空间向量及其加减运算

合集下载

空间向量及其加减、数乘和数量积运算

空间向量及其加减、数乘和数量积运算

8. 6 空间向量及其加减、数乘和数量积运算1.空间向量的有关概念(1) ___________________________________ 空间向量:在空间,我们把具有和的量叫做空间向量.(2) _________________________ 零向量:规定的向量叫做零向量.(3) __________________ 单位向量:的向量称为单位向量.(4) ___________________________________ 相反向量:与向量a 的向量,称为a 的相反向量,记为-a.(5) _________________________ 相等向量:的向量称为相等向量.(6) 空间向量的加法运算满足交换律及结合律:a+ b=__________ ;(a + b) + c = _______________ .2.空间向量的数乘运算⑴向量的数乘:实数入与空间向量a的乘积?a仍然是一个向量,称为向量的数乘.①当X _ 0时,入a与向量a方向相同;当X __ 0时,入a与向量a方向相反.②入a的长度是向量a的长度的________ 倍.(2) 空间向量的数乘运算满足分配律及结合律:①分配律:X(a+b)= __________ .②结合律:X宙)= _________ .(3) 共线向量:如果表示空间向量的有向线段所在的直线_____________________ ,则这些向量叫做共线向量或平行向量.⑷共线向量定理:对空间任意两个向量a, b(b z 0), a // b的充要条件是______________________ .⑸空间直线I的方向向量:和直线I _________ 的非零向量a叫做直线I的方向向量.⑹空间直线的向量表示:I为经过已知点A且平行于已知非零向量a的直线,对空间任意一点0,点P在直线I上的充要条件是___________________________________ ,特别地,如果 a = AB,则上式可以化为OP = 0A + tAB,或_________________ ,这也是空间三点A, B, P共线的充要条件.(7) 共面向量: _______________ 的向量叫做共面向量.(8) 空间共面向量定理:如果两个向量a, b 不共线,那么向量p 与向量a, b 共面的充要条件是推论:对空间任意一点0和不共线的三点A, B, C,满足向量关系式 _______________________________ ,其中__________ ,则点P 与点A, B, C 共面.3.空间向量的数量积运算(1) 空间向量的数量积:已知两个非零向量a, b,则 ___________________ 叫做a, b的数量积,记作a b,通常规定,0w〈a, b〉w n对于两个非零向量a, b, a丄b? ____________ .(2) 空间零向量与任何向量的数量积为.(3) a a = |a||a|cos〈 a, a>= ______ .(4) 空间向量的数量积满足如下的运算律:①(X) • b= __________ ;②ab= __________ (交换律);③ a (b+ c) = ________________ (分配律).自查自纠1. (1)大小方向⑵长度为0 (3)模为1⑷长度相等而方向相反⑸方向相同且模相等(6)b+ a a + (b+ c)2. (1)①〉v ②|入| (2)① 扫+?b ②(入卩)a(3) 互相平行或重合(4)存在实数入使a= ^bO)P= (i-t)oA+to)B (7)平行于同一个平面3. (1)|a||b|cos〈a, b> a b= 0 (2)0⑶|a|1 2 3 (4)① «a b) ② b a ③a b+ a cO 在长方体ABCD-A1BQ1D1 中,BA + Be + D D1=( )A. D1B1B.D1BD.B D1~--> —> —> —> —> —>解:BA+ BC+ DD1=CD + BC + DD1 =BD + DD1=BD1,故选D.电平行六面体ABCD-A1B1C1D1中,M为AC和BD的交点,若A B = a, AD = b, A A1 =等的是()11 11A . - 2a + 2b+ c B. 2a + ?b—c1 1 1 1C. —?a+ ?b—cD. —2 a—? b+ c解:BlM = B?B + BM = —c+ 1BD = —c+ 2(b—a) = —*a + 2b—c,故选C.nOB = OC,且/ AOB = Z AOC =三贝U cos〈3⑸平行⑹存在实数t,使齐=O +1aC.(8)存在惟一的有序实数对—> —> —> —>OP = xOA + yOB +(x, y),使p= x a + y bx+ y+ z= 1C.DB1c,则下列式子中与B1M相©如图所示,已知空间四边形OABC, ,BC >的值为()o解:设0A = a , OB = b , OC = c ,由已知条件〈a , b 〉=〈 a , c 〉= n 且 |b |= |c |, OA • BC = a (c — b )= a c — a b 3 11 f f=2|a ||c |— 2|a ||b |= 0,所以 cos 〈OA , BC 〉= 0•故选 A.已知空间四边形 OABC ,点M , N 分别是OA , BC 的中点,且OA = a , OB = b , OC = c ,用a , b , c 表示向 量 MN = ________ .解:如图所示,MN = *(MB + MC)= *[(OB — OM)+ (OC — OM)] = ^(OB + OC — 2O)M)= g(OB + OC — OA)=g(b + c —a ).故填 2(b + c — a ).(2017鞍山市育英中学月考)已知在正方体 ABCD-A i B i C i D i 中,侧面CCQ i D 的中心是F ,若A F = A D + mAB + nAA r ,贝H m = ________ , n = ________ .解:因为A F = A D + D F = A D + ^(D C + D D i )=A D +2(AB + A ^i ) = A D + ~A B + ^A X I ,所以 m = n =*.故填2; 4 5.类型一空间向量的运算GE (20i7枣阳市鹿头中学月考)如图所示,在空间几何体 ABCD-A i B i C i D i 中,各面为平行四边形, 设AA i = a , AB = b , AD = c , M , N , P 分别是AA i , BC , CQ i 的中点,试用 a , b , c 表示以下各向量:4 AP ;5 MP + NC i .解:(i)因为 P 是 C i D i 的中点,所以 AP = AA i + A i D i + D i P = a + AD + 2D i C i = a + c +?AB = a + c +^b. ⑵因为M 是AA i 的中点, 所以 IMP = MA + A P =苏》+A P =—a + a + c + 丁 b = 2a + ;b + c .-f f f i -f f i -f f又 NG = NC + CC i =尹c + AA i = 2AD + AA i方类解析1=2。

空间向量及其加减运算

空间向量及其加减运算


2.已知空间四边形 ABCD,点 M、N 分别是边 AB、CD → → 的中点,化简AC+AD-AB.
解析: 如图所示,

因为点 M、N 分别是边 AB、CD 的中点,
→ → → → → 所以AC+AD-AB=2AN-2AM
→ =2MN.

证明平行六面体的对角线交于一点,并 且在交点处相互平分.
A.1
B.2
C.3
D.4
[解题过程]
题号 正误 原因分析 当两向量的起点相同,终点也相同时,这两个向量必相等, 但两个向量相等不一定起点相同,终点相同 向量相等的定义,模相等,而且方向相同

② ③ ④ ⑤
×
× √ √ ×
→ → 在正方体 ABCD-A1B1C1D1 中,向量AC与A1C1 → → 方向相同,模也相等,必有AC=A1C1
→ → → → (2)AB1+B1C1+C1D1=AD1. (3)设 M 是线段 AC1 的中点, 1 → 1→ 1 → 1 → 1→ 1 → 则 AD+ AB- A1A= AD+ AB+ AA1 2 2 2 2 2 2 1 → → → 1→ =2(AD+AB+AA1)=2AC1.
[题后感悟] 如何化简向量表达式? (1)化简向量表达式主要是利用平行四边形法则或三角 形法则进行化简. (2)在化简过程中遇到减法时, 可灵活应用相反向量转化 成加法,也可按减法法则进行运算,加减法之间可以相互转 化. → → → → (3)化简中常用的化简形式为AB+BC=AC,AB-AC = → CB.
答案: B
如图所示,已知长方体 ABCD-A1B1C1D1,化简下列 向量表达式: → → (1)AA1-CB; → → → (2)AB1+B1C1+C1D1; 1 → 1 → 1→ (3)2 AD+2 AB-2A1A.

空间向量及其加减运算

空间向量及其加减运算

§3.1 空间向量及其运算 3.1.1 空间向量及其加减运算学习目标 1.了解空间向量、向量的模、零向量、相反向量、相等向量等概念.2.会用平行四边形法则、三角形法则作出向量的和与差.3.了解向量加法的交换律和结合律.知识点一 空间向量的概念(1)在空间,把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模. 空间向量也用有向线段表示,有向线段的长度表示向量的模,向量a 的起点是A ,终点是B ,则向量a 也可记作AB →,其模记为|a |或|AB →|. (2)几类特殊的空间向量知识点二 空间向量的加减运算及运算律思考 下面给出了两个空间向量a ,b ,作出b +a ,b -a .答案 如图,空间中的两个向量a ,b 相加时,我们可以先把向量a ,b 平移到同一个平面α内,以任意点O 为起点作OA →=a ,OB →=b ,则OC →=OA →+OB →=a +b ,AB →=OB →-OA →=b -a .梳理 (1)类似于平面向量,可以定义空间向量的加法和减法运算.OB →=OA →+AB →=a +b , CA →=OA →-OC →=a -b . (2)空间向量加法交换律 a +b =b +a , 空间向量加法结合律 (a +b )+c =a +(b +c ).(1)零向量没有方向.(×)(2)有向线段都可以表示向量,向量都可以用有向线段表示.(×) (3)平面内所有的单位向量是相等的.(×)(4)空间中,将单位向量起点放在一起,其终点组成的图形是球.(×) (5)任何两个向量均不可以比较大小(√)类型一 向量概念的应用例1 (1)下列关于空间向量的说法中正确的是( ) A .若向量a ,b 平行,则a ,b 所在直线平行 B .若|a |=|b |,则a ,b 的长度相等而方向相同或相反 C .若向量AB →,CD →满足|AB →|>|CD →|,则AB →>CD →D .相等向量其方向必相同考点 空间向量的相关概念及其表示方法 题点 空间向量的定义与模答案 D解析A中,向量a,b平行,则a,b所在的直线平行或重合;B中,|a|=|b|只能说明a,b 的长度相等而方向不确定;C中,向量作为矢量不能比较大小,故选D.(2)给出下列命题:①若空间向量a ,b 满足|a |=|b |,则a =b ; ②在正方体ABCD -A 1B 1C 1D 1中,必有AC →=A 1C 1-→; ③若空间向量m ,n ,p 满足m =n ,n =p ,则m =p ; ④空间中任意两个单位向量必相等. 其中假命题的个数是( ) A .1 B .2 C .3 D .4考点 空间向量的相关概念及其表示方法 题点 相等、相反向量 答案 B解析 ①为假命题,根据向量相等的定义知,两向量相等,不仅模要相等,而且还要方向相同,而①中向量a 与b 的方向不一定相同;②为真命题,AC →与A 1C 1-→的方向相同,模也相等,故AC -→=A 1C 1-→;③为真命题,向量相等满足传递性;④为假命题,空间中任意两个单位向量的模均为1,但方向不一定相同,故不一定相等,故选B.反思与感悟 在空间中,向量、向量的模、相等向量的概念和平面中向量的相关概念完全一致,两向量相等的充要条件是两个向量的方向相同、模相等.两向量互为相反向量的充要条件是大小相等,方向相反.跟踪训练1 (1)在平行六面体ABCDA1B 1C 1D 1中,下列四对向量:①AB →与C 1D 1-→;②AC 1-→与BD 1-→;③AD 1-→与C 1B -→;④A 1D -→与B 1C -→.其中互为相反向量的有n 对,则n 等于( ) A .1 B .2 C .3D .4考点 空间向量的相关概念及其表示方法 题点 相等、相反向量 答案 B解析 对于①AB →与C 1D 1-→,③AD 1-→与C 1B -→,长度相等,方向相反,互为相反向量;对于②AC 1-→与BD 1-→,长度相等,方向不相反;对于④A 1D -→与B 1C -→,长度相等,方向相同.故互为相反向量的有2对.(2)如图,在长方体ABCD -A ′B ′C ′D ′中,AB =3,AD =2,AA ′=1,则分别以长方体的顶点为起点和终点的向量中: ①单位向量共有多少个? ②试写出模为5的所有向量. ③试写出与向量AB →相等的所有向量. ④试写出向量AA ′--→的所有相反向量. 考点 空间向量的相关概念及其表示方法 题点 空间向量的定义与模解 ①由于长方体的高为1,所以长方体的四条高所对应的向量AA ′--→,A ′A --→,BB ′--→,B ′B ---→,CC ′---→,C ′C ---→,DD ′---→,D ′D ---→,共8个向量都是单位向量,而其他向量的模均不为1,故单位向量共有8个.②由于长方体的左右两侧面的对角线长均为5,故模为5的向量有AD ′---→,D ′A ----→,A ′D ---→,DA ′---→,BC ′----→,C ′B ----→,B ′C ----→,CB ′---→.③与向量AB →相等的所有向量(除它自身之外)有A ′B ′----→,DC →及D ′C ′----→. ④向量AA ′---→的相反向量有A ′A ---→,B ′B ---→,C ′C ---→,D ′D ---→. 类型二 空间向量的加减运算例2 如图,已知长方体ABCD -A ′B ′C ′D ′,化简下列向量表达式,并在图中标出化简结果的向量.(1)AA ′-→-CB →; (2)AA ′-→+AB →+B ′C ′---→. 考点 空间向量的加减运算 题点 空间向量的加减运算解 (1)AA ′-→-CB →=AA ′-→-DA →=AA ′-→+AD →=AA ′-→+A ′D ′---→=AD ′-→.(2)AA ′-→+AB →+B ′C ′---→=(AA ′-→+AB →)+B ′C ′----→=AA ′-→+A ′B ′----→+B ′C ′----→=AB ′-→+B ′C ′----→=AC ′-→.向量AD ′-→,AC ′-→如图所示.引申探究利用本例题图,化简AA ′-→+A ′B ′----→+B ′C ′----→+C ′A --→. 解 结合加法运算AA ′-→+A ′B ′----→=AB ′-→,AB ′-→+B ′C ′----→=AC ′-→,AC ′-→+C ′A ---→=0. 故AA ′-→+A ′B ′----→+B ′C ′----→+C ′A ----→=0.反思与感悟 (1)首尾顺次相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量,即A 1A 2-→+A 2A 3-→+A 3A 4-→+…+A n —1A n --→=A 1A n -→.(2)首尾顺次相接的若干向量若构成一个封闭图形,则它们的和为0.如图,OB →+BC →+CD →+DE →+EF →+FG →+GH →+HO →=0.跟踪训练2 在如图所示的平行六面体中,求证:AC →+AB ′-→+AD ′-→=2AC ′-→. 考点 空间向量的加减运算题点 空间向量的加减运算的应用证明 ∵平行六面体的六个面均为平行四边形,∴AC →=AB →+AD →,AB ′-→=AB →+AA ′-→,AD ′-→=AD →+AA ′-→, ∴AC →+AB ′-→+AD ′-→=(AB →+AD →)+(AB →+AA ′-→)+(AD →+AA ′-→) =2(AB →+AD →+AA ′-→). 又∵AA ′-→=CC ′-→,AD →=BC →,∴AB →+AD →+AA ′-→=AB →+BC →+CC ′-→=AC →+CC ′-→=AC ′-→. ∴AC →+AB ′-→+AD ′-→=2AC ′-→.1.如图所示,在正方体ABCD -A1B 1C 1D 1中,下列各式中运算的结果为AC 1-→的共有( ) ①(AB →+BC →)+CC 1-→; ②(AA 1-→+A 1D 1--→)+D 1C 1--→; ③(AB →+BB 1-→)+B 1C 1--→; ④(AA 1-→+A 1B 1--→)+B 1C 1--→.A .1个B .2个C .3个D .4个 考点 空间向量的加减运算 题点 空间向量的加减运算 答案 D解析 ①(AB →+BC →)+CC 1-→=AC →+CC 1-→=AC 1-→; ②(AA 1→+A 1D 1--→)+D 1C 1--→=AD 1-→+D 1C 1--→=AC 1-→; ③(AB →+BB 1-→)+B 1C 1--→=AB 1-→+B 1C 1--→=AC 1-→; ④(AA 1-→+A 1B 1--→)+B 1C 1--→=AB 1-→+B 1C 1--→=AC 1-→,故选D. 2.下列命题中,假命题是( )A .同平面向量一样,任意两个空间向量都不能比较大小B .两个相等的向量,若起点相同,则终点也相同C .只有零向量的模等于0D .空间向量不满足加法结合律考点 空间向量的相关概念及其表示方法 题点 空间向量的定义与模 答案 D3.在平行六面体ABCD -A 1B 1C 1D 1中,与向量AD →相等的向量共有( ) A .1个 B .2个 C .3个 D .4个 考点 空间向量的相关概念及其表示方法 题点 相等、相反向量 答案 C解析 与AD →相等的向量有A 1D 1--→,BC →,B 1C 1--→,共3个.4.向量a ,b 互为相反向量,已知|b |=3,则下列结论正确的是( ) A .a =bB .a +b 为实数0C .a 与b 方向相同D .|a |=3考点 空间向量的相关概念及其表示方法 题点 相等、相反向量 答案 D解析 向量a ,b 互为相反向量,则a ,b 模相等、方向相反,故选D. 5.在正方体ABCD -A 1B 1C 1D 1中,已知下列各式:①(AB →+BC →)+CC 1-→;②(AA 1-→+A 1D 1--→)+D 1C 1--→;③(AB →+BB 1-→)+B 1C 1--→;④(AA 1-→+A 1B 1--→)+B 1C 1--→.其中运算的结果为AC 1-→的有________个. 考点 题点 答案 4解析 根据空间向量的加法运算以及正方体的性质逐一进行判断: ①(AB →+BC →)+CC 1-→=AC →+CC 1-→=AC 1-→; ②(AA 1-→+A 1D 1--→)+D 1C 1--→=AD 1-→+D 1C 1--→=AC 1-→; ③(AB →+BB 1-→)+B 1C 1--→=AB 1-→+B 1C 1--→=AC 1-→; ④(AA 1-→+A 1B 1--→)+B 1C 1--→=AB 1-→+B 1C 1--→=AC 1-→. 所以4个式子的运算结果都是AC 1-→.1.一些特殊向量的特性(1)零向量不是没有方向,而是它的方向是任意的. (2)单位向量方向虽然不一定相同,但它们的长度都是1.(3)两个向量模相等,不一定是相等向量,反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量. 2.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.一、选择题1.化简PM -→-PN -→+MN -→所得的结果是( ) A.PM -→ B.NP -→ C.0D.MN -→考点 空间向量的加减运算 题点 空间向量的加减运算 答案 C解析 PM -→-PN -→+MN -→=NM -→+MN -→=NM -→-NM -→=0,故选C. 2.下列命题中为真命题的是( ) A .向量AB →与BA →的长度相等B .将空间中所有的单位向量移到同一个起点,则它们的终点构成一个圆C .空间向量就是空间中的一条有向线段D .不相等的两个空间向量的模必不相等 考点 空间向量的相关概念及其表示方法 题点 相等、相反向量 答案 A解析 对于选项B ,其终点构成一个球面;对于选项C ,零向量不能用有向线段表示;对于选项D ,向量a 与向量b 不相等,未必它们的模不相等,故选A. 3.空间任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A.DB → B.AC → C.AB →D.BA → 考点 空间向量的加减运算 题点 空间向量的加减运算 答案 D4.在空间四边形ABCD 中,AB →=a ,BC →=b ,AD →=c ,则CD →等于( ) A .a +b -cB .c -a -bC .c +a -bD .c +a +b考点 空间向量的加减运算题点 空间向量的加减运算的应用答案 B解析 如图,∵AB →+BC →+CD →+DA →=0,即a +b +CD →-c =0,∴CD →=c -a -b .5.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形考点 空间向量的加减运算题点 空间向量的加减运算的应用答案 A解析 由AO →+OB →=AB →=DO →+OC →=DC →,得AB →=DC →,故四边形ABCD 为平行四边形,故选A.6.如果向量AB →,AC →,BC →满足|AB →|=|AC →|+|BC →|,则( )A.AB →=AC →+BC →B.AB →=-AC →-BC →C.AC →与BC →同向D.AC →与CB →同向 考点 空间向量的相关概念及其表示方法题点 相等、相反向量答案 D7.判断下列各命题的真假:①向量a 与b 平行,则a 与b 的方向相同或相反;②两个有共同起点而且相等的向量,其终点必相同;③零向量是没有方向的;④有向线段就是向量,向量就是有向线段.其中假命题的个数为( )A .2B .3C .4D .5考点题点答案 B解析 ①假命题,当a 与b 中有一个为零向量时,其方向是不确定的;②真命题;③假命题,零向量也是向量,故也有方向,只是方向不确定;④假命题,向量可用有向线段来表示,但并不是有向线段.二、填空题8.在正方体ABCD -A 1B 1C 1D 1中,化简AB →-CD →+BC →-DA →的结果是________.考点 空间向量的加减运算题点 空间向量的加减运算答案 2AC →解析 AB →-CD →+BC →-DA →=AB →+BC →+DC →-DA →=AC →+AC →=2AC →.9.已知向量a ,b ,c 互相平行,其中a ,c 同向,a ,b 反向,|a |=3,|b |=2,|c |=1,则|a +b +c |=________.考点 空间向量的相关概念及其表示方法题点 空间向量的定义与模答案 210.若G 为△ABC 内一点,且满足AG →+BG →+CG →=0,则G 为△ABC 的________.(选填“外心”“内心”“垂心”或“重心”)考点 空间向量的加减运算题点 空间向量的加减运算的应用答案 重心解析 因为AG →+BG →=-CG →=GC →,所以AG 所在直线的延长线为边BC 上的中线,同理,得BG 所在直线的延长线为AC 边上的中线,故G 为其重心.11.给出下列命题:①若|a |=0,则a =0;②若a =0,则|a |=0;③|a |=|-a |;④若a =0,则-a =0.其中正确命题的序号为________.考点 空间向量的相关概念及及其表示方法题点 空间向量的定义与模答案 ②③④三、解答题12.如图所示,已知空间四边形ABCD ,连接AC ,BD ,E ,F ,G 分别是BC ,CD ,DB 的中点,请化简:AB →+BC →+CD →,AB →+GD →+EC →,并标出化简结果的向量.考点 空间向量的加减运算题点 空间向量的加减运算的应用解 AB →+BC →+CD →=AC →+CD →=AD →.因为E ,F ,G 分别为BC ,CD ,DB 的中点,所以BE →=EC →,EF →=GD →.所以AB →+GD →+EC →=AB →+EF →+BE →=AF →.故所求向量为AD →,AF →,如图所示.13.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,化简下列表达式.(1)AB →+BC →;(2)AB →+AD →+AA ′-→;(3)AB →+CB →+AA ′-→;(4)AC ′-→+D ′B --→-DC →.考点题点解 (1)AB →+BC →=AC →.(2)AB →+AD →+AA ′-→=AC →+AA ′-→=AC ′-→.(3)AB →+CB →+AA ′-→=AB →+DA →+BB ′-→=DB ′-→.(4)AC ′-→+D ′B --→-DC →=(AB →+BC →+CC ′-→)+(DA →+DC →+C ′C --→)-DC →=DC →.四、探究与拓展14.已知正方体ABCD -A 1B 1C 1D 1的中心为点O ,则在下列结论中正确的结论共有( ) ①OA →+OD →与OB 1→+OC 1-→是一对相反向量;②OB →-OC →与OA 1-→-OD 1-→是一对相反向量;③OA →+OB →+OC →+OD →与OA 1-→+OB 1-→+OC 1-→+OD 1-→是一对相反向量; ④OA 1-→-OA →与OC →-OC 1-→是一对相反向量.A .1个B .2个C .3个D .4个考点 空间向量的相关概念及其表示方法题点 相等、相反向量答案 C15.在长方体ABCD-A 1B 1C 1D 1中,化简DA →-DB →+B 1C -→-B 1B -→+A 1B 1--→-A 1B -→.解 如图.DA →-DB →+B 1C -→-B 1B -→+A 1B 1--→-A 1B -→=(DA →-DB →)+(B 1C -→-B 1B -→)+(A 1B 1--→-A 1B -→)=BA →+BC →+BB 1-→=BD →+BB 1-→=BD 1-→.。

空间向量及其加减运算 课件

空间向量及其加减运算 课件
22G M
C
(2)在△ADG中,注意到三角形重心的性质,
得 AG AD DG c 2 DM
3 c 2 (1 DB 1 DC)
32 2 c 1 (AB AD AC AD)
3 c 1 (a b 2c)
3
1a b c.
3
【思考】(1)在空间中,如何使用平行四边形法则和三角形法 则? (2)交换律及结合律在空间向量的加、减法运算中有何作用?
提示:(1)在空间立体图形中,首先确定一个平面或找到一个 三角形,把问题转化到一个平面,然后再应用平面向量的有关 运算性质进行化简、变形.在空间中,常常利用三角形法则进行 向量的加、减运算.应用平行四边形法则需在立体图形中找到一 个平行四边形. (2)交换律与结合律在空间向量的加、减法运算中起到方便化 简的作用.例如, CB AB BC AB AB BC AC;
(3)根据正方体的性质可知在正方体ABCD-A1B1C1D1中, AC=A1C1,且AC∥A1CA1C,与A1C1 方向相同, ∴ AC A故1C(13,)正确; (4)正确,可以根据向量的几何表示,利用向量平移来理解; (5)两个单位向量的模都是1,但方向不一定相同,故(5)不 正确. 综上可知命题(3)(4)正确. 答案:(3)(4)
2.(1)是必要条件,不是充分条件,因为 AB 时DC有可能A, B,C,D四点共线,是假命题; (2)a与b的模相等,且方向相同时,a=b成立,当方向相反时, a=-b,是假命题; (3)零向量的相反向量仍是零向量,但零向量与零向量是相等 的,是假命题; (4)共线向量即平行向量,只要求它们的方向相同或相反,不 一定在同一条直线上,是假命题;
或_| _A_B_|_.
2.几类特殊向量
特殊向量 零向量 单位向量 相反向量

空间向量及其加减运算

空间向量及其加减运算

㈦巩固: 1。已知空间向量四边形ABCD,连接AC、BD,设M,G分别 是BC、CD的中点,化间下列各表达式,并标出化间结果的向量 A (1)AB+BC+CD; (2)AB+1/2(BD+BC) (3)AG – ½(AB+AC)
解: (1)AB+BC+CD =AD
B (2)AB+1/2(BD+BC)=BG (3)AG – ½ (AB+AC)= MG M C
a
b
a
b
c
c
③数乘分配律:λ(a + b )=λa +λb
(由同学自已证明)
㈥平行六面体:平行四边形ABCD平移向量a到A1B1C1D1的轨 迹所形成的几何体,叫做平行六面体。
D1 A1 a A B1 C1 A1 D A B
D1 B1
C1
D
B
C
C
记作ABCD—A1B1C1D1,它的六个面都是平行四边形,每 个面的边叫做平行六面体的棱。
浙江省玉环县楚门中学吕联华
㈠向量的定义: 在空间,我们把具有大小和方向的量叫做向量。
·
D A C B
a
·
·
D1 A1 C1
B1
a=“自西向东平移4个单位”
这个”平移“就是一个向量
㈡向量的表示方法: 空间向量可用有向线段表示 a B 记作:向量a、b。
b

A
㈢向量的相等:当两个向量大小相等,方向相同时两向量相等。 两个向量不能比较大小,因为决定向量的两个因素是大小 和方向,其中方向不能比较大小 ∴ OA=a AB= b
㈣空间向量加法、减法与数乘向量运算: a b B O
α

空间向量及其加减运算

空间向量及其加减运算

[活学活用] 化简:(―A→B -―C→D )-(―A→C -―B→D ).
解:法一:(统一成加法) 原式=―A→B -―C→D -―A→C +―B→D =―A→B +―D→C +―C→A +―B→D =―A→B +―B→D +―D→C +―C→A =0.
法二:(利用―O→A -―O→B =―B→A ) 原式=―A→B -―C→D -―A→C +―B→D =(―A→B -―A→C )-―C→D +―B→D =―C→B -―C→D +―B→D =―D→B +―B→D =0. 法三:(利用―A→B =―O→B -―O→A ) 设O是空间内任意一点,则 原式=[(―O→B -―O→A )-(―O→D -―O→C )]-[(―O→C -―O→A )-(―O→D -―O→B )] =―O→B -―O→A -―O→D +―O→C -―O→C +―O→A +―O→D -―O→B =0.

―→ AC

―C1→C =―AC→1 (如图).
(2) ―A→B -―D→A -―A1→A
=―AA→1 +(―A→B +―A→D )
=―AA→1 +(A―1→B1+A―1→D1)
=―AA→1 +A―1→C1
=―AC→1 (如图).
[类题通法] 在进行减法运算时,可将减去一个向量转化为加上这个 向量的相反向量,而在进行加法运算时,首先考虑这两个向 量在哪个平面内,然后与平面向量求和一样,运用向量运算 的平行四边形法则、三角形法则及多边形法则来求即可.
空间向量及其加减运算
空间向量的概念辨析
[例 1] 下列说法中正确的是
()
A.若|a|=|b|,则 a,b 的长度相同,方向相同或相反
B.若向量 a 是向量 b 的相反向量,则|a|=|b|

空间向量及其加减运算和数乘运算

空间向量及其加减运算和数乘运算

详细描述
向量减法满足交换律和结合律,即 $overset{longrightarrow}{AB} overset{longrightarrow}{CD} = overset{longrightarrow}{CD} overset{longrightarrow}{AB}$,并且 $(overset{longrightarrow}{AB} overset{longrightarrow}{CD}) overset{longrightarrow}{EF} = overset{longrightarrow}{AB} (overset{longrightarrow}{CD} + overset{longrightarrow}{EF})$。
总结词
向量加法是将两个向量首尾相接,然后由第一个向量的起点指向第二个向量的终点的向量。
详细描述
向量加法是向量运算中的基本运算之一,其定义是将两个向量首尾相接,然后由第一个向量的起点指向第二个向 量的终点的向量。在二维空间中,向量加法可以通过平行四边形的法则进行计算;在三维空间中,向量加法可以 通过三角形法则进行计算。
向量加法的几何意义
总结词
向量加法的几何意义是表示两个向量在空间中的相对位置关系。
详细描述
向量加法的几何意义可以理解为表示两个向量在空间中的相对位置关系。具体来说,如果有一个向量 $overset{longrightarrow}{AB}$和另一个向量$overset{longrightarrow}{CD}$,那么 $overset{longrightarrow}{AB} + overset{longrightarrow}{CD}$表示向量$overset{longrightarrow}{AB}$和向 量$overset{longrightarrow}{CD}$在空间中的相对位置关系。

高中数学选修第一册讲义

高中数学选修第一册讲义

第1讲 空间向量及其运算一、空间向量及其加减运算1、空间向量的定义及其表示在空间,我们把具有大小和方向的量叫作空间向量。

向量的大小叫作向量的长度或模,空间向量可以用有向线段和小写字母表示。

2、几类常见的空间向量零向量:长度为0的向量叫作零向量,零向量的方向是任意。

单位向量:模为1的向量叫作单位向量,单位向量的方向任意。

相反向量:长度相等,方向相反的向量叫作相反向量。

相等向量:长度相等,方向相同的向量叫作相等向量。

3、空间向量的加减运算加法的运算律:交换律:a b b a 结合律:()()a b c a b c1、下列命题中正确的是________。

①如果,a b 是两个单位向量,则||||a b ; ②两个空间向量共线,则这两个向量方向相同; ③若,,a b c 为非零向量,且a ∥b ,b ∥c ,则a ∥c ; ④空间任意两个非零向量都可以平移到同一平面内。

2、设A ,B ,C 是空间任意三点,下列结论错误的是( )。

A 、AB BC AC B 、0AB BC CAC 、AB AC CBD 、AB BA3、已知空间向量AB ,BC ,CD ,AD,则下列结论正确的是( )。

A 、AB BC CD B 、AB DC BC ADC 、AD AB BC DC D 、BC BD DC4、化简下列各式:(1)AB BC CA (2)AB MB BO OM (3)AB AC BD CD (4)OA OD DC5、已知空间四边形ABCD 中,AB a ,CB b ,AD c ,则CD等于( )。

A 、a b cB 、a b cC 、a b cD 、a b c6、如图所示,已知长方体1111ABCD A B C D ,化简下列向量表达式:(1)1AA CB ; (2)11111AB B C C D ; (3)1111222AD AB A A。

二、空间向量的数乘运算1、空间向量的数乘运算与平面向量一样,实数 与空间向量a 的乘积a 仍然是一个向量,称为向量的数乘。

高中数学 第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.1 空间向量及其加减运算讲义

高中数学 第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.1 空间向量及其加减运算讲义

3.1.1 空间向量及其加减运算1.空间向量 (1)定义□01在空间,把具有大小和方向的量叫做空间向量. (2)长度□02向量的大小叫做向量的长度或□03模. (3)表示方法(4)几类特殊的空间向量①零向量:□08规定长度为0的向量叫做零向量,记为□090. ②单位向量:□10模为1的向量称为单位向量. ③相反向量:□11与向量a 长度相等而方向相反的向量称为a 的相反向量,记为□12-a . ④相等向量:□13方向相同且模相等的向量称为相等向量.在空间,同向且等长的有向线段表示□14同一向量或□15相等向量. 2.空间向量的加减法 (1)定义类似平面向量,定义空间向量的加、减法运算(如图):OB →=OA →+AB →=□16a +b ; CA →=OA →-OC →=□17a -b . (2)加法运算律①交换律:a +b =□18b +a ; ②结合律:(a +b )+c =□19a +(b +c ).1.判一判(正确的打“√”,错误的打“×”)(1)有向线段可用来表示空间向量,有向线段长度越长,其所表示的向量的模就越大.( )(2)空间两非零向量相加时,一定可用平行四边形法则运算.( ) (3)0向量是长度为0,没有方向的向量.( ) (4)若|a |=|b |,则a =b 或a =-b .( ) 答案 (1)√ (2)× (3)× (4)× 2.做一做(请把正确的答案写在横线上)(1)把所有单位向量的起点移到一点,则这些向量的终点组成的图形是________. (2)在正方体ABCD -A 1B 1C 1D 1中,DD 1→-AB →+BC →化简后的结果是________. (3)如图所示,已知长方体ABCD -A 1B 1C 1D 1,化简下列向量的表达式:①AA 1→-CB →=________. ②AB 1→+B 1C 1→+C 1D 1→=________. ③12AD →+12AB →-12A 1A →=________.(4)(教材改编P 86T 3)如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为AB ,B 1C 的中点.用AB →,AD →,AA 1→表示向量MN →,则MN →=________.答案 (1)球面 (2)BD 1→ (3)①AD 1→②AD 1→③12AC 1→(4)12AB →+12AD →+12AA 1→解析 (4)MN →=MB →+BC →+→=12AB →+AD →+12(CB →+BB 1→)=12AB →+AD →+12(-AD →+AA 1→)=12AB →+12AD→+12AA 1→.探究1 空间向量的概念 例1 给出下列命题:①两个相等的向量,若它们的起点相同,则终点必相同; ②在正方体ABCD -A 1B 1C 1D 1中,必有AC →=A 1C 1→; ③若空间向量m ,n ,p 满足m =n ,n =p ,则m =p ; ④空间中任意两个单位向量必相等; ⑤只有零向量的模为0. 其中假命题的个数是 ( ) A .1 B .2 C .3 D .4[解析]①真命题.根据向量相等的定义,两个相等的向量若起点相同,终点必相同,只有这样才能保证它们的方向和大小都相同.②真命题.根据正方体的性质,在正方体ABCD -A 1B 1C 1D 1中,向量AC →与A 1C 1→的方向相同,模长也相等,应有AC →=A 1C 1→.③真命题.向量的相等满足传递规律.④假命题.空间中任意两个单位向量模长均为1,但方向不一定相同,故不一定相等. ⑤真命题.根据零向量的定义可知. [答案] A 拓展提升处理向量概念问题要关注的两个要素和两个关系(1)两个要素判断与向量有关的命题时,要抓住向量的两个主要要素,即大小与方向,两者缺一不可. (2)两个关系①模相等与向量相等的关系:两个向量的模相等,则它们的长度相等,但方向不确定,即两个向量(非零向量)的模相等是两个向量相等的必要不充分条件.②向量的模与向量大小的关系:由于方向不能比较大小,因此“大于”“小于”对向量来说是没有意义的.但向量的模是可以比较大小的.【跟踪训练1】 (1)给出下列四个命题:①方向相反的两个向量是相反向量;②若a ,b 满足|a |>|b |且a ,b 同向,则a >b ;③不相等的两个空间向量的模必不相等;④向量BA →与向量AB →的长度相等.其中正确命题的序号为________. 答案 ④解析 ①错误,方向相反且长度相等的两个向量是相反向量;②错误,向量不能比较大小;③错误,如BA →≠AB →但|BA →|=|AB →|,④正确.(2)给出下列命题:①若|a |=0,则a =0;②若a =0,则-a =0;③|-a |=|a |,其中正确命题的序号是________.答案 ②③解析 ①错误,若|a |=0,则a =0;②正确.③正确. 探究2 空间向量的加减运算例2 如图,在长方体ABCD -A 1B 1C 1D 1中,下列各式中运算结果为向量BD 1→的是( )①(A 1D 1→-A 1A →)-AB →;②(BC →+BB 1→)-D 1C 1→;③(AD →-AB →)-DD 1→;④(B 1D 1→-A 1A →)+DD 1→. A .①② B .②③ C .③④ D .①④ [解析]①(A 1D 1→-A 1A →)-AB →=A 1D 1→+AA 1→+BA →=BD 1→; ②(BC →+BB 1→)-D 1C 1→=BC →+BB 1→+C 1D 1→=BC 1→+C 1D 1→=BD 1→;③(AD →-AB →)-DD 1→=BD →+D 1D →=BD →-DD 1→=BD →-BB 1→=B 1D →≠BD 1→; ④(B 1D 1→-A 1A →)+DD 1→=B 1D 1→+AA 1→+DD 1→=B 1D 1→+BB 1→+DD 1→=BD 1→+DD 1→≠BD 1→.因此,①②两式的运算结果为向量BD 1→,而③④两式的运算结果不为向量BD 1→.故选A. [答案] A[结论探究] 例2条件下,判断下列各式中运算结果为向量AC 1→的有哪些? ①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→;③(AB →+BB 1→)+B 1C 1→;④(AA 1→-B 1A 1→)+B 1C 1→. 解 ①(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→; ②(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→; ③(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→;④(AA 1→-B 1A 1→)+B 1C 1→=(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→. 故①②③④式运算结果都是向量AC 1→. 拓展提升、减法运算的两个技巧(1)巧用相反向量:向量加减法的三角形法则是解决空间向量加法、减法运算的关键,灵活应用相反向量可使向量间首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量的加法运算时,务必要注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得更准确的结果.2.化简空间向量的常用思路(1)分组:合理分组,以便灵活利用三角形法则、平行四边形法则进行化简.(2)多边形法则:在空间向量的加法运算中,若是多个向量求和,还可利用多边形法则.若干个向量的和可以将其转化为首尾相接的向量求和.(3)走边路:灵活运用空间向量的加法、减法法则,尽量走边路(即沿几何体的边选择途径).【跟踪训练2】 在平行六面体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H ,P ,Q 分别是A 1A ,AB ,BC ,CC 1,C 1D 1,D 1A 1的中点,则( )A.EF →+GH →+PQ →=0B.EF →-GH →-PQ →=0 C.EF →+GH →-PQ →=0 D.EF →-GH →+PQ →=0 答案 A解析 EF →+GH →+PQ →=AF →-AE →+CH →-CG →+D 1Q →-D 1P →=0.探究3 空间向量证明题 例3 在如图所示的平行六面体中.求证:AC →+AB ′→+AD ′→=2AC ′→.[证明]∵平行六面体的六个面均为平行四边形, ∴AC →=AB →+AD →,AB ′→=AB →+AA ′→,AD ′→=AD →+AA ′→.∴AC →+AB ′→+AD ′→=(AB →+AD →)+(AB →+AA ′→)+(AD →+AA ′→)=2(AB →+AD →+AA ′→), 又∵AA ′→=CC ′→,AD →=BC →,∴AB →+AD →+AA ′→=AB →+BC →+CC ′→=AC →+CC ′→=AC ′→, ∴AC →+AB ′→+AD ′→=2AC ′→. 拓展提升空间向量证明题的注意点利用三角形法则或平行四边形法则进行证明,一定要注意和(差)向量的方向.必要时利用空间向量可自由平移,使作图容易.【跟踪训练3】 借助平行六面体,证明:(a +b )+c =a +(b +c ).证明 作平行六面体ABCD -A ′B ′C ′D ′使AB →=a ,AD →=b ,AA ′→=c ,如图,则:(a +b )+c =(AB →+AD →)+AA ′→=AC →+CC ′→=AC ′→,a +(b +c )=AB →+(AD →+AA ′→)=AB →+(BC →+CC ′→)=AB →+BC ′→=AC ′→,所以(a +b )+c =a +(b +c ).,向量、向量的模、相等向量的概念和平面向量完全一致,两向量相等的充要条件是两个向量的方向相同、模相等.两向量互为相反向量的充要条件是大小相等,方向相反. ,任意两个向量都是共面向量.因此空间两个向量的加、减法运算和平面向量完全相同,可以利用平行四边形法则和三角形法则来进行.,一定要抓住向量的起点与终点,否则容易导致结果计算错误.如AB →-AD →,误写成BD →,应为DB →.1.向量a ,b 互为相反向量,已知|b |=3,则下列结论正确的是( ) A .a =b B .a +b 为实数0 C .a 与b 方向相同 D .|a |=3 答案 D解析 因为a ,b 互为相反向量,所以a =-b ,a +b =0,a 与 b 方向相反,|a |=|b |=3.2.已知空间向量AB →,BC →,CD →,AD →,则下列结论正确的是( ) A.AB →=BC →+CD → B.AB →-DC →+BC →=AD → C.AD →=AB →+BC →+DC → D.BC →=BD →-DC → 答案 B解析 AB →-DC →+BC →=AB →+BC →+CD →=AC →+CD →=AD →.3.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( ) A .空间四边形 B .平行四边形 C .等腰梯形 D .矩形答案 B解析 ∵AO →+OB →=AB →,DO →+OC →=DC →, ∴AB →=DC →,∴线段AB ,DC 平行且相等, ∴四边形ABCD 是平行四边形.4.已知正方体ABCD -A 1B 1C 1D 1的中心为O ,则在下列各结论中正确结论的序号为________. ①OA →+OD →与OB 1→+OC 1→是一对相反向量; ②OB →-OC →与OA 1→-OD 1→是一对相反向量;③OA →+OB →+OC →+OD →与OA 1→+OB 1→+OC 1→+OD 1→是一对相反向量; ④OA 1→-OA →与OC →-OC 1→是一对相反向量. 答案 ①③④解析 下图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为AD ,B 1C 1的中点,则由向量运算的平行四边形法则,知OA →+OD →=2OE →,OB 1→+OC 1→=2OF →,又OE →=-OF →,所以命题①正确.由于OB →-OC →=CB →,OA 1→-OD 1→=D 1A 1→,所以OB →-OC →与OA 1→-OD 1→是两个相等的向量,所以命题②是不正确的. 同理可得命题③④是正确的.5.下图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =3,AD =2,AA 1=1,以该长方体的八个顶点中的两点为起点和终点的所有向量中,(1)单位向量共有多少个? (2)试写出模为5的所有向量; (3)试写出与AB →相等的所有向量;(4)试写出AA 1→的相反向量.解 (1)由于AA 1=1,所以AA 1→,A 1A →,BB 1→,B 1B →,CC 1→,C 1C →,DD 1→,D 1D →这8个向量都是单位向量,而其他向量的模均不为1,故单位向量共8个.(2)由于这个长方体的左、右两侧的对角线长均为5,所以模为5的向量为AD 1→,D 1A →,A 1D →,DA 1→,BC 1→,C 1B →,B 1C →,CB 1→.(3)与向量AB →相等的所有向量(除它自身之外)为A 1B 1→,DC →,D 1C 1→. (4)向量AA 1→的相反向量为A 1A →,B 1B →,C 1C →,D 1D →.。

空间向量及其加减运算

空间向量及其加减运算
4. 相等向量(equal vector) 方向相同且模相等的向量称为相等向量.
提升总结
(1)空间的一个平移就是一个向量. (2)向量一般用有向线段表示,同向等长的 有向线段表示同一或相等的向量 . (3)空间的两个向量可用同一平面内的 两条有向线段来表示.
b
a
B
b
O
aA
结论:空间任意两个向量都是共面向量,
(zero vector),记为 0 .当有向线段的起点A与 终点B重合时,AB = 0 .
(2)模为1的向量称为单位向量(unit vector).
(3)两个向量不能比较大小,因为决定向量的两 个因素是大小和方向,其中方向不能比较大小.
3. 相反向量
与向量 a 长度相等而方向相反的向量, 称为 a 的相反向量,记为 – a .
一、回顾本节课你有什么收获?
1.空间向量的概念. 在空间,具有大小和方向的量.
2.空间向量的加减运算. 空间向量的加减运算:三角形法则和平行
四边形法则.
3.空间向量的加法符合交换律,结合律. 4.平面向量与空间向量.
空间任意两个向量都可平移到同一个平面内, 成为同一平面内的向量.
因此凡是涉及空间任意两个向量的问题,平 面向量中有关结论仍适用于它们.
3.(2013·福建高二检测)空间两向量 a, b 互为 相反向量,已知向量| b | 3 ,则下列结论正确的 是( D )
A. a b
B. a b 为实数 0
C. a 与b 方向相同 D.| a | 3
提升总结 1.两个向量的模相等,则它们的长度相等,但方向 不确定,即两个向量(非零向量)的模相等是两个向 量相等的必要不充分条件. 2.熟练掌握空间向量的有关概念、向量的加减法满 足的运算法则及运算律是解决好这类问题的关键.

空间向量及其加减运算

空间向量及其加减运算

D.在 四 边 形ABCD中, 一 定 有AB AD DB; E.有 向 线 段 就 是 向 量,向 量 就 是 有 向 线 段.
例题分析
例3.已知空间四边形ABCD中,向 量AB a, AC b,
AD c, 若M为BC中 点,G为BCD的重心,
试 用a,b,c表示下列向量 (1)AG;(2)DM.
方法2: AB CD 2( NF FM ) 2NM
D
AD CB 2( NE EM ) 2NM
AB CB AD CD A
4 NM
E M
C
N F
B
有关向量的证明常用方法:
(1)正确分析被证向量式与题目中的特殊点、 特殊线段之间的关系.
(2)根据向量相等的概念,向量运算时可以根 据需要进行平移向量;
方法1: AB AD 2 AM
D
CB CD 2 CM
Hale Waihona Puke AB CB AD CDA
2( AM CM )
4 NM
M C
N
B
例题分析
例4.设 有 空 间 四 边 形ABCD , 对 角 线AC和BD 的 中 点 分 别 为N和M .
求 证 :AB CB AD CD 4NM .
(1) AG 1 (a b c)
A
3
(2) DM DA AM
1 (a b) c 2
B
D
1 (a b 2c)
MG
2
C
例题分析
例4.设 有 空 间 四 边 形ABCD , 对 角 线AC和BD 的 中 点 分 别 为N和M .
求 证 :AB CB AD CD 4NM .

空间向量及其加减、数乘运算

空间向量及其加减、数乘运算

A1C , BD1, DB1 .
D1
C1
A1C AB AD AA1
Hale Waihona Puke A1B1BD1 AA1 AD AB
DB1 AB AA1 AD
D
C
始点相同的三个不共A面向量之和,B 等于以 这三个向量为棱的平行六面体的以公共始 点为始点的对角线所示向量
向量的数乘运算
在平面上,实数 与向量 a 的乘积 a 仍然是一个向量,
(C)若 OP OA t AB ,则P、A、B不共线
(D)若 OP OA AB ,则P、A、B共线
4.已知点M在平面ABC内,并且对平面ABC外任意一点
O,OM
xOA

1 3
OB +
1 3
OC
, 则x的值为(
1
D
)
( A)1
(B) 0
(C)3 (D)
3
已知平行六面体ABCD-A1B1C1D1,MC=2AM,A1N=2ND,
O
O
a a
b +c
A
CA
C
bBc
bBc
空间向量加法结合律
(a O b) c a (b c)O
a
a
b +c
A b
B
C c
A b
C Bc
D1 A1
C1 B1
a
D
C
A
B
平行六面体:平行四边形ABCD按向量a 平移到
A1B1C1D1的轨迹所形成的几何体.记做ABCD-A1B1C1D1
已知平行六面体ABCD-A1B1C1D1,用 AB, AD, AA1 表示
在一的有序实数组x, y, z 使 p xa yb zc .

第3章3.1.1 空间向量及其加减运算

第3章3.1.1 空间向量及其加减运算
第22页
高考调研 ·新课标 ·数学选修2-1
(2)由于这个长方体的对角线长为 p2+q2+1= 2,故模为 2的向量有A→C1,C→1A,A→1C,C→A1,B→D1,D→1B,B→1D,D→B1共 8 个.
(3)与向量A→B相等的所有向量(除它自身以外)共有A→1B1,D→C 及D→1C1三个.
第13页
高考调研 ·新课标 ·数学选修2-1
【思路分析】 解决此类问题的关键是准确理解有关概念, 如零向量的方向问题,向量相等的条件等.
第14页
高考调研 ·新课标 ·数学选修2-1
【解析】 ①正确;②正确,因为A→C与A→1C1的大小和方向 均相同;③|a|=|b|,不能确定其方向,所以 a 与 b 的方向不能确 定;④中只有当四边形 ABCD 是平行四边形时,才有A→B+A→D= A→C.
高考调研 ·新课标 ·数学选修2-1
第三章 空间向量与立体几何
第1页
高考调研 ·新课标 ·数学选修2-1
3.1 空间向量及其运算 3.1.1 空间向量及其加减运算
第2页
高考调研 ·新课标 ·数学选修2-1
要点 1 空间向量的概念
名称
定义
在空间中,具有大小和方向的量叫做空间 空间向量
向量,其大小叫做向量的长度或模
第21页
高考调研 ·新课标 ·数学选修2-1
【解析】 (1)由于长方体的高为 1,所以长方体 4 条高所对 应的向量A→A1,A→1A,B→B1,B→1B等 8 个向量都是单位向量,另外, 由于 p2+q2=1,所以长方体上下两个面上的面对角线对应的向量 A→C,C→A,B→D,D→B,A→1C1,C→1A1,B→1D1,D→1B1等 8 个向量也都 是单位向量.而其他的向量的模均不为 1,故单位向量共 16 个.

311空间向量及其加减法-文档资料

311空间向量及其加减法-文档资料
A A1 D1 B1
C1
F2
D B C
F1
小结
平面向量
空间向量
概念 定义 表示法 零向量 相等向量 相反向量 加法:平行四边形法则 加法:平行四边形法则 或三角形法则 加、 或三角形法则 减法 减法:三角形法则 运算 减法:三角形法则 不共面的三个向量的和:
平行六面体法则 运 算 律
加法交换律 加法结合律
ab ba
(a b) c a (b c)
类比方法
数形结合思想
(二)平面向量的加法、减法法则及其几何意义
1.向量加法三角形法则: 特点:首尾相接,首尾连 C ab b
A
2.向量加法平行四边形法则:
B
a
a b b
C 特点:共起点
b
a
B
O
a
A
3.向量减法三角形法则:
a
O
B
b
a
A
BA a b
b 特点:共起点,连终点,方向指向被减数
OB OA AB a b, CA OA OC a b,
b a
b
C
B

O
a
A
空间向量加法的推广:
(1)首尾相接的若干向量之和,等于由起始 向量的起点指向末尾向量的终点的向量;
A1 A2 A2 A3 A3 A4 An1 An A1 An
A1
An An
D1 A1 B1 C1
a
D A B C
平行六面体ABCD-A1B1C1D1的六个面都是平行四边形。
典例剖析:
例1:已知平行六面体ABCD-A1B1C1D1,化简下列 向量表达式 (如图)

空间向量及其加减运算

空间向量及其加减运算

设AB a, AD b, AA c, 用a,b, c表示BD
D
A
C B
BD b c a
cD
Ab
a
C B
例2、空间四边形ABCD中,
求证:AD BC AC BD
证明: AD BC AC BD B
= (AD AC) (BC BD)
= CD DC
C
=0
AD BC AC BD
加法交换律

a + b = b + a;

加法结合律

(a + b) + c = a + (b + c)
A a+b+c
= AB +BC +CD
= AC +CD
= AD
结论1: 首尾顺次相接的若干向量之和
a
D
BC
b
c
=__由_起__始__向__量__的_起__点__指__向__末_尾__向__量__的__终_点__的__向__量_ .
桓台二中 ** ** **
问题:
如图:三个相互垂直的力 F1 , F2 , F3 作用于
同一个物体上,请标出其合力.
F2
F3 F1
|F1|=10N |F2|=15N |F3|=15N
一、空间向量的概念
概念
平面向量
空间向量
定义
表示 方法
既有大大小小又有方方向向的量 既有大小又有方向的量
几何表示:
几何表示:
a a 字母表示: AB
字母表示: AB
相等
模:
向量 方向:
相等 相同
模: 方向:
相等 相同
相反

空间向量及其加减与数乘运算解读

空间向量及其加减与数乘运算解读

b
a
a
三角形法则
平行四边形法则
加法交换律: a + b = b + a; 加法结合律: (a + b) + c =a + (b + c);
⑵向量的减法 三角形法则
b a
a
b
a
c
b
c
(3)向量的数乘运算 a,其模长是a 的| | 倍 a 与 a 同向 当 0 时,
a 与 当 0 时,
(1) AB1 A1 D1 C1C x AC
(2) 2 AD1 BD1 x AC1 (3) AC AB1 AD1 x AC1
A1 D1 B1 C1
D
C B
A
例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值.
(1) AB1 A1 D1 C1C x AC 解(1) AB1 A1 D1 C1C
⒈定义:空间中既有大小又有方向的量叫向量.
几何表示法: 用有向线段表示;
用字母a、b等或者用有向线段 字母表示法:
的起点与终点字母 AB 表示. 相等的向量: 长度相等且方向相同的向量.
B
D
A
C
零向量、单位向量、相反向量; 空间任意两个向量都是共面向量.
⒉空间向量的加减法与数乘运算
⑴向量的加法:
1 AB ( BD BC ) ( 2) 2 1 AF ( AB AC ) ( 3) 2
4.如图,已知矩形ABCD和矩形ADEF 所在平面互相垂直,点M,N分别 1 1 在对角线BD,AE上,且 BM BD, AN AE 3 3 求证:MN//平面CDE E F
N A B M C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

㈦巩固: 1。已知空间向量四边形ABCD,连接AC、BD,设M,G分别 是BC、CD的中点,化间下列各表达式,并标出化间结果的向量 A (1)AB+BC+CD; (2)AB+1/2(BD+BC) (3)AG – ½(AB+AC) 解: (1)AB+BC+CD =AD
B
(2)AB+1/2(BD+BC)=BG (3)AG – ½ (AB+AC)= MG M
D G
C
2。已知正方体ABCD-A1B1C1D1,点E、F分别是上底面A1C1 和侧面CD1的中心,求下列各题中x、y的值:
(1)AC1=x(AB+BC+CC1) (2)AE=AA1+xAB+yAD
(3)AF=AD+xAB+yAA1
A1 E D1
解:(1)x =1
B1
C1 F
(2) x=y
(3) x=y
两个向量不能比较大小,因为决定向量的两个因素是大小 和方向,其中方向不能比较大小
∴ OA=a AB= b
㈣空间向量加法、减法与数乘向量运算: a b B O
α
A
OB = OA +AB = a+b
BA = OA – OB = a - b
OP =λa (λ∈R)
a
P
O
㈤空间向量的加法与数乘向量运算的运算律: ①加法交换律:a+b=b+a ②加法结合律:(a+b)+c=a+(b+c) a b a b a b=1/2B NhomakorabeaA
D
C
=1/
2

/ssc ; /cpw ;
ysh61zvb
主殿下恕罪……”慕容凌娢很麻溜的跪下了,毕竟膝盖什么的,能有命重要?宫斗大戏里的套路就是一言不合就掌嘴,一点不爽就一丈红,还 是小心为好。“奴婢并非有意冒犯公主殿下,还望公主殿下开恩。”“哼!”傲娇的小公主得意的哼了一声,把头扬地更高了,“说,你是哪 个宫的。”“……”还问我的工作单位?这是要告状告到顶头上司那儿的节奏啊。慕容凌娢很郁闷,她抬起头来想要继续用主角的嘴炮技能, 却发现那位公主根本就没有再正眼看她,她的嘴炮就是再厉害,对着别人的鼻孔也说不出什么好词好句,所以她又把头低了下去。“亦清这是 怎么了,居然因为一个下人这么生气?”皇宫之中能还能听到这种平和的语调实数难能可贵。韩哲轩!慕容凌娢激动的眼睛放光,感觉自己有 救了。“八哥~”韩亦清很不满的跺跺脚,指着慕容凌娢说道,“不知道这是哪个宫的奴婢,没规矩没教养,见到我居然装作没看见!还鬼鬼 祟祟的,指不定是偷了什么东西……”韩亦清喋喋不休的说着慕容凌娢犯下的滔天大罪,慕容凌娢却脑洞大开。八哥……是那种“少年老成” 满脸皱纹眼睛又大又圆还闪烁着天真光芒的狗狗,还是那种会学人说话的小黑鸟?韩哲轩虽然有的时候眼神很像呆萌的八哥狗,但实际上,他 绝对没有八哥狗那么老实。所以说,他还是更像八哥鸟。“晓白是我那儿的人。今天早上我的玉佩丢在这附近了,所以才让她来帮我找。”韩 哲轩冲着慕容凌娢使了个眼色。“玉佩找到了吗?”尼玛,居然给我乱起外号!而且怎么听都像是宠物的名字。慕容凌娢虽然心里不爽,但口 头上也回答的很好。“回殿下……还没有找到。”慕容凌娢装出一副十分紧张的样子。“那就继续去找。”“是。”慕容凌娢起身行了个礼, 拔腿就走。“八哥~”韩亦清拽着韩哲轩的衣袖,用她常用的方式高声埋怨道,“这奴婢实在是没大没小,你这样纵容她,指不定哪天她就不 把你放在眼里了!”“亦清。”韩哲轩摸摸韩亦清的头,笑道,“晓白不守规矩是我管教的不好,八哥在这里给你赔罪,回去之后我一定替你 好好惩罚她。我们亦清公主大人有大量,就别为一个奴婢的事而生气了。”“那好吧,八哥你一定要好好罚她。”……快步走了一会儿,到了 安全地带,慕容凌娢才敢放慢速度往宫外走。她不紧不慢,也可以说是闲散的晃悠着,突然听到背后有人在叫自己。“晓白——”“干嘛啊? 搞事情啊!”慕容凌娢愤怒的回头,如果她手里有板砖的话,一定直接就扔上去了。“没人教过你表随便给人起外号吗?最主要的是如果外号 多到一定程度,我就记不住了!”“并没有。”韩哲轩扬唇一笑,说道“不过老师教过我要见义勇为。”“那好吧,非常非常感谢你救了我。” 慕容凌娢转
浙江省玉环县楚门中学吕联华
㈠向量的定义: 在空间,我们把具有大小和方向的量叫做向量。 · D A C B 这个”平移“就是一个向量 B1 a=“自西向东平移4个单位” A1 C1 a · · D1
㈡向量的表示方法: 空间向量可用有向线段表示
a
B b
记作:向量a、b。
O
A
㈢向量的相等:当两个向量大小相等,方向相同时两向量相等。
例1:已知平行六面体ABCD-A1B1C1D1, 化简下列面量表达式 A
D1 B1 G · B
C1
1
并标出化简结果的向量:
(1)AB+BC;(2)AB+AD+AA1; (3)AB+AD+1/2CC1(4)1/3( (AB+AD+AA1) D
M
C
A
解:(1)AB+BC=AC (2)AB+AD+AA1=AC+AA1=AC+CC1=AC1 (3)设M是线段CC1的中点,则AB+AD+1/2CC1= AC+CM=AM (4)设G是线段AC1的三等分点,则1/3(AB+AD+AA1) =1/3AC1=AG
a a a a b a a
c
c
③数乘分配律:λ(a + b )=λa +λb
(由同学自已证明)
㈥平行六面体:平行四边形ABCD平移向量a到A1B1C1D1的轨 迹所形成的几何体,叫做平行六面体。 D1 A1 B1 C B C1 D1
C1 B1
A1
D
a
A
D
C
A
B
记作ABCD—A1B1C1D1,它的六个面都是平行四边形,每 个面的边叫做平行六面体的棱。
相关文档
最新文档