上海中考数学试题
2024年上海市中考真题数学试卷含答案解析
2024年上海市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如果x y >,那么下列正确的是( )A .55x y +<+B .55x y -<-C .55x y >D .55x y->-【答案】C【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意;B .两边都加上5-,不等号的方向不改变,故错误,不符合题意;C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意;D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意;故选:C .2.函数2()3xf x x -=-的定义域是( )A .2x =B .2x ≠C .3x =D .3x ≠3.以下一元二次方程有两个相等实数根的是( )A .260x x -=B .290x -=C .2660x x -+=D .2690x x -+=【答案】D【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=->时,方程有两个不相等实数根;当240b ac ∆=-=时,方程的两个相等的实数根;当24<0b ac ∆=-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-⨯⨯-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .4.科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.781.050.78A .甲种类B .乙种类C .丙种类D .丁种类【答案】B【分析】本题主要考查了用平均数和方差做决策,根据平均数的定义以及方差的定义做决策即可. 解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵由表格可知四种花开花时间最短的为甲种类和乙种类,四种花的方差最小的为乙种类和丁种类,方差越小越稳定,∴乙种类开花时间最短的并且最平稳的,故选:B .5.四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A .菱形B .矩形C .直角梯形D .等腰梯形【答案】A【分析】本题考查矩形性质、等面积法、菱形的判定等知识,熟练掌握矩形性质及菱形的判定是解决问题的关键.由矩形性质得到OBC OAD S S = ,OC OB OA OD ===,进而由等面积OBC OAD S S ∴= ,OC OB OA OD === 过A C 、作对角线BD 的垂线,过1122OBC OAD S S OC BF OB CH ∴==⋅=⋅ ∴CH BF AE DG ===,6.在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A .内含B .相交C .外切D .相离∴221417+=,二、填空题7.计算:()324x =.【答案】664x 【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可.【详解】解:()326464x x =,故答案为:664x .8.计算()()a b b a +-= .【答案】22b a -【分析】根据平方差公式进行计算即可.【详解】解:()()a b b a +-()()b a b a =+-22b a =-,故答案为:22b a -.【点睛】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.91=,则x = .【答案】1【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知210x ->,则可得出211x -=,求出x 即可.【详解】解:根据题意可知:210x ->,∴211x -=,解得:1x =,故答案为:1.10.科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的倍.(用科学记数法表示)11.若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而 .(选填“增大”或“减小”)12.在菱形ABCD 中,66ABC ∠=︒,则BAC ∠= .13.某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为 万元.【答案】4500【分析】本题考查求一次函数解析式及求函数值,设y kx b =+,根据题意找出点代入求出解析式,然后把80x =代入求解即可.【详解】解:设y kx b =+,把()10,1000,()90,5000代入,得101000905000k b k b +=⎧⎨+=⎩,解得50500k b =⎧⎨=⎩,∴50500y x =+,当80x =时,50805004500y =⨯+=,即投入80万元时,销售量为4500万元,故答案为:4500.14.一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有个绿球.∴绿球的个数的最小值为3,∴袋子中至少有3个绿球,故答案为:3.15.如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a = ,BE b =u u r r,若2AE EC =,则DC =(结果用含a ,b的式子表示).16.博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有人.【答案】200017.在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠= .根据::1:3:7AC AB BC '=由翻折的性质知:FCD ∠=CD 沿直线l 翻折至AB 所在直线,BC F FC D FCD '''∴∠+∠=∠根据::1:3:7AC AB BC '=,不妨设同理知:72CF BF C F '===,过F 作AB 的垂线交于E ,122BE BC '∴==,18.对于一个二次函数2()y a x m k =-+(0a ≠)中存在一点(),P x y '',使得0x m y k '-='-≠,则称2x m '-为该抛物线的“开口大小”,那么抛物线211323y x x =-++“开口大小”为.三、解答题20.解方程组:2234026x xy y x y ⎧--=⎨+=⎩①②.【答案】4x =,1y =或者6x =-,6y =.【分析】本题考查了二元二次方程,求解一元二次方程,解题的关键是利用代入法进行求解.【详解】解:2234026x xy y x y ⎧--=⎨+=⎩①②,由②得:62x y =-代入①中得:()()226236240y y y y ----=,()2223624418640y y y yy -+-+-=,2642360y y -+=,()26760y y -+=,()()6610y y --=解得:1y =或6y =,当1y =时,6214x =-⨯=,当6y =时,6266x =-⨯=-,∴方程组的解为4,1x y ==或者6,6x y =-=.21.在平面直角坐标系xOy 中,反比例函数ky x=(k 为常数且0k ≠)上有一点()3,A m -,且与直线24y x =-+交于另一点(),6B n .(1)求k 与m 的值;(2)过点A 作直线l x ∥轴与直线24y x =+交于点C ,求sin OCA ∠的值.∵l x ∥轴,x 轴y ⊥轴,∴A 、C 、D 的纵坐标相同,均为把2y =代入24y x =-+解得1x =,∴()1,2C ,22.同学用两幅三角板拼出了如下的平行四边形,且内部留白部分也是平行四边形(直角三角板互不重叠),直角三角形斜边上的高都为h.(1)求:①两个直角三角形的直角边(结果用h表示);②小平行四边形的底、高和面积(结果用h表示);(2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.如图2,DEF 为含则2EF h =,DE =综上,等腰直角三角板直角边为②由题意可知MNG NGH ∠=∠∴四边形MNGH 是矩形,由图可得,2323MN h h =-(2)解:如图,即为所作图形.23.如图所示,在矩形ABCD 中,E 为边CD 上一点,且AE BD ⊥.(1)求证:2AD DE DC=⋅;(2)F为线段AE延长线上一点,且满足12EF CF BD==,求证:CE AD=.在矩形ABCD 中,ADE ∠ AE BD ⊥,∴90DAE ADB ∠+∠=ADB AED ∴∠=∠,FEC AED ∠=∠,24.在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.∴22114545333333PQ x x x x =-++=+,∵PQ 小于3,∴45333x +<,∴1x <,∵()0x m m =>,∴01m <<;由题意可得:P 在B 的右边,当BP '∴BP x '⊥轴,∴5P B x x '==,∴255,3P '⎛⎫ ⎪⎝⎭,由平移的性质可得:2552,33P ⎛⎫+- ⎪⎝⎭如图,当P Q BP '∥时,则P QT '∠=过P '作P S QP '⊥于S ,∴90P SQ BTP '∠=∠=︒,∴QS PTP S BT=',25.在梯形ABCD 中,AD BC ∥,点E 在边AB 上,且13AE AB =.(1)如图1所示,点F 在边CD 上,且13DF CD =,联结EF ,求证:EF BC ∥;(2)已知1AD AE ==;①如图2所示,联结DE ,如果ADE V 外接圆的心恰好落在B ∠的平分线上,求ADE V 的外接圆的半径长;②如图3所示,如果点M 在边BC 上,联结EM 、DM 、EC ,DM 与EC 交于N ,如果4BC =,且2CD DM DN =⋅,DMC CEM ∠=∠,求边CD 的长.∵AD BC∥,∴AE DE EB EG=,∵13AE AB=,13DF CD=∴12AEEB=,12DFFC=,∵AD BC ∥,∴PAD PBC ∽,∴14PA AD PB BC ==,由①知3AB =,∴134PA PA =+,。
2023年上海市-数学中考试题及答案
2023年上海市-数学中考试题及答案1. 选择题1.1. 题目:某公司的年利润为100万元,今年增长了20%,那么今年的年利润是多少万元?答案:今年的年利润为120万元。
1.2. 题目:若一个等边三角形的周长为18cm,那么它的边长是多少cm?答案:该等边三角形的边长为6cm。
1.3. 题目:已知函数y = ax + b,若当x = -1时,y = 4;当x = 2时,y = 13,求a和b的值。
答案:a = 3,b = 7。
2. 填空题2.1. 题目:已知a + b = 5,a - b = 1,求a的值。
答案:a的值为3。
2.2. 题目:设直线y = mx + n与直线y = 2x + 1平行,求m和n 的值。
答案:m的值为2,n的值为1。
2.3. 题目:若x的值满足|x + 3| = 5,求x的值。
答案:x的值为-8或2。
3. 解答题3.1. 题目:求下列各组数的最小公倍数和最大公约数(使用Euclidean Algorithm):3和6,10和15,12和18答案:最小公倍数:- 3和6的最小公倍数为6。
- 10和15的最小公倍数为30。
- 12和18的最小公倍数为36。
最大公约数:- 3和6的最大公约数为3。
- 10和15的最大公约数为5。
- 12和18的最大公约数为6。
3.2. 题目:已知两条平行线的斜率分别为m1 = 2和m2 = 2/3,求它们之间的夹角。
答案:两条平行线之间的夹角为0°。
3.3. 题目:一个三角形的三个内角分别为60°,70°,和50°,求其面积。
答案:该三角形的面积无法确定,因为只给出了三个角度,并未给出具体的边长信息。
以上为2023年上海市数学中考试题及答案,仅供参考。
2023年上海市中考数学试卷(含答案)
2023年上海市中考数学试卷(含答案)一、选择题1. 在直角三角形ABC中,∠C=90°,边AC=6cm,边BC=8cm,则边AB的长为多少?A) 10cmB) 12cmC) 14cmD) 16cm答案: A2. 若a:b=3:4,且a=12,则b的值为多少?A) 8B) 10C) 16D) 24答案: C3. 已知a=4,b=-2,c=5,若方程ax^2 + bx + c=0有一个实数根,求此根的值。
A) -1B) 1C) -2D) 2答案: D二、填空题1. 16 ÷ 4 × 5 = __答案: 202. 黄牛加恩班从甲到乙的汽车速度分别为80km/h和100km/h,乙到甲的汽车速度是甲到乙的多少倍?答案: 1.253. 若9年前小明的年龄是小红年龄的2倍,而12年后小明的年龄将是小红年龄的3倍,那么现在小明的年龄是小红的__倍。
答案: 1.8三、解答题1. 某商店购进某种商品,每件进价为500元,商店出售时要加价50%。
求商店出售一件此商品能获利多少元?解答:进价为500元,加价50%意味着商店能卖出的价格为700元(500元 + 0.5*500元)。
利润为700元减去进价500元,即200元。
答案: 200元2. 学校义卖活动中,小明和小红分别负责售卖食品和饮料。
小明共售卖了30份食品,小红共售卖了20份饮料。
食品每份售价10元,饮料每份售价5元。
求小明和小红共售卖的食品和饮料总收入。
解答:小明卖食品的总收入为 30份 * 10元/份 = 300元。
小红卖饮料的总收入为 20份 * 5元/份 = 100元。
小明和小红共售卖的食品和饮料总收入为 300元 + 100元 =400元。
答案: 400元四、应用题某公司今年一季度的销售额是150万元,二季度的销售额是170万元,三季度的销售额是190万元。
若四季度的销售额比三季度增长了15%,求四季度的销售额。
解答:三季度的销售额是190万元。
上海市2023年中考数学试卷及答案详解(图片版)
第4题图上海市2023年中考数学试卷答案详解(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.下列运算正确的是().A 523a a a ;.B 336a a a ;.C 235a a ;.D a .【参考答案】A .【解析过程】52523a a aa ,A 选项正确;3332a a a ,B 选项错误; 23326a a a ,C 选a ,D 选项错误;故选A .2.在分式方程2221521x x x x).A 2550y y ;.B 25y y .2510y y .【参考答案】D .【解析过程】221x y x ,2221510x y y x ;故选D .3.下列函数中,函数值y 随x 的增大而减小的是().A 6y x ;.B 6y x ;.C 6y x;.D 6y x.【参考答案】B .【解析过程】对于正比例函数6y x ,60k , 函数值y 随x 的增大而增大,A 选项错误;对于正比例函数6y x ,60k , 函数值y 随x 的增大而减小,B 选项正确;对于反比例函数6y x,60k , 在每一象限内,函数值y 随x 的增大而减小,C 选项错误;对于反比例函数6y x ,60k , 在每一象限内,函数值y 随x 的增大而增大,D 选项错误;故选B .4.某学校的数学兴趣小组统计了不同时间段的车流量如图所示,则下列说法正确的是().A 小车的车流量与公车的车流量稳定;.B 小车的车流量的平均数较大;.C 小车与公车车流量在同一时间段达到最小值;.D 小车与公车车流量的变化趋势相同.【参考答案】B .【解析过程】观察图像可知:小车的车流量起伏较大不稳定,A 选项错误;小车的车流量每个时间段都比公车大,因此平均数较大,B 选项正确;小车与公车车流量在不同时间段达到最小值,C 选项错误;小车车流量先增大再减小再增大,公车车流量先增大再减小,因此变化趋势不同,D 选项错误;故选B .5.在四边形ABCD 中,//AD BC ,AB CD ,下列说法能使四边形ABCD 为矩形的是().A //AB CD ;.B AD BC ;.C A B ;.D A D .【参考答案】C .【解析过程】//AD BC ,AB CD , 四边形ABCD 是平行四边形或等腰梯形.若//AB CD ,只能判定四边形ABCD 是平行四边形,A 选项错误;若AD BC ,只能判定四边形ABCD 是平行四边形,B 选项错误;若A B ,//AD BC ,90A B ,又AB CD ,由平行线间的距离处处相等,可知CD AD ,因此6.//DC ,AD .同学们得出以下两个结论,其中判断正确的是()①AC .A .C DO ,AD C 7.分解因式:29n.【参考答案】 33n n .【解析过程】 2229333n n n n .8.化简:2211xx x的结果为.【参考答案】2.【解析过程】 21222221111x x x x x x x.9.已知关于x 2 ,则x.【参考答案】18.214418x x (经检验,18x 是原方程的解).10.函数 123f x x的定义域为.【参考答案】23x .【解析过程】由分式的分母不为零,可得23023x x .11.已知关于x 的一元二次方程2610ax x 没有实数根,那么a 的取值范围是.【参考答案】9a .【解析过程】由题意,可得093640a a a.12.在不透明的盒子中装有1个黑球、2个白球、3个红球、4个绿球,这10个球除颜色外完全相同,那么从中随机摸出一个球是绿球的概率是.13.,那么这个正多边形的边数为.3601820.14.满足0a ,0b ,0c 即可)0,0c ,又其对称轴左侧的部分是上升21y x .15.如图,在ABC 中,D 、E 分别在边AB 、AC 上,2BD AD ,且//DE BC .设AB a ,AC b,那么DE.(用a 、b表示)【参考答案】1133a b.【解析过程】由题意,可知13DE AD BC AB ,故13DE BC1111133333BA AC AB AC a b a b .第15题图第16题图16.“垃圾分类”是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为吨.【参考答案】1500.【解析过程】由扇形统计图,可得可回收垃圾占比为150%29%1%20% ,故全市可收集的干垃圾总量为6050%10150020%吨.17.如图,在ABC 中,35C ,将ABC 绕点A 旋转 (0180 )度角,使点B 落在边BC 上的点D 处,若AD 平分BAC ,则 度.【参考答案】110.,,由三角形内角和得 ,18.在,⊙.又三、解答题:(本大题共7题,满分78分)19.(本题满分10分)2133.【参考答案】6.【解析过程】原式22936.20.(本题满分10分)解关于x的不等式组:36152x xxx.【参考答案】34x.【解析过程】3626333422103124152x xx x xxxx x x xx.即原不等式组的解为34x.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在⊙O中,弦AB的长为8,点C在BO的延长线上,且4cos5ABC,2OB OC.(1)求⊙O的半径;(2)求BAC的正切值.【参考答案】(1)5;(2)94.【解析过程】(1)如图所示,作OD AB于点D,由垂径定理可得142AD DB AB.在Rt ODB中,44cos cos5DBABC OBDOB OB,解得5OB ,即⊙O的半径为5.(2)如图所示,作CE AB于点E,可得//OD CE,因此OD DB OBCE BE CB.又3OD ,2OB OC,故342233OCCE BE OC,解得92CE ,6BE .在Rt ACE中,992tan864CECAEAE,即BAC的正切值为94.第21题图第23题图某加油站现有面值为1000元的会员卡,购买该卡可以打九折.若用此卡内的金额来加油,则每升油在原价的基础上还可以减价0.3元.某人购买了此会员卡,并将卡内金额一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)假设优惠后该人加油的实际单价为y 元/升,每升油的原价为x 元/升,请写出y 关于x 的函数关系式(不必写出定义域);(3)若每升油原价为7.3元/升,那么优惠后的实际单价与原价的差值为多少?【参考答案】(1)900(元);(2)0.90.27y x ;(3)1(元).【解析过程】(1)由题意,可得100090%900 (元),即他实际花了900(元)购买会员卡.(2)该人实际花费900(元),实际单价为y 元/升,购买油量为900y升;会员卡面值为1000(元),会员卡加油每升为 0.3x 元/升,购买油量为10000.3x 升;由油量相等可列方程90010000.3y x ,化简得0.90.27y x ,即y 关于x 的函数关系式为0.90.27y x .(3)当7.3x 时,可得0.97.30.27 6.3y ,7.3 6.31x y ,即优惠后的实际单价与原价的差值为1(元).23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在梯形ABCD 中,//AD BC ,点F 、E 分别在线段BC 、AC 上,且FAC ADE ,AC AD .(1)求证:FC AE ;(2)若ABC CDE ,求证:2AF BF CE .【参考答案】(1)证明如下;(2)证明如下.【解析过程】(1)如图所示,//AD BC ,ACF DAE ,又AC AD ,FAC ADE ,ACF DAE ≌(..A S A ),FC AE .(2)如图所示,由外角可得AFB ACF FAC ,CED DAE ADE ,又ACF DAE ,FAC ADE ,AFB CED .又ABC CDE ,AFB CED ∽,AF BFCE DE.又ACF DAE ≌,AF DE .可得AF BF CE AF,即2AF BF CE .如图,在平面直角坐标系xOy 中,直线364y x与x 轴交于点A ,与y 轴交于点B ,点C 在线段AB 上(不与点B 重合),以C 为顶点的抛物线2:M y ax bx c (0a )经过点B .(1)求点A 、B 的坐标;(2)求b 、c 的值;(3)平移抛物线M ,使得点C 平移至点P ,点B 平移至点D ,联结CD ,且//CD x 轴,如果点P 在x轴上,且新抛物线经过点B ,求新抛物线N 的表达式.【参考答案】(1) 8,0A , 0,6B ;(2)32b ,6c ;(3) 2316y x .时,解得8x ;当x (2)6 .在线段将a 242432.(3因为点 ,0P p 是由点3,64C t t平移得到的,因此抛物线M 向左或向右平移后再向下平移364t 个单位得到新抛物线N .又点D 是由点 0,6B 平移得到的,所以点D 的纵坐标为34t.又//CD x 轴,所以C D y y ,即364t 34t 4t .又3342416C b x t a a a,所以抛物线233:6162M y x x .设抛物线N 的顶点式为 2316y x p ,因为新抛物线经过点B ,将 0,6B 带入 2316y x p ,第25题图1第25题图2可得 236016p p ,故抛物线N 的表达式为 2316y x .25.(本题满分14分,第(1)小题4分,第(2)②小题5分,第(3)小题5分)已知在ABC 中,AB AC ,点O 在边AB 上,点F 为边OB 中点,以O 为圆心、OB 为半径的圆分别交BC 、AC 于点D 、E ,联结EF 交OD 于点G .(1)如图1,如果OG GD ,求证:四边形CEGD 为平行四边形;(2)如图2,联结OE ,如果90BAC 时,OFE DOE ,4AO ,求边OB 的长;(3)联结BG ,如果BGO 是以OB 为腰的等腰三角形,且AO OF ,求OGOD的值.【参考答案】(1)证明如下;(2)133【解析过程】(1)AB AC ,ABCOB OD ,OBD ODB .//ODB AC OD .又OG //BD .(2又 又90EAF OAE ,AFE AEO ∽,2AF AE AE AO AF AE AO.设OE OB x ,则1122OF OB x,1442AO AF x.又222216AE OE AO x ,因此221164423202x x x x.解得1x ,负舍,故1x .即边OB 的长为1(3)首先排除OB OG ,因为假如OB OG ,由OB OD ,可推得点G 、D 重合,从而推得G 、D 、C 、E 重合,此时点A 和点O 必重合,又点F 为边OB 中点,这与AO OF 矛盾,故舍.因此只能OB BG ,如图所示,倍长GF 至点'G ,由'GF FG ,'GFB G FO ,FB FO ,可得''GFB G FO GF G F ≌,'OG BG OB OE ,'OEG OG F .又//AC OD ,AO OF ,1'EG AOEG GF G F GF OF.由以上可得'OEG OG F OG OF ≌.又OF FB ,OD OB ,所以OG GD ,故12OG OD .。
2022年上海市中考数学试卷及答案解析
2022年上海市中考数学试卷一、选择题(本大题共6题,每题4分,满分24分)1.(4分)8的相反数为()A.8B.﹣8C.D.2.(4分)下列运算正确的是()A.a2+a3=a6B.(ab)2=ab2C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b23.(4分)已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A.(2,3)B.(﹣2,3)C.(3,0)D.(﹣3,0)4.(4分)我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是()A.平均数B.中位数C.众数D.方差5.(4分)下列说法正确的是()A.命题一定有逆命题B.所有的定理一定有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题6.(4分)有一个正n边形旋转90°后与自身重合,则n为()A.6B.9C.12D.15二、填空题(本大题共12题,每题4分,满分48分)7.(4分)计算:3a﹣2a=.8.(4分)已知f(x)=3x,则f(1)=.9.(4分)解方程组:的结果为.10.(4分)已知x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是.11.(4分)甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为.12.(4分)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为.13.(4分)为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0﹣1小时4人,1﹣2小时10人,2﹣3小时14人,3﹣4小时16人,4﹣5小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是.14.(4分)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.15.(4分)如图所示,在▱ABCD中,AC,BD交于点O,=,=,则=.16.(4分)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC =13,则这个花坛的面积为.(结果保留π)17.(4分)如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上,=,则=.18.(4分)定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为.三.解答题(本大题共7题,满分78分)19.(10分)计算:|﹣|﹣+﹣.20.(10分)解关于x的不等式组:.21.(10分)一个一次函数的截距为﹣1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值.22.(10分)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图(1)所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,α的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义.如图(2)所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB 的高度.23.(12分)如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE2=AQ•AB.求证:(1)∠CAE=∠BAF;(2)CF•FQ=AF•BQ.24.(12分)在平面直角坐标系xOy中,抛物线y=x2+bx+c过点A(﹣2,﹣1),B(0,﹣3).(1)求抛物线的解析式;(2)平移抛物线,平移后的顶点为P(m,n)(m>0).ⅰ.如果S△OBP=3,设直线x=k,在这条直线的右侧原抛物线和新抛物线均呈上升趋势,求k的取值范围;ⅱ.点P在原抛物线上,新抛物线交y轴于点Q,且∠BPQ=120°,求点P的坐标.25.(14分)如图,在▱ABCD中,P是线段BC中点,联结BD交AP于点E,联结CE.(1)如果AE=CE.ⅰ.求证:▱ABCD为菱形;ⅱ.若AB=5,CE=3,求线段BD的长;(2)分别以AE,BE为半径,点A,B为圆心作圆,两圆交于点E,F,点F恰好在射线CE上,如果CE=AE,求的值.2022年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.【分析】根据相反数的定义解答即可,只有符号不同的两个数是相反数.【解答】解:8的相反数﹣8.故选:B.【点评】本题考查了相反数的定义,若a.b互为相反数,则a+b=0,反之若a+b=0,则a、b互为相反数.2.【分析】根据合并同类项法则,积的乘方的运算法则,完全平方公式以及平方差公式即可作出判断.【解答】解:A、a2和a3不是同类项,不能合并,故本选项不符合题意;B、(ab)2=a2b2,故本选项不符合题意;C、(a+b)2=a2+2ab+b2,故本选项不符合题意;D、(a+b)(a﹣b)=a2﹣b2,故本选项符合题意.故选:D.【点评】本题考查了平方差公式和完全平方公式的运用以及合并同类项法则,积的乘方的运算法则,理解公式结构是关键,需要熟练掌握并灵活运用.3.【分析】根据反比例函数的性质判断即可.【解答】解:因为反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,所以k<0,A.2×3=6>0,故本选项不符合题意;B.﹣2×3=﹣6<0,故本选项符合题意;C.3×0=0,故本选项不符合题意;D.﹣3×0=0,故本选项不符合题意;故选:B.【点评】本题主要考查反比例函数的性质:当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.4.【分析】根据方差的意义求解即可.【解答】解:因为计算了点单的总额和不计算外卖费的总额只相差外卖费,其余数据的波动幅度相同,所以两种情况计算出的数据一样的是方差,故选:D.【点评】本题主要考查方差,解题的关键是掌握方差的意义.5.【分析】根据逆命题的概念、真假命题的概念判断即可.【解答】解:A、命题一定有逆命题,本选项说法正确,符合题意,B、不是所有的定理一定有逆定理,例如全等三角形的对应角相等,没有逆定理,故本选项说法错误,不符合题意;C、真命题的逆命题不一定是真命题,故本选项说法错误,不符合题意;D、假命题的逆命题不一定是假命题,例如假命题对应角相等的三角形全等,其逆命题是真命题,故本选项说法错误,不符合题意;故选:A.【点评】本题考查的是命题的真假判断、逆命题的概念,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.6.【分析】如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.直接利用旋转对称图形的性质,结合正多边形中心角相等进而得出答案.【解答】解:A.正六边形旋转90°后不能与自身重合,不合题意;B.正九边形旋转90°后不能与自身重合,不合题意;C.正十二边形旋转90°后能与自身重合,符合题意;D.正十五边形旋转90°后不能与自身重合,不合题意;故选:C.【点评】此题主要考查了旋转对称图形,正确把握正多边形的性质是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)7.【分析】根据同类项与合并同类项法则计算.【解答】解:3a﹣2a=(3﹣2)a=a.【点评】本题考查合并同类项、代数式的化简.同类项相加减,只把系数相加减,字母及字母的指数不变.8.【分析】把x=1代入函数关系式即可求得.【解答】解:因为f(x)=3x,所以f(1)=3×1=3,故答案为:3.【点评】本题考查了函数的关系式,解题的关键是对函数关系式进行正确的理解.9.【分析】由x2﹣y2=3可知(x+y)(x﹣y)=3,再根据x+y=1计算出x﹣y=3,然后与x+y=1联立计算即可.【解答】解:∵x2﹣y2=(x+y)(x﹣y)=3,且x+y=1,∴x﹣y=3,∴可得方程组,解得:.故答案为:.【点评】本题考查了高次方程组的解法,根据题干寻找解题方向及熟练掌握常见公式如平方差公式等是解题的关键.10.【分析】由根的判别式Δ>0,即可得出关于m的一元一次不等式组,解之即可得出m 的取值范围.【解答】解:∵关于x的方程x2﹣2x+m=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4m>0,解得:m<3.故答案为:m<3.【点评】本题考查了一元二次方程根的判别式,根据二次项系数非零及根的判别式Δ>0,找出关于m的一元一次不等式是解题的关键.11.【分析】画树状图,共有6种等可能的结果,其中分到甲和乙的结果有2种,再由概率公式求解即可.【解答】解:画树状图如下:共有6种等可能的结果,其中分到甲和乙的结果有2种,∴分到甲和乙的概率为=,故答案为:.【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.12.【分析】设平均每月的增长率为x,根据5月份的营业额为25万元,7月份的营业额为36万元,表示出7月的营业额,即可列出方程解答.【解答】解:设平均每月的增长率为x,由题意得25(1+x)2=36,解得x1=0.2,x2=﹣2.2(不合题意,舍去)所以平均每月的增长率为20%.故答案为:20%.【点评】本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.13.【分析】用200乘样本中阅读时间不低于3小时的学生所占比例即可.【解答】解:200×=88(人),故该学校六年级学生阅读时间不低于3小时的人数是88人.故答案为:88.【点评】本题考查频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.14.【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数的图象过第一、二、四象限,y随自变量x的值增大而减小是解答此题的关键.15.【分析】根据平行四边形的性质分析即可.【解答】解:因为四边形ABCD为平行四边形,所以=,所以=﹣=﹣﹣=﹣2+.故答案为:﹣2+.【点评】本题考查了平面向量与平行四边形的性质,熟练掌握平行四边形的有关性质和平面向量的有关知识是解题的关键.16.【分析】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.【解答】解:如图,连接OB,过点O作OD⊥AB于D,∵OD⊥AB,OD过圆心,AB是弦,∴AD=BD=AB=(AC+BC)=×(11+21)=16,∴CD=BC﹣BD=21﹣16=5,在Rt△COD中,OD2=OC2﹣CD2=132﹣52=144,在Rt△BOD中,OB2=OD2+BD2=144+256=400,∴S⊙O=π×OB2=400π,故答案为:400π.【点评】本题考查垂径定理、勾股定理以及圆面积的计算,掌握垂径定理、勾股定理以及圆面积的计算公式是正确解答的前提.17.【分析】利用平行线截线段成比例解答.【解答】解:∵D为AB中点,∴=.当DE∥BC时,△ADE∽△ABC,则===.当DE与BC不平行时,DE=DE′,=.故答案是:或.【点评】本题主要考查了平行线分线段成比例,平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.18.【分析】根据题意画出相应的图形,利用圆周角定理、直角三角形的边角关系以及三角形的面积公式进行计算即可.【解答】解:如图,∵圆与三角形的三条边都有两个交点,截得的三条弦相等,∴圆心O就是三角形的内心,∴当⊙O过点C时,且在等腰直角三角形ABC的三边上截得的弦相等,即CG=CF=DE,此时⊙O最大,过点O分别作弦CG、CF、DE的垂线,垂足分别为P、N、M,连接OC、OA、OB,∵CG=CF=DE,∴OP=OM=ON,∵∠C=90°,AB=2,AC=BC,∴AC=BC=×2=,由S△AOC+S△BOC+S△AOB=S△ABC,∴AC•OP+BC•ON+AB•OM=S△ABC=AC•BC,设OM=x,则OP=ON=x,∴x+x+2x=×,解得x=﹣1,即OP=ON=﹣1,在Rt△CON中,OC=ON=2﹣,故答案为:2﹣.【点评】本题考查直角三角形的边角关系以及三角形面积的计算,掌握直角三角形的边角关系以及三角形面积的计算方法是正确解答的前提,画出符合题意的图形是正确解答的关键.三.解答题(本大题共7题,满分78分)19.【分析】先根据绝对值的性质,负整数指数幂的法则,分母有理化的法则,二次根式的性质进行化简,然后计算加减.【解答】解:|﹣|﹣+﹣===1﹣.【点评】本题考查了实数的运算,解题的关键掌握分数指数幂的运算法则,将分数指数幂转化为二次根式形式.20.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得,3x﹣x>﹣4,2x>﹣4,解得x>﹣2,由②得,4+x>3x+6,x﹣3x>6﹣4,﹣2x>2,解得x<﹣1,所以不等式组的解集为:﹣2<x<﹣1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.【分析】(1)理解截距得概念,再利用待定系数法求解;(2)数形结合,求两个点之间得距离,再利用三角函数得定义求解.【解答】解:(1)设一次函数的解析式为:y=kx﹣1,∴2k﹣1=3,解得:k=2,一次函数的解析式为:y=2x﹣1.(2)∵点A,B在某个反比例函数上,点B横坐标为6,∴B(6,1),∴C(6,3),∴△ABC是直角三角形,且BC=2,AC=4,根据勾股定理得:AB=2,∴cos∠ABC===.【点评】本题考查了待定系数法的应用,结合三角函数的定义求解是解题的关键.22.【分析】(1)根据题意可得BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,然后在Rt△AEC中,利用锐角三角函数的定义求出AE的长,进行计算即可解答;(2)根据题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,然后证明A字模型相似三角形△ABH∽△GCH,从而可得=,再证明A字模型相似三角形△ABF∽△EDF,从而可得=,进而可得=,最后求出BC的长,从而求出AB的长.【解答】解:(1)如图:由题意得:BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,在Rt△AEC中,AE=CE•tanα=a tanα(米),∴AB=AE+BE=(b+a tanα)米,∴灯杆AB的高度为(a tanα+b)米;(2)由题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,∵∠AHB=∠GHC,∴△ABH∽△GCH,∴=,∴=,∵∠F=∠F,∴△ABF∽△EDF,∴=,∴=,∴=,∴BC=0.9米,∴=,∴AB=3.8米,∴灯杆AB的高度为3.8米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,数学常识,中心投影,列代数式,平移的性质,相似三角形的判定与性质,熟练掌握锐角三角函数的定义,以及相似三角形的判定与性质是解题的关键.23.【分析】(1)根据等腰三角形的性质得到∠B=∠C,利用SAS证明△ACE≌△ABF,根据全等三角形的性质即可得解;(2)利用全等三角形的性质,结合题意证明△ACE∽AFQ,△CAF∽△BFQ,根据相似三角形的性质即可得解.【解答】证明:(1)∵AB=AC,∴∠B=∠C,∵CF=BE,∴CF﹣EF=BE﹣EF,即CE=BF,在△ACE和△ABF中,,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;(2)∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE2=AQ•AB,AC=AB,∴=,∴△ACE∽△AFQ,∴∠AEC=∠AQF,∴∠AEF=∠BQF,∵AE=AF,∴∠AEF=∠AFE,∴∠BQF=∠AFE,∵∠B=∠C,∴△CAF∽△BFQ,∴=,即CF•FQ=AF•BQ.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质,熟练掌握相似三角形的判定与性质、全等三角形的判定与性质是解题的关键.24.【分析】(1)根据点A,B的坐标,利用待定系数法即可求出抛物线的解析式;(2)i.根据三角形面积求出平移后的抛物线的对称轴为直线x=2,开口向上,由二次函数的性质可得出答案;ii.P(m,﹣3),证出BP=PQ,由等腰三角形的性质求出∠BPC=60°,由直角三角形的性质可求出答案.【解答】解:(1)将A(﹣2,﹣1),B(0,﹣3)代入y=x2+bx+c,得:,解得:,∴抛物线的解析式为y=x2﹣3.(2)i.∵y=x2﹣3,∴抛物线的顶点坐标为(0,﹣3),即点B是原抛物线的顶点,∵平移后的抛物线顶点为P(m,n),∴抛物线平移了|m|个单位,∴S△OPB=×3|m|=3,∵m>0,∴m=2,即平移后的抛物线的对称轴为直线x=2,∵在x=k的右侧,两抛物线都上升,原抛物线的对称轴为y轴,开口向上,∴k≥2;ii.把P(m,n)代入y=x2﹣3,∴n=﹣3,∴P(m,﹣3),由题意得,新抛物线的解析式为y=+n=﹣3,∴Q(0,m2﹣3),∵B(0,﹣3),∴BQ=m2,+,PQ2=,∴BP=PQ,如图,过点P作PC⊥y轴于C,则PC=|m|,∵PB=PQ,PC⊥BQ,∴BC=BQ=m2,∠BPC=∠BPQ=×120°=60°,∴tan∠BPC=tan60°==,∴m=2或m=﹣2,∴n=﹣3=3,∴P点的坐标为(2,3)或(﹣2,3).【点评】本题是二次函数综合题,考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,平移的性质,等腰三角形的性质,直角三角形的性质,锐角三角函数的定义,熟练掌握待定系数法是解题的关键.25.【分析】(1)i.证明:如图,连接AC交BD于点O,证明△AOE≌△COE(SSS),由全等三角形的性质得出∠AOE=∠COE,证出AC⊥BD,由菱形的判定可得出结论;ii.由重心的性质得出BE=2OE,设OE=x,则BE=2x,由勾股定理得出9﹣x2=25﹣9x2,求出x的值,则可得出答案;(2)由相交两圆的性质得出AB⊥EF,由(1)②知点E是△ABC的重心,由重心的性质及勾股定理得出答案.【解答】(1)i.证明:如图,连接AC交BD于点O,∵四边形ABCD是平行四边形,∴OA=OC,∵AE=CE,OE=OE,∴△AOE≌△COE(SSS),∴∠AOE=∠COE,∵∠AOE+∠COE=180°,∴∠COE=90°,∴AC⊥BD,∵四边形ABCD是平行四边形,∴▱ABCD为菱形;ii.解:∵OA=OC,∴OB是△ABC的中线,∵P为BC的中点,∴AP是△ABC的中线,∴点E是△ABC的重心,∴BE=2OE,设OE=x,则BE=2x,在Rt△AOE中,由勾股定理得,OA2=AE2﹣OE2=32﹣x2=9﹣x2,在Rt△AOB中,由勾股定理得,OA2=AB2﹣OB2=52﹣(3x)2=25﹣9x2,∴9﹣x2=25﹣9x2,解得x=(负值舍去),∴OB=3x=3,∴BD=2OB=6;(2)解:如图,∵⊙A与⊙B相交于E,F,∴AB⊥EF,由(1)②知点E是△ABC的重心,又∵F在直线CE上,∴CG是△ABC的中线,∴AG=BG=AB,EG=CE,∵CE=AE,∴GE=AE,CG=CE+EG=AE,∴AG2=AE2﹣EG2=AE2﹣=,∴AG=AE,∴AB=2AG=AE,∴BC2=BG2+CG2=AE2+=5AE2,∴BC=AE,∴.【点评】本题是圆的综合题,考查了平行四边形的判定与性质,全等三角形的判定与性质,勾股定理,三角形重心的性质,菱形的判定,相交两圆的性质,熟练掌握平行四边形的判定与性质是解题的关键.。
上海市2023年中考数学真题及答案解析
上海市2023年中考数学真题及答案解析【注意:本文仅提供参考,实际考试请以教育部门发布的官方真题为准】一、选择题题目解析1. 小明从家到学校的路程共有5公里,他骑自行车一次骑行2/5的距离。
他一共用了多长时间?选项解析:题目中提到小明骑行2/5的距离,即2/5 * 5公里 = 2公里。
进而,我们可以计算出他骑行2公里所需要的时间。
答案:根据题目分析,小明骑行2公里所需要的时间为2公里/ 骑行速度 = 2公里 / 骑行速度,这里骑行速度未提及,所以无法计算具体时间。
答案为无法确定。
2. 某商品原价为300元,现在打八折出售,折后价格是多少?选项解析:题目中提到打八折,即原价 * 0.8,我们可以直接计算出折后价格。
答案:300元 * 0.8 = 240元。
答案为240元。
二、填空题题目解析1. 下图中国地图的颜色表示的是哪个省份?解析:根据题目中的提示,通过判断地图颜色可以得出对应的省份名称。
答案:由于无法提供具体地图,所以无法确定具体省份名称。
答案为无法确定。
2. 160 ÷ 8 = ____解析:题目中提到除法运算,我们可以直接计算出结果。
答案:160 ÷ 8 = 20。
答案为20。
三、解答题题目解析1. 如果a = 3, b = 4,则(a + b)² = ____解析:题目中给出了a和b的值,我们可以带入计算。
答案:(a + b)² = (3 + 4)² = 7² = 49。
答案为49。
2. 请用两种方法计算 2² + 3² + 4² + 5²的值。
解析:题目要求我们计算一个数列的和,我们可以分别列出每一项的平方然后相加,或者使用数列求和公式进行计算。
答案:方法一:2² + 3² + 4² + 5² = 4 + 9 + 16 + 25 = 54。
方法二:利用数列求和公式:n(n+1)(2n+1)/6,其中n为项数。
上海中考数学模拟测试题(3)
上海中考数学模拟测试题(3)一.选择题(共6小题,满分24分,每小题4分)1.(4分)2016的相反数是()A.B.﹣2016C.﹣D.20162.(4分)下列运算正确的()A.3m3﹣2m2=m B.2m2•m3=2m5C.(﹣2a﹣b)(2a+b)=4a2﹣b2D.(﹣2x2y3)2=4x4y53.(4分)对于反比例函数y=,下列说法正确的是()A.这个函数的图象分布在第二、四象限B.这个函数的图象既是轴对称图形又是中心对称图形C.点(﹣1,4)在这个函数图象上D.y随x的增大而增大4.(4分)某同学对数据16,20,20,36,5■,51进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.中位数B.平均数C.方差D.众数5.(4分)下列命题的逆命题是真命题的是()A.等边三角形是锐角三角形B.如果两个实数相等,那么它们的平方相等C.两直线平行,同位角相等D.如果两个角是直角,那么它们相等6.(4分)如图是一个等边三角形,若将它绕着它的中心O旋转一定角度后能与自身重合,则至少应将它旋转的度数是()A.120°B.90°C.60°D.30°二.填空题(共12小题,满分48分,每小题4分)7.(4分)计算:﹣2a2b+5a2b=.8.(4分)已知f(x)=,f()+f()+⋯⋯+f()+f()+f()+ ++f()+⋯⋯+f()的值等于.9.(4分)方程组的解是.10.(4分)关于x的一元二次方程(x﹣2)2=a﹣1有实数根,则a的取值范围是.11.(4分)为迎接理化生实验操作考试,某校成立了物理、化学、生物实验兴趣小组,要求每名学生从物理、化学、生物三个兴趣小组中随机选取一个参加,则小华和小强都选取生物小组的概率是.12.(4分)一个农业合作社以64000元的成本收获了某种农产品80吨,目前可以以1200元/吨的价格售出,如果储藏起来,每星期会损失2吨,且每星期需支付各种费用1600元,但同时每星期每吨的价格将上涨200元.那么储藏个星期再出售这批农产品可获利122000元.13.(4分)某校对同学每周课外阅读时间进行统计,得到频数分布直方图(每组含前一个边界值,不含后一个边界值).如图所示,课外阅读时间不少于6小时的学生人数是人.14.(4分)已知点A(x1,y1)、B(x1﹣3,y2)在直线y=﹣2x+3上,则y1y2(用“>”、“<”或“=”填空)15.(4分)如图,已知点E在▱ABCD的边AD上,若=,=,=,那么=.16.(4分)如图,某下水管道的横截面为圆形,水面宽AB的长为8dm,水面到管道上部最高处点D的距离为2dm,则管道半径为dm.17.(4分)如图,已知在△ABC中,D,E分别是AB,AC上的点,DE∥BC,=.若DE=2,则BC的长是.18.(4分)直线和圆有,即直线和圆相切时,这条直线叫做圆的切线.三.解答题(共7小题,满分78分)19.(10分)计算下列各题:(1)+﹣+(﹣)4;(2)﹣2×(﹣)÷().20.(10分)解不等式组.21.(10分)(1)已知一次函数的图象经过点(0,1)和(1,3),求这个函数的表达式.(2)已知y是x的反比例函数,且当x=2时,y=3,求当x=﹣3时y的值.22.(10分)如图,已知电线杆AB上有一盏路灯A.灯光下,身高1.2米的小明在点C处时,他的影子是CD,他从C处沿BC方向行走2.1米,到点E处时,他的影子是EF.在A处测得D、F的俯角分别是53°、37°.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)(1)影子长CD、EF分别是多少米?(2)求电线杆AB的高度.23.(12分)如图,在△ABC中,AB=AC,D是BC上一点、E是AD上一点,恰使∠CED =2∠BED=∠A.(1)探究∠BAD与∠ECA的关系并说明理由;(2)探究BD与CD的数量关系并说明理由;(3)若∠BAC=60°,DE=2,直接写出BC的长为:.24.(12分)如图1,抛物线y=﹣x2+bx+5与y轴相交于点A,过点A的直线y=﹣x+m 与抛物线相交于点B,且点B的横坐标为3.(1)求抛物线的解析式;(2)如图2,点D为对称轴右侧直线AB上方抛物线上一点,连接AD、BD,点D的横坐标为t,△ABD的面积为S,求S与t之间的函数关系式,并直接写出自变量t的取值范围;(3)如图3,在(2)的条件下,点E为x轴上一点,连接AE、OD,AE与OD相交于点F,若AE=OD,tan∠AFD=,求△ABD的面积.25.(14分)如图,在平行四边形ABCD中,AB=4,BC=6,∠B=45°,点E为CD 上一动点,经过A、C、E三点的⊙O交BC于点F.(1)【操作与发现】当E运动到AE⊥CD处,利用直尺与圆规作出点E与点F.(保留作图痕迹)(2)在(1)的条件下,证明=.(3)【探索与证明】点E运动到任何一个位置时,求证=.(4)【延伸与应用】点E在运动的过程中,直接写出EF的最小值.。
2023年上海中考数学试卷22题
2023年上海中考数学试卷22题
2023年上海中考数学试卷22题是一道关于概率的题目。
本题考察学生对概率的理解和计算能力。
下面将详细解答该题。
题目描述:某班级有30个学生,其中15个是女生,15个是男生。
班级中有5个学生喜欢阅读科幻小说,其中3个是男生。
如果从班级中随机选取一名学生,那么这个学生既是女生又喜欢阅读科幻小说的概率是多少?
解答:
首先,我们需要计算班级中既是女生又喜欢阅读科幻小说的学生人数。
根据题目描述,班级中有15个女生,其中5个学生喜欢阅读科幻小说。
所以,既是女生又喜欢阅读科幻小说的学生人数是5个。
接下来,我们需要计算从班级中随机选取一名学生的概率。
班级总共有30个学生,因此,从班级中随机选取一名学生的概率是1/30。
最后,我们需要计算既是女生又喜欢阅读科幻小说的学生被选中的概率。
根据概率的定义,既是女生又喜欢阅读科幻小说的学生被选中的概率等于既是女生又喜欢阅读科幻小说的学生人数除以总体样本空间的大小。
所以,既是女生又喜欢阅读科幻小说的学生被选中的概率是5/30。
综上所述,这个学生既是女生又喜欢阅读科幻小说的概率是5/30,即1/6。
2022年上海市中考数学真题(解析版)
2022年上海中考数学真题一.选择题1.8的相反数是()A.8-B.8C.18 D.18-【答案】A【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:8的相反数是8-,故选A.【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2.下列运算正确的是……()A.a²+a³=a6B.(ab)2=ab2C.(a+b)²=a²+b²D.(a+b)(a-b)=a²-b2【答案】D【解析】【分析】根据整式加法判定A;运用积的乘方计算关判定B;运用完全平方公式计算并判定C;运用平方差公式计算并判定D.【详解】解:A.a²+a³没有同类项不能合并,故此选项不符合题意;B.(ab)2=a2b2,故此选项不符合题意;C.(a+b)²=a²+2ab+b²,故此选项不符合题意D.(a+b)(a-b)=a²-b2,故此选项符合题意故选:D.【点睛】本题考查整理式加法,积的乘方,完全平方公式,平方差公式,熟练掌握积的乘方运算法则、完全平方公式、平方差公式是解题的关键.3.已知反比例函数y=kx(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A.(2,3)B.(-2,3)C.(3,0)D.(-3,0)【答案】B【解析】【分析】根据反比例函数性质求出k<0,再根据k=xy,逐项判定即可.【详解】解:∵反比例函数y=kx(k≠0),且在各自象限内,y随x的增大而增大,,∴k=xy<0,A、∵2×3>0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;B、∵-2×3<0,∴点(2,3)可能在这个函数图象上,故此选项符合题意;C、∵3×0=0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;D、∵-3×0=0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;故选:B.【点睛】本题考查反比例函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.4.我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是()A.平均数B.中位数C.众数D.方差【答案】D【解析】【分析】根据平均数,中位数,众数和方差的特点,这组数据都加上6得到一组新的数据,方差不变,平均数,中位数改变,众数改变,即可得出答案.【详解】解:将这组数据都加上6得到一组新的数据,则新数据的平均数改变,众数改变,中位数改变,但是方差不变;故选:D.【点睛】本题主要考查平均数、中位数、众数、方差的意义.理解求解一组数据的平均数,众数,中位数,方差时的内在规律,掌握“新数据与原数据之间在这四个统计量上的内在规律”是解本题的关键.5.下列说法正确的是()A.命题一定有逆命题B.所有的定理一定有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题【答案】A【解析】【分析】根据命题的定义和定理及其逆定理之间的关系,分别举出反例,再进行判断,即可得出答案.【详解】解:A、命题一定有逆命题,故此选项符合题意;B、定理不一定有逆定理,如:全等三角形对应角相等没有逆定理,故此选项不符合题意;C、真命题的逆命题不一定是真命题,如:对顶角相等的逆命题是:相等的两个角是对顶角,它是假命题而不是真命题,故此选项不符合题意;D、假命题的逆命题定不一定是假命题,如:相等的两个角是对顶角的逆命题是:对顶角相等,它是真命题,故此选项不符合题意.故选:A.【点睛】本题考查了命题与定理,掌握好命题的真假及互逆命题的概念是解题的关键.把一个命题的条件和结论互换就得到它的逆命题,所有的命题都有逆命题;正确的命题叫真命题,错误的命题叫假命题.6.有一个正n边形旋转90 后与自身重合,则n为()A.6B.9C.12D.15【答案】C【解析】【分析】根据选项求出每个选项对应的正多边形的中心角度数,与90 一致或有倍数关系的则符合题意.【详解】如图所示,计算出每个正多边形的中心角,90 是30 的3倍,则可以旋转得到.A.B.C.D.观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合故选C .【点睛】本题考查正多边形中心角与旋转的知识,解决本题的关键是求出中心角的度数并与旋转度数建立关系.二.填空题7.计算:3a -2a =__________.【答案】a 【解析】【详解】根据同类项与合并同类项法则计算:3a -2a=(3-2)a=a 8.已知f (x )=3x ,则f (1)=_____.【答案】3【解析】【分析】直接代入求值即可.【详解】解:∵f (x )=3x ,∴f (1)=3×1=3,故答案为:3【点睛】本题主要考查了求函数值,直接把自变量的值代入即可.9.解方程组2213x y x y +=⎧⎨-=⎩的结果为_____.【答案】21x y =⎧⎨=-⎩【解析】【分析】利用平方差公式将②分解因式变形,继而可得3x y -=④,联立①④利用加减消元法,算出结果即可.【详解】解:2213x y x y +=⎧⎨-=⎩①②由②,得:()()3x y x y +-=③,将①代入③,得:()13x y ⨯-=,即3x y -=④,①+②,得:24=x ,解得:2x =,①−②,得:22y =-,解得:1y =-,∴方程组2213x y x y +=⎧⎨-=⎩的结果为21x y =⎧⎨=-⎩.【点睛】本题考查解二元二次方程组,与平方差公式分解因式,能够熟练掌握平方差公式分解因式是解决本题的关键.10.已知x 2-+m =0有两个不相等的实数根,则m 的取值范围是_____.【答案】m <3【解析】【分析】根据方程有两个不相等的实数根,则Δ>0,即2-4m >0,求解即可.【详解】解:∵x-x +m =0有两个不相等的实数根,∴Δ2-4m >0解得:m <3,故答案为:m <3.【点睛】本题考查一元二次方程根的判别式,熟练掌握“当方程有两个不相等的实数根,Δ>0;当方程有两个相等的实数根,Δ=0;当方程没有实数根,Δ<0”是解题的关键.11.甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为_____.【答案】13【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与分到甲和乙的情况,再利用概率公式求解即可求得答案.【详解】解:画树形图如下:由树形图可知所有可能情况共6种,其中分到甲和乙的情况有2中,所以分到甲和乙的概率为21=63,故答案为:13【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,注意概率=所求情况数与总情况数之比.12.某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.【答案】20%【解析】【分析】根据该公司5、6两个月营业额的月均增长率为x 结合5月、7月营业额即可得出关于x 的一元二次方程,解此方程即可得解.【详解】解:设该公司5、6两个月营业额的月均增长率为x ,根据题意得,225(1)36x +=解得,120.2, 2.2x x ==-(舍去)所以,增长率为20%故答案为:20%【点睛】本题考查了由实际问题抽象出一元二次方程,根据数量关系列出关于x 的一元二次方程是解题的关键.13.为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0-1小时4人,1-2小时10人,2-3小时14 人,3-4 小时 16 人,4-5 小时 6 人),若共有 200 名学生,则该学校六年级学生阅读时间不低于 3小时的人数是_____.【答案】88【解析】【分析】由200乘以样本中不低于3小时的人数的百分比即可得到答案.【详解】解:该学校六年级学生阅读时间不低于3小时的人数是1662220020088,4101416650+´=´=++++故答案为:88【点睛】本题考查的是利用样本估计总体,求解学生阅读时间不低于3小时的人数的百分比是解本题的关键.14.已知直线y =kx +b 过第一象限且函数值随着x 的增大而减小,请列举出来这样的一条直线:_____.【答案】2y x =-+(答案不唯一)【解析】【分析】直接根据一次函数的图象与系数的关系即可得出结论.【详解】∵直线y kx b =+过第一象限且函数值随着x 的增大而减小,∴0k <,0b,∴符合条件的一条直线可以为:2y x =-+(答案不唯一).【点睛】本题考查一次函数的图象与系数的关系,熟知一次函数y kx b =+(0k ≠),当0k <,0b时,函数图象过第一象限且函数值随着x 的增大而减小.15.如图所示,在口ABCD 中,AC ,BD 交于点O ,,,BO a BC b == 则DC=_____.【答案】2a b-+r r 【解析】【分析】利用向量相减平行四边形法则:向量相减时,起点相同,差向量即从后者终点指向前者终点即可求解.【详解】解:∵四边形ABCD 是平行四边形,AC ,BD 交于点O ,又BO a = ,BC b =,∴22BD BO a ==,∴2DC BC BD b a =--= ,故答案为:2a b -+r r.【点睛】本题考查平行四边形的性质,向量相减平行四边形法则,解题的关键是熟练掌握向量相减平行四边形法则.16.如图所示,小区内有个圆形花坛O ,点C 在弦AB 上,AC =11,BC =21,OC =13,则这个花坛的面积为_____.(结果保留π)【答案】400π【解析】【详解】解:过点O 作OD ⊥AB 于D ,连接OB ,如图,∵AC =11,BC =21,∴AB =AC +BC =32,∵OD ⊥AB 于D ,∴AD =BD =12AB =16,∴CD =AD -AC =5,在Rt △OCD 中,由勾股定理,得OD 2222135OC CD -=-=12,在Rt △OBD 中,由勾股定理,得OB 22221612BD CD +=+=20,∴这个花坛的面积=202π=400π,故答案为:400π.【点睛】本题考查垂径定理,勾股定理,圆的面积,熟练掌握垂径定理与勾股定理相结合求线段长是解题的关键.17.如图,在△ABC 中,∠A =30°,∠B =90°,D 为AB 中点,E 在线段AC 上,AD DE AB BC=,则AEAC =_____.【答案】12或14【解析】【分析】由题意可求出12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,满足112DE BC =,进而可求此时112AE AC =,然后在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,证明△DE 1E 2是等边三角形,求出E 1E 2=14AC ,即可得到214AE AC =,问题得解.【详解】解:∵D 为AB 中点,∴12AD DE AB BC ==,即12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,此时DE 1∥BC ,112DE BC =,∴112AE AD AC AB ==,在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,∵∠A =30°,∠B =90°,∴∠C =60°,BC =12AC ,∵DE 1∥BC ,∴∠DE 1E 2=60°,∴△DE 1E 2是等边三角形,∴DE 1=DE 2=E 1E 2=12BC ,∴E 1E 2=14AC ,∵112AE AC =,∴214AE AC =,即214AE AC =,综上,AE AC 的值为:12或14,故答案为:12或14.【点睛】本题考查了三角形中位线的性质,平行线分线段成比例,等边三角形的判定和性质以及含30°角的直角三角形的性质等,根据12DE BC =进行分情况求解是解题的关键.18.定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为_____.【答案】2222-【解析】【分析】如图,当等弦圆O 最大时,则O 经过等腰直角三角形的直角顶点C ,连接CO 交AB 于F ,连接OE ,DK ,再证明DK 经过圆心,CF AB ⊥,分别求解AC ,BC ,CF ,设O 的半径为,r 再分别表示,,,EF OF OE 再利用勾股定理求解半径r 即可.【详解】解:如图,当等弦圆O 最大时,则O 经过等腰直角三角形的直角顶点C ,连接CO 交AB 于F ,连接OE ,DK ,,90,CD CK EQ ACB ==Ð=°Q 90,COD COK \Ð=Ð=°DK 过圆心O ,CF AB ⊥,,90,2,AC BC ACB AB =Ð=°=Q 12,1,2AC BC AF BF CF AB \======设O 的半径为,r ∴222,1,,CD r r r EQ OF r OE r =+===-=,CF AB ⊥ 2,2EF QF \==()22221,2r r 琪\=-+琪桫整理得:2420,r r -+=解得:1222r r ==-,OC CF <Q 2r \=不符合题意,舍去,∴当等弦圆最大时,这个圆的半径为2故答案为:2【点睛】本题考查的是等腰直角三角形的性质,直角三角形斜边上的中线的性质,弦,弧,圆心角之间的关系,圆周角定理的应用,勾股定理的应用,一元二次方程的解法,掌握以上知识是解本题的关键.三.解答题19.计算:11221||()123--+【答案】1【解析】【分析】原式分别化简|,121()3-,1212,再进行合并即可得到答案.【详解】解:11221|()123--+-+-=1-【点睛】本题主要考查了实数的混合运算,熟练掌握运算法则是解答本题的关键.20.解关于x 的不等式组34423x x x x >-⎧⎪+⎨>+⎪⎩【答案】-2<x<-1【解析】【分析】分别求出不等式组中每一个不等式的解集,再确定出公共部分,即可求解.【详解】解:34423x xx x>-⎧⎪⎨+>+⎪⎩①②,解①得:x>-2,解②得:x<-1,∴-2<x<-1.【点睛】本题考查解一元一次不等式组,熟练掌握根据“大取较大,小小取较小,大小小大中间找,大大小小无处找”的原则性确定不等式组的解集是解题的关键.21.一个一次函数的截距为1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC 的值.【答案】(1)y=x+1(2【解析】【小问1详解】解:设这个一次函数的解析式y=kx+1,把A(2,3)代入,得3=2k+1,解得:k=1,∴这个一次函数的解析式为y=x+1;【小问2详解】解:如图,设反比例函数解析式为y =m x ,把A (2,3)代入,得3=2m ,解得:m =6,∴反比例函数解析式为y =6x ,当x =6时,则y =66=1,∴B (6,1),∴AB 22(62)(13)5-+-=∵将点B 向上平移2个单位得到点C ,∴C (6,3),BC =2,∵A (2,3),C (6,3),∴AC ∥x 轴,∵B (6,1),C (6,3),∴BC ⊥x 轴,∴AC ⊥BC ,∴∠ACB =90°,∴△ABC 是直角三角形,∴cos ∠ABC =25525BC AB ==.【点睛】本题考查待定系数法求函数解析式,点的平移,解三角形,坐标与图形,求得AC ⊥BC 是解题的关键.22.我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB 的长.(1)如图1所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C 点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,a的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义图2所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度【答案】(1)a tanα+b米(2)3.8米【解析】【分析】(1)由题意得BD=a,CD=b,∠ACE=α,根据四边形CDBE为矩形,得到BE=CD=b,BD=CE=a,在Rt∆ACE中,由正切函数tanα=AECE,即可得到AB的高度;(2)根据AB∥ED,得到∆ABF~∆EDF,根据相似三角形的对应边成比例得到ED ABDF BF=,又根据AB∥GC,得出∆ABH~∆GCH,根据相似三角形的对应边成比例得到AB GCBH CH=联立得到二元一次方程组解之即可得;【小问1详解】解:如图由题意得BD =a ,CD =b ,∠ACE =α∠B =∠D =∠CEB =90°∴四边形CDBE 为矩形,则BE =CD =b ,BD =CE =a ,在Rt ∆ACE 中,tan α=AE CE,得AE =CE =CE ×tan α=a tan α而AB =AE +BE ,故AB =a tan α+b答:灯杆AB 的高度为a tan α+b 米【小问2详解】由题意可得,AB ∥GC ∥ED ,GC =ED =2,CH =1,DF =3,CD =1.8由于AB ∥ED ,∴∆ABF ~∆EDF ,此时ED AB DF BF =即2=3 1.83AB BC ++①,∵AB ∥GC∴∆ABH ~∆GCH ,此时AB GC BH CH=,211AB BC =+②联立①②得24.8321AB BC AB BC ⎧=⎪⎪+⎨⎪=⎪+⎩,解得: 3.80.9AB BC =⎧⎨=⎩答:灯杆AB 的高度为3.8米【点睛】本题考查了相似三角形的应用,锐角三角函数的应用,以及二元一次方程组,解题的关键是读懂题意,熟悉相似三角形的判定与性质.23.如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE²=AQ·AB 求证:(1)∠CAE=∠BAF;(2)CF·FQ=AF·BQ【答案】(1)见解析(2)见解析【解析】【分析】(1)利用SAS证明△ACE≌△ABF即可;(2)先证△ACE∽△AFQ可得∠AEC=∠AQF,求出∠BQF=∠AFE,再证△CAF∽△BFQ,利用相似三角形的性质得出结论.【小问1详解】证明:∵AB=AC,∴∠B=∠C,∵CF=BE,∴CE=BF,在△ACE和△ABF中,AC AB C B CE BF=⎧⎪∠=∠⎨⎪=⎩,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;【小问2详解】证明:∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE ²=AQ ·AB ,AC =AB ,∴AE AB AQ AE =,即AE AC AQ AF=,∴△ACE ∽△AFQ ,∴∠AEC =∠AQF ,∴∠AEF =∠BQF ,∵AE =AF ,∴∠AEF =∠AFE ,∴∠BQF =∠AFE ,∵∠B =∠C ,∴△CAF ∽△BFQ ,∴CF AF BQ FQ=,即CF ·FQ =AF ·BQ .【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质以及相似三角形的判定和性质,熟练掌握相关判定定理和性质定理是解题的关键.24.已知:212y x bx c =++经过点()21A --,,()03B -,.(1)求函数解析式;(2)平移抛物线使得新顶点为(),P m n (m >0).①倘若3OPB S =△,且在x k =的右侧,两抛物线都上升,求k 的取值范围;②P 在原抛物线上,新抛物线与y 轴交于Q ,120BPQ ∠= 时,求P 点坐标.【答案】(1)2132y x =-(2)①k ≥2②P 的坐标为(3)或(,3)【解析】【分析】(1)把()21A --,,()03B -,代入212y x bx c =++,求解即可;(2)①由2132y x =-,得顶点坐标为(0,-3),即点B 是原抛物线的顶点,由平移得抛物线向右平移了m 个单位,根据1332OPB S m =⨯=△,求得 m =2,在 x =k 的右侧,两抛物线都上升,根据抛物线的性质即可求出k 取值范围;②把P (m ,n )代入2132y x =-,得n =2132m -,则P (m ,2132m -),从而求得新抛物线解析式为:y =12(x -m )2+n =12x 2-mx +m 2-3,则Q (0,m 2-3),从而可求得BQ =m 2,BP 2=2222411(33)24m m m +-+=+,PQ 2=22222411[(3)(3)]24m m m m +---=+,即可得出BP =PQ ,过点P 作PC ⊥y 轴于C ,则PC =|m |,根据等腰三角形的性质可得BC =12BQ =12m 2,∠BPC =12∠BPQ =12×120°=60°,再根据tan ∠BPC =tan60°=212||m BC PC m ==m 值,从而求出点P 坐标.【小问1详解】解:把()21A --,,()03B -,代入212y x bx c =++,得1223b c c -=-+⎧⎨-=⎩,解得:03b c =⎧⎨=-⎩,∴函数解析式为:2132y x =-;【小问2详解】解:①∵2132y x =-,∴顶点坐标为(0,-3),即点B 是原抛物线的顶点,∵平移抛物线使得新顶点为(),P m n (m >0).∴抛物线向右平移了m 个单位,∴1332OPB S m =⨯=△,∴m =2,∴平移抛物线对称轴为直线x =2,开口向上,∵在x k =的右侧,两抛物线都上升,又∵原抛物线对称轴为y 轴,开口向上,∴k ≥2,②把P (m ,n )代入2132y x =-,得n =2132m -,∴P (m ,2132m -)根据题意,得新抛物线解析式为:y =12(x -m )2+n =12x 2-mx +m 2-3,∴Q (0,m 2-3),∵B (0,-3),∴BQ =m 2,BP 2=2222411(33)24m m m +-+=+,PQ 2=22222411[(3)(3)]24m m m m m +---=+,∴BP =PQ ,如图,过点P 作PC ⊥y 轴于C ,则PC =|m |,∵BP =PQ ,PC ⊥BQ ,∴BC =12BQ =12m 2,∠BPC =12∠BPQ =12×120°=60°,∴tan ∠BPC =tan60°=212||m BC PC m ==解得:m=±2∴n =2132m -=3,故P 的坐标为(3)或(,3)【点睛】本题考查待定系数法求抛物线解析式,抛物线的平移,抛物线的性质,解直角三角形,等腰三角形的性质,本题属抛物线综合题目,属中考常考试题目,难度一般.25.平行四边形ABCD ,若P 为BC 中点,AP 交BD 于点E ,连接CE .(1)若AE CE =,①证明ABCD 为菱形;②若5AB =,3AE =,求BD 的长.(2)以A 为圆心,AE 为半径,B 为圆心,BE 为半径作圆,两圆另一交点记为点F ,且CE =.若F 在直线CE 上,求ABBC 的值.【答案】(1)①见解析;②(2)105【解析】【分析】(1)①连接AC 交BD 于O ,证△AOE ≌△COE (SSS),得∠AOE =∠COE ,从而得∠COE =90°,则AC ⊥BD ,即可由菱形的判定定理得出结论;②先证点E 是△ABC 的重心,由重心性质得BE =2OE ,然后设OE =x ,则BE =2x ,在Rt △AOE 中,由勾股定理,得OA 2=AE 2-OE 2=32-x 2=9-x 2,在Rt △AOB 中,由勾股定理,得OA2=AB 2-OB 2=52-(3x )2=25-9x 2,从而得9-x 2=25-9x 2,解得:x =,即可得OB =3x ,再由平行四边形性质即可得出BD 长;(2)由⊙A 与⊙B 相交于E 、F ,得AB ⊥EF ,点E 是△ABC 的重心,又F 在直线CE 上,则CG 是△ABC 的中线,则AG =BG =12AB ,根据重心性质得GE =12CE =22AE ,CG =CE +GE =322AE ,在Rt △AGE 中,由勾股定理,得AG 2=AE 2-GE E =AE 2-(22AE )2=12AE 2,则AG =22AE ,所以AB =2AG AE ,在Rt △BGC 中,由勾股定理,得BC2=BG 2+CG 2=12AE 2+(2AE )2=5AE 2,则BC AE ,代入即可求得AB BC的值.【小问1详解】①证明:如图,连接AC 交BD 于O ,∵平行四边形ABCD ,∴OA =OC ,∵AE =CE ,OE =OE ,∴△AOE ≌△COE (SSS),∴∠AOE =∠COE ,∵∠AOE +∠COE =180°,∴∠COE =90°,∴AC ⊥BD ,∵平行四边形ABCD ,∴四边形ABCD 是菱形;②∵OA =OC ,∴OB 是△ABC 的中线,∵P 为BC 中点,∴AP 是△ABC 的中线,∴点E 是△ABC 的重心,∴BE =2OE ,设OE =x ,则BE =2x ,在Rt △AOE 中,由勾股定理,得OA 2=AE 2-OE 2=32-x 2=9-x 2,在 Rt △AOB 中,由勾股定理,得 OA 2=AB 2-OB 2=52-(3x )2=25-9x 2,∴9-x 2=25-9x 2,解得:x = 2 ,∴OB =3x =,∵,∴BD =2OB =6 2 ;【小问 2解:如图,∵⊙A 与⊙B 相交于 E 、F ,∴AB ⊥EF ,由(1)②知点 E 是△ABC 的重心,又 F 在直线CE 上,∴CG 是△ABC 的中线,∴AG =BG = 12 AB ,GE = 12 CE ,∵CE = 2 AE ,∴GE =22AE ,CG =CE +GE =322AE ,在Rt △AGE 中,由勾股定理,得AG 2=AE 2-GE E =AE 2-(22AE )2=12AE 2,∴AG =2AE ,∴AB =2AG AE ,在Rt △BGC 中,由勾股定理,得BC 2=BG 2+CG 2=12AE 2+(322AE )2=5AE 2,∴BC ,∴5AB BC ==.【点睛】本题考查平行四边形的性质,菱形的判定,重心的性质,勾股定理,相交两圆的公共弦的性质,本题属圆与四边形综合题目,掌握相关性质是解题的关键,属是考常考题目.。
【真题】上海市中考数学试题及答案解析
上海市中考数学试卷一、选择题(本大题共6题,每题4分,满分24分。
下列各题的四个选项中,有且只有一个选项是正确的)1.(4.00分)下列计算﹣的结果是()A.4 B.3 C.2 D.2.(4.00分)下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根3.(4.00分)下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的4.(4.00分)据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和295.(4.00分)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC6.(4.00分)如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB 的取值范围是()A.5<OB<9 B.4<OB<9 C.3<OB<7 D.2<OB<7二、填空题(本大题共12题,每题4分,满分48分)7.(4.00分)﹣8的立方根是.8.(4.00分)计算:(a+1)2﹣a2=.9.(4.00分)方程组的解是.10.(4.00分)某商品原价为a元,如果按原价的八折销售,那么售价是元.(用含字母a的代数式表示).11.(4.00分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是.12.(4.00分)某校学生自主建立了一个学习用品义卖平台,已知九年级200名学生义卖所得金额的频数分布直方图如图所示,那么20﹣30元这个小组的组频率是.13.(4.00分)从,π,这三个数中选一个数,选出的这个数是无理数的概率为.14.(4.00分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而.(填“增大”或“减小”)15.(4.00分)如图,已知平行四边形ABCD,E是边BC的中点,联结DE并延长,与AB的延长线交于点F.设=,=那么向量用向量、表示为.16.(4.00分)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是度.17.(4.00分)如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是.18.(4.00分)对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图2,菱形ABCD的边长为1,边AB水平放置.如果该菱形的高是宽的,那么它的宽的值是.三、解答题(本大题共7题,满分78分)19.(10.00分)解不等式组:,并把解集在数轴上表示出来.20.(10.00分)先化简,再求值:(﹣)÷,其中a=.21.(10.00分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.22.(10.00分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?23.(12.00分)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF ⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.24.(12.00分)在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c 经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C 下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.25.(14.00分)已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分。
2022年上海市中考数学试题(含答案解析)
2022年上海市初中学业水平考试数学试卷考生注意:1.本试卷共25题,试卷满分150分,考试时间100分钟。
2.答题时,考生务必按要求在答题纸上作答,在草稿纸、本试卷上答题一律无效。
3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。
一、选择题(本大题共6题,每题4分,满分24分)1.8的相反数是A. 8-B. 8C. 18D.18-2.下列运算正确的是A. a²+a³=a6B. (ab)2 =ab2C. (a+b)²=a²+b²D. (a+b)(a-b)=a² -b23.已知反比例函数y=kx(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为A. (2,3)B. (-2,3)C. (3,0)D. (-3,0)4.我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是A. 平均数B. 中位数C. 众数D. 方差5.下列说法正确的是A. 命题一定有逆命题B. 所有的定理一定有逆定理C. 真命题的逆命题一定是真命题D. 假命题的逆命题一定是假命题6.有一个正n边形旋转90后与自身重合,则n为A. 6B. 9C. 12D. 15二、填空题(本大题共12题,每题4分,满分48分)7.计算:3a-2a=__________.8.已知f(x)=3x,则f(1)=_____.9.解方程组2213x y x y +=⎧⎨-=⎩的结果为_____. 10.已知x -23x +m =0有两个不相等的实数根,则m 的取值范围是_____. 11.甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为_____.12.公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.13.为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数 据含最小值,不含最大值)(0-1小时4人,1-2小时10人, 2-3小时14人,3-4小时16人,4-5小时6人),若共有200名 学生,则该学校六年级学生阅读时间不低于3小时的人数是 _____.14.已知直线y =kx +b 过第一象限且函数值随着x 的增大而减小,请列举出来这样的一条直线:_____.15.如图所示,在口ABCD 中,AC ,BD 交于点O ,,,BO a BC b ==则DC =_____.16.如图所示,小区内有个圆形花坛O ,点C 在弦AB 上,AC =11,BC =21,OC =13,则这个花坛面积为_____.(结果保留π) 17.如图,在△ABC 中,∠A =30°,∠B =90°,D 为AB 中点,E 在线段AC上,AD DE AB BC=,则AEAC =_____. 18.定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大 时,这个圆的半径为_____.三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算:11221|()123--+-20.(本题满分10分)解关于x 的不等式组34423x x xx >-⎧⎪+⎨>+⎪⎩21.(本题满分10分,每小题满分各5分)一个一次函数的截距为1,且经过点A (2,3). (1)求这个一次函数的解析式;(2)点A ,B 在某个反比例函数上,点B 横坐标为6,将点B 向上平移2个单位得到点C ,求cos ∠ABC 的值.22.(本题满分10分,每小题满分各5分)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB 的长.(1)如图1所示,将一个测角仪放置在距离灯杆AB 底部a 米的点D 处,测角仪高为b米,从C 点测得A 点的仰角为α,求灯杆AB 的高度.(用含a ,b ,a的代数式表 示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义图2所示,现将一高度为2米的木杆CG 放在灯杆AB 前,测得其影长CH 为1米,再将木 杆沿着BC 方向移动1.8米至DE 的位置,此时测得其影长DF 为3米,求灯杆AB 的高度23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图所示,在等腰三角形ABC 中,AB =AC ,点E ,F 在线段BC 上,点Q 在线段AB 上,且CF =BE ,AE ²=AQ ·AB 求证: (1)∠CAE =∠BAF ; (2)CF ·FQ =AF ·BQ24.(本题满分12分,第(1)小题满分4分,第(2)小题①满分4分,第(2)小题②满分4分) 已知:212y x bx c =++经过点()21A --,,()03B -,. (1)求函数解析式;(2)平移抛物线使得新顶点为(),P m n (m >0).①倘若3OPB S =△,且在x k =的右侧,两抛物线都上升,求k 的取值范围; ②P 在原抛物线上,新抛物线与y 轴交于Q ,120BPQ ∠=时,求P 点坐标.25.(本题满分14分,第(1)小题①满分4分,第(1)小题②满分4分,第(2)小题满分6分)平行四边形ABCD ,若P 为BC 中点,AP 交BD 于点E ,连接CE . (1)若AE CE =,①证明ABCD 为菱形;②若5AB =,3AE =,求BD 的长.(2)以A 为圆心,AE 为半径,B 为圆心,BE 为半径作圆,两圆另一交点记为点F ,且2CE AE =.若F 在直线CE 上,求ABBC的值.2022年上海初中学业水平考试数学试题参考答案一、选择题(本大题共6题,每题4分,满分24分) 1.A2.D3.B4.D5.A6.C二、填空题(本大题共12题,每题4分,满分48分)7.a 8.39.21x y =⎧⎨=-⎩10.m <3 11.1312.20% 13.88 14.2y x =-+(答案不唯一) 15.2a b -+16.400π17.12或1418.22三、解答题(本大题共7题,满分78分) 19.解:11221|()123--+--=1 20.解:34423x x x x >-⎧⎪⎨+>+⎪⎩①②,解①得:x >-2, 解②得:x <-1, ∴-2<x <-1.21.(1)解:设这个一次函数的解析式y =kx +1,把A (2,3)代入,得3=2k +1, 解得:k =1,∴这个一次函数的解析式为y =x +1;(2)解:如图,设反比例函数解析式为y =m x, 把A (2,3)代入,得3=2m , 解得:m =6,∴反比例函数解析式为y =6x, 当x =6时,则y =66=1,∴B (6,1),∴AB =22(62)(13)25-+-=, ∵将点B 向上平移2个单位得到点C , ∴C (6,3),BC =2, ∵A (2,3),C (6,3), ∴AC ∥x 轴,∵B (6,1),C (6,3), ∴BC ⊥x 轴, ∴AC ⊥BC , ∴∠ACB =90°,∴△ABC 是直角三角形, ∴cos ∠ABC =25525BC AB ==. 22.(1)解:如图由题意得BD =a ,CD =b ,∠ACE =α ∠B =∠D =∠CEB =90° ∠四边形CDBE 为矩形, 则BE =CD =b ,BD =CE =a , 在Rt ∆ACE 中,tan α=AECE, 得AE =CE =CE ×tan α=a tan α 而AB =AE +BE ,故AB = a tan α+b答:灯杆AB 的高度为a tan α+b 米 (2)解:由题意可得,AB ∥GC ∥ED ,GC =ED =2,CH =1,DF =3,CD =1.8 由于AB ∥ED , ∠∆ABF ~∆EDF ,此时ED ABDF BF = 即2=3 1.83ABBC ++∠, ∠AB ∠GC ∠∆ABH ~∆GCH , 此时AB GCBH CH=, 211AB BC =+ ∠ 联立∠∠得24.8321AB BC AB BC ⎧=⎪⎪+⎨⎪=⎪+⎩, 解得: 3.80.9AB BC =⎧⎨=⎩答:灯杆AB 的高度为3.8米23.(1)证明:∵AB =AC ,∴∠B =∠C , ∵CF =BE , ∴CE =BF ,在△ACE 和△ABF 中,AC ABC B CE BF =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△ABF (SAS ), ∴∠CAE =∠BAF ;(2)证明:∵△ACE ≌△ABF ,∴AE =AF ,∠CAE =∠BAF , ∵AE ²=AQ ·AB ,AC =AB ,∴AE AB AQ AE =,即AE ACAQ AF =, ∴△ACE ∽△AFQ , ∴∠AEC =∠AQF , ∴∠AEF =∠BQF , ∵AE =AF , ∴∠AEF =∠AFE , ∴∠BQF =∠AFE , ∵∠B =∠C , ∴△CAF ∽△BFQ , ∴CF AFBQ FQ=,即CF ·FQ =AF ·BQ . 24.(1)解:把()21A --,,()03B -,代入212y x bx c =++,得 1223b c c -=-+⎧⎨-=⎩,解得:03b c =⎧⎨=-⎩, ∠函数解析式为:2132y x =-; (2)解:∠∠2132y x =-, ∠ 顶点坐标为(0,-3),即点B 是原抛物线的顶点, ∠ 平移抛物线使得新顶点为(),P m n (m >0). ∠ 抛物线向右平移了m 个单位, ∠ 1332OPB S m =⨯=△, ∠ m =2,∠ 平移抛物线对称轴为直线x =2,开口向上, ∠ 在x k =的右侧,两抛物线都上升, 又∠ 原抛物线对称轴为y 轴,开口向上,∠ k ≥2,∠ 把P (m ,n )代入2132y x =-,得n =2132m -, ∠ P (m ,2132m -) 根据题意,得新抛物线解析式为:y =12(x -m )2+n =12x 2-mx +m 2-3, ∠ Q (0,m 2-3), ∠ B (0,-3), ∠ BQ =m 2,BP 2=2222411(33)24m m m m +-+=+,PQ 2=22222411[(3)(3)]24m m m m m +---=+,∠ BP =PQ ,如图,过点P 作PC ∠y 轴于C ,则PC =|m |,∠ BP =PQ ,PC ∠BQ ,∠ BC =12BQ =12m 2,∠BPC =12∠BPQ =12×120°=60°,∠ tan∠BPC = tan 60°=2123||mBC PC m ==,解得:m =±23,∠ n =2132m -=3,故P 的坐标为(23,3)或(-23,3)25.(1)①证明:如图,连接AC 交BD 于O ,∵平行四边形ABCD , ∴OA =OC , ∵AE =CE ,OE =OE , ∴△AOE ≌△COE (SSS), ∴∠AOE =∠COE ,∵∠AOE +∠COE =180°, ∴∠COE =90°, ∴AC ⊥BD ,∵平行四边形ABCD , ∴四边形ABCD 是菱形; (1)②∵OA =OC ,∴OB 是△ABC 的中线, ∵P 为BC 中点, ∴AP 是△ABC 的中线, ∴点E 是△ABC 的重心, ∴BE =2OE , 设OE =x ,则BE =2x ,在Rt △AOE 中,由勾股定理,得OA 2=AE 2-OE 2=32-x 2=9-x 2, 在Rt △AOB 中,由勾股定理,得OA 2=AB 2-OB 2=52-(3x )2=25-9x 2, ∴9-x 2=25-9x 2,解得:x ,∴OB =3x , ∵平行四边形ABCD ,∴BD =2OB ; (2)解:如图,∵⊙A 与⊙B 相交于E 、F , ∴AB ⊥EF ,由(1)②知点E 是△ABC 的重心, 又F 在直线CE 上, ∴CG 是△ABC 的中线, ∴AG =BG =12AB ,GE =12CE ,∵CE AE ,∴GE =2AE ,CG =CE +GE =2AE , 在Rt △AGE 中,由勾股定理,得AG2=AE2-GE E=AE2-(22AE)2=12AE2,∴AG=22AE,∴AB=2AG=2AE,在Rt△BGC中,由勾股定理,得BC2=BG2+CG2=12AE2+(322AE)2=5AE2,∴BC=5AE,∴21055AB AEBC AE.2022年初中学业水平考试数学试卷第11页(共11页)。
2024年上海市中考数学试卷及答案解析
2024年上海市中考数学试卷一、选择题(每题4分,共24分)1.(4分)如果x>y,那么下列正确的是()A.x+5≤y+5B.x﹣5<y﹣5C.5x>5y D.﹣5x>﹣5y2.(4分)函数的定义域是()A.x=2B.x≠2C.x=3D.x≠33.(4分)以下一元二次方程有两个相等实数根的是()A.x2﹣6x=0B.x2﹣9=0C.x2﹣6x+6=0D.x2﹣6x+9=04.(4分)科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的是()种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差 1.050.78 1.050.78A.甲种类B.乙种类C.丙种类D.丁种类5.(4分)四边形ABCD为矩形,过A、C作对角线BD的垂线,过B、D作对角线AC的垂线.如果四个垂线拼成一个四边形,那这个四边形为()A.菱形B.矩形C.直角梯形D.等腰梯形6.(4分)在△ABC中,AC=3,BC=4,AB=5,点P在ABC内,分别以ABP为圆心画圆,圆A半径为1,圆B半径为2,圆P半径为3,圆A与圆P内切,圆P与圆B的关系是()A.内含B.相交C.外切D.相离二、填空题(每题4分,共48分)7.(4分)计算:(4x2)3=.8.(4分)计算:(a+b)(b﹣a)=.9.(4分)已知,则x=.10.(4分)科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为2×105GB,一张普通唱片的容量约为25GB,则蓝光唱片的容量是普通唱片的倍.(用科学记数法表示)11.(4分)若正比例函数y=kx的图象经过点(7,﹣13),则y的值随x的增大而.(选填“增大”或“减小”)12.(4分)在菱形ABCD中,∠ABC=66°,则∠BAC=°.13.(4分)某种商品的销售量y(万元)与广告投入x(万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元.则投入80万元时,销售量为万元.14.(4分)一个袋子中有若干个白球和绿球,它们除了颜色外都相同.随机从中摸一个球,恰好摸到绿球的概率是,则袋子中至少有个绿球.15.(4分)如图,在平行四边形ABCD中,E为对角线AC上一点,设,若AE=2EC,则=(结果用含,的式子表示).16.(4分)博物馆为展品准备了人工讲解、语音播报和AR增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种).那么在总共2万人的参观中,需要AR增强讲解的人数约有人.17.(4分)在平行四边形ABCD中,∠ABC是锐角,将CD沿直线l翻折至AB所在直线,对应点分别为C′,D′,若AC′:AB:BC=1:3:7,则cos∠ABC=.18.(4分)对于一个二次函数y=a(x﹣m)2+k(a≠0)中存在一点P(x′,y′),使得x′﹣m=y′﹣k≠0,则称2|x′﹣m|为该抛物线的“开口大小”,那么抛物线“开口大小”为.三、简答题(共78分,其中第19~22题每题10分,第23、24题每题12分,第25题14分)19.(10分)计算:.20.(10分)解方程组:.21.(10分)在平面直角坐标系xOy中,反比例函数y=(k为常数且k≠0)上有一点A(﹣3,m),且与直线y=﹣2x+4交于另一点B(n,6).(1)求k与m的值;(2)过点A作直线l∥x轴与直线y=﹣2x+4交于点C,求sin∠OCA的值.22.(10分)同学用两幅三角板拼出了如图的平行四边形,且内部留白部分也是平行四边形(直角三角板互不重叠).(1)若直角三角形斜边上的高都为h,求:①两个直角三角形的直角边(结果用h表示);②平行四边形的底、高和面积(结果用h表示);(2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.23.(12分)如图所示,在矩形ABCD中,E为边CD上一点,且AE⊥BD.(1)求证:AD2=DE•DC;(2)F为线段AE延长线上一点,且满足,求证:CE=AD.24.(12分)在平面直角坐标系中,已知平移抛物线后得到的新抛物线经过和B(5,0).(1)求平移后新抛物线的表达式;(2)直线x=m(m>0)与新抛物线交于点P,与原抛物线交于点Q;①如果PQ小于3,求m的取值范围;②记点P在原抛物线上的对应点为P′,如果四边形P′BPQ有一组对边平行,求点P的坐标.25.(14分)在梯形ABCD中,AD∥BC,点E在边AB上,且.(1)如图1所示,点F在边CD上,且,联结EF,求证:EF∥BC;(2)已知AD=AE=1;①如图2所示,联结DE,如果△ADE外接圆的圆心恰好落在∠B的平分线上,求△ADE的外接圆的半径长;②如图3所示,如果点M在边BC上,联结EM、DM、EC,DM与EC交于N.如果∠DMC=∠CEM,BC=4,且CD2=DM•DN,求边CD的长.2024年上海市中考数学试卷参考答案与试题解析一、选择题(每题4分,共24分)1.【分析】利用不等式的性质逐项判断即可.【解答】解:如果x>y,两边同时加上5得x+5>y+5,则A不符合题意;如果x>y,两边同时减去5得x﹣5>y﹣5,则B不符合题意;如果x>y,两边同时乘5得5x>5y,则C符合题意;如果x>y,两边同时乘﹣5得﹣5x<﹣5y,则D不符合题意;故选:C.【点评】本题考查不等式的性质,此为基础且重要知识点,必须熟练掌握.2.【分析】根据题意可得x﹣3≠0,解得x的取值范围即可.【解答】解:由题意得x﹣3≠0,解得:x≠3,故选:D.【点评】本题考查函数自变量的取值范围,结合已知条件列得正确的算式是解题的关键.3.【分析】求出x2﹣6x=0的根为x=0或x=6,x2﹣9=0的根为x=3或x=﹣3,可知A,B不符合题意;由x2﹣6x+6=0得Δ=36﹣24=12>0,知C不符合题意;由x2﹣6x+9=0知Δ=36﹣36=0,知D符合题意.【解答】解:x2﹣6x=0的根为x=0或x=6,∴x2﹣6x=0有两个不等实数根,故A不符合题意;x2﹣9=0的根为x=3或x=﹣3,∴x2﹣9=0有两个不等实数根,故B不符合题意;由x2﹣6x+6=0知Δ=36﹣24=12>0,∴x2﹣6x+6=0有两个不等实数根,故C不符合题意;由x2﹣6x+9=0知Δ=36﹣36=0,∴x2﹣6x+9=0有两个相等实数根,故D符合题意;故选:D.【点评】本题考查解一元二次方程和一元二次方程的判别式,解题的关键是掌握一元二次方程有两个相等实数根需满足Δ=0.4.【分析】先找出平均数小的种类,再根据方差的意义即可得出答案.【解答】解:∵甲种类和乙种类开花时间最短,∴从甲种类和乙种类进行选,∵甲的方差大于乙的方差,∴开花时间最短的并且最平稳的是乙种类.故选:B.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.【分析】根据矩形的性质得到AC=BD,S△ABC=S△BCD=S△ADC=S△BAD,根据三角形的面积公式得到AE =BF=CG=DH,再根据菱形的判定定理判断即可.【解答】解:∵四边形ABCD为矩形,=S△BCD=S△ADC=S△BAD,∴AC=BD,S△ABC∵AE⊥BD,BF⊥AC,CG⊥BD,DH⊥AC,∴AE=BF=CG=DH,∴四个垂线可以拼成一个菱形,故选:A.【点评】本题考查的是矩形的性质、菱形的判定、三角形的面积计算,熟记四条边相等的四边形是菱形是解题的关键.6.【分析】根据题意,作出图形,数形结合,即可得到答案.【解答】解:∵圆A半径为1,圆P半径为3,圆A与圆P内切,∴圆A含在圆P内,即PA=3﹣1=2,∴P在以A为圆心、2为半径的圆与△ABC边相交形成的弧上运动,如图所示:∴当到P'位置时,圆P与圆B圆心距离PB最大,为,∵,∴圆P与圆B相交,故选:B.【点评】本题考查圆与圆的位置关系,点与圆的位置关系,涉及勾股定理,熟记圆的位置关系是解决问题的关键.二、填空题(每题4分,共48分)7.【分析】幂的乘方,底数不变指数相乘.【解答】解:(4x2)3=64x6,故答案为:64x6.【点评】本题考查了幂的乘方,熟练掌握运算性质和法则是解题的关键.8.【分析】根据平方差公式进行计算即可.【解答】解:(a+b)(b﹣a)=(b+a)(b﹣a)=b2﹣a2,故答案为:b2﹣a2.【点评】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.9.【分析】根据算术平方根的定义,进行计算.【解答】解:∵,∴2x﹣1=1,∴x=1,故答案为:1.【点评】本题考查了算术平方根的定义,利用两边平方进行解题即可.10.【分析】利用科学记数法的定义列式计算即可.【解答】解:2×105=200000,则200000÷25=8000=8×103,即蓝光唱片的容量是普通唱片的8×103倍,故答案为:8×103.【点评】本题考查科学记数法表示较大的数,结合已知条件列得正确的算式是解题的关键.11.【分析】利用一次函数图象上点的坐标特征,可求出k的值,由k=﹣<0,利用正比例函数的性质,可得出y的值随x的增大而减小.【解答】解:∵正比例函数y=kx的图象经过点(7,﹣13),∴﹣13=7k,解得:k=﹣.∵k=﹣<0,∴y的值随x的增大而减小.故答案为:减小.【点评】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,牢记“当k>0时,y随x 的增大而增大;当k<0时,y随x的增大而减小”是解题的关键.12.【分析】由菱形的性质得到AB=BC,推出∠BAC=∠BCA,而∠ABC=66°,由三角形内角和定理即可求出∠BAC的度数.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∴∠BAC=∠BCA,∵∠ABC=66°,∴∠BAC=(180°﹣66°)=57°.故答案为:57.【点评】本题考查菱形的性质,关键是由菱形的性质推出AB=BC.13.【分析】设y=kx+b,根据当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,可得y=50x+500,令x=80得y=50×80+500=4500.【解答】解:设y=kx+b,∵当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,∴,解得,∴y=50x+500,当x=80时,y=50×80+500=4500,故答案为:4500.【点评】本题考查一次函数的应用,解题的关键是用待定系数法求出一次函数解析式.14.【分析】直接由概率公式即可得出结论.【解答】解:∵一个袋子中有若干个白球和绿球,随机从中摸一个球,恰好摸到绿球的概率是,∴袋子中至少有3个绿球,故答案为:3.【点评】本题考查了概率公式:概率=所求情况数与总情况数之比.熟记概率公式是解题的关键.15.【分析】由AE=2EC得出,再根据平面向量三角形运算法则求出,再由平行四边形的性质即可得出结果.【解答】解:∵,AE=2CE,∴,又∵,∴=,∵四边形ABCD是平行四边形,∴=,故答案为:.【点评】本题考查了平面向量,平行四边形的性质,熟记平面向量的三角形运算法则是解题的关键.16.【分析】用总人数乘以需要AR增强讲解的人数所占的百分比即可.【解答】解:在总共2万人的参观中,需要AR增强讲解的人数约有20000××=2000(人).故答案为:2000.【点评】本题考查了条形统计图,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.17.【分析】分别考虑C'在AB之间时和C′在BA的延长线上时两种情况,根据题意假设出每条线段的长度,根据翻折的性质可知各个角之间的关系,即可求解.【解答】解:当C′在AB之间时,如图,根据AC':AB:BC=1:3:7,不妨设AC'=1,AB=3,BC=7,由翻折的性质知:∠FCD=∠FC'D',∵CD沿直线l翻折至AB所在直线,∴∠BC′F+∠FC′D′=∠FCD+∠FBA,∴∠BC′F=∠FBA,∴,过F作AB的垂线交于E,∴,∴,当C′在BA的延长线上时,如图,根据AC′:AB:BC=1:3:7,不妨设AC'=1,AB=3,BC=7,同理知:,过点F作AB的垂线交于E,∴,∴,故答案为:或.【点评】本题考查了翻折变换,平行四边形的性质,求余弦值,等腰三角形的判定及性质,解题的关键是利用分类讨论的思想进行求解.18.【分析】先将抛物线化为顶点式,再根据题意即可求得抛物线“开口大小”.【解答】解:∵抛物线=﹣(x﹣)2+,∴x′﹣=﹣(x′﹣)2+﹣,解得x′﹣=﹣2,∴抛物线“开口大小”为2|x′﹣|=2×|﹣2|=4,故答案为:4.【点评】本题考查二次函数的性质、新定义,解答本题的关键是明确题意,利用新定义解答.三、简答题(共78分,其中第19~22题每题10分,第23、24题每题12分,第25题14分)19.【分析】先化简绝对值,二次根式,零指数幂,再根据实数的运算法则进行计算.【解答】解:===.【点评】本题考查了绝对值,二次根式,零指数幂等,掌握化简法则是解题的关键.20.【分析】由①得出(x﹣4y)(x+y)=0,求出x﹣4y=0或x+y=0,求出x=4y或x=﹣y,把x=4y代入②得出4y+2y=6,求出y=1,求出x,再把x=﹣y代入②得出﹣y+2y=6,再求出x即可.【解答】解:,由①,得(x﹣4y)(x+y)=0,x﹣4y=0或x+y=0,x=4y或x=﹣y,把x=4y代入②,得4y+2y=6,解得:y=1,即x=4×1=4;把x=﹣y代入②,得﹣y+2y=6,解得:y=6,即x=﹣6,所以方程组的解是,.【点评】本题考查了解二元一次方程组,能根据x2﹣3xy﹣4y2=0求出x﹣4y=0或x+y=0是解此题的关键.21.【分析】(1)将点B坐标代入一次函数解析式求出n,再将点B坐标代入反比例函数解析式求出k值,最后将点A坐标代入反比例函数解析式求出m即可;(2)求出点C坐标,根据正弦函数定义直接写出结果即可.【解答】解:(1)点B(n,6)在直线y=﹣2x+4图象上,∴﹣2n+4=6,解得n=﹣1,∴B(﹣1,6),∵B(﹣1,6)在反比例函数图象上,∴k=﹣6,∴反比例函数解析式为y=﹣,∵点A(﹣3,m)在反比例函数图象上,∴m=﹣=2.∴m=2.(2)在函数y=﹣2x+4中,当y=2时,x=1,∴C(1,2),∴OC=,∴sin∠OCA==.【点评】本题考查了反比例函数与一次函数的交点问题,交点坐标满足两个函数解析式是关键.22.【分析】(1)①解直角三角形即可求解;②由题意可知四边形MNGH是矩形,利用线段的和差可求出矩形的边长,进而可求出面积;(2)根据题意画出图形即可.【解答】解:(1)①如图,△ABC为等腰直角三角板,∠ACB=90°,则,如图,△DEF为含30°的直角三角形板,∠DEF=90°,∠F=30°,D=60°,则EF=2h,;综上,等腰直角三角板直角边为,含30°的直角三角形板直角边为2h和;②由题意可知∠MNG=∠NGH=∠GHM=∠HMN=90°,∴四边形MNGH是矩形,由图可得,,,∴,故小平行四边形的底为,高为,面积为,(2)如图,即为所作图形.【点评】本题考查了解直角三角形,矩形的判定,矩形的面积,图形设计,正确识图是解题的关键.23.【分析】(1)由矩形性质得到∠BAD=90°,∠ADE=90°,AB=DC,由角的互余得到∠ABD=∠DAE,从而确定△ADE∽△BAD,利用相似三角形性质得到AD2=DE•DC;(2)由矩形性质,结合题中条件,利用等腰三角形的判定与性质得到OA=OD=EF=CF,∠ODA =∠OAD,∠FEC=∠FCE,进而由三角形全等的判定与性质即可得到.【解答】证明:(1)∵矩形ABCD,∴∠BAD=90°,∠ADE=90°,AB=DC,∴∠ABD+∠ADB=90°,∵AE⊥BD,∴∠DAE+∠ADB=90°,∴∠ABD=∠DAE,∵∠BAD=∠ADE=90°,∴△ADE∽△BAD,∴,∴AD2=DE•BA,∵AB=DC,∴AD2=DE•DC;(2)连接AC,交BD于点O,∵矩形ABCD,∴∠ADE=90°,∴∠DAE+∠AED=90°,∵AE⊥BD,∴∠DAE+∠ADB=90°,∴∠ADB=∠AED,∵∠FEC=∠AED,∴∠ADO=∠FEC,∵矩形ABCD,∴,∴,∴OA=OD=EF=CF,∴∠ADO=∠OAD,∠FEC=∠FCE,∵∠ADO=∠FEC,∴∠ADO=∠OAD=∠FEC=∠FCE,在△ODA和△FEC中,,∴△ODA≌△FEC(AAS),∴CE=AD.【点评】本题考查了矩形综合,涉及矩形性质、相似三角形的判定与性质、等腰三角形的判定与性质、全等三角形的判定与性质等知识,熟练掌握相关几何性质与判定是解决问题的关键.24.【分析】(1)设平移抛物线后得到的新抛物线为,把和B(5,0)代入,可得答案;(2)①如图,设,则,,结合PQ小于3,可得,结合x=m(m>0),从而可得答案;②先确定平移方式为:向右平移2个单位,向下平移3个单位,由题意可得:P在B的右边,当BP′∥PQ时,可得,结合平移的性质可得答案如图,当P′Q∥BP时,则∠P′QT=∠BPT,过P'作P′S⊥QP于S,证明△P'SQ∽△BTP,可得,设,则,,,再建立方程求解即可.【解答】解:(1)设平移抛物线后得到的新抛物线为,把和B(3,0)代入,可得:,解得:,∴新抛物线为;(2)①如图,设,则,∴,∵PQ小于3,∴,∴x<1,∵x=m(m>0),∴0<m<1;②,∴平移方式为:向右平移2个单位,向下平移3个单位,由题意可得:P在B的右边,当BP′∥PQ时,∴BP′⊥x轴,=x B=5,∴x P′∴,由平移的性质可得:,即;如图,当P′Q∥BP时,则∠P′QT=∠BPT,过P′作P′S⊥QP于S,∴∠P'SQ=∠BTP=90°,∴△P'SQ∽△BTP,∴,设,则,,,∴,解得:x=1或3(不符合题意舍去);综上:.【点评】本题属于二次函数的综合题,抛物线的平移,利用待定系数法求解二次函数的解析式,二次函数的图象与性质,相似三角形的判定与性质,熟练的利用数形结合的方法解题是关键.25.【分析】(1)添加辅助线,转移比例线段,得到,从而证出EF∥BC;(2)利用三角形外接圆得性质得出△AOE≌△AOD,再根据BO平分∠ABC得出∠AOB=90,然后得出相似,求出半径OA的长度;(3)最后一问难度较大,首先将条件转化成线段和角度关系,由CD2=DM•DN,很容易找到△DCN ∽△DMC,再根据这个相似结论证出△BEM∽△BPC,多组相似转化,再利用勾股定理建立方程,求出未知数.【解答】(1)证明:延长DE和CB交于点G,∵AD∥BC,∴,∵AE=AB,DF=∴,,∴,∴EF∥BC.(2)①记点O为△ADE外接圆圆心,过点O作OF⊥AE于点F,连接OA,OD,OE.∵点O为△ADE外接圆的圆心,∴OA=OE=OD,∴AF=EF=AE=,∵AE=AB,∴AB=3AE=3,∵AE=AD,OE=OD,OA=OA,∴△AOE≌△AOD(SSS),∴∠EAO=∠DAO,∵BO平分∠ABC,∴∠ABO=∠CBO,∵AD∥BC,∴∠DAB+∠ABC=180°,∴2∠EAO+2∠ABO=180°,即∠EAO+∠ABO=90°,∴∠AOB=90°,∵OF⊥AE,∴∠AFO=∠AOB=90°,∵∠FAO=∠OAB,∴△FAO∽△OAB,∴,即AO2=AF•AB=,∴AO=,∴△ADE外接圆半径为.②延长BA,CD交于点P,过点E作EQ⊥BC,垂足为点Q.∵AD∥BC,∴△PAD∽△PBC,∴,由①知AB=3,∴,∴PA=1,∵CD2=DM•DN,∴,∵∠CDN=∠MDC,∴△DCN∽△DMC,∴∠DCN=∠CMD,∵∠DMC=∠CEM,∴∠CEM=∠DCN,∴EM∥CD,∴,由AB=3,AE=1得,BE=2,∴,∴BM=MC=2,∴△BEM∽△BPC,∴,设ME=2a,则PC=4a,∵AD∥BC,∴,∴PD=a,DC=3a,∵EM∥CD,∴△ENM∽△CND,∴,设EN=2b,则CN=3b,∵∠DMC=∠CEM,∠ECM=∠MCN,∴△CNM∽△CME,∴,即CM2=CN•CE,∴4=3b•5b,解得b=,∴CE=,在Rt△BQE中,由勾股定理可得:BE2﹣BQ2=CE2﹣CQ2,∴4﹣BQ2=()2﹣(4﹣BQ)2,解得BQ=,∴EQ2=BE2﹣BQ2=,∵QM=BM﹣BQ=2﹣=,∴在Rt△EQM中,由勾股定理可得,EM=,∵,∴DC=.第三问方法二:∵AD=AE=1,∴AB=3AE=3,∵AD∥BC,BC=4,∴,即,∴AP=1=AD=AE,∵BE=AP﹣AE=2,PE=AE+AP=2,∴E为BP中点,∵CD2=DM•DN,∴△DCN∽△DMC,∴∠DCN=∠DMC=∠CEM,∴EM∥CD,∴M也为BC中点,∴CM=BM=2,∵BP=BC=4,∴∠P=∠DMC,∵∠ECP=∠DMC,∴△ECP∽△DMC,∴,设DP=a,则CD=3a,CP=4a,∴,解得a=,∴CD=.【点评】本题主要考查了圆的综合题,同时也考查了平行线分线段成比例定理,相似三角形的判定与性质,三角形的外接圆等知识点,熟练掌握知识点,正确添加辅助线是解题的关键。
历年上海市中考数学试卷含答案
历年上海市中考数学试卷含答案一、2019年上海市中考数学试卷第一部分选择题(40分)1.下列不等式 3y-5> y -7、y-3y+5 > 7-y 的解集为().A. {y | y > 0 }B. {y | y > 6 }C. {y | 3 < y < 6 }D. {y | 0 < y < 3 }2. 已知正比例函数 y = kx (k >0) 的图象上,点(2,3)和(4,9). 则此函数的解析式为().A. y = 2x + 1B. y = 2x - 1C. y = 2x + 3D. y = 2x - 33. 在不等式组x + 2y ≤ 4 (1)2x - y ≥ 2 (2)中,表示其解集的示意图是().(符号“^”代表导数)A.图1 B.图2C.图3D.图44.已知两条直线 3x + y -2 = 0 和 kx -6y + 4 = 0 互相垂直,则实数k的值为().A. $\dfrac{3}{2}$B. 2C. $-\dfrac{3}{2}$D. -25. 在长方形ABCD中,若AB=2BC,则 $\vartriangle ABD$ 面积是 $\vartriangle ABC$ 面积的().A. $\dfrac{1}{2}$B. 1C. 2D. 46. 当 $0< a < b$,a,b为正整数时,$$\dfrac{x+a}{x+b}= \dfrac{3}{4}$$ 的解集x的个数是().A.0B. 1C. 2D. 无穷多个7. 直线 2x-3y+6=0 与圆 $$(x-2)^2 + y^2= 9$$ 的交点坐标中,y 坐标较大的点坐标是().A. (3,0)B. (1,0)C. (2, \sqrt{5})D. (2, -\sqrt{5})8. 如图所示的等腰梯形 $ABCD$ ,点 $E$ 是 $AC$ 边的中点,则 $\vartriangle ABE$ 的面积是 $\vartriangle ECD$ 面积的().A. $\dfrac{1}{2}$B. 2C. $\dfrac{3}{2}$D. 39.曲线 $y=4\log_2x -x$ 的图象在第一象限内交圆$${{(x-3)}^2} + {{(y-4)}^2} = 4$$ 的点的个数是().A. 0B. 1C. 2D. 无穷多个.10.如图所示的菱形 ABCD 中,从点 B 到对角线 AC 的垂足 E 的距离是 6, BD的长是5,则这个菱形的面积是().A. 24B. 30C. 36D. 3811. 如图, $\triangle ABC$ 的内角 $\angle C=90\degree $, $BC =4 $,点 $E$ 在 $AB$ 上, $AE=2,\angle EDC = 90\degree$ ,则AC 的长为().A. 4B. 2\sqrt{5}C. \sqrt{21}D. \sqrt{15}12.如图所示的 $Rt\triangle ABC$ 中,点 $D,F,E$ 分别在 $BC,AB,AC$ 上,若 $\angle BDE = \angle DAF =\angle ECF$,则此三角形是().A.等边B.直角且等腰C.等腰且 $\angle C =120\degree$ D.锐角且等腰13.已知一个圆方程为 $${{(x-2)}^2} + {{(y+1)}^2} = 1$$ 。
上海市中考数学23题各区期末汇编—证明题
(1)如果BF •AB =BD •BC .求证:EF •CE =DE •AE ;(2)如果AE •BF =2AF •DE ,求证:AD 是△ABC的中线.2.(2022秋•杨浦区校级期末)已知等腰△ABC 中,AB =AC ,点D 、E 是边BC 、AC 上的点,且CD =3BD ,联结AD 、BE ,交点为F .(1)若AF =4DF,求的值.(2)若BD 2=DF •AD ,求证:BC 2=4CE •AC.3.(2022秋•金山区校级期末)已知:如图,在△ABC 中,点D 在边BC 上,AE ∥BC ,BE 与AD 、AC 分别相交于点F 、G ,AF 2=FG •FE .(1)求证:△CAD ∽△CBG ;(2)联结DG ,求证:DG •AE =AB •AG .一.解答题(共14小题)1.(2022秋•浦东新区期末)如图,在△ABC 中,点D 、F 分别是边BC 、AB 上的点,AD 和CF 交于点E .上海市中考数学23题各区期末汇编—证明题4.(2022秋•黄浦区校级期末)如图,在Rt△CAB与Rt△CEF中,∠ACB=∠FCE=90°,∠CAB=∠CFE,AC与EF相交于点G,BC=15,AC=20.(1)求证:∠CEF=∠CAF;(2)若AE=7,求AF的长.5.(2022秋•嘉定区校级期末)如图,已知点D在△ABC的外部,AD∥BC,点E在边AB上,∠BAC=∠AED.(1)求证:AB•AD=BC•AE;(2)在边AC取一点F,如果,,求证:∠AFE=∠D.6.(2022秋•徐汇区期末)如图,在△ABC中,∠ACB=90°,AC=BC,点D是斜边AB的中点,点E 是边AC上的一点,∠EDF=45°,DF交射线BC于点F.(1)求证:∠ADE=∠F;(2)求证:BC2=2AE•BF.7.(2022秋•青浦区校级期末)已知:如图,在菱形ABCD中,点E、F分别在边AB、AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.(1)求证:△BEC∽△BCH;(2)如果BE2=AB•AE,求证:AG=DF.8.(2022秋•黄浦区期末)已知:如图,点D、F分别在等边三角形ABC的边CB的延长线与反向延长线上,且满足BD•CF=BC2.求证:(1)△ADB∽△FAC;(2)AF•AD=BC•DF.9.(2022秋•闵行区期末)已知:如图,在△ABC中,AB=AC,点D、E分别是边AC、AB的中点,DF ⊥AC,DF与CE相交于点F,AF的延长线与BD相交于点G.(1)求证:∠ABD=∠ACE;(2)求证:CD2=DG•BD.10.(2022秋•静安区期末)如图,在梯形ABCD中,AD∥BC,DF分别交对角线AC、底边BC于点E、F,且AD•AC=AE•BC.(1)求证:AB∥FD;(2)点G在底边BC上,BC=10,CG=3,联结AG,如果△AGC与△EFC的面积相等,求FC的长.11.(2022秋•浦东新区校级期末)已知:如图,在△ABC中,点D,E分别在边AB,BC上,BA•BD=BC •BE(1)求证:DE•AB=AC•BE;(2)如果AC2=AD•AB,求证:AE=AC.13.(2022秋•杨浦区期末)如图,Rt △ABC 中,∠ACB =90°,D 是斜边AB 上的中点,E 是边BC 上的点,AE 与CD 交于点F ,且AC 2=CE •CB .(1)求证:AE ⊥CD ;(2)连接BF ,如果点E 是BC 中点,求证:∠EBF =∠EAB.12.(2022秋•青浦区校级期末)已知:如图,在△ABC 中,AB =AC ,DE ∥BC ,点F 在边AC 上,DF 与BE 相交于点G ,且∠EDF =∠ABE .求证:(1)△DEF ∽△BDE ;(2)DG •DF =DB •EF.14.(2022秋•徐汇区校级期末)如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,∠AED =∠B ,AG 分别交线段DE 、BC 于点F 、G ,且AD :AC =DF :CG .求证:(1)AG 平分∠BAC ;(2)EF •CG =DF •BG.一.解答题(共14小题)1.(2022秋•浦东新区期末)如图,在△ABC 中,点D 、F 分别是边BC 、AB 上的点,AD 和CF 交于点E 上海市中考数学23题各区期末汇编—证明题.(1)如果BF •AB =BD •BC .求证:EF •CE =DE •AE ;(2)如果AE •BF =2AF •DE ,求证:AD 是△ABC的中线.【分析】(1)根据BF •AB =BD •BC ,得到比例式=,又因为成比例的边的夹角相等,证明△ABD ∽△CBF ,所以对应角∠BAD =∠BCF ,再因为对顶角相等得到△AEF ∽△CED ,最后根据相似三角形的性质即可证明;(2)过D 作DG ∥AB 交CF ,根据平行线分线段成比例定理和已知条件等量代换即可证明.【解答】证明(1)∵BF •AB =BD •BC ,∴=,∵∠B =∠B ,∴△ABD ∽△CBF ,∴∠BAD =∠BCF ,又∵∠AEF =∠CED ,∴△AEF ∽△CED ,∴=,∴EF •CE =DE •AE ;(2)过D 作DG ∥AB 交CF 于G ,∴=,∵AE•BF=2AF•DE,∴=,∴=,即==,∵=,∴=,∴D为BC的中点,AD是△ABC的中线.【点评】本题考查平行线分线段成比例定理、三角形中线定义等知识点,解题关键是恰当作出辅助线.2.(2022秋•杨浦区校级期末)已知等腰△ABC中,AB=AC,点D、E是边BC、AC上的点,且CD=3BD,联结AD、BE,交点为F.(1)若AF=4DF,求的值.(2)若BD2=DF•AD,求证:BC2=4CE•AC.【分析】(1)作AG∥BC,交BE延长线于G,证明△AGF∽△DBF,根据相似三角形的性质得出,则AC=BC,进而得出;(2)根据已知条件证明△BDF∽△ADB,得出∠BAD=∠FBD,进而证明△ABO∽△BCE,根据相似三角形的性质以及AB=ACBC=BD+CD=4BD,即可得证.【解答】(1)解:作AG∥BC,交BE延长线于G,∵AG∥BC,∴△AGF∽△DBF,∵AF=4DF,∴AG=4BD,∵CD=3BD,∴,∴AC=BC,又AG∥BC,∴△AGE∽△CBE,∴;(2)证明:∵BD2=DF⋅AD,∴,∵∠BDF=∠ADB,∴△BDF∽△ADB,∴∠BAD=∠FBD,又∵∠ABD=∠ACB,∴△ABO∽△BCE,∴,∴CE•AB=BD•BC,又∵AB=ACBC=BD+CD=4BD,∴,∴BC2=4CE⋅AC.【点评】本题考查了相似三角形的性质与判定,掌握相似三角形的性质与判定是解题的关键.3.(2022秋•金山区校级期末)已知:如图,在△ABC中,点D在边BC上,AE∥BC,BE与AD、AC分别相交于点F、G,AF2=FG•FE.(1)求证:△CAD∽△CBG;(2)联结DG,求证:DG•AE=AB•AG.【分析】(1)通过证明△FAG∽△FEA,可得∠FAG=∠E,由平行线的性质可得∠E=∠EBC=∠FAG,且∠ACD=∠BCG,可证△CAD∽△CBG;(2)由相似三角形的性质可得=,且∠DCG=∠ACB,可证△CDG∽△CAB,可得=,由平行线分线段成比例可得=,可得结论.【解答】证明:(1)∵AF2=FG⋅FE.∴=,∵∠AFG=∠EFA,∴△FAG∽△FEA,∴∠FAG=∠E,∵AE∥BC,∴∠E=∠EBC,∴∠EBC=∠FAG,∵∠ACD=∠BCG,∴△CAD∽△CBG;(2)∵△CAD∽△CBG,∴=,∵∠DCG=∠ACB,∴△CDG∽△CAB,∴=,∵AE∥BC,∴=,∴=,∴=,∴DG•AE=AB•AG.【点评】本题考查了相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.4.(2022秋•黄浦区校级期末)如图,在Rt△CAB与Rt△CEF中,∠ACB=∠FCE=90°,∠CAB=∠CFE,AC与EF相交于点G,BC=15,AC=20.(1)求证:∠CEF=∠CAF;(2)若AE=7,求AF的长.【分析】(1)由∠ACB=∠FCE=90°,∠CAB=∠CFE可以得出△CAB∽△CFE,可以得出,∠B=∠CEF,由等式的性质就可以得出∠BCE=GCF,就可以得出△BCE∽△ACF就可以得出结论;(2)由勾股定理可以得出AB,可以得出BE的值由△BCE∽△ACF就可以得出,进而求出结论.【解答】解:(1)证明:∵∠ACB=∠FCE=90°,∠CAB=∠CFE,∴△CAB∽△CFE,∴,∠B=∠CEF.∵∠ACB=∠FCE,∴∠ACB﹣∠ACE=∠FCE﹣∠ACE,∴△BCE∽△ACF,∴∠B=∠CAF,∴∠CEF=∠CAF;(2)∵∠ACB=90°,BC=15,AC=20,∴由勾股定理,得AB=25.∵AE=7,∴BE=18.∵△BCE∽△ACF,∴,∴,∴AF=24.答:AF=24.【点评】本题考查了相似三角形的判定与性质的运用,勾股定理的运用,解答时证明三角形相似是关键.5.(2022秋•嘉定区校级期末)如图,已知点D在△ABC的外部,AD∥BC,点E在边AB上,∠BAC=∠AED.(1)求证:AB•AD=BC•AE;(2)在边AC取一点F,如果,,求证:∠AFE=∠D.【分析】(1)利用平行线的性质和相似三角形的判定与性质解答即可;(2)利用(1)中的结论和已知条件得到,利用相似三角形的判定与性质得到∠AFE=∠C,再利用(1)中的结论和相似三角形的性质解答即可得出结论.【解答】证明:(1)∵AD∥BC,∴∠DAE=∠B.∴△ADE∽△BCA,∴,∴AB•AD=BC•AE;(2)∵,,∴,∵∠EAF=∠BAC,∴△AEF∽△ABC,∴∠AFE=∠C.由(1)知:△ADE∽△BCA,∴∠ADE=∠C,∴∠AFE=∠D.【点评】本题主要考查了平行线的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.6.(2022秋•徐汇区期末)如图,在△ABC中,∠ACB=90°,AC=BC,点D是斜边AB的中点,点E 是边AC上的一点,∠EDF=45°,DF交射线BC于点F.(1)求证:∠ADE=∠F;(2)求证:BC2=2AE•BF.【分析】(1)由∠ACB=90°,AC=BC,得∠A=∠B=45°,则∠F=135°﹣∠BDF,因为∠EDF=45°,所以∠ADE=135°﹣∠BDF,则∠ADE=∠F;(2)由AC2+BC2=AB2,且AD=BD,AB=2AD,推导出BC2=2AD2,由∠A=∠B,∠ADE=∠F,证明△ADE∽△BFD,得=,则AD•BD=AE•BF,即可证明BC2=2AD2=2AE•BF.【解答】证明:(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∴∠F=180°﹣∠B﹣∠BDF=135°﹣∠BDF,∵∠EDF=45°,∴∠ADE=180°﹣∠EDF﹣∠BDF=135°﹣∠BDF,∴∠ADE=∠F.(2)∵点D是AB的中点,∴AD=BD,AB=2AD,∵AC2+BC2=AB2,∴2BC2=(2AD)2=4AD2,∴BC2=2AD2,由(1)得∠A=∠B,∠ADE=∠F,∴△ADE∽△BFD,∴=,∴AD•BD=AE•BF,∴2AD2=2AE•BF,∴BC2=2AE•BF.【点评】此题重点考查等腰直角三角形的性质、三角形内角和定理、勾股定理、相似三角形的判定与性质等知识,证明△ADE∽△7.(2022秋•青浦区校级期末)已知:如图,在菱形ABCD中,点E、F分别在边AB、AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.(1)求证:△BEC∽△BCH;(2)如果BE2=AB•AE,求证:AG=DF.【分析】(1)由菱形的性质得出CD=CB,∠D=∠B,证明△CDF≌△CBE(SAS),由全等三角形的性质得出∠DCF=∠BCE,得出∠H=∠BCE,则可得出结论.(2)利用平行线分线段成比例定理结合已知条件解决问题即可.【解答】(1)证明:∵四边形ABCD是菱形,∴CD=CB,∠D=∠B,∵DF=BE,∴△CDF≌△CBE(SAS),∴∠DCF=∠BCE,∵CD∥BH,∴∠H=∠DCF,∴∠H=∠BCE,∵∠B=∠B,∴△BEC∽△BCH.(2)证明:∵BE2=AB•AE,∴,∵CB∥DG,∴△AEG∽△BEC,∴=,∴=,∵BC=AB,∴AG=BE,∵△CDF≌△CBE,∴DF=BE,∴AG=DF.【点评】本题考查相似三角形的判定和性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(2022秋•黄浦区期末)已知:如图,点D、F分别在等边三角形ABC的边CB的延长线与反向延长线上,且满足BD•CF=BC2.求证:(1)△ADB∽△FAC;(2)AF•AD=BC•DF.【分析】(1)由△ABC是等边三角形,可得AB=BC=AC,∠ABC=∠ACB=60°,所以∠ABC=∠ACB =120°,由BD•CF=BC2,可得BD•CF=AB•AC,即BD:AC=AB:CF,进而可得结论;(2)由(1)知,△ADB∽△FAC,所以∠DAB=∠F,易证△ADB∽△FDA,所以AD:DF=AB:AF,即AD•AF=AB•DF,再由AB=BC可得结论.【解答】证明:(1)∵△ABC是等边三角形,∴AB=BC=AC,∠ABC=∠ACB=60°,∴∠ABC=∠ACB=120°,∵BD•CF=BC2,∴BD•CF=AB•AC,即BD:AC=AB:CF,∴△ADB∽△FAC;(2)由(1)知,△ADB∽△FAC,∴∠DAB=∠F,∵∠D=∠D,∴△ADB∽△FDA,∴AD:DF=AB:AF,即AD•AF=AB•DF,∴AF•AD=BC•DF.【点评】本题主要考查相似三角形的性质与判定,等边三角形的性质与判定,熟练掌握相关知识是解题关键.9.(2022秋•闵行区期末)已知:如图,在△ABC中,AB=AC,点D、E分别是边AC、AB的中点,DF ⊥AC,DF与CE相交于点F,AF的延长线与BD相交于点G.(1)求证:∠ABD=∠ACE;(2)求证:CD2=DG•BD.【分析】(1)利用等腰三角形的性质和全等三角形的判定与性质解答即可;(2)利用线段垂直平分线的性质和(1)的结论,依据相似三角形的判定与性质解答即可.【解答】证明:(1)∵点D、E分别是边AC、AB的中点,∴AE=AB,AD=AC,∵AB=AC,∴AD=AE.在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE;(2)∵DF⊥AC,点D是边AC的中点,∴DF是AC的垂直平分线,∴FA=FC,∴∠FAC=∠ACE.由(1)知:∠ABD=∠ACE,∴∠FAC=∠ABD.∵∠ADG=∠BDA,∴△ADG∽△BDA,∴,∴AD2=DG•BD.∵点D是边的中点,∴AD=AC=CD,∴CD2=DG•BD.【点评】本题主要考查了等腰三角形的性质,全等三角形的判定与性质,线段垂直平分线的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.10.(2022秋•静安区期末)如图,在梯形ABCD中,AD∥BC,DF分别交对角线AC、底边BC于点E、F,且AD•AC=AE•BC.(1)求证:AB∥FD;(2)点G在底边BC上,BC=10,CG=3,联结AG,如果△AGC与△EFC的面积相等,求FC的长.【分析】(1)根据题意可证明,△AED∽△CAB,所以∠AED=∠CAB,则AB∥FD;(2)根据三角形的面积公式及相似三角形的性质可得出结论.【解答】(1)证明:∵AD•AC=AE•BC,∴AD:AE=BC:AC,∵AD∥BC,∴∠DAE=∠ACB,∴△AED∽△CAB,∴∠AED=∠CAB,∴AB∥FD;(2)根据题意可得,==,∵EF∥FD,∴△EFC∽△ABC,∴=()2=,∵△AGC和△EFC面积相等,∴=,解得CF=.【点评】本题主要考查相似三角形的性质与判定,三角形的面积公式等相关知识,根据题意表达三角形的面积比,得出方程是解题关键.11.(2022秋•浦东新区校级期末)已知:如图,在△ABC中,点D,E分别在边AB,BC上,BA•BD=BC •BE(1)求证:DE•AB=AC•BE;(2)如果AC2=AD•AB,求证:AE=AC.【分析】(1)由BA•BD=BC•BE得,结合∠B=∠B,证△ABC∽△EBD得,即可得证;(2)先根据AC2=AD•AB证△ADC∽△ACB得∠ACD=∠B,再由证△BAE∽△BCD得∠BAE =∠BCD,根据∠AEC=∠B+∠BAE,∠ACE=∠ACD+∠BCD可得∠AEC=∠ACE,即可得证.【解答】证明:(1)∵BA•BD BC•BE,∴,又∵∠B=∠B,∴△ABC∽△EBD,∴,∴DE•AB=AC•BE;(2)∵AC2=AD•AB,∴,∵∠DAC=∠CAB,∴△ADC∽△ACB,∴∠ACD=∠B,∵,∠B=∠B,∴△BAE∽△BCD,∴∠BAE=∠BCD,∵∠AEC=∠B+∠BAE,∠ACE=∠ACD+∠BCD,∴∠AEC=∠ACE,∴AE=AC.【点评】本题主要考查相似三角形的判定与性质,熟练掌握两边对应成比例且夹角相等的两三角形相似是解题的关键.12.(2022秋•青浦区校级期末)已知:如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG•DF=DB•EF.【分析】(1)由AB=AC,根据等边对等角,即可证得:∠ABC=∠ACB,又由DE∥BC,易得∠ABC+∠BDE=180°,∠ACB+∠CED=180°,则可证得:∠BDE=∠CED,又由已知∠EDF=∠ABE,则可根据有两角对应相等的三角形相似,证得△DEF∽△BDE;(2)由(1)易证得DE2=DB•EF,又由∠BED=∠DFE与∠GDE=∠EDF证得:△GDE∽△EDF,则可得:DE2=DG•DF,则证得:DG•DF=DB•EF.【解答】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE∥BC,∴∠ABC+∠BDE=180°,∠ACB+∠CED=180°.∴∠BDE=∠CED,(2)由△DEF ∽△BDE ,∵∠EDF =∠ABE ,∴△DEF ∽△BDE ;得.∴DE 2=DB •EF ,由△DEF ∽△BDE ,得∠BED =∠DFE .∵∠GDE =∠EDF ,∴△GDE ∽△EDF .∴,∴DE 2=DG •DF ,∴DG •DF =DB •EF .【点评】此题考查了相似三角形的性质与判定.注意有两角对应相等的三角形相似以及相似三角形的对应边成比例定理的应用,还要注意数形结合思想的应用.13.(2022秋•杨浦区期末)如图,Rt △ABC 中,∠ACB =90°,D 是斜边AB 上的中点,E 是边BC 上的点,AE 与CD 交于点F ,且AC 2=CE •CB .(1)求证:AE ⊥CD ;(2)连接BF ,如果点E 是BC 中点,求证:∠EBF =∠EAB.【分析】(1)先根据题意得出△ACB ∽△ECA ,再由直角三角形的性质得出CD =AD ,由∠CAD +∠ABC =90°可得出∠ACD +∠EAC =90°,进而可得出∠AFC =90°;(2)根据AE ⊥CD 可得出∠EFC =90°,∠ACE =∠EFC ,故可得出△ECF ∽△EAC ,再由点E 是BC 的中点可知CE =BE,故,根据∠BEF =∠AEB 得出△BEF ∽△AEB ,进而可得出结论.【解答】证明:(1)∵AC 2=CE •CB ,∴.又∵∠ACB=∠ECA=90°∴△ACB∽△ECA,∴∠ABC=∠EAC.∵点D是AB的中点,∴CD=AD,∴∠ACD=∠CAD∵∠CAD+∠ABC=90°,∴∠ACD+∠EAC=90°∴∠AFC=90°,∴AE⊥CD(2)∵AE⊥CD,∴∠EFC=90°,∴∠ACE=∠EFC又∵∠AEC=∠CEF,∴△ECF∽△EAC∴∵点E是BC的中点,∴CE=BE,∴∵∠BEF=∠AEB,∴△BEF∽△AEB∴∠EBF=∠EAB.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.14.(2022秋•徐汇区校级期末)如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,∠AED =∠B ,AG 分别交线段DE 、BC 于点F 、G ,且AD :AC =DF :CG .求证:(1)AG 平分∠BAC ;(2)EF •CG =DF •BG .【分析】(1)由三角形的内和定理,角的和差求出∠ADE =∠C ,根据两边对应成比例及夹角相等证明△ADF ∽△ACG ,其性质和角平分线的定义得AG 平分∠BAC ;(2)由两对应角相等证明△AEF ∽△ABG ,△ADF ∽△AGC ,其性质得,,再根据等式的性质求出EF •CG =DF •BG .【解答】解:如图所示:(1)∵∠DAE +∠AED +∠ADE =180°,∠BAC +∠B +∠C =180°,∠AED =∠B ,∴∠ADE =∠C ,在△ADF 和△ACG 中,∴△ADF ∽△ACG ,∴∠DAF =∠CAG ,∴AG 平分∠BAC ;(2)在△AEF 和△ABG 中,,∴△AEF∽△ABG,∴,在△ADF和△AGC中,,∴△ADF∽△AGC,∴,∴,∴EF•CG=DF•BG.【点评】本题综合考查了三角形的内角和定理,相似三角形的判定与性质,角的和差,等量代换,等式的性质等相关知识点,重点掌握相似三角形的判定与性质,难点是利用等式的性质将比例式转换成乘积式.。
上海中考数学题目2023
上海中考数学题目2023
上海中考数学题目2023指的是在2023年上海市中考中,数学科目的考试题目。
这些题目通常由上海市教育考试院组织专家进行编制,旨在测试学生在初中阶段数学学科的知识和技能掌握情况。
具体的题目示例如下:
1.题目:若 x1,x2 是方程 x^2 - 6x + 5 = 0 的两个根,则 x1^2 + x2^2 =
( )
A. 34
B. 26
C. 10
D. 5
2.题目:若关于 x 的一元二次方程 x^2 - 4x + m - 1 = 0 有两个不相等的实
数根,则 m 的取值范围为 ___.
3.题目:在 Rt△ABC 中,∠C = 90°,AC = 1,BC = √3,则 sinA + cosA =
___.
A. √3
B. 1/2
C. 2
D. √3/2
总结:上海中考数学题目2023指的是在2023年上海市中考中,数学科目的考试题目。
这些题目旨在测试学生在初中阶段数学学科的知识和技能掌握情况。
通过做题、理解和掌握数学概念和方法,学生可以提高自己的数学水平,并为未来的学习和职业生涯打下坚实的基础。
上海市中考数学25题各区期末汇编—几何综合题
一.解答题(共15小题)1.(2022秋•嘉定区校级期末)在矩形ABCD 中,AB =3,AD =4,点E 是边AD 上一点,EM ⊥EC 交A 上海市中考数学25题各区期末汇编—几何综合题B 于点M ,点N 在射线MB 上,且∠ANE =∠DCE .(1)如图,求证:AE 是AM 和AN 的比例中项;(2)当点N 在线段AB 的延长线上时,联结AC ,且AC 与NE 互相垂直,求MN的长.2.(2022秋•浦东新区期末)如图,在Rt△ABC中,∠ABC=90°,AC=10,tan C=,点D是斜边AC 上的动点,联结BD,EF垂直平分BD交射线BA于点F,交边BC于点E.(1)如图,当点D是斜边AC上的中点时,求EF的长;(2)联结DE,如果△DEC和△ABC相似,求CE的长;(3)当点F在边BA的延长线上,且AF=2时,求AD的长.3.(2022秋•青浦区校级期末)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AD=CD,O是对角线AC的中点,联结BO并延长交边CD于点E.(1)①求证:△DAC∽△OBC;②若BE⊥CD,求的值:(2)若DE=2,OE=3,求CD的长.4.(2022秋•黄浦区校级期末)如图,已知∠AOB=90°,∠AOB的内部有一点P,且OA=OB=OP=10,过点B作BC∥AP交AO于点C,OP与BC交于点D.(1)如果tan∠AOP=,求OC的长;(2)设AP=x,BC=y,求y与x的函数关系式,并写出定义域;(3)如果BD=AP,求△PBD的面积.5.(2022秋•青浦区校级期末)如图1,梯形ABCD中,AD∥BC,∠A=90°,AD=2,AB=4,BC=5,M在边CD上,连接BM,BM⊥DC.(1)求CD的长;(2)如图2,作∠EMF=90°,ME交AB于点E,MF交BC于点F,若AE=x,BF=y,求y关于x的函数解析式,并写出定义域;(3)若△MCF是等腰三角形,求AE的值.6.(2022秋•徐汇区期末)已知:在梯形ABCD中,AB∥CD,AD=BC=5,AB=2.5,sin D=,点E是AD边上一点,DE=3,点P是CD边上的一动点,连接EP,作∠EPF,使得∠EPF=∠D,射线PF与AB边交于点F,与CB的延长线交于点G,设DP=x,BG=y.(1)求CD的长;(2)试求y关于x的函数关系式,并写出定义域;(3)连接EF,如果△EFP是等腰三角形,试求DP的长.7.(2022秋•静安区期末)在等腰直角△ABC中,∠C=90°,AC=4,点D为射线CB上一动点(点D 不与点B、C重合),以AD为腰且在AD的右侧作等腰直角△ADF,∠ADF=90°,射线AB与射线FD 交于点E,联结BF.(1)如图所示,当点D在线段CB上时,①求证:△ACD∽△ABF;②设CD=x,tan∠BFD=y,求y关于x的函数解析式,并写出x的取值范围;(2)当AB=2BE时,求CD的长.8.(2022秋•杨浦区校级期末)如图,在△ABC中,∠ACB=90°,CD是边AB上的中线,AC=3,BC=4,点Q是CB延长线上的一动点,过点Q作QP⊥CD,交CD的延长线于点P.(1)当点B为CQ的中点时,求PD的长;(2)设BQ=x,PD=y,求y关于x的函数关系式,并写出x的取值范围;(3)过点B作BF⊥AB交PQ于F,当△BDF和△ABC相似时,求BQ的长.9.(2022秋•金山区校级期末)已知∠BAC的余切值为2,AB=2,点D是线段AB上一动点(点D不与点A、B重合),以点D为顶点的正方形DEFG的另两个顶点E、F都在射线AC上,且点F在点E 的右侧,联结BG,并延长BG交射线AC于点P.(1)联结AG,求证:cot∠GAF=3;(2)如图1,当点P在线段EF上时,如果∠GPF的正切值为2,求线段BD的长;(3)联结AG,当△AGP为等腰三角形时,求线段BD的长.10.(2022秋•闵行区期末)如图1,点D为△ABC内一点,联结BD,∠CBD=∠BAC,以BD、BC为邻边作平行四边形DBCE,DE与边AC交于点F,∠ADE=90°.(1)求证:△ABC∽△CEF;(2)延长BD,交边AC于点G,如果CE=FE,且△ABC的面积与平行四边形DBCE面积相等,求的值;(3)如图2,联结AE,若DE平分∠AEC,AB=5,CE=2,求线段AE的长.11.(2022秋•黄浦区期末)已知,如图1,在四边形ABCD中,∠BAC=∠ADC=90°,CD=4,cos∠ACD =.(1)当BC∥AD时(如图2),求AB的长;(2)联结BD,交边AC于点E,①设CE=x,AB=y,求y关于x的函数解析式并写出定义域;②当△BDC是等腰三角形时,求AB的长.12.(2022秋•徐汇区校级期末)如图,梯形ABCD中,AD∥BC,对角线AC⊥BC,AD=9,AC=12,BC =16,点E是边BC上一个动点,∠EAF=∠BAC,AF交CD于点F、交BC延长线于点G,设BE=x.(1)使用x的代数式表示FC;(2)设=y,求y关于x的函数关系式,并写出定义域;(3)当△AEG是等腰三角形时,直接写出BE的长.13.(2022秋•浦东新区校级期末)如图,在△ABC中,AB=8,BC=10,cos C=,∠ABC=2∠C,BD 平分∠ABC交AC边于点D,点E是BC边上的一个动点(不与B、C重合),F是AC边上一点,且∠AEF=∠ABC,AE与BD相交于点G.(1)求证:;(2)设BE=x,CF=y,求y与x之间的函数关系式,并写出x的取值范围;(3)当△AEF是以AE为腰的等腰三角形时,求BE的长.14.(2022秋•徐汇区期末)如图,已知在Rt△ABC中,∠ACB=90°,AC=BC=4,点D为边BC上一动点(与点B、C不重合),点E为AB上一点,∠EDB=∠ADC,过点E作EF⊥AD,垂足为点G,交射线AC于点F.(1)如果点D为边BC的中点,求∠DAB的正切值;(2)当点F在边AC上时,设CD=x,CF=y,求y关于x的函数解析式及x的取值范围;(3)联结DF,如果△CDF与△AGE相似,求线段CD的长.15.(2022秋•杨浦区期末)如图,在Rt△ABC中,∠ACB=90°.AB=13,CD∥AB.点E为射线CD上一动点(不与点C重合),联结AE,交边BC于点F,∠BAE的平分线交BC于点G.:S△CAF的值;(1)当时CE=3,求S△CEF(2)设CE=x,AE=y,当CG=2GB时,求y与x之间的函数关系式;(3)当AC=5时,联结EG,若△AEG为直角三角形,求BG的长.一.解答题(共15小题)1.(2022秋•嘉定区校级期末)在矩形ABCD 中,AB =3,AD =4,点E 是边AD 上一点(参考答案),EM ⊥EC 交AB 于点M ,点N 在射线MB 上,且∠ANE =∠DCE .(1)如图,求证:AE 是AM 和AN 的比例中项;(2)当点N 在线段AB 的延长线上时,联结AC ,且AC 与NE 互相垂直,求MN的长.【分析】(1)利用矩形的性质和相似三角形的判定与性质解答即可;(2)利用△EDC ∽△CAD ,得出比例式求得线段DE ,AE ,利用△AME ∽△DEC 求得线段AM ,利用(1)的结论求得线段AN ,则MN =AN ﹣AM .【解答】(1)证明:∵EM ⊥EC ,∴∠AEM +∠DEC =90°.∵四边形ABCD 为矩形,∴∠A =∠D =90°,∴∠DEC +∠ECD =90°,∴∠AEM =∠DCE ,∵∠ANE =∠DCE ,∴∠ANE =∠AEM .∵∠A =∠A ,∴△ANE ∽△AEM ,∴.∴AE 2=AM •AN ,∴AE 是AM 和AN 的比例中项;(2)解:如图,AC===5.∵AC与NE互相垂直,∴∠AFE=90°,∴∠ANE+∠NAF=90°.∵∠NAF+∠CAD=90°,∴∠ANE=∠DAC.∵∠ANE=∠DCE,∴∠DAC=∠DCE,∵∠D=∠D,∴△EDC∽△CAD,∴,∴,∴DE=,∴AE=AD﹣DE=.∵EM⊥EC,∴∠AEM+∠DEC=90°.∵四边形ABCD为矩形,∴∠MAE=∠D=90°,∴∠DEC+∠ECD=90°,∴∠AEM=∠DCE,∴△AME∽△DEC,∴,∴,∴AM=.由(1)知:AE2=AM•AN,∴AN=,∴MN=AN﹣AM==.【点评】本题主要考查了矩形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.2.(2022秋•浦东新区期末)如图,在Rt△ABC中,∠ABC=90°,AC=10,tan C=,点D是斜边AC上的动点,联结BD,EF垂直平分BD交射线BA于点F,交边BC于点E.(1)如图,当点D是斜边AC上的中点时,求EF的长;(2)联结DE,如果△DEC和△ABC相似,求CE的长;(3)当点F在边BA的延长线上,且AF=2时,求AD的长.【分析】(1)连接DF,DE,由∠ABC=90°,AC=10,tan C=,得AB=6,BC=8,而D是AC中点,知BD=AC=5,从而DG=BD=,证明△DGF∽△ABC∽△EGD,可得=,=,解得FG=,EG=,即可得EF=FG+EG=;(2)分两种情况:①当△DEC∽ABC时,设CE=m,则BE=8﹣m=DE,有=,解得m=;②当△EDC∽△ABC时,设CE=n,则BE=DE=8﹣n,可得=,解得n=5,即可得△DEC和△ABC相似,CE的长为或5;(3)连接DF,过D作DK⊥AB于K,由∠ADK=∠C,有=,设AK=3t,则DK=4t,在Rt△DKF中,得(4t)2+(3t+2)2=82,解方程即可得到答案.【解答】解:(1)连接DF,DE,如图:∵∠ABC=90°,AC=10,tan C=,∴AB=6,BC=8,∵D是AC中点,∴BD=AC=5,∵EF是BD的垂直平分线,∴DG=BD=,∵D是AC中点,∠ABC=90°,∴AD=BD=CD,∴∠A=∠DBA,∠C=∠DBC,∵EF是BD的垂直平分线,∴DF=BF,DE=BE,∴∠FDG=∠DBA,∠EDG=∠DBC,∴∠FDG=∠A,∠EDG=∠C,∵∠DGF=∠ABC=90°=∠EGD,∴△DGF∽△ABC∽△EGD,∴=,=,∴=,=,解得FG=,EG=,∴EF=FG+EG=;(2)①当△DEC∽ABC时,如图:设CE=m,则BE=8﹣m=DE,∵=,∴=,解得m=,∴CE=;②当△EDC∽△ABC时,如图:设CE=n,则BE=DE=8﹣n,∵=,∴=,解得n=5,∴CE=5;综上所述,△DEC和△ABC相似,CE的长为或5;(3)连接DF,过D作DK⊥AB于K,如图:∴DK∥BC,∴∠ADK=∠C,∴tan∠ADK=tan C=,即=,设AK=3t,则DK=4t,∵AB=6,AF=2,∴BF=8=DF,KF=AK+AF=3t+2,在Rt△DKF中,DK2+KF2=DF2,∴(4t)2+(3t+2)2=82,解得t=或t=(舍去),∴AD===5t=,∴AD的长是.【点评】本题考查直角三角形中的相似问题,涉及勾股定理及应用,垂直平分线等知识,解题的关键是掌握相似三角形的判定定理及应用.3.(2022秋•青浦区校级期末)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AD =CD,O是对角线AC的中点,联结BO并延长交边CD于点E.(1)①求证:△DAC∽△OBC;②若BE⊥CD,求的值:(2)若DE=2,OE=3,求CD的长.【分析】(1)①由等腰三角形的性质得出∠DAC=∠DCA,由平行线的性质得出∠DAC =∠ACB,由直角三角形的性质得出∠OBC=∠OCB,根据相似三角形的判定定理可得出结论;②得出∠OCE=∠OCB=∠EBC=30°.过点D作DH⊥BC于点H,设AD=CD=2m,则BH=AD=2m,则可得出答案;(2)①如图3,当点E在AD上时,证明四边形ABCE是矩形.设AD=CD=x,由勾股定理得出方程,解方程即可得出答案;②如图4,当点E在CD上时,设AD=CD=x,则CE=x﹣2,设OB=OC=m,由相似三角形的性质得出,证明△EOC∽△ECB,得出比例线段,可得出方程,解方程可得出答案.【解答】(1)①证明:如图1,∵AD=CD,∴∠DAC=∠DCA.∵AD∥BC,∴∠DAC=∠ACB.∵BO是Rt△ABC斜边AC上的中线,∴OB=OC,∴∠OBC=∠OCB,∴∠DAC=∠DCA=∠ACB=∠OBC,∴△DAC∽△OBC;②解:如图2,若BE⊥CD,在Rt△BCE中,∠OCE=∠OCB=∠EBC,∴∠OCE=∠OCB=∠EBC=30°.过点D作DH⊥BC于点H,设AD=CD=2m,则BH=AD=2m,在Rt△DCH中,DC=2m,∴CH=m,∴BC=BH+CH=3m,∴;(2)设AD=CD=x,则CE=x﹣2,设OB=OC=m,∵OE=3,∴EB=m+3,∵△DAC∽△OBC,∴,∴,∴.∵∠EBC=∠OCE,∠BEC=∠OEC,∴△EOC∽△ECB,∴,∴,∴,∴m=,将m=代入,整理得,x2﹣6x﹣10=0,解得x=3+,或x=3﹣(舍去).∴CD=3+.【点评】本题考查了相似形综合题,掌握等腰三角形的性质,直角三角形的性质,相似三角形的判定与性质,矩形的判定与性质是解题的关键.4.(2022秋•黄浦区校级期末)如图,已知∠AOB=90°,∠AOB的内部有一点P,且OA =OB=OP=10,过点B作BC∥AP交AO于点C,OP与BC交于点D.(1)如果tan∠AOP=,求OC的长;(2)设AP=x,BC=y,求y与x的函数关系式,并写出定义域;(3)如果BD=AP,求△PBD的面积.【分析】(1)过A作AH⊥OP于H,由勾股定理得AH•OH的值,根据相似三角形的判定,可得△HAP∽△OBC,根据相似三角形的判定得=,即可得OC的值.(2)过A作AN⊥OP于N,过O作OM⊥AP于M,由(1)知△NAP∽△OBC,可得=,即AN=,根据圆的性质过圆心垂直于弦的直线也平分弦,可得AM=MP=,=AP•OM=OP•AN,化简得y=在Rt△AOM中,OM=,S△OAP(0<x<5);(3)如图3,连接AB、AD,AB与OP交于Q,根据平行四边形的判定可得四边形ADBP 是平行四边形,且△AOB是等腰Rt△,即Q是弦AB边PD的中点,根据平行四边形对角线互相平分,可得△AOQ、△BOQ均为等腰Rt△,即OQ==5,PQ=OP﹣OQ=10﹣5,即S△PBD=•PD•BQ可得出结果.【解答】解:(1)如图1,过A作AH⊥OP于H,则有tan∠AOP==,设AH=3a,则OH=4a,在Rt△AOH中有(3a)2+(4a)2=102,解之得a1=﹣2(舍),a2=2,∴AH=6,OH=8,PH=2,∵CD∥AP,OA=OP,∴∠OCD=∠OAP=∠APO,∵∠HAP+∠OPA=∠OCB+∠CBO=90°,∴∠HAP=∠OBC,∴△HAP∽△OBC,∴=,∴OC=;(2)如图2,∵OA=OB=OP,∴A、P、B三点共圆,过A作AN⊥OP于N,过O作OM⊥AP于M,由(1)知△NAP∽△OBC,∴=,∴AN=,∵OM⊥弦AP,∴AM=MP=(圆的性质,过圆心垂直于弦的直线也平分该弦),∴OM==,=AP•OM=OP•AN,∴S△OAP即•x•=×10•,化简移项得y=,其中x最大为AB的长为10,∴0<x<10,即y=(0<x<5);(3)如图3,连接AB、AD,AB与OP交于Q,∵BD平行且等于AP,∴四边形ADBP是平行四边形且△AOB是等腰Rt△,∴Q是弦AB边PD的中点,∴BQ=AQ=AB=5,DQ=PQ,∴OQ⊥AB,∴△AOQ、△BOQ均为等腰Rt△,∴OQ==5,∴PQ=OP﹣OQ=10﹣5,=•PD•BQ=PQ•BQ=(10﹣5)×5=50﹣50.∴S△PBD【点评】本题考查圆的应用,解本题的关键要掌握圆的性质、相似三角形的判定与性质、平行四边形的性质、勾股定理等.5.(2022秋•青浦区校级期末)如图1,梯形ABCD中,AD∥BC,∠A=90°,AD=2,AB=4,BC=5,M在边CD上,连接BM,BM⊥DC.(1)求CD的长;(2)如图2,作∠EMF=90°,ME交AB于点E,MF交BC于点F,若AE=x,BF=y,求y关于x的函数解析式,并写出定义域;(3)若△MCF是等腰三角形,求AE的值.【分析】(1)过点D作DP⊥BC于点E,证明四边形ABPD为矩形,则BP=AD=2,DP=AB=4,再根据勾股定理定理即可求出CD;(2)连接BD,先用等面积法求出BM=4,再证明Rt△ABD≌Rt△MBD(HL),从而得出AD=DM=2,最后证明△MBE∽△MCF,根据相似三角形的性质即可求解;(3)根据△MBE∽△MCF可得△MBE为等腰三角形,根据题意进行分类讨论,当点E 在线段AB上时,当点E在AB延长线上时.【解答】解:(1)过点D作DP⊥BC于点P,∵AD∥BC,∠A=90°,∴∠ABC=90°,∵DP⊥BC,∴∠DPB=90°,∴四边形ABPD为矩形,∴BP=AD=2,DP=AB=4,∵BC=5,∴CP=BC﹣BP=5﹣2=3,在Rt△CDE中,根据勾股定理得:.(2)解:连接BD,∵BM⊥DC,DP⊥BC,=,∴S△BCD即5×4=5BM,解得:BM=4,在Rt△ABD和Rt△MBD中,,∴Rt△ABD≌Rt△MBD(HL),∴AD=DM=2,∴CM=CD﹣DM=3,∵BM⊥DC,∴∠CMF+∠BMF=90°,∠C+∠CBM=90°,∵∠EMF=90°,∠ABC=90°,∴∠BME+∠BMF=90°,∠EBM+∠CBM=90°∴∠BME=∠CMF,∠EBM=∠C,∴△MBE∽△MCF,∴,∴,整理得:.(3)①当点E在线段AB上时,由(2)可得△MBE∽△MCF,∵△MCF为等腰三角形,∴△MBE为等腰三角形,当BM=BE=4时,AE=0;当BM=ME=4时,过点M作MQ⊥AB于点Q,由(1)可得:,∴,∵BM=4,∴BQ=BM•cos∠MBE=4×,∵BM=ME,MQ⊥AB,∴,不符合题意,舍去;当BE=ME时,过点E作EH⊥BM于点H,∵BE=ME,EH⊥BM,∴,∵,∴,∴,②当点E在AB延长线上时,∵∠ABC=90°,∠ABM<∠ABC,∴∠MBE>90°,∴当点E在AB延长线上时,∠MBE只能为等腰三角形△MBE的顶角,∴BM=BE=4,∴AE=AB+BE=8.综上:AE=0或或8.【点评】本题主要考查了四边形和三角形的综合应用,相似三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质,解直角三角形,勾股定理等,解题的关键是熟练掌握各个相关知识点并灵活运用,根据题意正确作出辅助线,构造直角三角形那个和全等三角形求解.6.(2022秋•徐汇区期末)已知:在梯形ABCD中,AB∥CD,AD=BC=5,AB=2.5,sin D=,点E是AD边上一点,DE=3,点P是CD边上的一动点,连接EP,作∠EPF,使得∠EPF=∠D,射线PF与AB边交于点F,与CB的延长线交于点G,设DP=x,BG =y.(1)求CD的长;(2)试求y关于x的函数关系式,并写出定义域;(3)连接EF,如果△EFP是等腰三角形,试求DP的长.【分析】(1)作等腰梯形ABCD的高AM、BN,得矩形AMNB,△ADM≌△BCN,则DC=DM+MN+NC=AB+2AD•cos D=8.5;(2)先由三角形内角和定理得出∠DEP=∠GPC,由等腰梯形在同一底上的两个角相等得出∠D=∠C,则△DEP∽△CPG,根据相似三角形对应边成比例得出y关于x的函数关系式,并写出定义域;(3)分三种情况:①PE=PF;②PE=EF;③PF=EF.【解答】解:(1)如图,作等腰梯形ABCD的高AM、DN,得矩形AMNB,△ADM≌△BCN,所以CD=DM+MN+NC=AB+2AD•cos D=2.5+2×5×=8.5;(2)如图.∵∠EPD+∠EPF+∠GPC=∠EPD+∠D+∠DEP=180°,∠EPF=∠D,∴∠DEP=∠GPC,∵ABCD是等腰梯形,∴∠D=∠C,∴△DEP∽△CPG,∴DE:CP=DP:CG,∴3:(8.5﹣x)=x:(y+5);y=﹣x2+x﹣5(<x<6);(3)分三种情况:①如果PE=PF,如图,过F作BC平行线交底边于H,则∠FHP=∠C=∠D.∵在△PED与△FPH中,,∴△PED≌△FPH(AAS),∴ED=PH=3,DP=FH=BC=5;②如果PE=EF,如图,过F作BC平行线交底边于H,则∠FHP=∠C=∠D.在△PED与△FPH中,,∴△PED∽△FPH,∴PE:PF=PD:FH,又∵PE=EF,过E点做△EFP的高ET,则FP:PE=2PT:PE=2cos∠EPF=2cos∠D=,∵FH=BC=5,∴=,解得x=;即PD=;③如果PF=EF,同理可得△PED∽△FPH,∴PE:PF=PD:FH,∵PE=EF,过F点做△EFP的高FT,则PE:PF=2PT:PF=2cos∠EPF=2cos D=,∵FH=BC=5,∴=,解得x=6,∵2.5<x<6;∴x=6(舍去),综上所述:PD=5或时,△EFP是等腰三角形.【点评】本题考查了等腰梯形的性质,全等三角形、相似三角形的判定与性质,等腰三角形的性质,第(3)问进行分类讨论是解题的关键.7.(2022秋•静安区期末)在等腰直角△ABC中,∠C=90°,AC=4,点D为射线CB上一动点(点D不与点B、C重合),以AD为腰且在AD的右侧作等腰直角△ADF,∠ADF =90°,射线AB与射线FD交于点E,联结BF.(1)如图所示,当点D在线段CB上时,①求证:△ACD∽△ABF;②设CD=x,tan∠BFD=y,求y关于x的函数解析式,并写出x的取值范围;(2)当AB=2BE时,求CD的长.【分析】(1)①利用等腰直角三角形的性质和两边对应成比例且夹角相等的两个三角形相似解答即可;②过点E作EH⊥BD于点H,设BH=HE=m,利用相似三角形的拍等于性质和直角三角形的边角关系定理解答即可;(2)利用分类讨论的思想方法,画出图形,列出关于x的方程,解方程即可得出结论.【解答】(1)①证明:∵△ABC和△ADF是等腰直角三角形,∴AB=AC,AF=AD,∠CAB=∠DAF=45°.∴,∠CAD=∠BAF,∴△ACD∽△ABF;②解:过点E作EH⊥BD于点H,如图,∵△ABC是等腰直角三角形,∴∠ABC=45°,∵EH⊥BD,∴BH=HE.设BH=HE=m,则BE=m,∴DH=BC﹣CD﹣BM=4﹣x﹣m.∵∠ADF=90°,∴∠ADC+∠FDH=90°,∵∠CAD+∠ADC=90°,∴∠CAD=∠FDH.∵∠ACD=∠DHE=90°,∴△ACD∽△DHE,∴,∴,∴m=,∴BH=HE=.由①知:△ACD∽△ABF,∴∠ACD=∠ABF=90°.∵∠ADF=90°,∴∠ADF=∠ABF=90°.∵∠AED=∠BEF,∴∠BFD=∠DAE.∴tan∠BFD=tan∠DAE=.∵△ACD∽△DHE,∴,∴y=tan∠BFD==,∴y关于x的函数解析式y=,x的取值范围:0<x<4;(2)①解:当点D在线段CB上时,如图,由(1)②知:BH=HE=.∴BE=BH=•.∵AB=2BE,AB=AC=4,∴4=2ו,∴8+2x=4x﹣x2,∴x2﹣2x+8=0.∵Δ=(﹣2)2﹣4×1×8=4﹣32=﹣28<0,∴此方程没有实数根,∴当点D在线段CB上时,不存在AB=2BE;②当点D在线段CB的延长线上时,如图,过点E作EH⊥BD于点H,∵△ABC和△ADF是等腰直角三角形,∴AB=AC,AF=AD,∠CAB=∠DAF=45°.∴,∠CAD=∠BAF,∴△ACD∽△ABF.∴∠ACD=∠ABF=90°.∵△ABC是等腰直角三角形,∴∠ABC=45°,∴∠EBH=∠ABC=45°.∵EH⊥BD,∴BH=HE.设BH=HE=n,则BE=n,∴DH=BC﹣CD﹣BM=x﹣4﹣n.∵∠ADF=90°,∴∠ADE=90°,∴∠ADC+∠EDH=90°,∵∠CAD+∠ADC=90°,∴∠CAD=∠EDH.∵∠ACD=∠DHE=90°,∴△ACD∽△DHE,∴,∴,∴n=.∴BH=HE=.∴BE=BH=•.∵AB=2BE,AB=4,∴4=2ו.∴8+2x=x2﹣4x,∴x2﹣6x﹣8=0,解得:x==3±,∵x>0,∴x=3+.∴CD=3+.综上,当AB=2BE时,CD的长为3+.【点评】本题主要考查了等腰直角三角形的性质,直角三角形的性质,相似三角形的判定与性质,函数的解析式,一元二次方程的解法,本题是相似三角形的综合题,熟练掌握相似三角形的判定与性质是解题的关键.8.(2022秋•杨浦区校级期末)如图,在△ABC中,∠ACB=90°,CD是边AB上的中线,AC=3,BC=4,点Q是CB延长线上的一动点,过点Q作QP⊥CD,交CD的延长线于点P.(1)当点B为CQ的中点时,求PD的长;(2)设BQ=x,PD=y,求y关于x的函数关系式,并写出x的取值范围;(3)过点B作BF⊥AB交PQ于F,当△BDF和△ABC相似时,求BQ的长.【分析】(1)由勾股定理可求得AB的长,由直角三角形斜边上中线的性质可得∠PCQ =∠ABC,则可得△PCQ∽△CBA,由相似三角形的性质即可求得PC的长度,从而求得结果;(2)由△PCQ∽△CBA,即可求得PC的长度,从而由y=PC﹣CD即可求得y关于x 的函数关系式,由CQ在CB延长线上的一动点,即可写出x的取值范围;(3)分△DBF∽△ACB,△DBF∽△BCA两种情况,利用相似三角形的性质即可完成求解.【解答】解:(1)∵∠ACB=90°,AC=3,BC=4,∴,∵CD是边AB上的中线,∴,∴∠PCQ=∠ABC,∵∠PQC=∠ACB=90°,∴△PCQ∽△CBA,即,∵点B为CQ的中点,∴CQ=2BC=8,∴,∴;(2)解:∵△PCQ∽△CBA,∴,∵CQ=BC+BQ=4+x,∴,∴,∵点Q是CB延长线上的一动点,∴x>4,∴y关于x的函数关系式,x的取值范围为x>4;(3)若△DBF∽△ACB,如图,则,∴,∵∠FBQ+∠ABC=∠ABC+∠A=90°,∠PCQ+∠ACD=∠PCQ+∠PQC=90°,∴∠FBQ=∠A,∠ACD=∠PQC,∴△FBQ∽△DAC,∴,∵,∴;若△DBF∽△BCA,如图,则,∠FDB=∠ABC,∴,DF∥CQ,∴△PDF∽△PCQ,∴,即DF⋅PC=PD⋅CQ,∴,化简得:4x2+7x﹣36=0,解得:,x2=﹣4(舍去),∴.综上,BQ的长为4或.【点评】本题考查了相似三角形的判定与性质,直角三角形斜边上中线的性质,勾股定理,正确运用相似三角形的判定与性质是解题的关键,注意分类讨论.9.(2022秋•金山区校级期末)已知∠BAC的余切值为2,AB=2,点D是线段AB上一动点(点D不与点A、B重合),以点D为顶点的正方形DEFG的另两个顶点E、F 都在射线AC上,且点F在点E的右侧,联结BG,并延长BG交射线AC于点P.(1)联结AG,求证:cot∠GAF=3;(2)如图1,当点P在线段EF上时,如果∠GPF的正切值为2,求线段BD的长;(3)联结AG,当△AGP为等腰三角形时,求线段BD的长.【分析】(1)联结AG,根据三角函数的定义可得出结论;(2)由题意可知DG∥AP,所以△BDG∽△BAP,再由三角形函数的定义和相似三角形的性质可得结论;(3)根据题意,需要分三种情况,画图出行,分别求解即可.【解答】(1)证明:如图,联结AG,∵四边形DEFG是正方形,∴∠DEA=∠DEF=∠GFE=90°,∵∠BAC的余切值为2,∴cot∠DEA==2,设DE=a,则AE=2a,∴DG=GF=EF=a,∴tan∠GAF==.即cot∠GAF=3.(2)解:由(1)知,DG=GF=EF=a,AE=2a,∵∠GPF的正切值为2,∴tan∠GPF==2,∴PF=a,∴EP=a,∴AP=AE+EP=a,∵DG∥AP,∴△BDG∽△BAP,∴BD:AB=DG:AP,即BD:2=a:a,解得BD=;(3)解:设正方形的边长为t.根据题意,需要分三种情况:①AG=AP,如图,∵cot∠GAF==3,∴AF=3t,∴AG=t,∴AP=AG=t,∵DG∥AP,∴△BDG∽△BAP,∴BD:AB=DG:AP,即BD:2=t:t,解得BD=;②AG=GP,如图,∴∠GAF=∠GPF,即cot∠GAF=cot∠GPF=3,∴AF=PF=3t,∴AP=6t,∵DG∥AP,∴△BDG∽△BAP,∴BD:AB=DG:AP,即BD:2=t:6t,解得BD=;③AP=PG,如图,设PG=AP=m,则PF=3t﹣m,在Rt△PGF中,由勾股定理可得,m2=t2+(3t﹣m)2,解得m=t,∴AP=t,∵DG∥AP,∴△BDG∽△BAP,∴BD:AB=DG:AP,即BD:2=t:t,解得BD=.综上,当△AGP为等腰三角形时,求线段BD的长为:或或.【点评】本题属于几何综合题,主要考查正方形的性质,相似三角形的性质与判定,等腰三角形的性质与判定,分类讨论思想等相关知识,根据题意求出AP与正方形边长的关系是解题关键.10.(2022秋•闵行区期末)如图1,点D为△ABC内一点,联结BD,∠CBD=∠BAC,以BD、BC为邻边作平行四边形DBCE,DE与边AC交于点F,∠ADE=90°.(1)求证:△ABC∽△CEF;(2)延长BD,交边AC于点G,如果CE=FE,且△ABC的面积与平行四边形DBCE 面积相等,求的值;(3)如图2,联结AE,若DE平分∠AEC,AB=5,CE=2,求线段AE的长.【分析】(1)根据平行的性质推导出∠E=∠BAC,即可证明;(2)延长AD交BC于点H,由题意可得AH=2DH,再由(1)可得∠ABC=∠ACB,从而得到△ABC是等腰三角形,H是BC的中点,由DF∥BC,可得==,则AG=2GF,即可求=2;(3)延长BD交AE于点N,交AC于点M,根据平行四边形的性质和角平分线的定义,可得∠NDE=∠DEA,则DN=EN,再由∠ADE=90°,可知N是AE的中点,M是AC 的中点,求出MN=1,证明△ABC∽△BMC,则有==,可求BM=,再求DN=BM﹣BD+MN=﹣1,由此即可求出AE=2DN=5﹣2.【解答】(1)证明:∵四边形CBCE是平行四边形,∴DE∥BC,∴∠ACB=∠EFC,∠CBD=∠E,∵∠CBD=∠BAC,∴∠E=∠BAC,∴△ABC∽△CEF;(2)解:延长AD交BC于点H,∵△ABC的面积与平行四边形DBCE面积相等,∴×BC×AH=BC×DH,∴AH=2DH,∵CE=FE,∴∠EFC=∠FCE,∵△ABC∽△CEF,∴∠ABC=∠ACB,∴AB=AC,∴H是BC的中点,∴DF=HC,HC=BC,∵DF∥BC,∴==,∴CF=3GF,∵AF=FC,∴AG=2GF,∴=2;(3)解:延长BD交AE于点N,交AC于点M,∵DE平分∠AEC,∴∠AED=∠CED,∵BD∥CE,∴∠NDE=∠DEC,∴∠NDE=∠DEA,∴DN=EN,∵∠ADE=90°,∴N是AE的中点,∵MN∥CE,∴M是AC的中点,∵CE=2,∴MN=1,∵∠CBD=∠BAC,∴△ABC∽△BMC,∴==,∵AB=5,CE=2,∴==,∴=,∴BM=,∴DN=BM﹣BD+MN=﹣1,∴AE=2DN=5﹣2.【点评】本题考查相似三角形的综合应用,熟练掌握平行四边形的性质,三角形相似的判定及性质,直角三角形的性质,中位线的性质是解题的关键.11.(2022秋•黄浦区期末)已知,如图1,在四边形ABCD中,∠BAC=∠ADC=90°,CD=4,cos∠ACD=.(1)当BC∥AD时(如图2),求AB的长;(2)联结BD,交边AC于点,①设CE=x,AB=y,求y关于x的函数解析式并写出定义域;②当△BDC是等腰三角形时,求AB的长.【分析】(1)由锐角三角函数定义得AC=5,再由勾股定理得AD=3,然后证△ABC∽△DCA,即可解决问题;(2)①过D作DN⊥AC于点N,由三角形面积得DN=,再由勾股定理得CN=,然后证△BAE∽△DNE,即可解决问题;②分两种情况,a、当BC=BD时,过B作BQ⊥CD于点Q,过A作AP⊥BQ于点P,则CQ=DQ=CD=2,四边形APQD是矩形,再证△APB∽△ADC,即可求解;b、当BD=CD=4时,过B作BM⊥直线AD于点M,证△BMA∽△ADC,得=,设BM=3k,则AM=4k,然后由勾股定理得出方程,解方程,即可得出结论.【解答】解:(1)∵∠ADC=90°,∴cos∠ACD==,∴AC=CD=×4=5,∴AD===3,∵BC∥AD,∴∠ACB=∠DAC,∵∠BAC=∠ADC=90°,∴△ABC∽△DCA,∴=,即=,∴AB=,即AB的长为;(2)①如图1,过D作DN⊥AC于点N,则∠DNE=∠DNC=90°,∵∠ADC=90°,=AC•DN=AD•CD,∴S△ACD∴DN===,∴CN===,∴AN=AC﹣CN=5﹣=,∵CE=x,∴AE=AC﹣CE=5﹣x,EN=CE﹣CN=x﹣,∵AE>0,EN>0,∴<x<5,∵∠BAE=∠DNE=90°,∠AEB=∠NED,∴△BAE∽△DNE,∴=,即=,∴y==,即y关于x的函数解析式为y=(<x<5);②∵∠BAC=90°,∴BC>AC,∵AC=5,CD=4,∴BC>CD,分两种情况:a、当BC=BD时,如图3,过B作BQ⊥CD于点Q,过A作AP⊥BQ于点P,则CQ=DQ=CD=2,四边形APQD是矩形,∴AP=DQ=2,∠PAD=90°,∵∠BAC=90°,∴∠PAD=∠BAC,∴∠BAP=∠CAD,∵∠APB=∠ADC=90°,∴△APB∽△ADC,∴=,即=,解得:AB=;b、当BD=CD=4时,如图4,过B作BM⊥直线AD于点M,则∠BMA=∠BAC=∠ADC=90°,∴∠ABM+∠BAM=∠CAD+∠BAM=90°,∴∠ABM=∠CAD,∴△BMA∽△ADC,∴==,设BM=3k,则AM=4k,∴DM=AD+AM=3+4k,在Rt△BDM中,由勾股定理得:BD2=BM2+DM2,即42=(3k)2+(3+4k)2,整理得:25k2+24k﹣7=0,解得:k1=,k2=(不符合题意舍去),∴AB===5k=;综上所述,当△BDC是等腰三角形时,AB的长为或.【点评】本题是四边形综合题目,考查了矩形的判定与性质、梯形的性质、相似三角形的判定与性质、勾股定理、等腰三角形的性质、锐角三角函数定义以及分类讨论等知识,本题综合性强,熟练掌握矩形的判定与性质,证明三角形相似是解题的关键,属于中考常考题型.12.(2022秋•徐汇区校级期末)如图,梯形ABCD中,AD∥BC,对角线AC⊥BC,AD=9,AC=12,BC=16,点E是边BC上一个动点,∠EAF=∠BAC,AF交CD于点F、交BC延长线于点G,设BE=x.(1)使用x的代数式表示FC;(2)设=y,求y关于x的函数关系式,并写出定义域;(3)当△AEG是等腰三角形时,直接写出BE的长.【分析】(1)易证△ABC∽△DCA,则有∠B=∠ACD,由∠EAF=∠BAC可得∠BAE =∠CAF,从而得到△ABE∽△ACF,然后根据相似三角形的性质即可解决问题;(2))由△ABE∽△ACF可得=,根据∠EAF=∠BAC可得△AEF∽△ABC,从而得到EF=AF.易证△CFG∽△DFA,从而得到=,问题得以解决;(3)易证△ADF∽△GAE,因而当△GAE是等腰三角形时,△ADF也是等腰三角形,然后只需分三种情况(①AF=DF,②AD=DF,③AF=AD,)讨论,就可解决问题.【解答】解:(1)如图1,∵AC⊥BC,∴∠ACB=90°.∵AD∥BC,∴∠DAC=∠ACB=90°.∵AD=9,AC=12,BC=16,∴AB=20,DC=15.∵==,∠DAC=∠ACB,∴△ABC∽△DCA,∴∠B=∠ACD.∵∠EAF=∠BAC,∴∠BAE=∠CAF,∴△ABE∽△ACF,∴=,∴=,∴CF=x;(2)∵△ABE∽△ACF,∴=,又∵∠EAF=∠BAC,∴△AEF∽△ABC,∴===,∴EF=AF.∵AD∥CG,∴△CFG∽△DFA,∴=,∴y===•=•,整理得:y=(0<x≤16);(3)当△AEG是等腰三角形时,BE的长为、10或7.解题过程如下:∵△ABC∽△DCA,∴∠BAC=∠D,∴∠EAF=∠BAC=∠D.∵AD∥BC,∴∠G=∠FAD,∴△ADF∽△GAE,∴当△GAE也是等腰三角形.①当AF=DF时,则有∠FAD=∠D,∵∠FAD+∠CAF=90°,∠D+∠ACD=90°,∴∠CAF=∠ACD,∴FA=FC,∴CF=DF=,∴x=,∴x=;②当AD=DF=9时,CF=CD﹣DF=6,∴x=6,。
2022-2023学年上海七一中学八上期中考数学试卷及答案
2022-2023七一中学八上期中考数学试卷本试卷共有26道试题,满分120分,考试时间90分钟一、选择题(本大题共6题,每题3分,满分18分)1、下列各式中,能与8合并的是( ▲ ) A. 0.2 B. 12 C. 64 D. 982、下列二次根式中,最简二次根式是( ▲ )A. 24a bB. 12a C. 22a b + D. 20a3、下列方程中,是关于x 的一元二次方程的是(▲ )A. 20ax bx c ++= B. 2230x x +−=C.2321(31)(2)x x x x +−=+− D. 21x =−4、下列运算正确的是( ▲ )(1)221.50.5 1.50.51−=−=(2)20.520.51=⨯=(3)2(5)5x x −=−(4)22x x x −=−A.1个 B.2个 C.3个 D.4个5、下列语句不是命题的是( ▲ )A.两条直线相交有且只有一个交点B.两点之间线段最短C. 延长AB 到D ,使2BD AB =D. 等角的补角相等6、如图,将ABC ∆绕点A 逆时针旋转得到ADE ∆,其中点B 、C 分别与点D 、E 对应,如果B 、D 、C 三点恰好在同一直线上,那么下列结论错误的是( ▲ )A.ACB AED ∠=∠B. DAC CDE ∠=∠C. ADE ACE ∠=∠D. BAD CAE∠=∠二、填空题(本大题共12题,每题3分,满分36分)7、化简:34=_____▲_____. 8、化简:28(0)a a >=_____▲_____.9、若关于x 的一元二次方程22(1)310m x x m −++−=有一根为0,则m =_____▲_____.10、方程221x x =−的根是_____▲_____.11、如图,B E ∠=∠,AD CF =,使ABC DEF ∆∆≌,请添一个条件可以是_____▲_____. 1212x −+的有理化因式可以是_____▲_____.133344x x x x−−=−−成立,则x 的取值范围是_____▲_____. 14、不等式23632x +<的解集是_____▲_____.15、把命题“同角的余角相等”改写成“如果……,那么……”的形式:____________▲____________.16、如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D 、E ,25AD =cm ,17DE =cm ,求BE =_____▲_____cm .17、如图,已知ABC ∆中,AB AC =,AD AE =,30BAD ∠=︒,则EDC ∠=_____▲_____.18、如图,等边ABC ∆的边长是3,动点E 在射线AB 上,动点D 在射线CB 上,且ED EC =,当1BE =时,那么CD 的长为_____▲_____.三、解答题(本大题共8题,满分66分) 19、(本题满分10分)(1)计算:)233133331⎫−⎪⎪−⎭; (2)计算:222123a b a a b b b a.(1)解方程:22(21)(1)x x −=−; (2)解方程:233142x x −−=. 21、(本题满分6分)先化简,再求值,如果2a =−,b =的值. 22、(本题满分6分)已知=.如图,AB AC =,AD AE =,BAD CAE ∠=∠,BE 与CD 相交于点F .求证:(1)ADC AEB ∠=∠;(2)FD FE =.24、(本题满分8分)如图,AD 是ABC ∆的高,2B C ∠=∠,5BD =,25BC =,求AB 的长.如图,在ABC ∆中,90ACB ∠=︒,D 是AB 上一点,且BD AD CD ==,过B 作 BE CD ⊥,分别交AC 于点E 、交CD 于点F .(1)求证:A EBC ∠=∠;(2)如果2AC BC =,请猜想BE 和BD 的数量关系,并证明你的猜想.如图,在ABC ∆中,2ACB B ∠=∠,BAC ∠平分线AO 交BC 于点D ,点H 为AO 上一动点,过H 作直线l AO ⊥于H ,分别交直线AB 、AC 、BC 于点N 、E 、M .(1)当直线l 经过点C 时(如图2),求证:BN CD =;(2)当M 是线段BC 的中点时,写出线段CE 和线段CD 之间的数量关系,并证明;(3)请直接写出BN 、CE 和CD 之间的数量关系.2022-2023七一中学八上期中考数学试卷参考答案1-6、DCDACB7、28、2 9、-1 10、111、AB ∥DE 122 13、34x ≤< 14、x >15、如果两个角是同一个角的余角,那么这两个角相等16、8 17、15︒ 18、5或719、(1)−;(2)20、(1)10x =,223x =;(2)112x =−,22x =21、a b −=22、2y−23、(1)证略;(2)证略24、1525、(1)证略;(2)BE BD =,证略26、(1)证略;(2)2CD CE =;(3)当点M 在线段BC 上时,CD BN CE =+;当点M 在BC 延长线上时,CD BN CE =−;当点M 在CB 延长线上时,CD CE BN =−。
2022年上海市中考数学试卷及答案
2022年上海市中考试卷一、选择题(本大题共6题,每题4分,满分24分)1.8的相反数是( )A .8B .18C .8-D .18- 2.下列运算正确的是( )A .236a a a +=B .22()ab ab =C .222()a b a b +=+D .22()()a b a b a b +-=-3.已知反比例函数(0)k y k x=≠,且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图象上的为( )A .(2,3)B .(2,3)-C .(3,0)D .(3,0)-4.我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是( )A .平均数B .中位数C .众数D .方差5.下列说法正确的是( )A .命题一定有逆命题B .所有的定理一定有逆定理C .真命题的逆命题一定是真命题D .假命题的逆命题一定是假命题6.有一个正n 边形旋转90︒后与自身重合,则n 为( )A .6B .9C .12D .15二、填空题(本大题共12题,每题4分,满分48分)7.计算:32a a -= .8.已知()3f x x =,则f (1)= .9.解方程组:2213x y x y +=⎧⎨-=⎩的结果为 .10.已知20x m -+=有两个不相等的实数根,则m 的取值范围是 .11.甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为 .12.某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为 .13.为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(01-小时4人,12-小时10人,23-小时14人,34-小时16人,45-小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是 .14.已知直线y kx b =+过第一象限且函数值随着x 的增大而减小,请列举出来这样的一条直线: .15.如图所示,在ABCD 中,AC ,BD 交于点O ,BO a =,BC b =,则DC = .16.如图所示,小区内有个圆形花坛O ,点C 在弦AB 上,11AC =,21BC =,13OC =,则这个花坛的面积为 .(结果保留)π17.如图,在ABC ∆中,30A ∠=︒,90B ∠=︒,D 为AB 中点,E 在线段AC 上,AD DE AB BC =,则AE AC= .18.定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为.三.解答题(本大题共7题,满分78分)19.计算:112212|3|()12331---+--.20.解关于x的不等式组:34423x xxx>-⎧⎪+⎨>+⎪⎩.21.一个一次函数的截距为1-,且经过点(2,3)A.(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos ABC∠的值.22.我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图(1)所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,α的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义.如图(2)所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE 的位置,此时测得其影长DF为3米,求灯杆AB的高度.23.如图所示,在等腰三角形ABC中,AB AC=,点E,F在线段BC上,点Q在线段AB上,且CF BE=,2AE AQ AB=⋅.求证:(1)CAE BAF∠=∠;(2)CF FQ AF BQ⋅=⋅.24.在平面直角坐标系xOy 中,抛物线212y x bx c =++过点(2,1)A --,(0,3)B -. (1)求抛物线的解析式;(2)平移抛物线,平移后的顶点为(P m ,)(0)n m >.ⅰ.如果3OBP S ∆=,设直线x k =,在这条直线的右侧原抛物线和新抛物线均呈上升趋势,求k 的取值范围;ⅱ.点P 在原抛物线上,新抛物线交y 轴于点Q ,且120BPQ ∠=︒,求点P 的坐标.25.(14分)如图,在ABCD 中,P 是线段BC 中点,联结BD 交AP 于点E ,联结CE .(1)如果AE CE =.ⅰ.求证:ABCD 为菱形;ⅱ.若5AB =,3CE =,求线段BD 的长;(2)分别以AE ,BE 为半径,点A ,B 为圆心作圆,两圆交于点E ,F ,点F 恰好在射线CE 上,如果2CE AE =,求AB BC的值.答案与解析一、选择题(本大题共6题,每题4分,满分24分)1.解:8的相反数为:8-.故选:C .2.解:A 、2a 和3a 不是同类项,不能合并,故本选项不符合题意;B 、222()ab a b =,故本选项不符合题意;C 、222()2a b a ab b +=++,故本选项不符合题意;D 、22()()a b a b a b +-=-,故本选项符合题意.故选:D .3.解:因为反比例函数(0)k y k x=≠,且在各自象限内,y 随x 的增大而增大, 所以0k <,A .2360⨯=>,故本选项不符合题意;B .2360-⨯=-<,故本选项符合题意;C .300⨯=,故本选项不符合题意;D .300-⨯=,故本选项不符合题意;故选:B .4.解:因为计算了点单的总额和不计算外卖费的总额只相差外卖费,其余数据的波动幅度相同, 所以两种情况计算出的数据一样的是方差,故选:D .5.解:A 、命题一定有逆命题,本选项说法正确,符合题意,B 、不是所有的定理一定有逆定理,例如全等三角形的对应角相等,没有逆定理,故本选项说法错误,不符合题意;C 、真命题的逆命题不一定是真命题,故本选项说法错误,不符合题意;D 、假命题的逆命题不一定是假命题,例如假命题对应角相等的三角形全等,其逆命题是真命题,故本选项说法错误,不符合题意;故选:A .6.解:A .正六边形旋转90︒后不能与自身重合,不合题意;B .正九边形旋转90︒后不能与自身重合,不合题意;C .正十二边形旋转90︒后能与自身重合,符合题意;D .正十五边形旋转90︒后不能与自身重合,不合题意;故选:C .二、填空题(本大题共12题,每题4分,满分48分)7.解:32(32)a a a a -=-=.8.解:因为()3f x x =,所以f (1)313=⨯=,故答案为:3.9.解:22()()3x y x y x y -=+-=,且1x y +=,3x y ∴-=,∴可得方程组13x y x y +=⎧⎨-=⎩, 解得:21x y =⎧⎨=-⎩. 故答案为:21x y =⎧⎨=-⎩. 10.解:关于x 的方程2230x x m -+=有两个不相等的实数根,∴△2(23)40m =-->,解得:3m <.故答案为:3m <.11.解:画树状图如下:共有6种等可能的结果,其中分到甲和乙的结果有2种,∴分到甲和乙的概率为2163=, 故答案为:13. 12.解:设平均每月的增长率为x ,由题意得225(1)36x +=,解得10.2x =,2 2.2x =-(不合题意,舍去)所以平均每月的增长率为20%.故答案为:20%.13.解:1662008841014166+⨯=++++(人), 故该学校六年级学生阅读时间不低于3小时的人数是88人.故答案为:88.14.解:直线y kx b =+过第一象限且函数值随着x 的增大而减小,0k ∴<,0b >,∴符合条件的函数关系式可以为:1y x =-+(答案不唯一).故答案为:1y x =-+(答案不唯一).15.解:因为四边形ABCD 为平行四边形,所以BO OD =,所以2DC OC OD BC BO OD a b =-=--=-+.故答案为:2a b -+.16.解:如图,连接OB ,过点O 作OD AB ⊥于D ,OD AB ⊥,OD 过圆心,AB 是弦,111()(1121)16222AD BD AB AC BC ∴===+=⨯+=, 21165CD BC BD ∴=-=-=,在Rt COD ∆中,22222135144OD OC CD =-=-=,在Rt BOD ∆中,222144256400OB OD BD =+=+=,2400O S OB ππ∴=⨯=,故答案为:400π.17.解:D 为AB 中点,∴12AD AB =. 当//DE BC 时,ADE ABC ∆∆∽,则12AD DE AE AB BC AC ===. 当DE 与BC 不平行时,DE DE =',14AE AC '=. 故答案是:12或14.18.解:如图,圆与三角形的三条边都有两个交点,截得的三条弦相等, ∴圆心O 就是三角形的内心,∴当O 过点C 时,且在等腰直角三角形ABC 的三边上截得的弦相等,即CG CF DE ==,此时O 最大, 过点O 分别作弦CG 、CF 、DE 的垂线,垂足分别为P 、N 、M ,连接OC 、OA 、OB , CG CF DE ==, OP OM ON ∴==,90C ∠=︒,2AB =,AC BC =,222AC BC ∴=== 由AOC BOC AOB ABC S S S S ∆∆∆∆++=,∴11112222ABC AC OP BC ON AB OM S AC BC ∆⋅+⋅+⋅==⋅, 设OM x =,则OP ON x ==, ∴22222x x x +=解得21x =,即21OP ON ==,在Rt CON ∆中,222OC ON =故答案为:22三.解答题(本大题共7题,满分78分)19.解:11221|3()12331---+- 2(31)3121(31)(31)3+=-+333123=-13=20.解:34423x x x x >-⎧⎪⎨+>+⎪⎩①②, 由①得,34x x ->-,24x >-,解得2x >-,由②得,436x x +>+,364x x ->-,22x ->,解得1x <-,所以不等式组的解集为:21x -<<-.21.解:(1)设一次函数的解析式为:1y kx =-, 213k ∴-=,解得:2k =,一次函数的解析式为:21y x =-.(2)点A ,B 在某个反比例函数上,点B 横坐标为6, (6,1)B ∴,(6,3)C ∴,ABC ∴∆是直角三角形,且2BC =,4AC =,根据勾股定理得:AB =cosBC ABC AB ∴∠===. 22.解:(1)如图:由题意得:BE CD b ==米,EC BD a ==米,90AEC ∠=︒,ACE α∠=, 在Rt AEC ∆中,tan tan AE CE a αα=⋅=(米),(tan )AB AE BE b a α∴=+=+米,∴灯杆AB 的高度为(tan )a b α+米;(2)由题意得:2GC DE ==米, 1.8CD =米,90ABC GCD EDF ∠=∠=∠=︒, AHB GHC ∠=∠,ABH GCH ∴∆∆∽, ∴CG CH AB BH =, ∴211AB BC=+, F F ∠=∠,ABF EDF ∴∆∆∽, ∴DE DF AB BF =, ∴233 1.8AB BC =++, ∴1313 1.8BC BC=+++, 0.9BC ∴=米, ∴2110.9AB =+, 3.8AB ∴=米,∴灯杆AB 的高度为3.8米.23.证明:(1)AB AC =,B C ∴∠=∠,CF BE =,CF EF BE EF ∴-=-,即CE BF =,在ACE ∆和ABF ∆中,AC ABC B CE BF=⎧⎪∠=∠⎨⎪=⎩,()ACE ABF SAS ∴∆≅∆,CAE BAF ∴∠=∠;(2)ACE ABF ∆≅∆,AE AF ∴=,CAE BAF ∠=∠,2AE AQ AB =⋅,AC AB =,∴AE ACAQ AF =,ACE AFQ ∴∆∆∽,AEC AQF ∴∠=∠,AEF BQF ∴∠=∠,AE AF =,AEF AFE ∴∠=∠,BQF AFE ∴∠=∠,B C ∠=∠,CAF BFQ ∴∆∆∽,∴CF AF BQ FQ=, 即CF FQ AF BQ ⋅=⋅.24.解:(1)将(2,1)A --,(0,3)B -代入212y x bx c =++,得: 1223b c c -=-+⎧⎨-=⎩, 解得:03b c =⎧⎨=-⎩, ∴抛物线的解析式为2132y x =-. (2)i .2132y x =-, ∴抛物线的顶点坐标为(0,3)-,即点B 是原抛物线的顶点,平移后的抛物线顶点为(,)P m n , ∴抛物线平移了||m 个单位,13||32OPB S m ∆∴=⨯=, 0m >,2m ∴=,即平移后的抛物线的对称轴为直线2x =,在x k =的右侧,两抛物线都上升,原抛物线的对称轴为y 轴,开口向上, 2k ∴;ii .把(,)P m n 代入2132y x =-, 2132n m ∴=-, 21(,3)2P m m ∴-, 由题意得,新抛物线的解析式为22211()322y x m n x mx m =-+=-+-, 2(0,3)Q m ∴-,(0,3)B -, 2BQ m ∴=,22222411(33)24BP m m m m =+-+=+,222222411[(3)(3)]24PQ m m m m m =+---=+,如图,过点P 作PC y ⊥轴于C ,则||PC m =,PB PQ =,PC BQ ⊥,21122BC BQ m ∴==,111206022BPC BPQ ∠=∠=⨯︒=︒, 212tan tan 603||m BC BPC PC m ∴∠=︒===, 23m ∴=或23m =-(舍),21332n m ∴=-=, P ∴点的坐标为(23,3).25.(1)i .证明:如图,连接AC 交BD 于点O ,四边形ABCD 是平行四边形,OA OC ∴=,AE CE =,OE OE =,()AOE COE SSS ∴∆≅∆,AOE COE ∴∠=∠,180AOE COE ∠+∠=︒,90COE ∴∠=︒,四边形ABCD 是平行四边形, ABCD ∴为菱形;ii .解:OA OC =,OB ∴是ABC ∆的中线, P 为BC 的中点,AP ∴是ABC ∆的中线,∴点E 是ABC ∆的重心,2BE OE ∴=,设OE x =,则2BE x =,在Rt AOE ∆中,由勾股定理得,22222239OA AE OE x x =-=-=-, 在Rt AOB ∆中,由勾股定理得,2222225(3)259OA AB OB x x =-=-=-, 229259x x ∴-=-, 解得2x =(负值舍去),332OB x ∴==,262BD OB ∴==;(2)解:如图,A 与B 相交于E ,F ,AB EF ∴⊥,由(1)②知点E 是ABC ∆的重心, 又F 在直线CE 上,CG ∴是ABC ∆的中线,12AG BG AB ∴==,12EG CE =, 2CE =,GE AE ∴=,CG CE EG AE =+=,2222221()22AG AE EG AE AE AE ∴=-=-=,AG AE ∴,2AB AG ∴==,2222221)52BC BG CG AE AE ∴=+=+=,BC ∴,∴AB BC ==.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海中考数学试题 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT
2011年上海市初中毕业统一学业考试数学卷
满分150分 考试时间100分钟
一、选择题(本大题共6题,每题4分,共24分)
1.下列分数中,能化为有限小数的是( ).
(A) 13; (B) 15; (C) 17; (D) 19
.
2.如果a >b ,c <0,那么下列不等式成立的是( ). (A) a +c >b +c ; (B) c -a >c -b ; (C) ac >bc ; (D) a b
c c
> . 3.下列二次根式中,最简二次根式是( ).
;. 4.抛物线y =-(x +2)2-3的顶点坐标是( ).
(A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) . 5.下列命题中,真命题是( ).
(A)周长相等的锐角三角形都全等; (B) 周长相等的直角三角形都全等; (C)周长相等的钝角三角形都全等; (D) 周长相等的等腰直角三角形都全等.
6.矩形ABCD 中,AB =8,BC =P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).
(A) 点B 、C 均在圆P 外; (B) 点B 在圆P 外、点C 在圆P 内; (C) 点B 在圆P 内、点C 在圆P 外; (D) 点B 、C 均在圆P 内. 二、填空题(本大题共12题,每题4分,共48分)
7.计算:23
a a ⋅=__________.
8.因式分解:2
2
9x y -=_______________.
9.如果关于x 的方程2
20x x m -+=(m 为常数)有两个相等实数根,那么m =______.
10.函数y =
_____________.
11.如果反比例函数k
y x
=
(k 是常数,k ≠0)的图像经过点(-1,2),那么这个函数的解析式是_________. 12.一次函数y =3x -2的函数值y 随自变量x 值的增大而_____________(填“增大”或减小”).
13.有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是__________.
14.某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.
15.如图1,AM 是△ABC 的中线,设向量AB a =,BC b =,那么向量AM =___(结果用a 、b 表示).
16.如图2,点B、C、D在同一条直线上,
CE
A B
C
M
B C
A E
D
O
A B
C
M
N
A
C B
D
272
2
3
1
+22
2,
230.
x y
x xy y
-=
⎧
⎨
--=
⎩
1
tan
2
C
∠=
O
A B
D
C M N
10%
20%
35%
25%
10%
百分数
年龄段(岁)
25岁
以下
25~3536~4546~6060岁
以上
赞同
31%
很赞同
39%
不赞同
18%
一般A
B
D
F
C
E
3
3
4
y x
=+
3
2
y x
=
3
3
4
y x
=+
12
sin
13
EMP
∠=
x
2
8
5
2
1
(本题满分10分)
[解] (?3)0?27?|1?2|?
2
3
1
+
=1?33?2?1?3?2
= ?23。
20. (本题满分10分)
[解] (x,y)=(1, ?1)或(3, 1)。
21. (本题满分10分,第(1)小题满分4分,第(2)小题满分6分)
图1
[解] (1) OD =5 (根据平行可证得△COD 是等腰三角形,OD =OC =5), (2) 过点O 作OE ?MN ,垂足为点E ,并连结OM ,根据tanC=
2
1
与OC =5, ?OE =5,在Rt △OEM 中,利用勾股定理,得ME =2,即AM =2ME =4。
22. (本题满分10分,第(1)、(2)小题满分各2分,第(3)、(4)小题满分各3分) [解] (1) 12%, (2) 36~45, (3) 5%, (4) 700人。
23. (本题满分12分,每小题满分各6分)
[解] (1) 等腰梯形ABCD 中,AB =DC ,?B =?DCB ,∵ △DFC 是等腰三角形,∴ ?DCB =?FCE , DC =CF ,所以?B =?FCE ,AB =CF ,易证四边形ABFC 是平行四边形。
(2) 提示:射影定理的逆定理不能直接在中考中使用,必须通过相似三角形来证明,内 角为90?。
24. (本题满分12分,每小题满分各4分) [解] (1) 根据两点之间距离公式,设M (a , 23a ),由| MO |=| MA |, 解得:a =1,则M (1, 2
3), 即AM =
2
13。
(2) ∵ A (0, 3),∴ c =3,将点M 代入y =x 2?bx ?3,解得:b = ?
25,即:y =x 2?2
5
x ?3。
(3) C (2, 2) (根据以AC 、BD 为对角线的菱形)。
注意:A 、B 、C 、D 是按顺序的。
[解] 设B (0, m ) (m <3),C (n , n 2?25n ?3),D (n , 4
3
n ?3), | AB |=3?m ,| DC |=y D ?y C =
43n ?3?(n 2?25n ?3)=4
13
n ?n 2, | AD |=22)3343()0(-+--n n =4
5
n ,
| AB |=| DC |?3?m =
413n ?n 2…✍,| AB |=| AD |?3?m =4
5
n …✍。
解✍,✍,得n 1=0(舍去),或者n 2=2,将n =2代入C (n , n 2?
2
5
n ?3),得C (2, 2)。
25. (本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分) [解] (1) 由AE =40,BC =30,AB =50,?CP =24,又sin ?EMP =
13
12
?CM =26。
(2) 在Rt △AEP 与Rt △ABC 中,∵ ?EAP =?BAC ,∴ Rt △AEP ~ Rt △ABC , ∴
AC BC AP EP =,即4030=
x EP ,∴ EP =4
3
x , 又sin ?EMP =1312?tg ?EMP =512=MP EP ?512=MP x
43
,∴ MP =16
5
x =PN ,
BN =AB ?AP ?PN =50?x ?
165x =50?16
21
x (0<x <32)。
(3) ✍ 当E 在线段AC 上时,由(2)知,
1213=EP EM ,即1213
4
3=x EM ,?EM =1613x =EN , 又AM =AP ?MP =x ?
165x =16
11x , 由题设△AME ~ △ENB ,∴ NB ME
EN AM =
,?x x
16
131611
=x x 1621501613-,解得x =22=AP 。
✍ 当E 在线段BC 上时,由题设△AME ~ △ENB ,∴ ?AEM =?EBN 。
由外角定理,?AEC =?EAB ??EBN =?EAB ??AEM =?EMP ,
∴ Rt △ACE ~ Rt △EPM ,?PM EP CE AC =
,即x x
CE 16
54340=,?CE =350…✍。
设AP =z ,∴ PB =50?z , 由Rt △BEP ~ Rt △BAC ,?BC BA PB BE =
,即z BE -50=3050,?BE =3
5
(50?z ), ∴CE =BC ?BE =30?
35(50?z )…✍。
由✍,✍,解350=30?3
5(50?z ),得z =42=AP 。