7年级下学期数学练习册答案.doc
七年级下数学练习册答案【三篇】
七年级下数学练习册答案【三篇】【导语】学习对每个人的重要性大家都知道,我们都知道学习代表未来,成绩代表过去,学习成就人生,学习改变命运。
搜集的七年级下数学练习册答案【三篇】,希望对同学们有帮助。
第四单元第1节用表格表示变量间的关系答案【基础•达标】1、冰层越厚;承受压力2、st;t;s3、(1)提出概念所用的时间;对概念接受的能力(2)59(3)13(4)(0≤x≤13)x>134、(1)时间与水位;时间;水位(2)4米(3)20小时——24小时5、(1)距离地面高度与温度;离地面的高度;温度(2)随h的增长二t减小(3)-10℃(4)-16℃【综合•提升】6、(1)1.59s(2)t逐渐增加(3)不同(4)t=1.26s第四单元第2节用关系式表示变量间的关系答案【基础•达标】1、(1)体积(2)y=9πx(3)增大(4)9π;36(5)45π2、变小;长度3、(1)自变量;因变量(2)s=4h(3)4;20(4)124、(1)x;因变量(2)5;6.2;14.6(3)20.6(4)4【综合•提升】5、(1)y=10x(2)如下表:x/cm123 (8)y/cm2102030 (80)(3)10cm26、(1)y=5+0.25×100=30(元)(2)55-5=50(元);50÷0.25=200(分钟)7、方案一:y1=99/4x-3000;方案二:y2=50x-25-0.5x×14=18x (2)当x=6000时;y1=118500;y2=108000;y1>y2第四单元第3节用图象表示变量间的关系答案【基础•达标】1、B2、C3、C4、A5、A6、B7、B8、C9、(1)正确(2)正确【综合•提升】10、(1)240千米;14.5小时(2)13.5—14小时(3)100千米(4)1小时(5)170-140=30;30÷1=30千米/时(6)240÷5=48千米/时11、(1)4.5千米(2)1-2千米(3)略12、(1)2小时;6(2)2(3)2小时;2小时(4)y=3x,当y=4, x=4/3时, 8-4/3=20/3小时(5)20小时13、(1)反映了速度和时间之间的关系(2)A表示3分时速40千米/时,点B表示第15分时时速0千米/时(3)开始逐渐增加,然后不变,再增加,不变,减小,不变,再减小(4)OA, CD下坡, AG, DE, FH平地, EF, HB上坡14、(1)不是(2)AB(3)小明放学回家,以某一速度匀速行进,用了10分钟到了书店,在书店买书用了30分钟,随后往家里赶但保持匀速行进结果用了10分钟赶回家。
人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)
《平方根》同步练习1 课堂作业1.9的算术平方根是()A.-3B.±3C.3D2.一个数的算术平方根不可能是()A.正数B.负数C.分数D.非负数3的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.144的算术平方根是________;(-5)2的算术平方根是________;181的算术平方根是________.5.求下列各数的算术平方根:(1)0.64;(2)9116;(3)2.56;(4)0.6.求下列各式的值:(2).课后作业7() A.-3B.3C.-9D.98() A.-2B.±2CD.29.下列说法正确的是() A.7是49的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根10.下列运算正确的是()A.(5)5=--=B1 12 =C33 2244 =+=D0.5=±11.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是() A.a+1B.a2+1CD112.用“>”或“<”连接下列各式:(2)(3)4-.13.若172.≈,22.84≈,则217________≈,________≈0.02284≈,则x =________.14.邻居张大爷家有一块正方形的花圃,面积为289m 2,张大爷要在花圃的四周围上栅栏,则至少需要栅栏的长度为________.15.求下列各式的值:16.小玉想用一张面积为900cm 2的正方形纸片,沿着边的方向裁出一张面积为560cm 2的长方形纸片,使它的长、宽之比为2︰1,但不知是否能裁出来.小芳看见了说:“很明显,一定能用一张面积大的纸片裁出一张面积小的纸片.”你同意小芳的观点吗?小玉能用这张正方形纸片裁出符合要求的长方形纸片吗?答案[课堂作业]1.C2.B 3.C4.12 5 195.(1)0.8 (2)54 (3)1.6 (4)0 6.(1)147 (2)-3(3)9(4)45[课后作业]7.B8.C9.A10.B11.B12.(1)>(2)>(3)>13.0.2284228.40.000521714.68m15.(1)17(2)0.8(3)216.设长方形纸片的长为2xcm,宽为xcm.由题意,得2x·x=560,解得x=280>256,16>.∴2x>32,即裁出的长方形纸片的长大于32cm.而已知正方形纸片的面积为900cm2,则边长只有30cm,因此,我不同意小芳的观点小玉不能用这张正方形纸片裁出符合要求的长方形纸片《平方根》同步练习2课堂作业1.下列各数中,没有平方根的是()A.(-3)2B.0C.1 8D.-632.求449的平方根,下列运算过程正确的是()A4 49 =B.27 =±C2 7 =D.2 7 =3.若x的一个平方根,则另一个平方根是________,x是________.4.2.25的平方根是________;19的平方根是________;1625的平方根是________.5.求下列各数的平方根:(1)196;(2)0.16;(3)25 169;(4)729.6.有一个边长为11cm的正方形和一个长15cm、宽5cm的长方形,要做一个面积为这两个图形的面积之和的正方形,则该正方形的边长应为多少?课后作业7.下列各式正确的是()A3=-B.3=-C3=±D3=±8.下列说法正确的是()A.14是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根9()A.±3B.3C.±9D.910.若a是(-3)2的平方根,b的一个平方根是2,则a+b的值为________.11.若一个正数的两个平方根分别是2a-2和a-4,则a的值是________.12.求下列各式的值:(1);(2);(4)13.求下列各式中x的值:(1)3x2=75;(2)292(1)8x-=;(3)2(x2+1)=5.38.14.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.15.为了促进全民健身活动的开展,改善居民的生活质量,某居民小区决定在一块面积为905m2的正方形空地上建一个篮球场.已知篮球场的面积是420m2,长是宽的2815倍,篮球场的四周必须留出1m宽的空地.请你计算一下,能否按规定在这块空地上建一个篮球场.答案[课堂作业]1.D2.B3 54.±1.513±45±5.(1)±14(2)±0.4(3)513±(4)53±6.设该正方形的边长为xcm.由题意,得x2=11×11+15×5=196.∵x>0,∴14x==.∴该正方形的边长应为14cm[课后作业]7.B8.B9.A10.1或711.212.(1)±30(2)-1.7(3)7 4(4)±1113.(1)x =±5 (2)14x =或74x = (3)x =±1.314.由题意,得2a -1=(±3)2,3a +b -1=42,解得a =5,b =2.∴a +2b =5+2×2=915.设篮球场的宽为xm ,那么长为28m 15x .由题意,得2842015x x = .∴x 2=225.∵x >0,∴15x ==.又∵228(2)90090515x +=<,∴能按规定在这块空地上建一个篮球场 《平方根》同步练习3同步练习:一、基础训练1.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.2.下列计算不正确的是( )A ±2B 9C =0.4D 63.下列说法中不正确的是( )A .9的算术平方根是3B 2C .27的立方根是±3D .立方根等于-1的实数是-14 )A .±8B .±4C .±2 D5.-18的平方的立方根是( ) A .4 B .18 C .-14 D .146_______;9的立方根是_______.7______________(保留4个有效数字)8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)(2(3(4二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C1D11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-112.已知x,y(y-3)2=0,则xy的值是()A.4B.-4C.94D.-94参考答案1.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.2.A 2.3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±237.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x +4=0且y -3=0.。
人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)
人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)一、单选题1.如图,AB CD ∥ ,点E 在CA 的延长线上若50BAE ∠=︒,则ACD ∠的大小为( )A .100°B .120°C .130°D .110°2.如图,要修建一条公路,从A 村沿北偏东75°方向到B 村,从B 村沿北偏西25°方向到C 村.若要保持公路CE 与从A 村到B 村的方向一致,则应顺时针转动的度数为( )A .50°B .75°C .100°D .105°3.如图,直线AB ∥CD ,如果∠1=70°,那么∠BOF 的度数是( )A .70°B .100°C .110°D .120°4.具有下列关系的两角:①互为补角;②同位角;③对顶角;④内错角;⑤邻补角;⑥同旁内角.其中一定有公共顶点的两角的对数为( )A .1对B .2对C .3对D .4对5.如图,将三角板与直尺贴在一起,使三角板的直角顶点C (∠ACB =90°)在直尺的一边上,若∠2=65°,则∠1的度数是( )A .15°B .25°C .35°D .65°6.下列命题中,真命题是( )A .一条直线截另外两条直线所得到的同位角相等B .两个无理数的和仍是无理数C .有公共顶点且相等的两个角是对顶角D .等角的余角相等7.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED=( )A .55°B .125°C .135°D .140°8.如图,12l l //,点O 在直线1l 上,若90AOB ︒∠=,135︒∠=,则2∠的度数为()A .65°B .55°C .45°D .35°9.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是010.如图,直线AB ∥ CD ,∠ B=50°,∠ C=40°,则∠E 等于( )A .70°B .80°C .90°D .100°二、填空题 11.如图,AD ∥BC ,EF ∥BC ,BD 平分∠ABC ,图中与∠ADO 相等的角有_______ 个,分别是___________.因为AB ∥CD ,EF ∥AB ,根据_____________________________,所以_____________.12.如图,在正方形网格中,三角形DEF 是由三角形ABC 平移得到的,则点C 移动了________格.13.如图,在ABC ∆中,4AB =,6BC =,60B ∠=︒,将ABC ∆沿射线BC 的方向平移2个单位后,得到A B C '''∆,连结A C ',则A B C ∆''的周长为______.14.下面三个命题: ①若是方程组的解,则或; ②函数通过配方可化为; ③最小角等于的三角形是锐角三角形. 其中正确命题的序号为 .15.设圆上有n 个不同的点,连接任两点所得线段,将圆分成若干个互不重合的区域,记()f n 为区域数的最大值,则(5)_________f =,(6)________f =.16.如图,已知AB ∥ED,∠ABC=300,∠EDC=400,则∠BCD 的度数是 .17.点M ,N 在线段AB 上,且MB =6cm ,NB =9cm ,且N 是AM 的中点,则AB =___cm ,AN =____cm .18.把命题“三个角都相等的三角形是等边三角形”改写成“如果……,那么……”的形式是_____;该命题的条件是_____,结论是_____.三、解答题19.如图,已知点A 是射线OP 上一点.(1)过点A 画OQ 的垂线,垂足为B ;过点B 画OP 的平行线BC ;(2)若50POQ ∠=,求ABC ∠的度数.20.(1)问题背景:已知:如图①-1,//AB CD ,点P 的位置如图所示,连结,PA PC ,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(将下面的解答过程补充完整,括号内写上相应理由或数学式)解:(1)APC ∠与PAB ∠、PCD ∠之间的数量关系是:360APC PAB PCD ∠+∠+∠=︒(或360()APC PAB PCD ∠=︒∠+∠只要关系式形式正确即可)理由:如图①-2,过点P 作//PE AB .∵//PE AB (作图),∴180PAB APE ∠+∠=︒( ),∴//AB CD (已知)//PE AB (作图),∴//PE _______( ),∴CPE PCD ∠+∠=_______( ),∴180180360PAB APE CPE PCD ∠+∠+∠+∠=+︒=︒(等量代换)又∵APE CPE APC ∠+∠=∠(角的和差),∴360APC PAB PCD ∠+∠+∠=︒(等量代换)总结反思:本题通过添加适当的辅助线,从而利用平行线的性质,使问题得以解决.(2)类比探究:如图②,//AB CD ,点P 的位置如图所示,连结PA 、PC ,请同学们类比(1)的解答过程,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(3)拓展延伸:如图③,//AB CD ,ABP ∠与CDP ∠的平分线相交于点1P ,若128P ∠=︒,求P ∠的度数,请直接写出结果,不说明理由.21.如图,抛物线y =ax 2+bx ﹣3与x 轴交于A (﹣1,0),B (3,0),与y 轴交于点C ,顶点为D .(1)求抛物线的解析式及点D的坐标.(2)在线段BC下方的抛物线上,是否存在异于点D的点E,使S△BCE=S△BCD?若存在,求出点E的坐标;若不存在,请说明理由.(3)点M3,2m⎛⎫- ⎪⎝⎭在抛物线上,点P为y轴上一动点,求2MP+2PC的最小值.22.如图,在96⨯网格中,已知△ABC,请按下列要求画格点三角形A' B' C'(三角形的三个顶点都是小正方形的顶点).(1)在图①中,将△ABC平移,使点O落在△ABC的边AB(不包括点A和点B)上;(2)在图②中,将△ABC平移,使点O落在△ABC的内部.23.如图.一次函数y=12x+1的图象L1交y轴于点A,一次函数y=﹣x+3的图象L2交x轴于点B,L1与L2交于点C.(1)求点A与点B的坐标;(2)求△ABC的面积.24.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.△ABC的顶点A、B、C都在格点上.(1)过B作AC的平行线BD.(2)作出表示B到AC的距离的线段BE.(3)线段BE与BC的大小关系是:BE BC(填“>”、“<”、“=”).(4)△ABC的面积为.25.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.解:∵∠1=∠2(已知)∠2=∠DGF∴∠1=∠DGF(____________)∴BD∥CE∴∠3+∠C=180°( )又∵∠3=∠4(已知)∴∠4+∠C=180°∴∥(同旁内角互补,两直线平行)∴∠A=∠F( ).26.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段_____的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG_____AH.(填“>”或“<”或“=”),理由________.27.如图,AB∥CD,∠1=∠2,求证:AM∥CN参考答案1.C2.C3.C4.B5.B6.D7.B8.B9.A10.C11.4 ∠DOF、∠EOB、∠ABD、∠DBC平行于同一直线的两条直线平行CD∥EF 12.513.1214.②③15.16;3116.70°17. 12 318.如果一个三角形的三个角都相等,那么这个三角形是等边三角形一个三角形的三个角都相等这个三角形是等边三角形19.(2)40°20.(1)∠APC+∠PAB+∠PCD=360°,理由见解析;两直线平行,同旁内角互补;CD,如果两条直线都和第三条直线平行,那么这两条直线也互相平行;180°,两直线平行,同旁内角互补;(2)∠APC=∠PAB+∠PCD,(3)∠P=56°.21.(1)y=x2﹣2x﹣3,D的坐标为(1,﹣4);(2)存在异于点D的点E,使S△BCE=S△BCD,点E的坐标为(2,﹣3);(3)最小值为23.(1)A(0,1),B(3,0);(2)5 324. (3) <;(4) 9 26.(3)AG;(4)<.。
人教数学七年级下全册同步练习-初中数学七年级下册全册同步练习题(含答案,共119页)
第五章 相交线与平行线1相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角. 3.对顶角的重要性质是_________________.4.如图,直线AB 、CD 相交于O 点,∠AOE =90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角; ∠2和∠3互为_______角;∠1和∠3互为______角; ∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE -∠______=______°-______°=______°; ∠4=∠______-∠1=______°-______°=______°. 5.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则(1)与∠BOD 互补的角有________________________; (2)与∠BOD 互余的角有________________________; (3)与∠EOA 互余的角有________________________; (4)若∠BOD =42°17′,则∠AOD =__________; ∠EOD =______;∠AOE =______. 二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF 8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ). (A)30° (B)45° (C)60°(D)135°9.如图所示,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角.( ) 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( ) 12.有一条公共边的两个角是邻补角.( ) 13.如果两个角是邻补角,那么它们一定互为补角.( ) 14.对顶角的角平分线在同一直线上.( ) 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )综合、运用、诊断一、解答题16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直. ( ) 11.一条直线的垂线只能画一条. ( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直. ( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短. ( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离. ( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离. ( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB . ( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α (B)180°-α(C)α2190+︒ (D)2α-90°18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ). (A)3cm (B)小于3cm (C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n (C)n ≤AC ≤m (D)n <AC <m 20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm的点的个数是( ). (A)0 (B)1 (C)2 (D)3 21.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC于点E ,能表示点到直线(或线段)的距离的线段有( ). (A)3条 (B)4条 (C)7条 (D)8条 三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG 平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图2所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图3所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图4所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).图2 图3 图4(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______. (3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)① ∵∠3+∠4=180°,( )∴c ∥______.(________,________)② 由①、②,因为a ∥______,c ∥______, ∴a ______c .(________,________)5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________)6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,∠B =50°.求∠D 的度数.分析:可利用∠DCE 作为中间量过渡. 解法1:∵AB ∥CD ,∠B =50°,( )∴∠DCE =∠_______=_______°. (____________,______) 又∵AD ∥BC ,( )∴∠D =∠______=_______°.(____________,____________)想一想:如果以∠A 作为中间量,如何求解? 解法2:∵AD ∥BC ,∠B =50°,( )∴∠A +∠B =______.(____________,____________)即∠A =______-______=______°-______°=______°. ∵DC ∥AB ,( )∴∠D +∠A =______.(_____________,_____________) 即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( )二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?第六章 实数6.1平方根学习要求1. 理解算术平方根和平方根的含义。
人教版七年级下册数学配套练习册答案课堂作业本答案
ED CBAEDCBA21FED CBA第五章经典例题例1 如图,直线AB,CD,EF 相交于点O ,∠AOE=54°,∠EOD=90°,求∠EOB ,∠COB 的度数。
例2 如图AD 平分∠CAE ,∠B = 350,∠DAE=600,那么∠ACB 等于多少?例3 三角形的一个外角等于与它相邻的内角的4倍,等于与它不 相邻的一个内角的2倍,则这个三角形各角的度数为( )。
A .450、450、900B .300、600、900C .250、250、1300D .360、720、720例4 已知如图,求∠A +∠B +∠C +∠D +∠E +∠F 的度数。
例5 如图,AB ∥CD ,EF 分别与AB 、CD 交于G 、H ,MN ⊥AB 于G ,∠CHG=1240,则∠EGM 等于多少度?第六章经典例题例1 一个机器人从O 点出发,向正东方向走3米到达A1点,再向正北方向走NM HGFE DC BA1 ●●● ●●●ABC DEFO x y-1例3再向正东方向走15米到达A5•点,如果A1求坐标为(3,0),求点 A5•的坐标。
例2 如图是在方格纸上画出的小旗图案,若用(0,0)表示A 点,(0,4)表示B 点,那么C 点的位置可表示为( )A 、(0,3)B 、(2,3)C 、(3,2)D 、(3,0)例3 如图2,根据坐标平面内点的位置,写出以下各点的坐标:A( ),B( ),C( )。
例4 如图,面积为12cm2的△ABC 向x轴正方向平移至△DEF 的位置,相应的坐标如图所示(a ,b 为常数), (1)、求点D 、E 的坐标 (2)、求四边形ACED 的面积。
例5 过两点A (3,4),B (-2,4)作直线AB ,则直线AB( ) A 、经过原点 B 、平行于y 轴 C 、平行于x 轴 D 、以上说法都不对ABC例2第七章经典例题例1 如图,已知△ABC中,AQ=PQ、PR=PS、PR⊥AB于R,PS⊥AC于S,有以下三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP,其中( ).(A)全部正确 (B)仅①正确 (C)仅①、②正确 (D)仅①、③正确例2 如图,结合图形作出了如下判断或推理:①如图甲,CD⊥AB,D为垂足,那么点C到AB的距离等于C、D两点间的距离;②如图乙,如果AB∥CD,那么∠B=∠D;③如图丙,如果∠ACD=∠CAB,那么AD∥BC;④如图丁,如果∠1=∠2,∠D=120°,那么∠BCD=60°.其中正确的个数是( )个.(A)1 (B)2 (C)3 (D)4例3在如图所示的方格纸中,画出,△DEF和△DEG(F、G不能重合),使得△ABC≌△DEF≌DEG.你能说明它们为什么全等吗?例4 测量小玻璃管口径的量具CDE上,CD=l0mm,DE=80mm.如果小管口径AB 正对着量具上的50mm刻度,那么小管口径AB的长是多少?例5 在直角坐标系中,已知A(-4,0)、B(1,0)、C(0,-2)三点.请按以下要求设计两种方案:作一条与轴不重合,与△ABC的两边相交的直线,使截得的三角形与△ABC相似,并且面积是△AOC面积的.分别在下面的两个坐标中系画出设计图形,并写出截得的三角形三个顶点的坐标。
数学人教版七年级下册同步训练:8.2---8.4练习题含答案
8.2 消元——解二元一次方程组一、单选题1.用代入法解方程组{26345x y x y -=+=-较简单的方法是( ) A.消y B.消x C.消x 和消y 一样 D.无法确定2.若关于,x y 的二元一次方程组5,9,x y k x y k +=⎧⎨-=⎩①②的解也是二元一次方程236x y +=的解,则k 的值为( )A.34-B.34C.43D.43-3.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则a b +的值是( )A .﹣1B .1C .﹣5D .54.方程组3276211x y x y +=⎧⎨-=⎩的解是( )A.15x y =-⎧⎨=⎩B.12x y =⎧⎨=⎩C.31x y =⎧⎨=-⎩D.212x y =⎧⎪⎨=⎪⎩5.用“代入消元法”解方程组2327y x x y =-⎧⎨-=⎩①②时,把①代入②正确的是( )A.3247x x -+=B.3247x x --=C.3227x x -+=D.3227x x --=6.若关于x 的方程243x m -=和2x m +=有相同的解,则m 的值是( ) A .10 B .10- C .8 D .8-7.以1,{1x y ==-为解的二元一次方程组是( )A. 0{1x y x y +=-= B. 0{1x y x y +=-=-C. 0{2x y x y +=-=D. 0{2x y x y +=-=-8.解方程组{332,266,x y x y +=-=①②用加减法消去y ,需要( )A.2⨯-①②B.32⨯+⨯①②C.23⨯⨯①-②D.2⨯+①②9.,a b 满足方程组{28,27,a b a b +=+=则b a -的值为( ) A.1 B.0 C.-1 D.2 二、填空题10.若{6,20,x y x y -=+=则32x y += .11.若关于,x y 的二元一次方程组{4,2x y k x y k-=+=的解也是二元一次方程36x y -=的解,则k = .12.方程34x y -=中,有一组解x 与y 互为相反数,则3x y +=_______. 13.方程组10216x y x y +=⎧⎨+=⎩的解是 .三、解答题14.用加减消元法解下列方程组: (1){2340,5;x y x y +=-=-①②(2){433,3215.x y x y +=-=①②15.对于任意实数,a b ,定义关于“⊗”的一种运算如下:2a b a b ⊗=+.例如:3423410.⊗=⨯+= (1)求25()⊗-的值;(2)若()2,x y ⊗-=且21,y x ⊗=-求x y +的值.参考答案1.答案:A由方程26x y -=,得26y x =-,故消y 更简单。
《新课程课堂同步练习册人教版七年级下册数学》参考答案
《新课程课堂同步练习册人教版七年级下册数学》参考答案§5.1.1相交线一、选择题1.C 2.D 3.B 4.D二、填空题1.∠AOD、∠AOC或∠BOD 2.145°3.135°4.35°三、解答题1.解:(图7)因为∠2=30°,所以∠1=30°(对顶角相等)又,所以∠3=2∠1=60°所以∠4=∠3=60°(对顶角相等)2.解:(图8)(1)因为,又(对顶角相等)所以因为所以所以(对顶角相等)(2)设则,由+=180°,可得,解得,所以3.解:(图9)AB、CD相交于O 所以∠AOD与∠BOD互为邻补角所以∠AOD+∠BOD=180°,又OE是∠AOD的平分线,所以∠1=∠AOD,同理∠2=∠BOD所以∠1+∠2=∠AOD+∠BOD=(∠AOD+∠BOD)=×180°=90°即∠EOF的度数为90°§5.1.2垂线一、选择题1.D 2. B 3.C二、填空题1.不对2.40°3.互相垂直4.180°三、解答题1.答:最短路线为线段AB,设计理由:垂线段最短.2.解:由题意可知∠1+∠2=90°,又∠1-∠2=54°所以2∠1=144°所以∠1=72°,所以∠2=90°-∠1=18°3.解:(图7)(1)因为,所以,又,所以,所以,又是的平分线,所以==45°(2)由(1)知==45°,所以=90°所以与互相垂直.§5.1.3同位角、内错角、同旁内角一、选择题1.D 2.B 3.B 4.C二、填空题1.AB内错角2. AB 、CD 、AD 3. DE 、BC 、AB 、同位角4.同位角、内错角、同旁内角三、解答题1.答:∠ABC与∠ADE构成同位角,∠CED与∠ADE构成内错角,∠A、∠AED分别与∠ADE构成同旁内角;∠ACB与∠DEA构成同位角,∠BDE与∠DEA构成内错角,∠A、∠ADE分别与∠DEA构成同旁内角.2.答:图中共有5对同旁内角,它们分别是:∠ABC 与∠BAC、∠ABC与∠BAD、∠ACB与∠BAC 、∠ACB与∠CAE、∠ABC与∠ACB3.答:∠1与∠2是直线AC截直线AE、BD形成的同位角;∠2与∠3是直线BD截直线AC、DE形成的内错角;∠3与∠4是直线BD截直线AC、DE形成的同旁内角.§5.2.1平行线一、选择题1.D 2.C 3.A 4..A二、填空题1.2.相交3.经过直线外一点,有且只有一条直线与这条直线平行.三、解答题1.略2.(1)略(2)a//c§5.2.2平行线的判定(一)一、选择题1.B 2.C 3..C 4.A二、填空题1.∠4,同位角相等,两直线平行;∠3,内错角相等,两直线平行.2.∠1,∠BED 3.答案不唯一,合理就行4.70°三、解答题1.答:,因为∠1=50°,所以∠2=130°(邻补角定义),又∠3=130°,所以∠2=∠3,所以(内错角相等,两直线平行)2.(图1)答:AB∥CD,因为∠1=∠2,且∠1+∠2=90°,所以∠1=∠2=45°,因为∠3=45°,所以∠2=∠3,所以AB∥CD§5.2.2平行线的判定(二)一、选择题1.C 2.A 3.A 4.D二、填空题1.∠2 内错角相等,两直线平行;∠4 同旁内角互补,两直线平行2.BC//AD;BC//AD;∠BAD;∠BCD(或∠3+∠4);3. AB//CD 同位角相等,两直线平行;∠C,内错角相等,两直线平行;∠BFE,同旁内角互补,两直线平行.三、解答题1.答:AB//CD AD//BC,因为∠A+∠B=180°所以AD//BC (同旁内角互补,两直线平行),又∠A=∠C,所以∠C +∠B=180°,所以AB//CD(同旁内角互补,两直线平行)2.解:AB//CD,∵∠APC=90°∴∠1+∠2=90°,∵AP、CP分别是∠BAC和∠ACD的平分线,∴∠BAC=2∠1,∠ACD=2∠2,∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°∴AB//CD(同旁内角互补,两直线平行)§5.3.1 平行线的性质(一)一、选择题1.C 2.C 3.C二、填空题1. 50° 2. 25° 3. 60三、解答题1.已知;垂直的性质;等量代换,同位角相等,两直线平行;两直线平行,同位角相等;已知;等量代换;内错角相等,两直线平行.2.解:延长BA交CE于点F,因为AB//CD,∠C=52°,所以∠EFB=∠C=52°(两直线平行,同位角相等),又∠E=28°,所以∠FAE=180°―∠E―∠C =100°所以∠EAB=80°(邻补角定义)§5.3.1 平行线的性质(二)一、选择题1.D 2.A 3.B 4.D二、填空题1. 80° 2. 65° 3. 90°三、解答题1.解:延长梯形玉片图形的两腰及下底,构造出玉片原图如图8所示,∵AD//BC,∴∠1+∠A=180°∠2+∠D=180°(两直线平行,同旁内角互补)又∠A=115°,∠D=100°,∴∠1 =180°-∠A=65°∠2 =180°-∠D=80°即梯形玉片另外两个角的度数分别是65°、80°.2.解:∵∠END=50°(已知)又AB//CD,(已知)∴∠BMF+∠END =180°(两直线平行,同旁内角互补),又∵MG平分∠BMF(已知)∴,而AB//CD(已知)∴∠1=∠BMG=65°(两直线平行,内错角相等)§5.3.2 命题、定理一、选择题1.A 2.D 3.C二、填空题1.如果两个角是对顶角,那么它们相等;2.“题设:一个三角形是直角三角形,结论:它的两个锐角互余.”3.如∠A=50°∠B=60°则∠A+∠B>90°(答案不唯一,只要写出两个角,它们的和大于或等于均可;但不写∠A+∠B≥90°.)4.①③④三、解答题1. (1) 答:在同一个平面内,如果两条直线都和第三条直线垂直,那么这两条直线互相平行.这个命题是真命题.(2) 答:如果两个角是同旁内角,那么这两个角互补.这个命题是假命题. (3) 答:如果几个角相等,那么它们的余角相等;或者,如果几个角是等角的余角,那么这几个角相等.这个命题是真命题.2.(1)答:是命题,题设是:两直线平行线被第三条直线所截;结论是:内错角相等.(2)答:不是命题.(3)答:不是命题.(4)答:是命题,题设是:两个角互为邻补角;结论是:这两个角的平分线互相垂直.或者,题设是:两条射线是两个互为邻补角的角的平分线;结论是:这两条角平分线互相垂直.3.答:这个说法是正确的,根据题意作出右图,如图所示.则有AB//CD,EP是∠BEF的平分线,FP是∠DFE的平分线.∵AB//CD∴∠BEF+∠DFE=180°(两直线平行,同旁内角互补)又∵EP与FP分别是∠BEF与∠DFE的平分线,∴∠BEF=2∠2∠DFE=2∠1,∴2∠2 +2∠1=180°,∴∠1 +∠2=90°,∴∠P=90°∴EP⊥FP,即“两条平行线被第三条直线所截,则同旁内角的角平分线互相垂直.”说法正确.§5.4平移 (一)一、选择题1.D 2.A 3.A二、填空题1. 5cm 2.2 3.形状与大小相等4.70°、 50°、 60°、60°三、解答题1.图略2.(如图5),相等的线段:,,;相等的角:,,;平行的线段:,,3.答:线段AB平移成线段EF、HG与CD;线段AE可以由线段BF、CG或DH平移得到;FG不能由AE或EF平移得到.§5.4平移 (二)一、选择题1.D 2.B 3.D 4.C二、填空题1.60°、8cm 2.一只小鸟 3.36平方单位 4.16cm三、解答题1.图略2.解:由楼梯侧面可以知道,可将楼梯水平方向的线段向下平移到线段AC上,将楼梯竖直方向的线段向右平移到线段BC上则所需地毯总长度刚好等于线段AC加上线段BC 的长,即6+2.8=8.8米,其面积为8.8×2=17.6 m2,所以购买地毯至少需要17.6×50=880元.3.解:当AB在线段CD上向上或向下平移时, S1·S4 =S2 ·S3因为S1 =AP·PC,S4 =DP·BP;S2=DP·AP,S3=BP·PCS1·S4=AP·PC·DP·BP, S2 ·S3=DP·AP·BP·PC所以S1 ·S4 =S2·S第6章平面直角坐标系§6.1.1有序数对一、选择题1. D2. C3. A4. A二、填空题1.两2.(5,6)2.组4号3. (9,12) ,不同4.(19,110)三、解答题 1.(1).B(4,0) C(6,0) D(7,2) E(6,3)(2).8 2.3个格.3.解:如图所示的是最短路线的6种走法.一、选择题1.D2.B3.B4.C二、填空题1.二三y轴上2. 有序数对横坐标纵坐标3.负数负数正数4. 72三、解答题1.略 2.图略 3.略§6.1. 2平面直角坐标系(二)一、选择题1.A2.B3.A4.C二、填空题 1.二三(-1,-2)2. 三四(1,-2)3.(0,0)纵横 4. 72三、解答题1.略 2. 解:因为a2+1 0,-1-b2 0,所以点A在第四象限. 3.(1) a=1,b=3(2) a= - 3, b=1§6.2.1用坐标表示地理位置一、选择题1.B2.D3.C二、填空题1.∠BOA ∠COA2.110 3.正北三、解答题1. 正北,两家距离100米.2.图略.小玲家(-150,100),小敏家(200,300),小凡家(-300,150).3.解:李哲在湖心亭,丁琳在望春亭,张瑞在游乐园.图略.他们三人到望春亭集合,三人所行路程之和最短.§6.2.2用坐标表示平移一、选择题1.B2.D3.A4.D二、填空题1.(5,-3)(3,-6)2.(0,0)3.不变4.(-1,-2)三、解答题 1.A′(2,3),B′(1,0),C′(5,1).2.(1)略(2)四边形ABCD的面积为6.5.第七章三角形§7.1.1 三角形的边一、选择题1、C 2 、B 3、 B二、填空题1、8 4 △BOC 、△BEC、△BDC 、△ABC 2、 5cm,7cm或6cm,6cm3、24、否因为任意两线段之和都大于第三条,这三条线段围成一个三角形.三、解答题1、不相信.这位同学的身高约1.65米,腿长大约不超过1米,根据三角形两边之和大于第三边,步子的长不可能有2米远.2、若小明家,小华家,学校位置在同一条直线上,S=1m 或5m;若三者不在同一直线上,根据三角形三边关系知1 S 5;所以S的范围为1m≤S ≤5m.3、因为a、b、c为△ABC的三边,所以a+b-c ≥0,b-c-a≤0 ,c-a-b≤0.原式=a+b-c-(b-c-a)+(c-a-b)= a+b-c -b+c+a+c-a-b= a-b+c§7.1.2三角形的高、中线与角平分线一、选择题1 、B 2、 C 3、D二、填空题1、ADBE 2、6 cm 40° 3、钝角 4、AD BC ∠ADB ∠ADC三、解答题1、解:△ABD 的周长=AB+AD+BD,△ACD 的周长=AC+AD+CD因为AD是△ABC的中线,所以 BD=CD,△ABD与△ACD 的周长之差= AB -AC=8-5=3(cm)2、如右图:3、解:AD=2CE.因为,而 AB=2BC所以AD=2CE§7.1.3 三角形的稳定性一、选择题1、A 2、 A 3 A二、填空题1、三角形具有稳定性2、三角形具有稳定性3、三角形具有稳定4、三角形具有稳定三、简答题1、答案不唯一.2、答案不唯一.3、答案不唯一.§7.2.1三角形的内角一、选择题1、D 2 、C 3 、 A二、填空题1、20°60° 100° 2、60°3、40°或100°4、40°三、简答题1、解:设∠A=x°,则∠B=15°+ x°,∠C=15°+ x°+ 45°=60°+ x°因为∠A+∠B +∠C=180°,所以x°+15°+ x°+60°+ x°=180°,解得x=35,∠C=95°2 、解:因为∠C+∠1+∠2=180°, ∠C+∠B+∠A=180°所以∠1+∠2=60°+50°=110°3解:在△ABC中,∠BAC=180°-∠B-∠C=180°-65°-45°=70°,因为AE是∠BAC的角平分线,所以∠BAE=∠BAC=×70°=35°.因为AD⊥BC,所以∠ADB=90°. 在△ABD中, ∠BAD=180°-65°-90°=25°所以∠DAE=∠BAE -∠BAD=35°-25°=10°§7.2.2三角形的外角一、选择题1、A 2D 3 B二、填空题1、105° 2、 85°3、 80° 4、165三、简答题1、如图,根据三角形的一个外角等于与它不相邻的两个内角的和,知:∠1=∠B+∠D,∠2=∠A+∠C,而∠1+ ∠2+∠E=180°,所以∠A+∠B+∠C+∠D+∠E=180°2、因为DF⊥AB,所以∠BFD =90°在△BFD中,∠B=180°-∠D-∠BFD =180°-45°-90°=45°,在△ABC中, ∠BCA=180°-∠A-∠B=180°-40°-45°=95°3、∠AEB>∠CED.理由:根据三角形的一个外角大于与它不相邻的任何一个内角,知∠AEB >∠ACB ,∠ACB >∠CED,所以∠AEB >∠CED.§7.3.1 多边形一、选择题1 、A. 2 、B 3、B二、填空题1、(n-3)(n-2);2、120°; 3、8 ;4、 433三、简答题1、图略2、180°×3=540°3、因为360°÷30°=12,所以他一共左转了12次,12×10=120,一共走了120米.§7.3.2 多边形的内角和一、选择题1 、C 2、 D 3、D二、填空题1、900 ; 2、8; 3、135 ;4、 90°、90°、120°、60°三、简答题1、因为多边形的外角和等于360 o,360o ÷72o=5,所以该多边形的边数为5;五边形内角和为(5-2)×180°=540°.2、设该正多边形的一个外角为x,则每一个内角为(x +60°),相邻的内角与外角互补,所以(x+60°)+x=180°,解得x=60°,即每个外角为60°,因为多边形的外角和等于360°,360°÷60°=6,所以这个多边形的边数为6.3、因为多边形的内角和都是180°的倍数,且每个外角的范围是大于0°小于180°,1340°=180°×7﹢80°,所以这个多边形的边数为7﹢2=9,这个外角的度数为80°§7.4课题学习镶嵌一、选择题1 、C 2、A 3、A二、填空题1、3 ; 2、3 3、4或5 4、12三、解答题1、不能.因为正十边形的内角和为(0-2)180°=1440°,1440°÷10=144°,144°的整数倍得不到360°所以用正十边形不能铺满地面.2、能,需要6个;也能,需要4个.3、正方形和正八边形组合能镶嵌成平面图案.因为正方形的每个内角为90°,正八边形的每个内角为135°,90°+2×135°=360°,所以正方形和正八边形组合能镶嵌成平面图案;用正方形和正六边形不能镶嵌成平面图案.因为找不到正整数m、n,使得,所以不能.第8章二元一次方程组§8.1二元一次方程组一、选择题 1.B2.B3.A二、填空题1.2.2,-13. 无数,无数;4.三、解答题 1.解:设小华买了x千克香蕉,y千克苹果,依题意可得2.解:设这个学校有x个班,这批图书有y本,依题意可得3.解:设甲原来有羊x只,乙原来有羊y只,依题意可得§8.2消元——二元一次方程组的解法(一)一、选择题1.C 2.B 3.A二、填空题1.-1 2. , 3. 1,4 4.7,2三、解答题1.(1)(2)(3)(4)2. 这个学生有中国邮票216张,外国邮票109张.§8.2消元——二元一次方程组的解法(二)一、选择题1.C 2.D 3.B二、填空题1.2.3. 4,-14.-16三、解答题1.(1)(2)(3)(4)。
数学_资源与评价七年级下答案
义务教育课程标准实验教科书数学七年级 下册 北京师范大学出版练习册答案1.2 整式的加减1.-xy+2x 2y 2; 2.2x 2+2x 2y; 3.3; 4.a 2-a+6; 5.99c-99a; 6.6x 2y+3x 2y 2-14y 3; 7.39π-+;8.3217210n n n n aa a a +++--+-; 9.D; 10.D; 11.D; 12.B; 13.C; 14.C; 15.B;22. 解:(1)1,5,9,即后一个比前一个多4正方形.(2)17,37,1+4(n-1).四.解:3幅图中,需要的绳子分别为4a+4b+8c,4a+4b+4c,6a+6b+4c,所以(2)中的用绳最短,(3)中的用绳最长.1.3 同底数幂的乘法1.10m n+,96;2.2x 5,(x+y)7;3.106;4.3;5.7,12,15,3 ;6.10;7.D ;8.•B ; 9.D ;10.D ;11.B ;12.(1)-(x-y)10;(2)-(a-b-c)6;(3)2x 5;(4)-x m13.解:9.6×106×1.3×108≈1.2×1015(kg). 14.(1)①424103333⨯⨯=,②436135555⨯⨯=.8.37;9.A 、D;10.A 、C;11.B;12.D ;13.A ;14.B ;15.A;16.B.17.(1)0;(2)m nb a 4412-;(3)0.18.(1)241 (2)540019.100425753252(2),3(3)==,而4323<, 故1002523<.20.-7;21.原式=19991999499431999(3)(25)32534325⨯+-+=-+=-⨯⨯+, 另知19993的末位数与33的末位数字相同都是7,而199925的末位数字为5,20.∵x+3y=0 ∴x 3+3x 2y-2x-6y=x 2(x+3y)-2(x+3y)=x 2·0-2·0=0,21.由题意得35a+33b+3c-3=5,∴35a+33b+3c=8,∴(-3)5a+(-3)3b+(-3)c-3=-(35a+33b+3c)-3=-8-3=-11, 22.原式=-9,原式的值与a 的取值无关. 23.∵21222532332n n n n n +++⨯⨯-⋅⋅,=212125321232n n n n ++⨯⨯-⋅⋅,=211332n n +⋅⋅.∴能被13整除. 四.125121710252⨯=⨯=N ,有14位正整数.=(a 2+c 2)2-b 4=44a c ++2a 2c 2-b 4=444a b c ++.1111,12002232003a b ++=++++=,=(b-1)(a+1)-ab=ab-a+b-1-ab=b-a-1=12003.=2211221221(5)5()x y x y x y x y ++-∴22221210(5)155(5)350y y +=+⨯-=∴22125y y +=35.22.1234567162536496481100x x x x x x x ++++++ =(3)3(2)3(1)1⨯-⨯+⨯=123×3-12×3+1=334.4.4用尺规作线段和角(2)1.B;2.D;3.略;4.略;5.略;6.略;7.(1)略;(2)略;(3)相等;8.略;9.略;10.略;四.略.单元综合测试1.143°;2.对顶角相等;3.∠ACD、∠B;∠BDC、∠ACB;∠ACD;4.50°;5.65°;6.180°;7.50°、50°、130°;8.α+β-γ=180°;9.45°;10.∠AOD、∠AOC;11.C;12.A;13.C;14.D;15.A;16.D;17.D;18.C;19.D;20.C;21.证明略;22.平行,证明略;23.平行,证明略;24.证明略;第三章生活中的数据3.1 认识百万分之一1,1.73×104- ;2,0.000342 ; 3,4×107-; 4,9×103- ; 5,C; 6,D;7,C ; 8,C; 9,(2)28:22:27:37:30:29;4.(1)这人的射击比较稳定,心态好,所以成绩越来越好;(2)平均成绩是8(3)5.解:(1)实用型生活消费逐年减少,保健品消费逐年增加,旅游性消费逐年增加:(2)每年的总消费数是增加了(3)2(g). 10-6(kg). 10-6kg.1.(1)AD;AD,BD ;(2)BF,AC,ACE,AE,ADC,AD,DEC,DE;2.5cm;3.40°;4.D;5.A;6.D;7.略 ; 8.略;四.130度;5.2 图形的全等1.B; 2.D ; 3.D ; 4.C. 提示:按一定顺序找,△AOE,△EOD,△AOD,△ABD,△ACD,△AOB;5.a=5,b=18,c=15,∠α=70°,∠β=140°; 6.略 ; 7.C ; 8.D;10.C;11.D ;12.略四.5.3 全等三角形1.C ;2.D;3.B; 4.B ;5.相等,相等,相等 ; 6.∠ABC;7.DE;8.BC=DC,•AC=EC , EC, ∠E ,∠ECD;9.A ; 10.A; 11.C; 12 .D; 13.D;14.∵△DEF≌△MNP.∴DE=MN,∠D=∠M,∠E=∠N,∠F=∠P,∴∠M=48°,∠N=52°,∴∠P=180°-48°-52=°=80°,DE=MN=12cm.四.不成立,因为它们不是对应边.可找出AB=AC,AE=AD,BE=CD.5.4 探索三角性全等的条件(sss)1.SSS ;2.AD=BC ;3.60°;4.D ;5.C;6.先证△ABC≌△DEF(SSS)•,∴∠BCA=∠EFD,∴BC∥EF7.证△ABC≌△ADC(SSS),可得∠BAC=∠DAC,即AE•平分∠BAD8.∠A=∠D,理由如下:连接BC,在△DBC和△ACB中,∵DB=AC,CD=BA,BC=CB,•∴△DBC≌△ACB(SSS),∴∠A=∠D9.DM=DN.四. 略.5.4 探索直角三角形全等的条件(SAS、ASA、AAS)1.乙; 2.AC=AC等;3.2cm; 4.OA=OC或OB=OD或AB=CD;5.B ; 6.C;7.B; 8.B; 9.B;10.B;11.3;12.先证△ABE≌△DAF得AE=DF,因为由正方形ABCD得AD=DC,所以得ED=FC13.证明:延长AE到G,使EG=AE,连结DG.证△ABE≌△GDE,∴AB=GD,∴∠B=∠BDG.∵∠ADC=∠B+∠BAD.∠ADG=∠ADB+∠BDG,而∠ADB=∠BAD,∠B=∠BDG,∴∠ADC=∠ADG 再证△ADG≌△ADC,∴AG=AC,即AC=2AE.14.已知:DE⊥AB,DF⊥AC,垂足分别为E,F,AB=AC,BD=CD求证:BE=CF.证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90º.在△BDE与△CDF中,∵∠B=∠C,∠BED=∠CFD,BD=CD,∴△BDE≌△CDF(AAS),∴BE=CF.15.此图中有三对全等三角形,分别是:△ABF≌△DEC,△ABC≌△DEF,△BCF•≌△EFC.证明:∵AB∥DE,∴∠A=∠D.在△ABF和△DEC中,,,, AB DEA D AF DC=⎧⎪∠=∠⎨⎪=⎩∴△ABF≌△DEC(SAS).四.证明:(1)① ∵∠ACD=∠ACB=90°,∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE ,∵AC=BC,∴△ADC≌△CEB;② ∵△ADC≌△CEB,∴CE=AD,CD=BE ,∴DE=CE+CD=AD+BE,(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC ,∴△ACD≌△CBE ,∴CE=AD,CD=BE.∴DE=CE-CD=AD-BE.(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE-AD(或AD=BE-DE,BE=AD+DE等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD-CE=BE-AD.∠ACE 及FC 为公共边. 可证△CFG ≌△CFD , 所以FG=FD ,所以FE=FD .5.7 探索直角三角形全等的条件(HL )1.B; 2.C; 3.D; 4.3; 5.全等 ; 6.(1)AAS 或ASA ; (2)AAS ; (3)SAS 或HL ; •(4)不全等 ; (5)不全等 ;7.猜想∠ADC=∠ADE .理由是∠ACD=∠AED=90°,∠CAD=•∠EAD ,所以∠ADC=∠ADE (直角三角形两锐角互余).8.C 9.△ADE ≌△CBF ,△DEG ≌△BFG ,△ADG ≌△CBG10.∠A CE 11.•全等 HL 5cm12.有全等直角三角形,有3对,分别是:△ABE ≌△ACD ,△ADF ≌△AEF ,•△BDF ≌△CEF ,根据的方法分别为AAS ,HL ,HL 或SAS 或AAS 或ASA 或SSS .13.解:因为△ABD ≌△CBD ,所以∠ADB=∠CDB .又因为PM ⊥AD ,PN ⊥CD ,所以PM=•PN .14.提示:先说明△ADC ≌△BDF ,所以∠DBE=∠DAC ,所以∠ADB=∠AEF=90°,•所以BE ⊥AC .15.△ABF ≌△DEA ,理由略.16.先证Rt △ACE ≌Rt △BDF ,再证△ACF ≌△BDE;17. 需证Rt △ADC ≌Rt △AEC四.(1)由于△ABC 与△DEF 是一张矩形纸片沿对角线剪开而得到两张三角形,所以△ABC ≌△DEF ,所以∠A =∠D ,在△ANP 和△DNC 中,因为∠ANP =∠DNC ,所以∠APN =∠DCN ,又∠DCN =90°,所以∠APN =90°,故AB ⊥ED .(2)答案不唯一,如△ABC ≌△DBP ;△PEM ≌△FBM ;△ANP ≌△DNC 等等.以△ABC ≌△DBP 为例证明如下:在△ABC 与△DBP 中,因为∠A =∠D ,∠B =∠B ,PB =BC ,所以△ABC ≌△DBP .单元综合测试1.一定,一定不;2.50°;3.40°; 4.HL;5.略(答案不惟一);6.略(答案不惟一); 7.5;8.正确;9.8;10.D; 11.C; 12.D; 13.C; 14.D; 15.A; 16.C; 17.C;.18.略;19.略;20.合理.因为他这样做相当于是利用“SSS ”证明了△BED ≌△CGF ,所以可得∠B =∠C .21.此时轮船没有偏离航线.画图及说理略;22.(1)图中还有相等的线段是:AE =BF =CD ,AF =BD =CE ,事实上,因为△ABC 与△DEF 都是等边三角形,所以∠A =∠B =∠C =60°,∠EDF =∠DEF =∠EFD =60°,DE =EF =FD ,又因为∠CED +∠AEF =120°,∠CDE +∠CED =120°,所以∠AEF =∠CDE ,同理,得∠CDE =∠BFD ,所以△AEF ≌△BFD ≌△CDE (AAS ),所以AE =BF =CD ,AF =BD =CE ,(2)线段AE ,BF ,CD 它们绕△ABC 的内心按顺时针(或按逆时针)方向旋转120°,可互相得到,线段AF ,BD ,CE 它们绕△ABC 的内心按顺时针(或按逆时针)方向旋转120°,可互相得到.23.(1)△EAD ≌△EA D ',其中∠EAD=∠EA D ',AED A ED ADE A DE ''=∠=,∠∠∠;(2)118022180-2x y ∠=︒-=︒,∠;(3)规律为:∠1+∠2=2∠A .第六章 变量之间的关系6.1 小车下滑的时间1.R;2.(1)挂重,弹簧长度;(2)13;3.(1)速度,甲乙两地的距离;(2)时间,他距乙地的距离;4.220字/分;5.27;6.x x y 42+=;7.B;8.C;9.D;10.C;240030082=⨯=y (元),所以12y y <,故选乙公司合算.2中∠1+∠3=2∠2,图3中∠1-∠3=2∠2.提示:连接CC’.四. 这个图案共有四条对称轴.7.5~7.6 镜子改变了什么镶边与剪纸1.0 1 8 ;2.wp31285qb ;3.9:30或21:30 ;4.A;5.B;6.A;7.对,是5>2 ;8. 图中(1)、(2)、(3)、(4)正对镜子与原来的图形完全一样,•因为这两个图形是左右对称的轴对称图形. ;9. ET3625 ;10.镜子应竖立在字母A的正面,还有H、T、M、O、T、U、V、W、X、Y•在镜子中的像与原字母相同. 11.略;12. ;13.8 提示:作直线AB、CD、EF,构造等边三角形;14.图2中600,图3中1200.证明略.单元综合测试1.C ;2.A ;3.C;4.D;5.B;6.A ;7.C ;8.B ;9.4; 10.456 ;11.700或200 ;12.略;13. 7 ;14.a ;15.6;17.略; 18.6cm; 19.提示:连接AC、AD ;20. △ABC、△ADC、△ABD,360 ;21.图2中h1+h2+h3=h还成立,连接PA、PB、PC,用面积法证明.图3中不成立,h1+h2-h3=h;22.(1)y=2x-8(2)x=8(3)3s和4.8s.。
北师大版七年级数学下册第一章第2节幂的乘方与积的乘方练习题(附答案)
北师大版七年级数学下册第一章第2节幂的乘方与积的乘方练习题(附答案)班级________姓名________学号________评价等次________一、选择题1. 计算(23)2015×(32)2016的结果是( )A. 23B. −23C. 32D. −322. (−a 5)2+(−a 2)5的结果是( )A. 0B. −2a 7C. 2a 10D. −2a 10 3. 如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A. a >b >cB. c >b >aC. b >a >cD. b >c >a4. 已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系不成立的是( ) A. c =2b −1 B. c =a +bC. b =a +1D. c =ab5. 下列运算错误的是( )A.B. (x 2y 4)3=x 6y 12C. (−x)2·(x 3y)2=x 8y 2D.6. 下列各式中:(1)−(−a 3)4=a 12;(2)(−a n )2=(−a 2)n ;(3)(−a −b)3=(a −b)3;(4)(a −b)4=(−a +b)4正确的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个 7. 下列运算正确的是( )A. a 2⋅a 3=a 6B. (−a 2)3=−a 5C. a 10÷a 9=a(a ≠0)D. (−bc)4÷(−bc)2=−b 2c 2 8. 下列运算正确的是( )A. x 2+x 3=x 5B. (−2a 2)3=−8a 6C. x 2⋅x 3=x 6D. x 6÷x 2=x 39. 计算(x 2y)3的结果是( )A. x 6y 3B. x 5y 3C. x 5yD. x 2y 310. 已知a =96,b =314,c =275,则a 、b 、c 的大小关系是( )A. a >b >cB. a >c >bC. c >b >aD. b >c >a 11. 下列运算中,正确的是( )A. 3x 3⋅2x 2=6x 6B. (−x 2y)2=x 4yC. (2x 2)3=6x 6D. x 5÷12x =2x 4 12. 下列运算正确的是( )A. a 3⋅a 3=2a 6B. a 3+a 3=2a 6C. (a 3)2=a 6D. a 6⋅a 2=a 3 13. 已知32m =8n ,则m 、n 满足的关系正确的是( ) A. 4m =n B. 5m =3n C. 3m =5n D. m =4n 14. 化简(2x)2的结果是( )A. x 4B. 2x 2C. 4x 2D. 4x 15. 已知5x =3,5y =2,则52x−3y =( )A. 34 B. 1 C. 23 D. 98 16. 计算3y 3⋅(−y 2)2⋅(−2y)3的结果是( )17.计算:(−2)2015⋅(12)2016等于()A. −2B. 2C. −12D. 1218.计算(−513)3×(−135)2所得结果为()A. 1B. −1C. −513D. −13519.计算(−x3y)2的结果是()A. −x5yB. x6yC. −x3y2D. x6y220.下列运算错误的是()A. −m2⋅m3=−m5B. −x2+2x2=x2C. (−a3b)2=a6b2D. −2x(x−y)=−2x2−2xy二、计算题21.计算: (1)(−a3)4⋅(−a)3(2)(−x6)−(−3x3)2+8[−(−x)3]2(3)(m2n)3⋅(−m4n)+(−mn)2三、解答题22.已知272=a6=9b,求2a2+2ab的值.23.若x=2m+1,y=3+4m.(1)请用含x的代数式表示y;(2)如果x=4,求此时y的值.答案和解析1.【答案】C【解析】【分析】将原式拆成(23)2015×(32)2015×32=(23×32)2015×32即可得出答案. 【解答】解:原式=(23)2015×(32)2015×32=(23×32)2015×32=32.故选C . 2.【答案】A【解析】【分析】此题主要考查了幂的乘方运算和合并同类项,幂的乘方法则是:底数不变,指数相乘. 直接利用幂的乘方运算法则计算出结果,然后再合并同类项即可. 【解答】解:(−a 5)2+(−a 2)5 =a 10−a 10 =0. 故选A . 3.【答案】C【解析】【分析】本题考查了幂的乘方,关键是掌握a mn =(a n )m .根据幂的乘方得出指数都是11的幂,再根据底数的大小比较即可. 【解答】解:a =355=(35)11=24311, b =444=(44)11=25611, c =533=(53)11=12511, ∵256>243>125, ∴b >a >c . 故选C . 4.【答案】D【解析】【分析】本题考查了幂的乘方和积的乘方、同底数幂的乘法,解答本题的关键是掌握各知识点的运算法则.根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,依此即可得到a 、b 、c 之间的关系. 【解答】解:∵22b−1=102÷2=50=2c , ∴2b −1=c ,故A 正确; ∵2a =5,2b =10,∴2a ×2b =2a+b =5×10=50, ∵2c =50,∴a +b =c ,故B 正确; ∵2a+1=5×2=10=2b , ∴a +1=b ,故C 正确; ∴错误的为D . 故选D . 5.【答案】D【解析】【分析】本题考查积的乘方与幂的乘方运算法则以及单项式乘以单项式的法则,掌握这些法则是解决问题的关键.运用这些法则逐一判断即可.解:A.(−2a2b)3=−8a6b3,本选项正确,不符合题意;B.(x2y4)3=x6y12,本选项正确,不符合题意;C.(−x)2⋅(x3y)2=x2⋅x6y2=x8y2,本选项正确,不符合题意;D.(−ab)7=−a7b7,本选项错误,符合题意.故选D.6.【答案】A【解析】解:(1)−(−a3)4=−a12,故本选项错误;(2)(−a n)2=(a2)n,故本选项错误;(3)(−a−b)3=−(a+b)3,故本选项错误;(4)(a−b)4=(−a+b)4,正确.所以只有(4)一个正确.故选A.根据幂的运算性质对各选项进行逐一计算即可判断.本题主要利用:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数以及幂的乘方的性质,需要熟练掌握并灵活运用.7.【答案】C【解析】【分析】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、a2⋅a3=a5,故A错误;B、(−a2)3=−a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(−bc)4÷(−bc)2=b2c2,故D错误;故选C.8.【答案】B【解析】【分析】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.根据同类项的定义,幂的乘方以及积的乘方,同底数的幂的乘法与除法法则即可作出判断.【解答】解:A.不是同类项,不能合并,故选项错误;B.正确;C.x2⋅x3=x5,故选项错误;D.x6÷x2=x4,故选项错误.故选B.9.【答案】A【解析】【分析】本题考查了积的乘方和幂的乘方,属于基础题.积的乘方等于积中各个因式分别乘方,然后再将所得的幂相乘,解答此题根据积的乘方的法则计算即可.解:(x2y)3=(x2)3y3=x6y3.故选A.10.【答案】C【解析】解:∵a=96=(32)6=312,b=314,c=275=(33)5=315,∴a<b<c,故选:C.根据幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)分别计算得出即可.此题主要考查了幂的乘方计算,熟练掌握运算法则是解题关键.11.【答案】D【解析】解:A、3x3⋅2x2=6x5,故选项错误;B、(−x2y)2=x4y2,故选项错误;C、(2x2)3=8x6,故选项错误;x=2x4,故选项正确.D、x5÷12故选:D.根据整式的除法,幂的乘方与积的乘方,以及单项式乘单项式的方法,逐项判定即可.此题主要考查了整式的除法,幂的乘方与积的乘方,以及单项式乘单项式,解答此题的关键是熟练掌握整式的除法法则:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.12.【答案】C【解析】【分析】此题主要考查了同底数幂的乘法,幂的乘方,合并同类项等知识,正确掌握运算法则是解题关键.分别利用同底数幂的乘法运算法则,幂的乘方运算法则,合并同类项法则对各选项进行运算,即可判断结果.【解答】解:A.a3·a3=a3+3=a6,故此选项错误;B.a3+a3=2a3,故此选项错误;C.(a3)2=a 2×3=a6,故此选项正确;D.a6·a2=a6+2=a8,故此选项错误.故选C.13.【答案】B【解析】解:∵32m=8n,∴(25)m=(23)n,∴25m=23n,∴5m=3n.故选:B.直接利用幂的乘方运算法则将原式变形,进而得出答案.此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.14.【答案】C【解析】解:(2x)2=4x2,故选:C.利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.此题主要考查了积的乘方,关键是掌握计算法则.15.【答案】D【解析】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x−3y=52x53y =98.故选:D.首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x−3y的值为多少即可.此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.16.【答案】A【解析】【分析】此题考查了积的乘方和幂的乘方以及单项式乘以单项式,熟练掌握运算法则是解本题的关键.原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以单项式法则计算即可得到结果.【解答】解:原式=3y3×y4×(−8y3)=−24y10.故选A.17.【答案】C【解析】解:(−2)2015⋅(12)2016=[(−2)2015⋅(12)2015]×12=−12.故选:C.直接利用同底数幂的乘法运算法则将原式变形进而求出答案.此题主要考查了积的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.18.【答案】C【解析】解:(−513)3×(−135)2=[(−513)×(−135)]2×(−513)=1×(−5 13 )5故选:C .首先根据积的乘方的运算方法:(ab)n =a n b n ,求出[(−513)×(−135)]2的值是多少;然后用它乘−513,求出计算(−513)3×(−135)2所得结果为多少即可.此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m,n 是正整数);②(ab)n =a n b n (n 是正整数). 19.【答案】D【解析】解:(−x 3y)2=x 6y 2. 故选:D .首先利用积的乘方运算法则化简求出答案.此题主要考查了积的乘方运算,正确掌握运算法则是解题关键. 20.【答案】D【解析】【分析】本题考查同底数幂的乘法、合并同类项、积的乘方、单项式乘以多项式,解题的关键是明确它们各自的计算方法.计算出各个选项中式子的正确结果,然后对照,即可解答本题. 【解答】解:∵−m 2⋅m 3=−m 5,故选项A 正确, ∵−x 2+2x 2=x 2,故选项B 正确, ∵(−a 3b)2=a 6b 2,故选项C 正确,∵−2x(x −y)=−2x 2+2xy ,故选项D 错误, 故选D .21.【答案】解:(1)原式=a 12⋅(−a 3)=−a 15; (2)原式=−x 6−9x 6+8x 6=−2x 6; (3)原式=−m 10n 4+m 2n 2.【解析】(1)原式利用幂的乘方与积的乘方运算法则计算即可求出值; (2)原式利用幂的乘方与积的乘方运算法则计算,合并即可求出值; (3)原式利用幂的乘方与积的乘方运算法则计算即可求出值.此题考查了单项式乘单项式,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.22.【答案】解:由272=a 6, 得36=a 6, ∴a =±3; 由272=9b , 得36=32b , ∴2b =6, 解得b =3;(1)当a =3,b =3时,2a 2+2ab =2×32+2×3×3=36. (2)当a =−3,b =3时,2a 2+2ab =2×(−3)2+2×(−3)×3=18−18=0. 所以2a 2+2ab 的值为36或0.【解析】先把已知条件转化成以3为底数的幂,求出a、b的值,再代入代数式计算即可.根据幂的乘方的性质把已知条件转化为以3为底数的幂求出a、b的值是解题的关键;需要注意,a=−3容易被同学们漏掉而导致求解不完全.23.【答案】解:(1)∵4m=22m=(2m)2,x=2m+1,∴2m=x−1,∵y=4m+3,∴y=(x−1)2+3,即y=x2−2x+4;(2)把x=4代入y=x2−2x+4=12.【解析】(1)将4m变形,转化为关于2m的形式,然后再代入整理即可;(2)把x=4代入解得即可.本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m的项代换掉.。
数学补充习题七年级下册答案
数学补充习题七年级下册答案数学补充习题七年级下册答案答案,指对有关问题所作的解答或者练习的答案。
以下是店铺精心整理的数学补充习题七年级下册答案,仅供参考,大家一起来看看吧。
一、选一选(每小题3分,共24分)(有理数的混合运算)1.在-(-5),-(-5)2,-|-5|,(-5)3中负数有()A、0个B、1个C、2个D、3个(相反数)2.下列各数中互为相反数的是()A.与0.2 B.与-0.33 C.-2.25与 D.5与-(-5)(乘方中幂的意义)3.对于(-2)4与-24,下列说法正确的是()A.它们的意义相同B.它的结果相等C.它的意义不同,结果相等D.它的意义不同,结果不等(有理数大小的比较)4.若b<0,则a+b,a,a-b的大小关系为()A、a+b>a>a-bB、a-b>a>a+bC、a>a-b>a+bD、a-b>a+b>a(平方的性质)5.若x是有理数,则x2+1一定是(A.等于1B.大于1 )C.不小于1D.不大于1(两点之间的`距离)6.如图所示,A、B两点所对的数分别为a、b,则AB的距离为()A、a-bB、a+bC、b-aD、-a-b(有理数的乘法;有理数的加法)7.两个有理数的积是负数,和也是负数,那么这两个数()A. 都是负数B. 其中绝对值大的数是正数,另一个是负数C. 互为相反数D. 其中绝对值大的数是负数,另一个是正数(有理数的乘法;有理数的加法)8.四个互不相等整数的积为9,则和为(A.9 B.6 C.0 D.)二、填一填(每小题3分,共24分)(有理数的混合运算)1.一天早晨的气温是-5℃,中午又上升10℃,半夜又下降8℃,则半夜的气温是________.(有理数的运算)2.若a<0,b<0,则a-(-b)一定是(有理数的运算)3.计算:; . (填负数,0或正数)(有理数的减法)4.已知芝加哥比北京时间晚14小时,问北京时间9月21日早上8:00,芝加哥时间为9月日点。
最新华东师大版七年级数学下册各章综合测验及期中期末试卷(精选配套习题,含答案)
华东师大版七年级数学下册习题第六章一元一次方程 (1)第七章一次方程组 (9)第八章一元一次不等式 (16)第九章多边形 (23)第十章轴对称、平移与旋转 (31)期中试卷 (39)期末测试 (46)第六章一元一次方程一、选择题(每小题3分,共30分)1.下列是一元一次方程的是( )A.8+72=2×40 B.9x=3x-8C.5y-3 D.x2+x-1=02.解方程x-13-4-x2=1时,去分母正确的是( )A.2(x-1)-3(4x-1)=1 B.2x-1-12+x=1C.2(x-1)-3(4-x)=6 D.2x-2-12-3x=6 3.研究下面解方程1+4(2x-3)=5x-(1-3x)的过程:①去括号,得1+8x-12=5x-1-3x;②移项,得8x-5x+3x=-1-1+12;③合并同类项,得6x=10;④未知数系数化为1,得x=5 3 .对于上面的解法,你认为( )A.完全正确 B.变形错误的是①C.变形错误的是② D.变形错误的是③4.当x=3时,下列方程成立的个数有( )①-2x-6=0;②|x+2|=5;③(x-3)(x-1)=0;④13x=x-2.A.1个 B.2个 C.3个 D.4个5.已知关于x的方程2x+m-8=0的解是x=3,则m的值为( ) A.2 B.3 C.4 D.56.单项式3a3b2x与-13b4(x-12)a3是同类项,那么x的值是( )A.-1 B.1 C.-14D.147.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于正方体的重量的个数为( )A.2个 B.3个 C.4个 D.5个8.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为( ) A.54+x=80%×108 B.54+x=80%(108-x)C.54-x=80%(108+x) D.108-x=80%(54+x)9.将x0.5-10.7=1变形为10x5=1-107,其错在( )A.不应将分子、分母同时扩大10倍 B.移项未改变符号C.去括号出现错误 D.以上都不是10.小明需要在规定时间内从家里赶到学校,若每小时走5千米,可早到20分钟;若每小时走4千米,就迟到15分钟.设规定的时间为x小时,则可列方程为( )A.5(x-2060)=4(x+1560) B.5(x+2060)=4(x-1560)C.5(x-1560)=4(x+2060) D.5(x+1560)=4(x+2060)二、填空题(每小题3分,共15分)11.若2x=-5x+3,则2x+___=3,依据是.12.当x =____时,代数式3x -28的值是2. 13.已知x =4是关于x 的一元一次方程(即x 为未知数)3a -x =x2+3的解,则a =____.14.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为____元.15.甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动32周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动43周,甲、乙第一次相遇……以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转____周,时针和分针第一次相遇.三、解答题(共75分) 16.(8分)解下列方程:(1)x 2-7=5+x; (2)x -32-2x +13=1.17.(9分)截至2020年底,某省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?18.(9分)已知关于x的方程4x+2m-1=3x的解比关于x的方程3x+2m =6x+1的解大4,求m的值及这两个方程的解.19.(9分)已知小明骑车和步行的速度分别为240米/分钟,60米/分钟,小红每次从家步行到学校所需时间相同,请你根据小红和小明的对话内容(如图),求小明从家到学校的路程和小红从家步行到学校所需的时间.20.(9分)在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.21.(10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个等边三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用含x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?22.(10分)某项工程由甲、乙两队合做12天可以完成,共需工程费用13 800元,甲队单独完成该项工程需20天,且甲队每天的工程费用比乙队多150元.(1)甲、乙两队单独做,每天各可完成多少工作量?单独完成这项工程乙需要多少天?(2)若工程管理部门决定从这两个队中选一个单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.23.(11分)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.7·化为分数形式.由于0.7·=0.777……,设x =0.777……①, 则10x =7.777……②,②-①得9x =7,解得x =79,于是得0.7·=79.同理可得0.3·=39=13,1.4·=1+0.4·=1+49=139根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) 【基础训练】(1)0.5·=________,5.8·=________;(2)将0.2·3·化为分数形式,写出推导过程; 【能力提升】(3)0.3·15·=________,2.01·8·=________;(注:0.3·15·=0.315315……,2.01·8·=2.01818……) 【探索发现】(4)①试比较0.9·与1的大小:0.9·________1;(填“>”“<”或“=”)②若已知0.2·85714·=27,则3.7·14285·=________.(注:0.2·85714·=0.285714285714……)答案选择题:1-5:BCBCA 6-10:BDBBA 填空题:11._5x 等式的性质 12. 6 13.3 14.415. 1211 解答题16..(1)x =-24 (2)x =-1717. 解:设市县级自然保护区有x 个,则省级自然保护区有(x +5)个,根据题意,得10+x +5+x =49,解得x =17,∴x +5=22.答:省级自然保护区有22个,市县级自然保护区有17个18. 解:m =-1,第一个方程的解是x =3,第二个方程的解是x =-1 19. 解:设小红从家步行到学校所需时间为x 分钟,则小明从家步行到学校需(x +2)分钟,小明从家到学校骑车需(x -4)分钟,则240×(x -4)=60×(x +2),解得x =6,∴小明从家到学校的路程为240×(6-4)=480(米),小红从家步行到学校需6分钟20. 解:(1)设成人人数为x 人,则学生人数为(12-x)人.根据题意,得35x +352(12-x)=350.解得x =8.所以学生人数为12-8=4(人),成人人数为8人 (2)如果买团体票,按16人计算,共需费用:35×0.6×16=336(元).336<350,所以购团体票更省钱21. 解:(1)∵裁剪时x 张用A 方法,∴裁剪时(19-x)张用B 方法.∴侧面的个数为6x +4(19-x)=(2x +76)个,底面的个数为:5(19-x)=(95-5x)个 (2)由题意,得2(2x +76)=3(95-5x),解得x =7,∴盒子的个数为2×7+763=30.答:裁剪出的侧面和底面恰好全部用完,能做30个盒子22. 解:(1)甲的工作量为120,由题意得乙每天完成的工作量为112-120=130,∴乙单独完成的天数为1÷130=30(天),∴甲、乙两队单独做,每天完成的工作量分别为120,130;单独完成这项工程乙需要30天 (2)设乙队每天的工程费用为x 元,则甲队的费用为(x +150)元,∴12x +12(x +150)=13 800, 解得x =500,x +150=650(元),甲单独完成所需费用为20×650=13 000(元),乙单独完成所需费用为30×500=15 000(元),故从节约资金的角度考虑,应选择甲工程队23. 解:(1)由题意知0.5·=59,5.8·=5+89=539,故答案为:59 539(2)0.2·3·=0.232323……,设x =0.232323……①,则100x =23.2323……②,②-①,得99x =23,解得x =2399,∴0.2·3·=2399(3)同理,0.3·15·=315999=35111,2.01·8·=2+110×1899=11155,故答案为:55111 11155(4)①0.9·=99=1,故答案为:= ②3.7·14285·=3+714285999999=3+57=267.故答案为:267第七章 一次方程组一、选择题(每小题3分,共30分)1.已知2x -3y =1,用含x 的代数式表示y 正确的是( )A .y =23x -1B .x =3y +12C .y =2x -13D .y =-13-23x2.方程组⎩⎨⎧3x +2y =7①,4x -y =13②,下列变形正确的是( )A .①×2-②消去xB .①-②×2消去yC .①×2+②消去xD .①+②×2消去y 3.方程组⎩⎨⎧x -y =3,3x -8y =14的解为( )A.⎩⎨⎧x =-1y =2B.⎩⎨⎧x =1y =-2C.⎩⎨⎧x =-2y =1D.⎩⎨⎧x =2y =-14.已知有理数x ,y 满足|x +6y -7|+6x +y =0,则x +y 的值是( ) A .1 B.32 C.52D .35.二元一次方程3x +y =10在正整数范围内解的组数是( )A .1B .2C .3D .46.已知⎩⎨⎧x =3,y =2是二元一次方程组⎩⎨⎧ax +by =5,ax -by =1的解,则b -a 的值为( )A .0B .1C .2D .37.如果方程组⎩⎨⎧4x +3y =7,kx +(k -1)y =3的解x ,y 的值相等,则k 的值为( )A .2B .0C .1D .-28.对于有理数x ,定义f (x )=ax +b ,若f (0)=3,f (-1)=2,则f (2)的值为( )A .5B .4C .3D .1 9.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( )A.⎩⎨⎧11x =9y (10y +x )-(8x +y )=13B.⎩⎨⎧10y +x =8x +y 9x +13=11yC.⎩⎨⎧9x =11y (8x +y )-(10y +x )=13D.⎩⎨⎧9x =11y (10y +x )-(8x +y )=13 10.阅读理解:a ,b ,c ,d 是实数,我们把符号⎪⎪⎪⎪⎪⎪a b c d 称为2×2阶行列式,并且规定:⎪⎪⎪⎪⎪⎪ab cd =a ×d -b ×c ,例如:⎪⎪⎪⎪⎪⎪3 2-1 -2=3×(-2)-2×(-1)=-6+2=-4.二元一次方程组⎩⎨⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的解可以利用2×2阶行列式表示为⎩⎪⎨⎪⎧⎪⎪⎪⎪x =D xD y =D yD ;其中D =⎪⎪⎪⎪⎪⎪a 1 b 1a 2b 2,D x =⎪⎪⎪⎪⎪⎪c 1 b 1c 2 b 2,D y =⎪⎪⎪⎪⎪⎪a 1 c 1a 2 c 2. 问题:对于用上面的方法解二元一次方程组⎩⎨⎧2x +y =1,3x -2y =12时,下面说法错误的是( )A .D =⎪⎪⎪⎪⎪⎪2 13 -2=-7 B .D x =-14C .D y =27 D .方程组的解为⎩⎨⎧x =2y =-3二、填空题(每小题3分,共15分)11.若关于x ,y 的二元一次方程3x -ay =1有一个解是⎩⎨⎧x =3,y =2,则a =____.12.若二元一次方程组⎩⎨⎧x +y =3,3x -5y =4的解为⎩⎨⎧x =a ,y =b ,则a -b =____.13.母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知一束鲜花的价格是____元.14.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意列关于x ,y 的方程组为___.15.若关于x ,y 的二元一次方程组⎩⎨⎧3x -my =5,2x +ny =6的解是⎩⎨⎧x =1,y =2,则关于a ,b 的二元一次方程组⎩⎨⎧3(a +b )-m (a -b )=5,2(a +b )+n (a -b )=6的解是____. 三、解答题(共75分)16.(8分)解方程组:(1)⎩⎨⎧x +y =1,4x +y =10; (2)⎩⎪⎨⎪⎧x +32+y +53=6,x -43+2y -35=23.17.(9分)已知a +b =9,a -b =1,求2(a 2-b 2)-ab 的值.18.(9分)用消元法解方程组⎩⎨⎧x -3y =5,①4x -3y =2.②时,两位同学的解法如下: 解法一:由①-②,得3x =3.解法二:由②得,3x +(x -3y)=2,③把①代入③,得3x +5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”;(2)请选择一种你喜欢的方法,完成解答.19.(9分)已知关于x ,y 的方程组⎩⎨⎧3x -2y =4,ax +by =7与⎩⎨⎧2ax -3by =19,5y -x =3有相同的解,求a ,b 的值.20.(9分)当m 为何值时,方程组⎩⎨⎧3x +2y =m ,2x -y =2m +1的解x ,y 满足x -y =2?并求出此方程组的解.21.(10分)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?22.(10分)随着中国传统节日“端午节”的临近,商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?23.(11分)为庆祝六一儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不足90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两所学校各有多少学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法绘画比赛,请你为两所学校设计一种最省钱的购买服装方案.答案选择1-5:CDDAC6-10:AAADC填空:11.412. 7413.1514. ⎩⎨⎧x +y =200,(1-15%)x +(1-10%)y =17415.⎩⎪⎨⎪⎧a =32,b =-12解答题16. (1)解:⎩⎨⎧x =3,y =-2 (2)解:⎩⎨⎧x =3,y =417. 解:-218. 解:(1)解法一中的解题过程有错误,由①-②,得3x =3“×”,应为由①-②,得-3x =3 (2)由①-②,得-3x =3,解得x =-1,把x =-1代入①,得-1-3y =5,解得y =-2.故原方程组的解是⎩⎨⎧x =-1,y =-219. 解:a =4,b =-120. 解:m =1,x =1,y =-121. 解:(1)设这批学生有x 人,原计划租用45座客车y 辆,根据题意得⎩⎨⎧x =45y +15,x =60(y -1),解得⎩⎨⎧x =240,y =5.答:这批学生有240人,原计划租用45座客车5辆 (2)∵要使每位学生都有座位,∴租45座客车需要5+1=6(辆),所需费用为220×6=1320(元),租60座客车需要5-1=4(辆),所需费用为300×4=1200(元),∵1320>1200,∴若租用同一种客车,租4辆60座客车划算22. 解:(1)设打折前甲品牌粽子每盒x 元,乙品牌粽子每盒y 元,根据题意得⎩⎨⎧6x +3y =600,50×0.8x +40×0.75y =5200,解得⎩⎨⎧x =40,y =120.答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元 (2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).答:打折后购买这批粽子比不打折节省了3640元23. 解:(1)5 000-92×40=1 320(元) (2)设甲、乙两所学校各有x 名,y 名学生准备参加演出,则⎩⎨⎧x +y =92,50x +60y =5 000,解得⎩⎨⎧x =52,y =40 (3)∵甲校有10人不能参加演出,∴甲校有52-10=42(人)参加演出,若两校联合购买服装,则需要50×(42+40)=4 100(元),此时比各自购买可以节约(42+40)×60-4 100=820(元),但如果两校联合购买91套服装,只需40×91=3640(元),此时又比联合购买每套50元可节约4 100-3 640=460(元),因此,最省钱的购买方案是两校联合购买91套服装(即比实际人数多购买9套)第八章 一元一次不等式一、选择题(每小题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m -2<n -2 B.m 4>n4C .6m <6nD .-8m >-8n 2.不等式3x -6≥0的解集在数轴上表示正确的是( )3.不等式组⎩⎨⎧x +1>0,2x -6≤0的解集在数轴上表示正确的是( )4.不等式组⎩⎨⎧1-2x <3,x +12≤2的正整数解的个数是( ) A .5 B .4 C .3 D .25.已知(x -2)2+|2x -3y -m |=0中,y 为正数,则m 的取值范围是( )A .m <2B .m <3C .m <4D .m <56.在解不等式1-x 3<3x -22时,其中错误的一步是( ) ①去分母,得2(1-x )<3(3x -2);②去括号,得2-2x <9x -6;③移项,得-2x -9x <-6-2;④合并同类项,得-11x <-8;⑤系数化为1,得x <811. A .① B .② C .③ D .⑤7.不等式14(2x +m )>1的解集是x >3,则m 的值为( ) A .-2 B .-12 C .2 D.128.若关于x 的一元一次不等式组⎩⎨⎧6-3(x +1)<x -9,x -m >-1的解集是x >3,则m 的取值范围是( )A .m >4B .m ≥4C .m <4D .m ≤49.某商店老板销售一种商品,他要以不低于进价120%的价格出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价多少元,商店老板才肯出售( )A .80元B .100元C .120元D .160元10.某种饮料原零售价为每瓶6元,凡购买2瓶以上(含2瓶),超市推出两种优惠销售方法:第一种:第一瓶按原价,其余按原价的七折出售;第二种:全部按原价的八折出售.购买相同数量饮料的情况下,要使第一种销售方法比第二种销售方法的优惠多,至少要购买这种饮料( )A .3瓶B .4瓶C .5瓶D .6瓶二、填空题(每小题3分,共15分)11.用不等号填空:若a <b <0,则-a 5___-b 5;2a -1___2b -1. 12.不等式组⎩⎨⎧2(x +1)>5x -7,43x +3>1-23x的解集为____. 13.某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打__8__折.14.若关于x 的一元一次不等式组⎩⎨⎧3-2x >2,x -a >0有3个整数解,则a 的取值范围是____.15.若x 为实数,则[x]表示不大于x 的最大整数,例如[1.6]=1,[π]=3,[-2.82]=-3等.[x]+1是大于x 的最小整数,对任意的实数x 都满足不等式[x]≤x <[x]+1.①利用这个不等式①,求出满足[x]=2x -1的所有解,其所有解为___.三、解答题(75分)16.(8分)解下列不等式(组),并把不等式(组)的解集在数轴上表示出来.(1)3x -22≤2; (2)⎩⎨⎧3x -5≤1①,13-x 3<4x ②.17.(9分)解不等式组⎩⎪⎨⎪⎧12(x +1)≤2,x +22≥x +33,并求出不等式组的整数解之和.18.(9分)已知不等式5(x -3)-2(x -1)>2.(1)求该不等式的解集;(2)若不等式的最小整数解与m 的值相等,求代数式m -1m +1的值.19.(9分)已知关于x ,y 的方程组⎩⎨⎧3x +2y =m +1,2x +y =m -1,当m 为何值时,x >y?20.(9分)已知方程组⎩⎨⎧x +y =-7-a ,x -y =1+3a的解x 为非正数,y 为负数. (1)求a 的取值范围;(2)化简|a -3|+|a +2|;(3)在a 的取值范围中,当a 为何整数时,不等式2ax +x >2a +1的解为x <1?21.(10分)小明购买A ,B 两种商品,每次购买同一种商品的单价相同,具体信息如下表:(1)求A ,B 两种商品的单价;(2)若第三次购买这两种商品共12件,且A 种商品的数量不少于B 种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.22.(10分)某市继2019年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?23.(11分)为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102 000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?答案选择题1—5:BBCCC 6-10:DADCB 填空题11. > ; < 12. -1<x <3 13. 814. -3≤x <-2 15. _x =0.5或x =116. (1)解:x ≤2(2)解:1<x ≤2 在数轴上表示解集略17. 解:解不等式12(x +1)≤2,得x ≤3,解不等式x +22≥x +33,得x ≥0,则不等式组的解集为0≤x ≤3,所以不等式组的整数解之和为0+1+2+3=618. 解:(1)x >5 (2)5719. 解:用含m 的代数式分别表示x ,y ,得x =m -3,y =-m +5,因为x>y ,所以m -3>-m +5,解此不等式,得m>4,所以当m>4时,x>y20. 解:(1)解方程组,得⎩⎨⎧x =-3+a ,y =-4-2a ,根据题意,得⎩⎨⎧-3+a ≤0,-4-2a<0,解不等式组,得-2<a ≤3 (2)当-2<a ≤3时,|a -3|+|a +2|=3-a +a +2=5 (3)解不等式(2a +1)x>2a +1,根据题意,得2a +1<0,解得a<-12,所以a 的取值范围为-2<a <-12,又∵a 为整数,∴a =-121. 解:(1)设A 种商品的单价为x 元,B 种商品的单价为y 元,根据题意可得⎩⎨⎧2x +y =55,x +3y =65,解得⎩⎨⎧x =20,y =15,答:A 种商品的单价为20元,B 种商品的单价为15元 (2)设第三次购买商品A 种a 件,则购买B 种商品(12-a)件,根据题意可得a ≥2(12-a),解得8≤a ≤12,第三次购买这两种商品的总费用为20a +15(12-a)=(5a +180)元,当a =8时所花钱数最少,即购买A 商品8件,B 商品4件22. 解:(1)设温馨提示牌的单价为x 元,则垃圾箱的单价为3x 元,根据题意,得2x +3×3x =550,解得x =50,经检验,x =50符合题意,∴3x =150(元),即温馨提示牌和垃圾箱的单价分别是50元和150元 (2)设购买温馨提示牌y 个(y 为正整数),则垃圾箱为(100-y)个,根据题意得⎩⎨⎧100-y ≥48,50y +150(100-y )≤10000,∴50≤y ≤52,∵y 为正整数,∴y 为50,51,52,共3种方案;即温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,根据题意,购买温馨提示牌和垃圾箱的总费用为50y +150(100-y)=-100y +15000,当y =52时,所需资金最少,最少是9800元23. 解:(1)设清理养鱼网箱的人均费用为x 元,清理捕鱼网箱的人均费用为y 元,根据题意,得⎩⎨⎧15x +9y =57000,10x +16y =68000,解得⎩⎨⎧x =2000,y =3000,答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元 (2)设m 人清理养鱼网箱,则(40-m)人清理捕鱼网箱,根据题意,得⎩⎨⎧2000m +3000(40-m )≤102000,m <40-m 解得18≤m <20,∵m 为整数,∴m =18或m =19,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱第九章多边形一、选择题(每小题3分,共30分)1.一个五边形的内角和为( )A.540° B.450° C.360° D.180°2.下列各组数中,能作为一个三角形三边边长的是( )A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,53.如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为( )A.54° B.62° C.64° D.74°4.一副分别含有30°和45°角的两个直角三角板,拼成如图所示的图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( ) A.15° B.25° C.30° D.10°5.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是( )A.15° B.20° C.25° D.30°6.从一个n边形的一个顶点出发,分别连结这个顶点与其余的各顶点,若把这个多边形分割成6个小三角形,则n的值是( )A.6 B.7 C.8 D.97.幼儿园的小朋友们打算选择一种形状、大小都相同的多边形塑料板铺活动室的地面,为了保证铺地时既无缝隙又不重叠,请你告诉他们下面形状的塑料板:①正三角形;②正四边形;③正五边形;④正六边形;⑤正八边形.可以选择的是( )A.③④⑤ B.①②④ C.①④ D.①③④⑤8.如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于( )A.90° B.180° C.210° D.270°9.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A′处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是( )A.γ=2α+β B.γ=α+2βC.γ=α+β D.γ=180°-α-β10.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )A.13 B.14 C.15 D.16二、填空题(每小题3分,共15分)11.一个多边形的每一个外角都是36°,则这个多边形的边数是____.12.求图中∠1的度数:(1)∠1=____;(2)∠1=____;(3)∠1=____.13.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是____.14.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小的内角的度数为____.15.如图,五边形ABCDE是正五边形.若l1∥l2,则∠1-∠2=___.三、解答题(共75分)16.(8分)如图,已知∠A=20°,∠B=27°,AC⊥DE.求∠1,∠D度数.17.(9分)如图,△ABC中,∠ABC∶∠C=5∶7,∠C比∠A大10°,BD是△ABC的高,求∠A与∠CBD的度数.18.(9分)如图,将△ABC沿EF折叠,使点C落在点C′处,试探究∠1,∠2与∠C的关系.19.(9分)小明在进行多边形内角和计算时,求得的内角和为1125°,当发现错了之后,重新检查,发现是少加了一个内角.问这个内角是多少度?小明求的是几边形的内角和?20.(9分)如图,在△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD ⊥AB于点D,DF⊥CE于点F,求∠CDF的度数.21.(10分)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.22.(10分)已知△ABC.(1)如图①,∠BAC和∠ACB的平分线交于点I,∠BAC=50°,∠ACB=70°,求∠AIC的度数.(2)如图②,△ABC的外角∠CAE的平分线的反延长线与∠ACB的平分线交于点O,则∠O和∠B有什么数量关系?说明你的理由.23.(11分)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图①,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+12∠A,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=12∠ABC,∠2=12∠ACB.∴∠1+∠2=12(∠ABC+∠ACB).又∵∠ABC+∠ACB=180°-∠A,∴∠1+∠2=12(180°-∠A)=90°-12∠A,∴∠BOC=180°-(∠1+∠2)=180°-(90°-12∠A)=90°+12∠A.探究2:如图②中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图③中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:________.答案选择题1-5:ACCAB6-10:CBBAB填空题11. 1012. (1)∠1=62°;(2)∠1=23°;(3)∠1=105°13. 40°14. 30°15. 72°16. 解:∠1=110°,∠D=43°17. 解:设∠ABC=(5x)°,∠C=(7x)°,则∠A=(7x-10)°.由∠A+∠ABC +∠C=180°,得5x+7x+7x-10=180.解得x=10.∴∠ABC=50°,∠C=70°,∠A=60°.∵BD是△ABC的高,∴∠BDC=90°.∴∠CBD=90°-∠C=90°-70°=20°18. 解:根据翻折的性质,得∠CEF=∠C′EF,∠CFE=∠C′FE,则∠1+2∠CEF =180°,∠2+2∠EFC=180°,所以∠1+∠2+2∠CEF+2∠EFC=360°,而∠C+∠CEF+∠CFE=180°,所以∠1+∠2+2(180°-∠C)=360°,所以∠1+∠2=2∠C19. 解:设此多边形的边数为n,则由题意,得0<(n-2)×180-1125<180,解得8.25<n<9.25,所以n=9, 少加的一个内角为1260°-1125°=135°20. 解:∵∠A=40°,∠B=72°,∴∠ACB=180°-40°-72°=68°,∵CE 平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∵CD⊥AB,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=∠CED=74°21. 解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°-∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=12∠CBD=65°(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°-65°=25°.∵DF∥BE,∴∠F =∠CEB=25°22. 解:∵AI平分∠BAC,∴∠IAC=12∠BAC,∵CI平分∠BCA,∴∠ICA=12∠BCA,∵∠BAC=50°,∠ACB=70°,∴∠IAC=25°,∠ICA=35°,∴∠AIC=180°-25°-35°=120°(2)∠B=2∠O,理由:∵CO平分∠ACB,∴∠ACO=1 2∠ACB,∵AD平分∠EAC,∴∠DAC=12∠EAC,∵∠O+∠ACO=∠DAC,∴2∠O+∠ACB=∠EAC,又∵∠B+∠ACB=∠EAC,∴∠B=2∠O23. 解:(1)探究2结论:∠BOC=12∠A,理由如下:如图∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=12∠ABC,∠2=12∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=12(∠A+∠ABC)=12∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2-∠1=12∠A+∠1-∠1=12∠A(2)探究3:∠OBC =12(∠A +∠ACB),∠OCB =12(∠A +∠ABC),∠BOC =180°-∠OBC -∠OCB =180°-12(∠A +∠ACB)-12(∠A +∠ABC)=180°-12∠A-12(∠A +∠ABC +∠ACB)=90°-12∠A ,∴结论:∠BOC =90°-12∠A第十章轴对称、平移与旋转一、选择题(每小题3分,共30分)1.下列图形中一定是轴对称图形的是( )A.直角三角形B.四边形C.平行四边形D.长方形2.下列图形中,既是中心对称图形,又是轴对称图形的是( )3.如图,△ABC经过平移到达△DEF的位置,则下列四个说法中,正确的有( )①AB∥DE,AB=DE;②AD∥BE∥CF,AD=BE=CF;③AC∥DF,AC=DF;④BC ∥EF,BC=EF.A.1个 B.2个 C.3个 D.4个4.如图,是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( ) A.150° B.180° C.210° D.120°5.如图,在下列四种图形变换中,该图案不包含的变换是( )A.平移 B.轴对称 C.旋转 D.中心对称6.如图,如果甲、乙两图关于点O成中心对称,则乙图不符合题意的一块是( )7.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为( ) A.30° B.60° C.90° D.150°,8.如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为( )A.6 B.8 C.10 D.129.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P 关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为( ) A.4.5 cm B.5.5 cm C.6.5 cm D.7 cm10.如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包括△ABC本身)共有( )A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共15分)11.如图,下列各图是旋转对称图形的有____,是中心对称图形的有____.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB =15°,则∠AOD=____度.13.如图,△ABC≌△DEF,∠A=70°,∠B=40°,BF=6,则∠DEF=____,EC=____.14.如图,一块长46 m,宽25 m的草地上,准备修两条如图所示的小径,则修了小径后,草地可种草的面积变为____ m2.15.如图,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,若AF=12AB,则可通过____(填“平移”“旋转”或“轴对称”)变换,使△ABE变换到△ADF的位置,且线段BE,DF的数量关系是____,位置关系是___.三、解答题(共75分)16.(8分)下列图形是全等图形的有:____.(填序号)17.(9分)如图,四边形ABCD的顶点D在直线m上.(1)画出四边形ABCD关于直线m为对称轴的对称图形A1B1C1D;(2)延长线段BA和B1A1,它们的交点与直线m有怎样的关系;(3)如果∠A=91°,BC=16 cm,请你求出∠A1的度数与B1C1的长.18.(9分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图①中,画出一个与△ABC成中心对称的格点三角形;(2)在图②中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图③中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.19.(9分)如图,在8×8的方格纸中,将△ABC向右平移4个单位长度得到△A1B1C1,△ABC关于直线MN对称的图形为△A2B2C2,将△ABC绕点O旋转180°得△A3B3C3.(1)在方格纸中画出△A1B1C1、△A2B2C2和△A3B3C3;(2)在△A1B1C1、△A2B2C2和△A3B3C3中,哪两个三角形成轴对称?请画出对称轴;(3)在△A1B1C1、△A2B2C2和△A3B3C3中,哪两个三角形成中心对称?请画出对称中心P.20.(9分)学完图形的全等后,数学老师出了一道题:“如图,已知△ABC≌△ADE,∠BAD=40°,∠C=50°,问DE与AC有何位置关系,并说明理由.”请你完成这道题.21.(10分)认真观察前四个图中阴影部分构成的图案(每个小正方形的边长都为1),回答下列问题:(1)请写出这四个图案都具有的三个共同特征:特征1:__________________________________________________;特征2:__________________________________________________;特征3:__________________________________________________.(2)请在第五个图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.22.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,使它与△ABC全等且点A与点A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.23.(11分)如图,在正方形ABCD中,点E在BC上,∠FDE=45°,△DEC 按顺时针方向旋转一个角度后得△DGA.(1)图中哪一个点是旋转中心?旋转角度是多少?(2)试指明图中旋转图形的对应线段与对应角?(3)图中有除正方形四边相等外的相等线段与相等的角吗?有没有能够完全重合的三角形?若有,请找出来;若没有,说明理由.(4)你能求出∠GDF的度数吗?说明你的理由.。
七年级上下册数学同步练习册答案整理
七年级上下册数学同步练习册答案整理学习从来无捷径。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。
下面是小编给大家整理的一些七年级上册数学同步练习册的答案,希望对大家有所帮助。
七年级下册数学配套练习册答案基础知识1、是不是不是是2、如果是直角,那么都相等3、两条线是邻补角生物角平分线它们互相垂直4、√ ⅹ √ √ ⅹ5、题目略(1)不是(2)不是(3)是,如果两个角相等,那么它们的补角相等,正确(4)是,如果两条直线相交,那么它们只有一个交点,正确(5)是,如果两个角是同旁内角,那么它们互补,错误(6)是,如果比较两个负数的大小,那么绝对值大的反而小,正确能力提升6、A7、两个数是正数两个数之积是正数8、两个角是对顶角它们相等9、如果两个角相等,那么它们的余角相等。
10、不对一个角的两边与另一个角的两边分别平行,这两个角相等或互补11、题目略(1)两直线平行,同位角相等(2)同位角相等,两直线平行(3)两直线平行,同旁内角互补(4)两直线平行,同旁内角互补探索研究12、题目略(1)假命题,不平行的两条直线被第三条直线所截,同位角不相等(2)假命题,(-3)²>2²,但-3<2(3)假命题,0×4=0,但4≠0(4)假命题,3+0=3≯3初一上册数学同步练习答案苏科版第一章有理数§1.1正数和负数(一)一、1. D 2. B 3. C二、1. 5米 2. -8℃ 3. 正西面600米 4. 90三、1. 正数有:1,2.3,68,+123;负数有:-5.5, ,-11 2.记作-3毫米,有1张不合格3. 一月份超额完成计划的吨数是-20, 二月份超额完成计划的吨数是0, 三月份超额完成计划的吨数是+102.§1.1正数和负数(二)一、1. B 2. C 3. B二、1. 3℃ 2. 3℃ 3. -2米 4. -18m三、1.不超过9.05cm, 最小不小于8.95cm;2.甲地,丙地最低,的地方比最低的地方高50米3. 70分§1.2.1有理数一、1. D 2. C 3. D二、1. 0 2. 1,-1 3. 0,1,2,3 4. -10三、1.自然数的集合:{6,0,+5,+10…}整数集合:{-30,6,0,+5,-302,+10…}负整数集合:{-30,-302… }分数集合:{ ,0.02,-7.2, , ,2.1…}负分数集合:{ ,-7.2, … }非负有理数集合:{0.02, ,6,0,2.1,+5,+10…};2. 有31人可以达到引体向上的标准3. (1) (2) 0§1.2.2数轴一、1. D 2. C 3. C二、1. 右 5 左 3 2. 3. -3 4. 10三、1. 略 2.(1)依次是-3,-1,2.5,4 (2)1 3. ±1,±3沪教版七年级下册数学练习册答案第五单元第1节轴对称现象答案【基础•达标】1、B2、完全重合;对称轴3、完全重合;对称轴4、角、线段、等腰三角形、等腰梯形、圆、扇形5、4;过对边重点的两条直线和两条对角线所在的直线6、1;底边的中线所在的直线7、2;过对边中点的两条直线8、无数;过圆心的直线9、3;三条边上的高所在的直线11、(1)(9);(3)(7);(5)(8);(2)(10)12、略【综合•提升】13、略14、略15、123454321;12345654321第五单元第2节轴对称的性质答案【基础•达标】1、×2、√3、×4、×5、√6、垂直平分线7、完全重合8、轴对称图形9、B10、C11、B12、C13、略七年级上册数学同步练习册答案。
(湘教版)初中七年级数学下册:全套课时作业练习题(含答案)
建立二元一次方程组(30分钟 50分)一、选择题(每小题4分,共12分) 1.下列方程中,是二元一次方程的是( ) A.3x 2-2y=4 B.6x+y+9z=0 C.1x +4y=6D.4x=y−242.以{x =1,y =2为解的二元一次方程组是() A.{x −y =3,3x −y =1B.{x −y =−1,3x +y =−5C.{x −2y =−3,3x +5y =−5D.{x −y =−1,3x +y =53.(2013·广州中考)已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A.{x +y =10,y =3x +2B.{x +y =10,y =3x −2C.{x +y =10,x =3y +2D.{x +y =10,x =3y −2二、填空题(每小题4分,共12分)4.请写出一个二元一次方程组 ,使它的解是{x =2,y =−1.5.方程(k 2-1)x 2+(k+1)x+2ky=k+3,当k= 时,它为一元一次方程;当k= 时,它为二元一次方程.6.母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从信息中可知,若设鲜花x 元/束,礼盒y 元/盒,则可列方程组为 .三、解答题(共26分)7.(8分)下列各组数据中哪些是方程3x-2y =11的解?哪些是方程2x+3y=16的解?哪些是方程组{3x −2y =11,2x +3y =16的解?为什么? ①{x =1,y =−4.②{x =5,y =2.③{x =7,y =23.④{x =15,y =6.8.(8分)(1)若{x =a,y =b 是方程2x+y=0的解,求6a +3b+2的值.(2)若{x =a,y =b 是方程3x-y=1的解,求6a-2b+3的值.【拓展延伸】9.(10分)为民医疗器械经销部经营甲、乙两种医疗器械,甲器械每台2万元,乙器械每台5万元,今年厂方给经销部规定了24万元的营销任务,那么该经销部要想刚好完成任务,有哪些销售方案可选择?若乙医疗器械的利润是甲医疗器械的3倍,那么你觉得选择哪个方案更好些?答案解析1.【解析】选D.4x=y−24含有两个未知数x,y,并且含x,y 项的次数都是1,是二元一次方程.选项A 有二次项,选项B 有三个未知数,选项C 分母中有未知数,故A,B,C 都不是二元一次方程. 2.【解析】选D.将{x =1,y =2分别代入四个方程组中,只有D 中的两个方程同时成立.3.【解析】选C.由题意知,x+y=10,x-3y=2,即x=3y+2,所以{x +y =10,x =3y +2.4.【解析】以{x =2,y =−1为解的二元一次方程有无数个,如x+y=1,x-y=3,x+2y=0等,只要满足x=2,y=-1即可.然后从中选两个方程,但是这两个方程的对应项的系数不能成倍数关系. 答案:{x +y =1,x +2y =0(答案不唯一)5.【解析】无论是一元一次方程还是二元一次方程,都不可能有二次项,所以k 2-1=0,即k=±1.当k=-1时,原方程为-2y=2是一元一次方程;当k=1时,原方程为x+y=2为二元一次方程. 答案:-1 16.【解析】一束鲜花x 元,一盒礼盒y 元,由一束鲜花和两盒礼盒共55元,得:x+2y=55;由两束鲜花和3盒礼盒共90元,得2x+3y=90,故{x +2y =55,2x +3y =90.答案:{x +2y =55,2x +3y =907.【解析】①②是方程3x-2y=11的解.②③是方程2x+3y=16的解.②是方程组{3x −2y =11,2x +3y =16的解. 因为方程组的解必须是方程组中两个方程的公共解.8.【解析】(1)把{x =a,y =b 代入方程2x+y=0得2a+b=0,两边同时乘以3得:6a+3b=0,所以6a+3b+2=2.(2)把{x =a,y =b 代入3x-y=1得3a-b=1,则6a-2b+3=2(3a-b)+3=5.【归纳整合】解决本题的方法为整体代入法,将含a,b 的式子整体代入,使得整个求解过程更加简便,在解决整体代入法求值问题时,要多观察式子的特点,合理运用整体代入法.9.【解析】设销售甲医疗器械x 台,乙医疗器械y 台,根据题意,得2x+5y=24.因为x,y 都是非负整数,所以x=24−5y 2=12-2y-y2.当y=0时,x=12;当y=2时,x=7;当y=4时,x=2.所以销售方案有三种:方案一:销售甲器械12台,乙器械0台;方案二:销售甲器械7台,乙器械2台;方案三:销售甲器械2台,乙器械4台.设甲医疗器械的利润为a(a>0),则方案一的利润为12a+0×3a=12a(元);方案二的利润为7a+2×3a=13a(元);方案三的利润为2a+4×3a=14a(元).因为14a>13a>12a,所以选择方案三更好些.二元一次方程组的应用(第1课时)(30分钟 50分)一、选择题(每小题4分,共12分)1.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为( )A.{3x +5y =1 200,x +y =16B.{360x +560y =1.2,x +y =16C.{3x +5y =1.2,x +y =16D.{360x +560y =1 200,x +y =162.(2013·潍坊中考)为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是 2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是( )A.{x −y =22x ×2.5%+y ×0.5%=10 000B.{x −y =22x 2.5%+y 0.5%=10 000C.{x +y =10 000x ×2.5%−y ×0.5%=22D.{x +y =10 000x 2.5%−y 0.5%=223.已知甲、乙两种商品的进价和为100元,为促销而打折销售,若甲商品打8折,乙商品打6折,则可赚50元;若甲商品打6折,乙商品打8折,则可赚30元,则甲、乙两种商品的定价分别是( ) A.50元,150元 B.150元,50元 C.100元,50元D.50元,100元二、填空题(每小题4分,共12分)4.甲种电影票每张20元,乙种电影票每张15元.若购买甲,乙两种电影票共40张,恰好用去700元,则甲种电影票买了 张.5.学校组织一次有关历史知识的竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得了76分,那么他答对 道题.6.一个长方形的长减少5cm,宽增加2cm ,就变成了一个正方形,并且这两个图形的面积相等,则原长方形的面积为 cm 2. 三、解答题(共26分)7.(8分)(2013·济南中考)某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人.该校360名住宿生恰好住满这50间宿舍.求大、小宿舍各有多少间.8.(8分)(2013·宜宾中考)2013年4月20日,四川省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷? 【拓展延伸】9.(10分)一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A 地到B 地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解题过程.答案解析1.【解析】选B.第一个等量关系式为:360x x +560x y =1.2,第二个等量关系式为:x+y=16,构成方程组{360x +560y =1.2,x +y =16.2.【解析】选B.根据“吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人”所得的方程是x-y=22;调查的吸烟的人数是x 2.5%,不吸烟的人数是y0.5%,根据共调查了10000人,列方程得x2.5%+y0.5%=10000,所以可列方程组{x −y =22,x 2.5%+y 0.5%=10 000.3.【解析】选B.设甲的定价为x 元,乙的定价为y 元.则{0.8x +0.6y =150,0.6x +0.8y =130,解得:{x =150,y =50.4.【解析】设购买甲种电影票x 张,乙种电影票y 张,由题意得{x +y =40,20x +15y =700,解得{x =20,y =20.即甲种电影票买了20张. 答案:20【归纳整合】二元一次方程组的优点当我们遇到两个量之间出现两种等量关系时,可以考虑列二元一次方程组解题.虽然本题也可列一元一次方程,但相比较而言,列二元一次方程组比列一元一次方程更好. 5.【解析】设他答对x 道题,答错或不答y 道题.根据题意,得{x +y =20,5x −y =76,解得{x =16,y =4.答案:166.【解析】设长方形的长为xcm,宽为ycm,则根据题意得{xy =(x −5)(y +2),x −5=y +2,解这个方程组得{x =253,y =43,所以长方形的面积xy=1009. 答案:10097.【解析】设大宿舍有x 间,小宿舍有y 间,根据题意得{x +y =50,8x +6y =360,解得{x =30,y =20. 答:大宿舍有30间,小宿舍有20间.8.【解析】设规定时间为x 天,生产任务是y 顶帐篷,由题意得,{120x =90%y,160(x −1)=y,解得{x =6,y =800.答:规定时间是6天,生产任务是800顶帐篷. 9.【解析】本题答案不唯一, 方法一:问题:普通公路段和高速公路段各长多少千米? 设普通公路段长为xkm,高速公路段长为ykm.由题意可得:{2x =y,x 60+y 100=2.2,解得{x =60,y =120.答:普通公路段长为60km,高速公路段长为120km.方法二:问题:汽车在普通公路段和高速公路段上各行驶了多少小时?设汽车在普通公路段上行驶了xh,在高速公路段上行驶了yh.由题意可得:{x +y =2.2,60x ×2=100y,解得:{x =1,y =1.2.答:汽车在普通公路段上行驶了1h,在高速公路段上行驶了1.2h.二元一次方程组的应用(第2课时)(30分钟 50分)一、选择题(每小题4分,共12分)1.如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为( )A.10g,40gB.15g,35gC.20g,30gD.30g,20g2.根据以下对话,可以求得小红所买的笔和笔记本的价格分别是( )A.1.2元/支,3.6元/本B.0.8元/支,3.6元/本C.1.2元/支,2.6元/本D.0.8元/支,2.6元/本3.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8,6,5个店铺,且每组至少有两人,则学生分组方案有( ) A.6种B.5种C.4种D.3种二、填空题(每小题4分,共12分)4.(2013·绍兴中考)我国古代数学名著《孙子算经》中有这样一道题:今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是鸡有23只,兔有12只.现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是鸡有 只,兔有 只.5.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k= .6.(2013·鞍山中考)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为220cm,此时木桶中水的深度是 cm. 三、解答题(共26分)7.(8分)(2013·莱芜中考)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同,求两种跳绳的单价各是多少元?8.(8分)(2013·嘉兴中考)某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)年降水量为多少万立方米?每人年平均用水量为多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米水才能实现目标? 【拓展延伸】9.(10分)某公园的门票价格如表所示:某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?答案解析1.【解析】选C.设每块巧克力的质量为xg,每个果冻的质量为yg,由题意得{3x =2y,x +y =50,解得{x =20,y =30.2.【解析】选A.设小红所买的笔和笔记本的价格分别是x 元/支,y 元/本,则{5x +10y =42,10x +5y =30,解得{x =1.2,y =3.6.所以小红所买的笔和笔记本的价格分别是1.2元/支,3.6元/本.3.【解析】选B.设第一小组有x 人,第二小组有y 人,则第三小组有(20-x-y)人,则8x+6y+5(20-x-y)=120,3x+y=20,当x=2时,y=14,20-x-y=4,符合题意;当x=3时,y=11,20-x-y=6,符合题意;当x=4时,y=8,20-x-y=8,符合题意;当x=5时,y=5,20-x-y=10,符合题意;当x=6时,y=2,20-x-y=12,符合题意,故学生分组方案有5种.4.【解析】设鸡有x 只,兔有y 只,根据题意可得{x +y =33,2x +4y =88,解得:{x =22,y =11, 即鸡有22只,兔有11只.答案:22 115.【解析】设矩形的长为x,矩形的宽为y,中间竖的矩形为n 个,则可列方程组{x +2y =2x,2x =ny,解得n=4.则k=2+2+4=8. 答案:86.【解析】设长铁棒长为xcm,短铁棒长为ycm,由题意可得{(1−13)x =(1−15)y,x +y =220,解得{x =120,y =100,所以水的深度为(1−13)×120=80(cm).答案:807.【解析】设长跳绳的单价是x 元,短跳绳的单价是y 元. 由题意,得{x =2y +4,2x =5y.解得{x =20,y =8.所以长跳绳的单价是20元,短跳绳的单价是8元.8.【解析】(1)设年降水量为x 万立方米,每人年平均用水量为y 立方米,则:{12 000+20x =16×20y,12 000+15x =20×15y,解得{x =200,y =50. 答:年降水量为200万立方米,每人年平均用水量为50立方米. (2)设该城镇居民年平均用水量为z 立方米才能实现目标,则: 12000+25×200=20×25z,解得z=34. 所以50-34=16.答:该城镇居民人均每年需要节约16立方米的水才能实现目标. 9.【解析】设甲班有x 人,乙班有y 人,根据题意得,{8x +10y =920,5(x +y)=515,解得{x =55,y =48.答:甲班有55人,乙班有48人.三元一次方程组(30分钟 50分)一、选择题(每小题4分,共12分)1.下列方程中,是三元一次方程组的是( )A.{2x +y =1y +4x =3B.{4x +3y =7z 2x −yz =4C.{2x −y =1y −3z =24x −z =0D.{3x −yz =6x −y =1xz −3y =82.若方程组{3x +5y =a +4,2x +3y =a的解x 与y 的值的和为3,则a 的值为()A.7B.4C.0D.-43.(2012·德阳中考)为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密).已知加密规则为:明文a,b,c,d 对应密文a+2b,2b+c,2c+3d,4d.例如:明文1,2,3,4对应的密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( ) A.4,6,1,7 B.4,1,6,7 C.6,4,1,7D.1,6,4,7二、填空题(每小题4分,共12分)4.解方程组时,①+②可消去未知数 ,得到一个二元一次方程 .5.已知方程组{x +y =2,y +z =3,z +x =7则x+y+z=.6.已知甲、乙、丙三人各有一些钱,其中甲的钱数是乙的钱数的2倍,乙的钱数比丙的钱数多1元,丙的钱数比甲的钱数少11元.三人共有 元. 三、解答题(共26分)7.(8分)李红在做这样一个题目:在等式y=ax 2+bx+c 中,当x=1时,y=6;当x=2时,y=21;当x=-1时,y=0;当x=-2时,y 等于多少?她想,在求y 值之前应先求a,b,c 的值,你认为她的想法对吗?请你帮她求出a,b,c 及y 的值.8.(8分)某单位职工在植树节时去植树,甲、乙、丙三个小组共植树50棵,乙小组植树的棵数是甲、丙两小组的和的14x ,甲小组植树的棵数恰是乙小组与丙小组的和,问每小组各植树多少棵?【拓展延伸】9.(10分)某企业为了激励员工参与技术革新,设计了技术革新奖,这个奖项分设一、二、三等,按获奖等级颁发一定数额的奖金,每年评选一次,下表是近三年技术革新获奖人数及奖金总额情况.三等奖人数(人) 2012年 那么技术革新一、二、三等奖的奖金数额分别是多少万元?答案解析1.【解析】选C.三元一次方程组里必须有三个方程,故排除A,B;D 中有两个方程不是一次方程,故它也不是三元一次方程组.2.【解析】选A.把x+y=3和原方程组联立,得到一个关于x,y,a 的三元一次方程组,求得a=7.3.【解析】选C.根据题意,得{a +2b =14,2b +c =9,2c +3d =23,4d =28.解得{a =6,b =4,c =1,d =7.故选C.4.【解析】方程①和②中未知数y 的系数互为相反数,相加可消去未知数y,得2x+z=27. 答案:y 2x+z=275.【解析】{x +y =2 ①,y +z=3 ②,z +x =7 ③,①+②+③得:2x+2y+2z=12,所以x+y+z=6. 答案:66.【解析】设甲有x 元、乙有y 元、丙有z 元,根据题意,得{x =2y,y =z +1,z =x −11,解得{x =20,y =10,z =9,所以三人共有20+10+9=39(元). 答案:397.【解析】她的想法对.根据题意,得{a +b +c =6,4a +2b +c =21,a −b +c =0,解得{a =4,b =3,c =−1.所以该等式为y=4x 2+3x-1,所以当x=-2时,y=4×4-3×2-1=9,即y=9.8.【解析】设甲小组植树x 棵、乙小组植树y 棵、丙小组植树z 棵,根据题意,得{x +y +z =50,y =14(x +z),x =y +z,解得{x =25,y =10,z =15.答:甲小组植树25棵、乙小组植树10棵、丙小组植树15棵.9.【解析】设一、二、三等奖的奖金数额分别是x 万元、y 万元、z 万元,根据题意,得{10x +20y +30z =41,12x +20y +28z =42,14x +25y +40z =54,解得{x =1,y =45,z =12.答:一、二、三等奖的奖金数额分别是1万元、45万元、12万元.同底数幂的乘法(30分钟 50分)一、选择题(每小题4分,共12分) 1.计算(-x)2·x 3的结果是( ) A.x 5B.-x 5C.x 6D.-x 62.下列各式计算正确的个数是( ) ①x 4·x 2=x 8;②x 3·x 3=2x 6;③a 5+a 7=a 12; ④(-a)2·(-a 2)=-a 4;⑤a 4·a 3=a 7. A.1B.2C.3D.43.下列各式能用同底数幂乘法法则进行计算的是( ) A.(x+y)2·(x-y)2 B.(x+y)2(-x-y) C.(x+y)2+2(x+y)2D.(x-y)2(-x-y)二、填空题(每小题4分,共12分)4.(2013·天津中考)计算a ·a 6的结果等于 .5.若2n-2×24=64,则n=.6.已知2x·2x·8=213,则x=.三、解答题(共26分)7.(8分)计算:(1)(-3)3·(-3)4·(-3).(2)a3·a2-a·(-a)2·a2.(3)(2m-n)4·(n-2m)3·(2m-n)6.(4)y·y n+1-2y n·y2.8.(8分)已知a x=5,a y=4,求下列各式的值:(1)a x+2.(2)a x+y+1.【拓展延伸】9.(10分)已知2a=3,2b=6,2c=12,试确定a,b,c之间的关系.答案解析1.【解析】选A.(-x)2·x3=x2·x3=x2+3=x5.2.【解析】选B.x4·x2=x4+2=x6,故①错误;x3·x3=x3+3=x6,故②错误;a5与a7不是同类项,不能合并,故③错误;(-a)2·(-a2)=a2·(-a2)=-a2·a2=-a2+2=-a4,故④正确;a4·a3=a4+3=a7,故⑤正确.3.【解析】选B.A,D选项底数不相同,不是同底数幂的乘法,C选项不是乘法;(x+y)2(-x-y)=-(x+y)2(x+y)=-(x+y)3.4.【解析】根据同底数幂的乘法法则“同底数幂相乘,底数不变,指数相加”,所以a·a6=a1+6=a7.答案:a75.【解析】因为2n-2×24=2n-2+4=2n+2,64=26,所以2n+2=26,即n+2=6,解得n=4.答案:46.【解析】因为2x·2x·8=2x·2x·23=2x+x+3,所以x+x+3=13,解得x=5.答案:57.【解析】(1)(-3)3·(-3)4·(-3)=(-3)3+4+1=(-3)8=38.(2)a3·a2-a·(-a)2·a2=a3+2-a·a2·a2=a5-a5=0.(3)(2m-n)4·(n-2m)3·(2m-n)6=(n-2m)4·(n-2m)3·(n-2m)6=(n-2m)4+3+6=(n-2m)13.(4)y·y n+1-2y n·y2=y n+1+1-2y n+2=y n+2-2y n+2=(1-2)y n+2=-y n+2.8.【解析】(1)a x+2=a x×a2=5a2.(2)a x+y+1=a x·a y·a=5×4×a=20a.9.【解析】方法一:因为12=3×22=6×2,所以2c=12=3×22=2a×22=2a+2,即c=a+2,①又因为2c=12=6×2=2b×2=2b+1,所以c=b+1,②①+②得2c=a+b+3.方法二:因为2b=6=3×2=2a×2=2a+1,所以b=a+1,①又因为2c=12=6×2=2b×2=2b+1,所以c=b+1,②①-②得2b=a+c.多项式的乘法(第1课时)(30分钟 50分)一、选择题(每小题4分,共12分) 1.化简5(2x-3)+4(3-2x)的结果为( ) A.2x-3 B.2x+9 C.8x-3D.18x-32.下列各式中计算错误的是( ) A.2x-(2x 3+3x-1)=4x 4+6x 2-2x B.b(b 2-b+1)=b 3-b 2+b C.-12x(2x 2-2)=-x 3+xD.23x (32x 3−3x +1)=x 4-2x 2+23x3.今天数学课上,老师讲了单项式乘以多项式.放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-3xy ·(4y-2x-1)=-12xy 2+ 6x 2y+ .空格的地方被钢笔水弄污了,你认为横线上应填写( ) A.3xyB.-3xyC.-1D.1二、填空题(每小题4分,共12分)4.(-2x 2)3·(x 2+x 2y 2+y 2)的结果中次数是10的项的系数是 .5.当x=1,y=15时,3x(2x+y)-2x(x-y)= .6.如图是在正方形网格中按规律填成的阴影,根据此规律,第n 个图中的阴影部分小正方形的个数是 .三、解答题(共26分) 7.(8分)先化简,再求值. x(x 2-6x-9)-x(x 2-8x-15)+2x(3-x), 其中x=-16.8.(8分)如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.【拓展延伸】9.(10分)阅读:已知x 2y=3,求2xy(x 5y 2-3x 3y-4x)的值.分析:考虑到x,y 的可能值较多,不能逐一代入求解,故考虑整体思想,将x 2y=3整体代入. 解:2xy(x 5y 2-3x 3y -4x)=2x 6y 3-6x 4y 2-8x 2y =2(x 2y)3-6(x 2y)2-8x 2y =2×33-6×32-8×3=-24.你能用上述方法解决以下问题吗?试一试! 已知ab=3,求(2a 3b 2-3a 2b+4a)·(-2b)的值.答案解析1.【解析】选A.原式=10x-15+12-8x=(10x-8x)+(-15+12)=2x-3.2.【解析】选A.2x-(2x 3+3x-1)=2x-2x 3-3x+1 =-2x 3-x+1.3.【解析】选A.-3xy ·(4y-2x-1) =-3xy ·4y+(-3xy)·(-2x)+(-3xy )·(-1)=-12xy 2+6x 2y+3xy,所以应填写3xy. 4.【解析】(-2x 2)3·(x 2+x 2y 2+y 2) =-8x 6·(x 2+x 2y 2+y 2) =-8x 8-8x 8y 2-8x 6y 2,所以次数是10的项是-8x 8y 2,系数是-8. 答案:-85.【解析】3x(2x+y)-2x(x-y)=6x 2+3xy-2x 2+2xy=4x 2+5xy, 当x=1,y=15时,原式=4x 2+5xy=4×12+5×1×15=4+1=5.答案:56.【解析】根据图形可知:第一个图形中阴影部分小正方形个数为4=2+2=1×2+2, 第二个图形中阴影部分小正方形个数为8=6+2=2×3+2, 第三个图形中阴影部分小正方形个数为14=12+2=3×4+2, ……所以第n 个图形中阴影部分小正方形个数为n(n+1)+2=xn 2+n+2,故此题答案为n 2+n+2. 答案:n 2+n+27.【解析】x(x 2-6x-9)-x(x 2-8x-15)+2x(3-x) =x 3-6x 2-9x-xx 3+8x 2+15x+6x-2x 2=12x. 当x=-16时,原式=12×(−16)=-2.8.【解析】长方形地块的长为:(3a+2b)+(2a-b),宽为4a, 这块地的面积为:4a ·[(3a+2b)+(2a-b)] =4a ·(5a+b)=4a ·5a+4a ·b=20a 2+4ab. 答:这块地的面积为20a 2+4ab. 9.【解析】(2a 3b 2-3a 2b+4a)·(-2b)=-4a 3b 3+6a 2b 2-8ab=-4(ab)3+6(ab)2-8ab,当ab=3时,原式=-4×33+6×32-8×3=-108+54-24=-78.幂的乘方与积的乘方(30分钟 50分)一、选择题(每小题4分,共12分)1.(2013·遵义中考)计算(−12ab 2)3的结果是( ) A.-32a 3b 6B.-12a 3b 5C.-18a 3b 5D.-18a 3b 6 2.(2013·泸州中考)下列各式计算正确的是( )A.(a 7)2=a 9B.a 7·a 2=a 14C.2a 2+3a 3=5a 5D.(ab)3=a 3b 3 3.如果(2a m b m+n )3=8a 9b 15成立,则m,n 的值为( )A.m=3,n=2B.m=3,n=9C.m=6,n=2D.m=2,n=5二、填空题(每小题4分,共12分)4.若(x 2)n =x 8,则n= .5.若a n =3,b n =2,则(a 3b 2)n = .6.(25)2 014×(−52)2 013×(-1)2013= .三、解答题(共26分)7.(8分)比较3555,4444,5333的大小.8.(8分)计算:(1)(-a 3b 6)2-(-a 2b 4)3.(2)2(a n b n )2+(a 2b 2)n .【拓展延伸】9.(10分)阅读材料:一般地,如果a(a>0,且a ≠1)的b 次幂等于N,那么数b 叫做以a 为底N 的对数,记作log a N=b. 例如,因为54=625,所以log 5625=4;因为32=9,所以log 39=2.对数有如下性质:如果a>0,且a ≠1,M>0,N>0,那么lo g a (MN)=log a M+log a N.完成下列各题:(1)因为 ,所以log 28= .(2)因为 ,所以log 216= .(3)计算:log 2(8×16)= + = .答案解析1.【解析】选D.(−12ab 2)3=(−12)3·a 3·(b 2)3=-18a 3b 6. 2.【解析】选 D.根据幂的乘方法则,(a 7)2=a 7×2=a 14,选项A 错误;根据同底数幂相乘法则,a 7·a 2=a 7+2=a 9,选项B 错误;2a 2与3a 3不是同类项,不能合并,选项C 错误;选项D 符合积的乘方的运算法则,是正确的,故选D.3.【解析】选A.因为(2a m b m+n )3=8a 3m b 3(m+n)=8a 9b 15,所以3m=9,3(m+n)=15,解得m=3,n=2.4.【解析】因为(x 2)n =x 2n =x 8,所以2n=8,所以n=4.答案:45.【解析】(a 3b 2)n =a 3n b 2n =(a n )3(b n )2=33×22=27×4=108.答案:1086.【解析】原式=(25)2 014×(52)2 013 =(25×52)2 013×25 =12013×25=25.答案:25 7.【解析】因为3555=3111×5=(35)111=243111,4444=4111×4=(44)111=256111,5333=5111×3=(53)111=125111,又因为125<243<256,所以125111<243111<256111,所以5333<3555<4444.8.【解析】(1)原式=a 6b 12-(-a 6b 12)=a 6b 12+a 6b 12=x2a 6b 12.(2)原式=2a 2n b 2n +a 2n b 2n =3a 2n b 2n .9.【解析】(1)因为23=8,所以log 28=3.(2)因为24=16,所以log 216=4.(3)log 2(8×16)=log 28+log 216=3+4=7.答案:(1)23=8 3x x x x x (2)24=16 4x x x x x (3)log 28 log 216 7单项式的乘法(30分钟 50分)一、选择题(每小题4分,共12分)1.(2013·绍兴中考)计算3a ·2b 的结果是( )A.3abB.6aC.6abD.5ab2.下列计算中,错误的是( )A.(2xy)3(-2xy)2=32x 5y 5B.(-2ab 2)2(-3a 2b)3=-108a 8b 7C.(−23xy)2(94x 2y)=x 4y 3 D.(13m 2n)(−13mn 2)2=127m 4n 43.某商场4月份售出某品牌衬衣b 件,每件c 元,营业额a 元.5月份采取促销活动,售出该品牌衬衣3b 件,每件打八折,则5月份该品牌衬衣的营业额比4月份增加( )A.1.4a 元B.2.4a 元C.3.4a 元D.4.4a 元二、填空题(每小题4分,共12分)4.(2013·泰州中考)计算:3a ·2a 2= .5.计算:(−37ab 2)(73a 2b)= .6.光的速度约为x 3×105km/s,太阳光到达地球需要的时间约为5×102s,则地球与太阳间的距离约为 km. 三、解答题(共26分)7.(8分)计算:(1)4y 3·(-2x 2y).(2)25x 2y 3·516xyz.(3)(3x 2y)3·(-4xy 2).(4)(-xy 2z 3)4·(-x 2y)3.8.(8分)有理数x,y 满足条件|2x-3y+1|+(x+3y+5)2=0,求代数式(-2xy)2·(-y 2)·6xy 2的值.【拓展延伸】x 9.(10分)已知三角表示2ab c ,方框表示(-3x z ω)y ,求×.答案解析1.【解析】选C.3a ·2b=3×2a ·b=6ab.2.【解析】选D.选项A 中,(2xy)3(-2xy)2=8x 3y 3×4x 2y 2=32x 5y 5,故此选项正确;选项B 中,(-2ab 2)2(-3a 2b)3=x 4a 2b 4×(-27)a 6b 3=-108a 8b 7,故此选项正确;选项C 中,(−23xy)2(94x 2y)x =49x x 2y 2×94x 2y=x 4y 3,故此选项正确;选项D 中,(13m 2n)(−13mn 2)2=13m 2n ×19m 2n 4=127m 4n 5,故此选项错误.3.【解析】选A.由题意知bc=a.因为5月份售出该品牌衬衣3b 件,每件打八折,则每件为0.8c 元.所以5月份该品牌衬衣的营业额为:3b ·0.8c=2.4bc=2.4a(元).所以5月份该品牌衬衣的营业额比4月份增加2.4a-a=1.4a(元).4.【解析】3a ·2a 2=6a 3.答案:6a 35.【解析】(−37ab 2)(73a 2b) =[(−37)×73](a ·a 2)(b 2·b) =-a 3b 3.答案:-a 3b 36.【解析】(3×105)×(5×102)=(3×5)×(105×102)=15×107=1.5×108.答案:1.5×1087.【解析】(1)原式=[4×(-2)]x 2·(y 3·y)=-8x 2y 4.(2)原式=(25×516)(x 2·x)(y 3·y)·z =18x 3y 4z. (3)原式=27x 6y 3·(-4xy 2)=[27×(-4)](x 6·x)(y 3·y 2)=-108x 7y 5.(4)原式=x 4y 8z 12·(-x 6y 3)=-(x 4·x 6)(y 8·y 3)z 12=-x 10y 11z 12.8.【解题指南】由|2x-3y+1|+(x+3y+5)2=0知,2x-3y+1=0,x+3y+5=0,建立方程组,解得x,y 后,代入代数式求值.【解析】由题意得{2x −3y +1=0,x +3y +5=0,可得{x =−2,y =−1. 所以(-2xy)2·(-y 2)·6xy 2=4x 2y 2·(-y 2)·6xy 2=-24x 3y 6.当x=-2,y=-1时,原式=-24×(-2)3×(-1)6=-24×(-8)=192.9.【解析】×=2mn 3·(-3n 5m)2=2mn 3·9n 10m 2=18n 13m 3.多项式的乘法(第2课时)(30分钟 50分)一、选择题(每小题4分,共12分)1.下列计算中,正确的有( )①(2a-3)(3a -1)=6a 2-11a+3;②(m+n)(n+m)=m 2+mn+n 2;③(a-2)(a+3)=a 2-6;④(1-a)(1+a)=1-a 2.A.4个B.3个C.2个D.1个2.若(x+3)(x+m)=x 2+kx-15,则m-k 的值为( )A.-3B.5C.-2D.23.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2x)那样拼成一个正方形,则中间空的部分的面积是()A.2mnB.(m+n)2C.(m-n)2D.m2-n2二、填空题(每小题4分,共12分)4.当x=-7时,代数式(2x+5)(x+1)-(x-3)(x+1)的值为.5.已知(x2+px+8)(x2-3x+q)的展开式中不含x2项和x3项,则p+q的值为.6.若(x+a)(x+b)=x2-6x+8,则ab=.三、解答题(共26分)7.(8分)(1)化简(x+1)2-x(x+2).(2)先化简,再求值.(x+3)(x-3)-x(x-2),其中x=4.8.(8分)若(x-1)(x+1)(x+5)=x3+bx2+cx+d,求b+d的值.【拓展延伸】9.(10分)计算下列式子:(1)(x-1)(x+1)=.(2)(x-1)(x2+x+1)=.(3)(x-1)(x3+x2+x+1)=.(4)(x-1)(x4+x3+x2+x+1)=.用你发现的规律直接写出(x-1)(x n+x n-1+…+x+1)的结果.答案解析1.【解析】选C.因为(2a-3)(3a-1)=6a2-11a+3;(m+n)(n+m)=m2+2mn+n2;(a-2)(a+3)=a2+a-6;(1-a)(1+a)=1-a2,故正确的有2个.2.【解析】选A.因为(x+3)(x+m)=x2+(3+m)x+3m=x2+kx-15.所以m+3=k,3m=-15,解得m=-5,k=-2.所以m-k=-5-(-2)=-5+2=-3.3.【解析】选C.由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又因为原矩形的面积为4mn,所以中间空的部分的面积=(m+n)2-4mn=(m-n)2.4.【解析】(2x+5)(x+1)-(x-3)(x+1)=(2x2+2x+5x+5)-(x2+x-3x-3)=x2+9x+8.把x=-7代入得:原式=(-7)2+9×(-7)+8=-6.答案:-65.【解析】因为(x2+px+8)(x2-3x+q)=x4-3x3+qx2+p x3-3px2+qpx+8x2-24x+8q=x4+(p-3)x3+(q-3p+8)x2+(qp-24)x+8q,又因为(x2+px+8)(x2-3x+q)的展开式中不含x2项和x3项,所以p-3=0,q-3p+8=0,所以p=3,q=1,所以p+q=4.答案:46.【解析】因为(x+a)(x+b)=x2+bx+ax+ab=x2+(a+b)x+ab,所以x2+(a+b)x+ab=x2-6x+8,所以ab=8.答案:87.【解析】(1)原式=(x+1)(x+1)-x(x+2)=x2+x+x+1-x2-2x=x2+2x+1-x2-2x=1.(2)原式=x2-3x+3x-9-x2+2x=2x-9.当x=4时,原式=2×4-9=-1.8.【解析】(x-1)(x+1)(x+5)=(x2-1)(x+5)=x3+5x2-x-5所以b=5,c=-1,d=-5.即b+d=5-5=0.9.【解析】(1)x2-1(2)x3-1(3)x4-1(4)x5-1(x-1)(x n+x n-1+…+x+1)=x n+1-1.平方差公式(30分钟50分)一、选择题(每小题4分,共12分)1.化简:(a+1)2-(a-1)2=()A.2B.4C.4aD.2a2+22.下列各式计算正确的是()A.(x+2)(x-2)=x2-2B.(2a+b)(-2a+b)=4a2-b2C.(2x+3)(2x-3)=2x2-9D.(3ab+1)(3ab-1)=9a2b2-13.下列运用平方差公式计算错误的是()A.(a+b)(a-b)=a2-b2B.(x+1)(x-1)=x2-1C.(2x+1)(2x-1)=2x2-1D.(-a+2b)(-a-2b)=a2-4b2二、填空题(每小题4分,共12分)4.如果x+y=-4,x-y=8,那么代数式x2-y2的值是.5.计算:2 01422 013×2 015+1=.6.观察下列各式,探索发现规律:22-1=3=1×3;42-1=15=3×5;62-1=35=5×7;82-1=63=7×9;102-1=99=9×11;…用含正整数n的等式表示你所发现的规律为.三、解答题(共26分)7.(8分)(1)(2013·株洲中考)先化简,再求值:(x-1)(x+1)-x(x-3),其中x=3.8.(8分)(2013·义乌中考)如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸片拼成如图2的等腰梯形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a,b的代数式表示S1,S2.(2)请写出上述过程所揭示的乘法公式.【拓展延伸】9.(10分)阅读下列材料:某同学在计算3×(4+1)(42+1)时,把3写成4-1后,发现可以连续运用平方差公式计算:3×(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.很受启发,后来在求(2+1)(22+1)(24+1)(28+1)…(21024+1)的值时,又改造此法,将乘积式前面乘以1,且把1写为2-1得(2+1)(22+1)(24+1)(28+1)…(21024+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(21024+1)=(22-1)(22+1)(24+1)(28+1)…(21024+1)=(24-1)(24+1)(28+1)…(21024+1)=…=(21024-1)(21024+1)=22048-1.回答下列问题:(1)请借鉴该同学的经验,计算:(3+1)(32+1)(34+1)(38+1).(2)借用上面的方法,再逆用平方差公式计算:(1−122)(1−132)(1−142)…(1−12 0132).答案解析1.【解析】选C.(a+1)2-(a-1)2=[(a+1)-(a-1)]·[(a+1)+(a-1)]=2×2a=4a.2.【解析】选D.(x+2)(x-2)=x2-4≠x2-2;(2a+b)(-2a+b)=(b+2a)(b-2a)=b2-4a2≠4a2-b2;(2x+3)(2x-3)=4x2-9≠2x2-9;(3ab+1)(3ab-1)=9a2b2-1.3.【解析】选C.根据平方差得(2x+1)(2x-1)=4x2-1,所以C错误.而A,B,D符合平方差公式条件,计算正确.4.【解析】因为x+y=-4,x-y=8,所以x 2-y 2=(x+y)(x-y)=(-4)×8=-32.答案:-325.【解析】原式=2 0142(2 014−1)(2 014+1)+1= 2 01422 0142−1+1=2 01422 0142=1.答案:16.【解析】观察式子,每个式子中等号左边的被减数是偶数的平方,减数都是1,等号右边是此偶数前后两个连续奇数的乘积,所以用含正整数n 的等式表示其规律为(2n)2-1=(2n-1)(2n+1). 答案:(2n)2-1=(2n-1)(2n+1)7.【解析】原式=x 2-1-(x 2-3x)=x 2-1-x 2+3x=3x-1,当x=3时,原式=3×3-1=8.(2)解方程:(x-4)(x+3)+(2+x)(2-x)=4.【解析】去括号得x 2-4x+3x-12+4-x 2=4,移项得x 2-4x+3x-x 2=4+12-4,合并同类项得-x=12,系数化为1得x=-12.8.【解析】(1)图1中阴影部分面积为S 1=a 2-b 2;图2中阴影部分面积为S 2=12(2b+2a)(a-b)=(a+b)(a-b).(2)(a+b)(a-b)=a 2-b 2.9.【解析】(1)(3+1)(32+1)(34+1)(38+1)=12(32-1)(32+1)(34+1)(38+1) =12(34-1)(34+1)(38+1)=12(38-1)(38+1) =12(316-1).(2)(1−12)(1−13)(1−14)…(1−12 013) =(1−12)(1+12)(1−13)(1+13)…(1−12 013)(1+12 013) =12×32×23×43×…×2 0122 013×2 0142 013=12×2 0142 013=1 0072 013.完全平方公式(30分钟 50分)一、选择题(每小题4分,共12分)1.(2013·湘西州中考)下列运算正确的是( )A.a 2-a 4=a 8B.(x-2)(x-3)=x 2-6C.(x-2)2=x 2-4D.2a+3a=5a2.若a+1a =7,则a 2+1a 2的值为( )A.47B.9C.5D.513.如图是一个正方形,分成四部分,其面积分别是a 2,ab,ab,b 2,则原正方形的边长是()A.a 2+b 2B.a+bC.a-bD.a 2-b 2二、填空题(每小题4分,共12分)4.(2013·晋江中考)若a+b=5,ab=6,则a-b= .5.(2013·泰州中考)若m=2n+1,则m 2-4mn+4n 2的值是 .6.若(x +1x )2=9,则(x −1x )2的值为 .三、解答题(共26分)7.(10分)(1)(2013·福州中考)化简:(a+3)2+a(4-a).(2)(2013·宁波中考)先化简,再求值:(1+a)(1-a)+(a-2)2,其中a=-3.8.(6分)利用完全平方公式计算:(1)482.(2)1052.【拓展延伸】9.(10分)如图所示,有四个同样大小的直角三角形,两条直角边分别为a,b,斜边为c,拼成一个正方形,但中间却留有一个小正方形,你能利用它们之间的面积关系,得到关于a,b,c 的等式吗?答案解析1.【解析】选D.A.a 2与a 4不是同类项,不能合并,故本选项错误;B.(x-2)(x-3)=x 2-5x+6,故本选项错误;C.(x-2)2=x 2-4x+4,故本选项错误;D.2a+3a=5a,故本选项正确.2.【解析】选A.因为a+1a =7,所以(a +1a )2=72,a 2+2·a ·1a +(1a )2=49,a 2+2+1a 2=49,所以a 2+1a 2=47.3.【解析】选B.因为a 2+2ab+b 2=(a+b)2,所以边长为a+b.4.【解析】因为(a-b )2=(a+b)2-4ab=25-24=1,所以a-b=±1.答案:±15.【解析】因为m=2n+1,即m-2n=1,所以原式=(m-2n)2=1.答案:16.【解析】由(x +1x )2=9,可得x 2+2+1x 2=9. 即x 2+1x 2=7,(x −1x )2=x 2-2+1x 2=7-2=5.答案:57.【解析】(1)原式=a 2+6a+9+4a-a 2=10a+9.(2)原式=1-a 2+a 2-4a+4=-4a+5,当a=-3时,原式=12+5=17.8.【解析】(1)482=(50-2)2=2500-200+4=2304.(2)1052=(100+5)2=10000+1000+25=11025.9.【解析】因为小正方形的边长为b-a,所以它的面积为(b-a)2,所以大正方形的面积为4×12×a ×b+(b-a)2. 又因为大正方形的面积为c 2,所以4×12×a ×b+(b-a)2=c 2, 即2ab+b 2-2ab+a 2=c 2,得a 2+b 2=c 2.运用乘法公式进行计算(30分钟 50分)一、选择题(每小题4分,共12分)1.若a 2+ab+b 2+A=(a -b)2,则A 式应为( )A.abB.-3abC.0D.-2ab2.计算(m-2n-1)(m+2n-1)的结果为()A.m2-4n2-2m+1B.m2+4n2-2m+1C.m2-4n2-2m-1D.m2+4n2+2m-13.计算(2a+3b)2(2a-3b)2的结果是()A.4a2-9b2B.16a4-72a2b2+81b4C.(4a2-9b2)2D.4a4-12a2b2+9b4二、填空题(每小题4分,共12分)4.计算(-3x+2y-z)(3x+2y+z)=.5.矩形ABCD的周长为24,面积为32,则其四条边的平方和为.6.已知a-b=3,则a(a-2b)+b2的值为.三、解答题(共26分)7.(8分)求代数式(a+2b)(a-2b)+(a+2b)2-4ab的值,其中a=1,b=110.8.(8分)计算:(x+1)(x+2)(x+3)(x+4).【拓展延伸】9.(10分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.答案解析1.【解析】选B.因为(a-b)2=a2-2ab+b2,所以a2+ab+b2+A=a2-2ab+b2,所以A=-3ab.2.【解析】选A.(m-2n-1)(m+2n-1)=[(m-1)-2n][(m-1)+2n]=(m-1)2-4n2=m2-2m+1-4n2=m2-4n2-2m+1.3.【解析】选B.(2a+3b)2(2a-3b)2=[(2a+3b)(2a-3b)]2=(4a2-9b2)2=16a4-72a2b2+81b4.4.【解析】(-3x+2y-z)(3x+2y+z)=[2y-(3x+z)][2y+(3x+z)]=4y2-(3x+z)2=4y2-9x2-6xz-z2.答案:4y2-9x2-6xz-z25.【解析】因为矩形ABCD的周长为24,面积为32,所以2AB+2BC=24,AB·BC=32,所以AB+BC=12.因为AB2+BC2+CD2+AD2=2AB2+2BC2,所以AB2+BC2+CD2+AD2=2[(AB+BC)2-2AB·BC]=2×(122-64)=160,所以AB2+BC2+CD2+AD2=160.答案:1606.【解析】a(a-2b)+b2=a2-2ab+b2=(a-b)2.当a-b=3时,原式=32=9.答案:97.【解析】原式=a2-4b2+a2+4ab+4b2-4ab=2a2,当a=1,b=110时,原式=2a2=2×12=2.8.【解析】原式=[(x+1)(x+4)][(x+2)(x+3)]=(x2+5x+4)(x2+5x+6)=[(x2+5x)+4][(x2+5x)+6]=(x2+5x)2+10(x2+5x)+24=x4+10x3+25x2+10x2+50x+24=x4+10x3+35x2+50x+24.9.【解析】(1)(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.(2)原式=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5 =(2-1)5=1.多项式的因式分解(30分钟50分)一、选择题(每小题4分,共12分)1.(2013·茂名中考)下列各式由左边到右边的变形中,属于因式分解的是()A.a(x+y)=ax+ayB.x2-4x+4=x(x-4)+4C.10x2-5x=5x(2x-1)D.x2-16+6x=(x+4)(x-4)+6x2.(2013·柳州中考)下列式子是因式分解的是()A.x(x-1)=x2-1B.x2-x=x(x+1)C.x2+x=x(x+1)D.x2-x=(x+1)(x-1)3.若多项式x2-px-6因式分解的结果是(x-1)(x+6),则p的值是()A.-1B.1C.5D.-5二、填空题(每小题4分,共12分)4.由(x-2)(x-1)=x2-3x+2,则x2-3x+2因式分解为.5.若x+5,x-3都是多项式x2-kx-15的因式,则k=.6.如果多项式M可因式分解为3(1+2x)(-2x+1),则M=.三、解答题(共26分)7.(8分)两位同学将一个二次三项式因式分解,一位同学因看错了一次项系数而分解成2(x-1)(x-9),另一位同学因看错了常数项而分解成2(x-2)(x-4),求原多项式.8.(8分)已知关于x的二次三项式x2+mx+n有一个因式(x+5),且m+n=17,试求m,n的值.【拓展延伸】9.(10分)已知多项式x4+2x3-x+m能因式分解,且有一个因式为x-1.(1)当x=1时,求多项式x4+2x3-x+m的值.(2)根据(1)的结果,求m的值.。
七年级下册数学练习册 (4)
七年级下册数学练习册引言数学是一门重要的学科,对于学生的思维发展和逻辑能力的培养至关重要。
为了帮助七年级学生更好地学习数学,我们编写了本《七年级下册数学练习册》。
该练习册旨在帮助学生巩固和强化所学的数学知识,并提供大量的练习题供学生练习。
目录1.有理数2.整式的加减运算3.一元一次方程4.百分数5.图形的认识和性质6.平面直角坐标系7.数据的收集、整理和描述有理数有理数是数学中的一种基本概念,包括整数和分数。
在本单元中,我们将学习有理数的加减乘除运算及其性质,以及有理数在数轴上的表示方法。
加减乘除运算有理数的加减乘除运算属于基本运算,学生需要掌握相应的计算方法和技巧。
在本单元的练习中,我们将提供大量的加减乘除练习题供学生练习,帮助他们熟练掌握这些运算的方法。
数轴上的表示数轴是一种用于表示有理数和实数的工具。
在本单元中,我们将学习如何将有理数表示在数轴上,并通过数轴上的点对有理数进行比较和运算。
学生需要通过练习题来加深对数轴表示的理解和运用。
整式的加减运算整式是由常数和变量与它们之间的乘法运算和加减运算所构成的代数式。
在本单元中,我们将学习整式的加减运算,并通过实际应用问题来加深对整式运算的理解。
基本概念整式是代数学中的一种基本概念,包括常数项、一次项、二次项等。
学生需要掌握整式的基本结构和术语,并通过练习题来加强对整式概念的理解。
加减运算整式的加减运算是一种基本运算,学生需要学习如何对整式进行加减运算,并注意运算中的细节和技巧。
本单元的练习题将帮助学生熟练掌握整式的加减运算。
一元一次方程一元一次方程是数学中的一种常见类型的方程,包含一个未知数和一次项。
在本单元中,我们将学习如何解一元一次方程,并通过实际应用问题来加深对方程的理解和应用能力。
基本概念一元一次方程是代数学中的一种基本概念,包括未知数、系数、常数项等。
学生需要掌握方程中各个部分的含义和关系,并通过练习题来加强对方程概念的理解。
解方程解方程是指找出方程中未知数的值,使等式成立。
最新数学练习册七年级下册参考答案【直接打印】优秀名师资料
数学练习册七年级下册参考答案【直接打印】数学练习册七年级下册参考答案8.11.(1)?A,?C;(2)?ABC,?ABD,?DBC,?ADB,?BDC;(3)3个,?ABD,?ABC,?DBC.2.B.3.(1)?AEB,?DAE,?BEC,?ADB;(2)?C,?D.4.3个角;6个角;10个角.5.9时12分或21时12分.8.21.(1)42?;(2)不变.2.C.3.D.5.46?.提示:设?COE=x?,则x-8=130-2x,x=46.6.(1)45?;(2)不变;提示:90+2x2-x=45;(3)不变.提示:90-2y2+y=45. 8.3第1课时1.(1)42?20′24″;(2)56.35.2.(1)61?38′10″;(2)32.6.3.C.4.C.5.(1)93?12′;(2)47?31′48″;(3)12?9′36″;(4)33?7′12″.6.(1)112 ?27′;(2)51?55′;(3)125?37′30″.7.0.5?,6?.8.(1)15?;(2)172.5?.9.40分钟.第2课时1.153?.2.53?17′45″.3.C.4.C.5.63?.6.(1)相等;(2)180?.7.60?.8.41.?3,?AOD.2.121?.3.C.4.B.5.?3=25?30′,?2=45?.6.?2=63?30′,?3=53?.6对;(3)12对. 7.(1)2对;(2)8.51.70?.2.45?.3.D.4.C.5.132?.6.135?.7.60?,30?.第八章综合练习1.130?.2.36?16′30″.3.50?.4.(1)54?34′,125?26′;(2)α-90?.5.47.6.D.7.A.8.C.9.D.10.138?.11.125?.12.?AOC+?BOC=2(?DOC+?COE)=2×90?=180?,A,O,B共线.13.设?BOE=x?,?EOC=2x?,?AOB=180-3x,?DOB=72-x.得方程(72-x)×2=180-3x,解得x=36.即?EOC=72?.14.?BOC+?COD+?AOD=270?,?EOF=170?,?AOE+?BOF=190?-90?=100?.?COF+?DOE=100?.又?EOF=170?,?COD=170?-100?=70?.检测站1.45?.2.98.505?.3.?AOB,?BOC.?AOB,?BOD.4.C.5.D.6.?BOD,?FOE,?BOC;? BOF.7.45?.8.97.5?.9.11.?END.2.DE,AB,BC;AB,BC,DE.3.B.4.C.5.?CAD,?BAC,?B.6.同位角:?EAD与?B;?EAC与?B;内错角:?DAC与?C;?EAC 与?C.同旁内角:?DAB与?B;?BAC与?B.7.略.9.21.相交,平行.2.不相交.3.一.4.C.5.略.6.略.7.正方形.8.略.9.31.65?,两直线平行,同位角相等,65?,对顶角相等.2.65?.3.B.4.C.5.130?.6.?B,?EFC,?ADE.7.40?.9.4第1课时1.AC,BD,内错角相等,两直线平行.2.(1)EN,BD;(2)AB,CD.3.B.4.?5=?2=105?,?5+?1=180?.5.DE?MN.由AB?MN,DE?AB.6.提示:由AD?BC,得?A+?B=180?,?C+?B=180?,AB?CD.7.(1)由?3=?B,知FD?AB,知?4=?A;(2)由ED?AC,知?1=?C,?BED=?A.第2课时1.4厘米.2.BD,BE.3.D.4.由?B=?C,知AB?CD,故?A=?D.5.?1=?GMC=90?-?2.6.(1)?MDF=?MBE,BE?DF;(2)不是;它是AB和CD之间的距离.7.在?B内画射线BF?AE,则BF?CD.?ABF=120?,?FBC=30?,?C=180?-30?=150?.第九章综合练习1.110?.2.AD?BE,BD?CE,AD?BE.3.35?.提示:过点M画MN?AB,MN?EG,?HMN=?E,?HMN=90?-?AMH.4.C.5.C.6.D.7.126?.8.?1=115?.9.25?.10.?3=80?,?4=100?.11.因为AB?CD,所以?AEF=?2,?AEG=?3,因为?AEG=?1+?2,所以?3=?1+?2.12.22?.提示:过点A画直线c?a.检测站1.内错,同旁内,同位.2.180?.3.A.4.B.5.AB?CD,AD?BC.6.AD?BC.DB平分?ADC代替第二个条件.10.12.5.3.C4.D.6.a=7,b=-9.7.设需要汽车x辆,共有y人外出参观,35x+15=y,45(x-1)=y.解得x=6,y=225..8.不是.10.2第1课时1.-35x+85,-53y+83.2.x-1=0.3.B.4.(1)x=-12,y=52;(2)s=-3,t=-3;(3)m=2,n=1.5.x=1,y=-1.6.提示:按丙的方法,35x=3,25y=4,得x=5,y=10.第2课时1.2.2.-11.3.C.4.B.5.(1)x=-1,y=-8;(2)x=5,y=272.6.令x+y=a,x-y=b,解得a=2,b=-1,又解得x=12,y=32.7.k=4.10.3第1课时1.4x+y=6,-5x+4y=-7.2.C.3.(1)x=1,y=1,z=1;(2)x=1,y=2,z=3.4.解三元一次方程组,用a表示解,得x=a,y=a+1,z=a-1,代入方程-x+2y+3z=6,得a=74.5.将z看做已知数,将x,y解出来.得x=1911-z,y=211-z.x+y+2z=1911-z+211-z+2z=2111. 第2课时1.加减,?,?.2.B.3.(1)x=2,y=1,z=-1;(2)x=1,y=2,z=2.4.a=1,b=-1,c=1.10.4第1课时1.7x+3=y,8x-5=y.2.320,180.3.C.4.216,1095.90元,100元.6.5元,3元.7.提示:设小长方形宽x,长y,则5x=3y,y+2x=2y+2,得x=6,y=10.第2课时1.112x=0.5+112y,0.5x=(0.5+1)y.2.30,18.3.D.4.C.5.21张铁皮做盒身,28张铁皮做盒盖.6.长木6.5尺,绳长11尺.7.(1)x+y=90,46%x+70%y=90×64%,x=22.5,y=67.5.(2)46%x+70%y=64%(x+y),x?y=1?3.*第3课时1.x+y+z=21,x+y-z=5,x-(z-y)=5.2.4,8,10.3.C.4.2,3,5.5.12,8,7.第十章综合练习1.43.2.-1.3.-112,5,(113,0).4.-14.5.x=1,y=2.6.y=23x-53.7.B.8.A.*9.D.10.(1)x=1,z=2;(2)x=6,y=24;(3)x=3,y=2;*(4)x=2,y=-3,z=-1.11.300棵,200棵.12.50人,220件.13.23.14.中型15辆,小型35辆.15.m=-275.16.30千米,70千米,42千米.17.平均每天1只大牛需用饲料20千克,小牛需用5千克.所以王大伯对大牛食量的估计是正确的,对小牛食量的估计偏高.18.火车速度22米/秒,列车长276米.19.(1)x=2,y=2,也是剩下一个方程的解.(2)不唯一.如x-y=0. 检测站1.-10.2.a=2,b=1.3.5千克,2千克.4.C.y=2,z=3.8.牛值金2两,羊值金1两.9.男生270名,女生260名.5.C.6.a=5.*7.x=1,11.11.108.2.x12.3.x4.4.D.5.A.6.1.5×108.7.(1)m9;(2)3×1011.8.(1)(a-b)5;(2)-(2x-3y)3n+1.9.0.10.0.11.2第1课时1.-8t3.2.116a4b4.3.-6x2.4.A.5.C.6.(1)28x3y3;(2)anbn;(3)-9a3x3.7.a2b.8.1.9.1102n.10.14位数.第2课时1.(1)x10;(2)-8x12.2.C.3.D.5.(1)19x2y4;(2)215;(3)x12;(4)64m12n6.6.(1)x6n+2;(2)-(a+b)7;(3)35n-2.7.提示:24,33,(24)25,(33)25.11.3第1课时1.12xy3.2.-6x2y3.3.B.4.D.5.(1)m5n2; (2)1.2×1020.6.(1)-14x5y4z2;(2)64x6. 7.-730(a-b)8n-4.8.C.第2课时1.3x2-5x3.2.x2-y2.3.D.4.C.5.(1)-3x2y+2xy2-52xy;(2)x4+4x2+2x-4;(3)12b3-b2+6b.6.2m3n3-8m2n3.7.x=-12.8.10.11.4第1课时1.x2-7x+10.2.-6x2-xy+2y2.3.B.4.B.5.(1)-6m2+19m-15;(2)-12x3+14x2-4x;(3)-3y2-23y+108.6.4x2-100x+600.7.-x2-29x+32,1854.8.提示:该代数式的值恒为22. 9.x=-110.b=12.第2课时1.x3+2x2-5x-6.2.2a3+5a2+a-3.3.B.4.C.5.(1)m3+2m2-1;(2)2a3-5a2b+8ab2-3b3;(3)-2x3-x2-7x+10.6.x3+x-5,值为-7.7.x=-12.8.0.11.51.4.2.m8.3.xn.4.D.5.B.6.16.7.(1)-a;(2)a3.8.(1)y-x;(2)(x+2y)6.9.2xy. 11.6第1课时1.1.2.1.3.0.4.C.5.D.6.(1)64;(2)a.7.(1)3 129;(2)200.8.7.9.a?0,m=n.第2课时1.181.2.-164.3.100.4.B.5.C.6.(1)200;(2)10 099;(3)100.7.10-1,10-2,10-3,10-4.8.a,b,d,c.9.x?-13.10.1.第3课时1.1.2.1a4.3.a8.4.C.5.125.6.(1)10;(2)x5; (3)11 000000;(4)1a7.7.13a.8.2-101.第4课时1.1.2×10-4.2.0.000 002 76.3.2.5×10-9.4.D.5.D.6.(1)1.5×10-2;(2)2.1×103;(3)1.5×10-3.7.x=-7.8.1.572×104.9.花粉直径较大,是兔毛直径的7.2倍.第十一章综合练习1.106.2.x9.3.a.4.tn.5.(a+b)2.6.x5.7.a7.8.15x3y3z.9.2a3+2a2b+2ab.10.-2x2+3x-1.11.B.12.B.13.B.14.A.15.(1)x9;(2)-(a+b)4;(3)-a2b2+6ab+23a;(4)-6n+2;(5)2a3+8ab2-14a2b;(6)-3x2-23x+108;(7)6x2-13xy;(8)-x13y12.16.(1)-x,1;(2)5x-1,101.17.x=-1.18.(1)x=4;(2)n=2,m=4;(3)M=x2-6x+9.19.2ab+2b2.20.n(n+5)-(n-3)(n+2)=6(n+1).检测站1.(x+y)5.2.-6a3b3c.3.-2x3-4x2+2x.4.a6b6.5.C.6.B.7.B.8.1.24×10-6.9.299.10.(1)36x2-114x+90;(2)91x2-277x+210.11.长8、宽5.12.11.b2-9a2.2.x4-4.3.1681m2n2-49.4.5x+3y.5.C.6.B.7.(1)c2-9a2b2;(2)9y2-4x4;(3)a4-b4;(4)-5x2-9.8.(1)(300+3)(300-3)=90000-9=89 991;(2)1.9.(2n-1)(2n+1)=(2n)2-1. 10.原式×3-23-2=332-232.12.2第1课时1.-2ab.2.a2+4ab+4b2.3.k=8.4.B.5.C.6.A.7.(1)9m2-32n+116;(2)x4-2x2+1;(3)a2+2ab+b2;(4)916s2+st+49t2.8.(a+b)2=4ab+(a-b)2.9.a2+2ab+b2=9,a2-2ab+b2=49.ab=14(9-49)=-10.a2+b2=9-2ab=29.第2课时1.4ab.2.a2+b2+c2+2ab-2ac-2bc.3.x2-y2+z2+2xz.4.B.5.B.6.A.7.(1)2a2b2-b4;(2)2y2+2x+5;(3)(100-3)(100-1)(100+1)(100+3)=(104-9)(104-1)=108-105+9=99 900 009.8.12.9.48π(a+1).10.8.12.31.2x2y.2.2a4-ab+6.3.a-b-2.4.D.5.C.6.(1)xy(x-y);(2)4ab(bc+4);(3)-2xy(1+2x-4x2);(4)-(3a+b)(a+3b);(5)2x(x-y)2(1-2x).7.1 999.8.14ax(2a-x)2.9.能.256-510=512-510=510(25-1)=24×510.12.4第1课时1.(x+2y)(x-2y).2.k=-140.3.D.4.C.5.(1)(6+x)(6-x);(2)(12y+1)2;(3)-(m-n)2; (4)(3+14a)(3-14a).6.(1)8 056;(2)90 000.7.(1)(1+a+b)(1-a-b);(2)(a-b+2)2.8.左端=,(a-b)2+(a+b)2+(a-b)2-(a+b)2,?,(a-b)2+(a+b)2-(a-b)2+(a+b)2,=4(a-b)2(a+b)2. 第2课时1.提出公因式,用公式法进行因式分解.2.x(x+1)(x-1).3.(a-1)(x+y)(x-y).4.D.5.C.6.(1)m(m2+1)(m+1)(m-1).(2)2x3(3y+1)(3y-1).(3)(x+2)2(x-2)2.(4)(x+1)4. 7.原式=12?32?23?43?34?54…910?1110=1120.8.2 0122(2 0112-1)+(2 0132-1)=2 0122(2 011+1)(2 011-1)+(2 013+1)(2 013-1) =2 01224 024=1 006.第十二章综合练习1.9x2-y2.2.25-4b2.3.25a2-20ab+4b2.4.14m4+2m2n+4n2.5.-2m.6.x-y+2.7.(xy+2z)(xy-2z).8.23m-0.1n.9.C.10.C. 11.C.12.(1)4x2+4xy+y2-25z2;(2)-280y2+1 295;(3)116x4-181y4.13.(1)2a3x2(2+a)(2-a);(2)(x-y)(a+2y)(a-2y);(3)-(a-b)2(a+b)2;(4)(x2+2x+7)(x-1)2.14.(1)31×(573+427)×(573-427)=4 526 000;(2)76 900;(3)10099.15.πR2-4πr2=π(R+2r)(R-2r)=3.14×10×5.6=175.8厘米.16.(n+7)2-(n-5)2=(n+7+n-5)(n+7-n+5)=24(n+1).17.x=141.18.x=2,y=-3,16.19.(2n+1)2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=8n.检测站1.2b-3a.2.20或-20.3.5-a2.4.B.5.B.6.(1)x8-y8;(2)-16x2.7.(1)x2y4(xy2+z)(xy2-z);(2)(m-n+4mn)(m-n-4mn);(3)12x(2a-1)2.8.原式=(x+1)(2x-3)x.当x=12时,原式=-32.9.324-1=(312+1)(36+1)(33+1)(33-1)=28×(312+1)(36+1)(33-1).10.原式=12(a-b)2=2.13.1第1课时1.(1)?;(2) ;(3)?;(4)?;(5) .2.?ABC,?BDC,?BEC;?ABE,?DBE.3.14或16.5.(1)?A,?ACD,?ADC;?A,?ACB,?B;(2)?DAE,?DAC,?BAC;?ADC,?BDC;(3)?BDC;?ACD,?E DC.不是.6.当四点中任意三点不共线时,组成4个三角形;当四点中有三点共线时,组成3个三角形;若该四点共线时,不能组成三角形.第2课时1.3.2.105厘米或200厘米.3.B.4.B.5.9种:4,5,6,7,8,9,10,11,12(单位:厘米).6.4厘米,6厘米.7.8或10.8.8种:1,4,4;2,3,4;2,4,4;2,4,5;3,4,3;3,4,4;3,4,5;3,4,6.第3课时1.ACE,BCD.2.(1)AE,4厘米;(2)DAC,12;(3)AF.3.C.4.C.5.?ABC,?ABD,?ADC,?ABE,?AEC,?ADE.6.相等.?1=?DAC=?DAE=?2.?EAF=?EDF.7.(1)?BCD,?OCD;(2)?ABC,?ABO和?BOC有一条高重合;?BCD,?OCD和?BOC有一条高重合.第4课时1.70?.2.45?.提示:?APD=?A2+?C2.3.C.4.C.5.(1)125?;(2)35?.6.70?.7.50?.8.(1)105?;)90?+12n?.提示:延长BO交AC于D,?BOC=?BDC+12?C=?A+12?B+12(2)115?;(3 ?C=90?+12?A.13.2第1课时1.n-3,n-2.2.5.3.B.4.D.5.五角星.6.8个;?ABC,?ABD,?BCD,?ACD,?OAB,?OAC,?OBD,?OCD.7.6.8.60厘米. 第2课时1.1 440?,360?,144?.2.8.3.12,150?.4.C.5.D.7.36?.8.18,130?.13.3第1课时1.?; ;?;?;?; .2.O,2厘米.3.圆外,圆内,6.4.弦:AB,BC,CD,AD,BD,AC;半圆:ABC,ADC;优弧:BAD,CAD,BAC,ABD,ACB;劣弧:AB,BC,CD,AD,BCD.6.列方程:2π(80+10)8=2π(80+10+x)10,x=22.5(厘米).第2课时1. ; .2.a2(1-π4).3.3.4.一样远.5.6π.第十三章综合练习1.30?,60?.2.95?.3.钝角.4.?A=40?,?C=140?.5.20?.6.M在圆内部.7.B.8.D.9.B.10.D.11.36?,72?,72?.12.(1)y=90-x2;(2)y=45;(3)60.13.8,8,11或10,10,7.14.(1)将平面分为5部分:小圆内、小圆上、圆环内、大圆上、大圆外.(2)条件分别是:OP,5,OP=5,5,OP,8,OP=8,OP,8.15.延长AP到BC上点D,利用三角形外角性质,可推出?APB,?C.16.3圈.检测站1.5,4.2.10个.3.2,1.4.六.5.B.6.C.7.3个.8.?ADB=80?,?DAE=10?.9.(1)?AEF,?D,?A(由外角定理);(2)?AFD=?ACD+?D=?A+?B+?D. 综合与实践第1课时1.条件是:多边形每条边都是该多边形与相邻多边形的公共边,每个顶点处各内角之和是360?.2.正六边形.3.B.4.D.6.6,3,3.第2课时1.正三角形2.正方形.3.C.4.D.5.(1)3,2.6.3n,2n+1.14.11.2,5.2.C.3.储蓄所,诊所(6,9),商店(7,3),学校(1,1).4.5排3列.5.23.6.(1)(C,4),(A,4),(0,3),(0,1),(A,0),(C,0),(D,1),(D,3);(2)(E,3)?(G ,4)?(H,2)?(F,3)?(G,1)(答案不唯一).14.21.四,5,2.2.x轴或y轴上.3.C.4.D.5.在第二、四象限的角平分线上,如(1,-1).6.(2,0),(7,0);(0,2),(0,4).7.第二象限,(2,0),(-2,1);第一象限,(2,2),(0,3).14.3第1课时1.B(3,3),D(-2,-2).2.C.3.小房子.4.42.5.(32,3),(64,0). 第2课时1.(-2,-3),(3,-4),x′=x-2,y′=y-3.2.A.3.A(0,0),B(5,1),C(0,-3),D(-2,-2).4.(1)(0,0),(0,1.5),(3.8,0),(3.8,1.5),(3.8,-1.5),(-3.8,0),(0,-1.5),(0,0),(-2.1,-1).5.以(1,1)为原点1.7,0.5);(2)(-O′,x′轴?x轴,y′轴?y轴,分别以向右、向上为正向,单位长度不变,建立直角坐标系.A,B,C坐标分别是A(-2,1),B(2,-2),C(-1,2). 14.41.北偏西45?,1.5.2.A.3.略.4.略.第十四章综合练习1.(9,8).2.一.3.2.4.6.5.D.6.B.7.略.8.二,四,三,一,x轴,y轴.9.(2,6)或(2,-6).10.x轴上,(0,5),(5,0). 检测站1.(-2,-2).2.(1)3;(2)-2;(3)四.3.B.5.“国”字.6.P,Q,R分别在长方形内部、边界上、外部.总复习题1.45?.2.?DCE=?A.3.12.4.-2 012.5.125?.6.D.7.D.8.A.9.C.10.75?..13.(1)22x-23,21;(2)-2y2+19y,9.14.12.15.y=-12x. 11.第二象限.12.24.5吨16.购一等门票3张、三等门票33张,或购二等门票7张、三等门票29张.提示:分三种情况分别列二元一次方程组,其中购一等门票、二等门票不可行.17.玩具走的是正12边形,共走了12米.总检测站1.44?.2.(1)AB?DF;(2)ED?AC;(3)ED?AC.3.x=2,y=-5.4.a=-73,b=53.5.-y2-7x.6.-7.7.18?.8.C.9.C.10.A.11.B.12.(1)?DOC=?B=?E;(2)不一定;还可能互补.13.4.14.3516x3-418x2-32x-12.15.(a+1)2(a-1)2.*16.7,5,6.17.12边形.18.分两种情况讨论:D点在B,C之间和D点在B,C之外.分别由面积求出高,建立直角坐标系,以垂足为原点,以直线BC为x轴,以高所在直线为y轴.。
七年级数学下册复习题答案
七年级数学下册复习题答案经过认真做数学复习题,反复思索,才能真正把握其实质。
下面是我为大家细心整理的七年级数学下册复习题,仅供参考。
七年级数学下册复习题一、细心选一选(此题共10小题,每题3分,共30分)1.以下计算正确的选项是( )A.-( x3)2= x6B.( )-2=4C.2x2﹒x3=2x6D.2x34x3=2.以下属于因式分解的是( )A.(x+2)(x-2)=x2-4B.x2-2x+3=(x+1)2+2C.x2-6xy+9y2=(x-3y)2D.3(5-x)=-3(x-5)3.若满足二元一次方程组,则代数式的值是( )A.-2B.2C.-D.4.数学张老师想对小明和小玲俩在这学期的单元、月考及期中考试成果进行比较,为形象地反映他们成果的转变状况及上升趋势,张老师应选择合适的统计图是( )A.条形统计图B.折线统计图C.扇形统计图D.频数直方图5.关于分式,有以下说法:①当x=-1,m=2时,分式有意义;②当x=3时,分式的值确定为0;③当x=1,m=3时,分式没有意义;当x=3且m3时,分式的值为0,其中正确的有( )A.1个B.2个C.3个D.4个6.如图,直线l与BAC的两边分别相交于点D、E,则图中是同旁内角的有( )A.2对B.3对C.4对D.5对7.以下从等式的左边变形到右边,其错误的选项是( )A.a-b+c=a-(b+c)B.a-b+c=-(b-a)+cC.a-b+c=(a+c)-bD.a-b+c=a-(b-c)8.以下用科学记数法表示各数的算式中,正确的选项是( )A.25100=2.5110-4B.0.00036=0.3610-3C.-0.00102=1.0210-3D.0.0000056=5.6010-69.如图,在117的网格中,每个小方格的边长均为1个单位,将图形E平移到另一个位置后能与图形F组合成一个正方形,下面正确的平移步骤是( )A.先把图形E向左平移4个单位,再向上平移3个单位B.先把图形E向左平移5个单位,再向上平移2个单位C.先把图形E向左平移5个单位,再向上平移3个单位D.先把图形E向左平移6个单位,再向上平移2个单位10.某项工程由甲队单独完成需要a天,由乙队单独完成需要b天完成,先由甲队工作2天后,再由甲、乙两队合作10天后完成工作量的,则以下所列等式正确的选项是( )A.12a+10b=B.C.D.二、细心填一填(此题共8小题,每题3分,共24分)11.假如2m=a,2n=b,那么=___________.12.若a+b=9,ab=-10,则a2+b2=__________.13.计算:+ =_____________.14.分解因式:ax3+x2-ax-1=_____________________________.15.一组数据共分5组,第一、二、三组共有250个频数,第三、四、五组共有230个频数,若第三组的频率为0.2,则这组数据的总频数为___________个.16.若分式方程+ = 有增根,则m的值为____________.17.如下列图,同旁内角一共有___________对.第17题图第18题图18.如图,AB∥CD,EFCD于点F,GF平分EGH,若1=62,则2=_______.三、解答题(此题共8小题,第19、20每题各8分;第21、22每题各6分;第23、24每题各8分;第25题10分,第26小题12分,共66分)19.计算以下各题:(1) +(- )-1( -3)0-152(-5)-2+(-1)2021 .(2)(a+3)(a-2)-2a(a+3)+ (a+2)2 .20.(1)解方程:- =1-,(2)解方程:.21.先化简,再求值:(a+ ),其中a=-2,b=1.22.下面是某市2021年12月1日至10日最低气温的统计表:日期/日1 2 3 4 5 6 7 8 9 10最低温度/C 3 2 0 1 -1 -2 0 0] 1 5根据统计表提供的数据解答以下问题:;(1)绘制某市2021年12月1日至10日最低温度的折线统计图;(2)由折线统计图推想哪天气温回升的最快?(3)根据折线统计图对这10天的最低温度转变状况进行合理的分析.23.几何推理,看图填空:(1)已知DAC=ACB,根据(_________________________)可得______∥_____.(2)已知BAD+ABC=180,根据(_________________________)可得_____∥______ .(3)由AE∥BF,根据(_____________________________)可得2=____,由AB∥CD,(__________________________)可得3=_____,已知BD∥CE,根据(__________________________)可得1=____,所以1=4(_______________),已知4=E,可得1=E(______________,所以1=2即CE是DCE的平分线,(____________________________).24.如图,以下三个条件:①AB∥CD;②BAC+C=180,③B=C;④E=F,从中任选两个条件作为已知,另一个作为结论,编一道几何题,并说明理由.已知:_______________________________________________________,结论:_________________.理由:25.端午节吃粽子是我国的传统,某服装厂食堂用700元购进甲、乙两种粽子260个,其中甲种粽子比乙种粽子少用100元,已知甲种粽子的单价比乙种粽子的单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购置了多少个?26.某旅游团体购置门票标价如下:购票人数(人) 1~50 51~100 100人以上每人门票(元) 30元25人20元现有甲、乙两个旅游团,已知甲旅游团人数少于50人,乙旅游团人数不超过100人,若分别购票,两旅游团门票共付3475元,若合在一起作为一团体购票,应付总门票费2600元,求甲、乙两旅游团各有多少人?七年级数学下册复习题参考答案一、细心选一选(此题共10小题,每题3分,共30分)题号1 2 3 4 5 6 7 8 9 10答案B C D B C C A D B B二、细心填一填(此题共8小题,每题3分,共24分)11. a6b3; 12. 101;13. x+2; 14. (ax+1)(a+1)(a-1);15. 400; 16. -6或4;17. 5; 18. 124.三、解答题(此题共8小题,第19、20每题各8分;第21、22每题各6分;第23、24每题各8分;第25题10分,第26小题12分,共66分)19.解:(1) +(- )-1( -3)0-152(-5)-2+(-1)2021=2+(-3)1+152 -1 =2-3+9-1=7(2)(a+3)(a-2)-2a(a+3)+(a+2)2 .=a2-2a+3a-6-2a2-6a+a2+4a+4=(a2-2a2+a2)+(-2a+3a-6a+4a)+(-6+4)=-a-220.解:(1)原方程变形为:+ =1-,把方程两边都乘以(x-1)(x-3),得:-2(x-3)+x(x-1)=x2-4x+3-(2x-1) ,去括号,得:-2x+6+x2-x=x2-4x+3-2x+1, 移项,合并同类项,得:3x=-2,解得:x=-,检验:把x=-代入(x-1)(x-3)0,x=-是原分式方程的解,故原方程的解为x=- .(2)①3得:15x-18y=6 ③,②5得:15x-20y=-10 ④,③-④得:2y=16,y=8,把y=8代入①得:5x-68=2,x=10,所以原方程组的解为.21.解:(a+ )===当a=-2,b=1时,原式= =-1.22.解:(1)绘图如下;(2)因为9日的最低气温为1C,10日的最低气温为5C,气温回升了4C,所以从9日到10日气温回升最快;(3)【本小题只要学生回答得有理即可】如:在这10天的最低温度中,6日的温度是最低的,10日的温度是最高的,折线统计图反映了这10天的最低温度的转变状况,最低温度先是慢慢下降,到6日后气温慢慢上升.23.(1)已知DAC=ACB,根据(内错角相等,两直线平行)可得AD∥BC.(2)已知BAD+ABC=180,根据(同旁内角互补,两直线平行)可得AB∥CD .(3)由AE∥BF,根据(两直线平行,内错角相等)可得2=E,由AB∥CD,(两直线平行,内错角相等)可得3=4,已知BD∥CE,根据(两直线平行,内错角相等) 可得1=3,所以1=4(等量代换),已知4=E,可得1=E(等量代换),所以1=2即CE是DCE的平分线,(角平分线的定义)24.解:已知:①AB∥CD;③B=C,结论:④E=F.理由:∥AB∥CD(已知),EAB=C(两直线平行,同位角相等),∥B=C(已知),EAB=B(等量代换),CE∥BF(内错角相等,两直线平行),E=F(两直线平行,内错角相等).25.解:设乙粽子的单价为x元,则甲粽子的单价为(1+20%)x元,由题意,得:+ =260,解这个方程,得:x=2.5,经检验:x=2.5是原分式方程的解,(1+20%)x=3,购置甲种粽子为:=100(个),乙粽子为:=160(个),答:乙粽子的单价是是2.5元,甲、乙两种粽子各购置100个、160个.26.解:∥10030=300003475,乙旅游团的人数不少于50人,不超过100人,设甲旅游团人数为x,乙旅游团人数为y,①当甲旅游团总人数在51~100人时,由题意,得:,解这个方程,得:(不合题意,应舍去),②当甲乙两旅游团总人数在100人以上时,由题意,得:,解这个方程,得:,答:甲、乙两个旅游团各有45人、85人.七年级数学下册复习题答案。
七年级数学练习册答案
1.9(n-1)+n=10n-92.6303. =36%4.133,23 2000=24•×53 •5.•2520,•a=2520n+16.A7.C8.B9.C 10.C 11.6个,95 这个两位数⼀定是2003-8=1995的约数,⽽1995=3×5×7×19 12. 13. 14.观察图形数据,归纳其中规律得:n棱柱有(n+2)个⾯,2n个顶点,3n•条棱.• • 15.D 16.A 17.C S不会随t的增⼤则减⼩,修车所耽误的⼏分钟内,路程不变,•修完车后继续匀速⾏进,路程应增加. 18.C 9+3×4+2×4+1×4=33. 19.略 20.(1)(80-59)÷59×100%≈36% (2)13÷80×100%≈16% • (3)•1995•年~1996年的增长率为(68-59)÷59×100%≈15%, 同样的⽅法可得其他年度的增长率,增长率的是1995年~1996年度. 21.(1)⼄商场的促销办法列表如下: 购买台数 111~8台 9~16台 17~24台 24台以上 每台价格 720元 680元 640元 600元 (2)⽐较两商场的促销办法,可知: 购买台数 1~5台 6~8台 9~10台 11~15台 选择商场⼄甲、⼄⼄甲、⼄ 购买台数 16台 17~19台 20~24台 24台以上 选择商场甲甲、⼄甲甲、⼄ 因为到甲商场买21台VCD时共需600×21=12600元,⽽到⼄商场买20•台VCD•共需640×20=12800元,12800>12600, 所以购买20台VCD时应去甲商场购买. 所以A单位应到⼄商场购买,B单位应到甲商场购买,C单位应到甲商场购买. 22.(1)根据条件,把可分得的边长为整数的长⽅形按⾯积从⼩到⼤排列,有 1×1,1×2,1×3,1×4,2×2,1×5,2×3,2×4,3×3,2×5,3×4,3×5. 若能分成5张满⾜条件的纸⽚,因为其⾯积之和应为15,所以满⾜条件的有 1×1,1×2,1×3,1×4,1×5(如图①)或1×1,1×2,1×3,2×2,1×5(如图②) 2.从算术到代数答案1.n2+n=n(n+1)2.1093.4.150分钟5.C6.D7.B8.B 9.(1)S=n2 (2)①100 ②132-52=144 (3)n=15 10.(1)a得 = . 11.S=4n-4 12. b2 13.595 14.(1)18;(2)4n+2 15.A 设⾃然数从a+1开始,这100个连续⾃然数的和为 (a+1)+(a+2)+•…+(a+100)=100a+5050. 16.C 第⼀列数可表⽰为2m+1,第⼆列数可表⽰为5n+1, 由2m+1=5n+1,得n= m,m=0,5,10 (1000) 18.D 提⽰:每⼀名同学每⼩时所搬砖头为块,c名同学按此速度每⼩时搬砖头块. 19.提⽰:a1=1,a2= ,a3= ……,an= ,原式= . 20.设每台计算器x元,每本《数学竞赛讲座》书y元,则100(x+3y)=80(x+5y),解得x=5y,故可购买计算器 =160(台),书=800(本). (2)若能分成6张满⾜条件的纸⽚,则其⾯积之和仍应为15,•但上⾯排在前列的6个长⽅形的⾯积之和为1×1+1×2+1×3+1×4+2×2+1×5=19>15.所以分成6•张满⾜条件的纸⽚是不可能的. 3.创造的基⽯──观察、归纳与猜想答案1.(1)6,(2)2003.2.a+b=c+d-14或a+c=b+d-2或a+d=b+c3.13,3n+14.•C 5.B 提⽰:同时出现在这两个数串中的数是1~1999的整数中被6除余1的数,共有334个. 6.C 7.提⽰:观察已经写出的数,发现每三个连续数中恰有⼀个偶数,在前100项中,•第100项是奇数,前99项中有 =33个偶数. 8.提⽰:经观察可得这个⾃然数表的排列特点: ①第⼀列的每⼀个数都是完全平⽅数,并且恰好等于它所在⾏数的平⽅,即第n⾏的第1个数为n2; ②第⼀⾏第n•个数是(n-1)2+1; ③第n⾏中从第⼀个数⾄第n个数依次递减1; ④第n列中从第⼀个数⾄第n个数依次递增1. 这样可求:(1)上起第10⾏,左起第13列的数应是第13列的第10个数,即 [(13-1)2+1]+9=154. (2)数127满⾜关系式 127=112+6=[(12-1)2+1]+5,即127在左起12列,上起第6•⾏的位置. 9.(1)(2n+1)(2n+3)=4(n+1)2-1; (2) ,- 各⾏数的个数分别为1,2,3,… ,求出第1⾏⾄第198⾏和第1⾏⾄第1997⾏共有多少个问题就容易解决. 10.7n+6,285 11.林 12.S=7×4(n-1)-5n=23n-8(n≥3) 13.B 14.C 15.(1)提⽰:是,原式= × 5; (2)原式= 结果中的奇数数字有n-1个. 16.(1)略;(2)顶点数+⾯数-棱数=2;(3)按要求画图,验证(2)的结论. 17.(1)⼀般地,我们有(a+1)+( )= = =(a+1)• (2)类似的问题如: ①怎样的两个数,它们的差等于它们的商? ②怎样的三个数,它们的和等于它们的积? 4.相反数与绝对值答案1.(1)A;(2)C;(3)D2.(1)0;(2)144;(3)3或-9.3.a=0,b= .原式=-4.0,±1,±2,…,±1003.其和为0. 5.a=1,b=2.原式= .6.a-c7.m= -x3,n= +x. ∵m=( +x)( +x2-1)=n[( +x)2-3]=n(n2-3)=n3-3n. 8.p=3,q=-1.原式=669×3-(-1)2=2006. 5.物以类聚──话说同类项答案1.12.(1)-3,1 (2)8.3.40000004.-45.C6.C7.A8.A 9.D=•3x2-7y+4y2,F=9x2-11xy+2y2 10.12 提⽰:由题意得b=m-1=n,c=2n-1=m,0.625a=0.25+(-0.125). 11.对 12.- 13.22 14.3775 提⽰:不妨设a>b,原式=a,• 由此知每组数的两个数代⼊代数式运算后的结果为两个数中较⼤的⼀个, 从整体考虑,只要将51,52,53,…,100这50•个数依次代⼊每⼀组中,便可得50个值的和的值. 15.D 16.D 17.B 18.B 提⽰:2+3+…+9+10=54,⽽8+9+10=27. 6.⼀元⼀次⽅程答案 1.-105. 2.设原来输⼊的数为x,则 -1=-0.75,解得x=0.23.- ;904. 、-5.•D •6.A7.A8.B 9.(1)当a≠b时,⽅程有惟⼀解x= ;当a=b时,⽅程⽆解; (2)当a≠4时,•⽅程有惟⼀解x= ; 当a=4且b=-8时,⽅程有⽆数个解; 当a=4且b≠-8时,⽅程⽆解; (3)当k≠0且k≠3时,x= ; 当k=0且k≠3时,⽅程⽆解; 当k=3时,⽅程有⽆数个解. 10.提⽰:原⽅程化为0x=6a-12. (1)当a=2时,⽅程有⽆数个解; 当a≠2时,⽅程⽆解. 11.10.5 12.10、26、8、-8 提⽰:x= ,9-k│17,则9-k=±1或9-k=±17. 13.2000 提⽰:把( + )看作⼀个整体. 14.1.5 15.A 16.B 17.B 18.D 提⽰:x= 为整数,⼜2001=1×3×23×29,k+1 可取±1、±3、±23、•±29、±(3×23)、±(3×29)、±(23×29)、±2001共16个值,其对应的k值也有16个. 19.有⼩朋友17⼈,书150本. 20.x=5 21.提⽰:将x=1代⼊原⽅程并整理得(b+4)k=13-2a, 此式对任意的k值均成⽴, 即关于k的⽅程有⽆数个解. 故b+4=0且13-2a=0,解得a= ,b=-4. 22.提⽰:设框中左上⾓数字为x, 则框中其它各数可表⽰为: x+1,x+2,x+3,x+•7,x+8,x+9,x+10,x+14,x+15,x+16,x+17,x+21,x+22,x+23,x+24, 由题意得: x+(x+1)+(x+2)+(x+3)+…x+24=1998或1999或2000或2001, 即16x+192=•2000•或2080 解得x=113或118时,16x+192=2000或2080 ⼜113÷7=16 (1) 即113是第17排1个数, 该框内的数为113+24=137;118÷7=16 (6) 即118是第17排第6个数, 故⽅框不可框得各数之和为2080. 7.列⽅程解应⽤题──有趣的⾏程问题答案1.1或32.4.83.640 4.16 提⽰:设再过x分钟,分针与时针第⼀次重合,分针每分钟⾛6°,时针每分钟⾛0.5°, 则6x=0.5x+90+0.5×5,解得x=16 .5.C6.C 提⽰:7.16 8.(1)设CE长为x千⽶,则1.6+1+x+1=2×(3-2×0.5),解得x=0.4(千⽶) (2)若步⾏路线为A→D→C→B→E→A(或A→E→B→C→D→A)则所⽤时间为: (1.6+1+1.2+0.4+1)+3×0.5=4.1(⼩时); 若步⾏路线为A→D→C→E→B→E→A(•或A→E→B→E→C→D→A), 则所⽤时间为: (1.6+1+0.4+0.4×2+1)+3×0.5=3.9(⼩时), 因为4.1>4,4>3.9, 所以,步⾏路线应为A→D→C→E→B→E→A(或A→E→B→E→C→D→A). 9.提⽰:设此⼈从家⾥出发到⽕车开车的时间为x⼩时, 由题意得:30(x- )=18(x+ ),解得x=1, 此⼈打算在⽕车开车前10分钟到达⽕车站, 骑摩托车的速度应为: =27(千⽶/⼩时) 10.7.5 提⽰:先求出甲、⼄两车速度和为 =20(⽶/秒) 11.150、200 提⽰:设第⼀辆车⾏驶了(140+x)千⽶, 则第⼆辆⾏驶了(140+x)•× =140+(46 + x)千⽶, 由题意得:x+(46 + x)=70. 12.66 13.B 14.D 提⽰:设经过x分钟后时针与分针成直⾓,则6x- x=180,解得x=32 15.提⽰:设⽕车的速度为x⽶/秒, 由题意得:(x-1)×22=(x-3)×26,解得x=14,• 从⽽⽕车的车⾝长为(14-1)×22=286(⽶). 16.设回车数是x辆,则发车数是(x+6)辆, 当两车⽤时相同时,则车站内⽆车,• 由题意得4(x+6)=6x+2,解得x=11, 故4(x+6)=68.即第⼀辆出租车开出,最少经过68分钟时,车站不能正点发车 8.列⽅程解应⽤题──设元的技巧答案 1.285713 2.设这个班共有学⽣x⼈,在操场踢⾜球的学⽣共有a⼈,1≤a≤6, 由 +a =x,•得x= a, ⼜3│a, 故a=3,x=28(⼈).3.244.C5.B 提⽰:设切下的每⼀块合⾦重x克,10千克、15千克的合⾦含铜的百分⽐分别为 a、b(a≠b), 则 , 整理得(b-a)x=6(b-a),故x=6. 6.B 提⽰:设⽤了x⽴⽅⽶煤⽓,则60×0.8+1.2(x-60)=0.88x. 7.设该产品每件的成本价应降低x元, 则[510×(1-4%)-(400-x)]×(1+10%)m=•(510-400)m 解得x=10.4(元) 8.18、15、14、4、8、10、1、 9.1:4 提⽰:设原计划购买钢笔x⽀,圆珠笔y⽀,圆珠笔的价格为k元, 则(2kx-•ky)×(1+50%)=2ky+kx,解得y=4x. 10.282.6m 提⽰:设胶⽚宽为amm,长为xmm, 则体积为0.15axm3,盘上所缠绕的胶⽚的内、外半径分别为30mm和30+015×600=120(mm),其体积⼜可表⽰为 (120-30)•a=13500a(m3), 于是有0.15ax=13500a ,x=90000 ≈282600,胶⽚长约282600mm,即282.6mm. 11.100 提⽰:设原⼯作效率为a,⼯作总量为b,由 - =20,得 =100. 12.B 13.A 14.C 提⽰:设商品的进价为a元,标价为b元, 则80%b-a=20%a,解得b= a,• 原标价出售的利润率为 ×100%=50%. 15.(1)(b-na)x+h (2)由题意得得a=2b,h=30b. 若6个泄洪闸同时打开,3⼩时后相对于警戒线的⽔⾯⾼度为(b-na)x+h=-3b<0.• 故该⽔库能在3个⼩时内使⽔位降⾄警戒线. 16.(1)设这批货物共有T吨,甲车每次运t甲吨,⼄车每次运t⼄吨, 则2a•t甲=a•t⼄=T,•得t甲:t⼄=1:2. (2)由题意得: = , 由(1)知t⼄=2t甲, 故 = 解得T=540. 甲车车主应得运费540× ×=20=2160(元),• ⼄、•丙车主各得运费540•× ×20=4320(元). 9.线段答案1.2a+b2.123.5a+8b+9c+8d+5e4.D5.C 6.A 提⽰:AQ+BC=2250>1996,所以A、P、Q、B四点位置如图所⽰: 7.MN>AB+NB 提⽰:MN=MA+AN= AB,AB+NB=AB+(CN-BC)= AB 8.MN=20或40 9.23或1 提⽰:分点Q在线段AP上与点Q在线段PB上两种情况讨论 10.设AB=x,则其余五条边长度的和为20-x,由 ,得 ≤x<10 11.3 提⽰:设AC=x,CB=y,则AD=x+ ,AB=x+y,CD= ,CB=y,DB= ,由题意得3x+ y=23. 12.C 提⽰:作出平⾯上5点,把握⼿⽤连接的线段表⽰. 13.D 提⽰:平⾯内n条直线两两相交,最少有⼀个交点,最多有个交点. 14.A 提⽰:考察每条通道的信息量,有3+4+6+6=19. 15.A 提⽰:停靠点设在A、B、C三区,计算总路程分别为4500⽶、5000⽶、•12000⽶,可排除选项B、C;设停靠点在A、B 两区之间且距A区x⽶,则总路程为 30x+15(100-x)+10(300-x)=4500+5x>4500,⼜排除选项D. 16.(1)如图①,两条直线因其位置不同,可以分别把平⾯分成3个或4个区域;•如图②,三条直线因其位置关系的不同,可以分别把平⾯分成4个、6个和7个区域. (2)如图③,四条直线最多可以把平⾯分成11个区域,•此时这四条直线位置关系是两两相交,且⽆三线共点. (3)平⾯上n条直线两两相交,且没有三条直线交于⼀点,把平⾯分成an个区域,平⾯本⾝就是⼀个区域,当n=1时,a1=1+1=2;当n=2时,a2=1+1+2=4;当n=3时,a3=1+1+2+•3=7;当n=4时,a4=1+1+2+3+4=11,… 由此可以归纳公式an=1+1+2+3+…+n=1+ = . 17.提⽰:应建在AC、BC连线的交点处. 18.记河的两岸为L,L′(如图),将直线L平移到L′的位置,则点A平移到A′,•连结A′B 交L′于D,过D作DC⊥L于C,则桥架在CD处就可以了. 10.⾓答案1.45°2.22.5° 提⽰:15×6°-135×0.5°3.154.65.B6.A7.C8.B 9.∠COD=∠DOE 提⽰:∠AOB+∠DOE=∠BOC+∠COD=90° 10.(1)下列⽰意图仅供参考 (2)略 11.345° 提⽰:因90° 故6°< (α+β+γ)<24°,计算正确的是23°, 所以α+β+γ=23°×15=345°. 12.∠EOF、∠BOD、∠BOC;∠BOF、∠EOC 13.若射线在∠AOB的内部,则∠AOC=8°20′;若射线OC•在∠AOB•的外部,•则∠AOC=15° 14.40° 15.C 16.D 17.20° 提⽰:本题⽤⽅程组解特别简单, 设∠COD=x,∠BOC+∠AOD=y,•由题意得: 18.提⽰:共有四次时针与分针所夹的⾓为60° (1)第⼀次正好为两点整 (2)第⼆次设为2点x分时,时针与分针的夹⾓为60°,则x=10+ +10,解得x=21 (3)第三次设3点y分时,时针与分针的夹⾓为60°,则y+10= +15,解得y=5 (4)第四次设为3点z分时,时针与分针的夹⾓为60°,则z=15+ +10,解得z=27 19.提⽰:若只连续使⽤模板,则得到的是⼀个19°的整数倍的⾓,即⽤模板连续画出19个19°的⾓,得到361°的⾓,•去掉360°的周⾓,即得1°的⾓.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7年级下学期数学练习册答案8.11.(1)∠A,∠C;(2)∠ABC,∠ABD,∠DBC,∠ADB,∠BDC;(3)3个,∠ABD,∠ABC,∠DBC.2.B.3.(1)∠AEB,∠DAE,∠BEC,∠ADB;(2)∠C,∠D.4.3个角;6个角;10个角.5.9时12分或21时12分.8.21.(1)42°;(2)不变.2.C.3.D.5.46°.提示:设∠COE=x°,则x-8=130-2x,x=46.6.(1)45°;(2)不变;提示:90+2x2-x=45;(3)不变.提示:90-2y2+y=45.8.3第1课时1.(1)42°20′24″;(2)56.35.2.(1)61°38′10″;(2)32.6.3.C.4.C.5.(1)93°12′;(2)47°31′48″;(3)12°9′36″;(4)33°7′12″.6.(1)112°27′;(2)51°55′;(3)125°37′30″.7.0.5°,6°.8.(1)15°;(2)172.5°.9.40分钟.第2课时1.153°.2.53°17′45″.3.C.4.C.5.63°.6.(1)相等;(2)180°.7.60°.8.41.∠3,∠AOD.2.121°.3.C.4.B.5.∠3=25°30′,∠2=45°.6.∠2=63°30′,∠3=53°.7.(1)2对;(2)6对;(3)12对.8.51.70°.2.45°.3.D.4.C.5.132°.6.135°.7.60°,30°.第八章综合练习1.130°.2.36°16′30″.3.50°.4.(1)54°34′,125°26′;(2)α-90°.5.47.6.D.7.A.8.C.9.D.10.138°.11.125°.12.∠AOC+∠BOC=2(∠DOC+∠COE)=2×90°=180°,A,O,B共线.13.设∠BOE=x°,∠EOC=2x°,∠AOB=180-3x,∠DOB=72-x.得方程(72-x)×2=180-3x,解得x=36.即∠EOC=72°.14.∠BOC+∠COD+∠AOD=270°,∠EOF=170°,∠AOE+∠BOF=190°-90°=100°.∠COF+∠DOE=100°.又∠EOF=170°,∠COD=170°-100°=70°.检测站1.45°.2.98.505°.3.∠AOB,∠BOC.∠AOB,∠BOD.4.C.5.D.6.∠BOD,∠FOE,∠BOC;∠BOF.7.45°.8.97.5°.9.11.∠END.2.DE,AB,BC;AB,BC,DE.3.B.4.C.5.∠CAD,∠BAC,∠B.6.同位角:∠EAD与∠B;∠EAC与∠B;内错角:∠DAC与∠C;∠EAC与∠C.同旁内角:∠DAB与∠B;∠BAC与∠B.7.略.9.21.相交,平行.2.不相交.3.一.4.C.5.略.6.略.7.正方形.8.略.9.31.65°,两直线平行,同位角相等,65°,对顶角相等.2.65°.3.B.4.C.5.130°.6.∠B,∠EFC,∠ADE.7.40°.9.4第1课时1.AC,BD,内错角相等,两直线平行.2.(1)EN,BD;(2)AB,CD.3.B.4.∠5=∠2=105°,∠5+∠1=180°.5.DE∥MN.由AB∥MN,DE∥AB.6.提示:由AD∥BC,得∠A+∠B=180°,∠C+∠B=180°,AB∥CD.7.(1)由∠3=∠B,知FD∥AB,知∠4=∠A;(2)由ED∥AC,知∠1=∠C,∠BED=∠A.第2课时1.4厘米.2.BD,BE.3.D.4.由∠B=∠C,知AB∥CD,故∠A=∠D.5.∠1=∠GMC=90°-∠2.6.(1)∠MDF=∠MBE,BE∥DF;(2)不是;它是AB和CD之间的距离.7.在∠B内画射线BF∥AE,则BF∥CD.∠ABF=120°,∠FBC=30°,∠C=180°-30°=150°.第九章综合练习1.110°.2.AD∥BE,BD∥CE,AD∥BE.3.35°.提示:过点M画MN⊥AB,MN∥EG,∠HMN=∠E,∠HMN=90°-∠AMH.4.C.5.C.6.D.7.126°.8.∠1=115°.9.25°.10.∠3=80°,∠4=100°.11.因为AB∥CD,所以∠AEF=∠2,∠AEG=∠3,因为∠AEG=∠1+∠2,所以∠3=∠1+∠2.12.22°.提示:过点A画直线c∥a.检测站1.内错,同旁内,同位.2.180°.3.A.4.B.5.AB∥CD,AD∥BC.6.AD∥BC.DB平分∠ADC代替第二个条件.10.12.5.3.C4.D.6.a=7,b=-9.7.设需要汽车x辆,共有y人外出参观,35x+15=y,45(x-1)=y.解得x=6,y=225..8.不是.10.2第1课时1.-35x+85,-53y+83.2.x-1=0.3.B.4.(1)x=-12,y=52;(2)s=-3,t=-3;(3)m=2,n=1.5.x=1,y=-1.6.提示:按丙的方法,35x=3,25y=4,得x=5,y=10.第2课时1.2.2.-11.3.C.4.B.5.(1)x=-1,y=-8;(2)x=5,y=272.6.令x+y=a,x-y=b,解得a=2,b=-1,又解得x=12,y=32.7.k=4.10.3第1课时1.4x+y=6,-5x+4y=-7.2.C.3.(1)x=1,y=1,z=1;(2)x=1,y=2,z=3.4.解三元一次方程组,用a表示解,得x=a,y=a+1,z=a-1,代入方程-x+2y+3z=6,得a=74.5.将z看做已知数,将x,y解出来.得x=1911-z,y=211-z.x+y+2z=1911-z+211-z+2z=2111.第2课时1.加减,①,②.2.B.3.(1)x=2,y=1,z=-1;(2)x=1,y=2,z=2.4.a=1,b=-1,c=1.10.4第1课时1.7x+3=y,8x-5=y.2.320,180.3.C.4.216,1095.90元,100元.6.5元,3元.7.提示:设小长方形宽x,长y,则5x=3y,y+2x=2y+2,得x=6,y=10.第2课时1.112x=0.5+112y,0.5x=(0.5+1)y.2.30,18.3.D.4.C.5.21张铁皮做盒身,28张铁皮做盒盖.6.长木 6.5尺,绳长11尺.7.(1)x+y=90,46%x+70%y=90×64%,x=22.5,y=67.5.(2)46%x+70%y=64%(x+y),x∶y=1∶3.*第3课时1.x+y+z=21,x+y-z=5,x-(z-y)=5.2.4,8,10.3.C.4.2,3,5.5.12,8,7.第十章综合练习1.43.2.-1.3.-112,5,(113,0).4.-14.5.x=1,y=2.6.y=23x-53.7.B.8.A.*9.D.10.(1)x=1,z=2;(2)x=6,y=24;(3)x=3,y=2;*(4)x=2,y=-3,z=-1.11.300棵,200棵.12.50人,220件.13.23.14.中型15辆,小型35辆.15.m=-275.16.30千米,70千米,42千米.17.平均每天1只大牛需用饲料20千克,小牛需用5千克.所以王大伯对大牛食量的估计是正确的,对小牛食量的估计偏高.18.火车速度22米/秒,列车长276米.19.(1)x=2,y=2,也是剩下一个方程的解.(2)不.如x-y=0. 检测站1.-10.2.a=2,b=1.3.5千克,2千克.4.C.5.C.6.a=5.*7.x=1,y=2,z=3.8.牛值金2两,羊值金1两.9.男生270名,女生260名. 11.11.108.2.x12.3.x4.4.D.5.A.6.1.5×108.7.(1)m9;(2)3×1011.8.(1)(a-b)5;(2)-(2x-3y)3n+1.9.0.10.0.11.2第1课时1.-8t3.2.116a4b4.3.-6x2.4.A.5.C.6.(1)28x3y3;(2)anbn;(3)-9a3x3.7.a2b.8.1.9.1102n.10.14位数.第2课时1.(1)x10;(2)-8x12.2.C.3.D.5.(1)19x2y4;(2)215;(3)x12;(4)64m12n6.6.(1)x6n+2;(2)-(a+b)7;(3)35n-2.7.提示:24<33,(24)25<(33)25.11.3第1课时1.12xy3.2.-6x2y3.3.B.4.D.5.(1)m5n2;(2)1.2×1020.6.(1)-14x5y4z2;(2)64x6.7.-730(a-b)8n-4.8.C.第2课时1.3x2-5x3.2.x2-y2.3.D.4.C.5.(1)-3x2y+2xy2-52xy;(2)x4+4x2+2x -4;(3)12b3-b2+6b.6.2m3n3-8m2n3.7.x=-12.8.10.11.4第1课时1.x2-7x+10.2.-6x2-xy+2y2.3.B.4.B.5.(1)-6m2+19m-15;(2)-12x3+ 14x2-4x;(3)-3y2-23y+108.6.4x2-100x+600.7.-x2-29x+32,1854.8.提示:该代数式的值恒为22.9.x=-110.b=12.第2课时1.x3+2x2-5x-6.2.2a3+5a2+a-3.3.B.4.C.5.(1)m3+2m2-1;(2)2a3-5a2b+8ab2-3b3;(3)-2x3-x2-7x+10.6.x3+x-5,值为-7.7.x=-12.8.0.11.51.4.2.m8.3.xn.4.D.5.B.6.16.7.(1)-a;(2)a3.8.(1)y-x;(2)(x+2y)6.9.2xy.11.6第1课时1.1.2.1.3.0.4.C.5.D.6.(1)64;(2)a.7.(1)3 129;(2)200.8.7.9.a≠0,m=n.第2课时1.181.2.-164.3.100.4.B.5.C.6.(1)200;(2)10 099;(3)100.7.10-1,10-2,10-3,10-4.8.a<b<d<c.9.x≠-13.10.1.第3课时1.1.2.1a4.3.a8.4.C.5.125.6.(1)10;(2)x5;(3)11 000 000;(4)1a7.7.13a.8.2-101.第4课时1.1.2×10-4.2.0.000 002 76.3.2.5×10-9.4.D.5.D.6.(1)1.5×10-2;(2)2.1×103;(3)1.5×10-3.7.x=-7.8.1.572×104.9.花粉直径较大,是兔毛直径的7.2倍.第十一章综合练习1.106.2.x9.3.a.4.tn.5.(a+b)2.6.x5.7.a7.8.15x3y3z.9.2a3+2a2b+2ab.10.-2x2+3x-1.11.B.12.B.13.B.1 4.A.15.(1)x9;(2)-(a+b)4;(3)-a2b2+6ab+23a;(4)-6n+2;(5)2a3+8ab2-14a2b;(6)-3x2-23x+108;(7)6x2-13xy;(8)-x13y12.16.(1)-x,1;(2)5x-1,101.17.x=-1.18.(1)x=4;(2)n=2,m=4;(3)M=x2-6x+9.19.2ab+2b2.20.n(n+5)-(n-3)(n+2)=6(n+1).检测站1.(x+y)5.2.-6a3b3c.3.-2x3-4x2+2x.4.a6b6.5.C.6.B.7.B.8.1.24×10-6.9.299.10.(1)36x2-114x+90;(2)91x2-277x+210.11.长8、宽5.12.11.b2-9a2.2.x4-4.3.1681m2n2-49.4.5x+3y.5.C.6.B.7.(1)c2-9a2b2;(2)9y2-4x4;(3)a4-b4;(4)-5x2-9.8.(1)(3 00+3)(300-3)=90 000-9=89 991;(2)1.9.(2n-1)(2n+1)=(2n)2-1.10.原式×3-23-2=332-232.12.2第1课时1.-2ab.2.a2+4ab+4b2.3.k=8.4.B.5.C.6.A.7.(1)9m2-32n+116;(2)x 4-2x2+1;(3)a2+2ab+b2;(4)916s2+st+49t2.8.(a+b)2=4ab+(a-b)2.9.a2+2ab+b2=9,a2-2ab+b2=49.ab=14(9-49)=-10.a2+b2=9-2ab=29.第2课时1.4ab.2.a2+b2+c2+2ab-2ac-2bc.3.x2-y2+z2+2xz.4.B.5.B.6.A.7.( 1)2a2b2-b4;(2)2y2+2x+5;(3)(100-3)(100-1)(100+1)(100+3)=(104 -9)(104-1)=108-105+9=99 900 009.8.12.9.48π(a+1).10.8.12.31.2x2y.2.2a4-ab+6.3.a-b-2.4.D.5.C.6.(1)xy(x-y);(2)4ab(bc+4) ;(3)-2xy(1+2x-4x2);(4)-(3a+b)(a+3b);(5)2x(x-y)2(1-2x).7.1 999.8.14ax(2a-x)2.9.能.256-510=512-510=510(25-1)=24×510.12.4第1课时1.(x+2y)(x-2y).2.k=-140.3.D.4.C.5.(1)(6+x)(6-x);(2)(12y+1)2;(3)-(m-n)2;(4)(3+14a)(3-14a).6.(1)8 056;(2)90 000.7.(1)(1+a+b)(1-a-b);(2)(a-b+2)2.8.左端=[(a-b)2+(a+b)2+(a-b)2-(a+b)2][(a-b)2+(a+b)2-(a-b)2+(a+b)2]=4(a-b)2(a+b)2. 第2课时1.提出公因式,用公式法进行因式分解.2.x(x+1)(x-1).3.(a-1)(x+y)(x-y).4.D.5.C.6.(1)m(m2+1)(m+1)(m-1).(2)2x3(3y+1)(3y-1).(3)(x+2)2(x-2)2.(4)(x+1)4.7.原式=1232234334549101110=1120.8.2 0122(2 0112-1)+(2 0132-1)=2 0122(2 011+1)(2 011-1)+(2 013+1)(2 013-1)=2 01224 024=1 006.第十二章综合练习1.9x2-y2.2.25-4b2.3.25a2-20ab+4b2.4.14m4+2m2n+4n2.5.-2m.6.x-y+2.7.(xy+2z)(xy-2z).8.23m-0.1n.9.C.10.C.11.C.12.(1)4x2+4xy+y2-25z2;(2)-280y2+1295;(3)116x4-181y4.13.(1)2a3x2(2+a)(2-a);(2)(x-y)(a+2y)(a-2 y);(3)-(a-b)2(a+b)2;(4)(x2+2x+7)(x-1)2.14.(1)31×(573+427)×(573-427)=4 526 000;(2)76900;(3)10099.15.πR2-4πr2=π(R+2r)(R-2r)=3.14×10×5.6=175 .8厘米.16.(n+7)2-(n-5)2=(n+7+n-5)(n+7-n+5)=24(n+1).17.x=141.18. x=2,y=-3,16.19.(2n+1)2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=8n.检测站1.2b-3a.2.20或-20.3.5-a2.4.B.5.B.6.(1)x8-y8;(2)-16x2.7.(1)x2y4(xy2+z)(xy2 -z);(2)(m-n+4mn)(m-n-4mn);(3)12x(2a-1)2.8.原式=(x+1)(2x-3)x.当x=12时,原式=-32.9.324-1=(312+1)(36+1)(33+1)(33-1)=28×(312+1)(36+1)(33 -1).10.原式=12(a-b)2=2.13.1第1课时1.(1)√;(2);(3)√;(4)√;(5).2.△ABC,△BDC,△BEC;△ABE,△DBE.3.14或16.5.(1)∠A,∠ACD,∠ADC;∠A,∠ACB,∠B;(2)△DAE,△DAC,△BAC;△A DC,△BDC;(3)△BDC;△ACD,△EDC.不是.6.当四点中任意三点不共线时,组成4个三角形;当四点中有三点共线时,组成3个三角形;若该四点共线时,不能组成三角形.第2课时1.3.2.105厘米或200厘米.3.B.4.B.5.9种:4,5,6,7,8,9,10,11,12(单位:厘米).6.4厘米,6厘米.7.8或10.8.8种:1,4,4;2,3,4;2,4,4;2,4,5;3,4,3;3,4,4;3,4,5;3,4,6.第3课时1.ACE,BCD.2.(1)AE,4厘米;(2)DAC,12;(3)AF.3.C.4.C.5.△ABC,△ABD,△ADC,△ABE,△AEC,△ADE.6.相等.∠1=∠DAC=∠DAE=∠2.∠EAF=∠EDF.7.(1)△BCD,△OCD;(2)△ABC,△ABO和△BOC有一条高重合;△BCD,△OCD和△BOC有一条第4课时1.70°.2.45°.提示:∠APD=∠A2+∠C2.3.C.4.C.5.(1)125°;(2)35°.6.70°.7.50°.8.(1)105°;(2)115°;(3)90°+12n°.提示:延长BO交AC于D,∠BOC=∠BDC+12∠C=∠A+12∠B+12∠C=90°+12∠A.13.2第1课时1.n-3,n-2.2.5.3.B.4.D.5.五角星.6.8个;△ABC,△ABD,△BCD,△ACD,△OAB,△OAC,△OBD,△OCD.7.6.8.60厘米. 第2课时1.1 440°,360°,144°.2.8.3.12,150°.4.C.5.D.7.36°.8.18,130°.13.3第1课时 1..2.O,2厘米.3.圆外,圆内,6.4.弦:AB,BC,CD,AD,BD,AC;半圆:ABC,ADC;优弧:BAD,CAD,BAC,ABD,ACB;劣弧:AB,BC,CD,AD,BCD.6.列方程:2π(80+10)8=2π(80+10+x)10,x=22.5(厘米).第2课时 1..2.a2(1-π4).3.3.4.一样远.5.6π.第十三章综合练习1.30°,60°.2.95°.3.钝角.4.∠A=40°,∠C=140°.5.20°.6.M在圆内部.7.B.8.D.9.B.10.D.11.36°,72°,72°.12.(1)y=90-x2;(2)y=45;(3)60.13.8,8,11或10,10,7.14.(1)将平面分为5部分:小圆内、小圆上、圆环内、大圆上、(2)条件分别是:OP<5,OP=5,5<OP<8,OP=8,OP>8.15.延长AP到BC上点D,利用三角形外角性质,可推出∠APB>∠C.16.3圈.检测站1.5,4.2.10个.3.2,1.4.六.5.B.6.C.7.3个.8.∠ADB=80°,∠DAE=10°.9.(1)∠AEF>∠D>∠A(由外角定理);(2)∠AFD=∠ACD+∠D=∠A+∠B+∠D.综合与实践第1课时1.条件是:多边形每条边都是该多边形与相邻多边形的公共边,每个顶点处各内角之和是360°.2.正六边形.3.B.4.D.6.6,3,3.第2课时1.正三角形2.正方形.3.C.4.D.5.(1)3,2.6.3n,2n+1.14.11.2,5.2.C.3.储蓄所,诊所(6,9),商店(7,3),学校(1,1).4.5排3列.5.23.6.(1)(C,4),(A,4),(0,3),(0,1),(A,0),(C,0),(D,1),(D,3 );(2)(E,3)→(G,4)→(H,2)→(F,3)→(G,1)(答案不).14.21.四,5,2.2.x轴或y轴上.3.C.4.D.5.在第二、四象限的角平分线上,如(1,-1).6.(2,0),(7,0);(0,2),(0,4).7.第二象限,(2,0),(-2,1);第一象限,(2,2),(0,3).14.3第1课时1.B(3,3),D(-2,-2).2.C.3.小房子.4.42.5.(32,3),(64,0).第2课时1.(-2,-3),(3,-4),x′=x-2,y′=y-3.2.A.3.A(0,0),B(5,1),C(0,-3),D(-2,-2).4.(1)(0,0),(0, 1.5),(3.8,0),(3.8,1.5),(1.7,0.5);(2)(-3.8,-1.5),(-3.8,0),(0,-1.5),(0,0),(-2.1,-1).5.以(1,1)为原点O′,x′轴∥x轴,y′轴∥y轴,分别以向右、向上为正向,单位长度不变,建立直角坐标系.A,B,C坐标分别是A(-2,1),B(2,-2),C(-1,2).14.41.北偏西45°,1.5.2.A.3.略.4.略.第十四章综合练习1.(9,8).2.一.3.2.4.6.5.D.6.B.7.略.8.二,四,三,一,x轴,y轴.9.(2,6)或(2,-6).10.x轴上,(0,5),(5,0).检测站1.(-2,-2).2.(1)3;(2)-2;(3)四.3.B.5.“国”字.6.P,Q,R分别在长方形内部、边界上、外部.总复习题1.45°.2.∠DCE=∠A.3.12.4.-2 012.5.125°.6.D.7.D.8.A.9.C.10.75°.11.第二象限.12.24.5吨.13.(1)22x-23,21;(2)-2y2+19y,9.14.12.15.y=-12x.16.购一等门票3张、三等门票33张,或购二等门票7张、三等门票29张.提示:分三种情况分别列二元一次方程组,其中购一等门票、二等门票不可行.17.玩具走的是正12边形,共走了12米.总检测站1.44°.2.(1)AB∥DF;(2)ED∥AC;(3)ED∥AC.3.x=2,y=-5.4.a=-73,b=53.5.-y2-7x.6.-7.7.18°.8.C.9.C.10.A.11.B.12.(1)∠DOC=∠B=∠E;(2)不一定;还可能互补.13.4.14.3516x3-418x2-32x-12.15.(a+1)2(a-1)2.*16.7,5,6.17.12边形.18.分两种情况讨论:D点在B,C之间和D点在B,C 之外.分别由面积求出高,建立直角坐标系,以垂足为原点,以直线BC为x轴,以高所在直线为y轴.。