3.4 数列的通项及数列求和
数列的通项与求和
数列的通项与求和数列是数学中的重要概念,广泛应用于各个领域。
在数列中,每一个数字都有其特定的位置和规律。
通项与求和是数列中两个基本问题,本文将围绕这两个问题展开探讨。
一、数列的通项数列的通项是指数列中任意一项与其位置之间的关系式。
通项可以用来计算数列中任意一项的值,从而更好地理解数列的规律和特点。
下面将以等差数列和等比数列为例,介绍数列的通项计算方法。
1. 等差数列等差数列的通项公式为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
首先确定首项和公差的值,然后代入公式即可计算出任意一项的值。
例如,对于等差数列1, 3, 5, 7, 9,首项a1=1,公差d=2,第n项的值可以通过an = 1 + (n-1)x2求得。
2. 等比数列等比数列的通项公式为:an = a1 x r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
首先确定首项和公比的值,然后代入公式即可计算出任意一项的值。
例如,对于等比数列2, 4, 8, 16, 32,首项a1=2,公比r=2,第n项的值可以通过an = 2 x 2^(n-1)求得。
二、数列的求和数列的求和是指将数列中所有项的值相加得到的结果。
通过求和,可以获得数列的总和,从而更好地了解数列的变化和特征。
下面将以等差数列和等比数列为例,介绍数列的求和计算方法。
1. 等差数列求和等差数列的求和公式为:Sn = (n/2)(a1 + an),其中Sn表示前n项和,n表示项数,a1表示首项,an表示第n项。
根据公式,首先确定项数、首项和最后一项的值,然后代入公式即可计算出数列的总和。
例如,对于等差数列1, 3, 5, 7, 9,共有5项,首项a1=1,最后一项an=9,根据公式Sn = (5/2)(1 + 9),可以得到数列的总和为25。
2. 等比数列求和等比数列的求和公式为:Sn = (a1(1-r^n))/(1-r),其中Sn表示前n项和,a1表示首项,r表示公比。
数列的通项与求和
数列的通项与求和在数学中,数列是由一系列按照规律排列的数字组成的序列。
数列的通项是指能够计算出数列中任意一项数值的公式,而数列的求和则是将数列中所有数值相加的结果。
在本文中,我们将探讨数列的通项与求和的相关知识,并通过实例来解释其应用。
一、等差数列等差数列是指数列中的每一项数与其前一项数之差都相等的数列。
如果一个等差数列的首项为a1,公差为d,则该数列的通项公式可以表示为an = a1 + (n-1)d,其中n为数列的项数。
以等差数列1, 4, 7, 10, 13为例,首项a1为1,公差d为3。
我们可以利用通项公式计算数列中任意一项的数值。
例如,要计算第5项的数值,即n=5,代入通项公式可以得到a5 = 1 + (5-1)3 = 13。
另外,对于等差数列的求和,我们可以使用求和公式Sn = (n/2)(a1+ an)来计算。
其中,n为数列的项数,a1为首项,an为末项。
二、等比数列等比数列是指数列中的每一项数与其前一项数的比值都相等的数列。
如果一个等比数列的首项为a1,公比为r,则该数列的通项公式可以表示为an = a1 * r^(n-1),其中n为数列的项数。
以等比数列2, 6, 18, 54, 162为例,首项a1为2,公比r为3。
利用通项公式,我们可以计算数列中任意一项的数值。
例如,要计算第5项的数值,即n=5,代入公式可以得到a5 = 2 * 3^(5-1) = 162。
对于等比数列的求和,我们可以使用求和公式Sn = (a1 * (r^n - 1))/(r - 1)来计算。
其中,n为数列的项数,a1为首项,r为公比。
三、斐波那契数列斐波那契数列是一种特殊的数列,它的前两项均为1,从第三项开始,每一项都是前两项之和。
斐波那契数列的通项公式可以表示为an = an-1 + an-2,其中n为数列的项数。
斐波那契数列的前几项依次为1, 1, 2, 3, 5, 8, 13, 21...以此类推。
数列与级数的通项公式和求和公式
数列与级数的通项公式和求和公式数列和级数是数学中常见的概念,它们在各个学科领域都有广泛的应用。
为了更方便地研究数列和级数的性质和特征,数学家们总结出了一系列的通项公式和求和公式,可以帮助我们更快速地计算和处理数列和级数的问题。
首先,我们来介绍数列的通项公式。
数列是按照一定规律排列的一系列数的集合。
通项公式,顾名思义,就是能够给出数列中任意一项的数学关系式。
通过通项公式,我们可以根据项数或索引号,直接求得数列中任意一项的值。
常见的数列有等差数列和等比数列。
等差数列的通项公式为an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
例如,a1为3,d为2的等差数列的通项公式为an = 3 + (n-1)2。
通过这个公式,我们可以轻松计算出任意一项的值。
类似地,等比数列的通项公式为an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
例如,a1为2,r为3的等比数列的通项公式为an = 2 * 3^(n-1)。
通过这个公式,我们可以迅速求得任意一项的值。
除了数列的通项公式,求和公式也是我们经常使用的工具。
求和公式可以帮助我们寻找数列的和,也就是级数。
级数是将数列中的每一项相加得到的结果。
在求和公式中,我们首先来讨论等差数列的求和公式。
等差数列的求和公式为Sn = (n/2)(a1 + an),其中Sn表示前n项的和,a1表示首项,an表示第n项。
通过这个公式,我们可以快速计算出前n项的和。
类似地,等比数列的求和公式为Sn = (a1 * (1-r^n)) / (1-r),其中Sn表示前n项的和,a1表示首项,r表示公比。
通过这个公式,我们可以轻松地求得前n项的和。
除了等差数列和等比数列的求和公式,还有其他一些特殊的数列的求和公式。
例如,调和数列的前n项和可以表示为Sn = Hn * a1,其中Hn表示调和数列的第n项,a1表示首项。
斐波那契数列的前n项和可以表示为Sn = Fn+2 - 1,其中Fn表示斐波那契数列的第n项。
数列的通项公式和求和公式如何推导
数列的通项公式和求和公式如何推导一、数列的通项公式推导在数学中,数列是按照一定规律排列的一组数。
每个数列都有一个通项公式,它能够用来计算数列中第n项的数值。
下面我将详细介绍数列通项公式的推导过程。
1. 等差数列的通项公式推导:等差数列是指数列中相邻两项之间的差始终相等。
设等差数列的首项为a1,公差为d,第n项为an,则可以得到如下关系式:an = a1 + (n-1)d该关系式可以推导如下:首项a1加上项数减一n-1与公差d的乘积。
2. 等比数列的通项公式推导:等比数列是指数列中相邻两项之间的比例始终相等。
设等比数列的首项为a1,公比为r,第n项为an,则可以得到如下关系式:an = a1 * r^(n-1)该关系式可以推导如下:首项a1乘以公比r的n-1次幂。
3. 斐波那契数列的通项公式推导:斐波那契数列是指数列中每一项都等于其前两项之和的数列。
设斐波那契数列的首项为a1,第二项为a2,第n项为an,则可以得到如下关系式:an = a(n-1) + a(n-2)该关系式表示,每一项等于其前一项与前两项之和。
二、数列的求和公式推导除了通项公式,数列还有求和公式,用来计算数列中一定范围内的数值之和。
下面我将详细介绍数列求和公式的推导过程。
1. 等差数列的求和公式推导:设等差数列的首项为a1,公差为d,前n项和为Sn,则可以得到如下求和公式:Sn = (n/2)(a1 + an)该公式可以推导如下:首项a1与末项an的和乘以项数n再除以2。
2. 等比数列的求和公式推导:设等比数列的首项为a1,公比为r,前n项和为Sn,则可以得到如下求和公式:Sn = (a1 * (1 - r^n))/(1 - r)该公式可以推导如下:根据等比数列前n项和与首项、公比的关系推导出来。
3. 斐波那契数列的求和公式推导:由于斐波那契数列没有固定的求和公式,所以求解斐波那契数列的前n项和时通常需要运用其他方法,如递推等。
通过以上推导过程,我们可以得到数列的通项公式和求和公式。
数列的通项与求和例题和知识点总结
数列的通项与求和例题和知识点总结一、数列的通项在数列中,通项公式是指第 n 项 an 与项数 n 之间的关系式。
(一)等差数列的通项公式若一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。
其通项公式为:an = a1 +(n 1)d ,其中a1 为首项,d 为公差。
例如:数列 2,5,8,11,14,是一个首项 a1 = 2,公差 d = 3 的等差数列,其通项公式为 an = 2 +(n 1)×3 = 3n 1 。
(二)等比数列的通项公式若一个数列从第二项起,每一项与它的前一项的比值等于同一个常数,这个数列就叫做等比数列。
其通项公式为:an = a1×q^(n 1) ,其中 a1 为首项,q 为公比。
例如:数列 2,4,8,16,32,是一个首项 a1 = 2,公比 q = 2 的等比数列,其通项公式为 an = 2×2^(n 1) = 2^n 。
(三)常见的求通项公式的方法1、观察法通过对数列前几项的观察,找出规律,从而推测出通项公式。
例如:数列 1,3,5,7,9,很容易观察出其通项公式为 an = 2n1 。
2、累加法当数列的递推关系为 an an 1 = f(n) 时,可用累加法求通项公式。
例如:已知数列{an} 满足 a1 = 1,an an 1 = n ,求 an 。
因为 an an 1 = n ,所以a2 a1 = 2a3 a2 = 3an an 1 = n将上述式子相加得:an a1 = 2 + 3 ++ n所以 an = a1 + 2 + 3 ++ n = 1 +(2 + 3 ++ n) = 1 + n(n+ 1)/2 。
3、累乘法当数列的递推关系为 an / an 1 = f(n) 时,可用累乘法求通项公式。
例如:已知数列{an} 满足 a1 = 1,an / an 1 = n ,求 an 。
因为 an / an 1 = n ,所以a2 / a1 = 2a3 / a2 = 3an / an 1 = n将上述式子相乘得:an / a1 = 2×3××n所以 an = a1×2×3××n = n! 。
理解数列的通项与求和公式
理解数列的通项与求和公式数列是数学中的一种重要概念,它是由一系列按照某种规律排列的数字所组成的序列。
数列的通项与求和公式是数列研究中的基础内容,它们能够帮助我们更好地理解和应用数列。
一、数列的通项公式数列的通项公式是指能够根据数列的位置n,直接求出该位置上的数值的公式。
通项公式的推导过程需要根据数列的规律进行分析,从而找到数列中的模式和规律。
以等差数列为例,等差数列是一种数列,其中每个数与它的前一个数之差相等。
如果已知等差数列的首项为a1,公差为d,那么数列的通项公式可以表示为an =a1 + (n-1)d。
其中,an表示数列中第n个数的值。
同样地,等比数列也有其通项公式。
等比数列是一种数列,其中每个数与它的前一个数之比相等。
如果已知等比数列的首项为a1,公比为r,那么数列的通项公式可以表示为an = a1 * r^(n-1)。
其中,an表示数列中第n个数的值。
通过数列的通项公式,我们可以根据数列的位置直接求出数列中对应位置上的数值,从而更方便地进行数列的计算和分析。
二、数列的求和公式数列的求和公式是指能够根据数列中的一定范围内的位置,直接求出该范围内所有数值的和的公式。
求和公式的推导过程需要根据数列的规律进行分析,从而找到数列中的模式和规律。
以等差数列为例,等差数列的求和公式可以表示为Sn = (n/2)(a1 + an)。
其中,Sn表示数列中前n项的和,a1表示数列的首项,an表示数列的第n项。
同样地,等比数列也有其求和公式。
等比数列的求和公式可以表示为Sn = a1 * (1 - r^n) / (1 - r)。
其中,Sn表示数列中前n项的和,a1表示数列的首项,r表示数列的公比。
通过数列的求和公式,我们可以直接求出数列中一定范围内所有数值的和,从而更方便地进行数列的计算和分析。
三、数列的应用数列的通项与求和公式在实际应用中具有广泛的用途。
它们可以帮助我们更好地理解和解决各种实际问题。
在数学中,数列的通项与求和公式可以用于解决各种数学题目,如求和、递推关系等。
数列的通项与求和计算方法总结
数列的通项与求和计算方法总结(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数列的通项与求和计算方法总结第一章 数列通项公式的十种求法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n na n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。
评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2nna 是等差数列,再直接利用等差数列的通项公式求出31(1)22n na n =+-,进而求出数列{}n a 的通项公式。
二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。
数列求通项、求和的几种方法
求数列通项公式的几种方法数列知识是高考中的重要考察内容,而数列的通项公式又是数列的核心内容之一,它如同函数中的解析式一样,有了解析式便可研究起性质等;而有了数列的通项公式便可求出任一项以及前N项和等.因此,求数列的通项公式往往是解题的突破口,关键点.故将求数列通项公式的方法做一总结,希望能对广大考生的复习有所帮助.下面我就谈谈求数列通项公式的几种方法:一、累差法递推式为:a n+1=a n+f(n)(f(n)可求和)思路::令n=1,2,…,n-1可得a2-a1=f(1)a3-a2=f(2)a4-a3=f(3)……a n-a n-1=f(n-1)将这个式子累加起来可得a n-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴a n=a1+f(1)+f(2)+…+f(n-1)当然我们还要验证当n=1时,a1是否满足上式例1、已知数列{a}中,a1=1,a n+1=a n+2,求a n解:令n=1,2,…,n-1可得a2-a1=2a3-a2=22a4-a3=23……a n-a n-1=2n-1将这个式子累加起来可得a n-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴a n=a1+f(1)+f(2)+…+f(n-1)当n=1时,a1适合上式故a n=2n-1二、累商法递推式为:a n+1=f(n)a n(f(n)要可求积)思路:令n=1,2,…,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……a n/a n-1=f(n-1)将这个式子相乘可得a n/a1=f(1)f(2)…f(n-1)∵f(n)可求积∴a n=a1f(1)f(2) …f(n-1)当然我们还要验证当n=1时,a1是否适合上式例2、在数列{a n}中,a1=2,a n+1=(n+1)a n/n,求a n解:令n=1,2,…,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……a n/a n-1=f(n-1)将这个式子相乘后可得a n/a1=2/1×3/24×/3×…×n/(n-1)即a n=2n当n=1时,a n也适合上式∴a n=2n三,构造法1、递推关系式为a n+1=pa n+q (p,q为常数)思路:设递推式可化为a n+1+x=p(a n+x),得a n+1=pa n+(p-1)x,解得x=q/(p-1) 故可将递推式化为a n+1+x=p(a n+x)构造数列{b n},b n=a n+q/(p-1)b n+1=pb n即b n+1/b n=p,{b n}为等比数列.故可求出b n=f(n)再将b n=a n+q/(p-1)代入即可得a n例3、(06重庆)数列{a n}中,对于n>1(n€N)有a n=2a n-1+3,求a n解:设递推式可化为a n+x=2(a n-1+x),得a n=2a n-1+x,解得x=3故可将递推式化为a n+3=2(a n-1+3)构造数列{b n},b n=a n+3b n=2b n-1即b n/b n-1=2,{b n}为等比数列且公比为3b n=b n-1·3,b n=a n+3b n=4×3n-1a n+3=4×3n-1,a n=4×3n-1-12、递推式为a n+1=pa n+q n(p,q为常数)思路:在a n+1=pa n+q n两边同时除以q n+1得a n+1/q n+1=p/qa n/q n+i/q构造数列{b n},b n=a n/q n可得b n+1=p/qb n+1/q故可利用上类型的解法得到b n=f(n)再将代入上式即可得a n例4、数列{a n}中,a1+5/6,a n+1=(1/3)a n+(1/2)n,求a n解:在a n+1=(1/3)a n+(1/2)n两边同时除以(1/2)n+1得2n+1a n+1=(2/3)×2n a n+1构造数列{b n},b n=2n a n可得b n+1=(2/3)b n+1故可利用上类型解法解得b n=3-2×(2/3)n2n a n=3-2×(2/3)na n=3×(1/2)n-2×(1/3)n3、递推式为:a n+2=pa n+1+qa n(p,q为常数)思路:设a n+2=pa n+1+qa n变形为a n+2-xa n+1=y(a n+1-xa n)也就是a n+2=(x+y)a n+1-(xy)a n,则可得到x+y=p,xy= -q解得x,y,于是{b n}就是公比为y的等比数列(其中b n=a n+1-xa n)这样就转化为前面讲过的类型了.例5、已知数列{a n}中,a1=1,a2=2,a n+2=(2/3)·a n+1+(1/3)·a n,求a n解:设a n+2=(2/3)a n+1+(1/3)a n可以变形为a n+2-xa n+1=y(a n+1-xa n)也就是a n+2=(x+y)a n+1-(xy)a n,则可得到x+y=2/3,xy= -1/3可取x=1,y= -1/3构造数列{b n},b n=a n+1-a n故数列{b n}是公比为-1/3的等比数列即b n=b1(-1/3)n-1b1=a2-a1=2-1=1b n=(-1/3)n-1a n+1-a n=(-1/3)n-1故我们可以利用上一类型的解法求得a n=1+3/4×[1-(-1/3)n-1](n€N*)四、利用s n和n、a n的关系求a n1、利用s n和n的关系求a n思路:当n=1 时,a n=s n当n≥2 时, a n=s n-s n-1例6、已知数列前项和s=n2+1,求{a n}的通项公式.解:当n=1 时,a n=s n=2当n≥2 时, a n=s n-s n-1=n+1-[(n-1)2+1]=2n-1而n=1时,a1=2不适合上式∴当n=1 时,a n=2当n≥2 时, a n=2n-12、利用s n和a n的关系求a n思路:利用a n=s n-s n-1可以得到递推关系式,这样我们就可以利用前面讲过的方法求解例7、在数列{a n}中,已知s n=3+2a n,求a n解:即a n=s n-s n-1=3+2a n-(3+2a n-1)a n=2a n-1∴{a n}是以2为公比的等比数列∴a n=a1·2n-1= -3×2n-1五、用不完全归纳法猜想,用数学归纳法证明.思路:由已知条件先求出数列前几项,由此归纳猜想出a n,再用数学归纳法证明例8、(2002全国高考)已知数列{a n}中,a n+1=a2n-na n+1,a1=2,求a n解:由已知可得a1=2,a2=3,a3=4,a4=5,a5=6由此猜想a n=n+1,下用数学归纳法证明:当n=1时,左边=2,右边=2,左边=右边即当n=1时命题成立假设当n=k时,命题成立,即a k=k+1则 a k+1=a2k-ka k+1=(k+1)2-k(k+1)+1=k2+2k+1-k2-2k+1=k+2=(k+1)+1∴当n=k+1时,命题也成立.综合(1),(2),对于任意正整数有a n=n+1成立即a n=n+1。
数列的通项与求和
数列的通项与求和数列是数学中一个重要的概念,广泛应用于各个领域中。
在数列中,通项与求和是两个重要的概念。
本文将详细介绍数列的通项与求和的概念、性质和计算方法。
一、数列的通项数列的通项是指数列中第n个数的一般表示式。
在数列中,通项通常使用公式或递推关系给出。
1.1 公式求通项对于一些特殊的数列,可以通过观察数列中数的规律来得到通项的公式。
常见的数列包括等差数列和等比数列。
1.1.1 等差数列如果数列中的相邻两项之差固定为常数d,则该数列为等差数列。
等差数列的通项公式可以通过以下公式计算得到:an = a1 + (n - 1)d其中,an表示等差数列的第n项,a1表示等差数列的首项,d表示等差数列的公差,n表示项数。
1.1.2 等比数列如果数列中的相邻两项的比固定为常数q,则该数列为等比数列。
等比数列的通项公式可以通过以下公式计算得到:an = a1 * q^(n - 1)其中,an表示等比数列的第n项,a1表示等比数列的首项,q表示等比数列的公比,n表示项数。
1.2 递推关系求通项对于一些数列,无法通过观察数列中数的规律找到通项的公式,可以通过递推关系来得到通项。
递推关系是指数列中的每一项与前面一项之间的关系。
递推关系通过以下公式表示:an = f(an-1)其中,an表示数列的第n项,an-1表示数列的第n-1项,f表示递推关系。
二、数列的求和数列的求和是指将数列中的一定项数的数相加的运算。
数列的求和可以使用两种方法进行计算,即通项法和递推法。
2.1 通项法求和通项法是指根据数列的通项公式,将数列的每一项相加来计算数列的求和。
使用通项法计算数列的求和需要明确求和的起始项和结束项。
例如,对于等差数列an = 2n + 1,求前10项的和,可以使用通项法:Sn = (a1 + an) * n / 2其中,Sn表示数列的前n项和,a1表示数列的首项,an表示数列的第n项,n表示项数。
2.2 递推法求和递推法是指通过数列的递推关系,将数列的前一项和当前项相加来计算数列的求和。
求数列通项公式与数列求和的几种方法
求数列通项公式与数列求和的几种方法数列是由一定规律形成的数的序列,通常可以用数学公式表示。
数列的通项公式是指能够表示数列中任意一项的公式。
数列的求和是指将数列中所有项相加的过程。
在数学中,有多种方法可以求解数列的通项公式和数列的求和问题。
下面将介绍一些常见的方法。
一、通过递推关系求解通项公式与求和递推关系是指数列中相邻项之间的数学关系。
通过观察数列中的规律,可以找到数列的递推关系,从而求解通项公式和数列的求和。
1.1等差数列等差数列是指数列中相邻项之间的差是一个常数。
设数列的第一项为a1,公差为d,则等差数列的递推关系可以表示为:an = a1 + (n-1)d。
通过该递推关系,可以求解等差数列的通项公式和求和。
1.2等比数列等比数列是指数列中相邻项之间的比是一个常数。
设数列的第一项为a1,公比为r,则等比数列的递推关系可以表示为:an = a1 * r^(n-1)。
通过该递推关系,可以求解等比数列的通项公式和求和。
1.3斐波那契数列斐波那契数列是指数列中的每一项都是前两项的和。
设数列的第一项为a1,第二项为a2,则斐波那契数列的递推关系可以表示为:an = an-1 + an-2、通过该递推关系,可以求解斐波那契数列的通项公式和求和。
二、通过数学工具求解通项公式与求和2.1代数方法对于一些特定的数列,可以使用代数方法求解通项公式和求和。
例如,对于等差数列和等比数列,可以使用代数方法推导出通项公式和求和公式。
2.2比较系数法比较系数法是一种常用的方法,适用于具体的数列。
通过对比数列中的系数和常数,可以列方程组求解通项公式和求和。
2.3拆分合并法对于一些数列,可以通过拆分合并法求解通项公式和求和。
该方法将数列分为不同的部分进行拆分和合并,从而得到整个数列的通项公式和求和。
三、通过数学工具和技巧求解通项公式与求和3.1差分法差分法是一种常见的求解通项公式和求和的方法。
对于一些特殊的数列,可以通过数列和数列之间的差值来推导出数列的特征,进而求解通项公式和求和。
(完整版)数列通项公式及其求和公式
一、数列通项公式的求法(1)已知数列的前n 项和n S ,求通项n a ; (2)数学归纳法:先猜后证;(3)叠加法(迭加法):112211()()()n n n n n a a a a a a a a ---=-+-++-+L ;叠乘法(迭乘法):1223322111a a a a a a a a a a a a n n n n n n n ⋅⋅⋅=-----ΛΛ. 【叠加法主要应用于数列{}n a 满足1()n n a a f n +=+,其中()f n 是等差数列或等比数列的条件下,可把这个式子变成1()n n a a f n +-=,代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出n a ,从而求出n s 】(4)构造法(待定系数法):形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递推数列;【用构造法求数列的通项或前n 项和:所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的通项或前n 项和.】 (5)涉及递推公式的问题,常借助于“迭代法”解决.【根据递推公式求通项公式的常见类型】 ①1+1=,()n n a a a a f n =+型,其中()f n 是可以和数列,用累加法求通项公式,即1思路(叠加法)1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得111()n n i a a f n -=-=∑,即111()n n i a a f n -==+∑例题1:已知11a =,1n n a a n -=+,求n a解:∵1n n a a n -=+ ∴1n n a a n --=,依次类推有:122321122n n n n a a n a a n a a -----=--=--=、、…∴将各式叠加并整理得12n n i a a n =-=∑,121(1)2n nn i i n n a a n n ==+=+==∑∑ 思路(转化法)1(1)n n a pa f n -=+-,递推式两边同时除以np 得11(1)n n n n na a f n p p p ---=+,我们令n n n a b p =,那么问题就可以转化为类型一进行求解了.例题: 已知12a =,1142n n n a a ++=+,求n a解:∵1142n n n a a ++=+ ∴142nn n a a -=+,则111442nn n nn a a --⎛⎫=+ ⎪⎝⎭, ∵令4n n na b =,则112nn n b b -⎛⎫-= ⎪⎝⎭,依此类推有11212n n n b b ---⎛⎫-= ⎪⎝⎭、22312n n n b b ---⎛⎫-= ⎪⎝⎭、…、22112b b ⎛⎫-= ⎪⎝⎭∴各式叠加得1212nnn i b b =⎛⎫-= ⎪⎝⎭∑,即122111*********n n n n n n n n i i i b b ===⎛⎫⎛⎫⎛⎫⎛⎫=+=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑ ∴1441422n nnn n n n a b ⎡⎤⎛⎫=⋅=⋅-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦②1+1=,()n n a a a a f n =⋅型,其中()f n 是可以求积数列,用累乘法求通项公式,即1(2)(1)f f a思路(叠乘法):1(1)n n a f n a -=-,依次类推有:12(2)n n a f n a --=-、23(3)n n a f n a --=-、…、21(1)af a =, 将各式叠乘并整理得1(1)(2)(3)na f f f a =⋅⋅⋅…(2)(1)f n f n ⋅-⋅-,即(1)(2)(3)n a f f f =⋅⋅⋅…1(2)(1)f n f n a ⋅-⋅-⋅例题:已知11a =,111n n n a a n --=+,求n a . 解:∵111n n n a a n --=+ ∴111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113a a = ∵11a =∴将各式叠乘并整理得112311n a n n n a n n n ---=⋅⋅⋅+-…2143⋅⋅,即12311n n n n a n n n ---=⋅⋅⋅+- (212)43(1)n n ⋅⋅=+ ③1+1=,n n a a a pa q =+型(其中p q 、是常数),可以采用待定系数法、换元法求通项公式,即1()11n n q q a p a p p +-=---,设1n n qba p=--,则1n n b pb +=.利用②的方法求出n b 进而求出n a 当1p =时,数列{}n a 是等差数列;当0,0p q ≠=时,数列{}n a 是等比数列; 当0p ≠且1,0p q ≠≠时,可以将递推关系转化为111n n q q a p a p p +⎛⎫+=+ ⎪--⎝⎭,则数列1nq a p ⎧⎫+⎨⎬-⎩⎭是以11qa p +-为首项,p 为公比的等比数列.思路(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1qp μ=-,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1111n n q q a a p p p -⎛⎫+=+ ⎪--⎝⎭,即1111n nq qa a p p p -⎛⎫=++ ⎪--⎝⎭ 例题:已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式 解:设()12n n a a μμ++=+,即3μ=∵11a =∴数列{}3n a +是以134a +=为首项、2为公比的等比数列∴113422n n n a -++=⋅=,即123n n a +=-④1+1=,n n n a a a pa q =+型,其中p q 、是常数且0,1q q ≠≠,111n n n n a a p q q q q ++=⋅+,设n n n a b q =,则11n np b b q q+=⋅+思路(构造法):11n n n a pa rq --=+,设11n n n n a a q q μλμ--⎛⎫+=+ ⎪⎝⎭,则()11n n q p q rq λμλ-=⎧⎪⎨-=⎪⎩,从而解得p q r p q λμ⎧=⎪⎪⎨⎪=⎪-⎩那么n na r qp q ⎧⎫+⎨⎬-⎩⎭是以1a r q p q +-为首项,p q 为公比的等比数列 例题:已知11a =,112n n n a a --=-+,求n a 。
数列求和及数列通项公式的基本方法和技巧
数列求和及数列通项公式的基本方法和技巧导语:数列是高中代数的重要内容,又是学习高等数学的基础.在高考和各种数学竞赛中都占有重要的地位.数列求和及数列的通项公式是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.下面,就几个历届高考数学来谈谈数列求和及数列通项公式的基本方法和技巧.(一)数列求和一、利用常用求和公式求和.利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、)1(211+==∑=n n k S nk n4、)12)(1(6112++==∑=n n n k S nk n5、213)]1(21[+==∑=n n k S n k n【例1】求和:)0(1422242≠++⋯+++++x x x x x n n 【解】∵x≠0∴该数列是首项为1,公比为x 2的等比数列,而且有n+3项 当x 2=1,即x =±1时,和为n+3.当12≠x ,即1±≠x 时,和为262232111)(1x x x x n n --=--++.评注:(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项. 二、错位相减法求和.错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容.需要我们的学生认真掌握好这种方法.这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列.求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法.【例2】求和:)1()12(7531132≠-+⋅⋅⋅++++=-x x n x x x S n n ………………………① 【解】由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积.设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=……………………….②(设置错位) ①-②得n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴21)1()1()12()12(x x x n x n S n n n -+++--=+ 评注:(1)要考虑当公比x 为值1时为特殊情况; (2)错位相减时要注意末项;(3)此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘.三、反序相加法求和.这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.【例3】求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 【证明】设n n n n n n C n C C C S )12(53210++⋅⋅⋅+++=…………………………..①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得n nn n n n nn n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加) ∴n n n S 2)1(⋅+=四、分组法求和.有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.若数列{}n a 的通项公式为n n n b a c +=,其中{}{}n n b a ,中一个是等差数列,另一个是等比数列,求和时一般用分组结合法.【例4】求数列Λ1614813412211,,,的前n 项和;分析:数列的通项公式为n n n a 21+=,而数列{}⎭⎬⎫⎩⎨⎧n n 21,分别是等差数列、等比数列,求和时一般用分组结合法;【解】因为nn n a 21+=,所以 )21()813()412()211(n n n s ++++++++=Λ)21814121()321(n n +++++++++=ΛΛ(分组)前一个括号内是一个等比数列的和,后一个括号内是一个等差数列的和,因此1212211)211(212)1(2+-+=--++=n n n n n n五、裂项法求和.这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1))()1(n f n f a n -+=;(2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+;(3)111)1(1+-=+=n n n n a n ;(4))121121(211)12)(12()2(2+--+=+-=n n n n n a n ; (5)])2)(1(1)1(1[21)2)(1(1++-+=++=n n n n n n n a n .【例5】求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.【解】设n n n n a n -+=++=111(裂项)则11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了.只剩下有限的几项.注意:余下的项具有如下的特点 1余下的项前后的位置前后是对称的. 2余下的项前后的正负性是相反的.六、合并法求和.针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .【例6】在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值. 【解】设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质q p n m a a a a q p n m =⇒+=+(找特殊性质项) 和对数的运算性质N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10(二)求数列通项公式一、构造等差或等比数列法【例7】已知数列{}n a 满足:1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式. 【解】1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+ 则113222n n n n a a ++-= 故数列{}2n na 是以122211==a 为首项,以23为公差的等差数列. 由等差数列的通项公式,得31(1)22n n a n =+-. 所以数列{}n a 的通项公式为31()222n n a n =-.评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2nna 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式.二、累加法.【例8】已知数列{}n a 满足:11211n n a a n a +=++=,,求数列{}n a 的通项公式. 【解】由121n n a a n +=++得121n n a a n +-=+ 则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以,数列{}n a 的通项公式为2n a n =. 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式.【例9】已知数列{}n a 满足:112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 【解】由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+.则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-L L L所以3 1.n n a n =+- 评注:本题解题的关键是把递推关系式1231n n n a a +=+⨯+转化为1231n n n a a +-=⨯+,进而求出11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+L ,即得数列{}n a 的通项公式.【例10】已知数列{}n a 满足:1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 【解】13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+, 故112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++L L L因此,11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯-评注:本题解题的关键是把递推关系式13231n n n a a +=+⨯+转化为111213333n n n n n a a +++-=+,进而求出112232*********()()()()333333333n n n n n n n n n n n n a a a a a a a a a -----------+-+-++-+L ,即得数列3n n a ⎧⎫⎨⎬⎩⎭的通项公式,最后再求数列{}n a 的通项公式.三、累乘法.【例11】已知数列{}n a 满足:112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式. 【解】因为112(1)53n n n a n a a +=+⨯=,. 所以,0n a ≠. 则12(1)5n n na n a +=+, 故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯L L L L 所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+⨯转化为12(1)5n n na n a +=+,进而求出13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅L ,即得数列{}n a 的通项公式. 【例12】已知数列{}n a 满足:11231123(1)(2)n n a a a a a n a n -==++++-≥L ,,求{}n a 的通项公式.【解】因为123123(1)(2)n n a a a a n a n -=++++-≥L ①所以1123123(1)n n n a a a a n a na +-=++++-+L ②用②式-①式得1.n n n a a na +-= 则1(1)(2)n n a n a n +=+≥ 故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=L L ③由123123(1)(2)n n a a a a n a n -=++++-≥L ,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=L . 所以,{}n a 的通项公式为!.2n n a = 评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为11(2)n na n n a +=+≥,进而求出132122n n n n a a a a a a a ---⋅⋅⋅⋅L ,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式. 四、待定系数法.【例13】已知数列{}n a 满足:112356n n n a a a +=+⨯=,,求数列{}n a 的通项公式. 【解】设1152(5)n n n n a x a x +++⨯=+⨯④将1235n n n a a +=+⨯代入④式,得12355225n n n n n a x a x ++⨯+⨯=+⨯, 等式两边消去2n a ,得135525n n n x x +⋅+⋅=⋅, 两边除以5n ,得352,1,x x x +==-则 代入④式得1152(5)n n n n a a ++-=-⑤由1156510a -=-=≠及⑤式得50n n a -≠.则11525n n nn a a ++-=-,则数列{5}n n a -是以1151a -=为首项,以2为公比的等比数列. 则152n n n a --=. 故125n n n a -=+. 评注:本题解题的关键是把递推关系式1235n n n a a +=+⨯转化为1152(5)n n n n a a ++-=-,从而可知数列{5}n n a -是等比数列,进而求出数列{5}n n a -的通项公式,最后再求出数列{}n a 的通项公式.【例14】已知数列{}n a 满足:1135241n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 【解】设1123(2)n n n n a x y a x y +++⨯+=+⨯+ ⑥将13524n n n a a +=+⨯+代入⑥式,得1352423(2)n n n n n a x y a x y ++⨯++⨯+=+⨯+整理得(52)24323n n x y x y +⨯++=⨯+.令52343x x y y +=⎧⎨+=⎩,则52x y =⎧⎨=⎩,代入⑥式得115223(522)n n n n a a +++⨯+=+⨯+⑦由11522112130a +⨯+=+=≠及⑦式,得5220nn a +⨯+≠,则115223522n n nn a a +++⨯+=+⨯+, 故数列{522}n n a +⨯+是以1152211213a +⨯+=+=为首项,以3为公比的等比数列,因此1522133n n n a -+⨯+=⨯,则1133522n n n a -=⨯-⨯-.评注:本题解题的关键是把递推关系式13524n n n a a +=+⨯+转化为115223(522)n n n n a a +++⨯+=+⨯+,从而可知数列{522}n n a +⨯+是等比数列,进而求出数列{522}n n a +⨯+的通项公式,最后再求数列{}n a 的通项公式.【例15】已知数列{}n a 满足:21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式. 【解】设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++⑧将212345n n a a n n +=+++代入⑧式,得2222345(1)(1)2()n n a n n x n y n z a xn yn z ++++++++=+++,则 222(3)(24)(5)2222n n a x n x y n x y z a xn yn z +++++++++=+++等式两边消去2n a ,得22(3)(24)(5)222x n x y n x y z xn yn z ++++++++=++,解方程组3224252x x x y y x y z z +=⎧⎪++=⎨⎪+++=⎩,则31018x y z =⎧⎪=⎨⎪=⎩,代入⑧式,得2213(1)10(1)182(31018)n n a n n a n n ++++++=+++⑨由213110118131320a +⨯+⨯+=+=≠及⑨式,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为以21311011813132a +⨯+⨯+=+=为首项,以2为公比的等比数列,因此2131018322n n a n n -+++=⨯,则42231018n n a n n +=---.评注:本题解题的关键是把递推关系式212345n n a a n n +=+++转化为2213(1)10(1)182(31018)n n a n n a n n ++++++=+++,从而可知数列2{31018}n a n n +++是等比数列,进而求出数列2{31018}n a n n +++的通项公式,最后再求出数列{}n a 的通项公式.五、对数变换法.【例16】已知数列{}n a 满足:5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式. 【解】因为511237n n na a a +=⨯⨯=,,所以100n n a a +>>,. 在5123n n n a a +=⨯⨯式两边取常用对数得1lg 5lg lg3lg 2n n a a n +=++⑩设1lg (1)5(lg )n n a x n y a xn y ++++=++ ○11 将⑩式代入○11式,得5lg lg 3lg 2(1)5(lg )n n a n x n y a xn y +++++=++,两边消去5lg n a 并整理,得(lg3)lg 255x n x y xn y ++++=+,则lg35lg 25x x x y y +=⎧⎨++=⎩,故lg 34lg 3lg 2164x y ⎧=⎪⎪⎨⎪=+⎪⎩代入○11式,得1lg3lg3lg 2lg3lg3lg 2lg (1)5(lg )41644164n n a n a n +++++=+++○12 由1lg3lg3lg 2lg3lg3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠及○12式, 得lg3lg3lg 2lg 04164n a n +++≠, 则1lg3lg3lg 2lg (1)41645lg3lg3lg 2lg 4164n n a n a n +++++=+++, 所以数列lg3lg3lg 2{lg }4164n a n +++是以lg3lg3lg 2lg 74164+++为首项,以5为公比的等比数列,则1lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164n n a n -+++=+++, 因此1111111116164444111111161644441111111616444455514lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464(lg 7lg 3lg 3lg 2)5lg 3lg 3lg 2[lg(7332)]5lg(332)lg(7332)5lg(332)lg(733n n n n n n n n n n n n a n ---------=+++---=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅1115116454151511642)lg(732)n n n n n -------⋅=⋅⋅则11541515164732n n n n n a -----=⨯⨯.评注:本题解题的关键是通过对数变换把递推关系式5123n n n a a +=⨯⨯转化为1lg3lg3lg 2lg3lg3lg 2lg (1)5(lg )41644164n n a n a n +++++=+++,从而可知数列lg3lg3lg 2{lg }4164n a n +++是等比数列,进而求出数列lg3lg3lg 2{lg }4164n a n +++的通项公式,最后再求出数列{}n a 的通项公式.六、迭代法.【例17】已知数列{}n a 满足:3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式.【解】因为3(1)21n n n n a a ++=,所以121323(1)23212[]n n n n n n n n n a a a ---⋅-⋅⋅--== 2(2)(1)32(2)(1)3(3)(2)(1)112(3)(2)(1)(1)123(1)223(2)23(1)233(2)(1)23323(2)(1)213!21[]n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n aa a a a -+---+--+-+--+++-+-+----⋅⋅--⋅-⋅⋅---⋅-⋅⋅-⋅-⋅⋅⋅⋅======L L L L L又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n na --⋅⋅=.评注:本题还可综合利用累乘法和对数变换法求数列的通项公式.即先将等式3(1)21nn n n a a ++=两边取常用对数得1lg 3(1)2lg n n n a n a +=+⨯⨯,即1lg 3(1)2lg n n na n a +=+,再由累乘法可推知(1)123!213211221lg lg lg lg lg lg lg5lg lg lg lg n n n n n n n n n a a a a a a a a a a --⋅⋅---=⋅⋅⋅⋅⋅=L ,从而1(1)3!225n n n n n a --⋅⋅=.七、数学归纳法.【例18】已知数列{}n a 满足:11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.【解】由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得 2122322243228(11)88224(211)(213)9925258(21)248348(221)(223)252549498(31)488480(231)(233)49498181a a a a a a +⨯=+=+=⨯+⨯+⨯+⨯=+=+=⨯+⨯+⨯+⨯=+=+=⨯+⨯+⨯ 由此可猜测22(21)1(21)n n a n +-=+,往下用数学归纳法证明这个结论.(1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立. (2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时,1228(1)(21)(23)k k k a a k k ++=+++222222222222222222222(21)18(1)(21)(21)(23)[(21)1](23)8(1)(21)(23)(21)(23)(23)8(1)(21)(23)(21)(23)(21)(21)(23)(23)1(23)[2(1)1]1[2(1)1]k k k k k k k k k k k k k k k k k k k k k k k k k +-+=+++++-+++=++++-+++=++++-+=+++-=+++-=++2由此可知,当1n k =+时等式也成立.根据(1),(2)可知,等式对任何*n N ∈都成立. 评注:本题解题的关键是通过首项和递推关系式先求出数列的前n 项,进而猜出数列的通项公式,最后再用数学归纳法加以证明.八、换元法.【例19】已知数列{}n a满足:111(14116n n a a a +=+=,,求数列{}n a 的通项公式.【解】令n b =21(1)24n n a b =- 故2111(1)24n n a b ++=-,代入11(1416n n a a +=++得 221111(1)[14(1)]241624n n n b b b +-=+-+ 即2214(3)n n b b +=+因为0n b =≥,故10n b +=≥则123n n b b +=+,即11322n n b b +=+,可化为113(3)2n n b b +-=-,所以{3}n b -是以13332b -==为首项,以21为公比的等比数列,因此121132()()22n n n b ---==,则21()32n n b -=+21()32n -=+,得2111()()3423n n n a =++.评注:本题解题的关键是通过将n b ,使得所给递推关系式转化11322n n b b +=+形式,从而可知数列{3}n b -为等比数列,进而求出数列{3}n b -的通项公式,最后再求出数列{}n a 的通项公式.九、不动点法.【例20】已知数列{}n a 满足:112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.【解】令212441x x x -=+,得2420240x x -+=,则1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为112124224121242(41)13262132124321243(41)92793341n n n n n n n nn n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+. 所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是以112422343a a --==--为首项,以913为公比的等比数列, 故12132()39n n n a a --=-,则113132()19n n a -=+-.评注:本题解题的关键是先求出函数2124()41x f x x -=+的不动点,即方程212441x x x -=+的两个根1223x x ==,,进而可推出112213393n n n n a a a a ++--=⋅--,从而可知数列23n n a a ⎧⎫-⎨⎬-⎩⎭为等比数列,再求出数列23n n a a ⎧⎫-⎨⎬-⎩⎭的通项公式,最后求出数列{}n a 的通项公式.【例21】已知数列{}n a 满足:1172223n n n a a a a +-==+,,求数列{}n a 的通项公式. 【解】令7223x x x -=+,得22420x x -+=, 则1x =是函数31()47x f x x -=+的不动点. 因为17255112323n n n n n a a a a a +---=-=++,所以2111()()3423n n n a =++.。
求数列通项公式、数列求和问题的常用方法
求数列通项公式、数列求和问题的常用方法一、求数列通项公式的三种常用方法2;3.n n S a ⎧⎪⎨⎪⎩1、利用与的关系;、累加(乘)法、构造法(或配凑法、待定系数法)1、利用n n S a 与的关系求通项公式:1-11-1=1;=-.-n n n n n S a S S S S S ⎧⎨≥⎩ , 当n 时利用 ,当n 2时注意:当也适合时,则无需分段(合二为一)。
例1、设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,11a b =且2211().b a a b -= (Ⅰ)求数列}{n a 和}{n b 的通项公式;解:(1),24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当当;2,111===S a n 时也满足上式。
故{a n }的通项公式为42,n a n =-设{b n }的公比为q , 111, 4, .4b qd b d q ==∴=则 故1111122,44n n n n b b q ---==⨯= 12{}.4n n n b b -=即的通项公式为例2、数列}{n a 的前n 项和为S n ,且111,3, 1,2,3,n n a S a n +=== ,求: (1)2a 的值。
(2)数列}{n a 的通项公式; 解:(1)由得,,3,2,1,31,111 ===+n S a a n n .313131112===a S a 111234222211()(2),3344,(2), (33)114,()(2).3331,1,,{}14(), 2.33n n n n n n n n n n n n a a S S a n a a n a a a a q a a n n a a n +-+---=-=≥=≥===≥=⎧⎪=⎨≥⎪⎩(2)由得即,,,是以为首项,为公比的等比数列又所以所以数列的通项公式为例3、(09广东四校文期末)已知函数 f (x ) = a x 2 + bx -23 的图象关于直线x =-32对称, 且过定点(1,0);对于正数列{a n },若其前n 项和S n 满足S n = f (a n ) (n ∈ N *)(Ⅰ)求a , b 的值;(Ⅱ)求数列{a n } 的通项公式;(Ⅰ)∵函数 f (x ) 的图象关于关于直线x =-32对称,∴a ≠0,-b 2a =-32, ∴ b =3a ①∵其图象过点(1,0),则a +b -23=0 ②由①②得a = 16 , b = 12. 4分(Ⅱ)由(Ⅰ)得2112()623f x x x =+- ,∴()n n S f a ==2112623n n a a +- 当n ≥2时,1n S -=211112623n n a a --+- .两式相减得 2211111()622n n n n n a a a a a --=-+-∴221111()()062n n n n a a a a ----+= ,∴11()(3)0n n n n a a a a --+--= 0,n a >∴ 13n n a a --=,∴{}n a 是公差为3的等差数列,且22111111112340623a s a a a a ==+-∴--=∴a 1 = 4 (a 1 =-1舍去)∴a n =3n+1 9分2、累加(乘)法:11-111 12-1. 2 3+2. 3 2-1.14 .(n+1)n n n n n n n n n a a n a a n a a a a n ++++=+=+=+=+例如:、 、、、 n 1112. 2 .+1n n n n a a na a n ++==例如:、 、 3、配凑法或待定系数法或构造法:111 12 1. 2 2 1. 3 3 2.n n n n n n a a a a a a +++=+=+=+例如:、 、、11+111111+12+1 1.+1=2--------2.221,=2{}=1=21=.2n n n n n n n nn n n n n n a a a a a a a b b a b b b a a q b ++++=+=+∴=+++==+ 解:方法一配凑法(或拆配法) 即 令则有, 故是以为首项,以为公比的。
数列通项与求和
数列通项与求和数列通项是指在一个连续的数列中,每一项都可以由一个公式表示出来,而该公式就是数列的通项。
数列求和是指对一个数列中所有项的和。
数列是一种有规律的数字序列,它可以表示为 a1, a2, a3,..., an,其中a1, a2, a3,...an是具有某种规律的数字,这样的数列就称为“数列”。
数列通项是数列的一个重要概念,它是指在一个数列中,可以通过某种方法将每个元素都表示出来,即每个元素可以写成一个公式,这个公式就叫做数列的通项。
例如:给出数列1,3,5,7,9,11,13,15,17,19,…,可以发现它的通项为 an = 2n-1。
这意味着每一项都是以2n-1的形式出现,其中n=1,2,3,...。
所以,比如a10 = 2*10 - 1 = 19,即第10项等于19.数列求和是指对一个数列中所有项的和的操作,也就是把所有项相加起来,得到总和,这个总和就是数列的求和。
比如:给出数列1,3,5,7,9,11,13,15,17,19,…,它的求和就是把所有项都相加,即1+3+5+7+9+11+13+15+17+19+…= 100。
数列通项和求和之间的关系是:当数列具有某种规律时,我们可以通过求通项的方法,得到数列的求和,即通过求出每一项的表达式,然后将所有项求和即可。
例如:已知数列1,3,5,7,9,11,13,15,17,19,…,它的通项为an=2n-1,因此,我们可以求出该数列的求和:S=∑an=∑(2n-1),n=1,2,3,… n=10,即把所有项加起来,S=1+3+5+7+9+11+13+15+17+19=100,即为数列的求和。
总之,数列通项指的是数列中每一项可以由一个公式表示出来,而数列求和是指对一个数列中所有项的和。
如果数列具有一定的规律,我们可以通过求通项的方法,求出数列的求和。
数列的通项公式和求和公式
用于计算组合数列的和
用于解决一些数学问题
数列的递推公式
递推公式是一种表示数列中项与前项或后项之间关系的数学表达式 递推公式通常用于描述数列的生成规律或变化趋势 递推公式可以通过已知的数列项来推导未知的项 递推公式在数列求和、数列求积等数学问题中有着广泛的应用
计算数列的 项数
求解数列的 极限
判断数列的 单调性
几何意义法:如果 数列的各项表示在 数轴上的一系列点, 且这些点组成的线 段最终落在一定范 围内,则该数列收 敛。
感谢您的观看
汇报人:XX
判断数列的 周期性
定义法:根据递推公式,逐项 求解
特征根法:通过解方程找到递 推公式的特征根,再利用特征 根求解
迭代法:将递推公式进行迭代, 逐项求解
数学归纳法:通过归纳递推公 式,找到通项公式和求和公式
数列的极限和收敛 性
极限是数列的一种特性,表示数列 的项无限趋近于某个值
极限值取决于数列的项的取值,不 同的项取值会导致不同的极限值
通项公式是数列中每一项的唯一标准表示形式,是数学中研究数列的重要工具。
定义法:根据数列的定义,推导出通项公式 递推法:通过已知的递推关系式,推导出通项公式 归纳法:通过观察数列的前几项,归纳出通项公式 特征根法:对于等比数列,通过特征根方程求得式 判断数列的单调性 计算数列的极限
等差数列:每一项与它的前一项的差等于同一个常数的数列 等比数列:每一项与它的前一项的比等于同一个常数的数列 幂级数:表示各项为幂的数列 几何级数:表示各项为几何数的数列
数列的通项公式
数列的通项公式是表示数列中每一项的数学表达式。 通项公式通常由变量和常数组成,表示数列的一般形式。 通过通项公式可以确定数列中任意一项的值,并了解数列的变化规律。
数列的求和与通项
数列的求和与通项数列是由一系列按照特定规律排列的数字所组成的序列。
对于一个给定的数列,我们通常会关注两个重要的问题:求和以及寻找数列的通项公式。
本文将介绍数列求和与通项的相关概念以及求解方法。
一、数列的定义数列可以定义为一个具有无穷多项的序列,其中每一项的位置和对应的数值都具有特定规律。
数列通常用大写字母表示,如:$a_1,a_2,a_3,…,a_n$。
二、数列求和的概念与方法数列的求和即是将数列中所有的项相加得到的结果。
常见的数列求和方式有以下几种:1. 等差数列的求和:等差数列是指数列中每一项与其前一项之差保持恒定的数列。
求等差数列的和可以使用以下公式:$S_n = \frac{n}{2}(a_1 + a_n)$其中,$S_n$表示前$n$项和,$a_1$表示首项,$a_n$表示第$n$项。
2. 等比数列的求和:等比数列是指数列中每一项与其前一项之比保持恒定的数列。
求等比数列的和可以使用以下公式:$S_n = \frac{a_1(1 - q^n)}{1 - q}$其中,$S_n$表示前$n$项和,$a_1$表示首项,$q$表示公比。
3. 递归数列的求和:递归数列是一个通过前面的项来确定后面项的数列。
求递归数列的和需要根据数列的递归公式进行推导,再求解。
三、数列通项公式的概念与方法数列通项公式是指可以通过该公式计算数列中任意一项的数值的公式。
常见的数列通项公式有以下几种:1. 等差数列的通项公式:等差数列的通项公式可以表示为:$a_n = a_1 + (n-1)d$其中,$a_n$表示第$n$项,$a_1$表示首项,$d$表示公差。
2. 等比数列的通项公式:等比数列的通项公式可以表示为:$a_n = a_1 \cdot r^{(n-1)}$其中,$a_n$表示第$n$项,$a_1$表示首项,$r$表示公比。
3. 递归数列的通项公式:递归数列的通项公式需要通过数列的递归关系进行推导,具体的方法根据不同数列的递归公式有所不同。
数列的通项公式和求和公式
数列的通项公式和求和公式数列是数学中常见的概念,它是由一系列按照一定规律排列的数字组成。
在数列的研究中,通项公式和求和公式是两个重要的概念。
本文将详细介绍数列的通项公式和求和公式,并探讨它们的应用。
一、数列的通项公式数列的通项公式是一个能够直接推算出数列的第n项的公式,通过这个公式我们可以快速计算数列的任意项。
常见的数列有等差数列和等比数列,它们的通项公式如下:1. 等差数列的通项公式等差数列的通项公式为:an = a1 + (n - 1)d其中,an表示等差数列的第n项,a1为首项,n为项数,d为公差。
2. 等比数列的通项公式等比数列的通项公式为:an = a1 * r^(n - 1)其中,an表示等比数列的第n项,a1为首项,n为项数,r为公比。
除了等差数列和等比数列,还有其他类型的数列,它们的通项公式根据数列的规律有所不同。
通过找出数列的规律并利用递推关系,我们可以得到数列的通项公式,从而方便计算数列的各项值。
二、数列的求和公式求和公式是用来计算数列前n项和的公式,它可以帮助我们快速求解数列的和。
常见的数列求和公式如下:1. 等差数列的求和公式等差数列的求和公式为:S = (n/2) * (a1 + an)其中,S表示等差数列的前n项和,n为项数,a1为首项,an为末项。
2. 等比数列的求和公式等比数列的求和公式为:S = a1 * (1 - r^n) / (1 - r)其中,S表示等比数列的前n项和,n为项数,a1为首项,r为公比。
对于其他类型的数列,其求和公式也有所不同。
我们可以通过找出数列的和与前一项之间的递推关系,从而得到数列的求和公式,从而快速求解数列的和。
三、数列公式的应用数列的通项公式和求和公式在数学中有着广泛的应用。
比如,在预测数值规律方面,我们可以利用通项公式来计算未知项的值,从而推断出数列的任意项。
在实际问题中,数列的通项公式和求和公式也经常被应用于求解具体的数值。
此外,数列的通项公式和求和公式也在数学的相关领域中起到重要的作用,比如在微积分中用于求解积分,或在概率论中用于计算概率等等。
数列的通项公式与求和的常用方法
数列的通项公式与求和的常用方法高考要求数列是函数概念的继续和延伸,数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用 数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项 通项及求和是数列中最基本也是最重要的问题之一,与数列极限及数学归纳法有着密切的联系,是高考对数列问题考查中的热点,本点的动态函数观点解决有关问题,为其提供行之有效的方法 重难点归纳1 数列中数的有序性是数列定义的灵魂,要注意辨析数列中的项与数集中元素的异同 因此在研究数列问题时既要注意函数方法的普遍性,又要注意数列方法的特殊性2 数列{a n }前n 项和S n 与通项a n 的关系式 a n =⎩⎨⎧≥-=-2,1,11n S S n S n n3 求通项常用方法①作新数列法 作等差数列与等比数列 ②累差叠加法 最基本形式是a n =(a n -a n -1+(a n -1+a n -2)+…+(a 2-a 1)+a 1③归纳、猜想法4 数列前n 项和常用求法①重要公式 1+2+…+n =21n (n +1)12+22+…+n 2=61n (n +1)(2n +1)13+23+…+n 3=(1+2+…+n )2=41n 2(n +1)2②等差数列中S m +n =S m +S n +mnd ,等比数列中S m +n =S n +q n S m =S m +q m S n③裂项求和 将数列的通项分成两个式子的代数和,即a n =f (n +1)-f (n ),然后累加时抵消中间的许多项 应掌握以下常见的裂项1111,!(1)!!,ctg ctg2,(1)1sin 2n n n n ααn n nn α=-⋅=+-=-++11111C C C ,(1)!!(1)!n r rn nn n n n -+=-=-++等④错项相消法⑤并项求和法数列通项与和的方法多种多样,要视具体情形选用合适方法典型题例示范讲解例1已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x )=(x -1)2,且a 1=f (d -1),a 3=f (d +1),b 1=f (q +1),b 3=f (q -1),(1)求数列{a n }和{b n }的通项公式;(2)设数列{c n }的前n 项和为S n ,对一切n ∈N *,都有nn c c b c b c +++ 2111=a n +1成立,求lim∞→n nn S 212+命题意图 本题主要考查等差、等比数列的通项公式及前n 项和公式、数列的极限,以及运算能力和综合分析问题的能力知识依托 本题利用函数思想把题设条件转化为方程问题非常明显,而(2)中条件等式的左边可视为某数列前n 项和,实质上是该数列前n 项和与数列{a n }的关系,借助通项与前n 项和的关系求解c n 是该条件转化的突破口错解分析 本题两问环环相扣,(1)问是基础,但解方程求基本量a 1、b 1、d 、q ,计算不准易出错;(2)问中对条件的正确认识和转化是关键技巧与方法 本题(1)问运用函数思想转化为方程问题,思路较为自然,(2)问“借鸡生蛋”构造新数列{d n }运用和与通项的关系求出d n ,丝丝入扣解 (1)∵a 1=f (d -1)=(d -2)2,a 3=f (d +1)=d 2,∴a 3-a 1=d 2-(d -2)2=2d ,∵d =2,∴a n =a 1+(n -1)d =2(n -1); 又b 1=f (q +1)=q 2,b 3=f (q -1)=(q -2)2, ∴2213)2(qq b b -==q 2,由q ∈R ,且q ≠1,得q =-2,()!lim 2!!x b n ar n r →∞→∞-±-∴b n =b ·q n -1=4·(-2)n -1 (2)令nn b c =d n ,则d 1+d 2+…+d n =a n +1,(n ∈N *),∴d n =a n +1-a n =2,∴nn b c =2,即c n =2·b n =8·(-2)n -1;∴S n =38[1-(-2)n ]∴2lim ,1)21(2)21()2(1)2(121222212212-=--+-=----=+∞→++nn n nnnn nn S S S S例2设A n 为数列{a n }的前n 项和,A n =23 (a n -1),数列{b n }的通项公式为b n =4n +3;(1)求数列{a n }的通项公式;(2)把数列{a n }与{b n }的公共项按从小到大的顺序排成一个新的数列,证明 数列{d n }的通项公式为d n =32n +1;(3)设数列{d n }的第n 项是数列{b n }中的第r 项,B r 为数列{b n }的前r 项的和;D n 为数列{d n }的前n 项和,T n =B r -D n ,求lim∞→n 4n n T命题意图 本题考查数列的通项公式及前n 项和公式及其相互关系;集合的相关概念,数列极限,以及逻辑推理能力知识依托 利用项与和的关系求a n 是本题的先决;(2)问中探寻{a n }与{b n }的相通之处,须借助于二项式定理;而(3)问中利用求和公式求和则是最基本的知识点错解分析 待证通项d n =32n +1与a n 的共同点易被忽视而寸步难行;注意不到r 与n 的关系,使T n 中既含有n ,又含有r ,会使所求的极限模糊不清技巧与方法 (1)问中项与和的关系为常规方法,(2)问中把3拆解为4-1,再利用二项式定理,寻找数列通项在形式上相通之处堪称妙笔;(3)问中挖掘出n 与r 的关系,正确表示B r ,问题便可迎刃而解解 (1)由A n =23(a n -1),可知A n +1=23(a n +1-1),∴a n +1-a n =23 (a n +1-a n ),即nn a a 1+=3,而a 1=A 1=23 (a 1-1),得a 1=3,所以数列是以3为首项,公比为3的等比数列,数列{a n }的通项公式a n =3n(2)∵32n +1=3·32n =3·(4-1)2n=3·[42n +C 12n ·42n -1(-1)+…+C 122-n n ·4·(-1)+(-1)2n ]=4n +3, ∴32n +1∈{b n }而数32n =(4-1)2n=42n +C 12n·42n -1·(-1)+…+C 122-n n ·4·(-1)+(-1)2n =(4k +1), ∴32n ∉{b n },而数列{a n }={a 2n +1}∪{a 2n },∴d n =32n +1(3)由32n +1=4·r +3,可知r =43312-+n ,∴B r =)19(827)91(9127,273433)52(2)347(1212-=-⋅-=+⋅-=+=++++nnn n n D r r r r ,89)(lim,3)(,433811389)19(827821349444241212=∴=+⋅-⋅=---⋅+=-=∴∞→++n n n nn nnnn n n r n a T a D B T例3 设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的自然数n ,a n 与2的等差中项等于S n 与2的等比中项(1)写出数列{a n }的前3项(2)求数列{a n }的通项公式(写出推证过程)(3)令b n =)(2111+++n n nn a a a a (n ∈N *),求lim ∞→n (b 1+b 2+b 3+…+b n -n )解析 (1)由题意,当n =1时,有11222S a =+,S 1=a 1,∴11222a a =+,解得a 1=2 当n =2时,有22222S a =+,S 2=a 1+a 2,将a 1=2代入,整理得(a 2-2)2=16,由a 2>0,解得a 2=6当n =3时,有33222S a =+,S 3=a 1+a 2+a 3,将a 1=2,a 2=6代入,整理得(a 3-2)2=64,由a 3>0,解得a 3=10故该数列的前3项为2,6,10(2)解法一 由(1)猜想数列{a n } 有通项公式a n =4n -2下面用数学归纳法证明{a n }的通项公式是a n =4n -2,(n ∈N *) ①当n =1时,因为4×1-2=2,,又在(1)中已求出a 1=2,所以上述结论成立②假设当n =k 时,结论成立,即有a k =4k -2,由题意,有k k S a 222=+,将a k =4k -2 代入上式,解得2k =k S 2,得S k =2k 2,由题意,有11222++=+k k S a ,S k +1=S k +a k +1,将S k =2k 2代入得(221++k a )2=2(a k +1+2k 2),整理得a k +12-4a k +1+4-16k 2=0,由a k +1>0,解得a k +1=2+4k , 所以a k +1=2+4k =4(k +1)-2,即当n =k +1时,上述结论成立根据①②,上述结论对所有的自然数n ∈N *成立解法二 由题意知n n S a 222=+,(n ∈N *) 整理得,S n =81(a n +2)2,由此得S n +1=81(a n +1+2)2,∴a n +1=S n +1-S n =81[(a n +1+2)2-(a n +2)2]整理得(a n +1+a n )(a n +1-a n -4)=0, 由题意知a n +1+a n ≠0,∴a n +1-a n =4,即数列{a n }为等差数列,其中a 1=2,公差d =4∴a n =a 1+(n -1)d =2+4(n -1),即通项公式为a n =4n -2解法三 由已知得n n S a 222=+,(n ∈N *) ①,所以有11222++=+n n S a ②,由②式得11222++=+-n n n S S S ,整理得S n +1-22·1+n S +2-S n =0, 解得n n S S ±=+21,由于数列{a n }为正项数列,而2,211>+∴=+n n S S S ,因而n n S S +=+21, 即{S n }是以21=S 为首项,以2为公差的等差数列所以n S = 2+(n -1) 2=2n ,S n =2n 2, 故a n =⎩⎨⎧≥-=-=-)2(,24)1(,21n n S S n n n 即a n =4n -2(n ∈N *)(3)令c n =b n -1,则c n =)2(2111-+++n n nn a a a a1212111[(1)(1)],221212121n n n n n n +-=-+-=--+-+1212n n b b b n c c c +++-=+++ 111111(1)()()1,335212121n n n =-+-++-=--++121()(1) 1.lim lim 21n n n b b b n n →∞→∞∴+++-=-=+。
数列的通项和求和公式推导
数列的通项和求和公式推导数学中的数列是由一系列按照规律排列的数所组成的序列。
对于给定的数列,我们通常希望能够找到一个通项公式来表示数列的第n项,同时也希望能够求解数列的前n项和。
在本文中,我们将讨论如何推导数列的通项公式和求和公式。
一、等差等差数列是最常见的数列之一,它的特点是每一项与前一项之间的差值都相等。
假设等差数列的首项为a1,公差为d,第n项为an。
1. 推导通项公式我们可以观察到,等差数列每一项与首项之间存在一个公差的倍数关系,即:an = a1 + (n-1)d这个等式可以通过数学归纳法推导得出。
假设等式对于n=k成立,即:ak = a1 + (k-1)d那么对于n=k+1,我们有:ak+1 = a1 + kd通过对上述两个等式进行代换,得到:ak+1 = (a1 + (k-1)d) + d = a1 + kd由此可见,当等式对于n=k成立时,等式对于n=k+1也成立。
因此,等差数列的通项公式为:an = a1 + (n-1)d2. 推导求和公式为了推导等差数列的求和公式,我们可以考虑将数列按照首项与末项、次首项与次末项等进行配对求和。
我们可以观察到这些配对的和都相等,都等于等差数列的中间项和。
设等差数列的首项为a1,末项为an,共有n项。
那么有:a1 + an = a1 + (a1 + (n-1)d) = 2a1 + (n-1)da2 + an-1 = (a1 + d) + (a1 + (n-2)d) = 2a1 + (n-1)d...ak + an-k+1 = (a1 + (k-1)d) + (a1 + (n-k)d) = 2a1 + (n-1)d将上述k个等式相加,得到:2(a1 + a2 + ... + an-k+1) + (n-k)(d + d + ... + d) = k(2a1 + (n-1)d)化简后可得:2S + (n-k)kd = k(2a1 + (n-1)d)其中,S表示等差数列的前n项和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解
(1)∵a1+3a2
+32a
n-1a = 3+„+3 n
∴当n≥2时, a1+3a2+32a3+„+3n-2an-1= n 1 , 3
n , 3
①
②
1 1 ,∴an= n . n= 3 3 1 1 在①中,令n=1,得a1= ,适合an= n , 3 3 1 ∴an= n . 3 n (2)∵bn= ,∴bn=n·3n. an ∴Sn=3+2×32+3×33+„+n·3n
知能迁移3 求下列数列的前n项和: 1 1 1 1 1, 4, 2 7,, n1 3n 2,. a a a 1 1 解 前n项和为Sn=(1+1)+ ( 4) ( 2 7) a a 1 ( n1 3n 2) a 1 1 1 (1 2 n1 ) +[1+4+7+„„+(3n-2)], = a a a 1 1 1 设S1= 1 2 n1 , a a a 当a=1时,S1=n;
2Sn=1·21+2·22+„+(n-1)·2n-1+n·2n 两式相减,得 Sn=n·2n-1·20-21-„-2n-1=n·2n-2n+1.
题型三
分组转化求和
1 1 1 1 【例3】求和Sn=1+ (1 ) (1 ) (1 2 2 4 2 1 1 n1 ). 4 2 思维启迪 数列的通项an=2 (1 1 ),求Sn可用分 2n 组求和法.
1 2 3 4 n 1 , 2 3 4 5 n 1 an . n
(2)将已知递推式化为
1 an1
1 1 n1 , an 2
1 1 1 1 1 1 1 1 1 2 , 3 , 4 ,, a 2 a1 2 a3 a 2 2 a 4 a3 2 1 1 1 n, a n a n1 2
n ∴t= 或t=-1(舍去), n 1 a n 即 n1 . an n 1 a2 a3 a4 a5 an a1 a2 a3 a4 an1
1 2 3 4 n 1 , 2 3 4 5 n 1 an . n
方法二
2 2 由(n+1)an1 nan +an+1an=0,得
数列对应项相乘构成的数列求和. (4)倒序相加:例如,等差数列前n项和公式的推
导.
6.常见的拆项公式有
1 1 1 (1) ; n(n 1) n n 1 1 1 1 1 (2) ( ); (2n 1)(2n 1) 2 2n 1 2n 1 1 (3) n 1 n. n n 1
an 1 , 当a≠1时,S1= n n 1 a a
2.如果数列{an}满足a1,a2-a1,a3-a2,„,an-an-1,„是 首项为1,公比为3的等比数列,则an等于(C )
3n 1 A. 2 3n 1 C. 2
解析
3n 3 B. 2 3n 3 D. 2
a1+(a2-a1)+(a3-a2)+„+(an-an-1)
1 (1 3n ) 3n 1 =an= . 1 3 2
再归纳、猜想an的方法,以及累加:an=(an-an-1)+
an an1 (an-1-an-2)+„+(a2-a1)+a1;累乘:an= an1 an2 a 2 a1 等方法. a1
知能迁移1 由已知在数列{an}中a1=1,求满足下列条
件的数列的通项公式. (1)an+1=
将以上(n-1)个式子相加得
1 1 1 1 1 1 2 3 4 n , an a1 2 2 2 2 1 1 (1 n ) 1 2 1 2n 2 1 , a . n n n 1 an 2求通项公式这类问题要
求不高,主要掌握由a1 和递推关系先求出前几项,
n(a1 an ) n(n 1) na1 d 2 3.等差数列前n项和Sn= = , 2
推导方法: 倒序相加法 ; 等比数列前n项和 na1 ,
Sn =
q=1,
a1 (1 q n ) = a1 an q , q≠1. 1 q 1 q
推导方法:乘公比,错位相减法.
4.常见数列的前n项和 n(n 1) (1)1+2+3+„+n= ; 2 (2)2+4+6+„+2n= n2+n ; (3)1+3+5+„+(2n-1)= n2 ; (4)12+22+32+„+n2=
基础自测
1.已知等比数列{an},a1=3,且4a1、2a2、a3成等差数 列,则a3+a4+a5等于 A.33 解析 B.72 C.84 (C ) D.189
由题意可设公比为q,则a2=a1q,a3=a1q2,
∵4a2=4a1+a3,∴4a1q=4a1+a1q2,又a1=3,∴q=2.
a3+a4+a5=a1q2(1+q+q2) =3×4×(1+2+4)=84.
解
和式中第k项为
1 1 1 ak 1 k- 1 2 4 2 1 k 1 ( ) 2 2(1 1 ). 1 2k 1 2
1 1 1 S n 2[(1 ) (1 2 ) (1 n )] 2 2 2 1 1 1 2[(1 1 1) ( 2 n )] 2 2 2
n个
1 1 (1 n ) 2 2 n 2 1 1 2 1 n1 2n 2. 2
探究提高
先将求和式中的项进行适当分组调整,
使之每一个组为等差或等比数列,然后分别求和,
从而得出原数列的和.它是通过对数列通项结构特 点的分析研究,将数列分解转化为若干个能求和 的新数列的和或差,从而求得原数列的和的一种 求和方法.
2n 1 ,其中前n项 3.已知数列{an}的通项公式是an= n 2 和Sn= 321 ,则项数n等于 ( D ) 64 A.13 B.10 C.9 D.6
2n 1 1 解析 ∵an= n 1 n , 2 2 1 1 1 1 ∴Sn=n- ( 2 n ) =n-1+ n , 2 2 2 2
而 321 5 1 , n 1 1 5 1 , n 6. 64 64 64 2n
4.若数列{an}的通项公式为an=2n+2n-1,则数列{an}的
前n项和为 A.2n+n2-1 C.2n+1+n2-2 解析 B.2n+1+n2-1 D.2n+n2-2 ( C )
2(1 2n ) n(1 2n 1) =2n+1-2+n2. Sn = 1 2 2
an ;(2)an+1=2an+2n+1. 1 2an
(1)因为对于一切n∈N*,an≠0, 1 1 an 2, 因此由an+1= ,得 an1 an 1 2an 即 1 1 2. an1 an 解
∴数列 1 是等差数列, an 1 1 1 . (n-1)·2=2n-1,即an= 2n 1 an a1 an 1 a n (2)根据已知条件得 n 1 n 1, 2 2 n a n1 a 即 n 1 n 1, ∴数列 an 是等差数列. n 2 2 2 an 1 2n 1 即a =(2n-1)2n-1. (n 1) , n n 2 2 2
系求出通项3n-1an,进而求得an;另外乘公比错位相 减是数列求和的一种重要方法,但值得注意的是, 这种方法运算过程复杂,运算量大,应加强对解题 过程的训练,重视运算能力的培养.
知能迁移2
(2008·全国Ⅰ文,19)在数列{an}中,
a1=1,an+1=2an+2n.
an (1)设bn= n1 .证明:数列{bn}是等差数列; 2 (2)求数列{an}的前n项和Sn.
①-②得3n-1a
③ ④
∴3Sn=32+2×33+3×34+„+n·3n+1.
④-③得2Sn=n·3n+1-(3+32+33+„+3n),
3(1 3n ) (2n 1)3n1 3 即2Sn=n3n+1, S n 1 3 4 4
探究提高
解答本题的突破口在于将所给条件式
视为数列{3n-1an}的前n项和,从而利用an 与Sn 的关
(1)证明
∵bn=
∵an+1=2an
+2n,∴
an1 an n1 1, n 2 2
an ,∴bn+1=bn+1,即bn+1-bn=1,b1=1, n 1 2 故数列{bn}是首项为1,公差为1的等差数列.
(2)解
由(1)知,bn=n,an=n·2n-1,
则Sn=1·20+2·21+„+(n-1)·2n-2+n·2n-1
题型二
错位相减法求和
+32a
3
【例2】设数列{an}满足a1+3a2 n∈N*.
+„+3n-1a
n , n= 3
(1)求数列{an}的通项; n (2)设bn= ,求数列{bn}的前n项和Sn. an 思维启迪 (1)由已知写出前n-1项之和,两式相 减.(2)bn=n·3n 的特点是数列{n}与{3n}之积可 用错位相减法.