初中数学数轴_练习3
初中数学冀教版七年级上册第一章 有理数1.2 数轴-章节测试习题(3)
章节测试题1.【答题】在数轴上表示的点的距离等于个单位长度的点所表示的数是______,或______.【答案】-7,1【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【解答】解:的右侧,,的左侧,∴在数轴上表示的点的距离等于个单位长度的点所表示的数是或.故答案为:或.2.【答题】一只小球落在数轴上的某点,第一次从向左跳1个单位到,第二次从向右跳2个单位到,第三次从向左跳3个单位到,第四次从向右跳4个单位到……若按以上规律跳了6次时,它落在数轴上的点所表示的数恰好是2017,则这只小球的初始位置点所表示的数是______,若按以上规律跳了2n次时,它落在数轴上的点所表示的数恰好是a,则这只小球的初始位置点所表示的数是______.【答案】2014,a-n【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【解答】①设p0表示的数为x,P1表示的数为x-1;P2表示的数为x-1+2=x+1;P3表示的数为x+1-3=x-2;P4表示的数为x-2+4=x+2;P5表示的数为x+2-5=x-3;P6表示的数为x-3+6=x+3;由题意得x+3=2017,∴x=2014.由①知,x+n=a,∴x=a-n.方法总结:本题考查了数轴上动点的运动规律,动点在数轴上的运动规律是:右加左减.根据这一规律用含x的代数式表示出p点运动6次后及2n次后所表示的数,从而列出方程求出p0所表示的数.3.【答题】小惠在纸上画了一条数轴后,折叠纸面,使数轴上表示l的点与表示-3的点重合,若数轴上A、B两点之间的距离为8(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数为______.【答案】-5【分析】若1表示的点与-3表示的点重合,则折痕经过-1;若数轴上A、B两点之间的距离为8,则两个点与-1的距离都是4,再根据点A在B的左侧,即可得出答案.【解答】解:画出数轴如下所示:依题意得:两数是关于1和-3的中点对称,即关于(1-3)÷2=-1对称;∵A、B两点之间的距离为8且折叠后重合,则A、B关于-1对称,又A在B的左侧,∴A点坐标为:-1-8÷2=-1-4=-54.【答题】在数轴上,点表示,点表示,且点到、的距离和为,则点表示的数为______.或______.【答案】3.5,-6.5【分析】分三种情况讨论,当P在-5左侧时;当P在它们之间时,当P在2的右侧时,求出P的表示的数;【解答】解:当点在的左侧,,P=-6.5;当点在到之间,不成立;当点在的右侧,,。
秋七年级数学上册 1.2.1 数轴同步练习 (新版)湘教版-(新版)湘教版初中七年级上册数学试题
数轴要点感知1在直线上取一点O,这个点叫做______;通常把直线上从原点向右的方向规定为______,从原点向左的方向规定为________;选取适当的长度为________.像这样,规定了_____、______和________的直线叫做数轴. 预习练习1-1下列各图中,所画数轴正确的是( )要点感知2数轴上原点右边的点表示______数,左边的点表示______数,任何有理数都可以用_____上唯一的一个点来表示.预习练习2-1 如图,在数轴上点A表示( )A.-2B.2C.±2-2在下面数轴上,A,B,C,D,E各点分别表示什么数?知识点1 数轴的概念1.下列说法正确的是( )A.规定了正方向和单位长度的射线叫做数轴B.规定了原点、单位长度的线段叫做数轴C.有正方向和单位长度的直线叫做数轴D.规定了原点、正方向和单位长度的直线叫做数轴知识点2 在数轴上表示有理数2.在数轴上,表示-2.75的点最可能是( )3.指出数轴上A,B,C,D各点分别表示的有理数.4.在数轴上表示出下列各有理数:-0.7,-3,-213,0,112,2.知识点3 数轴上的点与有理数之间的关系5.下列四个有理数中,在原点左边的是( )A.-2 014B.0C.15.8D.1 20006.数轴上原点及原点左边的点表示( )7.在数轴上距原点2 013个单位长度的点表示的数是( )A.2 013B.-2 013 C8.下列说法中正确的是( )9.在数轴上,-1和1之间的有理数有( )10.在数轴上,在原点的左边,距原点6个单位长度的点表示的数为_______.11.写出距离原点小于或等于4个单位的所有整数,并在数轴上表示出来.12.下列所画数轴正确的个数有( )13.(2012·某某)如图,点M表示的数是( )B.-1.5 C14.下列语句中,错误的是( )A.数轴上,原点位置的确定是任意的B.数轴上,正方向可以是从原点向右,也可以是从原点向左C.数轴上,单位长度1的长度的确定,可根据需要任意选取D.数轴上,与原点的距离等于8的点有两个15.如图,在数轴上表示到原点的距离为3个单位的点有( )16.若数轴上的点A表示+3,点B表示-4.2,点C表示-1,则点A和点B中离点C较远的是_____.17.(2012·某某)如图,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是________.18.如图,点A表示的数是-4.(1)在数轴上表示出原点O;(2)指出点B表示的数;(3)在数轴上找一点C,使它与B点的距离为2个单位长度,那么C点表示什么数.19.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A,再向右爬了2个单位长度到达点B,然后又向左爬了10个单位长度到达点C.(1)在数轴上标出A,B,C三点;(2)写出A,B,C三点表示的数;(3)根据点C在数轴上的位置,C点可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?挑战自我20.小明、小兵、小颖三人的家和学校在同一条东西走向的大街上,星期天老师到这三家进行家访,从学校出发先向东走250米到小明家,后又向东走350米到小兵家,再向西行800米到小颖家,最后又回到学校.(1)以学校为原点,向东为正方向,用一个单位长度表示100米,你能在数轴上表示出小明、小兵、小颖三人家的位置吗?(2)小明家距离小颖家多远?(3)这次家访,老师共行了多少千米的路程?21.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是____________;②从-2到2有5个整数,分别是_______________________;③从-3到3有______个整数,分别是___________________;④从-200到200有_______个整数.(2)根据以上事实,请直接写出:从-2.9到2.9有______个整数,从-10.1到10.1有______个整数;(3)在单位长度是1厘米的数轴上随意画出一条长为1 000厘米的线段AB,直接写出线段AB能盖住的整数点的个数.参考答案课前预习要点感知1原点正方向负方向单位长度原点正方向单位长度预习练习1-1 D要点感知2正负数轴预习练习2-1 A2-2 A,B,C,D,E各点分别表示-3,-1.5,0,0.5,3.当堂训练1.D2.D3.点A表示0,点B表示1.5,点C表示-2,点D表示3.4.5.A6.C7.C8.A9.D 10.-611.距原点小于或者等于4个单位的所有整数是:-4,-3,-2,-1,0,1,2,3,4. 在数轴上表示为:课后作业12.B 13.C 14.B 15.C 16.点A 17.218.(1)原点在点A的右侧距A点4个单位长度.在数轴上表示略.(2)点B表示3.(3)C点表示1或5.19. (1)如图所示:(2)A点表示4,B点表示6,C点表示-4.(3)向左爬行4个单位长度.20.(1)如图所示.(2)小明家距离小颖家450米.(3)这次家访,老师共行了250+350+800+200=1 600(米).21.(1)①-1,0,1 ②-2,-1,0,1,2 ③7-3,-2,-1,0,1,2,3 ④401(2)5 21(3)1 000个或1 001个.。
人教版数学七年级上册期末专项复习:一元一次方程之数轴类(三)
人教版数学七年级上册期末专项复习:一元一次方程之数轴类(三)1.数轴是学习初中数学的一个重要工具利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:数轴上点A、点B表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为;AB=a﹣b线段AB的中点M表示的数为.如图,已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位长度的速度沿数轴向右匀速运动,点B以每秒2个单位长度向左匀速运动,设运动时间为t 秒(t>0).(1)运动开始前,A、B两点的距离为个单位长度;线段AB的中点M所表示的数为;(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为.(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A、B按上述方式运动,A、B两点经过多少秒,线段AB的中点M与原点重合?2.已知两点A、B在数轴上,AB=9,点A表示的数是a,且a与(﹣1)3互为相反数.(1)写出点B表示的数;(2)如图1,当点A、B位于原点O的同侧时,动点P、Q分别从点A、B处在数轴上同时相向而行,动点P的速度是动点Q的速度的2倍,3秒后两动点相遇,当动点Q到达点4时,运动停止.在整个运动过程中,当PQ=2时,求点P、Q所表示的数;(3)如图2,当点A、B位于原点O的异侧时,动点P、Q分别从点A、B处在数轴上向右运动,动点Q比动点P晚出发1秒;当动点Q运动2秒后,动点P到达点C处,此时动点P立即掉头以原速向左运动3秒恰与动点Q相遇;相遇后动点P又立即掉头以原速向右运动5秒,此时动点P到达点M处,动点Q到达点N处,当|OM﹣ON|=2时,求动点P、Q运动的速度.3.【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数.(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为;(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B两点重合,则中点M也与A,B两点重合).4.如图,小亮把东、西大街表示成一条数轴,把公交站的位置用数轴上的点表示出来,其中鼓楼站的位置记为原点,正东方向为正方向,公交车的一站地为一个单位长度(假设每站距离相同).请你根据图形回答下列问题:(1)到广济街的距离等于2站地的是.(2)到这8个站距离之和最小的站地是否存在?若存在,是哪个站地?最小值是多少?若不存在,请说明理由.(3)如果用a表示数轴上的点表示的数,那么|a﹣1|=2表示这个点与1对应点的距离为2,请你根据以上信息回答下面问题:①若|a﹣2|+|a+1|=3,请你指出满足条件a的所有站地表示的数.②若|a﹣4|+|a+1|=10,请你求出满足条件的a的值.5.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”,图中点A表示﹣12,点B表示12,点C表示20,我们称点A和点C在数轴上相距32个长度单位,动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速,设运动的时间为t秒,问:(1)动点Q从点C运动至点A需要秒;(2)P、Q两点相遇时,求出t的值及相遇点M所对应的数是多少?(3)求当t为何值时,A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍(即P点运动的路程=Q点运动的路程).6.【阅读理解】点A、B在数轴上对应的数分别是a,b,且|a+2|+(b﹣8)2=0.A、B两点的中点表示的数为;当b>a时,A、B两点间的距离为AB=b﹣a.(1)求AB的长.(2)点C在数轴上对应的数为x,且x是方程2x+8=x﹣2的解,在数轴上是否存在点P,使PA+PB=PC?若存在,求出点P对应的数;若不存在,说明理由.(3)点E以每秒1个单位的速度从原点O出发向右运动,同时点M从点A出发以每秒8个单位的速度向左运动,点N从点B出发,以每秒5个单位的速度向右运动,P、Q 分别为ME、ON的中点,求证:在运动过程中,的值不变,并求出这个值.7.已知数轴上有A,B,C三点,分别表示﹣12,﹣5,5,两只电子蚂蚁甲、乙分别从A,C两点同时出发,甲的速度是每秒2个单位,乙的速度是每秒3个单位.(1)AB=,BC=,AC=.(2)若甲、乙相向而行,则甲、乙在多少秒后数轴上相遇?该相遇点在数轴上表示的数是什么?(3)若甲、乙相向而行,则多少秒后甲到A,B,C三点的距离之和为22个单位?8.已知,如图所示,A、B、C是数轴上的三点,点C对的数是6,BC=4,AB=12.(1)写出A、B对应的数;(2)动点P、Q同时从A、C出发,分别以每秒6个单位,3个单位速度沿数轴正方向运动,M是AP的中点,N在CQ上且CN=CQ,设运动时间为t(t>0).①求点M、N对应的数(含t的式);②x为何值时OM=2BN.9.如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2:1,点P从点B 以每秒4个单位的速度向右运动.(1)A、B对应的数分别为、;(2)当点P运动时,分别取BP的中点E,AO的中点F,请画图,并求出的值;(3)若当点P开始运动时,点A、B分别以每秒2个单位和每秒5个单位的速度同时向右运动,是否存在常数m,使得3AP+2OP﹣mBP为定值?若存在,请求出m的值以及这个定值;若不存在,请说明理由.10.已知,数轴上两点A,B表示的数分别是9和﹣6,动点P从点A出发,以每秒3个单位的速度沿数轴向点B运动,运动到点B停止;(1)在数轴上表示出A,B两点,并直接回答:线段AB的长度是;(2)若满足BP=2AP,求点P的运动时间;(3)在点P运动过程中,若点M为线段AP的中点,点N为线段BP的中点,请计算线段MN的长度,并说出线段MN与线段AB的数量关系;(4)若另一动点Q同时从B点出发,运动的速度是每秒2个单位,几秒钟后,线段PQ 长度等于5?参考答案1.解:(1)运动开始前,A、B两点的距离为8﹣(﹣10)=18;线段AB的中点M所表示数为.故答案是:18;﹣1(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t.故答案是:﹣10+3t;8﹣2t(3)设它们按上述方式运动,A、B两点经过x秒会相距4个单位长度.根据题意得3x+2x=18﹣4,解得x=2.8;3x+2x=18+4,解得x=4.4.答:A、B两点经过2.8秒或4.4秒会相距4个单位长度.(4)由题意得解得t=2.答:经过2秒A、B两点的中点M会与原点重合.2.解:(1)∵a与(﹣1)3互为相反数∴a=1,∵AB=9,∴①当点A、点B在原点的同侧时,点B所表示的数为1+9=10,如图1所示,②当点A、点B在原点的异侧时,点B所表示的数为1﹣9=﹣8,如图2所示,故点B所表示的数为10或﹣8;(2)当点A、B位于原点O的同侧时,点B表示的数是10设点Q的运动速度为x,则点P的速度为2x∵3秒后两动点相遇∴3(x+2x)=9解得:x=1∴点Q的运动速度为1,则点P的速度为2运动t秒后PQ=2有两种情形:①相遇前,由题意有:2t+2+t=9解得:t=;∴点P表示的数为:1+2×=,点Q表示的数为:10﹣=;②相遇后,再运动y秒,P、Q两点相距2,由题意有:y+2y=2解得:y=∴点P表示的数为:1+3×2+×2=,点Q表示的数为:10﹣3×1﹣×1=;(3)根据题意得,点P和点Q在点A处相遇,此时点Q运动5秒,运动9个单位长度∴点Q的运动速度为:9÷5=1.8设点P的速度为v,∵|OM﹣ON|=2∴|9+1﹣(5v+1)|=2解得:v=或∴点P的速度为或.3.解:(1)A、B两点的距离为:8﹣(﹣10)=18;线段AB的中点M所表示的数为﹣1.故答案为:18;﹣1;(2)由题意可得点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;故答案为:﹣10+3t;8﹣2t;(3)设它们按上述方式运动,A、B两点经过t秒会相距4个单位长度,当点A在点B左侧时,依题意列式,得3t+2t=18﹣4,解得t=2.8;当点A在点B右侧时,3t+2t=18+4,解得t=4.4,答:它们按上述方式运动,A、B两点经过2.8秒或4.4秒会相距4个单位长度.(4)能.设A,B按上述方式继续运动k秒线段的中点M能与原点重合,根据题意列方程,可得=0,解得k=2.运动开始前M点的位置是﹣1,运动2秒后到达原点,由此得M点的运动方向向右,其速度为:|﹣1÷2|=个单位长度.答:运动时间为2秒,中点M点的运动方向向右,其运动速度为每秒个单位长度.4.解:(1)由图可知,到广济街的距离等于2站地的是西门和端履门.故答案为:西门和端履门.(2)这8个站间隔相等,距离之和最小的站地应该是位于中间的两个,即广济站和钟楼站,最小值是:1+2+3+1+2+3+4=16.∴到这8个站距离之和最小的站地存在,是广济站和钟楼站,最小值是16.(3)①∵|a﹣2|+|a+1|=3,∴当a≤﹣1时,2﹣a﹣a﹣1=3,∴a=﹣1;当﹣1<a<2时,2﹣a+a+1=3,∴当﹣1<a<2时,满足条件a的站地表示的数为0或1;当2≤a≤3时,a﹣2+a+1=3,∴a=2.综上,满足条件a的所有站地表示的数为﹣1、0、1或2.②∵|a﹣4|+|a+1|=10,∴当a≤﹣1时,4﹣a﹣a﹣1=10,∴a=﹣3.5;当﹣1<a≤4时,4﹣a+a+1=10,∴此时a无解;当a>4时,a﹣4+a+1=10,∴a=6.5.综上,满足条件的a的值为﹣3.5或6.5.5.解:(1)点Q运动至点A时,所需时间t=(20﹣12)÷1+12÷2+12÷1=26(秒).答:动点Q从点C运动至点A需要26秒;(2)由题可知,P、Q两点相遇在线段OB上M处,设OM=x.则12÷2+x÷1=(20﹣12)÷1+(12﹣x)÷2,解得x=,12÷2+÷1=6+5=11.答:t的值是11,相遇点M所对应的数是.(3)A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍有2种可能:①动点Q在OB上,动点P在BO上,相遇前,则:12+(t﹣12÷2)=[20﹣12+2(t﹣8÷1)],解得:t=.②动点Q在OA上,动点P在BC上,相遇后,则:12+12+2(t﹣18)=[8+12+(t﹣8÷1﹣12÷2)],解得:t=26.综上所述:当t为或26时,A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍.故答案为:26.6.(1)解:∵|a+2|+(b﹣8)2=0,∴a=﹣2,b=8,∴AB=8﹣(﹣2)=10;(2)解:2x+8=x﹣2,∴x=﹣10,∴C在数轴上对应的数为﹣10,设点P对应的数为y,由题意可知,点P不可能位于点A的左侧,所以存在以下两种情况:①点P在点B的右侧,∴(y﹣8)+[y﹣(﹣2)]=y﹣(﹣10),∴y=16,②当点P在A、B之间,∴(8﹣y)+[y﹣(﹣2)]=y﹣(﹣10),∴y=0,综上所述,点P对应的数是16或0;(3)证明:设运动时间为t,则点E对应的数是t,点M对应的数是﹣2﹣8t,点N对应的数是8+5t,∵P是ME的中点,∴P点对应的数是=﹣1﹣t,又∵Q是ON的中点,∴Q点对应的数是=4+t,∴MN=(8+5t)﹣(﹣2﹣8t)=10+13t,OE=t,PQ=(4+t)﹣(﹣1﹣t)=5+6t,∴===2(定值).∴在运动过程中,的值不变,这个值是2.7.解:(1)AB=﹣5﹣(﹣12)=﹣5+12=7,BC=5﹣(﹣5)=5+5=10,AC=5﹣(﹣12)=5+12=17.故答案为:7,10,17;(2)设甲、乙行驶x秒时相遇,根据题意得:2x+3x=17,解得:x=3.4,﹣12+2×3.4=﹣5.2.答:甲、乙在3.4秒后在数轴上相遇,该相遇点在数轴上表示数是﹣5.2.(3)设y秒后甲到A,B,C三点的距离之和为22个单位,B点距A,C两点的距离为7+10=17<20,A点距B、C两点的距离为7+17=24>20,C点距A、B的距离为17+10=27>20,故甲应位于AB或BC之间.①AB之间时:2y+(7﹣2y)+(7﹣2y+10)=22,解得:y=1;②BC之间时:2y+(2y﹣7)+(17﹣2y)=22,解得:y=6.答:1秒或6秒后甲到A,B,C三点的距离之和为22个单位.8.解:(1)∵C表示的数为6,BC=4,∴OB=6﹣4=2,∴B点表示2.∵AB=12,∴AO=12﹣2=10,∴A点表示﹣10.故点A对应的数是﹣10,点B对应的数是2;(2)①AP=6t,CQ=3t,如图1所示:∵M为AP的中点,N在CQ上,且CN=CQ,∴AM=AP=3t,CN=CQ=t,∵点A表示的数是﹣10,点C表示的数是6,∴点M表示的数是﹣10+3t,点N表示的数是6+t;②∵OM=|﹣10+3t|,BN=BC+CN=4+t,OM=2BN,∴|﹣10+3t|=2(4+t)=8+2t,∴﹣10+3t=±(8+2t),当﹣10+3t=8+2t时,t=18;当﹣10+3t=﹣(8+2t)时,t=.∴当t=18或t=时,OM=2BN.9.解:(1)∵AB=15,OA:OB=2∴AO=10,BO=5∴A点对应数为﹣10,B点对应数为5,故答案为:﹣10、5.(2)画图如下:∵点E、F分别为BP、AO的中点∴OF=AO,BE=BP∴EF=OF+OB+BE=AO+OB+BP∴===2.(3)设运动时间为t秒,则点P对应的数:5+4t;点A对应的数:﹣10+2t;点B对应的数:5+5t;∴AP=5+4t﹣(﹣10+2t)=2t+15;OP=5+4t;BP=t.∴3AP+2OP﹣mBP=3(2t+15)+2(5+4t)﹣mt=(14﹣m)t+55.∴当m=14时,为定值55.10.解:(1)如图所示:线段AB的长度是9﹣(﹣6)=9+6=15,故答案为:15;(2)设AP=3t,则BP=6t,可得3t+6t=15,∴t=;(3)∵AP=3t,∴BP=15﹣3t,∵点M为线段AP的中点,点N为线段BP的中点,∴MP=AP=t,PN=(15﹣3t),则MN=MP+PN=t+(15﹣3t)=,∴MN=AB;(4)设BQ=2t,当Q在AB上时,①15﹣2t﹣3t=5,解得t=2;②2t+3t﹣15=5,解得t=4;当Q在AB外时,2t+(15﹣3t)=5,解得t=4;此时,点P不在线段AB外(舍去)综上所述,当2秒或4秒时,线段PQ的长度等于5.。
七年级数学数轴专项练习题
七年级数学数轴专项练习题【例1】在数轴上有三个点A、B、C,如图所示.(1)将点B向左平移4个单位,此时该点表示的数是;(2)将点C向左平移3个单位得到数m,再向右平移2个单位得到数n,则m,n分别是多少?(3)怎样移动A、B、C中的两点,使三个点表示的数相同?你有几种方法?【变式1-1】在数轴上,点A,B在原点O的两侧,分别表示数a,1,将点A向右平移2个单位长度,得到点C(点C不与点B重合),若CO=BO,则a的值为()A.1B.﹣1C.﹣2D.﹣3【变式1-2】已知点A,B在数轴上表示的数分别是﹣2,3,解决下列问题:个单位长度后记为A1,A1表示的数是,将点B在(1)将点A在数轴上向左平移13数轴上向右平移1个单位长度后记为B1,B1表示的数是;(2)在(1)的条件下,将点B1向移动个单位长度后记为B2,则B2表示的数与A1表示的数互为相反数;(3)在(2)的条件下,将原点在数轴上移动5个单位长度,则点B2表示的数是多少?【变式1-3】【理解概念】对数轴上的点P按照如下方式进行操作:先把点P表示的数乘以2,再把表示得到的这个数的点沿数轴向右平移3个单位长度,得到点P′.这样的操作称为点P的“倍移”,数轴上的点A、B、C、D、E、F经过“倍移”后,得到的点分别为A′、B′、C′、D′、E′、F′.【巩固新知】(1)若点A表示的数为﹣1,则点A′表示的数为.(2)若点B′表示的数为9,则点B表示的数为.【应用拓展】(3)若点C表示的数为5,且CD′=3CD,求点D表示的数;(4)已知点E在点F的左侧,将点E′、F′再次进行“倍移”后,得到的点分别为E″、F″,若E″F″=2020,求EF的长.【例2】如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合(提示:圆的周长C =2πr,本题中π的取值为3.14)(1)把圆片沿数轴向右滚动1周,点Q到达数轴上点A的位置,点A表示的数是;(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,﹣5,+4,+3,﹣2①第几次滚动后,Q点距离原点最近?第几次滚动后,Q点距离原点最远?②当圆片结束运动时,Q点运动的路程共有多少?此时点Q所表示的数是多少?【变式2-1东方红中学位于东西方向的一条路上,一天我们学校的李老师出校门去家访,他先向西走100米到聪聪家,再向东走150米到青青家,再向西走200米到刚刚家,请问:(1)如果把这条路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出聪聪家与青青家的大概位置(数轴上一格表示50米).(2)聪聪家与刚刚家相距多远?(3)聪聪家向西20米所表示的数是多少?(4)你认为可用什么办法求数轴上两点之间的距离?【变式2-2】直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O'点,点O'对应的数是()A.3B.3.1C.πD.3.2【变式2-3如图,数轴上点D对应的数为d,则数轴上与数﹣3d对应的点可能是()A.点A B.点B C.点D D.点E【例3】有理数a、b、c在数轴上所对应的点的位置如图所示,有下列四个结论:①(a+b);③|a|<1﹣bc;④|a﹣b|﹣|c﹣a|+|b﹣c|﹣|a|=a.其中正(b+c)(c+a)>0;②b<b2<1b确的结论有()个.A.4B.3C.2D.1【变式3-1】已知小红、小刚,小明、小颖四人自南向北依次站在同一直线上,如果把直线看作数轴,四人所在的位置如图所示,则下列描述错误的是()A.数轴是以小明所在的位置为原点B.数轴采用向北为正方向C.小刚所在的位置对应的数有可能是−53D.小刚在小颖的南边【变式3-2】如图,数轴上点A,M,B分别表示数a,a+b,b,那么原点的位置可能是()A.线段AM上,且靠近点A B.线段AB上,且靠近点BC.线段BM上,且靠近点B D.线段BM上,且靠近点M【变式3-3】如图,数轴上的点M,N表示的数分别是m,n,点M在表示0,1的两点(不包括这两点)之间移动,点N在表示﹣1,﹣2的两点(不包括这两点)之间移动,则下列判断正确的是()A.m2﹣2n的值一定小于0B.|3m+n|的值一定小于2C.1m−n的值可能比2000大D.1m +1n的值不可能比2000大【例4】已知数轴上两点A、B,其中A表示的数为﹣2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”,例如图1所示,若点C 表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为﹣3,则n=.(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为;(3)若点E在数轴上(不与A、B重合),满足B、E之间的距离是A、E之间距离的一半,且此时点E为点A、B的“n节点”,求出n的值.【变式4-1】在数轴上,点A代表的数是﹣12,点B代表的数是2,AB代表点A与点B之间的距离.(1)①AB=;②若点P为数轴上点A与B之间的一个点,且AP=6,则BP=;③若点P为数轴上一点,且BP=2,则AP=.(2)若C点为数轴上一点,且点C到点A点的距离与点C到点B的距离的和是35,求C点表示的数.(3)若P从点A出发,Q从原点出发,M从点B出发,且P、Q、M同时向数轴负方向运动,P点的运动速度是每秒6个单位长度,Q点的运动速度是每秒8个单位长度,M点的运动速度是每秒2个单位长度,当P、Q、M同时向数轴负方向运动过程中,当其中一个点与另外两个点的距离相等时,求这时三个点表示的数各是多少?【变式4-2】点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B 的距离3倍,那么我们就称点C是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数所表示的点是{M,N}的奇点;数所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?【变式4-3】已知数轴上两点A.B对应的数分别为﹣2和7,点M为数轴上一动点.(1)请画出数轴,并在数轴上标出点A、点B;(2)若点M到A的距离是点M到B的距离的两倍,我们就称点M是【A,B】的好点.①若点M运动到原点O时,此时点M【A,B】的好点(填是或者不是)②若点M以每秒1个单位的速度从原点O开始运动,当M是【B,A】的好点时,求点M的运动方向和运动时间(3)试探究线段BM和AM的差即BM﹣AM的值是否一定发生变化?若变化,请说明理由:若不变,请求其值.【例5】如图,三点A、B、P在数轴上,点A、B在数轴上表示的数分别是﹣4,12(AB两点间的距离用AB表示)(1)C在AB之间且AC=BC,C对应的数为;(2)C在数轴上,且AC+BC=20,求C对应的数;(3)P从A点出发以1个单位/秒的速度在数轴向右运动,Q从B点同时出发,以2个单位/秒在数轴上向左运动.求:①P、Q相遇时求P对应的数②P、Q运动的同时M以3个单位长度/秒的速度从O点向左运动.当遇到P时,点M立即以同样的速度(3个单位/秒)向右运动,并不停地往返于点P与点Q之间,求当点P 与点Q相遇时,点M所经过的总路程是多少?【变式5-1】如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?【变式5-2】甲、乙两个昆虫分别在数轴原点和+8的A处,分别以1单位长度/s,1.5单位长度/s速度同时相向而行.(1)第一次相遇在数轴上何处;(2)若同时沿数轴的负方向而行,乙昆虫在数轴上何处追上甲昆虫?(3)在(1)的条件下,两个昆虫分别到达点A和O处后迅速返回第二次相遇于数轴何处?【变式5-3】一次数学课上,小明同学给小刚同学出了一道数形结合的综合题,他是这样出的:如图,数轴上两个动点M,N开始时所表示的数分别为﹣10,5,M,N两点各自以一定的速度在数轴上运动,且M点的运动速度为2个单位长度/s.(1)M,N两点同时出发相向而行,在原点处相遇,求N点的运动速度.(2)M,N两点按上面的各自速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?(3)M,N两点按上面的各自速度同时出发,向数轴负方向运动,与此同时,C点从原点出发沿同方向运动,且在运动过程中,始终有CN:CM=1:2.若干秒后,C点在﹣12处,求此时N点在数轴上的位置.【例6】在数轴上有若干个点,每相邻两个点之间的距离是1个单位长度,有理数a,b,c,d表示的点是这些点中的4个,且在数轴上的位置如图所示.已知3a=4b﹣3,则代数式c﹣5d的值是()A.﹣20B.﹣16C.﹣12D.﹣8【变式6-1】(2022秋•余姚市期末)数轴上有6个点.每相邻两个点之间的距离是1个单位长,有理数a,b,c,d所对应的点是这些点中的4个,位置如图所示:(1)完成填空:c﹣a=,d﹣c=,d﹣a=;(2)比较a+d和b+c的大小;(3)如果4c=a+2b,求a+b﹣c+d的值.【变式6-2】如图,数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、D对应的数分别是a、b、c、d,且b﹣2a=9,请在图中标出原点O,并求出3c+d﹣2a的值.【变式6-3】如图所示,数轴(不完整)上标有若干个点,每相邻两点相距一个单位长度,点A,B,C,D对应的数分别是a,b,c,d,且有一个点表示的是原点.若d+2a+5=0,则表示原点的应是点.【例7】已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t 的值;若不存在,请说明理由.【变式7-1】阅读下面的材料:如图1,在数轴上A点所示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b﹣a.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B点,然后向右移动7cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A.B.C三点的位置:(2)点C到点A的距离CA=cm;若数轴上有一点D,且AD=4,则点D表示的数为;(3)若将点A向右移动xcm,则移动后的点表示的数为;(用代数式表示)(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.【变式7-2】数轴上A,B,C三点对应的数a,b,c满足(a+40)2+|b+10|=0,B为线段AC 的中点.(1)直接写出A,B,C对应的数a,b,c的值.(2)如图1,点D表示的数为10,点P,Q分别从A,D同时出发匀速相向运动,点P的速度为6个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回到A又折返向C点运动;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q两点相遇点在数轴上对应的数.(3)如图2,M,N为A,C之间两点(点M在N左边,且它们不与A,C重合),E,F分别为AN,CM的中点,求AC−MN的值.EF【变式7-3】数轴上有两点A,B,点C,D分别从原点O与点B出发,沿BA方向同时向左运动.(1)如图,若点N为线段OB上一点,AB=16,ON=2,当点C,D分别运动到AO,BN的中点时,求CD的长;(2)若点C在线段OA上运动,点D在线段OB上运动,速度分别为每秒1cm,4cm,在点C,D运动的过程中,满足OD=4AC,若点M为直线AB上一点,且AM﹣BM=OM,求AB的值.OM【例8】平移和翻折是初中数学两种重要的图形变化(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是A.(+3)+(+2)=+5 B.(+3)+(﹣2)=+1 C.(﹣3)﹣(+2)=﹣5 D.(﹣3)+(+2)=﹣1②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2017的点与表示的点重合;②若数轴上A、B两点之间的距离为2018(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示B点表示.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.(用含有a,b的式子表示)【变式8-1】一条数轴上有点A、B、C,其中点A、B表示的数分别是﹣16、9,现以点C为折点,将数轴向右对折,若点A对应的点A′落在点B的右边,并且A′B=3,则C点表示的数是.【变式8-2】(2022秋•丰城市期中)操作探究:小聪在一张长条形的纸面上画了一条数轴(如图所示),操作一:(1)折叠纸面,使1表示的点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣2表示的点与6表示的点重合,请你回答以下问题:①﹣5表示的点与数表示的点重合;②若数轴上A、B两点之间距离为20,其中A在B的左侧,且A、B两点经折叠后重合,求A、B两点表示的数各是多少③已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为30,求m的值.【变式8-3】已知在纸面上有一数轴,折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数表示的点重合(2)若﹣2表示的点与4表示的点重合,回答以下问题:①数7对应的点与数对应的点重合;②若数轴上A、B两点之间的距离为2019(点A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?(3)点C在数轴上,将它向右移动4个单位,再向左2个单位后,若新位置与原位置到原点的距离相等,则C原来表示的数是多少?请列式计算,说明理由.【例9】已知数轴上有A,B,C三点,它们分别表示数a,b,c,且|a+6|+(b+3)2=0,又b,c互为相反数.(1)求a,b,c的值.(2)若有两只电子蚂蚁甲、乙分别从A,C两点同时出发相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒,当两只蚂蚁在数轴上点m处相遇时,求点m表示的数.(3)若电子蚂蚁从B点开始连续移动,第1次向右移动1个单位长度;第2次向右移动2个单位长度;第3次向左移动3个单位长度;第4次向左移动4个单位长度;第5次向右移动5个单位长度;第6次向右移动6个单位长度;第7次向左移动7个单位长度;第8次向左移动8个单位长度…依次操作第2019次移动后到达点P,求P点表示的数.【变式9-1】在数轴上,点P表示的数是a,点P′表示的数是1,我们称点P′是点P的1−a“相关点”,已知数轴上A1的相关点为A2,点A2的相关点为A3,点A3的相关点为A4…,,则点A2016在数这样依次得到点A1、A2、A3、A4,…,A n.若点A1在数轴表示的数是12轴上表示的数是.【变式9-2】(2022秋•翁牛特旗期中)已知A、B在数轴上对应的数分别用+2、﹣6表示,P是数轴上的一个动点.(1)数轴上A、B两点的距离为8.(2)当P点满足PB=2P A时,求P点表示的数.(3)将一枚棋子放在数轴上k0点,第一步从k点向右跳2个单位到k1,第二步从k1点向左跳4个单位到k2,第三步从k2点向右跳6个单位到k3,第四步从k3点向左跳8个单位到k4.①如此跳6步,棋子落在数轴的k6点,若k6表示的数是12,则k o的值是多少?②若如此跳了1002步,棋子落在数轴上的点k1002,如果k1002所表示的数是1998,那么k0所表示的数是__(请直接写答案).【变式9-3】如图,数轴上有三个点A、B、C,表示的数分别是﹣4、﹣2、3,请回答:(1)若将点B向左移动3个单位后,三个点所表示的数中,最小的数是;(2)若使点B所表示的数最大,则需将点C至少向移动个单位;(3)若使C、B两点的距离与A、B两点的距离相等,则需将点C向左移动个单位;(4)若移动A、B、C三点中的两个点,使三个点表示的数相同,移动方法有种,其中移动所走的距离和最少的是个单位;(5)若在原点处有一只小青蛙,一步跳1个单位长.小青蛙第1次先向左跳1步,第2次再向右跳3步,然后第3次再向左跳5步,第4次再向右跳7步,…,按此规律继续跳下去,那么跳第101次时,应跳________-步,落脚点表示的数是;跳了第n次(n是正整数)时,落脚点表示的数是.。
七年级数学上册《数轴》同步练习题(附答案)
七年级数学上册《数轴》同步练习题(附答案)一、选择题1、如图所示的图形为四位同学画的数轴,其中正确的是( )A .B .C .D .2、如图,数轴上被墨水遮盖的数可能是( )A . 3.2-B .3-C .2-D .0.5-3、如图,在数轴上有A ,B ,C ,D 四个点,对它们表示的数,叙述正确的是( )A .点D 表示的数为﹣2.5B .点C 表示的数为﹣1.5 C .点B 表示的数为0.5D .点A 表示的数为1.254、如图的数轴被墨迹盖住一部分,被盖住的整数点有( )A .7个B .8个C .9个D .10个5、点123,,,,n A A A A (n 为正整数)都在数轴上,点1A 在原点O 的左边,且11A O =;点2A 在点1A 的右边,且212A A =;点3A 在点2A 的左边,且323A A =;点4A 在点3A 的右边,且434A A =;…,依照上述规律,点20182019,A A 所表示的数分别为 ( )A .2018,-2019B .1009,-1010C .-2018,2019D .-1009,1009二、填空题 6、已知在数轴上,位于原点左边的点A 到原点的距离是8,那么点A 所表示的数是______.7、如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是______.8、数轴上,到2这个点的距离等于3的点所表示的数是__________.9、正整数、0、负整数统称__________;正分数和负分数统称____________;整数和分数统称_________.10、画一条______,在直线上取一点表示0,并把这个点叫作_______,选取某一长度作为______,规定直线上向右的方向为_______,就得到_______.11、规定了______、______和_______的______叫数轴.12、在数轴上表示数6的点在原点_______侧,到原点的距离是_______个单位长度,表示数-8的点在原点的______侧,到原点的距离是________个单位长度.表示数6的点到表示数-8的点的距离是_______个单位长度.13、在数轴上到表示-2的点相距8个单位长度的点表示的数为_____.三、解答题,-0.514、已知下列有理数:-4,2,-3.5,0,-2,312(1)在数轴上标出这些有理数表示的点;(2)设表示-0.5的点为A,那么与A点的距离相差4个单位长度的点所表示的数是多少?15、一辆货车从超市出发,向东走了3千米到达A地,继续向东走25千米到达B地,然后向西走了10千米到达C地,最后回到超市。
初二数学数轴练习题
初二数学数轴练习题无标题数轴是初中数学中一个重要的概念,通过练习数轴习题,可以帮助我们更好地理解和掌握这个概念。
本文将介绍一些初二数学数轴练习题,帮助同学们巩固知识。
练习一:数轴上的正负数1. 在数轴上标出数-3、2和5。
2. 比较数-3和2的大小,用符号“<”、“>”或“=”填空。
3. 数轴上从-3到2的距离是几个单位?4. 数轴上从-3到5的距离是几个单位?5. 在数轴上给出一个坐标为-4的点,它与-3之间的距离是几个单位?练习二:数轴上的加减运算1. 在数轴上标出数-2、0和1。
2. 在数轴上标出数5。
3. 数轴上从-2向右移动5个单位,标出新的位置并写出坐标。
4. 数轴上从-2向左移动2个单位,标出新的位置并写出坐标。
5. 数轴上从-2向左移动7个单位,标出新的位置并写出坐标。
练习三:数轴上的乘除运算1. 在数轴上标出数-3、1和2。
2. 数轴上标出数-2和3。
3. 数轴上以1为中心,向左移动3个单位,标出新的位置并写出坐标。
4. 数轴上以2为中心,向右移动4个单位,标出新的位置并写出坐标。
5. 数轴上以-3为中心,向右移动2个单位,标出新的位置并写出坐标。
练习四:数轴上的绝对值1. 在数轴上标出数-4、1和5。
2. 数轴上标出数-2和3。
3. 数轴上哪个数的绝对值最大?4. 数轴上哪个数与-2的绝对值相等?5. 数轴上哪个数与3的绝对值相等?练习五:数轴上的坐标表示1. 在数轴上标出数-5、0和3。
2. 数轴上有一个点的坐标为-2,表示哪个数?3. 数轴上有一个点的坐标为2,表示哪个数?4. 数轴上有一个点的坐标为0,表示哪个数?5. 数轴上有一个点的坐标为-5,表示哪个数?练习六:空间位置的判断1. 数轴上有一个点的坐标为-3,数轴上标出的是哪几个数?2. 数轴上有一个点的坐标为2,数轴上标出的是哪几个数?3. 数轴上有一个点的坐标为4,数轴上标出的是哪几个数?4. 数轴上有一个点的坐标为-7,数轴上标出的是哪几个数?5. 数轴上有一个点的坐标为0,数轴上标出的是哪几个数?通过以上练习题的实践,在解题的过程中我们能够更加直观地理解和运用数轴,掌握数轴上的正负数、加减运算、乘除运算、绝对值以及坐标表示等相关知识。
(七年级)初一数学上册北师大,人教版等通用数轴专项练习试题及答案
(七年级)初一数学上册北师大,人教版等通用数轴专项练习试题及答案2一、单选题1.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >0 2.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:(1)b ﹣a <0;(2)|a|<|b|;(3)a+b >0;(4)b a>0.其中正确的是( )A .(1)(2)B .(2)(3)C .(3)(4)D .(1)(4) 3.如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m 、n 、p 、q ,如图2,先让圆周上表示m 的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示-2019的点与圆周上重合的点对应的字母是( )A .mB .nC .pD .q 4.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动。
设该机器人每秒钟前进或后退1步,并且每步的距离是1个单位长,n x 表示第n 秒时机器人在数轴上的位置所对应的数。
给出下列结论:①33x =;②51x =;③108104x x <;④20182019x x >。
其中,正确的结论的序号是( )A .①③B .②③C .①②③D .①②④ 5.实数a 、b 在数轴上的位置如图所示,下列各式成立的是()A .0ab < B .a-b >0 C .ab >0 D .a+b >0 6.如图,点A 、B 表示的数分别是a 、b ,点A 在0和1对应的两点(不包括这两点)之间移动,点B 在-3,-2对应的两点之间移动,下列四个代数式的值可能比2019大的是( )A .11a b -B .b a -C .2()a b -D .1b a-二、填空题7.一个点从数轴上的原点开始,先向右移动1个单位长度,再向左移动2个单位长度,再向右移动3个单位长度,再向左移动4个单位长度,……,移动2019次后,该点所对应的数是_____.8.在数轴上表示有理数a ,b ,c 的三点如图所示,若ac<0,b+a<0,则①a b >;②b+c<0,③abc<0,其中正确的是________(只填序号).9.数轴上A 、B 、C 、D 四点对应的数都是整数,若点A 对应的数为a ,点B 对应的数为b ,且b -2a =7,则数轴上的原点应是点_____________.10.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是( )A .(3)(2)5+++=+B .(3)(2)1++-=+C .(3)(2)5--+=-D .(3)(2)1-++=-②一机器人从原点O 开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是_____.(2)翻折变换①若折叠纸条,表示-1的点与表示3的点重合,则表示2019的点与表示_______的点重合.②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示_____B点表示______.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为____.(用含有a,b 的式子表示)三、解答题11.已知:c=10,且a,b满足(a+26)2+|b+c|=0,请回答问题:(1)请直接写出a,b,c的值:a=,b=;(2)在数轴上a、b、c所对应的点分别为A、B、C,记A、B两点间的距离为AB,则AB=,AC=;(3)在(1)(2)的条件下,若点M从点A出发,以每秒1个单位长度的速度向右运动,当点M到达点C时,点M停止;当点M运动到点B时,点N从点A出发,以每秒3个单位长度向右运动,点N到达点C后,再立即以同样的速度返回,当点N到达点A时,点N停止.从点M开始运动时起,至点M、N均停止运动为止,设时间为t 秒,请用含t的代数式表示M,N两点间的距离.12.如图,相距5km的A、B两地间有一条笔直的马路,C地位于AB两地之间且距A 地2km,小明同学骑自行车从A地出发沿马路以每小时5km的速度向B地匀速运动,当到达B地后立即以原来的速度返回。
华师大版初中数学七年级上册《2.2.1 数轴》同步练习卷
华师大新版七年级上学期《2.2.1 数轴》同步练习卷一.选择题(共1小题)1.如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数﹣1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数﹣2018的点与圆周上表示数字()的点重合.A.0B.1C.2D.3二.填空题(共10小题)2.如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数﹣1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数﹣2018的点与圆周上表示数字的点重合.3.如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C 点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推.这样第次移动到的点到原点的距离为2018.4.如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E点,…,依此类推,经过次移动后该点到原点的距离为2018个单位长度.5.点A1、A2、A3、…、A n(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为.6.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照图并思考,完成下列各题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A,B两点间的距离是;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A,B两点间的距离为;(3)如果点A表示数﹣4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是,A,B两点间的距离是.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,请你猜想终点B表示什么数?A,B两点间的距离为多少?7.如图,A、B两点在数轴上对应的数分别是﹣20、24,点P、Q两点同时出发,在数轴上运动,它们的速度分别是2个单位/秒、4个单位/秒,它们运动的时间为t秒,当点P、Q在A、B之间相向运动,且满足OP=OQ,则点P对应的数是.8.将数轴按如图所示从点A开始折出一等边△ABC,设A表示的数为x﹣3,B 表示的数为2x﹣5,C表示的数为5﹣x,则x=;若将△ABC向右滚动,则点2016与点重合.(填A.B.C)9.如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动2个单位长度到达点A1,第二次将点A1,向右移动4个单位长度到达点A2,第三次将点A2向左移动6个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离等于19,那么n的值是.10.一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第5次跳动后,该质点到原点O的距离为.11.如图1,圆的周长为4个单位.在该圆的4等分点处分别标上字母m、n、p、q.如图2,先将圆周上表示p的点与数轴原点重合,然后将该圆沿着数轴的负方向滚动,则数轴上表示﹣2014的点与圆周上重合的点对应的字母是.三.解答题(共4小题)12.如图,圆的半径为个单位长度.数轴上每个数字之间的距离为1个单位长度,在圆的4等分点处分别标上点A,B,C,D.先让圆周上的点A与数轴上表示﹣1的点重合.(1)圆的周长为多少?(2)若该圆在数轴上向右滚动2周后,则与点A重合的点表示的数为多少?(如数轴上表示﹣2的点与点B重合,(3)若将数轴按照顺时针方向绕在该圆上,数轴上表示﹣3的点与点C重合…),那么数轴上表示﹣2018的点与圆周上哪个点重合?13.阅读理解:已知Q、K、R为数轴上三点,若点K到点Q的距离是点K到点R的距离的2倍,我们就称点K是有序点对[Q,R]的好点.根据下列题意解答问题:(1)如图1,数轴上点Q表示的数为﹣1,点P表示的数为0,点K表示的数为1,点R表示的数为2.因为点K到点Q的距离是2,点K到点R的距离是1,所以点K是有序点对[Q,R]的好点,但点K不是有序点对[R,Q]的好点.同理可以判断:点P有序点对[Q,R]的好点,点R有序点对[P,K]的好点(填“是”或“不是”);(2)如图2,数轴上点M表示的数为﹣1,点N表示的数为5,若点X是有序点对[M,N]的好点,求点X所表示的数,并说明理由?(3)如图3,数轴上点A表示的数为﹣20,点B表示的数为10.现有一只电子蚂蚁C从点B出发,以每秒2个单位的速度向左运动t秒.当点A、B、C中恰有一个点为其余两有序点对的好点,求t的所有可能的值.14.如图:已知A、B、C是数轴(O是原点)上的三点,点C表示的数是6,线段BC=4,线段AB=12.(1)写出数轴上A、B两点表示的数.(2)动点P、Q分别从A、C同时出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,t为何值时,原点O是线段PQ的中点?15.阅读理解,完成下列各题定义:已知A、B、C为数轴上任意三点,若点C到A的距离是它到点B的距离的2倍,则称点C是[A,B]的2倍点.例如:如图1,点C是[A,B]的2倍点,点D不是[A,B]的2倍点,但点D是[B,A]的2倍点,根据这个定义解决下面问题:(1)在图1中,点A是的2倍点,点B是的2倍点;(选用A、B、C、D表示,不能添加其他字母);(2)如图2,M、N为数轴上两点,点M表示的数是﹣2,点N表示的数是4,若点E是[M,N]的2倍点,则点E表示的数是;(3)若P、Q为数轴上两点,点P在点Q的左侧,且PQ=m,一动点H从点Q 出发,以每秒2个单位长度的速度沿数轴向左运动,设运动时间为t秒,求当t为何值时,点H恰好是P和Q两点的2倍点?(用含m的代数式表示)华师大新版七年级上学期《2.2.1 数轴》同步练习卷参考答案与试题解析一.选择题(共1小题)1.如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数﹣1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数﹣2018的点与圆周上表示数字()的点重合.A.0B.1C.2D.3【分析】由于圆的周长为4个单位长度,所以只需先求出此圆在数轴上环绕的距离,再用这个距离除以4,如果余数分别是0,1,2,3,则分别与圆周上表示数字0,3,2,1的点重合.【解答】解:∵﹣1﹣(﹣2018)=2017,2017÷4=504…1,∴数轴上表示数﹣2018的点与圆周上起点处表示的数字重合,即与3重合.故选:D.【点评】考查了数轴,本题找到表示数﹣2018的点与圆周上起点处表示的数字重合,是解题的关键.二.填空题(共10小题)2.如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数﹣1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数﹣2018的点与圆周上表示数字3的点重合.【分析】由于圆的周长为4个单位长度,所以只需先求出此圆在数轴上环绕的距离,再用这个距离除以4,如果余数分别是0,1,2,3,则分别与圆周上表示数字0,3,2,1的点重合.【解答】解:∵﹣1﹣(﹣2018)=2017,2017÷4=504…1,∴数轴上表示数﹣2018的点与圆周上起点处表示的数字重合,即与3重合.故答案为3.【点评】考查了数轴,本题找到表示数﹣2018的点与圆周上起点处表示的数字重合,是解题的关键.3.如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C 点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推.这样第1345次移动到的点到原点的距离为2018.【分析】根据数轴上点的坐标变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对奇数项、偶数项分别探究,找出其中的规律(相邻两数都相差3),写出表达式就可解决问题.【解答】解:第1次点A向左移动3个单位长度至点B,则B表示的数,1﹣3=﹣2;第2次从点B向右移动6个单位长度至点C,则C表示的数为﹣2+6=4;第3次从点C向左移动9个单位长度至点D,则D表示的数为4﹣9=﹣5;第4次从点D向右移动12个单位长度至点E,则点E表示的数为﹣5+12=7;第5次从点E向左移动15个单位长度至点F,则F表示的数为7﹣15=﹣8;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:﹣(3n+1),当移动次数为偶数时,点在数轴上所表示的数满足:(3n+2),当移动次数为奇数时,﹣(3n+1)=﹣2018,n=1345,当移动次数为偶数时,(3n+2)=2018,n=(不合题意).故答案为:1345.【点评】本题考查了数轴,以及用正负数可以表示具有相反意义的量,还考查了数轴上点的坐标变化和平移规律(左减右加),考查了一列数的规律探究.对这列数的奇数项、偶数项分别进行探究是解决这道题的关键.4.如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E点,…,依此类推,经过4035或4036次移动后该点到原点的距离为2018个单位长度.【分析】根据数轴上点的坐标变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对奇数项、偶数项分别探究,找出其中的规律(相邻两数都相差3),写出表达式就可解决问题.【解答】解:由图可得:第1次点A向右移动1个单位长度至点B,则B表示的数为0+1=1;第2次从点B向左移动2个单位长度至点C,则C表示的数为1﹣2=﹣1;第3次从点C向右移动3个单位长度至点D,则D表示的数为﹣1+3=2;第4次从点D向左移动4个单位长度至点E,则点E表示的数为2﹣4=﹣2;第5次从点E向右移动5个单位长度至点F,则F表示的数为﹣2+5=3;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:(n+1),当移动次数为偶数时,点在数轴上所表示的数满足:﹣n,当移动次数为奇数时,若(n+1)=2018,则n=4035,当移动次数为偶数时,若﹣n=﹣2018,则n=4036.故答案为:4035或4036.【点评】本题考查了数轴,以及数轴上点的坐标变化和平移规律(左减右加),对这列数的奇数项、偶数项分别进行探究是解决这道题的关键.5.点A1、A2、A3、…、A n(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为3027.【分析】根据题意得出规律:当n为奇数时,A n﹣A1=,当n为偶数时,A n=A1﹣,把n=2018代入求出即可.【解答】解:根据题意得:当n为奇数时,A n﹣A1=,当n为偶数时,A n﹣A1=﹣,2018为偶数,代入上述规律A2018﹣A1=﹣=﹣1009解得A1=3027.故答案为:3027.【点评】此题考查数字的变化规律,找出数字之间的联系,利用运算规律解决问题.6.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照图并思考,完成下列各题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A,B两点间的距离是7;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是1,A,B两点间的距离为2;(3)如果点A表示数﹣4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是﹣92,A,B两点间的距离是88.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,请你猜想终点B表示什么数?A,B两点间的距离为多少?【分析】根据数轴得出终点B表示的数,求出A与B的距离,归纳总结得到规律,得出一般结果即可.【解答】解:(1)∵点A表示数﹣3,∴点A向右移动7个单位长度,终点B表示的数是﹣3+7=4,A,B两点间的距离是|﹣3﹣4|=7;(2)∵点A表示数3,∴将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是3﹣7+5=1,A,B两点间的距离为3﹣1=2;(3)∵点A表示数﹣4,∴将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是﹣4+168﹣256=﹣92,A、B两点间的距离是|﹣4+92|=88;(4)∵A点表示的数为m,∴将A点向右移动n个单位长度,再向左移动p个单位长度,那么点B表示的数为(m+n﹣p),A,B两点间的距离为|n﹣p|.故答案为:4,7;1,2;﹣92,88.【点评】本题考查的是数轴的定义及数轴上两点之间的距离公式,弄清题中的规律是解本题的关键.7.如图,A、B两点在数轴上对应的数分别是﹣20、24,点P、Q两点同时出发,在数轴上运动,它们的速度分别是2个单位/秒、4个单位/秒,它们运动的时间为t秒,当点P、Q在A、B之间相向运动,且满足OP=OQ,则点P对应的数是﹣或﹣16.【分析】先分别表示出运动时间为t秒时,点P、Q在数轴上对应的数,再根据OP=OQ列出方程求得t的值,进一步得到点P对应的数.【解答】解:依题意,运动时间为t秒时,点P、Q在数轴上对应的数分别为﹣20+2t,24﹣4t,∵OP=OQ,∴|﹣20+2t|=|24﹣4t|,∴﹣20+2t=24﹣4t,或﹣20+2t=﹣(24﹣4t),解得t=,或t=2,当t=时,点P对应的数是﹣20+2×=﹣,当t=时,点P对应的数是﹣20+2×2=﹣16.答:点P对应的数是﹣或﹣16.故答案为﹣或﹣16.【点评】本题考查了数轴,主要利用了数轴上两点间的距离的求法,以及解含有绝对值的方程.8.将数轴按如图所示从点A开始折出一等边△ABC,设A表示的数为x﹣3,B 表示的数为2x﹣5,C表示的数为5﹣x,则x=3;若将△ABC向右滚动,则点2016与点A重合.(填A.B.C)【分析】根据等边三角形的边长相等得出(5﹣x)﹣(2x﹣5)=2x﹣5﹣(x﹣3),求出x即可,再利用点2016对应的点与A的距离,进一步利用3次一循环的规律求得答案即可.【解答】解:∵△ABC为等边三角形,设A表示的数为x﹣3,B表示的数为2x ﹣5,C表示的数为5﹣x,∴(5﹣x)﹣(2x﹣5)=2x﹣5﹣(x﹣3),解得:x=3;∴点A是3﹣3=0原点,∵2016÷3=672,∴点2016与点A重合,故答案为:3,A.【点评】此题主要考查了等边三角形的性质,实数与数轴,一元一次方程等知识,将数与式的考查融入“图形与几何”中,渗透“数形结合思想”、“方程思想”等是解题的关键.9.如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动2个单位长度到达点A1,第二次将点A1,向右移动4个单位长度到达点A2,第三次将点A2向左移动6个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离等于19,那么n的值是18或19.【分析】根据题意可以分别写出点A移动的规律,当点A奇数次移动后对应数的都是负数,偶数次移动对应的数都是正数,从而可知A n与原点的距离等于19分两种情况,从而可以解答本题.【解答】解:由题意可得,第奇数次移动的点表示的数是:1+(﹣2)×,第偶数次移动的点表示的数是:1+2×,∵点A n与原点的距离等于19,∴当点n为奇数时,则﹣19=1+(﹣2)×,解得,n=19;当点n为偶数,则19=1+2×解得n=18.故答案为:18或19.【点评】本题考查数轴,解题的关键是明确题意,可以分别写出点A奇数次和偶数次移动的关系式.10.一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第5次跳动后,该质点到原点O的距离为.【分析】根据题意,得第一次跳动到OA的中点A1处,即在离原点的处,第二次从A1点跳动到A2处,即在离原点的()2处,则跳动n次后,即跳到了离原点的处,依此即可求解.【解答】解:第一次跳动到OA的中点A1处,即在离原点的处,第二次从A1点跳动到A2处,即在离原点的()2处,…则跳动n次后,即跳到了离原点的处,则第5次跳动后,该质点到原点O的距离为.故答案为:.【点评】考查了数轴,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题注意根据题意表示出各个点跳动的规律.11.如图1,圆的周长为4个单位.在该圆的4等分点处分别标上字母m、n、p、q.如图2,先将圆周上表示p的点与数轴原点重合,然后将该圆沿着数轴的负方向滚动,则数轴上表示﹣2014的点与圆周上重合的点对应的字母是m.【分析】由题意可得,q、m、n、p第一次在数轴上对应的点为﹣1、﹣2、﹣3、﹣4,然后再继续滚动将循环出现q、m、n、p,即四个一循环,从而可以推得﹣2014对应的字母,从而可以解答本题.【解答】解:∵由题意可得,q、m、n、p第一次在数轴上对应的点为﹣1、﹣2、﹣3、﹣4,即每四个为一个循环,∴2014÷4=503 (2)∴数轴上表示﹣2014的点与圆周上重合的点对应的字母是m.故答案为:m.【点评】本题考查数轴,解题的关键是找出题目中的规律,找出所求问题需要满足的条件.三.解答题(共4小题)12.如图,圆的半径为个单位长度.数轴上每个数字之间的距离为1个单位长度,在圆的4等分点处分别标上点A,B,C,D.先让圆周上的点A与数轴上表示﹣1的点重合.(1)圆的周长为多少?(2)若该圆在数轴上向右滚动2周后,则与点A重合的点表示的数为多少?(3)若将数轴按照顺时针方向绕在该圆上,(如数轴上表示﹣2的点与点B重合,数轴上表示﹣3的点与点C重合…),那么数轴上表示﹣2018的点与圆周上哪个点重合?【分析】(1)利用圆的周长公式计算;(2)若该圆在数轴上向右滚动2周后,点A需要滚动8个单位长度;(3)此题需要寻找规律:每4个数一组,分别与0、3、2、1重合,所以需要计算2018÷4,看是第几组的第几个数.【解答】解:(1)圆的周长=2π•=4个单位长度;(2)若该圆在数轴上向右滚动2周后,点A需要滚动8个单位长度,此时与点A重合的点表示的数为:8﹣1=7;(3)由图可知,每4个数为一个循环组依次循环,∵2018÷4=504…2,∴表示﹣2018的点是第505个循环组的第2个数D重合.【点评】本题考查了实数与数轴,关键在于观察出每4个数为一个循环组依次循环,难点在于找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.13.阅读理解:已知Q、K、R为数轴上三点,若点K到点Q的距离是点K到点R的距离的2倍,我们就称点K是有序点对[Q,R]的好点.根据下列题意解答问题:(1)如图1,数轴上点Q表示的数为﹣1,点P表示的数为0,点K表示的数为1,点R表示的数为2.因为点K到点Q的距离是2,点K到点R的距离是1,所以点K是有序点对[Q,R]的好点,但点K不是有序点对[R,Q]的好点.同理可以判断:点P有序点对[Q,R]的好点不是,点R有序点对[P,K]的好点是(填“是”或“不是”);(2)如图2,数轴上点M表示的数为﹣1,点N表示的数为5,若点X是有序点对[M,N]的好点,求点X所表示的数,并说明理由?(3)如图3,数轴上点A表示的数为﹣20,点B表示的数为10.现有一只电子蚂蚁C从点B出发,以每秒2个单位的速度向左运动t秒.当点A、B、C中恰有一个点为其余两有序点对的好点,求t的所有可能的值.【分析】(1)根据定义发现:好点表示的数到[Q,R]中,前面的点Q是到后面的数R的距离的2倍,从而得出结论;(2)点M到点N的距离为6,根据定义得:好点所表示的数为11;(3)由好点的定义可知:分两种情况列式:①当点C在点A、B之间;②当点A在点C、B之间;可以得出结论.【解答】解:(1)∵PQ=PR,RP=2RK,∴点P不是有序点对[Q,R]的好点,点R是有序点对[P,K]的好点.故答案是:不是,是;(2)当点X在点M、N之间,由MN=5﹣(﹣1)=6,XM=2XN,所以XM=4,XN=2,即点X距离点M为4个单位,距离点N为2个单位,即点X 所表示的数为3,当点X在点N的右边,由MN=5﹣(﹣1)=6,XM=2XN,所以XM=12,XN=6,即点X距离点M为12个单位,距离点N为6个单位,即点X所表示的数为11;(3)AB=10﹣(﹣20)=30,当点C在点A、B之间,①若点C为有序点对[A,B]的好点,则CA=2CB,CB=10,t=5(秒).②若点C为有序点对[B,A]的好点,即CB=2CA,CB=20,t=10(秒).③若点B为有序点对[A,C]的好点或点A为有序点对[B,C]的好点,即BA=2BC或AB=2AC,CB=15,t=7.5(秒),当点A在点C、B之间,④点A为有序点对[B,C]的好点,即AB=2AC,CB=45,t=22.5(秒).②点C为有序点对[B,A]的好点或点B为有序点对[C,A]的好点,即CB=2CA或BC=2BA,CB=60,t=30(秒);③点A为有序点对[C,B]的好点,即AC=2AB,CB=90,t=45.∴当经过5秒或7.5或10秒或22.5秒或30秒或45秒时,A、B、C中恰有一个点为其余两有序点对的好点.【点评】本题考查了数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间×速度,认真理解新定义:好点表示的数是与前面的点A的距离是到后面的数B的距离的2倍,列式可得结果.14.如图:已知A、B、C是数轴(O是原点)上的三点,点C表示的数是6,线段BC=4,线段AB=12.(1)写出数轴上A、B两点表示的数.(2)动点P、Q分别从A、C同时出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,t为何值时,原点O是线段PQ的中点?【分析】(1)根据数轴上两点间的距离可得点A、点B所表示的数;(2)若点O是点P与点Q的中点时,P、Q所表示的数互为相反数,列方程求解即可.【解答】解:(1)∵点C表示的数是6,BC=4,AB=12,且点A、点B在点C左边,∴点B表示的数为:6﹣4=2,点A表示的数为:6﹣4﹣12=﹣10,即数轴上A点表示的数为﹣10,数轴上B点表示的数为2;(2)若点O是点P与点Q的中点,则﹣10+2t+6﹣t=0,解得:t=4.故t为4时,原点O是线段PQ的中点.【点评】本题考查了一元一次方程的应用和数轴,解题关键是根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.阅读理解,完成下列各题定义:已知A、B、C为数轴上任意三点,若点C到A的距离是它到点B的距离的2倍,则称点C是[A,B]的2倍点.例如:如图1,点C是[A,B]的2倍点,点D不是[A,B]的2倍点,但点D是[B,A]的2倍点,根据这个定义解决下面问题:(1)在图1中,点A是[C,D] 的2倍点,点B是[D,C] 的2倍点;(选用A、B、C、D表示,不能添加其他字母);(2)如图2,M、N为数轴上两点,点M表示的数是﹣2,点N表示的数是4,若点E是[M,N]的2倍点,则点E表示的数是2或10;(3)若P、Q为数轴上两点,点P在点Q的左侧,且PQ=m,一动点H从点Q 出发,以每秒2个单位长度的速度沿数轴向左运动,设运动时间为t秒,求当t为何值时,点H恰好是P和Q两点的2倍点?(用含m的代数式表示)【分析】(1)根据图形可直接解得;(2)∵NM=4﹣(﹣2)=6 分点E在M,N之间,和N点右侧,又∵点E 是[M,N]的2倍点∴EM=4或12∴点E 表示的数是2或10;(3)点H 恰好是P和Q 两点的2倍点可分为三种情况而定,解得t有3个值.【解答】解:(1)∵CA=2,DA=1,CA=2DA∴点A 是[C,D]的2倍点∵BD=2,BC=1,BD=2BC∴点B是[D,C]的2倍点.故答案为:[C,D][D,C](2)∵NM=4﹣(﹣2)=6当点E在线段MN上又∵点E是[M,N]的2倍点∴EM=MN=4∴点E 表示的数是2当点E在点N右侧∴EM=2NE∴MN=NE=6∴ME=12∴点E表示的数是10.故答案为:2或10;(3 )∵PQ=m,PH=2t,∴HQ=m﹣2t又∵点H 恰好是P和Q两点的2倍点∴点H是[P,Q]的2倍点或点H是[Q,P]的2倍点∴PH=2HQ 或HQ=2PH即:2×2t=m﹣2t或2t=2(m﹣2t)或2t=2(2t﹣m),解得t=m或t=m或t=m所以,当t=m或t=m或t=m时,点H恰好是P和Q两点的2倍点.【点评】此题主要考查了对2倍点的理解和认识,解本题的关键是分清2倍点的两种不同的情况.。
(600)初中数学有理数之数轴专项练习30题 (有答案) 20页
初中数学有理数之数轴专项练习30题(有答案)1.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是.2.点A是数轴上表示4的点,与点A距离为5.5的点B所表示的数为.3.如图,数轴上的A,B,C三点所表示的数分别是a,b,c,其中AB=BC,若|a|>|b|>|c|,则该数轴的原点O的位置应该在.4.数轴上点A先向左移动3个单位长度,再向右移动5个单位长度,正好是﹣8这个点,那么原来点A对应的数是.5.在数轴上,点A表示的数是﹣3,点B表示x,且A与B的距离是6,那么x表示的数是.6.利用数轴回答:(1)写出所有不大于4且大于﹣3的整数有;(2)比﹣2大的数是.7.一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第5次跳动后,该质点到原点O的距离为.8.有理数a,b在数轴上的位置如图所示,下列各式:①b﹣a>0,②﹣b>0,③a>﹣b,④﹣ab<0,正确的个数是.9.已知有理数a,b在数轴上的位置如图所示,若|a|>|b|,则a+b 0,a﹣b 0,ab 0.10.如图,数轴上有四点A,B,C,D,它们表示的数分别为2,x,﹣3,﹣4.(1)A、D两点间的距离是;(2)若将数轴对折,使得点A与点C重合,则折叠点恰好为点B,写出点B表示的数x是,折叠后与点D重合的点表示的数是;(3)若点B从题(2)中的位置出发沿数轴先向右移动,到达A点后,随即折返一直向左移动,移动过程中,将数轴对折,使得折叠点为点B,设与点A重合的点为A′,当A′、D两点的距离为是A′、A两点间距离的时,点B移动的距离为.11.如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A、B是数轴上的点,完成下列各题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是.(2)如果点A表示数是3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离是.(3)一般地,如果点A表示数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么请你猜想终点B表示的数是,A、B两点间的距离是.12.已知在纸面上有一数轴(如图),折叠纸面.(1)若表示数1的点与表示数﹣1的点重合,则表示﹣2的点与表示数的点重合;(2)若表示数﹣1的点与表示数3的点重合,回答以下两个问题:①表示数5的点与表示数的点重合;②若数轴上A、B两点之间的距离为m(A在B的左侧),且A、B两点经折叠后重合,直接写出A、B两点表示的数(用含m的式子表示)是多少?13.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.请利用数轴回答下列问题:①如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B 两点间的距离是;②如果点A表示数3,将A点先向左移动4个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离是;③一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动P个单位长度,请你猜想终点B表示的数是,A、B两点间的距离是.14.如图,先在数轴上画出表示2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,求点B,C表示的数,以及B,C两点间的距离.15.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油1.5升,那么这辆货车此次送货共耗油多少升?16.如图,一只蚂蚁从原点O出发,它先向右爬了2个单位长度到达点A,再向右爬了3个单位长度到达点B,然后向左爬了9个单位长度到达点C.(1)写出A,B,C三点表示的数;(2)根据C点在数轴上的位置回答蚂蚁实际上是从原点出发,向什么方向爬行了几个单位长度?17.在数轴上表示下列各数:0,﹣4.2,,﹣2,+7,,并用“<”号连接.18.如图所示,一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动5个单位长度,可以看到终点表示是﹣3,已知A、B是数轴上的点,请参照如图并思考,完成下列各题.(1)如果点A表示的数﹣1,将点A向右移动4个单位长度,那么终点B表示的数是.A、B两点间的距离是.(2)如果点A表示的数2,将点A向左移动6个单位长度,再向右移动3个单位长度,那么终点B表示的数是.A、B两点间的距离是.(3)如果点A表示的数m,将点A向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示的数是.A、B两点间的距离是.19.一辆货车从货场A出发,向东走了4千米到达批发部B,继续向东走1.5千米到达商场C,又向西走了8.5千米到达超市D,最后回到货场.(1)用一个单位长度表示1千米,以东为正方向,以货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置.(2)超市D距货场A多远?(3)货车一共行驶了多少千米?20.在数轴上有三个点A、B、C(如图).请回答:(1)写出数轴上距点B三个单位的点所表示的数;(2)将点C向左移动6个单位到达点D,用“<”号把A、B、D三点所表示的数连接起来;(3)怎样移动A、B、C中的两个点才能使三个点所表示的数相同(写出一种移动方法即可)21.如图一根木棒放在数轴上,木棒的左端与数轴上的点A重合,右端与点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到B点时,它的右端在数轴上所对应的数为20;若将木棒沿数轴向左水平移动,则当它的右端移动到A点时,则它的左端在数轴上所对应的数为5(单位:cm),由此可得到木棒长为cm.(2)由题(1)的启发,请你能借助“数轴”这个工具帮助小红解决下列问题:问题:一天,小红去问曾当过数学老师现在退休在家的爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”,请求出爷爷现在多少岁了?22.数轴是一个非常重要的数学工具,通过它把数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.请利用数轴回答下列问题:(1)如果点A表示数﹣2,将点A向右移动5个单位长度到达点B,那么点B表示的数是,A、B两点间的距离是;(2)如果点A表示数5,将点A先向左移动4个单位长度,再向右移动7个单位长度到达点B,那么点B表示的数是,A、B两点间的距离是;(3)一般的,如果点A表示的数为a,将点A先向左移动b个单位长度,再向右移动c个单位长度到达点B,那么点B表示的数是.23.一点A从数轴上表示+2的A点开始连续移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…求:(1)写出第一次移动后这个点在数轴上表示的数;(2)写出第二次移动结果这个点在数轴上表示的数;(3)写出第五次移动后这个点在数轴上表示的数;(4)写出第n次移动结果这个点在数轴上表示的数.24.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是﹣3,由于粗心,把数轴的原点标错了位置,使点A正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?25.电子跳蚤落在数轴上(向右为正方向)上某点K.第一步从K0向左跳1个单位到K1,第二部由K1向右跳2个单位到K2,第三步有K2向左跳3个单位到K3,第四步由K3向右跳4个单位到K5…按以上规律跳了100步时,电子跳蚤落在数轴上点K100表示的实数为2008.电子跳蚤的初始位置K表示的数是多少?26.在下面的数轴中,把下列各数在数轴上表示出来,并按从小到大的顺序,用“<”号连接起来..27.如图所示,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C点.(1)求动点A所走过的路程及A、C之间的距离.(2)若C表示的数为1,则点A表示的数为.28.一个小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬行的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)小虫最后是否能回到出发点O?(2)小虫离开出发点O最远时是多少厘米?(直接写出结果即可.)(3)在爬行过程中,如果每爬1厘米奖励两粒芝麻,则小虫共可得多少粒芝麻?29.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒.(1)数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?30.已知A、B两地相距50米,小乌龟从A地出发前往B地,第一次它前进1米,第二次它后退2米,第三次再前进3米,第四次又向后退4米…,按此规律行进,如果A地在数轴上表示的数为﹣16.(1)求出B地在数轴上表示的数;(2)若B地在原点的右侧,经过第七次行进后小乌龟到达点P,第八次行进后到达点Q,点P、点Q到A地的距离相等吗?说明理由?(3)若B地在原点的右侧,那么经过100次行进后,小乌龟到达的点与点B之间的距离是多少?初中数学有理数之数轴30题答案:1.【分析】此题可借助数轴用数形结合的方法求解.【解答】解:设点A表示的数是x.依题意,有x+7﹣4=0,解得x=﹣3.故答案为:﹣32.【分析】根据数轴上到一点距离相等的点有两个,可得所求点表示的数.【解答】解:∵4+5.5=9.5,4﹣5.5=﹣1.5,∴与点A距离为5.5的点B所表示的数为﹣1.5,9.5,故答案为:﹣1.5,9.5.3.【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【解答】解:∵|a|>|b|>|c|,∴点A到原点的距离最大,点B其次,点C最小,又∵AB=BC,∴原点O的位置应该在点C的右边或者在点B与点C之间(且靠近点C)的地方.故答案为:点C的右边或者在点B与点C之间(且靠近点C)的地方.4.【分析】原来点A对应的数为x,再根据左减右加的法则求出x的值即可.【解答】解:原来点A对应的数为x,则x﹣3+5=﹣8,解得x=﹣10.故答案为:﹣10.5.【分析】根据数轴上的点到一点的距离相等的点有两个,可得B点有两个,根据AB的距离等于6,可得x的值.【解答】解:∵AB=6,=6,x=﹣9,或x=3,故答案为:﹣9,3.6.【分析】(1)设这个数为x,则﹣3<x≤4,在数轴上表示出不等式组的解集,即可得出答案;(2)根据题意在数轴上把符合条件的数表示出来,即可得出答案.【解答】解:(1)设这个数为x,则﹣3<x≤4,在数轴上表示为:,根据数轴可以看出所有不大于4且大于﹣3的整数有﹣2、﹣1、0、1、2、3、4,故答案为:﹣2、﹣1、0、1、2、3、4;(2)在数轴上表示为:则比﹣2大的数是﹣1.5,故答案为:﹣1.5.7.【分析】根据题意,得第一次跳动到OA的中点A1处,即在离原点的处,第二次从A1点跳动到A2处,即在离原点的()2处,则跳动n次后,即跳到了离原点的处,依此即可求解.【解答】解:第一次跳动到OA的中点A1处,即在离原点的处,第二次从A1点跳动到A2处,即在离原点的()2处,…则跳动n次后,即跳到了离原点的处,则第5次跳动后,该质点到原点O的距离为.故答案为:.8.【分析】观察数轴a、b位置,a<0,b>0,在数轴上找出a、b的相反数并分析得出正确答案.【解答】解:a<0,b>0,b﹣a>0,故①b﹣a>0正确,b>0,﹣b<0,故②﹣b>0错误,a<0,b>0,|a|>|b|,a<﹣b,故③a>﹣b错误,a<0,b>0,﹣ab>0,故④﹣ab<0错误,故只有①正确.故答案为:1.9.【分析】根据数轴上点的排列判断出a、b的符号,再根据有理数的加减运算法则计算.【解答】解:∵a<0,b>0,∴ab<0,a﹣b<0,又∵|a|>|b|,∴a+b<0.故答案为<,<,<.10.【分析】(1)直接利用两点间距离公式计算;(2)先由轴对称的性质求x的值,再利用轴对称求出结果;(3)先设点B向左移动后与点A的距离为m,则AB=A′B=m,A′D=AD﹣2m=6﹣2m,根据当A′、D两点的距离为是A′、A两点间距离的时列式得出m的值,最后计算点B的总距离.【解答】解:(1)2﹣(﹣4)=6,所以A、D两点间的距离是6;(2)由折叠得:AB=BC,则2﹣x=x﹣(﹣3),x=﹣,设折叠后与点D重合的点表示的数是a,则﹣﹣(﹣4)=a﹣(﹣)∴a=3,∴折叠后与点D重合的点表示的数是3,(3)设点B向左移动后与点A的距离为m,由题意得:6﹣2m=×2m,m=,+2﹣(﹣)=,∴点B移动的距离为,故答案为:(1)6,(2)﹣,3,(3).11.【分析】(1)(2)根据图形可直接的得出结论;(3)先求出B点表示的数,然后由数轴上两点间的距离公式:两点间的距离是两点所表示的数差的绝对值,计算即可.【解答】解:(1)由图可知,点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A、B两点间的距离是|﹣3﹣4|=7;故答案为:4,7;(2)如果点A表示数3,将点A向左移动7个单位长度,则点A表示3﹣7=﹣4,再向右移动5个单位长度,那么终点B表示的数是﹣4+5=1,A、B两点间的距离是|3﹣1|=2;故答案为:1,2;(3)点A表示数为a,将点A向右移动b个单位长度,则点A表示a+b,再向左移动c个单位长度,那么终点B表示的数是a+b﹣c,A、B两点间的距离是|a+b﹣c﹣a|=|b﹣c|.故答案为:a+b﹣c,|b﹣c|.12.【分析】(1)根据对称的知识,若1表示的点与﹣1表示的点重合,则对称中心是原点,从而找到﹣2的对称点;(2)①若﹣1表示的点与3表示的点重合,则对称中心是1表示的点,从而找到5的对称点;②根据对应点连线被对称中心平分,则点A和点B到1的距离都是,从而求解.【解答】解::(1)根据题意,得对称中心是原点,则﹣2表示的点与数2表示的点重合;(2)∵﹣1表示的点与3表示的点重合,∴对称中心是1表示的点.∴①5表示的点与数﹣3表示的点重合;②若数轴上A、B两点之间的距离为m(A在B的左侧),则点A表示的数是1﹣,点B表示的数是1+.故填空中的答案为(1)2,(2)①﹣3,②1﹣,1+13.【分析】①根据“左减右加”进行计算,此题中两点间的距离即为移动的单位长度;②根据“左减右加”进行计算,两点间的距离即为两点对应的数的差的绝对值;③根据“左减右加”进行计算,两点间的距离即为两点对应的数的差的绝对值.【解答】解:①﹣3+7=4,7;②3﹣4+5=4;4﹣3=1;③m+n﹣p;|m+n﹣p﹣m|=|n﹣p|.故答案为4,7;4,1;m+n﹣p,|n﹣p|.14.【分析】根据题目的叙述即可作出图形,从而解决本题.【解答】解:点B,C表示的数分别是﹣2.5,1,B,C两点间的距离是3.5.15.【分析】(1)根据已知,以百货大楼为原点,以向东为正方向,用1个单位长度表示1千米一辆货车从百货大楼出发,向东走了4千米,到达小明家,继续向东走了1.5千米到达小红家,然后西走了8.5千米,到达小刚家,最后返回百货大楼,则小明家、小红家和小刚家在数轴上的位置可知.(2)用小明家的坐标减去与小刚家的坐标即可.(3)这辆货车一共行走的路程,实际上就是4+1.5+8.5+3=17(千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.【解答】解:(1)如图所示:(2)小明家与小刚家相距:4﹣(﹣3)=7(千米);(3)这辆货车此次送货共耗油:(4+1.5+8.5+3)×1.5=25.5(升).答:小明家与小刚家相距7千米,这辆货车此次送货共耗油25.5升.16.【分析】(1)根据题中所给图形即可写出答案;(2)根据所给图形,向右为正,向左为负,继而得出答案.【解答】解:根据所给图形可知:(1)A点表示2,B点表示5,C点表示﹣4,O点表示0;(2)蚂蚁实际上是从原点出发,向原点左侧爬行了4个单位.17.【分析】先分别把各数化简为0,﹣4.2,,﹣2,7,,再在数轴上找出对应的点,注意在数轴上标数时要用原数,最后比较大小的结果也要用化简的原数.【解答】解:这些数分别为0,﹣4.2,,﹣2,7,,在数轴上表示出来如图所示,根据这些点在数轴上的排列顺序,从左至右分别用“<”连接为:﹣4.2<﹣2<0<<+7.18.【分析】(1)根据数轴的特点向右移动加,A、B两点间的距离等于移动的距离求解即可;(2)(3)根据数轴的特点向左移动减,向右移动加,A、B两点间的距离等于移动的距离求解即可.【解答】解:(1)终点B表示:﹣1+4=3,A、B间的距离是4;(2)终点B表示:2﹣6+3=﹣1,A、B间的距离是2﹣(﹣1)=2+1=3;(3)终点B表示:m+n﹣p,A、B两点间的距离是|m+n﹣p﹣m|=|n﹣p|.故答案为:(1)3,4;(2)﹣1,3;(3)m+n﹣p,|n﹣p|.19.【分析】(1)根据题意画出数轴,并在数轴上表示出各点即可;(2)根据(1)中数轴上D点的位置即可得出结论;(3)把各数相加即可得出货车行驶的距离.【解答】解:(1)如图所示:;(2)由图可知,超市D距货场A3千米;(3)4+1.5+8.5+3=17(千米).答:货车一共行驶了17千米.20.【分析】(1)本题可直接根据数轴观察出A、B、C三点所对应的数;(2)根据移动的方向,得D所表示的数是3﹣6=﹣3.比较负数的时候,绝对值大的反而小;(3)根据点的移动和数的大小变化规律即可回答.此题方法不唯一,移动其中任意两个点均可.【解答】解:(1)因为点B所表示的数是﹣2,则距点B三个单位的点所表示的数有﹣2﹣3=﹣5,﹣2+3=1;(2)点C向左移动6个单位到达点D,则点D表示的数为﹣3,所以﹣4<﹣3<﹣2.(3)把A点向右移动2个单位,C点向左移动5个单位.(答案不唯一)21.【分析】(1)此题关键是正确识图,由数轴观察知三根木棒长是20﹣5=15(cm),则此木棒长为5cm,(2)在求爷爷年龄时,借助数轴,把小红与爷爷的年龄差看做木棒AB,类似爷爷比小红大时看做当A点移动到B点时,此时B点所对应的数为﹣40,小红比爷爷大时看做当B点移动到A点时,此时A点所对应的数为125,所以可知爷爷比小红大[125﹣(﹣40)]÷3=55,可知爷爷的年龄.【解答】解:(1)由数轴观察知三根木棒长是20﹣5=15(cm),则此木棒长为:15÷3=5cm,故答案为:5.(2)借助数轴,把小红与爷爷的年龄差看做木棒AB,类似爷爷比小红大时看做当A点移动到B点时,此时B点所对应的数为﹣40,小红比爷爷大时看做当B点移动到A点时,此时A点所对应的数为125,∴可知爷爷比小红大[125﹣(﹣40)]÷3=55,可知爷爷的年龄为125﹣55=70.答:爷爷的年龄是70岁.22.【分析】充分运用相反数表示两个相反意义的量,列式计算.【解答】解:规定向右为正,向左为负,根据正负数的意义得(1)点B表示的数是﹣2+5=3,A、B两点间的距离是3﹣(﹣2)=5;(2)点B表示的数是5﹣4+7=8,A、B两点间的距离是8﹣5=3;(3)点B表示的数是a﹣b+c.23.【分析】数轴上点的移动规律是“左减右加”.依据规律计算即可.【解答】解:(1)第一次移动后这个点在数轴上表示的数:+2﹣1+2=+3;(2)第二次移动结果这个点在数轴上表示的数:+3﹣3+4=+4;(3)第五次移动后这个点在数轴上表示的数:+3+1+1+1+1=7;(4)第n次移动结果这个点在数轴上表示的数:+3+n﹣1=n+2.24.【分析】先根据题意画出数轴,便可直观解答,点A的相反数是3,可得出原点需要向右移动.【解答】解:如图所示,可得应向右移动6个单位,故答案为原点应向右移动6个单位.表示的数为x,可25.【分析】规定向左跳为负数,向右跳为正数,设电子跳蚤的初始位置K以列方程求解.表示的数是x,则【解答】解:设电子跳蚤的初始位置Kx﹣1+2﹣3+4﹣5+…+100=2008,x+50=2008,解得x=1958.答:电子跳蚤的初始位置K表示的数是1958.26.【分析】将各点在数轴上表示出来,再由数轴上的点从左至右依次减小可得出正确的排序.【解答】解:在数轴上表示各点如下:大小排序如下:﹣5<﹣3<0<<2.27.【分析】(1)根据题意列出算式2+5,求出即可得出动点A所走过的路程,求出5﹣2即可得出A、C之间的距离;(2)设点A表示的数十x,根据题意得出算式x+(﹣2)+(+5)=1,求出x即可.【解答】解:(1)动点A所走过的路程2+5=7,A、C之间的距离是AC=5﹣2=3;(2)设点A表示的数十x,则x+(﹣2)+(+5)=1,x=﹣2,故答案为:﹣2.28.【分析】(1)由于向右爬行的路程记为正数,向左爬行的路程为负数,所以要计算出它爬行所有数的和,而(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=0,于是可判断回到出发点;(2)依次往后计算看哪个数最大即可得到离O点的最远距离;(3)计算所有数的绝对值得到小虫爬行的路程,再把路程乘以2得到小虫共得的芝麻.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=5+10+12﹣3﹣8﹣6﹣10,=27﹣27,=0,∴小虫最后可以回到出发点;(2)+5+(﹣3)=2,(+5)+(﹣3)+(+10)=12,(+5)+(﹣3)+(+10)+(﹣8)=4,(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)=﹣2,(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+12=10;所以,小虫离开出发点O最远时是12厘米;(3)(|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|)×2,=(5+3+10+8+6+12+10)×2,=54×2,=108,所以小虫共可得108粒芝麻.29.【分析】(1)由已知得OA=6,则OB=AB﹣OA=4,因为点B在原点左边,从而写出数轴上点B所表示的数;动点P从点A出发,运动时间为t(t>0)秒,所以运动的单位长度为6t,因为沿数轴向左匀速运动,所以点P所表示的数是6﹣6t;(2)①点P运动t秒时追上点Q,由于点P要多运动10个单位才能追上点Q,则6t=10+4t,然后解方程得到t=5;②分两种情况:当点P运动a秒时,不超过Q,则10+4a﹣6a=8;超过Q,则10+4a+8=6a;由此求得答案解即可.【解答】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为6t,∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣6t;(2)①点P运动t秒时追上点R,根据题意得6t=10+4t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+4a﹣6a=8,解得a=1;当P超过Q,则10+4a+8=6a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.30.【分析】(1)在数轴上表示﹣16的点移动50个单位后,所得的点表示为﹣16﹣50=﹣66或﹣16+50=34;(2)数轴上点的移动规律是“左减右加”.依据规律计算即可;(3)根据100为偶数可得在数轴上表示的数,再根据两点间的距离公式即可求解.【解答】解:(1)﹣16+50=34,﹣16﹣50=﹣66.答:B地在数轴上表示的数是34或﹣66.(2)第七次行进后:1﹣2+3﹣4+5﹣6+7=4,第八次行进后:1﹣2+3﹣4+5﹣6+7﹣8=﹣4,因为点P、Q与A点的距离都是4米,所以点P、点Q到A地的距离相等;(3)当n为100时,它在数轴上表示的数为:﹣16+1﹣2+3﹣4+…+(100﹣1)﹣100==﹣66,34﹣(﹣66)=100(米).答:小乌龟到达的点与点B之间的距离是100米.。
人教版初中七年级数学上册《数轴》练习题
人教版初中七年级数学上册《数轴》例题数轴的概念虽简单,但初学者也会因疏忽犯下一些小错误,而数轴作为中学数学的基本工具又是非常重要的,这里通过一些例题来纠正一些容易出现的典型错误一、数轴概念例1 回答问题:下图中哪一个表示数轴?不是数轴的请说出原因.分析:数轴的三要素原点、正方向和单位长度,这三者对于数轴来说是缺一不可.解:根据数轴的三要素:图(1)是数轴,它是具备了原点、正方向和单位长度的直线.图(2)不是数轴,因为单位长度不一致.图(3)不是数轴,因为没有原点和单位长度.图(4)不是数轴,因为它是射线,不是直线.图(5)不是数轴,有两处错误,一是没有标明正方向;二是负数的排序错误,从原点向左依次应是-1,-2,-3,….说明:识别一个图形是否是数轴,方法是第一,这个图形是一条直线;第二,这条直线要满足三要素.即原点、正方向和单位长度,缺一不可.二、数轴及数轴上的点例2在所给的数轴上画出表示下列各数的点:分析:第一步画数轴,第二步在数轴上找出相对应的点,每个正有理数都可用数轴上原点右边的一个点来表示,例如2、3.5,可用数轴上分别位于原点右边2个单位,3.5个单位的点表示.每一个负有理数都可用数轴上原点左边的一个点来表示,解:说明:数轴上表示数的点可用大写字母标出,写在数轴上方所对应数的上面,原点用O 标出,它表示数0.数轴上原点的位置要根据需要来确定,不一定要居中.单位长度应根据需要来确定,1 cm 的长度可以表示1个单位长度,也可以表示2个,5个,10个…单位长度,但在同一数轴上,单位长度必须一致,不可随意改变.变式练习:指出数轴上A 、B 、C 、D 、E 各点分别表示什么数.参考答案:O 表示0,A 表示322-,B 表示1,C 表示413,D 表示-4,E 表示-0.5. 三、数轴上的点与原点的关系例3 填空(1)数轴上表示2的点在原点的_____边,与原点的距离是____个单位长度.(2)数轴上表示-2的点在原点的____边,与原点的距离是___个单位长度.(3)数轴上在原点右边距原点3.7个单位长度的点表示数_______.(4)数轴上在原点左边距原点85个单位长度的点表示数______. (5)数轴上距原点2个单位长度的点有_____个,它们分别表示数______. 分析:数轴上,表示正数的点都在原点的右边,表示负数的点都在原点的左边.距离不会是负数.答案:(1)右,2 (2)左,2 (3)3.7 (4)85- (5)2,+2和-2 说明:①可以画数轴来加深认识.②数轴上表示3的点在原点的右边,表示-3的点在原点的左边,它们与原点的距离都是3个单位长度;同样,数轴上表示2 018的点在原点的右边,表示-2 018的点在原点的左边,它们与原点的距离都是2 018个单位长度.即如果a表示一个正数,则数轴上表示数a的点在原点的右边,它与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度.③如果a表示一个正数,数轴上距原点a个单位长度的点有2个,它们分别是数a和-a.。
数轴测试题
数轴一、选择题1.下列说法正确的是 ( )A.没有最大的正数,但有最大的负数B.没有最小的负数,但有最小的正数C.没有最小的有理数,也没有最大的有理数D.有最小的自然数,也有最小的负整数2.在数轴上,原点及原点左边的点表示的数是 ( )A.正数 B.负数 C.非正数 D.非负数3.数轴上表示-2的点到原点的距离是 ( )A.-12B.12C.2 D.-24.四个同学各画了一条数轴,只有一人画对了,你认为正确的是 ( )5.在如图所示的数轴上,A、B两点表示的有理数分别是 ( )A.3.5和3 B.3.5和-3 C.-3.5和3 D.-3.5和-36.下面所画直线是数轴的是 ( )7.下列判断正确的是A.数轴就是一条直线B.数轴上右边的点表示正数,左边的点表示负数C.距离数轴上原点越远的点,表示的数越大D.任何一个有理数,都可以用数轴上的点表示出来8.下列说法正确的是A.在数轴上与原点的距离越远的点表示的数越大B.在数轴上-9与-7之间的有理数为-8C.任何一个有理数都可以在数轴上表示出来D.比-1大6的数是79.如图,在数轴上A、B、C、D各点表示的数,正确的是 ( )A.点D表示-2.5 B.点C表示-1.25 C.点B表示1.5 D.点A表示1. 25 10.下列说法中,正确的有 ( )①数轴上与表示-3的点距离为2的点是-1;②数轴上的点表示的数都是有理数;③-3. 14既是负数、分数,也是有理数;④数轴上表示-a的点一定在原点的左边;⑤圆周率π是无限不循环小数,它不是有理数.A.0个 B.1个 C.2个 D.3个二、填空题11.数轴上原点左边的点表示_____数,原点右边的点表示_____数,_____点表示零.12.数轴上一点A,在原点左侧,离开原点6个单位长度,点A表示的敦是_______.13.数轴上一点B,与原点相距10个单位长度,则点B表示的数是________.14.在数轴上表示-3的点与表示2的点的距离是_______15.比-3大而比4小的整数有______个,它们分别是__________.16.数轴是规定了_______,_____________,___________的一条直线.17.数轴上点M表示2,点N表示-3.5,点A表示-1,在点M和点N中,距离A点较远的点是________18.在数轴上位于-2与5正中间的点表示的数是_________.19.数轴上与表示-1的点相距4个单位长度的点所表示的数有_________个,它们分别是________和________. 20.数轴上到原点的距离等于4个单位的点表示的数位_________三、解答题21.画一条数轴,并在数轴上画出表示下列各数的点,并按从小到大的顺序用“<”连起来。
初中数学冀教版七年级上册第一章 有理数1.2 数轴-章节测试习题(4)
章节测试题1.【题文】如图1,已知在数轴上有A、B两点,点A表示的数是,点B表示的数是9.点P在数轴上从点A出发,以每秒2个单位的速度沿数轴正方向运动,同时,点Q在数轴上从点B出发,以每秒3个单位的速度在沿数轴负方向运动,当点Q到达点A时,两点同时停止运动.设运动时间为秒.(1)AB= ;时,点Q表示的数是;当时,P、Q两点相遇;(2)如图2,若点M为线段AP的中点,点N为线段BP中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长;(3)如图3,若点M为线段AP的中点,点T为线段BQ中点,则点M表示的数为________;点T表示的数为________ ;MT=_________ .(用含t的代数式填空)【答案】(1)15;6;3;(2)MN长度不变,理由见解析;(3)t-6,9- ,15-【分析】(1)根据题意即可得到结论;M为AP中点,N为BP中点,得到,,根据即可求出的长度.根据图形,即可得出结论.【解答】解:(1)15 ; 6 ; 3 ;(2)答:MN长度不变,理由如下:M为AP中点,N为BP中点,(3) ;;.2.【题文】把数-2,1.5,-(-4),-3,(-1)4,-|+0.5|在数轴上表示出来,然后用“<”把它们连接起来.【答案】在数轴上表示数略,-3<-2<-|+0.5|<(-1)4<1.5<-(-4).【分析】把各个数在数轴上表示出来,根据数轴右边的数总比在左边的数大,按照从左到右的顺序排列起来即可.【解答】解:把数-2,1.5,-(-4),-3,(-1)4,-|+0.5|在数轴上表示出来如下:用“<”把它们连接起来为:-3<-2<-|+0.5|<(-1)4<1.5<-(-4).3.【题文】如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2.已知点A,B是数轴上的点,请参照图并思考,完成下列各题.(1)若点A表示数,将A点向右移动5个单位长度,那么终点B表示的数是,此时A,B两点间的距离是________.(2)若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B,则B表示的数是________;此时A,B两点间的距离是________.(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B,此时A、B两点间的距离为多少?【答案】(1) 3 ,5 ;(2) 2 ; 1 ;(3)【分析】(1)由数轴上面的点表示的数查出结果即可,并根据绝对值求出两点间的距离;(2)由数轴上面的点表示的数查出结果即可,并根据绝对值求出两点间的距离;(3)结合(1)和(2)的距离与平移的关系直接列式即可(距离为两次移动的单位长度的差的绝对值).【解答】解:(1)(1) 3 ,5 ;(2) 2 ; 1 ;(3)4.【题文】点A、B在数轴上分别表示实数、,A、B两点之间的距离记作AB.当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB==.当A、B两点都不在原点时:(1)如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB -OA====(2)如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB -OA====(3)如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA===回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=.(2)数轴上表示2和-4的两点A和B之间的距离AB=.(3)数轴上表示和-2的两点A和B之间的距离AB=,如果AB=2,则的值为.(4)若代数式有最小值,则最小值为.【答案】(1);(2)6 ;(3),0或-4;(4)5.【分析】根据数轴上A、B两点之间的距离表示为即可求出答案.【解答】解:(1)综上所述,数轴上A、B两点之间的距离(2)数轴上表示2和-4的两点A和B之间的距离(3)数轴上表示和-2的两点A和B之间的距离如果,则的值为或由题意可知:当x在−2与3之间时,此时,代数式|x+2|+|x−3|取最小值,最小值为故答案为:(1);(2)6 ;(3),0或-4;(4)5.5.【题文】请将下列各数在数轴上表示出来,并用“<”把它们连接起来.﹣22, 0,﹣(﹣3),+(﹣2.5),|﹣|【答案】答案见解析【分析】根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.【解答】解:如图,由数轴上的点表示的数右边的总比左边的大,得﹣22<+(﹣2.5)<0<|﹣|<﹣(﹣3)6.【题文】如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为-1,正方形ABCD的面积为16.(1)数轴上点B表示的数为;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为,移动后的正方形与原正方形ABCD重叠部分的面积记为S.① 当S =4时,画出图形,并求出数轴上点表示的数;② 设正方形ABCD的移动速度为每秒2个单位长度,点E为线段的中点,点F在线段上,且. 经过秒后,点E,F所表示的数互为相反数,直接写出的值.【答案】(1)-5;(2)– 4或2;(3)t=4.【分析】(1)、根据正方形的面积得出AB=4,根据点A所表示的数得出点B所表示的数;(2)、①、根据题意得出矩形的一边长为4,要使面积为4,则另一边长为1,然后根据向左移动和向右移动两种情况分别画出图形得出答案;②、用含t的代数式分别表示出点E和点F所表示的数,然后根据互为相反数的两个数的和为零列出方程得出答案.【解答】试题分析:解:(1)、–5;(2)、∵正方形ABCD的面积为16,∴边长为4.当S=4时,①若正方形ABCD向左平移,如图1,重叠部分中的A'B =1,∴AA'=3.则点A'表示–1–3= – 4.②若正方形ABCD向右平移,如图2,重叠部分中的AB'=1,∴AA'=3.则点A'表示–1+3= 2,∴点A'表示的数为– 4或2.图1图2(3)t=4.方法总结:本题主要考查的就是数轴上的动点问题以及在数轴上两点之间的距离计算,属于中等难度的题型,解答这个问题最关键的就是要明确两点之间的距离方法.在用代数式来表示点所表示的数时,同学们一定要注意向右移动,则用原数加上移动的距离;向左移动,则用原数减去移动的距离.7.【题文】如图,数轴上的点A、B、C分别表示数﹣3、﹣1、2.(1)A、B两点的距离AB=________ ,A、C两点的距离AC=________ ;(2)通过观察,可以发现数轴上两点间距离与这两点表示的数的差的绝对值有一定关系,按照此关系,若点E表示的数为x,则AE=________ ;(3)利用数轴直接写出|x﹣1|+|x+3|的最小值=________ .【答案】(1)2;5;(2)|x+3|;(3)4【分析】(1)直接利用数轴可得AB,AC的长;(2)结合数轴可得出点E表示的数为x,则AE的长为:|x+3|;(3)直接利用数轴可得出|x﹣1|+|x+3|的最小值.【解答】解:(1)如题图所示:AB=-1-(-3)=2,AC=2-(-3)=5,故答案为:2,5;(2)根据题意可得:AE=|x-(-3)|=|x+3|,故答案为:|x+3|;(3)由数轴可知:| x-1|相当于x 到数轴上1的距离,| x+3 |相当于x到-3的距离,所以绝对值之和的最小值为到两点距离之和的最小值,也就是x在两点之间时,所以最小值为5,即|x﹣1|+|x+3|的最小值为:4,故答案为:4.【方法总结】本题考查了数轴与绝对值,通过计算发现数轴上两点间的距离实际是就是求数轴上这两点所表示的数的差的绝对值是解题的关键.8.【题文】在数轴上表示数:﹣2,+1.5,﹣,0,,﹣3,按从小到大的顺序用“<”连接起来.【答案】答案见解析【分析】将各数表示在数轴上,比较大小,按从小到大的顺序用“<”连接起来即可.【解答】解:将各数表示在数轴上,如图所示:则﹣3<﹣2<﹣<0<+1.5<.9.【题文】把下面的直线补充成一条数轴,并把下列各数在数轴上表示出来,再按从小到大的顺序用“<”连接起来:﹣3,0,+3.5,,0.5.【答案】答案见解析.【分析】根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.【解答】解:如图:;数轴上的点表示的数右边的总比左边的大,得﹣3<﹣1<0<0.5<+3.5.10.【题文】有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点到原点的距离相等.(1)用“”“ ”“ ”填空:b 0,a+b 0,a-c 0,b-c 0;(2)化简.【答案】(1)<,=, >, <;(2)a-c+b【分析】(1)、根据数轴可得:b为负数,则;a和b互为相反数,则a+b=0;,则;,则;(2)、根据数轴可得:a+b=0,,;根据去绝对值的法则将绝对值去掉,然后进行合并同类项得出答案.【解答】解:(1) <,=, >, <(2)原式==a-c+b11.【题文】根据如图所示的数轴,解答下面问题.(1)写出点A表示的数的绝对值;(2)对A,B点进行如下操作:先把点A,B表示的数乘﹣,再把所得数对应的点向右平移1个单位长度,得到对应点A′,B′,在数轴上表示出点A′,B′.【答案】(1)点A表示的数的绝对值是3;(2)点A′表示的数是: 2,点B′表示的数是:﹣1【分析】(1)数轴上点A所对应的数即为所求;(2)先把点A,B表示的数分别乘以-,再分别加1得到A′,B′.然后在数轴上表示.【解答】解:(1)点A表示的数的绝对值是3;(2)点A′表示的数是:﹣3×(﹣)+1=2,点B′表示的数是:6×(﹣)+1=﹣1,在数轴上表示如下:12.【题文】已知数轴上,点O为原点,点A对应的数为11,点B对应的数为b,点C在点B右侧,长度为3个单位的线段BC在数轴上移动,(1)如图1,当线段BC在O,A两点之间移动到某一位置时,恰好满足线段AC=OB,求此时b的值;(2)线段BC在数轴上沿射线AO方向移动的过程中,是否存在AC﹣OB=AB?若存在,求此时满足条件的b的值;若不存在,说明理由.【答案】(1)线段AC=OB,此时b的值是4;(2)若AC﹣OB=AB,满足条件的b值是或﹣5.【分析】(1)由题意可知B点表示的数比点C对应的数少3,进一步用b表示出AC、OB之间的距离,联立方程求得b的数值即可;(2)分别用b表示出AC、OB、AB,进一步利用AC-0B=AB建立方程求得答案即可.【解答】解:(1)由题意得:11﹣(b+3)=b,解得:b=4.答:线段AC=OB,此时b的值是4.(2)由题意得:①11﹣(b+3)﹣b=(11﹣b),解得:b=.②11﹣(b+3)+b=(11﹣b),解得:b=﹣5.答:若AC﹣OB=AB,满足条件的b值是或﹣5.13.【答题】实数在数轴上的位置如图所示,下列各式正确的是()A.B.C.D.【答案】D【分析】根据数轴左边的数小于右边的数以及绝对值的几何意义即可解答.【解答】解:根据实数a、0、b在数轴上的位置可以得知:a<0,0<b,a<b,根据实数a、b在数轴上与原点的距离大小可知:|a|>|b|.选D.方法总结:此题主要考查了利用数轴比较实数的大小,同时考查了绝对值的几何意义.解答此题的关键是熟知:数轴上的任意两个数,右边的数总比左边的数大.14.【答题】在数轴上,表示数的点到原点的距离是个单位长度,数是的倒数,则()A. 或B. 或C. 或D. 或【答案】B【分析】由数的点到原点的距离是个单位长度,可求出a的值;由数是的倒数,可求出b的值,再分情况求a+b;【解答】解:因为数的点到原点的距离是个单位长度,所以a=5或a=-5;因为数是的倒数,所以b=-3;当a=5时a+b=5-3=2;当a=-5时,a+b=-5-3=-8;故选B.。
七年级上册数学《数轴》练习题及答案
七年级上册数学《数轴》练习题及答案知识需要不断地积累,通过做练习才能让知识掌握的更加扎实,查字典数学网初中频道为大家提供了数轴练习题,欢迎阅读。
一、选择题1.下列是几个同学画的数轴,请你判断其中正确的是2.下列说法正确的是( )A.没有最大的正数,却有最大的负数B.数轴上离原点越远,表示数越大C.0大于一切非负数D.在原点左边离原点越远,数就越小3.下列说法正确的是( )A.数轴上一个点可以表示两个不同的有理数B.表示-P的点一定在原点的左边C.在数轴上表示-8的点与表示+2的点的距离是6D.数轴上表示- 的点,在原点左边,距原点个单位长度。
4.如图所示,点M表示的数是( )A. 2.5B.C.D. 2.55.下列结论正确的有( )个:① 规定了原点,正方向和单位长度的直线叫数轴② 最小的整数是0 ③ 正数,负数和零统称有理数④ 数轴上的点都表示有理数A.0B.1C.2D.37.在数轴上,A点和B点所表示的数分别为-2和1,若使A 点表示的数是B点表示的数的3倍,应把A点 ( )A.向左移动5个单位B.向右移动5个单位C.向右移动4个单位D.向左移动1个单位或向右移动5个单位8.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是 ( )A.1B.-6C.2或-6D.不同于以上答案二、填空题9 .在数轴上表示的两个数中,的数总比的数大。
10.在数轴上,表示-5的数在原点的侧,它到原点的距离是个单位长度。
11.在数轴上,表示+2的点在原点的侧,距原点个单位;表示-7的点在原点的侧,距原点个单位;两点之间的距离为个单位长度。
12.在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是。
13.与原点距离为2.5个单位长度的点有个,它们表示的有理数是。
14.到原点的距离不大于3的整数有个,它们是:。
15.数轴上表示-7与-3的两个点之间的距离是个单位长度。
七年级数学正负数有理数加减数轴综合练习(附答案)
七年级数学正负数有理数加减数轴综合练习一、单选题1.下列各数中,小于4-的是( )A.3-B.5-C.0D.12.下面说法正确的是( )A.1是最小的自然数;B.正分数、0、负分数统称分数C.绝对值最小的数是0;D.任何有理数都有倒数 3.下列比较大小正确的是( ) A.5465-<- B.(21)(21)--<+- C.1210823--> D.227(7)33--=-- 4.两千多年前,中国人就开始使用负数,且在世界上也是首创《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100,那么支出40元应记作( )A.﹣60B.﹣40C.+40D.+605.如图,数轴上A B ,两点分别对应有理数a b ,,则下列结论正确的是( ).A.0b a -<B.0a b ->C.0a b +>D.0a b >-6.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S 都相等,那么S 的最大值是( )A.9B.10C.12D.13二、解答题7.“十一”黄金周,坚胜家电城大力促销,收银情况一直看好.下表为当天与前一天的营业额的涨跌情况.已知9月30日的营业额为26万元.(2)黄金周内平均每天的营业额是多少? 8.把下列各数填在相应的横线上. 133431,3.14,0,1,2,70, 3.2,,130,0.001,π, 2.2,,5%41135------- 正数集合: ;负数集合: ;分数集合: ;偶数集合: 。
9.若42a b ==,,且a b <,求a b -的值. 10.如图,数轴上点A 、B 所表示的数分别是4,81.请用尺规作图的方法确定原点O 的位置(不写做法,保留作图痕迹)2.已知动点M 从点A 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,同时点N 从点A 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.①运动1秒后,点M 表示的数是__________,点N 表示的数为__________;②运动t 秒后,点M 表示的数是__________,点N 表示的数为__________;③若线段BN=2,求此时t 的大小以及相应的M 所表示的数.11.智能折叠电动车是在传统电动车的基础上,根据消费者需求生产的一种新型电动车.某智能折叠电动车公司计划每周生产1400辆,平均每天生产200辆.由于各种原因实际每天生产量与计划每天生产量相比有出入.下表是某周智能折叠电动车生产情况(超计划生产量为正、不足计划生产量为负,单位:辆)星期一 二 三 四 五 六 七 生产情况 5+ 2- 4-13+ 10- 16+ 9-(2)产量最多的一天比产量最少的一天多生产________辆;(3)若该公司实行按生产的智能折叠电动车数量的多少计工资,即计件工资制.如果每生产一辆智能折叠电动车可得人民币60元,那么该公司工人这一周的工资总额是多少元?12.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:6767+=+;6776-=-;7676-=-;6767--=+根据上面的规律,把(1)(2)(3)中的式子写成去掉绝对值符号的形式,并计算第(4)题.(1)721-=;(2)10.82-+=;(3)771718-=;(4)111111520162016221008-+--+13.明明同学计算25134118133624⎛⎫⎛⎫⎛⎫----+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,他是这样做的:(1)明明的解法从第几步开始出现错误,改正后并计算出正确的结果:(2)仿照明明的解法,请你计算:1123 1029654486234⎛⎫⎛⎫⎛⎫---++-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.14.请根据图示的对话解答下列问题.求:(1),,a b c的值;(2)8a b c-+-的值.15.随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划世相比有出入,下表与计划量的差值 +4 -3 -5 +14 -8 +21 -62.根据记录的数据可知销售量最多的一天比销售量最少的一天多销售__________斤;3.本周实际销售总量达到了计划数量没有?4.若冬季每斤按8元出倍,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?16.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b,则A 、B 两点之间的距离AB=∣a -b∣,线段AB 的中点表示的数为2a b +. 【问题情境】如图,数轴上点A 表示的数为-2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为t 秒(t>0).【综合运用】1.填空:①A、B 两点之间的距离AB=__________,线段AB 的中点表示的数为__________;②用含t 的代数式表示:t 秒后,点P 表示的数为__________;点Q 表示的数为__________.2.求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数;3.求当t 为何值时,PQ=12AB; 4.若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.三、计算题17.计算下列各题(1) 5.3 3.2 2.5 5.7--+--(2)1111513 4.522552---+-+ (3)()()31117 6.2580.7522424⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎛⎫+-+⎭--+--+ ⎪⎝⎭. 四、填空题18.粮食产量增产11%,记作+11%,则减产6%应记作__________19.某药品说明书上标明药品保存的温度是()104C ±,设该药品合适的保存温度为C t ,则t 的取值范围是______.20.在数轴上表示a 的点到原点的距离为3,则3a -的值为______.21.若3a -的相反数是5,则a = 。
初中数学综合滚动练习:数轴、相反数、绝对值及其综合
4.下列各对数中,相等的是( B )
A.-(- 3 )和-0.75 4
B.+(-0.2)和-(+1 ) 5
C.-(+ 1 )和-(-0.01) 100
D.-(-31 )和-(+16 )的本身小,则这个数是
(A) A.正数 B.负数 C.正数和零 D.负数和零 6.下列说法正确的是( C ) A.绝对值等于 3 的数是-3 B.绝对值小于 2 的数有±2,±1,0 C.若|a|=-a,则 a≤0 D.一个数的绝对值一定大于这个数的相反数
二、填空题(每小题 4 分,共 32 分)
9.计算:|-20|= 20 .
10.若 a+ 2 =0,则 a=
2 5
.
5
11.数轴上点 A 表示-1,点 B 表示 2,则 A、B 两
点间的距离是 3 .
12.将-3,-|+2|,-1 ,-1 按从小到大的顺序,
3
用“<”连接应当是 -3<-|+2|<-1<-13
2
2
-(-5).(8 分)
19.(8 分)如图,图中数轴的单位长度为 1.请回答下 列问题:
(1)如果点 A、B 表示的数是互为相反数,那么点 C、 D 表示的数是多少? 解:(1)点 C 表示的数是-1,点 D 表示的数是-6.(4 分)
(2)如果点 D、B 表示的数是互为相反数,那么点 C、 D 表示的数分别是多少? (2)点 C 表示的数是 0.5,点 D 表示的数是-4.5.(8 分)
快速对答案
1A 2D 3C 4B 5A 6C
7C
提示:点击 进入习题
8B
9 20
10
2 5
11 3
关于初中数轴的典型题
关于初中数轴的典型题数轴是初中数学中的一个重要概念,通过数轴可以直观地表示数的大小和位置关系。
在初中数学的学习过程中,经常会遇到一些与数轴相关的典型题目。
本文将围绕初中数轴的典型题目展开讨论,并提供相应的解题思路和方法。
1.题目一:请在数轴上标出数a、b、c的位置,已知a < b < c。
解析:这是一个简单的数轴标记问题,我们需要确定数a、b、c在数轴上的位置,已知它们的大小关系为a < b < c。
解题思路:首先,选取数轴上的一个点作为原点,用于表示0的位置。
然后,根据数轴的定点和放缩规律,确定数a、b、c在数轴上的位置。
解题步骤:1)选取一个点作为原点,用于表示0的位置。
可选位置范围较大,可以根据实际情况进行选择。
2)确定数a的位置,表示为点A,可以根据题目给出的信息确定其相对位置。
3)确定数b的位置,表示为点B,在a的右侧,且与a的距离比较大。
4)确定数c的位置,表示为点C,在b的右侧,且与b的距离比较大。
5)按照顺序连接点A、B和C,形成一个有向线段,代表数轴。
2.题目二:已知数轴上的点A、B、C分别表示数a、b、c的位置,求a、b、c的大小关系。
解析:题目给出了数a、b、c在数轴上的位置,要求确定它们的大小关系。
解题思路:根据题目给出的数轴上的位置关系,判断数a、b、c的大小。
解题步骤:1)观察数轴上的位置关系,确定a所在的位置。
2)观察数轴上a的位置与b、c之间的相对位置,判断a与b的大小关系。
3)观察数轴上b的位置与a、c之间的相对位置,判断b与c的大小关系。
3.题目三:数轴上的点A、B、C分别表示数轴上的数a、b、c的位置,已知a + b = c,求a、b、c的具体值。
解析:题目给出了数a、b、c在数轴上的位置,并且已知a + b = c,要求确定a、b、c的具体值。
解题思路:利用已知条件a + b = c,结合数轴上的位置关系,推算出a、b、c的具体值。
初中数学 习题2:数轴 全市一等奖
《数轴》习题1.填空题:(1)在数轴上原点右侧的离原点越远的点表示的数___________;原点左侧的离原点越远的点表示的数_________.(2)数轴上表示-212的点与表示的点之间有____ 个整数点,这些整数分别是______________.(3)指出如下图所示的数轴上的点A 、B 、C 、D 所示的有理数分别是___________.(4)在数轴上与原点的距离等于4个单位长度的点有_____个,这样的点表示的有理数是____________. (5)规定了 的直线叫做数轴.(6)在数轴上离开原点4个长度单位的点表示的数是 .(7)数轴上与原点之间的距离小于5的表示整数的点共有 个,它们表示的数是 .(8)在数轴上,点A 表示-11,点B 表示10,那么离开原点较远的是 点.(9)在数轴上表示整数的点中,与原点距离最近的点有 个,表示的数是 .2.判断题:(1)数轴上离开原点距离越大的点,表示的数越大.(2)所有的有理数都可以用数轴上的点来表示.(3)数轴上表示-3的点在原点的左侧(规定向右的方向为正方向).(4)因为零表示不存在,所以数轴上没有零这个点.(5)数轴上到原点的距离小于2的整数有1个.3.选择题:(1)数轴上原点及原点右边的点所表示的数是( ).A.正数B.负数C.非负数D.非正数(2)数轴上点M 表示-2,规定一格为一个单位长度,下列作图正确的是( ).(3)下列说法错误的是( ).A .所有的有理数都可以用数轴上的点表示B .数轴上的原点用有理数0表示C .数轴上表示-324的点在原点左边324个单位长度处 D .在数轴上离开原点的距离越远的点表示的数越大(4)在数轴上表示-1与-4两点之间有理数的点有( ).A .3个B .2个C .1个D .无数个(5)到原点的距离小于4个单位长度的整数点有( ).A .8个B .7个C .6个D .5个(6)下图中表示数轴的是( ).(7)如下图所示A 、B 、C 、D 四点在数轴上分别表示有理数a 、b 、c 、d ,则大小顺序正确的是( ).A .a <b <c <dB .b <a <d <cC .a <b <d <cD .d <c <b <a4. 用“>”号或“<”号填空:(1)-1 0(2)-3 -10M 0A)B)M M 0C)D)(3) -5 (4)__________21 (5)非负数 负数(6)正数 负数5.用“>”号或“<”号填空.(1)-1____0;(2);(3);(4)21____312. 6.如下图,一滴墨水洒在一条数轴上,根据图中标出的数值判断墨迹盖住的整数的个数有多少个?。
2022人教版初中数学七年级上册练习题--数轴
初中数学·人教版·七年级上册——第一章有理数1.2.2 数轴测试时间:20分钟一、选择题1.下列数轴画得正确的是()ABCD2.在下面数轴上,点C表示的数是()A.3B.1C.-2D.-43.如图,在数轴上,手掌遮挡住的点表示的数可能是()A.0.5B.-0.5C.-1.5D.-2.54.下列说法正确的是()A.没有最大的正数,却有最大的负数B.数轴上,离原点越远的点表示的数越大C.0大于一切非负数D.在原点的左侧,离原点越远的点表示的数越小5.在数轴上表示-4的点到原点的距离是()A.4B.-4C.±4D.26.(2021河北邯郸育华中学期末)一只蚂蚁沿数轴从点A向右爬15个单位长度到达点B,点B表示的数为-2,则点A表示的数为()A.15B.13C.-13D.-177.如图,数轴的单位长度为1,如果点A表示的数是-5,那么点B表示的数是()A.-2B.-1C.0D.28.在数轴上到表示3的点的距离为5个单位长度的点表示的正数是()A.-2B.8C.-2或8D.59.如图,将一刻度尺放在数轴上.①若刻度尺上0 cm和4 cm处对应数轴上的点表示的数分别为1和5,则1 cm处对应数轴上的点表示的数是2;②若刻度尺上0 cm和4 cm处对应数轴上的点表示的数分别为1和9,则1 cm处对应数轴上的点表示的数是3;③若刻度尺上0 cm和4 cm处对应数轴上的点表示的数分别为-2和2,则1 cm处对应数轴上的点表示的数是-1;④若刻度尺上0 cm和4 cm处对应数轴上的点表示的数分别为-1和1,则1 cm处对应数轴上的点表示的数是-0.5.上述结论中,所有正确结论的序号是 ()A.①②B.②④C.①②③D.①②③④10.(2021广东佛山三水期末)正六边形ABCDEF在数轴上的位置如图,点A、F对应的数分别为0和1,若正六边形ABCDEF绕着顶点按顺时针方向在数轴上连续翻转,翻转1次后,点E所对应的数为2,则连续翻转2 021次后,数轴上2 021这个数所对应的点是 ()A.A点B.B点C.C点D.D点二、填空题11.在数轴上,表示+2的点在原点的侧,距原点个单位长度;表示-7的点在原点的侧,距原点个单位长度;两点之间的距离为个单位长度.12.在数轴上,把表示3的点沿着数轴向负方向移动5个单位长度,则与此位置相对应的数是.13.数轴上动点P从点A先向左移动1个单位长度,再向右移动4个单位长度到达点B,若点B表示的数是1,则点A表示的数是.14.如图,小红在写作业时,不慎将一滴墨水滴在数轴上,则墨迹遮盖住的整数共有 个.15.在数轴上与表示-4的点相距3个单位长度的点有 个,它们表示的数分别是 和 .16.一只蚂蚁从数轴上表示-2的点A 出发,沿着数轴爬行了5个单位长度,到达点B ,则点B 所表示的数是 . 三、解答题17.画一条数轴,把-3,12,0,-32,2在数轴上表示出来.18.(2021西藏拉萨达孜期末)请把下面不完整的数轴画完整,并在数轴上标出下列各数:-3,-12,4.19.(2021宁夏固原原州期末)李老师进行家访,从学校出发,先向西开车行驶4 km 到达A 同学家,继续向西行驶7 km 到达B 同学家,然后又向东行驶15 km 到达C 同学家,最后回到学校.(1)以学校为原点,以向东方向为正方向,用1个单位长度表示1 km,画出数轴,并在数轴上表示出A、B、C三个同学的家的位置;(2)A同学家离C同学家有多远?(3)李老师一共行驶了多少千米?20.根据如图所示的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数;(2)观察数轴,写出与点A的距离为4个单位长度的点表示的数.,那么与M相距1个单位长度的点N所表示的数是多少?21.数轴上的点M表示的数是-22322.已知在纸面上有一数轴(如图),折叠纸面.(1)若1对应的点与-1对应的点重合,则-2对应的点与何数对应的点重合?(2)若-1对应的点与5对应的点重合,则0对应的点与何数对应的点重合?(3)将-1对应的点与5对应的点之间的线段折叠2次,展开后,请写出所有的折叠点表示的数.23.已知数轴上点A在原点的左侧,到原点的距离为6个单位长度,点B在原点的右侧,点A与点B之间的距离是10个单位长度.(1)直接写出A、B两点所表示的数;(2)若点C也是数轴上的点,点C到点B的距离是4个单位长度,求点C所表示的数.一、选择题1.答案C A.没有单位长度;B.没有正方向;C.原点、单位长度、正方向都符合条件,故C正确;D.原点左边的数标注错误,应是从左到右由小到大的顺序.故选C.2.答案C由数轴可知,点C表示的数是-2.故选C.3.答案B由题图可知,手掌遮挡住的点在0与-1之间,结合选项可知表示的数可能是-0.5.故选B.4.答案D在原点的左侧,离原点越远的点表示的数越小;在原点的右侧,离原点越远的点表示的数越大,故选D.5.答案A数轴上表示-4的点到原点的距离为4.故选A.6.答案D由题意知,将点B向左移动15个单位长度到达点A的位置,故点A距离原点17个单位长度,且在原点的左边,故点A表示的数为-17.7.答案B由题中数轴可知点B表示的数是-1.故选B.8.答案B在数轴上到表示3的点的距离为5个单位长度的点有两个,记为A和B,如下图所示:点A表示的数为-2,点B表示的数为8,因为8为正数,所以选B.9.答案D由数轴可知,①②③④结论均正确.故选D.10.答案B当正六边形在转动第一周的过程中,A、F、E、D、C、B对应的数分别为0、1、2、3、4、5,所以6次一循环,因为2 021÷6=336……5,所以数轴上2 021这个数所对应的点是B点.故选B.二、填空题11.答案右;2;左;7;9解析原点左侧的点表示负数,右侧的点表示正数,因此表示+2的点在原点右侧,且距原点2个单位长度,表示-7的点在原点左侧,且距原点7个单位长度.两点之间的距离为2+7=9个单位长度.12.答案-2解析根据题意画出数轴解答.13.答案-2解析由题意可知,点A与点B相距3个单位长度,且点A在点B的左侧,因为点B表示的数是1,所以点A表示的数是-2.14.答案 3解析因为-7和2之间的整数有-1、0、1,共3个,4所以墨迹遮盖住的整数共有3个. 15.答案 2;-1;-7 解析 如图所示:在数轴上与表示-4的点相距3个单位长度的点有2个,它们表示的数分别是-1和-7. 16.答案 3或-7解析 因为蚂蚁从数轴上表示-2的点A 出发,沿着数轴爬行了5个单位长度到达点B , 所以点B 所表示的数为3或-7. 三、解答题 17.解析 如图所示.18.解析 如图所示.19.解析 (1)如图:(2)A 同学家离C 同学家有8 km . (3)4+7+15+4=30(km). 答:李老师一共行驶了30 km .20.解析 (1)点A 表示的数是1,点B 表示的数是-2.5.(2)在点A 的左边,与点A 的距离为4个单位长度的点表示的数是-3; 在点A 的右边,与点A 的距离为4个单位长度的点表示的数是5. 21.解析 当点N 在点M 的左边时,点N 表示的数为-323,当点N 在点M 的右边时,点N 表示的数是-123.所以点N 表示的数是-323或-123.22.解析 (1)若1对应的点与-1对应的点重合,则-2对应的点与2对应的点重合. (2)若-1对应的点与5对应的点重合,则0对应的点与4对应的点重合.(3)将-1对应的点与5对应的点之间的线段折叠2次,展开后,所有的折叠点表示的数为0.5,2,3.5. 23.解析 (1)因为点A 在原点的左侧,到原点的距离为6个单位长度,所以点A所表示的数是-6.因为点B在原点的右侧,点A与点B之间的距离是10个单位长度,所以点B所表示的数是4.(2)当点C在点B左边且到点B的距离为4个单位长度时,点C所表示的数为0; 当点C在点B右边且到点B的距离为4个单位长度时,点C所表示的数为8.所以点C所表示的数为8或0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 数轴
一、选择题
1、互为相反数是指()
A、具有相反意义的两个量
B、一个数的前面添上“–”号所得的数
C、数轴上原点两旁的两个点表示的数
D、只有符号不同的两个数
2、在数轴上距离原点4个单位长度的点所表示的数是()
A、4
B、–4
C、4或–4
D、2或–2
3、大于–2.5而不大于3的整数()
A、4个
B、5个
C、6个
D、7个
4、如图2–2所示,根据有理数a,–b,–c,在数轴上的位置,比较a,b,c,的大小,则有()
A、a<b<c
B、a<c<b
C、b<a<c
D、b<c<a
5、下列说法错误的是()
A、所有的有理数都可以用数轴上的点表示
B、数轴上的原点表示零
C、在数轴上表示–3的点于表示+1的点的距离是2
D、数轴上表示的点,在原单位左边个单位
二、填空题
1、在数轴上表示+3的点在原点的______侧,距原点的距离是______个单位;表示–5的点原点的_____侧,它离原点的距离是_____个单位;表示+3的点位于表示–5的点的_____侧,根据_____,可得–5<3
2、若数轴上得点M和N点表示的两个数互为相反数,并且这两点间的距离为7.2,则这两个点表示的数分别和______和______.
3、已知A,B是数轴上的点.
(1)如果点A表示数–3,将A向右移动7个单位长度,那么终点表示的数是_______; (2)如果点B表示数3,将B向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是______.
4、正数的相反数是______数,一个数的相反数的相反数是______,0的相反数是______.
5、______的相反数大于它本身,______的相反数小于它本身.
6、在数轴上,点A对应的数是,那么在数轴上与点A相距3个单位长度的点表示的数是
______.
三、做一做
1、指出数轴上A,B,C,D各点分别表示的有理数,并用“<”将它们连接起来.
2、先说出下列各数,再在数轴上把它们表示出来:
(1)3的相反数;
(2)–2的相反数;
(3)的相反数的相反数;
(4)0的相反数。
3、下表是我国四个城市某年一月份的平均气温,把它们按从高到低的顺序排列.
4、小明从家出来向东走3米,他在数轴上+3的位置上记A,他又向东走5米记作B,B点表示什么数?如果他再向西走10米到C点,C点表示什么数?你能在数轴上记出小明到达的位置吗?你让他再到3各位置并再数轴上表示出来.
5、做一条数轴,观察之后,看看能不能找出最小的整数?能找出最小的自然数吗?对于负整数,有没有最小或者最大的?请找一找.
6、在数轴上表示下列各数:
–1,3,0.5,–2,–1.5,5,–6
四、议一议
1、如图2–5,指明所画数轴中出现的错误:
2、在数轴上有三个点A,B,C(如图2–6所示),回答下列问题:
(1)若将B点向右移动6个单位后,三个点所表示的数最小的数是多少?
(2)若将C点向左移动6个单位后,三个点所表示的数最大的数示多少?
3、如果数轴上的点A和B分别代表–2,1,P是到点A或者点B的距离位3的数轴上的点,那么所右满足条件的点P到原点的距离之和为多少?
4、如图2–7是一个正方体纸盒的展开图,请在其余三个正方形内分别填入适当的数,使得折成正方体后相对得面上的两个数互为相反数,你能做到吗?。