晶粒尺寸计算

合集下载

xRD晶粒尺寸分析

xRD晶粒尺寸分析

xRD晶粒尺寸分析XRD晶粒尺寸分析注:晶粒尺寸和晶面间距不同计算晶粒大小:谢乐公式:D=kλ/βcosθD—垂直于反射晶面(hkl)的晶粒平均粒度D是晶粒大小β--(弧度)为该晶面衍射峰值半高宽的宽化程度K—谢乐常数,取决于结晶形状,常取0.89θ--衍射角λ---入射X射线波长(Ǻ)计算晶面间距:布拉格方程:2dsinθ=nλd是晶面间距。

此文档是用XRD软件来分析晶粒尺寸,用拟合的办法,而不是用谢乐公式很多人都想算算粒径有多大。

其实,我们专业的术语不叫粒径,而叫“亚晶尺寸”,它表征的并不是一个颗粒的直径。

A 这么说吧,粉末由很多“颗粒”组成,每个颗粒由很多个“晶粒”聚集而成,一个晶粒由很多个“单胞”拼接组成。

X射线测得的晶块尺寸是指衍射面指数方向上的尺寸,如果这个方向上有M 个单胞,而且这个方向上的晶面间距为d ,则测得的尺寸就是Md 。

如果某个方向(HKL )的单胞数为N ,晶面间距为d 1,那么这个方向的尺寸就是Nd 1。

由此可见,通过不同的衍射面测得的晶块尺寸是不一定相同的。

B 如果这个晶粒是一个完整的,没有缺陷的晶粒,可以将其视为一个测试单位,但是,如果这个晶粒有缺陷,那它就不是一个测试单位了,由缺陷分开的各个单位称为“亚晶”。

比如说吧,如果一个晶粒由两个通过亚晶界的小晶粒组成(称为亚晶),那么,测得的就不是这个晶粒的尺寸而是亚晶的尺寸了。

C 为什么那么多人喜欢抛开专业的解释而用“粒径”这个词呢?都是“纳米材料”惹的祸。

纳米晶粒本来就很小,一般可以认为一个纳米晶粒中不再存在亚晶,而是一个完整的晶粒,因此,亚晶尺寸这个术语就被套用到纳米晶粒的“粒径”上来了。

实际上,国家对于纳米材料的粒径及粒径分布的表征是有标准的,需要用“小角散射”方法来测量。

比如,北京钢铁研究总院做这个就做了很长时间。

但是呢,一则,做小角散射的地方还不多,做起来也特别麻烦(现在好一些了,特别是对光能自动一些了),所以,很少有人去做,而且,用衍射峰宽计算出来的“粒径”总是那么小,何乐而不为呢?我私下地觉得吧,这些人在偷换概念。

xRD晶粒尺寸分析1

xRD晶粒尺寸分析1

XRD晶粒尺寸分析注:晶粒尺寸和晶面间距不同计算晶粒大小:谢乐公式:D=kλ/βcosθD—垂直于反射晶面(hkl)的晶粒平均粒度 D是晶粒大小β--(弧度)为该晶面衍射峰值半高宽的宽化程度K—谢乐常数,取决于结晶形状,常取0.89θ--衍射角λ---入射X射线波长(Ǻ)计算晶面间距:布拉格方程:2dsinθ=nλ d是晶面间距。

此文档是用XRD软件来分析晶粒尺寸,用拟合的办法,而不是用谢乐公式很多人都想算算粒径有多大。

其实,我们专业的术语不叫粒径,而叫“亚晶尺寸”,它表征的并不是一个颗粒的直径。

A 这么说吧,粉末由很多“颗粒”组成,每个颗粒由很多个“晶粒”聚集而成,一个晶粒由很多个“单胞”拼接组成。

X射线测得的晶块尺寸是指衍射面指数方向上的尺寸,如果这个方向上有M个单胞,而且这个方向上的晶面间距为d,则测得的尺寸就是Md。

如果某个方向(HKL)的单胞数为N,晶面间距为d1,那么这个方向的尺寸就是Nd1。

由此可见,通过不同的衍射面测得的晶块尺寸是不一定相同的。

B 如果这个晶粒是一个完整的,没有缺陷的晶粒,可以将其视为一个测试单位,但是,如果这个晶粒有缺陷,那它就不是一个测试单位了,由缺陷分开的各个单位称为“亚晶”。

比如说吧,如果一个晶粒由两个通过亚晶界的小晶粒组成(称为亚晶),那么,测得的就不是这个晶粒的尺寸而是亚晶的尺寸了。

C 为什么那么多人喜欢抛开专业的解释而用“粒径”这个词呢?都是“纳米材料”惹的祸。

纳米晶粒本来就很小,一般可以认为一个纳米晶粒中不再存在亚晶,而是一个完整的晶粒,因此,亚晶尺寸这个术语就被套用到纳米晶粒的“粒径”上来了。

实际上,国家对于纳米材料的粒径及粒径分布的表征是有标准的,需要用“小角散射”方法来测量。

比如,北京钢铁研究总院做这个就做了很长时间。

但是呢,一则,做小角散射的地方还不多,做起来也特别麻烦(现在好一些了,特别是对光能自动一些了),所以,很少有人去做,而且,用衍射峰宽计算出来的“粒径”总是那么小,何乐而不为呢?我私下地觉得吧,这些人在偷换概念。

Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)

Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)

Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。

Scherrer公式:Dhkl=kλ/βcosθ其中,Dhkl为沿垂直于晶面(hkl)方向的晶粒直径,k为Scherrer 常数(通常为0.89),λ为入射X射线波长(Cuka 波长为0.15406nm,Cuka1 波长为0.15418nm。

),θ为布拉格衍射角(°),β为衍射峰的半高峰宽(rad)。

但是在实际操作中如何从一张普通的XRD图谱中获得上述的参数来计算晶粒尺寸还存在以下问题:1) 首先,用XRD计算晶粒尺寸必须扣除仪器宽化和应力宽化影响。

如何扣除仪器宽化和应力宽化影响?在什么情况下,可以简化这一步骤?答:在晶粒尺寸小于100nm时,应力引起的宽化与晶粒尺度引起的宽化相比,可以忽略。

此时,Scherrer公式适用。

但晶粒尺寸大到一定程度时,应力引起的宽化比较显著,此时必须考虑引力引起的宽化, Scherrer公式不再适用。

2) 通常获得的XRD数据是由Kα线计算得到的。

此时,需要Kα1和Kα2必须扣除一个,如果没扣除,肯定不准确。

3) 扫描速度也有影响,要尽可能慢。

一般2°/min。

4)一个样品可能有很多衍射峰,是计算每个衍射峰对应晶粒尺寸后平均?还是有其它处理原则?答:通常应当计算每个衍射峰晶粒尺寸后进行平均。

当然只有一两峰的时候,就没有必要强求了!5) 有的XRD数据中给出了width值,是不是半高宽度的值?能不能直接代入上面公式吗?如果不能,如何根据XRD图谱获得半峰宽?TOP20β为衍射峰的半高峰宽时,k=0.89β为衍射峰的积分宽度时,k=1.0。

XRD计算晶粒尺寸

XRD计算晶粒尺寸

Scherrer公式计算晶粒尺寸()Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。

Scherrer公式:Dhkl=kλ/βcosθ其中,Dhkl为沿垂直于晶面(hkl)方向的晶粒直径,k为Scherrer常数(通常为0.89),λ为入射X射线波长(Cuka 波长为0.15406nm,Cuka1 波长为0.15418nm。

),θ为布拉格衍射角(°),β为衍射峰的半高峰宽(rad)。

但是在实际操作中如何从一张普通的XRD图谱中获得上述的参数来计算晶粒尺寸还存在以下问题:1) 首先,用XRD计算晶粒尺寸必须扣除仪器宽化和应力宽化影响。

如何扣除仪器宽化和应力宽化影响?在什么情况下,可以简化这一步骤?答:在晶粒尺寸小于100nm时,应力引起的宽化与晶粒尺度引起的宽化相比,可以忽略。

此时,Scherrer公式适用。

但晶粒尺寸大到一定程度时,应力引起的宽化比较显著,此时必须考虑引力引起的宽化,Scherrer公式不再适用。

2) 通常获得的XRD数据是由Kα线计算得到的。

此时,需要Kα1和Kα2必须扣除一个,如果没扣除,肯定不准确。

3) 扫描速度也有影响,要尽可能慢。

一般2°/min。

4)一个样品可能有很多衍射峰,是计算每个衍射峰对应晶粒尺寸后平均?还是有其它处理原则?答:通常应当计算每个衍射峰晶粒尺寸后进行平均。

当然只有一两峰的时候,就没有必要强求了!5) 有的XRD数据中给出了width值,是不是半高宽度的值?能不能直接代入上面公式吗?如果不能,如何根据XRD图谱获得半峰宽?β为衍射峰的半高峰宽时,k=0.89β为衍射峰的积分宽度时,k=1.0。

其中积分宽度=衍射峰面积积分/峰高如何获得单色Kα1:1)硬件滤掉Kβ:K系射线又可以细分为Kα(L层电子填充)和Kβ(M层电子填充)两种波长略有差异的两种射线。

Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)

Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)
TOP20
β为衍射xx的半xx宽时,k=
0.89β为衍射xx的积分宽度时,k=
1.0。其中积分宽度=衍射峰面积积分/峰高
如何获得单色Kα1:
1)硬件滤掉Kβ:
K系射线又可以细分为Kα(L层电子填充)和Kβ(M层电子填充)两种波长略有差异的两种射线。而X射线衍射仪要求使用单色X射线,因此,需要在XRD实验时把后者除掉。
a).传统的方法是在光路上加入一个滤波片(如Ni)。
b).现在一般使用铜靶,在光路上增加一个石墨晶体单色器来去除Kβ射线。通常的做法是在衍射线的光路上,安装弯曲晶体单色器。石墨单晶体单色器是一块磨成弯曲面的石墨单晶体。由试样衍射产生的衍射线(称为一次衍射)经单色器时,通过调整单晶体的方位使它的某个高反射本领晶面与一次衍射线的夹角刚好等于该晶面对一次衍射的Kα辐射的布拉格角。单色器可以去除衍射背底,也可以去除Kβ射线的干扰。这样,由单晶体衍射后发出的二次衍射线就是纯净的与试样衍射对应的Kα衍射线。
如果f和g均为Cauchy函数,其积分宽度分别为β和b,则其卷积h(h=f·g)的积分宽度B等于(β+b)。因此,β=B–b。所以,作为一种简化方法,我们可以从实验测得的宽化衍射剖面数据(h)和结晶良好晶体的无宽化的衍射剖面数据(g),经过分离Kα2重叠后,分别求取其积分宽度B和b,B和b之差便是Scherrer公式所需的β。在较低的2θ角区域,g和h的形式和Cauchy函数有较大的偏离,故对于低角度的h数据使用这种简化方法求得的β将有较大的误差
Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)
Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)
Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)
根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。

Scherrer公式计算晶粒尺寸(XRD)

Scherrer公式计算晶粒尺寸(XRD)

Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。

Scherrer公式:Dhkl=kλ/βcosθ其中,Dhkl为沿垂直于晶面(hkl)方向的晶粒直径,k为Scherrer常数(通常为0.89),λ为入射X射线波长(Cuka 波长为0.15406nm,Cuka1 波长为0.15418nm。

),θ为布拉格衍射角(°),β为衍射峰的半高峰宽(rad)。

但是在实际操作中如何从一张普通的XRD图谱中获得上述的参数来计算晶粒尺寸还存在以下问题:1) 首先,用XRD计算晶粒尺寸必须扣除仪器宽化和应力宽化影响。

如何扣除仪器宽化和应力宽化影响?在什么情况下,可以简化这一步骤?答:在晶粒尺寸小于100nm时,应力引起的宽化与晶粒尺度引起的宽化相比,可以忽略。

此时,Scherrer公式适用。

但晶粒尺寸大到一定程度时,应力引起的宽化比较显著,此时必须考虑引力引起的宽化,Scherrer公式不再适用。

2) 通常获得的XRD数据是由Kα线计算得到的。

此时,需要Kα1和Kα2必须扣除一个,如果没扣除,肯定不准确。

3) 扫描速度也有影响,要尽可能慢。

一般2°/min。

4)一个样品可能有很多衍射峰,是计算每个衍射峰对应晶粒尺寸后平均?还是有其它处理原则?答:通常应当计算每个衍射峰晶粒尺寸后进行平均。

当然只有一两峰的时候,就没有必要强求了!5) 有的XRD数据中给出了width值,是不是半高宽度的值?能不能直接代入上面公式吗?如果不能,如何根据XRD图谱获得半峰宽?TOPxiaogou •2007-09-25 10:21树型| 收藏| 小中大2#β为衍射峰的半高峰宽时,k=0.89β为衍射峰的积分宽度时,k=1.0。

Scherrer公式计算晶粒尺寸

Scherrer公式计算晶粒尺寸

Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。

Scherrer公式:Dhkl=kλ/βcosθ其中,Dhkl为沿垂直于晶面(hkl)方向的晶粒直径,k为Scherrer 常数(通常为),λ为入射X射线波长(Cuka 波长为,Cuka1 波长为。

),θ为布拉格衍射角(°),β为衍射峰的半高峰宽(rad)。

但是在实际操作中如何从一张普通的XRD图谱中获得上述的参数来计算晶粒尺寸还存在以下问题:1) 首先,用XRD计算晶粒尺寸必须扣除仪器宽化和应力宽化影响。

如何扣除仪器宽化和应力宽化影响在什么情况下,可以简化这一步骤答:在晶粒尺寸小于100nm时,应力引起的宽化与晶粒尺度引起的宽化相比,可以忽略。

此时,Scherrer公式适用。

但晶粒尺寸大到一定程度时,应力引起的宽化比较显著,此时必须考虑引力引起的宽化, Scherrer公式不再适用。

2) 通常获得的XRD数据是由Kα线计算得到的。

此时,需要Kα1和Kα2必须扣除一个,如果没扣除,肯定不准确。

3) 扫描速度也有影响,要尽可能慢。

一般2°/min。

4)一个样品可能有很多衍射峰,是计算每个衍射峰对应晶粒尺寸后平均还是有其它处理原则答:通常应当计算每个衍射峰晶粒尺寸后进行平均。

当然只有一两峰的时候,就没有必要强求了!5) 有的XRD数据中给出了width值,是不是半高宽度的值能不能直接代入上面公式吗如果不能,如何根据XRD图谱获得半峰宽TOP 20β为衍射峰的半高峰宽时,k=β为衍射峰的积分宽度时,k=。

其中积分宽度=衍射峰面积积分/峰高如何获得单色Kα1:1)硬件滤掉Kβ:K系射线又可以细分为Kα(L层电子填充)和Kβ(M层电子填充)两种波长略有差异的两种射线。

14.谢乐公式计算XRD样品的晶粒尺寸的实例

14.谢乐公式计算XRD样品的晶粒尺寸的实例

谢乐公式计算XRD样品的晶粒尺寸的实例我们常见的谢乐(Scherrer)公式表达式为D=Kλ /(βcos θ)(K为常数;λ 为X 射线波长;β 为为衍射峰半高宽;θ为衍射角)。

在上式中常数K的取值与β的定义有关,当β为半宽高时,K取0.89。

当β为积分宽度时,K取1.0。

我们在计算晶粒尺寸时,一般采用低角度的衍射线,如果晶粒尺寸较大,可用较高衍射角的衍射线来代替。

谢乐公式适用范围为1-100nm,晶粒尺寸小于1nm大于100nm时,使用用谢乐公式不太准确,当晶粒尺寸在30nm时其计算的结果最准确。

同时,谢乐公式只适合球形粒子,对立方体粒子常数K应改为0.943,半高宽应该转化为弧度制,即[(β÷180)×3.14]。

下面这个图是Jade5.0所读的晶粒尺寸为264(A°)即为26.4nm。

38.26)2159.36(14.3180332.015405.0943.0=⨯⨯⨯=COS D 这边有的数据是X 射线波长λ=0.15405 nm , 半高宽β=0.332,2θ=36.159。

我是这样算的: 自己计算出来的值和用软件计算出来的值很接近。

我这里有2004的PDF 标准卡片,如果有哪位需要的话直接加我qq ,我发给你,我的qq 是425841088。

Scherrer 公式计算晶粒尺寸()Scherrer 公式计算晶粒尺寸(XRD 数据计算晶粒尺寸)根据X 射线衍射理论,在晶粒尺寸小于100nm 时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer 公式计算。

Scherrer 公式:Dhkl=k λ/βcos θ其中,Dhkl 为沿垂直于晶面(hkl )方向的晶粒直径,k 为Scherrer 常数(通常为0.89), λ为入射X 射线波长(Cuka 波长为0.15406nm ,Cuka1 波长为0.15418nm 。

等面积圆直径表示晶粒尺寸公式

等面积圆直径表示晶粒尺寸公式

等面积圆直径表示晶粒尺寸公式
晶粒尺寸通常用等面积圆直径来表示。

等面积圆直径是指一个与晶粒形状相似的圆的直径,其面积与晶粒的实际面积相等。

晶粒尺寸的公式可以根据晶粒的形状来确定。

对于球形晶粒,公式为:
D = 2 (V / π)^(1/3)。

其中,D是等面积圆直径,V是晶粒的体积。

对于立方形晶粒,公式为:
D = (6 V)^(1/3)。

其中,D是等面积圆直径,V是晶粒的体积。

对于其他形状的晶粒,公式可能会有所不同,因为不同形状的晶粒需要不同的等面积圆直径公式来表示其尺寸。

在实际应用中,需要根据晶粒的具体形状来选择合适的公式进行计算。

这些公式可以帮助科学家和工程师确定材料的晶粒尺寸,从而更好地理解材料的性能和行为。

Scherrer公式计算晶粒尺寸(XRD)

Scherrer公式计算晶粒尺寸(XRD)

Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。

Scherrer公式:Dhkl=kλ/βcosθ其中,Dhkl为沿垂直于晶面(hkl)方向的晶粒直径,k为Scherrer常数(通常为0.89),λ为入射X射线波长(Cuka 波长为0.15406nm,Cuka1 波长为0.15418nm。

),θ为布拉格衍射角(°),β为衍射峰的半高峰宽(rad)。

但是在实际操作中如何从一张普通的XRD图谱中获得上述的参数来计算晶粒尺寸还存在以下问题:1) 首先,用XRD计算晶粒尺寸必须扣除仪器宽化和应力宽化影响。

如何扣除仪器宽化和应力宽化影响?在什么情况下,可以简化这一步骤?答:在晶粒尺寸小于100nm时,应力引起的宽化与晶粒尺度引起的宽化相比,可以忽略。

此时,Scherrer公式适用。

但晶粒尺寸大到一定程度时,应力引起的宽化比较显著,此时必须考虑引力引起的宽化,Scherrer公式不再适用。

2) 通常获得的XRD数据是由Kα线计算得到的。

此时,需要Kα1和Kα2必须扣除一个,如果没扣除,肯定不准确。

3) 扫描速度也有影响,要尽可能慢。

一般2°/min。

4)一个样品可能有很多衍射峰,是计算每个衍射峰对应晶粒尺寸后平均?还是有其它处理原则?答:通常应当计算每个衍射峰晶粒尺寸后进行平均。

当然只有一两峰的时候,就没有必要强求了!5) 有的XRD数据中给出了width值,是不是半高宽度的值?能不能直接代入上面公式吗?如果不能,如何根据XRD图谱获得半峰宽?TOPxiaogou •2007-09-25 10:21树型| 收藏| 小中大2#β为衍射峰的半高峰宽时,k=0.89β为衍射峰的积分宽度时,k=1.0。

Scherrer公式计算晶粒尺寸(XRD)

Scherrer公式计算晶粒尺寸(XRD)

Scherrer公式计算晶粒尺寸(XRD)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。

Scherrer公式:Dhkl=kλ/βcosθ其中,Dhkl为沿垂直于晶面(hkl)方向的晶粒直径,k为Scherrer常数(通常为0.89),λ为入射X射线波长(Cuka 波长为0.15406nm,Cuka1 波长为0.15418nm。

),θ为布拉格衍射角(°),β为衍射峰的半高峰宽(rad)。

但是在实际操作中如何从一张普通的XRD图谱中获得上述的参数来计算晶粒尺寸还存在以下问题:1) 首先,用XRD计算晶粒尺寸必须扣除仪器宽化和应力宽化影响。

如何扣除仪器宽化和应力宽化影响?在什么情况下,可以简化这一步骤?答:在晶粒尺寸小于100nm时,应力引起的宽化与晶粒尺度引起的宽化相比,可以忽略。

此时,Scherrer公式适用。

但晶粒尺寸大到一定程度时,应力引起的宽化比较显著,此时必须考虑引力引起的宽化,Scherrer公式不再适用。

2) 通常获得的XRD数据是由Kα线计算得到的。

此时,需要Kα1和Kα2必须扣除一个,如果没扣除,肯定不准确。

3) 扫描速度也有影响,要尽可能慢。

一般2°/min。

4)一个样品可能有很多衍射峰,是计算每个衍射峰对应晶粒尺寸后平均?还是有其它处理原则?答:通常应当计算每个衍射峰晶粒尺寸后进行平均。

当然只有一两峰的时候,就没有必要强求了!5) 有的XRD数据中给出了width值,是不是半高宽度的值?能不能直接代入上面公式吗?如果不能,如何根据XRD图谱获得半峰宽?TOPxiaogou 2007-09-25 10:21树型| 收藏| 小中大2#β为衍射峰的半高峰宽时,k=0.89β为衍射峰的积分宽度时,k=1.0。

Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)

Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)
TOPБайду номын сангаас0
β为衍射xx的半xx宽时,k=
0.89β为衍射xx的积分宽度时,k=
1.0。其中积分宽度=衍射峰面积积分/峰高
如何获得单色Kα1:
1)硬件滤掉Kβ:
K系射线又可以细分为Kα(L层电子填充)和Kβ(M层电子填充)两种波长略有差异的两种射线。而X射线衍射仪要求使用单色X射线,因此,需要在XRD实验时把后者除掉。
如果f和g均为Cauchy函数,其积分宽度分别为β和b,则其卷积h(h=f·g)的积分宽度B等于(β+b)。因此,β=B–b。所以,作为一种简化方法,我们可以从实验测得的宽化衍射剖面数据(h)和结晶良好晶体的无宽化的衍射剖面数据(g),经过分离Kα2重叠后,分别求取其积分宽度B和b,B和b之差便是Scherrer公式所需的β。在较低的2θ角区域,g和h的形式和Cauchy函数有较大的偏离,故对于低角度的h数据使用这种简化方法求得的β将有较大的误差
2).仪器宽化函数的测定
为了进行仪器宽化的校正,需要事先准备好仪器宽化函数g的数据。我们可以选取一种结构近于完美的晶体,用相同的一组实验条件,测定它在待校正的实验衍射峰角度附近的一个衍射峰剖面。我们假定结构近于完善的晶体的“纯”衍射剖面的宽度趋近于零,因此它的实验剖面便可视为在这一角度附近、这一组实验条件下的仪器宽化函数g,此时所得到的实验数据也必须进行Kα
h(θ)通常较g(θ)宽,这是由于结构缺陷引入f(θ)所致。一般称f(θ)为衍射线的真实剖面函数或真实宽化函数,而g(θ)则称为(包括各种实验测试条件在内的)测试函数或仪器宽化函数。
因此,通过对实验剖面函数h(θ)数据的解析处理,有可能求得反映结构缺陷的真实剖面函数f(θ),从而对结构中各种形式的缺陷进行研究。微细晶粒(平均粒度<1000埃)的平均大小、粒度分布、微观应力(第二类应力)、结构面的堆垛层错等等信息,都能通过对衍射剖面f(θ)的分析得到一定结果。

Scherrer公式计算晶粒尺寸(XRD)

Scherrer公式计算晶粒尺寸(XRD)

Scherrer公式计算晶粒尺寸(XRD)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。

Scherrer公式:Dhkl=kλ/βcosθ其中,Dhkl为沿垂直于晶面(hkl)方向的晶粒直径,k为Scherrer常数(通常为0.89),λ为入射X射线波长(Cuka 波长为0.15406nm,Cuka1 波长为0.15418nm。

),θ为布拉格衍射角(°),β为衍射峰的半高峰宽(rad)。

但是在实际操作中如何从一张普通的XRD图谱中获得上述的参数来计算晶粒尺寸还存在以下问题:1) 首先,用XRD计算晶粒尺寸必须扣除仪器宽化和应力宽化影响。

如何扣除仪器宽化和应力宽化影响?在什么情况下,可以简化这一步骤?答:在晶粒尺寸小于100nm时,应力引起的宽化与晶粒尺度引起的宽化相比,可以忽略。

此时,Scherrer公式适用。

但晶粒尺寸大到一定程度时,应力引起的宽化比较显著,此时必须考虑引力引起的宽化,Scherrer公式不再适用。

2) 通常获得的XRD数据是由Kα线计算得到的。

此时,需要Kα1和Kα2必须扣除一个,如果没扣除,肯定不准确。

3) 扫描速度也有影响,要尽可能慢。

一般2°/min。

4)一个样品可能有很多衍射峰,是计算每个衍射峰对应晶粒尺寸后平均?还是有其它处理原则?答:通常应当计算每个衍射峰晶粒尺寸后进行平均。

当然只有一两峰的时候,就没有必要强求了!5) 有的XRD数据中给出了width值,是不是半高宽度的值?能不能直接代入上面公式吗?如果不能,如何根据XRD图谱获得半峰宽?TOPxiaogou 2007-09-25 10:21树型| 收藏| 小中大2#β为衍射峰的半高峰宽时,k=0.89β为衍射峰的积分宽度时,k=1.0。

Scherrer公式(计算晶粒尺寸)

Scherrer公式(计算晶粒尺寸)

精品word完整版-行业资料分享
Scherrer公式
Scherrer公式D=Kλ/βcosθ
K为Scherrer常数,其值为0.89,一般取1。

D为晶粒尺寸(nm);
β为积分半高宽度,在计算的过程中,需转化为弧度(rad);
θ为衍射角;
λ为X射线波长,Cu靶为0.154056 nm
注意:由于材料中的晶粒大小并不完全一样,故计算所得实为不同大小晶粒的平均值。

而且晶粒不是球形,在不同方向其厚度是不同的,所以由不同衍射线求得的D是不同的。

一般求取数个,如n个不同方向的晶粒厚度,据此可以估计晶粒的外形。

求他们的平均值,所得为不同方向厚度的平均值D,即为晶粒大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶粒尺寸计算步骤一:基本数据处理
1. XRD程序的运行
点击快捷方式
快捷方式 到 Pmgr.lnk 显示如下界面
2.基本数据处理(Basic Process)
原始数据的导入
点击Basic Process模块单元
Basic Process 界面显示如下:
点击文件夹图标
选择xddat文件夹
导入原始数据,进行数据处理:
!!注意:数据处理参数设置,Smoothing/B.G.Substruction/ kα
-kα2 Separate请选择Manual,
1
确保同类样品数据处理参数一致。

Basic Process数据处理后,获得衍射峰信息,如下图.
3.晶粒尺寸/显微畸变计算
点击Xtal.Size &Lattice Strain 模块,选择下拉菜单中Condition 选项
根据Basic Process 衍射峰 2-theta角度信息,输入所需计算的衍射峰角度!!注意:除样品的计算参数外,必需同时导入标准样品的计算参数
导入计算数据,如图所示
Go运行计算,并显示结果. 点击。

相关文档
最新文档