ∥BC 交AC 于D ,OD=cm 2,求BC 的长;
A B
C
D
O
16. 如图所示,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D 。

已知:AB cm 24=,CD cm 8=。

(1)求作此残片所在的圆(不写作法,保留作图痕迹); (2)求(1)中所作圆的半径。

A
C D
B
17. 已知:如图所示,Rt △ABC 的两直角边BC=3cm ,AC=4cm ,斜边AB 上的高为CD ,若以C 为圆心,分别以r 1=2cm ,r 2=2.4cm ,r 3=3cm ,为半径作圆,试判断点D 与这三个圆的位置
关系。

C
B
18. 在△ABC中,∠C=90°,AC=BC=4cm,D是AB边的中点,以点C为圆心,4cm为半径作圆。

则A、B、C、D四点在圆内有_____________。

19.等腰三角形ABC中,B、C为定点,且AC=AB,D为BC中点,以BC为直径作圆D。

(1)顶角A等于多少度时,A在圆D上?
(2)顶角A等于多少度时,A在圆D内部?
(3)顶角A等于多少度时,A在圆D外部?
20. 在半径为5cm的圆中,弦AB∥CD,AB=6cm,CD=8cm,求弦AB与CD之间的距离。

21.如图所示,圆O的直径AB和弦CD交于E,已知AE=6cm,EB=2cm,∠CEA=30°,求CD。

A C
F
O
E
B
22. 圆O中若直径为25cm,弦AB的弦心距10cm,求弦长。

23.若圆的半径2cm,圆中一条弦长1cm,则此弦中点到此弦所对劣弧中点之间的距离?
24.圆内一条弦与直径的交角为30°,且分直径为1cm和5cm两段,求弦心距,弦长?
25.半径为5cm的圆O中有一点P,OP=4,则过P的最短弦长_________,最长弦是__________,
26. 如图所示,已知O是∠EPF的平分线上的一点,以O为圆心的圆心角的两边分别交于
点A、B、C、D求证:PB=PD,若角的顶点P在圆上或圆内,上述还成立吗?请说明。

P
参考答案
1. 过点O 作OE CD ⊥于E ∴=CE ED
∴=∴≅∴=AD DB
AOE BOE AO OB ∆∆
2. 175mm
3. 略
4. 8
5. 2
6. 42
7. 3.6
8. 120
9. B 10. D
11. A 12. D
13. 内部、外部
14. 13cm cm 或
15. BC =4cm 16. (1)图略
(2)13cm
17. 外、上、内 18. C 、D 19. (1)∠=A 90°; (2)∠A 为钝角; (3)∠A 为锐角。

20. 71cm cm 或
21. CD cm =215()22. 15cm
23. 415
2-cm
24. 142cm cm ;
25. 610cm cm ,
26. (1)证明:过O 作OE PB E OF PD F ⊥⊥于,于
ΘOP EPF OE OF PE PF AB CD BE DF PE BE PF DF
PB PD
平分,,则∠∴==∴==∴+=+∴=
(2)上述结论仍成立: 如下图所示 证明略。

A A
E E
P O P O
F F
C C
PA=PC PA=PC。

相关文档
最新文档